required by paragraph (k)(1) or (k)(2) of this AD, as applicable.

(1) For an airplane that does not have an affected fuel pump installed: After the identification of the fuel pump part numbers required by paragraph (g) of this AD, no person may install an affected fuel pump on the airplane.

(2) For an airplane that has an affected fuel pump installed: After modification of the airplane as required by paragraph (h) of this AD, no person may install an affected fuel pump on the airplane.

(l) Credit for Previous Actions

This paragraph provides credit for actions required by paragraphs (g) and (h) of this AD, if those actions were performed before the effective date of this AD using the applicable service information specified in paragraphs (l)(1), (l)(2), (l)(3), and (l)(4) of this AD. This service information is not incorporated by reference in this AD.

(m) Other FAA AD Provisions

The following provisions also apply to this AD:

Before using any approved AMOC, notify your appropriate principal inspector, or lacking a principal inspector, the manager of the local flight standards district office/ certificate holding district office. The AMOC approval letter must specifically reference this AD.

(2) Contacting the Manufacturer: For any requirement in this AD to obtain corrective actions from a manufacturer, the action must be accomplished using a method approved by the Manager, International Branch, ANM–116, Transport Airplane Directorate, FAA; or the European Aviation Safety Agency (EASA); or Airbus’s EASA Design Organization Approval (DOA). If approved by the DOA, the approval must include the DOA-authorized signature.

(3) Required for Compliance (RC): Except as provide by paragraph (j) of this AD, if any service information contains procedures or tests that are identified as RC, those procedures and tests must be done to comply with this AD; any procedures or tests that are not identified as RC are recommended. Those procedures and tests that are not identified as RC may be deviated from using accepted methods in accordance with the operator’s maintenance or inspection program without obtaining approval of an AMOC, provided the procedures and tests identified as RC can be done and the airplane can be put back in an airworthy condition. Any substitutions or changes to procedures or tests identified as RC require approval of an AMOC.

(n) Related Information

(o) Material Incorporated by Reference

(1) The Director of the Federal Register approved the incorporation by reference (IBR) of the service information listed in this paragraph under 5 U.S.C. 552(a) and 1 CFR part 51.

(2) You must use this service information as applicable to do the actions required by this AD, unless this AD specifies otherwise.

(3) For service information identified in this AD, contact Airbus SAS, Airworthiness Office—EAL, 1 Rond Point Maurice Bellonte, 31707 Blagnac Cedex, France; telephone: +33 5 61 93 36 96; fax: +33 5 61 93 45 80; email: airworthiness.A330–A340@airbus.com; Internet: http://www.airbus.com. You may view this service information at the FAA Transport Airplane Directorate, 1601 Lind Avenue SW., Renton, WA. For information on the availability of this material at the FAA, call 425–227–1221.

(4) You may view this service information at the FAA, Transport Airplane Directorate, 1601 Lind Avenue SW., Renton, WA. For information on the availability of this material at the FAA, call 425–227–1221.

(5) For service information that is incorporated by reference at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal-register/cfr/ibr-locations.html.

Issued in Renton, Washington, on September 26, 2016.

Dionne Palermo,
Acting Manager, Transport Airplane Directorate, Aircraft Certification Service.

BILING CODE 4910–13–P

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 39

RIN 2120–AA64

Airworthiness Directives; Airbus Airplanes

AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT).

ACTION: Final rule.

SUMMARY: We are superseding Airworthiness Directive (AD) 95–21–09 for all Airbus Model A300 series airplanes, and Airbus Model A300 B4–600, B4–600R, and F4–600R series airplanes, and Model A300 C4–605R Variant F airplanes (collectively called Model A300–600 series airplanes). AD 95–21–09 required repetitive inspections for cracking of the No. 2 flap beams, and replacement of the flap beams, if necessary, and provided optional modifications for extending certain inspection thresholds, and an optional terminating modification for certain inspections. This new AD requires reduced compliance times for inspections and also reduces the number of airplanes affected. This AD was prompted by a determination that the compliance times must be reduced. We are issuing this AD to detect and correct cracking of the No. 2 flap beams, which could result in rupture of the flap beams and reduced structural integrity of the airplane.

DATES: This AD is effective November 22, 2016.

The Director of the Federal Register approved the incorporation by reference of certain publications listed in this AD as of November 22, 2016.

The Director of the Federal Register approved the incorporation by reference of certain other publications listed in this AD as of November 17, 1995 (60 FR 53847, October 18, 1995).

ADDRESSES: For service information identified in this final rule, contact Airbus SAS, Airworthiness Office—EAW, 1 Rond Point Maurice Bellonte, 31707 Blagnac Cedex, France; telephone +33 5 61 93 36 96; fax +33 5 61 93 44 51; email account.airworth-eas@airbus.com; Internet http://www.airbus.com. You may view this referenced service information at the FAA, Transport Airplane Directorate, 1601 Lind Avenue SW., Renton, WA. For information on the availability of

Exempting the AD Docket

You may examine the AD docket on the Internet at http://www.regulations.gov by searching for and locating Docket No. FAA–2015–8470; or in person at the Docket Management Facility between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains this AD, the regulatory evaluation, any comments received, and other information. The address for the Docket Office (telephone 800–647–5527) is Docket Management Facility, U.S. Department of Transportation, Docket Operations, M–30, West Building Ground Floor, Room W12–140, 1200 New Jersey Avenue SE., Washington, DC 20590.

SUPPLEMENTARY INFORMATION:

Discussion

We issued a notice of proposed rulemaking (NPRM) to amend 14 CFR part 39 to supersede AD 95–21–09, Amendment 39–9395 (60 FR 53847, October 18, 1995) (“AD 95–21–09”). AD 95–21–09 applied to all Airbus Model A300 and A300–600 series airplanes. The NPRM published in the Federal Register on January 20, 2016 (81 FR 3045) (“the NPRM”).

The European Aviation Safety Agency (EASA), which is the Technical Agent for the Member States of the European Union, has issued EASA AD 2013–0234R2, dated October 7, 2013 (referred to after this as the Mandatory Continuing Airworthiness Information, or “the MCAI”), to correct an unsafe condition for certain Airbus Model A300 and A300–600 series airplanes. The MCAI states:

Fatigue and “fail safe” tests developed on a test specimen confirmed that cracks may appear and propagate from the bolt holes of the base member and the side members of flap beam No. 2.

The development of such cracks, if not detected, could result in a rupture of flap beams No. 2, which could adversely affect the structural integrity of the airframe.

For A300 aeroplanes, in the frame of the Extended Service Goal (ESG) exercise, it was shown that design changes (Airbus Mod. 4740/Airbus SB A300–57–0128 or Airbus Mod. 5815/Airbus SB A300–57–0141) were not sufficient to enable full ESG life without inspections.

For A300–600 aeroplanes, since DGAC France AD 1986–187–076(B) was issued, a fleet survey and updated Fatigue and Damage Tolerance analyses have been performed in order to substantiate the second A300–600 ESG2 exercise. Airbus SB A300–57–6005 has been revised accordingly to decrease the inspection thresholds and intervals. For the reasons described above, this [EASA] AD retains the requirements of DGAC France AD 1986–187–076(B)R4, which is superseded, and requires those inspections to be accomplished at reduced thresholds and intervals.

This [EASA] AD has been revised to correct typographical errors in some compliance times defined in Appendix 1, Tables 1 and 2.

The MCAI also reduces the number of airplanes identified in the applicability by exempting certain Model A300–600 aeroplanes on which certain Airbus modifications have been embodied. You may examine the MCAI in the AD docket on the Internet at http://www.regulations.gov by searching for and locating Docket No. FAA–2015–8470.

Comments

We gave the public the opportunity to participate in developing this AD. The following presents the comments received on the NPRM and the FAA’s response to each comment.

Request To Remove Certain Exceptions in the Proposed Applicability

United Parcel Service (UPS) requested that the applicability exceptions in paragraphs (c)(3) and (c)(4) of the proposed AD be revised to remove Airbus Modifications 11133 and 12699 as exceptions. UPS stated that the exceptions provided in paragraphs (c)(3) and (c)(4) of the proposed AD are inconsistent with the effectiveness specified in the service information referenced in the NPRM. UPS pointed out that the effectiveness of Airbus Service Bulletin A300–57–6005, Revision 06, dated November 14, 2013, applies to airplanes with manufacturer serial number (MSN) 775 and subsequent, with MSN 775 as the production cut-in for Airbus Modification 11133, UPS asserted that this service bulletin’s effectiveness also does not list all post-modification 11133 and 12699 airplanes. UPS stated that the determining factor for the service information effectiveness is whether an airplane is approved for the extended service goal (ESG–2) operational life or not. UPS also pointed out that the effectiveness of Airbus Service Bulletin A300–57–6005, Revision 06, dated November 14, 2013, does not include Model A300 F4–622 airplanes that are in a UPS configuration (Airbus Modifications 11133, 12047, 12048, 12050, but not 12699), which would mean UPS would need to request an alternative method of compliance (AMOC) or other means to show compliance for those airplanes.

We acknowledge the concern UPS identified regarding the clarity of the AD applicability. Therefore, we have revised the applicability to match the related MCAI, which should address UPS’s concern. We do not intend for this AD to affect UPS’s specified A300 F4–622R configuration (Airbus Modifications 11133, 12047, 12048, 12050, but not 12699). We have revised paragraph (c)(4) of this AD accordingly. However, we do not agree to delete references to both Airbus Modifications 11133 and 12699 from the applicability of this AD since there are airplanes with these modifications in the worldwide fleet that might be imported and placed on the U.S. Register. Therefore, we have not removed references to Airbus Modifications 11133 and 12699 from paragraphs (c)(3) and (c)(4) of this AD.

Request To Remove Typographical Error

UPS requested that paragraph (l)(2) of the proposed AD be revised to remove a typographical error that resulted in listing Model A300 F4–622R airplanes twice.

We agree that there was a typographical error, as described by UPS. We have removed the redundant reference in this AD.

Additional Change to This AD

We added new paragraph (m) to this AD to specify clearly the required calculation method for establishing the average flight times (AFT) for the compliance times for certain inspections required by this AD. We also redesignated subsequent paragraphs.

Conclusion

We reviewed the available data, including the comments received, and determined that air safety and the public interest require adopting this AD with the changes described previously.
and minor editorial changes. We have determined that these changes:

- Are consistent with the intent that was proposed in the NPRM for correcting the unsafe condition; and
- Do not add any additional burden upon the public than was already proposed in the NPRM.

Related Service Information Under 1 CFR Part 51

Airbus has issued Service Bulletins A300–57–011, Revision 06, dated May 9, 1985, and A300–57–6005, Revision 06, dated November 14, 2013. This service information describes procedures for ultrasonic inspections of the No. 2 flap beam base and side members. These documents are distinct since they apply to different airplane models. This service information is reasonably available because the interested parties have access to it through their normal course of business or by the means identified in the ADDRESS section.

Costs of Compliance

We estimate that this AD affects 49 airplanes of U.S. registry. The actions required by AD 95–21–09 and retained in this AD, take about 6 work-hours per product, at an average labor rate of $85 per work-hour. Required parts cost about $0 per product. Based on these figures, the estimated cost of the actions that were required by AD 95–21–09 is $510 per product, per inspection cycle. We also estimate that it takes about 6 work-hours per product to comply with the basic requirements of this AD. The average labor rate is $85 per work-hour. Based on these figures, we estimate the cost of this AD on U.S. operators to be $24,990 per inspection cycle, or $510 per product, per inspection cycle.

We have received no definitive data that would enable us to provide cost estimates for the on-condition actions specified in this AD.

Authority for This Rulemaking

Title 49 of the United States Code specifies the FAA’s authority to issue rules on aviation safety. Subtitle I, section 106, describes the authority of the FAA Administrator. “Subtitle VII: Aviation Programs,” describes in more detail the scope of the Agency’s authority.

We are issuing this rulemaking under the authority described in “Subtitle VII, Part A, Subpart III, Section 44701: General requirements.” Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations for practices, methods, and procedures the Administrator finds necessary for safety in air commerce. This regulation is within the scope of that authority because it addresses an unsafe condition that is likely to exist or develop on products identified in this rulemaking action.

Regulatory Findings

We determined that this AD will not have federalism implications under Executive Order 13132. This AD will not have a substantial direct effect on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government.

For the reasons discussed above, I certify that this AD:

1. Is not a “significant regulatory action” under Executive Order 12866;
2. Is not a “significant rule” under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979);
3. Will not affect intrastate aviation in Alaska; and
4. Will not have a significant economic impact, positive or negative, on a substantial number of small entities under the criteria of the Regulatory Flexibility Act.

List of Subjects in 14 CFR Part 39

Air Transportation, Aircraft, Aviation safety, Incorporation by reference, Safety.

Adoption of the Amendment

Accordingly, under the authority delegated to me by the Administrator, the FAA amends 14 CFR part 39 as follows:

PART 39—AIRWORTHINESS DIRECTIVES

§ 39.13 [Amended]

1. The authority citation for part 39 continues to read as follows:

Authority: 49 U.S.C. 106(g), 40113, 44701.

§ 39.13 [Amended]

2. The FAA amends § 39.13 by removing Airworthiness Directive (AD) 95–21–09, Amendment 39–9395 (60 FR 53847, October 15, 1995), and adding the following new AD:

(a) Effective Date

This AD is effective November 22, 2016.

(b) Affected ADs

This AD replaces AD 95–21–09, Amendment 39–9395 (60 FR 53847, October 15, 1995) (“AD 95–21–09”).

(c) Applicability

This AD applies to the Airbus airplanes identified in paragraphs (c)(1) through (c)(5) of this AD, certificated in any category.

3. Airbus Model A300 F4–605R, all MSNs, except those airplanes on which both Airbus Modifications 11133 and 12699 have been embodied.
4. Airbus Model A300 F4–622AR airplanes, all MSNs, except those airplanes on which the modifications identified in paragraph (c)(4)(i) or (c)(4)(ii) of this AD have been embodied.
5. Airbus Model A300 C4–605R Variant F airplanes, all MSNs.

(d) Subject

Air Transport Association (ATA) of America Code 57, Wings.

(e) Reason

This AD was prompted by a determination that the compliance times must be reduced. We are issuing this AD to detect and correct cracking of the No. 2 flap beams, which could result in rupture of the flap beams and reduced structural integrity of the airplane.

(f) Compliance

Comply with this AD within the compliance times specified, unless already done.

(g) Retained Inspection and Corrective Actions for Model A300 Series Airplanes, With Note 3 of AD 95–21–09 Incorporated and Additional Terminating Provisions

This paragraph restates the requirements of paragraph (a) of AD 95–21–09, with Note 3 of AD 95–21–09 incorporated and additional terminating provisions. For Model A300 series airplanes: Prior to the accumulation of 15,000 total landings, or within the next 120 days after May 9, 1985 (the effective date of AD 85–07–04, Amendment 39–5027 [50 FR 13013, April 2, 1985] (“AD 85–07–04”)), whichever occurs later, inspect for cracking of the base steel member and light alloy side members of the No. 2 flap beams, left hand and right hand, in accordance with the Accomplishment Instructions of Airbus Service Bulletin A300–57–116, Revision 06, dated July 16, 1993. Accomplishing the requirements of paragraph (b) or (i) of this AD terminates the requirements of this paragraph. Measurement of crack length is performed by measurement of the probe displacement (perpendicular to symmetry plane of beam) between defect indication appearance and its complete disappearance. The bolt hole indication should not be interpreted as an indication of a defect. These two indications appear very close together because the defects originate from the bolt holes.
(1) If no cracking is detected: Except as provided by paragraph (i) of this AD, repeat the inspection at intervals not to exceed 1,700 landings until the requirements of paragraph (h) or (l) of this AD are accomplished.

(2) If any crack is detected that is less than or equal to 4 millimeters (mm): Repeat the inspection at intervals not to exceed 250 landings, until the requirements of paragraph (h) or (l) of this AD are accomplished.

(3) If any crack is detected that exceeds 4 mm: Prior to further flight, replace the flap beam in accordance with the Accomplishment Instructions of Airbus Service Bulletin A300–57–116, Revision 6, dated July 16, 1993, and prior to the accumulation of 15,000 flight cycles on the replaced flap beam, perform the ultrasonic inspection as required by paragraph (h) or (l) of this AD.

(b) Retained Ultrasonic Inspection and Corrective Action for Model A300 Series Airplanes, With Additional Terminating Provisions

This paragraph restates the requirements of paragraph (b) of AD 95–21–09, with additional terminating provisions. For Model A300 series airplanes: Prior to the accumulation of 15,000 total landings, or within the next 1,000 landings after November 17, 1995 (the effective date of AD 95–21–09), whichever occurs later, perform an ultrasonic inspection to detect cracking of the No. 2 flap track beam, in accordance with Airbus Service Bulletin A300–57–116, Revision 6, dated July 16, 1993.

Accomplishment of this inspection terminates the inspections required by paragraph (g) of this AD. Accomplishment of the requirements of paragraph (l) of this AD terminates the requirements of this paragraph.

(1) If no cracking is detected: Except as provided by paragraph (i) of this AD, repeat the ultrasonic inspections thereafter at intervals not to exceed 1,700 landings.

(2) If any crack is detected beyond the bolt hole, and that crack is less than or equal to 4 mm in length: Prior to further flight, replace the flap beam in accordance with Airbus Service Bulletin A300–57–116, Revision 6, dated July 16, 1993; and prior to the accumulation of 15,000 flight cycles on the replaced flap beam, perform the ultrasonic inspection as required by this paragraph.

(i) Retained Modification of the No. 2 Track Beam for Model A300 Series Airplanes, With Changes to Compliance Extension

This paragraph restates the provisions of paragraph (c) of AD 95–21–09, with changes to compliance extension. For Model A300 series airplanes: After accomplishing the initial inspection required by paragraph (h) of this AD, accomplishment of either paragraph (i)(1) or (i)(2) of this AD before the effective date of this AD extends the fatigue life of the No. 2 flap track beam as specified in those paragraphs, provided that no cracking is detected during any inspection required by paragraph (g) or (l) of this AD.

(1) Removal of any damage and the installation of larger diameter bolts on the No. 2 flap track beam (Modification No. 4740), in accordance with Airbus Service Bulletin A300–57–129, Revision 3, dated January 26, 1990, extends the interval for the first repetitive inspection required by paragraph (h) of this AD from 1,700 landings to 12,000 landings, provided that Modification No. 4740 is accomplished prior to the accumulation of 16,700 total landings on the flap beam. Following accomplishment of the first repetitive inspection, subsequent repetitive inspections shall be performed at intervals not to exceed 1,700 landings.

(2) Cold working of the bolt holes and the installation of larger diameter bolts on the No. 2 flap track beam (Modification No. 5815), in accordance with Airbus Service Bulletin A300–57–141, Revision 7, dated July 16, 1993, extends the interval for the first repetitive inspection required by paragraph (h) of this AD from 1,700 landings to the interval specified in paragraph (j)(1)(ii) of this AD.

(i) If interference fit bolts that are $\frac{3}{16}$-inch in diameter are fitted, the interval for the first repetitive inspection required by paragraph (h) of this AD is extended to 22,000 landings, provided that Modification No. 5815 is accomplished prior to the accumulation of 16,700 total landings on the flap beam. Following accomplishment of the first repetitive inspection required by paragraph (h) of this AD, subsequent repetitive inspections shall be performed at intervals not to exceed 1,700 landings.

(ii) If interference fit bolts that are $\frac{7}{32}$- or $\frac{3}{8}$-inch in diameter are fitted, the interval for the first repetitive inspection required by paragraph (h) of this AD is extended to 33,000 landings, provided that Modification No. 5815 is accomplished prior to the accumulation of 15,000 total landings on the flap beam. Following accomplishment of the first repetitive inspection required by paragraph (h) of this AD, subsequent repetitive inspections shall be performed at intervals not to exceed 1,700 landings.

(j) Retained Ultrasonic Inspection and Corrective Actions for Model A300–600 Series Airplanes, With Terminating Provisions

This paragraph restates the requirements of paragraph (d) of AD 95–21–09, with terminating provisions. For Model A300–600 series airplanes: Prior to the accumulation of 15,000 total landings, or within the next 1,000 landings after November 17, 1995 (the effective date of AD 95–21–09), whichever occurs later, perform an ultrasonic inspection to detect cracking of the No. 2 flap track beams, in accordance with Airbus Service Bulletin A300–57–6005, Revision 2, dated December 16, 1993, and prior to the accumulation of 15,000 total landings and before the effective date of this AD. If any bolt requires oversizing above $\frac{7}{16}$-inch diameter during accomplishment of this installation, prior to further flight, repair using a method approved by the Manager, Standardization Branch, ANM–113, FAA, Transport Airplane Directorate; or by the Manager, International Branch, ANM–116, Transport Airplane Directorate, FAA. As of the effective date of this AD, any new repair approval must be done using a method approved by the Manager, International Branch, ANM–116, Transport Airplane Directorate, FAA. If Airbus Service Bulletin A300–57–6005, Revision 2, dated December 16, 1993, was accomplished concurrently with Airbus Service Bulletin A300–57–6006, Revision 3, dated December 16, 1993, (Modification No. 5815), the ultrasonic inspection for cracking required by paragraph (j) of this AD need not be performed since the eddy current inspection detailed for Modification No. 5815 is more comprehensive.

(l) New Requirement of This AD: Initial and Repetitive Ultrasonic Inspections

At the applicable time specified in paragraph (j)(1) or (j)(2) of this AD and, thereafter at intervals not to exceed 12,000 landings specified in table 3 to paragraph (l) of this AD, as applicable, accomplish an ultrasonic inspection for cracking of the steel base member and the aluminum side members’ flap beam on the left-hand (LH) and right-hand (RH) sides, in accordance with the Accomplishment Instructions of Airbus Service Bulletin A300–57–0116, Revision 07, dated September 19, 2011, including Appendices A and B; or Airbus Service Bulletin A300–57–6005, Revision 06, dated November 14, 2013; as applicable. For the purposes of this AD, average flight time
(AFT) must be established as specified in paragraph (m) of this AD. Doing the actions required by this paragraph terminates the requirements of paragraphs (g) through (k) of this AD.

(1) For Model A300 B2–1A, B2–1C, B2K–3C, B2–203, B4–2C, B4–103, and B4–203 airplanes (referred to as Model A300 series airplanes): Within the applicable compliance time defined in table 1 to paragraph (l) of this AD.

(i) Within the compliance time defined in table 2 to paragraph (l) of this AD.

(ii) Within 300 flight cycles or 640 flight hours after the effective date of this AD, whichever occurs first.

TABLE 1 TO PARAGRAPH (l) OF THIS AD—INSPECTION COMPLIANCE TIMES FOR MODEL A300 SERIES AIRPLANES

<table>
<thead>
<tr>
<th>Airplane configuration</th>
<th>Compliance times for airplanes with an AFT of less than 1.5</th>
<th>Compliance times for airplanes with an AFT of more than or equal to 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model A300 B2–1A, B2–1C, B2K–3C, B2–203 airplanes on which Airbus Modifications 4740 and 5815 have not been embodied.</td>
<td>Within 15,000 flight cycles or 16,900 flight hours since first flight of the airplane, whichever occurs first.</td>
<td>Within 15,000 flight cycles or 16,900 flight hours since first flight of the airplane, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300 B4–103 airplanes on which Airbus Modifications 4740 and 5815 have not been embodied.</td>
<td>Within 15,000 flight cycles or 20,500 flight hours since first flight of the airplane, whichever occurs first.</td>
<td>Within 15,000 flight cycles or 20,500 flight hours since first flight of the airplane, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300 B4–2C, and B4–203 airplanes on which Airbus Modifications 4740 and 5815 have not been embodied.</td>
<td>Within 16,200 flight cycles or 22,200 flight hours since first flight of the airplane, whichever occurs first.</td>
<td>Within 15,000 flight cycles or 34,000 flight hours since first flight of the airplane, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300 B2–1A, B2–1C, B2K–3C, B2–203 airplanes on which Airbus Modification 4740 has been embodied.</td>
<td>Within 12,000 flight cycles or 13,500 flight hours since embodiment of Airbus Modification 4740, whichever occurs first.</td>
<td>Within 12,000 flight cycles or 13,500 flight hours since embodiment of Airbus Modification 4740, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300 B4–103 airplanes on which Airbus Modification 4740 has been embodied.</td>
<td>Within 12,000 flight cycles or 16,400 flight hours since embodiment of Airbus Modification 4740, whichever occurs first.</td>
<td>Within 12,000 flight cycles or 16,400 flight hours since embodiment of Airbus Modification 4740, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300 B4–2C, and B4–203 airplanes on which Airbus Modification 4740 has been embodied.</td>
<td>Within 12,900 flight cycles or 17,700 flight hours since embodiment of Airbus Modification 4740, whichever occurs first.</td>
<td>Within 12,000 flight cycles or 27,200 flight hours since embodiment of Airbus Modification 4740, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300 B4–2C, and B4–203 airplanes on which Airbus Modification 4740 has been embodied.</td>
<td>Within 33,000 flight cycles or 37,200 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
<td>Within 33,000 flight cycles or 37,200 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300 B2–1A, B2–1C, B2K–3C, B2–203 airplanes on which Airbus Modification 5815 has been embodied and no bolt larger than 3⁄8-inch diameter is fitted.</td>
<td>Within 33,000 flight cycles or 45,200 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
<td>Within 33,000 flight cycles or 45,200 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300 B4–103 airplanes on which Airbus Modification 5815 has been embodied and no bolt larger than 3⁄8-inch diameter is fitted.</td>
<td>Within 35,600 flight cycles or 48,800 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
<td>Within 33,000 flight cycles or 74,900 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300 B4–2C, and B4–203 airplanes on which Airbus Modification 5815 has been embodied.</td>
<td>Within 22,000 flight cycles or 24,800 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
<td>Within 22,000 flight cycles or 24,800 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300 B2–1A, B2–1C, B2K–3C, B2–203 airplanes on which Airbus Modification 5815 has been embodied and at least one bolt with a 1 3⁄8-inch diameter is fitted.</td>
<td>Within 22,000 flight cycles or 30,100 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
<td>Within 22,000 flight cycles or 47,500 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300 B4–103 airplanes on which Airbus Modification 5815 has been embodied and at least one bolt with a 1 3⁄8-inch diameter is fitted.</td>
<td>Within 23,700 flight cycles or 32,500 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
<td>Within 22,000 flight cycles or 47,500 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
</tr>
</tbody>
</table>

TABLE 2 TO PARAGRAPH (l) OF THIS AD—INSPECTION COMPLIANCE TIMES FOR MODEL A300–600 SERIES AIRPLANES

<table>
<thead>
<tr>
<th>Airplane configuration</th>
<th>Compliance times for airplanes with an AFT of less than 1.5</th>
<th>Compliance times for airplanes with an AFT of more than or equal to 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model A300–600 series airplanes on which Airbus Modification 5815 and Airbus Modification 11133 have not been embodied.</td>
<td>Within 16,200 flight cycles or 24,300 flight hours since first flight of the airplane, whichever occurs first.</td>
<td>Within 15,000 flight cycles or 32,400 flight hours since first flight of the airplane, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300–600 series airplanes on which Airbus Modification 5815 has been embodied and no bolt larger than 3⁄8-inch diameter is fitted.</td>
<td>Within 35,600 flight cycles or 53,400 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
<td>Within 33,000 flight cycles or 71,200 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
</tr>
<tr>
<td>Model A300–600 series airplanes on which Airbus Modification 5815 has been embodied and at least one bolt 1 3⁄8-inch diameter is fitted.</td>
<td>Within 23,700 flight cycles or 35,600 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
<td>Within 22,000 flight cycles or 47,500 flight hours since embodiment of Airbus Modification 5815, whichever occurs first.</td>
</tr>
</tbody>
</table>
TABLE 2 TO PARAGRAPH (1) OF THIS AD—COMPLIANCE TIMES FOR MODEL A300–600 SERIES AIRPLANES—Continued

<table>
<thead>
<tr>
<th>Airplane configuration</th>
<th>Compliance times for airplanes with an AFT of less than 1.5</th>
<th>Compliance times for airplanes with an AFT of more than or equal to 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model A300–600 series airplanes on which Airbus Modification 11133 has been embodied.</td>
<td>Within 35,600 flight cycles or 53,400 flight hours since first flight, whichever occurs first.</td>
<td>Within 33,000 flight cycles or 71,200 flight hours since first flight, whichever occurs first.</td>
</tr>
</tbody>
</table>

TABLE 3 TO PARAGRAPH (1) OF THIS AD—REPEATED INSPECTION INTERVALS

<table>
<thead>
<tr>
<th>Airplane models</th>
<th>Repetitive interval (not to exceed) for airplanes with an AFT of less than 1.5</th>
<th>Repetitive interval (not to exceed) for airplanes with an AFT equal to or more than 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A300 B2–1A, B2–1C, B2K–3C, B2–203 …………</td>
<td>1,500 flight cycles or 1,600 flight hours, whichever occurs first.</td>
<td>1,500 flight cycles or 1,600 flight hours, whichever occurs first.</td>
</tr>
<tr>
<td>A300 B4–103 airplanes ………………………</td>
<td>1,500 flight cycles or 2,000 flight hours, whichever occurs first.</td>
<td>1,500 flight cycles or 2,000 flight hours, whichever occurs first.</td>
</tr>
<tr>
<td>A300 B4–2C, and B4–203 …………………..</td>
<td>1,600 flight cycles or 2,200 flight hours, whichever occurs first.</td>
<td>1,500 flight cycles or 3,400 flight hours, whichever occurs first.</td>
</tr>
<tr>
<td>A300–600 series airplanes …………………</td>
<td>1,600 flight cycles or 2,400 flight hours, whichever occurs first.</td>
<td>1,500 flight cycles or 3,200 flight hours, whichever occurs first.</td>
</tr>
</tbody>
</table>

(m) Calculating the AFT

For the purpose of this AD, the AFT must be established as specified in paragraphs (m)(1), (m)(2), and (m)(3) of this AD.

(1) For the initial inspection, the average flight time is the total accumulated flight hours, counted from take-off to touch-down, divided by the total accumulated flight cycles at the effective date of this AD.

(2) For the first repeated inspection interval, the average flight time is the total accumulated flight hours divided by the total accumulated flight cycles at the time of the inspection threshold.

(3) For all inspection intervals onward, the average flight time is the flight hours divided by the flight cycles accumulated between the last two inspections.

(n) New Requirement of This AD: Corrective Action

If any crack is found during any inspection required by paragraph (l) of this AD: Before further flight, replace the flap beam using a method approved by the Manager, International Branch, ANM–116, Transport Airplane Directorate, FAA; or the European Aviation Safety Agency (EASA); or Airbus’s EASA Design Organization Approval (DOA). Replacement of the flap beam does not constitute terminating action for the inspections required by paragraph (l) of this AD.

(o) Credit for Previous Actions

(1) This paragraph provides credit for inspections required by paragraph (g) of this AD, if those inspections were performed before November 17, 1995 (the effective date of AD 95–21–09) using Airbus Service Bulletin A300–57–6005, Revision 03, dated December 16, 1993, which was previously incorporated by reference on November 17, 1995 (60 FR 53847, October 18, 1995).

(i) Before using any approved AMOC, notify your appropriate principal inspector, or lacking a principal inspector, the manager of the local flight standards district office/certificate holding district office.

(ii) AMOCs approved previously for AD 95–21–09, are approved as AMOCs for the corresponding provisions of paragraphs (g) through (l) of this AD.

(2) Contacting the Manufacturer: As of the effective date of this AD, for any requirement in the AD to obtain corrective actions from a manufacturer, the action must be accomplished using a method approved by the Manager, International Branch, ANM–116, Transport Airplane Directorate, FAA; or EASA; or Airbus’s EASA DOA. If approved by the DOA, the approval must include the DOA-authorized signature.

Required for Compliance (RC): Except as required by paragraph (n) of this AD: If any service information contains procedures or tests that are identified as RC, those procedures and tests must be done to comply with this AD; any procedures or tests that are not identified as RC are recommended. Those procedures and tests that are not identified as RC may be deviated from using accepted methods in accordance with the operator’s maintenance or inspection program without obtaining approval of an AMOC; provided the procedures and tests identified as RC can be done and the airplane can be put back in an airworthy condition. Any substitutions or changes to procedures or tests identified as RC require approval of an AMOC.

(q) Related Information

(1) Refer to Mandatory Continuing Airworthiness Information (MCAI) EASA AD 2015–0234R2, dated October 7, 2013, for related information. This MCAI may be found in the AD docket on the Internet at http://www.regulations.gov by searching for and locating Docket No. FAA–2015–8470.

(2) Service information identified in this AD that is not incorporated by reference is available at the addresses specified in paragraphs (q)(5) and (q)(6) of this AD.
DEPARTMENT OF TRANSPORTATION
Federal Aviation Administration

14 CFR Part 39

RIN 2120–AA64

Airworthiness Directives; Airbus Airplanes

AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT).

ACTION: Final rule.

SUMMARY: We are adopting a new airworthiness directive (AD) for certain Airbus Model A318 and A319 series airplanes; Model A320–211, –212, –214, –231, –232, and –233 airplanes; and Model A321 series airplanes. This AD was prompted by a report of cracks found during maintenance inspections on certain lugs of the 10VU rack side fittings in the cockpit. This AD requires repetitive inspections for cracking of the lugs on the 10VU rack side fittings, and repair of any cracking. We are issuing this AD to prevent reading difficulties of flight-critical information displayed to the flightcrew during a critical phase of flight, such as an approach or takeoff, which could result in loss of airplane control at an altitude insufficient for recovery.

DATES: This AD is effective November 22, 2016.

The Director of the Federal Register approved the incorporation by reference of a certain publication listed in this AD as of November 22, 2016.

ADDRESS: For service information identified in this final rule, contact Airbus, Airworthiness Office—EIAS, 1 Rond Point Maurice Bellonte, 31707 Blagnac Cedex, France; telephone +33 5 61 93 36 96; fax +33 5 61 93 44 51; email account.airworth-eas@airbus.com; Internet http://www.airbus.com.

You may view this service information at the FAA, Transport Airplane Directorate, 1601 Lind Avenue SW., Renton, WA. For information on the availability of this material at the FAA, call 425–227–1221. It is also available on the Internet at http://www.regulations.gov by searching for and locating Docket No. FAA–2015–8132.

You may examine the AD docket on the Internet at http://www.regulations.gov by searching for and locating Docket No. FAA–2015–8132; or in person at the Docket Management Facility between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains this AD, the regulatory evaluation, any comments received, and other information. The street address for the Docket Office (telephone 800–647–5527) is Docket Management Facility, U.S. Department of Transportation, Docket Operations, M–30, West Building Ground Floor, Room W12–140, 1200 New Jersey Avenue SE., Washington, DC 20590.

FOR FURTHER INFORMATION CONTACT:

SUPPLEMENTARY INFORMATION:
Discussion

We issued a notice of proposed rulemaking (NPRM) to amend 14 CFR part 39 by adding an AD that would apply to certain Airbus Model A318, A319, A320, and A321 series airplanes. The NPRM published in the Federal Register on December 31, 2015 (80 FR 77897) ("the NPRM"). The NPRM was prompted by a report of cracks found during maintenance inspections on certain lugs of the 10VU rack side fittings in the cockpit. The NPRM proposed to require repetitive inspections for cracking of the lugs on the 10VU rack side fittings, and repair of any cracking. We are issuing this AD to prevent reading difficulties of flight-critical information displayed to the flightcrew during a critical phase of flight, such as an approach or takeoff, which could result in loss of airplane control at an altitude insufficient for recovery.

The European Aviation Safety Agency (EASA), which is the Technical Agent for the Member States of the European Union, has issued EASA Airworthiness Directive 2015–0170, dated August 18, 2015 (referred to after this as the Mandatory Continuing Airworthiness Information, or "the MCAI"), to correct an unsafe condition for certain Airbus Model A318 and A319 series airplanes; Model A320–211, –214, –231, –232, and –233 airplanes; and Model A321 series airplanes. The MCAI states: