exemptions are needed to protect information relating to DHS activities from disclosure to subjects or others related to these activities. Specifically, the exemptions are required to avoid disclosure of screening techniques; to protect the identities and physical safety of confidential informants and law enforcement personnel; to ensure DHS’s ability to obtain information from third parties and other sources; to protect the privacy of third parties; and to safeguard classified information. Disclosure of information to the subject of the inquiry could also permit the subject to avoid detection or apprehension.

In appropriate circumstances, when compliance would not appear to interfere with or adversely affect the law enforcement purposes of this system and the overall law enforcement process, the applicable exemptions may be waived on a case by case basis. A notice of system of records for DHS/ALL–039 Foreign Access Management System of Records is also published in this issue of the Federal Register.

List of Subjects in 6 CFR Part 5
Freedom of information, Privacy.

For the reasons stated in the preamble, DHS proposes to amend chapter I of title 6, Code of Federal Regulations, as follows:

PART 5—DISCLOSURE OF RECORDS AND INFORMATION

1. Revise the authority citation for Part 5 to read as follows:
2. Amend appendix C to part 5 by adding paragraph 78:

Appendix C to Part 5—DHS Systems of Records Exempt From the Privacy Act

78. The DHS/ALL–039 Foreign Access Management System of Records consists of electronic and paper records and will be used by DHS and its components. The DHS/ALL–039 Foreign Access Management System of Records is a repository of information held by DHS in connection with its several and varied missions and functions, including, but not limited to the enforcement of civil and criminal laws; investigations, inquiries, and proceedings there under; and national security and intelligence activities. The DHS/ALL–039 Foreign Access Management System of Records contains information that is collected by, on behalf of, in support of, or in cooperation with DHS and its components and may contain personally identifiable information collected by other federal, state, local, tribal, foreign, or international government agencies.

The Secretary of Homeland Security, pursuant to 5 U.S.C. 552(a)(1), (2), and (k)(5), has exempted this system from the following provisions of the Privacy Act: 5 U.S.C. 552a(c)(3); (d); (e)(1), (e)(4)(G), (e)(4)(H), (e)(4)(I), and (f). When a record received from another system has been exempted in that source system under 5 U.S.C. 552a(j)(2), DHS will claim the same exemptions for those records that are claimed for the original primary systems of records from which they originated and claims any additional exemptions set forth here. Exemptions from these particular subsections are justified, on a case-by-case basis to be determined at the time a request is made, for the following reasons:

(a) From subsection (c)(3) (Accounting for Disclosures) because release of the accounting of disclosures could alert the subject of an investigation of an actual or potential criminal, civil, or regulatory violation to the existence of that investigation and reveal investigative interest on the part of DHS as well as the recipient agency. Disclosure of the accounting would therefore present a serious impediment to law enforcement efforts and efforts to preserve national security. Disclosure of the accounting would also permit the individual who is the subject of a record to impede the investigation, to tamper with witnesses or evidence, and to avoid detection or apprehension, which would undermine the entire investigative process. When an investigation has been completed, information on disclosures made may continue to be exempted if the fact that an investigation occurred remains sensitive after completion.

(b) From subsection (d) (Access and Amendment to Records) because access to the records contained in this system of records could inform the subject of an investigation of an actual or potential criminal, civil, or regulatory violation to the existence of that investigation and reveal investigative interest on the part of DHS or another agency. Access to the records could permit the individual who is the subject of a record to impede the investigation, to tamper with witnesses or evidence, and to avoid detection or apprehension. Amendment of the records could interfere with ongoing investigations and law enforcement activities and would impose an unreasonable administrative burden by requiring investigations to be continually reinvestigated. In addition, permitting access and amendment to such information could disclose security-sensitive information that could be detrimental to homeland security.

(c) From subsection (e)(1) (Relevancy and Necessity of Information) because in the course of investigations into potential violations of federal law, the accuracy of information obtained or introduced occasionally may be unclear, or the information may not be strictly relevant or necessary to a specific investigation. In the interests of effective law enforcement, it is appropriate to retain all information that may aid in establishing patterns of unlawful activity.

(d) From subsections (e)(4)(G), (e)(4)(H), and (e)(4)(I) (Agency Requirements) and (f) (Agency Rules), because portions of this system are exempt from the individual access provisions of subsection (d) for the reasons noted above, and therefore DHS is not required to establish requirements, rules, or procedures with respect to such access. Providing notice to individuals with respect to existence of records pertaining to them in the system of records or otherwise setting up procedures pursuant to which individuals may access and view records pertaining to themselves in the system would undermine investigative efforts and reveal the identities of witnesses, and potential witnesses, and confidential informants.

Philip S. Kaplan,
Chief Privacy Officer, Department of Homeland Security.

[FR Doc. 2018–09195 Filed 4–30–18; 8:45 am]

BILLING CODE 9110–9B–P

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 21

[Docket No. FAA–2018–0379]

Airworthiness Criteria: Special Class Airworthiness Criteria for the Yamaha Fazer R

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Notice of proposed airworthiness criteria.

SUMMARY: The FAA announces the availability of and requests comments on proposed airworthiness criteria for an unmanned aircraft system, Yamaha Motor Corporation, U.S.A., model Fazer R. This document proposes policy for a special class of aircraft, to designate airworthiness criteria found by the FAA to provide an equivalent level of safety, for this proposed design, to existing standards.

DATES: Send comments on or before May 31, 2018.

ADDRESSES: Send comments identified by docket number FAA–2018–0379 using any of the following methods:

Federal eRegulations Portal: Go to http://www.regulations.gov and follow the online instructions for sending your comments electronically.

Mail: Send comments to Docket Operations, M–30, U.S. Department of Transportation (DOT), 1200 New Jersey Avenue SE, Room W12–140, West Building Ground Floor, Washington, DC 20590–0001.

Hand Delivery of Courier: Take comments to Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE, Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.
The FAA has reviewed the proposed design and assessed the potential risk to the National Aerospace System (NAS). The FAA took into consideration the size of the proposed aircraft, its maximum airspeed and altitude, and operational limitations such as where it would operate and whether it would operate out of sight of its operators. These constraints include its relatively small size, lack of humans on board, and operations that would be limited to remote locations, low altitude, and visual range of a trained flight crew.

The FAAA has reviewed the proposed design and assessed the potential risk to the National Aerospace System (NAS). The FAA took into consideration the size of the proposed aircraft, its maximum airspeed and altitude, and operational limitations such as where it would operate and whether it would operate out of sight of its operators. These constraints include its relatively small size, lack of humans on board, and operations that would be limited to remote locations, low altitude, and visual range of a trained flight crew.

The FAAA has reviewed the proposed design and assessed the potential risk to the National Aerospace System (NAS). The FAA took into consideration the size of the proposed aircraft, its maximum airspeed and altitude, and operational limitations such as where it would operate and whether it would operate out of sight of its operators. These constraints include its relatively small size, lack of humans on board, and operations that would be limited to remote locations, low altitude, and visual range of a trained flight crew.

The FAAA has reviewed the proposed design and assessed the potential risk to the National Aerospace System (NAS). The FAA took into consideration the size of the proposed aircraft, its maximum airspeed and altitude, and operational limitations such as where it would operate and whether it would operate out of sight of its operators. These constraints include its relatively small size, lack of humans on board, and operations that would be limited to remote locations, low altitude, and visual range of a trained flight crew.
UAS Flight Testing: To address the risks associated with inadequate design and integration, the applicant would be required to conduct flight testing to demonstrate adequate structure, system reliability, and proper function.

UAS Critical Parts: To ensure the continued airworthiness of the aircraft and address the risks of catastrophic failure, which is a failure that causes a fatal injury or results in destruction of the UAS, the applicant would be required to identify those parts that could cause a catastrophic event upon failure. Those parts must be properly maintained to prevent a catastrophic failure.

UAS Controls: To address the risks associated with loss of control of the UAS caused by the failure or improper use of UAS controls, the applicant would be required to design controls that are adequate to safely and reliably control the UAS.

UAS Flight Termination System: To address the risks associated with uncontrolled flight and inadvertent or unsafe operation, the applicant would be required to provide a means to quickly and safely terminate the UAS.

UAS Engine and Engine Control System: To address the risks associated with failure or loss of control of the powerplant, the applicant would be required to design the engine and engine controls so that they are durable and reliable.

UAS Powerplant Installation: To address the risks associated with failure of the powerplant installation that includes each component necessary for propulsion or that affects propulsion safety, the applicant would be required to design the powerplant installation to ensure its continued safe operation.

UAS Systems and Equipment: To address the risks associated with the failure or malfunction of electric and mechanical systems and equipment, the applicant would be required to design and install the systems and equipment to perform safely and reliably their intended function when considered separately and in relation to other systems.

UAS Communication: To address the risks associated with loss of communication between the flight crew members and between the flight crew and the UA, the applicant would be required to provide an FAA approved means that allows for all communication necessary to safely operate the UA.

UAS Interference from External Sources: To address the risks associated with cyber threats and system failures or malfunctions, the applicant would be required to design the UAS’ electronic systems and networks to protect against and minimize the effects of intentional and unintentional external interference.

UAS Interference with Other Aircraft or Obstacles: To address the risks associated with collisions with obstacles and other aircraft, the applicant would be required to use an FAA accepted means of compliance showing how the UAS will remain well clear of obstacles and other aircraft so as to avoid the risk of collision.

Operational Considerations
The following operational considerations were derived from the applicant’s CONOPS, which helped drive the development of these proposed airworthiness criteria. The aircraft would:
1. Be primarily used for agricultural use to include spraying, sensing, and imaging.
2. Operate in remote or sparsely populated areas.
3. Not operate over people and occupied vehicles on roads and highways.
4. Operate at 400 feet above ground level (AGL) or lower.
5. Operate at a maximum altitude of 6,500 feet above mean sea level (MSL).
7. Be operated by a minimum flight crew consisting of one pilot-in-command (PIC) and one visual observer.
8. Be operated by a flight crew that is appropriately qualified and trained.
9. Be operated by a minimum flight crew that would operate only one UAS at any time.
10. Be operated by a flight crew that has successfully completed required flight crew training.
11. Be maintained by persons who hold required FAA maintenance certificates or work according to an FAA approved maintenance program.
12. Be maintained by persons who have completed required maintenance training.
13. Be equipped with caution and alerting annunciation that is visible to the PIC and visual observer during flight.
14. Remain within Radio Line-of-Sight (RLOS) of the control station. RLOS is the straight and unobstructed path between the transmitting and receiving antennas.
15. Electronically communicate between the UA and the ground control station only within frequencies approved by the Federal Communications Commission (FCC).
16. Operate in Class G airspace unless specifically authorized by the FAA.
17. Operate subject to minimum setback distances that define how far people must be from the UA, the control station, and the operating zone when the UA is operating.
18. Operate within specific meteorological conditions that define permissible wind speeds, turbulence, visibility, outside air temperature, or other parameters as identified. The UAS would not operate in icing conditions, in accordance with 14 CFR 91.527.

Note: A change to the CONOPS may require a change to the airworthiness criteria.

Proposed Airworthiness Criteria
The FAA proposes to establish, as a matter of policy, the following airworthiness criteria for type certification of the Yamaha Fazer R. The FAA proposes that compliance with the following would appropriately mitigate the risks associated with the proposed design and Concept of Operations (CONOPS) and would provide an equivalent level of safety to existing rules:

UAS Concept of Operations: The applicant must define and submit to the FAA a (CONOPS) proposal describing the intended UAS operation in the National Airspace System (NAS).

UAS Accepted Means of Compliance: 1. An applicant must comply with these airworthiness criteria using a means of compliance, which may include consensus standards, accepted by the FAA.
2. An applicant requesting acceptance of a means of compliance must provide the means of compliance to the FAA in a form and manner acceptable to the FAA.

UAS Operational Envelope and Limitations: The operational envelope and operational limitations must be defined:
1. The UAS must be shown to perform as intended within the defined operational envelope and operational limitations.
2. The UAS must be consistently and predictably controllable and maneuverable within the operating envelope, including:
 (a) At all loading conditions for which certification is requested;
 (b) During all phases of flight; and
 (c) During configuration changes.

UAS Instructions for Continued Airworthiness: The applicant must prepare instructions for Continued Airworthiness (ICA) for the UAS that are acceptable to the FAA. The ICA may...
be incomplete at type certification if a program exists to ensure their completion prior to delivery of the first UAS or issuance of a standard certificate of airworthiness, whichever occurs later.

The ICA must contain a section titled Airworthiness Limitations that is segregated and clearly distinguishable from the rest of the document. This section must set forth each mandatory replacement time, structural inspection interval, and related structural inspection procedure required for type certification. If the ICA consist of multiple documents, the section required by this paragraph must be included in the principal manual. This section must contain a legible statement in a prominent location that reads “The Airworthiness Limitations section is FAA approved and specifies maintenance conducted under §§43.16 and 91.403 of Title 14 of the Code of Federal Regulations unless an alternative program has been FAA approved.”

UAS Flight Manual: The applicant must provide a UAS Flight Manual with each UAS. The UAS Flight Manual must contain the following information—

(a) UAS operating limitations;
(b) UAS normal and emergency operating procedures;
(c) Performance information;
(d) Loading information; and
(e) Other information that is necessary for safe operation because of design, operating, or handling characteristics.

UAS Flight Testing: The UAS must successfully complete at least 150 hours of flight testing to determine whether there is reasonable assurance that the UAS, its components, its equipment, and structures are adequate, reliable, and function properly. The testing must consist of:

1. At least 50 hours with the Unmanned Aircraft (UA) at 5 percent over maximum weight at critical weight, altitude, and temperature; and
2. At least 100 hours in normal operations.

UAS Critical Parts: A critical part is a part, the failure of which could have a catastrophic effect upon the UAS. If the type design includes critical parts, a critical parts list must be established.

The applicant must develop and define inspections or other procedures to prevent failures due to degradation of critical parts. Each of these inspections or procedures must be included in the Airworthiness Limitations Section of the ICA.

UAS Controls:

1. Flight Controls: The applicant must design the flight control systems and control station to:

(a) Operate easily, smoothly, and positively enough to allow proper performance of their functions, and
(b) Protect against likely hazards.

2. Flight Crew Interface: The control station must be designed to allow the flight crew to perform their duties and to perform any maneuvers within the operating envelope of the UAS, without excessive concentration, skill, alertness, or fatigue considering the intended operating conditions for the control station.

3. Equipment: The applicant must define and install necessary equipment so the flight crew can monitor and perform defined tasks associated with the intended functions of the systems and equipment.

4. Flight Crew Error: The UAS must be designed to minimize flight crew errors which could result in additional hazards.

UAS Flight Termination System: 1. There must be a means for the flight crew to quickly and safely terminate the UAS flight.
2. The UAS must have a means to safely terminate the UAS flight when safe operation cannot continue or be maintained.
3. There must be means to prevent inadvertent operation of the flight termination system.

UAS Engine and Engine Control System:

1. The UAS Engine and Engine Control System includes each component necessary for propulsion or which affects propulsion safety.
2. The UAS Engine and Engine Control System installation must be designed, constructed, installed, and maintained to ensure its continued safe operation within the operational envelope between normal inspections and overhauls.
3. The UAS Engine Control System including any Engine Control Unit (ECU) software or electronic hardware must be designed and developed using methods accepted by the FAA.
4. There must be a means to remain well clear of obstacles and other aircraft for its intended operation and airspace to avoid the risk of collision.

Note: The FAA may propose amending this airworthiness criteria, or propose additional operational criteria, prior to approval of the type design.

Issued in Kansas City, Missouri, on April 23, 2018.

Pat Mullen,
Manager, Small Airplane Standards Branch, Aircraft Certification Service.

[FR Doc. 2018–09102 Filed 4–30–18; 8:45 am]
BILLING CODE 4910–13–P