enhance implementation of methodologies to improve organizational effectiveness. The main goal of this information is to improve program outcomes and increase the efficiency of resource utilization. The knowledge gained from these collections will be used to strengthen the planning, implementation, and monitoring of NIH research programs, as well as to strengthen strategy management in NIH research programs.

The questions asked, and the data to be collected are rooted in established business-based paradigms but specifically adapted for use (and relevance) in a biomedical research environment, in order to discern: 1) Factors that enhance (or inhibit) organizational effectiveness in research programs; 2) utility and acceptance of these kinds of efforts among biomedical researchers and research stakeholders. The results from this formative research project will inform quality improvement activities in several areas, including goal setting, capability and resource evaluation, operational efficiency, and performance monitoring. Utilized data collection methodologies will be administered in a manner that minimizes public information collection burden. These include, but are not limited to, surveys, focus groups, and/or cognitive interviews. Separate and distinct generic clearances are requested to facilitate the efficiency of submission and review of these projects as required by the OMB Office of Information and Regulatory Affairs

OMB approval is requested for 3 years. There are no costs to respondents other than their time. The total estimated annualized burden hours are 4775.

ESTIMATED ANNUALIZED BURDEN HOURS

<table>
<thead>
<tr>
<th>Form name</th>
<th>Type of respondent</th>
<th>Number of respondents</th>
<th>Number of responses per respondent</th>
<th>Average burden per response (in hours)</th>
<th>Total annual burden hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot Test</td>
<td>Science professional, researchers, institutional</td>
<td>900</td>
<td>1</td>
<td>45/60</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>officials, network leadership, program administrators,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and research site staff..</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey</td>
<td></td>
<td>2500</td>
<td>1</td>
<td>30/60</td>
<td>1250</td>
</tr>
<tr>
<td>Interview</td>
<td></td>
<td>1000</td>
<td>1</td>
<td>90/60</td>
<td>1500</td>
</tr>
<tr>
<td>Focus group</td>
<td></td>
<td>375</td>
<td>1</td>
<td>2/60</td>
<td>750</td>
</tr>
<tr>
<td>Data interpretation</td>
<td>meeting with stakeholders.</td>
<td>150</td>
<td>1</td>
<td>4/60</td>
<td>600</td>
</tr>
</tbody>
</table>

Dated: November 21, 2013.

Brandie Taylor,
Project Clearance Liaison, Chief, Evaluation Section, OPSIIBA, NIAID, NIH.
[FR Doc. 2013–28636 Filed 11–27–13; 8:45 am] BILLING CODE 4140–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, HHS.

ACTION: Notice.

SUMMARY: The inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 209 and 37 CFR part 404 to achieve expedient commercialization of results of federally-funded research and development. Foreign patent applications are filed on selected inventions to extend market coverage for companies and may also be available for licensing.

FOR FURTHER INFORMATION CONTACT: Licensing information and copies of the U.S. patent applications listed below may be obtained by writing to the indicated licensing contact at the Office of Technology Transfer, National Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, Maryland 20852–3804; telephone: 301–496–7057; facsimile: 301–402–0220. A signed Confidential Disclosure Agreement will be required to receive copies of the patent applications.

Device for Vascular Dilation

Description of Technology: The invention is an enhanced vascular dilator that eliminates the vascular injury caused by the size mismatch between vascular introducer sheaths and vascular dilators, as the two are advanced into a blood vessel. The invention provides a “shoulder” to match the diameter of the introducer sheath so that there is a smooth transition, without size mismatch, between the dilator and the introducer sheath. The invention allows the dilator to be withdrawn in segments from the introducer sheath. This is especially valuable to reduce vascular injury when using large-bore introducer sheaths for interventional procedures including transcatheter valves and endografts.

Potential Commercial Applications:
• Cava access.
• Vascular access.

Competitive Advantages: Non-perforating.

Development Stage: Prototype.

Inventors: Robert Lederman (NHLBI), Ozgur Kocaturk (NHLBI), Adam Greenbaum (Henry Ford Hospital).

Licensing Contact: Michael Shmilovich; 301–435–5019; shmilovm@mail.nih.gov.

Collaborative Research Opportunity: The National Heart, Lung, and Blood Institute is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize interventional catheter-based procedures to reduce vascular injury. For collaboration opportunities, please contact Peg Koelble at koelblep@nhlbi.nih.gov.

Her2 Monoclonal Antibodies, Antibody Drug Conjugates, and Site Specific Antibody Conjugate Methods

Description of Technology: Antibody drug conjugates (ADC) can demonstrate high efficacy as cancer therapeutics, however, much more can be done to improve their efficacy and safety profile. Site-specific antibody drug conjugation is a promising way to do this.

The scientists at the NIH have identified a fully human monoclonal antibody, m860, that binds to cell surface-associated Her2 with affinity...
comparable to that of Trastuzumab (Herceptin) but to a different epitope. In addition, the scientist developed a site-specific glycan engineering method to conjugate the antibody to the small molecule drug auristatin F. The ADC prepared though this site-specific approach shows very good stability, cell surface binding activity and also potent specific cell killing activity against Her2 positive cancer cells, including Trastuzumab resistant breast cancer cells. This ADC has the potential to be developed as a targeted therapeutic for Her2-overexpressing cancers and this site-specific strategy could be readily applied to develop ADCs targeting other cancers that express cell surface markers or other disease targets.

Potential Commercial Applications:
- Therapeutic for the treatment of Her2 positive cancers.
- Method for producing safer and more effective ADCs.

Competitive Advantages:
- Could be used in combination with Trastuzumab or for patients who have developed resistance to Trastuzumab treatment, since this antibody targets a different epitope.
- Site specific conjugation provides better efficacy and less side effects than ADCs produced using traditional strategies.
- Can be readily applied to develop ADCs targeting other cancers that express cell surface markers or other disease targets, such as HIV.

Development Stage:
- Pre-clinical.
- In vitro data available.
- In vivo data available (animal).

Inventors: Dimitter S. Dimitrov (NCI), Zhu Zhongyu (NCI), Pradman K. Qasba (NCI), Boopathy Ramakrishnan (NCI).

Licensing Contact: Whitney A. Hastings; 301–451–7337; hosting@mail.nih.gov.

Collaborative Research Opportunity: The National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize non-invasive Urinary Biomarkers Highly Predictive of Non-small Cell Lung Cancer Status and Survival. For collaboration opportunities, please contact John D. Hewes, Ph.D. at hewesj@mail.nih.gov.

Non-invasive Early Stage Lung Cancer Diagnostic and Prognostic Assays

Description of Technology: The present invention provides a unique non-invasive diagnostic to detect early stage lung cancer and predict patient survival through a simple assay utilizing urine samples. Urine samples minimize patient discomfort unlike current early detection methods that are highly invasive, such as a biopsy or bronchoscopy, or utilize expensive computer tomography (CT) scans that expose patients to harmful radiation. Although the sensitivity of low dose CT scans is high, the specificity is low, resulting in high false positive rates. Utilizing metabolic profiling of urine samples obtained from 1,005 people, the scientists have developed and validated this unique metabolite profile that diagnoses early stage lung cancer and predicts patient survival with a high accuracy.

Potential Commercial Applications:
- Diagnostic test for early stage lung cancer.
- Prognostic test for patient survival.
- Method to help physicians make informed treatment decisions.

Competitive Advantages: Urinary patient samples—no need for needles, invasive surgery, or claustrophobic tests.

Development Stage:
- Early-stage.
- In vivo data available (human).

Inventors: Curtis Harris (NCI), Majda Haznadar (NCI), Frank Gonzalez (NCI), Ewy Mathe (NCI), Kristopher Krausz (NCI), Soumen Manna (NCI), and Andrew Patterson (Pennsylvania State University)

Licensing Contact: Jennifer Wong, M.S.; 301–435–4633; wongje@mail.nih.gov.

Collaborative Research Opportunity: The National Cancer Institute, Laboratory of Human Carcinogenesis, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize Intravenous Water Soluble Formulation of MJC13—A Novel Lead Compound for the Treatment of Castrate-Resistant Prostate Cancer

Description of Technology: Normal prostate growth and maintenance is dependent on androgens acting through the androgen receptor (AR). AR expression is maintained and plays an important role throughout prostate cancer progression. A lead molecule, MJC13, has been identified and has higher potency and better selectivity for AR than any other compound tested. It has been shown to effectively block AR-dependent gene expression in cellular models of prostate cancer at micromolar concentrations.

MJC13, although an attractive drug candidate, has low aqueous solubility. This has hindered the clinical development of MJC13. Scientists at NIH, University of Texas El Paso and Texas Southern University have developed a water soluble and stable MJC13 liquid dosage formulation that is suitable for intravenous administration. The solubility of this formulation has increased over 25,000 times compared to MJC13 itself. Additionally, a sensitive LC/MS/MS method to analyze MJC13 has also been developed, which can detect as little as 1 ng/mL of MJC13 in solution or plasma. These studies are of great importance for future pre-clinical and clinical studies of MJC13.

Potential Commercial Applications: Develop MJC13 as a clinical drug product for the treatment of castrate-resistant prostate cancer (CRPC), in which current treatment options are ineffective.

Competitive Advantages: Water soluble formulation of the lead compound, MJC13, that will enable further pharmacokinetic/pharmacodynamic studies and clinical studies required for commercial development of the drug.

Development Stage:
- Pre-clinical.
- In vitro data available.
- In vivo data available (animal).

Licensing Contact: Egerton Campbell, Ph.D.; 301–435–5282; campbellea2@mail.nih.gov.

Collaborative Research Opportunity: The National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize Intravenous Water Soluble Formulation of MJC13. For collaboration opportunities, please contact John D. Hewes, Ph.D. at hewesj@mail.nih.gov.
Methods of Modulating Chemotherapeutic Cytotoxicity

Description of Technology:
Investigators at the National Cancer Institute (NCI) have discovered that blockade of the signalling activity of a single cell-surface receptor, CD47, in cancer cells results in enhanced sensitivity of cancer cells to chemotherapy treatment and in healthy tissues reduces damage to normal cells. Many chemotherapeutic agents cause significant cytotoxicity to non-cancer (“normal”) cells, resulting in undesirable side-effects and often limiting the dose and/or duration of chemotherapy that can be administered to a patient. The present invention relates to a method of using CD47-modulating compounds in combination with a chemotherapeutic agent to increase the efficacy of that agent against inhibiting tumor growth. The invention also relates to methods for preventing damage to heart tissue associated with the use of anthracycline chemotherapy. The current invention builds on the NIH’s previous discoveries of antibodies, antisense morpholino compounds that modulate CD47.

Potential Commercial Applications:
Combination Chemotherapy

Competitive Advantages:
• Enhance effectiveness of chemotherapeutic agents.
• Limit off target effects on normal tissue.
• Reduces cytotoxicity of normal cells.
• Provides cardioprotection for anthracyclines.

Development Stage:
• Early-stage.
• Pre-clinical.
• In vitro data available.
• In vivo data available (animal).

Inventors: David D. Roberts and David R. Soto Pantoja (NCI).

• CA Application No. 2,665,287 filed 05 October 2007.
• EP Application No. 0786382.8 filed 27 March 2009.

Licensing Contact: Charlene Maddox, Ph.D.; 301–435–4889; sydna@nigih.gov

Collaborative Research Opportunity:
The National Cancer Institute, Laboratory of Pathology, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize CD47 targeting therapeutics, cardioprotection, autophagy modulation. For collaboration opportunities, please contact John D. Hewes, Ph.D. at hewesj@mail.nih.gov.

Dated: November 21, 2013.

Richard U. Rodriguez,
Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.

[FR Doc. 2013–28558 Filed 11–27–13; 8:45 am]

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of the following meeting.

The meeting will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Cancer Institute Special Emphasis Panel; K22 Grant Applications for PAR–12–121.

Date: December 3, 2013.

Time: 9:00 a.m. to 5:00 p.m.

Agenda: To review and evaluate grant applications.

Place: National Cancer Institute Shady Grove, 9609 Medical Center Drive, Room 7W034, Rockville, MD 20850 (Telephone Conference Call).

Contact Person: Sergei Radaev, Ph.D., Scientific Review Officer, Resources and Training Review Branch, Division of Extramural Activities, National Cancer Institute, NIH, 9609 Medical Center Drive, Room 7W634, Bethesda, MD 20892, 240–276–6466, sradaev@mail.nih.gov.

This notice is being published less than 15 days prior to the meeting date due to scheduling conflicts.

Information is also available on the Institute’s/Center’s home page: http://deainfo.nci.nih.gov/advisory/sep/sep.htm, where an agenda and any additional information for the meeting will be posted when available.

(Catalogue of Federal Domestic Assistance Program Nos. 93.392, Cancer Construction; 93.393, Cancer Cause and Prevention Research; 93.394, Cancer Detection and Diagnosis Research; 93.395, Cancer Treatment Research; 93.396, Cancer Biology Research; 93.397, Cancer Centers Support; 93.398, Cancer Research Manpower; 93.399, Cancer Control, National Institutes of Health, HHS).

Dated: November 22, 2013.

David Clary,
Program Analyst, Office of Federal Advisory Committee Policy.

[FR Doc. 2013–28559 Filed 11–27–13; 8:45 am]