388, that the issuance of the waiver will have an unduly adverse effect on a U.S.-flag vessel builder or a business that uses U.S.-flag vessels in that business, a waiver will not be granted. Comments should refer to the docket number of this notice and the vessel name in order for MARAD to properly consider the comments. Comments should also state the commenter’s interest in the waiver application, and address the waiver criteria given in 388.4 of MARAD’s regulations at 46 CFR part 388.

Privacy Act

Anyone is able to search the electronic form of all comments received into any of our dockets by the name of the individual submitting the comment (or signing the comment, if submitted on behalf of an association, business, labor union, etc.). You may review DOT’s complete Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19476).

By Order of the Maritime Administrator.

Dated: January 20, 2015.

Julie P. Agarwal,
Secretary, Maritime Administration.

The mailing address for these officials is as follows: National Highway Traffic Safety Administration, 1200 New Jersey Avenue SE., Washington, DC 20590.

SUPPLEMENTARY INFORMATION: The National Highway Traffic Safety Administration’s (NHTSA) New Car Assessment Program (NCAP) provides comparative safety rating information on new vehicles to assist consumers with their vehicle purchasing decisions. NCAP was upgraded beginning with model year 2011 vehicles to include, among other changes, recommended advanced crash avoidance technologies when these technologies meet NCAP’s performance criteria. Technologies that were part of the 2011 upgrade were electronic stability control (ESC), forward collision warning (FCW), and lane departure warning (LDW).

Subsequently, in 2014, NHTSA replaced ESC, which is now mandatory for all new light vehicles, with another technology, rearview video systems (RVS). 1

FCW detects vehicles ahead and warns the driver of an impending collision, so the driver can brake or steer to avoid or mitigate the collision. LDW monitors lane markings on the road and warns the driver of unintentional lane drift. RVS assists the driver in seeing whether there are any obstructions, particularly a person or people, in the area immediately behind the vehicle. The RVS is generally installed in the rear of the vehicle and connected to a video screen.

This document requests comments on the agency’s plan to further upgrade NCAP to include recommendations to consumers of vehicle models that are equipped with automatic emergency braking (AEB) systems, specifically crash imminent braking (CIB) and dynamic brake support (DBS), which can use information from an FCW system’s sensors to enhance the driver’s ability to avoid or mitigate rear-end crashes. CIB systems provide automatic braking when forward-looking sensors indicate that a crash is imminent and the driver is not braking. DBS systems provide supplemental braking when sensors determine that driver-applied braking is insufficient to avoid an imminent crash.

This plan would add CIB and DBS to the three crash avoidance technologies that the agency currently recommends on the agency’s Web site.

On April 7, 2014, NHTSA published a final rule (79 FR 19177) requiring rearview video systems. The rule provides a phase-in period that begins on May 1, 2016 and ends on May 1, 2018 when all new light vehicles will be required to be equipped with RVS. As was done with electronic stability control, RVS will no longer be an NCAP recommended technology once RVS is required on all new light vehicles.
Crash Imminent Braking and Dynamic Brake Support as Recommended Advanced Technology Features

In addition to issuing star ratings based on the crashworthiness and rollover resistance of vehicle models, the agency also provides additional information to consumers by recommending certain advanced crash avoidance technologies on the agency’s Web site, www.safercar.gov. For each vehicle make/model, the Web site currently shows (in addition to a list of some of the vehicle’s safety features) the model’s 5-star crashworthiness and rollover resistance ratings and whether the vehicle model is equipped with any of the three advanced crash avoidance safety technologies that the agency currently recommends to consumers. NHTSA began recommending advanced crash avoidance technologies to consumers starting with the model year 2011. The agency recommends vehicle technologies to consumers as part of NCAP if the technology: (1) Addresses a major crash problem, (2) is supported by information that supports its potential or actual safety benefit, and (3) is able to be tested by repeatable performance tests and procedures to ensure a certain level of performance.

For more than three years, NHTSA has been carefully reviewing and evaluating CIB and DBS systems. The agency has also conducted test track research to better understand the performance capabilities of these systems. This work is documented in two reports, “Forward-Looking Advanced Braking Technologies Research Report” [June 2012] and “Automatic Emergency Braking System Research Report” [August 2014].

CIB and DBS systems are two crash avoidance systems designed to mitigate or avoid rear-end crashes. The agency’s research found that CIB and DBS systems are commercially available on a number of different production vehicles and these systems can be tested successfully to defined performance measures. NHTSA has developed performance measures to ensure that CIB and DBS systems address the rear-end crash safety problem in real-world situations by providing automatic or supplemental vehicle braking that will help drivers mitigate or avoid rear-end crashes. The agency found that systems meeting these performance measures have the potential to help reduce the number of rear-end crashes as well as deaths and injuries that result from these crashes. Therefore, the agency believes that it is appropriate to include CIB and DBS systems in NCAP as recommended crash avoidance technologies on www.safercar.gov.

In addition to the agency’s research on CIB and DBS systems, these AEB technologies were among the topics included in an April 5, 2013, Request for comments notice on a variety of potential areas for improvement of NCAP. Most commenters supported including CIB and DBS in NCAP. Some commenters stated generally that available research supports the agency’s conclusion that these technologies are effective at reducing rear-end crashes with some of those commenters citing specific research they had conducted that they deemed relevant. Rear-end crashes constitute a significant vehicle safety problem. In a detailed analysis of 2006–2008 crash data, NHTSA determined that approximately 1.700,000 rear-end crashes involving passenger vehicles occur each year. These crashes result in approximately 1,000 deaths and 700,000 injuries annually. The size of the safety problem has remained consistent since then. In 2012, the most recent year for which data are available, there were a total of 1,663,000 rear-end crashes. These rear-end crashes in 2012 resulted in 1,172 deaths and 706,000 injuries, which represents 3 percent of all fatalities and 30 percent of all injuries from motor vehicle crashes in 2012.

As part of its rear-end crash analysis, the agency concluded that AEB systems would have had a favorable impact on a little more than one-half of rear-end crashes. The remaining crashes, which involved circumstances such as high speed crashes resulting in a fatality in the lead vehicle or one vehicle suddenly cutting in front of another vehicle, were not crashes that current AEB systems would be able to prevent or mitigate. The agency has estimated CIB and DBS system effectiveness based on its research findings from track testing of these systems.

In July 2012, the agency issued a Request for comments notice seeking feedback on its CIB and DBS research. Ford Motor Company indicated that the Lead Vehicle Stopped (LVS) scenario actually consists of two scenarios, one in which the lead vehicle is actually stopped or stationary, and one in which the lead vehicle is decelerating and comes to a stop before the crash occurs but could have been previously seen moving by the AEB system sensors. Additional analysis of LVS crashes found that these crashes are evenly split between lead vehicle stopped and lead vehicle decelerating to a stop (LVD–S) crashes, each representing about 32 percent of the rear-end crash population.

The agency is issuing this document to request comments on its plan to update NCAP. The agency believes that, through NCAP, it can help not only to educate consumers on the role AEB technologies play in addressing rear-end crashes, but also to utilize market incentives to encourage wider incorporation of these important safety technologies.

The advanced crash avoidance technologies that are currently recommended by NHTSA through NCAP (as “Recommended Advanced Technology Features”) are shown on www.safercar.gov. Our plan is to add CIB and DBS systems as recommended advanced technology features on our Web site.
Planned Criteria for Recognizing a Vehicle Make/Model as Having a Recommended CIB or DBS System

For the agency to determine which CIB and DBS systems it will recommend to consumers, NHTSA needs a means for evaluating CIB and DBS systems. The agency has developed test procedures for both CIB and DBS systems as part of its research effort. Although these procedures have been designed to provide a reasonable assessment of overall system performance, the agency may modify the number of test scenarios and the number of test trials per test scenario to accommodate the practical needs of NCAP. The following sections provide a brief summary of the CIB and DBS planned test procedures. The information presented here is intended to indicate the level of vehicle performance the test procedures would set in order for CIB and DBS systems to receive NCAP recommendation.

The planned test procedures represent the four primary scenarios present in the rear-end crash target population. They also include a fifth scenario to assess whether an AEB system activates in a specific non-crash-imminent scenario (subsequently referred to as a “false positive” scenario). The five test scenarios are:

1. Lead vehicle stopped (LVS)
2. Lead vehicle moving (LVM) at a constant speed slower than the SV
3. Lead vehicle decelerating (LVD)
4. Lead vehicle decelerating to a stop (LVD–S)
5. False positive test (steel trench plate, STP)

Tables 1 and 2 present the test speeds and performance measures developed for each of NHTSA’s AEB test scenarios for CIB and DBS. As shown in the second column of these tables, the test speeds for the vehicle being tested (hereinafter, the subject vehicle (SV)) and for the lead vehicle (hereinafter, principal other vehicle (POV)) are the same for the respective CIB and DBS scenarios. However, in most cases, the DBS performance measures specify a greater SV speed reduction than the corresponding CIB test (the exception being the LVM test performed with a SV speed of 25 mph). This is because the speed reductions present during DBS evaluations are the result of the foundation brake application plus the supplementary effect of DBS, and the foundation brake applications used during DBS evaluations are typically commanded earlier than the automatic brake applications during CIB tests.

Table 1—CIB Test Scenarios and System Performance Test Measures

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Speeds of vehicles</th>
<th>Satisfactory performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVS</td>
<td>SV 25 mph (40.2 km/h)</td>
<td>Speed reduction of ≥9.8 mph (15.8 km/h) for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td></td>
<td>POV 0 mph (0 km/h)</td>
<td>No SV-to-POV impact for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td>LVM</td>
<td>SV 25 mph (40.2 km/h)</td>
<td>Speed reduction of ≥9.8 mph (15.8 km/h) for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td></td>
<td>POV 10 mph (16.1 km/h)</td>
<td>No SV-to-POV impact for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td>LVM</td>
<td>SV 45 mph (72.4 km/h)</td>
<td>Speed reduction of ≥10.5 mph (16.9 km/h) for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td></td>
<td>POV 20 mph (32.2 km/h)</td>
<td>Speed reduction of ≥9.8 mph (15.8 km/h) for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td>LVD–S</td>
<td>SV 35 mph (56.3 km/h)</td>
<td>Speed reduction of ≥9.8 mph (15.8 km/h) for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td></td>
<td>POV 35 mph (56.3 km/h)</td>
<td>Peak SV deceleration ≤0.25g.</td>
</tr>
<tr>
<td>False positive</td>
<td>25 mph (40.2 km/h)</td>
<td>Peak SV deceleration ≤0.25g.</td>
</tr>
<tr>
<td>False positive</td>
<td>45 mph (72.4 km/h)</td>
<td>Peak SV deceleration ≤0.25g.</td>
</tr>
</tbody>
</table>

Table 2—DBS Test Scenarios and System Performance Measures

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Speeds of vehicles</th>
<th>Satisfactory performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVS</td>
<td>SV 25 mph (40.2 km/h)</td>
<td>No SV-to-POV impact for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td></td>
<td>POV 0 mph (0 km/h)</td>
<td>No SV-to-POV impact for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td>LVM</td>
<td>SV 25 mph (40.2 km/h)</td>
<td>No SV-to-POV impact for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td></td>
<td>POV 10 mph (16.1 km/h)</td>
<td>No SV-to-POV impact for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td>LVM</td>
<td>SV 45 mph (72.4 km/h)</td>
<td>No SV-to-POV impact for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td></td>
<td>POV 20 mph (32.2 km/h)</td>
<td>No SV-to-POV impact for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td>LVD–S</td>
<td>SV 35 mph (56.3 km/h)</td>
<td>No SV-to-POV impact for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td></td>
<td>POV 35 mph (56.3 km/h)</td>
<td>No SV-to-POV impact for at least 7 of 8 valid test trials.</td>
</tr>
<tr>
<td>False positive</td>
<td>25 mph (40.2 km/h)</td>
<td>Peak SV deceleration ≤125% of the average peak SV deceleration realized during a series of baseline brake stops.</td>
</tr>
<tr>
<td>False positive</td>
<td>45 mph (72.4 km/h)</td>
<td>Peak SV deceleration ≤125% of the average peak SV deceleration realized during a series of baseline brake stops.</td>
</tr>
</tbody>
</table>

As currently written, each test procedure involves a total of 56 test runs (eight valid test trials for each of the seven test scenarios). The test procedures also include time to condition the SV brakes, including a full FMVSS No. 133 brake burnish prior to testing and a brake warming regimen to ensure the initial brake temperature is within a range before each test trial.

Additionally, because the DBS evaluations specify that the SV brakes be applied, the DBS procedures include a series of eight brake characterization tests. The purpose of these brake characterization tests is to determine the position and force input magnitudes to be used by the brake controller robot during test conduct. This process determines the amount of braking to apply during DBS testing that is

sufficiently high to activate the DBS system being tested, yet low enough that the SV’s conventional brake assist system is not activated. NHTSA plans for the SV’s conventional brake assist system being tested, yet low enough that sufficiently high to activate the DBS system.

NHTSA—2012–0057–

Test procedures:

Test procedures: What is the general response to the planned test procedures? How well the combination of test scenarios and test speeds described provide an accurate representation of real-world CIB and DBS system performance, and how can they be improved? Can any of the scenarios be removed from the test procedures while still ensuring a certain level of system performance? If so, what are they and why? Similarly, why and how should the number of test trials per scenario be reduced? What, if any, specific improvements to the test procedures are still necessary?

The Strikeable Surrogate Vehicle (SSV): Are there specific elements that would cause NHTSA’s SSV to be inappropriate for use in the agency’s CIB and DBS performance evaluations? If so, what are they, and how are they a problem? Will the SSV meet the needs for CIB and DBS evaluation for the foreseeable future? If not, why not? What alternatives could be considered and why?

DBS Test Brake Application Strategy: We seek comment on whether the two brake application methods defined in the DBS test procedure, those based on displacement or hybrid control, provide NHTSA with enough flexibility to accurately assess the performance of all DBS systems. What specific refinements, if any, are needed to either application method?

CIB and DBS Research: We seek comment on whether there is any recent research concerning CIB and DBS systems that is not reflected in the agency’s research to date. If so, please provide a reference to that research.

How do I prepare and submit comments?

Your comments must be written and in English. To ensure that your comments are filed correctly in the docket, please include the docket number of this document in your comments. Your comments must not be more than 15 pages long (49 CFR 553.21). NHTSA established this limit to encourage you to write your primary comments in a concise fashion. However, you may attach necessary additional documents to your comments. There is no limit on the length of the attachments.

Please submit one copy (two copies if submitting by mail or hand delivery) of your comments, including the attachments, to the docket following the instructions given above under ADDRESSES. Please note, if you are submitting comments electronically as a PDF (Adobe) file, we ask that the documents submitted be scanned using an Optical Character Recognition (OCR) process, thus allowing the agency to search and copy certain portions of your submissions.

How do I submit confidential business information?

If you wish to submit any information under a claim of confidentiality, you should submit three copies of your complete submission, including the information you claim to be confidential business information, to the Office of the Chief Counsel, NHTSA, at the address given above under FOR FURTHER INFORMATION CONTACT. In addition, you may submit a copy (two copies if submitting by mail or hand delivery), from which you have deleted the claimed confidential business information, to the docket by one of the methods given above under ADDRESSES. When you send a comment containing information claimed to be confidential business information, you should include a cover letter setting forth the
DEPARTMENT OF TRANSPORTATION

Surface Transportation Board

Notice and Request for Comments

AGENCY: Surface Transportation Board, DOT.

ACTION: 60-day notice and request for comments; Application to Open a Billing Account.

SUMMARY: As required by the Paperwork Reduction Act of 1995, 44 U.S.C. 3501–3519 (PRA), the Surface Transportation Board (STB or Board) gives notice of its intent to request from the Office of Management and Budget (OMB) an extension of approval without revision of a currently approved information collection: Application to Open a Billing Account. The information collection is described in detail below. Comments are requested concerning: (1) The accuracy of the Board’s burden estimates; (2) ways to enhance the quality, utility, and clarity of the information collected; (3) ways to minimize the burden of the collection of information on the respondents, including the use of automated collection techniques or other forms of information technology, when appropriate; and (4) whether this collection of information is necessary for the proper performance of the functions of the Board, including whether the collection has practical utility. Submitted comments will be summarized and included in the Board’s request for OMB approval.

Description of Collection

Title: Application to Open a Billing Account.

OMB Control Number: 2140–0006.

STB Form Number: STB Form 1032.

Type of Review: Extension of a currently approved collection.

Respondents: Rail carriers, shippers, and others doing business before the STB.

Number of Respondents: 5.

Estimated Time per Response: Less than .08 hours, based on actual survey of respondents.

Frequency: One time per respondent.

Total Burden Hours (annually including all respondents): Less than 0.4 hours.

Total “Non-hour Burden” Cost: No “non-hour cost” burdens associated with this collection.

By the Board, Rachel D. Campbell, Director, Office of Proceedings.

Raina S. White,
Clearance Clerk.

[FR Doc. 2015–01553 Filed 1–27–15; 8:45 am]

BILLING CODE 4910–01–P