specialties involved in the identification and referral of donors, non-physician transplant professions, nursing, epidemiology, immunology, law and bioethics, behavioral sciences, economics and statistics, as well as representatives of transplant candidates, transplant recipients, living organ donors, and family members of deceased and living organ donors. Members shall not serve while they are also serving on the OPTN Board of Directors. To the extent practicable, Committee members should represent the minority, gender and geographic diversity of transplant candidates, transplant recipients, organ donors and family members served by the OPTN. The ex-officio, non-voting members shall include the Directors of the National Institutes of Health, the Centers for Disease Control and Prevention; and the Agency for Healthcare Research and Quality; the Administrator of the Centers for Medicare and Medicaid Services; and the Commissioner of the Food and Drug Administration—or their designees. Specifically, HRSA is requesting nominations for voting members of the ACOT representing: Health care public policy; transplantation medicine and surgery, including pediatric and heart/lung transplantation; critical care medicine; nursing; epidemiology and applied statistics; immunology; law and bioethics; behavioral sciences; economics and econometrics; organ procurement organizations; transplant candidates/recipients; transplant/donor family members; and living donors. Nominees will be invited to serve a 4-year term beginning after January 2013. HHS will consider nominations of all qualified individuals with a view to ensuring that the Advisory Committee includes the areas of subject matter expertise noted above. Individuals may nominate themselves or other individuals, and professional associations and organizations may nominate one or more qualified persons for membership on the ACOT. Nominations shall state that the nominee is willing to serve as a member of the ACOT and appears to have no conflict of interest that would preclude the ACOT membership. Potential candidates will be asked to provide detailed information concerning financial interests, consultancies, research grants, and/or contracts that might be affected by recommendations of the Committee to permit evaluation of possible sources of conflicts of interest. A nomination package should include the following information for each nominee: (1) A letter of nomination stating the name, affiliation, and contact information for the nominee, the basis for the nomination (i.e., what specific attributes, perspectives, and/or skills does the individual possess that would benefit the workings of ACOT), and the nominee’s field(s) of expertise; (2) a biographical sketch of the nominee and a copy of his/her curriculum vitae; and (3) the name, address, daytime telephone number, and email address at which the nominator can be contacted.

The Department of Health and Human Services has special interest in assuring that advisory committees benefit from a broad and diverse range of perspectives. In support of that interest, we encourage nominations of all qualified candidates, and extend particular encouragement to nominations of women, racial and ethnic minorities, and those with disabilities.

Dated: May 9, 2012.
Reva Harris,
Acting Director, Division of Policy and Information Coordination.

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, Public Health Service, HHS.

ACTION: Notice.

SUMMARY: The inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 207 to achieve expeditious commercialization of results of federally-funded research and development. Foreign patent applications are filed on selected inventions to extend market coverage for companies and may also be available for licensing.

FOR FURTHER INFORMATION CONTACT: Licensing information and copies of the U.S. patent applications listed below may be obtained by writing to the indicated licensing contact at the Office of Technology Transfer, National Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, Maryland 20852–3804; telephone: 301–496–7057; fax: 301–402–0220. A signed Confidential Disclosure Agreement will be required to receive copies of the patent applications.

Therapeutic RNA Switches and Auto-Recognizing Therapeutic R/DNA Chimeric Nanoparticles (NP) for HIV Treatment

Description of Technology: RNA interference (RNAi) as a therapeutic agent is routinely used to knock down the expression of target genes in diseased cells. Using siRNAs it is possible to knock down target mRNA expression. It is possible, for example, to induce cell death through co-RNAi by simultaneously targeting several human anti-apoptotic genes with different siRNAs. NIH inventors computationally and experimentally developed a new technology that utilizes two (or more) cognate RNA/DNA NPs that, when recombined within the cell, trigger the RNAi pathway as well as other functionalities that exist inside diseased cells. This new methodology therefore opens a new route in the development of auto-recognizing “smart” nucleic acids based nanoparticles for a wide range of applications in biomedical RNA nanotechnology. This new approach may overcome several issues commonly associated with the clinical delivery of siRNA, such as intravascular degradation, the potential for immune-mediated toxicities, tissue specificity and pharmacodynamics.

Potential Commercial Applications:
- Therapeutics that control gene expression (e.g., anti-apoptotic genes).
- Combinations with other therapeutics to treat cancer, RNA viruses (e.g., HIV) and other RNA related diseases.
- Triggered release of siRNAs within cells.
- Research on targeting cells.
- Labeling of targeted cells.
- Research on cancer cells harboring cancer and other RNA related diseases in patients.
- Research on treatment of RNA related viruses.

Competitive Advantages:
- Size overcomes problems with traditional siRNA pharmacokinetics.
- Chemical stability improves half-life.
- Incorporation of multiple functionalities split and otherwise.
- Multi-stage delivery controls activation.

Development Stage:
- Prototype.
- In vitro data available.

Inventors: Bruce A. Shapiro (NCI), Eckart HU Bindewald (NCI), Kiriil A. Afonin (NCI), Arti Santhanam (NCI), Mathias Viard (SAIC), Luc Jaeger (UCSB)

Patent protection is not being pursued for this technology.

Licensing Contact: John Stansberry, Ph.D.; 301–435–5236; stansbej@mail.nih.gov.

Collaborative Research Opportunity: The NCI Center for Cancer Research Nanobiology Program is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize this technology to advance antiviral therapy concepts. For collaboration opportunities, please contact John Hewes, Ph.D. at hewes@nih.gov.

Multilayer X-Ray Transmission Grating Array for Phase-Contrast Imaging and Tomography

Description of Technology: Classical X-ray Computed Tomography (CT) and radiography are based on X-ray absorption and cannot show soft tissue structures as well as Magnetic Resonance Imaging (MRI). Detecting the phase delay/advance of X-rays that travel through the body could enhance soft tissue contrast 10–100 times.

Submicron-period X-ray transmission gratings for medical x-ray energies can substantially enhance the phase detection sensitivity, but fabrication is a great challenge. This invention includes a method to fabricate multilayer transmission gratings of large areas. The design uses multilayer deposition of alternating materials on a staircase substrate to form micro grating arrays of extremely small periods and high aspect ratio in large areas. This invention should substantially improve the visibility of soft tissue structures and reduce radiation dose to patients.

Potential Commercial Applications:
- X-ray diagnostic imaging.
- X-ray non-destructive materials testing.
- X-ray security screening.
- X-ray lithography of nanostructures.
- Also applies to neutron beam or proton beam imaging.

Competitive Advantages:
- Gratings of ultra-high aspect ratio and small periods allow phase-contrast imaging at high x-ray energies which are suitable for human body CT, and provide better soft tissue contrast in radiography and CT.
- Reduces radiation exposure to patient.
- Large area gratings enable full field imaging without raster or line scanning.

Development Stage: Pre-clinical.

Inventor: Han Wen (NHLBI).

Publication: Lynch SK, et al.

Potential Commercial Applications:
- Research reagent to test the mitochondrial toxicity of other drugs that can affect polymerase activity.
- Research reagent to test the mitochondrial toxicity of other drugs that can affect polymerase activity.

Commercial Applications:
- Diagnostic tool for identifying patients at high-risk for developing colon, small-cell lung, and ovarian cancers that are recurring and/or aggressive.

Competitive Advantages:
- Allows more accurate prognoses by separating high-risk from low-risk cancer patient populations.

Human DNA Polymerase Gamma for Testing the Effect of Drugs on Mitochondrial Function

Description of Technology: One of the primary means for treating HIV infection is the use of antiviral nucleotide or nucleoside analogs. These analogs work by inhibiting the activity of reverse transcriptase, the enzyme responsible for preparing the HIV genome for integration into the DNA of the host cell. Although these analogs do not have an effect on the polymerases responsible for replicating the human genome, the polymerase responsible for replicating the mitochondrial genome is sensitive to these analogs. When patients are exposed to nucleotide or nucleoside analogs through long-term treatment regimens, the replication of the mitochondrial genome can be adversely affected. Since mitochondrial functionality is necessary for cell activity, the nucleotide and nucleoside analogs can cause serious and unwanted side-effects.

This invention concerns the cloning and purification of human DNA polymerase gamma, the polymerase responsible for replicating the mitochondrial genome. The enzymes that have been purified include the wild-type version, a version which lacks exonuclease (proofreading) activity, and several versions with modified activity due to the mutation of the enzyme. These purified enzymes can be used to directly test the effects of new drugs that affect the activity of polymerases, such as nucleotide and nucleoside analogs.

Potential Commercial Applications:
- Research reagent to screen the effects of antiviral drugs (nucleotide and nucleoside analogs) on mitochondrial function.

Collaborative Research Opportunity:
- The NIEHS is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize multilayer-coated gratings for phase-contrast CT. For collaboration opportunities, please contact Elizabeth Denholm at denholme@niehs.nih.gov.

Biomarker To Predict High-Risk Clinical Outcomes for Colon, Lung, and Ovarian Cancers

Description of Technology: It has long been known that general genomic instability is associated with cancer. NIH scientists Drs. Habermann and Reid at the National Cancer Institute, along with West Virginia University scientists Drs. Mettu and Guo, have recently identified specific genes whose instability is strongly associated with poor outcomes for colon, small-cell lung, and ovarian cancers. Using this 12-gene genomic instability signature as a biomarker could be a diagnostic tool for identifying high-risk patients that would benefit from more aggressive forms of treatment.

Potential Commercial Applications:
- Diagnostic tool for identifying patients at high-risk for developing colon, small-cell lung, and ovarian cancers that are recurring and/or aggressive.

Competitive Advantages:
- Allows more accurate prognoses by separating high-risk from low-risk cancer patient populations.
• Allows doctors to choose more individualized therapies for patients based on whether the cancer is at high or low risk for aggressiveness or recurrence.

Development Stage: Clinical.

Inventors: Thomas K. Ried (NCI) et al.

Licensing Contact: Sureka Vathyam, Ph.D.; 301–435–4076; vathyams@mail.nih.gov.

Isolation of Hybridomas Producing Monoclonal Antibodies (MAbs) Inhibitory to Human CYP2J2

Description of Technology: The National Institutes of Health announces three specific monoclonal antibodies that strongly inhibit and/or immunoblot the human cytochrome P450 2J2 (CYP2J2).

Cytochrome P450s catalyze the NADPH-dependent oxidation of arachidonic acid to various eicosanoids found in several species. The eicosanoids are biosynthesized in numerous tissues including pancreas, intestine, kidney, heart and lung where they are involved in many different biological activities.

MAb 6–5–20–8 selectively inhibits CYP2J2-mediated arachidonic acid metabolism by more than 80% and also immunoblots the enzyme. MAb 6–2–16–1 also selectively inhibits arachidonic acid metabolism by more than 80% but does not immunoblot the enzyme. MAb 5–3–2–2 is not inhibitory but selectively immunoblots the enzyme. These antibodies can be used to identify and quantify inter-individual variation in physiological functions and to study pharmacological drug metabolism in various tissues.

Potential Commercial Applications:
• These antibodies can be used to identify and quantify inter-individual variation in physiological functions.
• These antibodies can be used to study pharmacological drug metabolism in various tissues.

Competitive Advantages: These antibodies strongly inhibit and/or immunoblot the human cytochrome P450 2J2 (CYP2J2).

Development Stage: In vitro data available.

Inventors: Darryl C. Zeldin (NEIHS) et al.

Publications:

Inhibitory to Human CYP2J2 Monoclonal Antibodies (MAbs) Isolation of Hybridomas Producing

In vitro data

Competitive Advantages:
• These antibodies can be used to identify and quantify inter-individual variation in physiological functions and to study pharmacological drug metabolism in various tissues.

Collaborative Research Opportunity: The NIHES is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize this antibody. For collaboration opportunities, please contact Elizabeth Denholm at denholme@niehs.nih.gov.

Dated: May 9, 2012.

Richard U. Rodriguez,
Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.

[FR Doc. 2012–11591 Filed 5–14–12; 8:45 am]

BILLING CODE 4140–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Center For Scientific Review; Notice of Closed Meetings

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of the following meetings. The meetings will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6). Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: Oncology 2—Translational Clinical Integrated Review Group; Basic Mechanisms of Cancer Therapeutics Study Section.

Time: 8:00 a.m. to 5:00 p.m.

Agenda: To review and evaluate grant applications.

Place: The Mandarin Oriental, 1330 Maryland Avenue SW., Washington, DC 20024.

Contact Person: Lambatu Rahman Sesay, Ph.D., Scientific Review Officer, Center for Scientific Review, National Institutes of Health, 6701 Rockledge Drive, Room 6214, MSC 7804, Bethesda, MD 20892, 301–451–3493, rahman-sesayl@csr.nih.gov.

Name of Committee: Center for Scientific Review Special Emphasis Panel; Program Project: Spatio-Temporal Cell Signaling Networks.

Date: June 4–5, 2012.

Time: 10:00 a.m. to 6:00 p.m.

Agenda: To review and evaluate grant applications.

Place: National Institutes of Health, 6701 Rockledge Drive, Bethesda, MD 20892, (Virtual Meeting).

Contact Person: Maria DeBernardi, Ph.D., Scientific Review Officer, Center for Scientific Review, National Institutes of Health, 6701 Rockledge Drive, Room 6158, MSC 7892, Bethesda, MD 20892, 301–451–1355, debernardima@csr.nih.gov.

Name of Committee: Center for Scientific Review Special Emphasis Panel; Small Business: Cancer Drug Developments & Therapeutics.

Date: June 5–6, 2012.

Time: 10:00 a.m. to 6:00 p.m.

Agenda: To review and evaluate grant applications.

Place: National Institutes of Health, 6701 Rockledge Drive, Bethesda, MD 20892, (Virtual Meeting).

Contact Person: Lilia Topol, Ph.D., Scientific Review Officer, Center for Scientific Review, National Institutes of Health, 6701 Rockledge Drive, Room 6158, MSC 7892, Bethesda, MD 20892, 301–451–0341, ltopol@mail.nih.gov.