License Requirements

Reason for Control: MT, NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT applies to entire entry.</td>
<td>MT Column 1</td>
</tr>
<tr>
<td>NP applies to "technology" for items controlled by 1B001, 1B101, 1B225 to 1B233, 1C002, 1C010, 1C111, 1C116, 1C126, 1C225 to 1C237, 1C239, or 1C240 for NP reasons.</td>
<td>NP Column 1</td>
</tr>
</tbody>
</table>

Related Definitions:

- **Items:**
 - "Technology" for items described in ECCN 1E101 is subject to the controls of those USML Categories, respectively. (2) "Technology" for chlorine trifluoride is controlled under ECCNs 1E001 ("development" and "production") and 1E001 ("use").
 - "Technology" for the "development" or "production" of nitrocellulose with nitrogen content over 12.6% and at rates greater than 2000 pounds per hour.
 - "Technology" for the "development" or "production" of nitrate esters (e.g., nitroglycerine) at rates greater than 2000 pounds per hour.
 - "Technology" not identified on the CCL that (i) has been determined, in an applicable commodity jurisdiction determination issued by the U.S. Department of State, to be subject to the EAR and (ii) would otherwise be controlled elsewhere in ECCN E608.

Related Controls:

- (1) Technical data directly related to articles enumerated in USML Categories III, IV, or V are subject to the controls of those USML Categories, respectively.

Control(s) Country chart

<table>
<thead>
<tr>
<th>Reason for Control</th>
<th>NS, RS, MT, AT</th>
</tr>
</thead>
</table>

List of Items Controlled

Unit: $ value

Related Controls:
The Department of State proposes to amend the International Traffic in Arms Regulations (ITAR) to revise Category V (explosives and energetic materials, propellants, incendiary agents, and their constituents) of the U.S. Munitions List (USML) to describe more precisely the articles warranting control on the USML.
DATES: The Department of State will accept comments on this proposed rule until June 18, 2012.

ADDRESSES: Interested parties may submit comments within 45 days of the date of publication by one of the following methods:

- **Email:** DDTCreponseTeam@state.gov with the subject line, “ITAR Amendment—Category V.”
- **Internet:** At www.regulations.gov, search for this notice by using this rule’s RIN (1400–AD02).

Comments received after that date will be considered if feasible, but consideration cannot be assured. Those submitting comments should not include any personally identifying information they do not desire to be made public or information for which a claim of confidentiality is asserted because those comments and/or transmittal emails will be made available for public inspection and copying after the close of the comment period via the Directorate of Defense Trade Controls Web site at www.pmddtc.state.gov. Parties who wish to comment anonymously may do so by submitting their comments via www.regulations.gov, leaving the fields that would identify the commenter blank and including no identifying information in the comment itself. Comments submitted via www.regulations.gov are immediately available for public inspection.

FOR FURTHER INFORMATION CONTACT: Ms. Candace M. J. Goforth, Acting Director, Office of Defense Trade Controls Policy, Department of State, telephone (202) 663–2792; email DDTCreponseTeam@state.gov. ATTN: Regulatory Change, USML Category V.

SUPPLEMENTARY INFORMATION: The Directorate of Defense Trade Controls (DDTC), U.S. Department of State, administers the International Traffic in Arms Regulations (ITAR) (22 CFR parts 120–130). The items subject to the jurisdiction of the ITAR, i.e., “defense articles,” are identified on the ITAR’s U.S. Munitions List (USML) (22 CFR 121.1). With few exceptions, items not subject to the export control jurisdiction of the ITAR are subject to the jurisdiction of the Export Administration Regulations (“EAR”), 15 CFR parts 730–774, which includes the Commerce Control List in Supplement No. 1 to Part 774), administered by the Bureau of Industry and Security (BIS), U.S. Department of Commerce. Both the ITAR and the EAR impose license requirements on exports and reexports. Items not subject to the ITAR or to the exclusive licensing jurisdiction of any other set of regulations are subject to the EAR.

Export Control Reform Update

The Departments of State and Commerce described in their respective Advanced Notices of Proposed Rulemaking (ANPRM) in December 2010 the Administration’s plan to make the USML and the CCL positive, tiered, and aligned so that eventually they can be combined into a single control list (see “Control List: Revising Descriptions of Items and Foreign Availability.” 75 FR 76664 (December 9, 2010) and “Revision to the United States Munitions List,” 75 FR 76935 (December 10, 2010)). The notices also called for the establishment of a “bright line” between the USML and the CCL to reduce government and industry uncertainty regarding export jurisdiction by clarifying whether particular items are subject to the jurisdiction of the ITAR or the EAR. While the tiering of the Administration’s ultimate Export Control Reform objectives, their concurrent implementation would be problematic in the near term. In order to more quickly reach the national security objectives of greater interoperability with U.S. allies, enhancing the defense industrial base, and permitting the U.S. Government to focus its resources on controlling and monitoring the export and reexport of more significant items to destinations, end-uses, and end-users of greater concern than NATO allies and other multi-regime partners, the Administration has decided, as an interim step, to propose and implement revisions to both the USML and the CCL that are more positive, but not yet tiered.

Specifically, based in part on a review of the comments received in response to the December 2010 notices, the Administration has determined that fundamentally altering the structure of the USML by tiering and aligning it on a category-by-category basis would significantly disrupt the export control compliance systems and procedures of exporters and reexporters. For example, until the entire USML was revised and became final, some USML categories would follow the legacy numbering and control structures while the newly revised categories would follow a completely different numbering structure. In order to allow for the national security benefits to flow from re-aligning the jurisdictional status of defense articles that no longer warrant control on the USML on a category-by-category basis, the Administration is analyzing the impact on exporters’ internal control and jurisdictional and classification marking systems, the Administration plans to proceed with building positive lists now and afterward return to structural changes.

Revision of Category V

This proposed rule revises USML Category V, covering explosives and energetic materials, propellants, incendiary agents, and their constituents, to establish a clear “bright line” between the USML and the CCL for the control of these materials.

One major change proposed to this category involves removal of broad catchalls with the listing of specific materials that warrant ITAR control caught by current catchalls. For example, paragraph (a)(35) as currently written broadly controls, “Any other explosive not elsewhere identified in this category specifically designed, modified, adapted, or configured (e.g., formulated) for military application.” This catchall is being removed. Examples of materials added because of deletion of catchalls are as follows: tetryazines (BTAT (Bis(2,2,2-trinitroethyl)-3,6-diaminotetrazene); LAX–112 (3,6-diamino-1,2,4,5-tetrazine-1,4dioxide); PNO (Poly(3-nitro oxetane); 4,5 diazidomethyl-2-methyl-1,2,3-triazole (iso-DMATR)); TEPB (Tris(ethoxyphenyl) bismuth) (CAS 90591–48–3); and TEX (4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane). Those materials currently captured in the catchalls that do not warrant control on the USML are to be controlled on the CCL. Examples of such materials to be removed from various catchalls and controlled on the CCL are spherical aluminum powder and hydrazine and its derivatives.

Another major change proposed to this category involves addressing U.S. obligations to multinational regimes. There is a limited catchall (a)(32) that is being changed from 8700 meters per second to 8000 meters per second to match the criteria from the Nuclear Suppliers Group. The proposed revision would read as follows (see paragraph (a)(38): “Explosives, not otherwise enumerated in this paragraph or on the CCL in ECCN 1C608, with a detonation velocity exceeding 8,000m/s at maximum density or a detonation pressure exceeding 34 Gpa (340 kbar).” Additional hydrazine materials are specified by the Missile Technology Control Regime (MTCR) and these entries were added.

Additionally, some materials are to be added that are significant to the military but have little commercial application. For example, DNAN (Dinitroanisole), a military explosive currently covered by the catchall in
it does not require analysis under the Regulatory Flexibility Act.

Unfunded Mandates Reform Act of 1995

This proposed amendment does not involve a mandate that will result in the expenditure by State, local, and tribal governments, in the aggregate, or by the private sector, of $100 million or more in any year and it will not significantly or uniquely affect small governments. Therefore, no actions were deemed necessary under the provisions of the Unfunded Mandates Reform Act of 1995.

Small Business Regulatory Enforcement Fairness Act of 1996

This proposed amendment has been found not to be a major rule within the meaning of the Small Business Regulatory Enforcement Fairness Act of 1996.

Executive Orders 12372 and 13132

This proposed amendment will not have substantial direct effects on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government. Therefore, in accordance with Executive Order 13132, it is determined that this proposed amendment does not have sufficient federalism implications to require consultations or warrant the preparation of a federalism summary impact statement. The regulations implementing Executive Order 12372 regarding intergovernmental consultation on Federal programs and activities do not apply to this proposed amendment.

Executive Order 12866

The Department is of the opinion that controlling the import and export of defense articles and services is a foreign affairs function of the United States Government and that rules implementing this function are exempt from § 553 (Rulemaking) and § 554 (Adjudications) of the Administrative Procedure Act. Although the Department is of the opinion that this rule is exempt from the rulemaking provisions of the APA, the Department is publishing this rule with a 45-day provision for public comment and without prejudice to its determination that controlling the import and export of defense services is a foreign affairs function. As noted above, and also without prejudice to the Department position that this rulemaking is not subject to the APA, the Department previously published a related Advance Notice of Proposed Rulemaking (RIN 1400–AC78), and accepted comments for 60 days.

Regulatory Flexibility Act

Since the Department is of the opinion that this rule is exempt from the rulemaking provisions of 5 U.S.C. 553,
(6) DADE (1,1-diamino-2,2-dinitroethylene, FOX-7);
(7) DATB (Diaminotritinitrobenzene) (CAS 1630–08–6);
(8) DDDF (1,4-dinitrodifuranazopiperazine);
(9) DDPO (2,6-diamo-3-dinitropyrazine-1-oxide, PZO) (CAS 194486–77–6);
(10) DIPAM (3,3′-Diamo-2,2′,4,4′,6,6′-hexamidophenyl or dipicramide) (CAS 66328–69–6);
(11) DNAN (2,4-Dinitroanisole) (CAS 119–17–7);
(12) DNGU (DINGU or dinitrotriazole) (CAS 55510–04–8);
(13) Furazans, as follows:
 (i) DAAOF (DAAF, DAAFox, or triazol-5-one) (CAS 932–64–9);
 (ii) DAAzF (DAAzF) (CAS 1614–08–0);
 (iii) DAAzF (dinitromethylene hydrazine);
(14) HMX (CAS 130256–72–3);
(15) HMX and derivatives, as follows:
 (i) HMX (Cyclotetramethylene tetranitramine; hexanitrotetrahydro-triazine; cyclotetra-cyclocyclohexane, hexgon, or hexogene) (CAS 121–82–4);
 (ii) Keto-RDX (K–6 or 2,4,6-trinitro-2,4,6-triazacyclohexane) (CAS 115029–35–1);
 (iii) DiFluoramated derivative of RDX: 1,3-Dinitro-5,5-bis(difluoratmo),1-diazaheaxane (CAS No. 193031–34–0);
(16) TATB (Triaminonitrobenzene) (CAS 3058–38–6);
(17) HNAD (Hexanitroadamantane) (CAS 1630–08–6);
(18) HNAM (2-oxy-4,6-dinitroamino-s-triazine) (CAS 19899–80–0);
(19) NNTM (2-oxy-4,6-dinitroamino-s-triazine) (CAS 130400–13–4);
(20) NTO (ONTA or 3-nitro-1,2,4-triazol-5-one) (CAS 932–64–9);
(21) Polynitrocubanes with more than four nitro groups;
(22) PYX (2,6-Bis(picyclyamino)-3,5-dinitropyridine) (CAS 38082–89–2);
(23) RDX and derivatives, as follows:
 (i) RDX (cyclotrimethylenetetranitramine), cyclonite, T4, hexahydro-1,3,5-trinitro-1,3,5-triazine, 1,3,5-trinitro-1,3,5-triazacyclohexane, hexgon, or hexogene) (CAS 121–82–4);
(24) TAT (Triaminoguanidinenitrate) (CAS 479–45–8);
(25) TAGN (Triaminoguanidinenitrate) (CAS 4000–16–2);
(26) TEDDZ (3,3,7,7-tetrazakis(difluoramine) octahydro-1,5-dinitro-1,5-diazocine);
(27) Tetrazines, as follows:
 (i) BTAT (Bis(2,2,2-trinitroethyl)-3,6-dinitrotetrazine);
 (ii) LAX-112 (3,6-diamino-1,2,4,5-tetrazine-1,4-dioxide);
(28) Tetrazoles, as follows:
 (i) NTAT (nitrotetrazolaminotetrazole);
 (ii) NTNT (1-N-(2-nitrotriazolo)-4-nitrotetrazole);
(29) Teryl (trinitrophenylmethyl nitramine) (CAS 479–45–8);
(30) TEX (4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazaosouvrtizane);
(31) TNAD (1,4,5,8-tetranitro-1,4,5,8-tetrazaadecalin) (CAS 135877–16–6);
(32) TNAZ (1,3,3-trinitrozadetidine) (CAS 97645–24–4);
(33) TNGU (SORGUYL or tetranitrotriazolobenzotriazole) (CAS 121–82–4);
(34) TNAF (Furazanamine, 4-nitro- or 3-nitrofurazanamine; CAS 97645–24–4);
(35) TNP (1,4,5,8-tetranitro-1,4,5,8-tetrazaoxuriazoline)
(36) Triazoles, as follows:
 (i) DNMA (2-oxy-4,6-dinitroamino-s-triazine) (CAS 19899–80–0);
 (ii) NNHT (2-nitroimino-5-nitrohexahydro-1,3,5 triazine) (CAS 130400–13–4);
(37) Energetic ionic materials melting between 70 and 100 degrees C and with detonation velocity exceeding 6800 m/s or detonation pressure exceeding 18 GPa (180 kbar); or
(38) Explosives, not otherwise enumerated in this paragraph or on the CCL in ECCN 1C608, with a detonation velocity exceeding 8,000 m/s at maximum density or a detonation pressure exceeding 34 GPa (340 kbar).

*b) Propellants, as follows:
(1) Any solid propellant with a theoretical specific impulse (see paragraph (k)(4) of this category) greater than:
 (i) 240 seconds for non-metallized, non-halogenated propellant;
 (ii) 250 seconds for non-metallized, halogenated propellant; or
 (iii) 260 seconds for metallized propellant;
(2) Propellants having a force constant of more than 1,200 Kf/Kg;
(3) Propellants that can sustain a steady-state burning rate more than 38 mm/s under standard conditions (as measured in the form of an inhibited single strand) of 6.89 MPa (68.9 bar) pressure and 294K (21° C); or
(4) Elastomer-modified cast double-based propellants with extensibility at maximum stress greater than 5% at 233 K (–40 °C).

(c) Pyrotechnics, fuels and related substances, and mixtures thereof, as follows:
(1) Alane (aluminum hydride) (CAS 7784–21–6);
(2) Carboranes; decaborane (CAS 17702–41–9); pentaborane and derivatives thereof;
(3) Liquid high energy density fuels, as follows:
 (i) Mixed fuels that incorporate both solid and liquid fuels, such as boron slurry, having a mass-based energy density of 40 MJ/kg or greater; or
 (ii) Other high energy density fuels and fuel additives (e.g., cubane, ionic solutions, JP–7, JP–10) having a volume-based energy density of 37.5 GJ per cubic meter or greater, measured at 20 °C and one atmosphere (101.325 kPa) pressure;

Note to paragraph (c)(3)(ii):*
manufactured from material consisting of 99% or more of any of the following:

(i) Metals, and mixtures thereof, as follows:

(A) Beryllium (CAS 7440–41–7) in particle sizes of less than 60 micrometers; or

(B) Iron powder (CAS 7439–89–6) with particle size of 3 micrometers or less produced by reduction of iron oxide with hydrogen;

(ii) Fuel mixtures or pyrotechnic mixtures, which contain any of the following:

(A) Boron (CAS 7440–42–8) or boron carbide (CAS 12069–32–8) fuels of 85% purity or higher and particle sizes of less than 60 micrometers; or

(B) Zirconium (CAS 7440–67–7), magnesium (CAS 7439–95–4), or alloys of these in particle sizes of less than 60 micrometers;

(iii) Explosives and fuels containing the metals or alloys listed in paragraphs (c)(4)(i) and (c)(4)(ii) of this category whether or not the metals or alloys are encapsulated in aluminum, magnesium, zirconium, or beryllium;

(f) Oxidizers, as follows:

(1) ADN (ammonium dinitramide or dinitroammonium dinitramide) (CAS 13465–08–2);

(2) BAMO (bis(azidomethyl)oxetane and its polymers) (CAS 90683–29–7);

(3) BTO (butanetriol trinitrate) (CAS 6659–60–5);

(4) FAMAO (3-difluoroaminomethyl-3-azidomethyloxetane) and its polymers;

(5) FEFO (bis(2-fluoro-2-dinitroethyloxy)formal) (CAS 17003–79–1);

(6) GAP (glycidyl azide polymer) (CAS 143178–24–9) and its derivatives;

(7) HTPB (hydroxyl-terminated polybutadiene) with a hydroxyl functionality equal to or greater than 2.2 and less than or equal to 2.4, a hydroxyl value of less than 0.77 meq/g, and a viscosity at 30 °C of less than 47 poise (CAS 69102–90–5);

(8) 4,5 diazidomethyl-2-methyl-1,2,3-triazole (iso- DAMTR);

(9) NENAS (nitratoethylnitramine compounds) as follows:

(i) N-Methyl 2-nitroethylnitramine (Methyl-NENA) (CAS 17096–47–8)

(ii) N-Ethyl 2-nitroethylnitramine (Ethyl-NENA) (CAS 85068–73–1)

(iii) N-Propyl 2-nitroethylnitramine (CAS 82486–83–7)

(iv) N-Butyl-2-nitroethylnitramine (BuNENA) (CAS 82486–82–6)

(v) N-Pentyl-2-nitroethylnitramine (CAS 85959–06–9)

(vi) Polyo-NIMO (poly nitratoethylnitramine, poly-NIMO, poly[3-nitratomethyl-3-methyl oxetan]) (CAS 84051–81–0)

(11) PNO (Poly(3-nitrooxetane))

(12) TVOPA 1,2,3-Tris [1,2-bis(difluoroamino)ethoxy]propane; triis vinyl oxide propene adduct (CAS 53159–39–0)

(13) Polynitrothiocarbonates

(14) FPFP (poly-2,2,3,3,4,4,5,5,6-heptafluoro-2-trifluoromethyl-3-oxaheptane-1,7-diformal)

(15) PGN (Polyglycidyl nitrate or poly[nitratoethylene] poly-GLYN) (CAS 27814–48–8)

(16) M1, M2, and M3 thickeners.

(g) Binders, and mixtures thereof, as follows:

(1) AMMO (azidomethylmethyloxetane and its polymers) (CAS 90683–29–7);

(2) BAMO (bis(azidomethyl)oxetane and its polymers) (CAS 90683–29–7); or

(3) BTO (butanetriol trinitrate) (CAS 6659–60–5);

(4) FAMAO (3-difluoroaminomethyl-3-azidomethyloxetane) and its polymers;

(5) FEFO (bis(2-fluoro-2-dinitroethyloxy)formal) (CAS 17003–79–1);

(6) GAP (glycidyl azide polymer) (CAS 143178–24–9) and its derivatives;

(7) HTPB (hydroxyl-terminated polybutadiene) with a hydroxyl functionality equal to or greater than 2.2 and less than or equal to 2.4, a hydroxyl value of less than 0.77 meq/g, and a viscosity at 30 °C of less than 47 poise (CAS 69102–90–5);

(8) 4,5 diazidomethyl-2-methyl-1,2,3-triazole (iso- DAMTR);

(9) NENAS (nitratoethylnitramine compounds) as follows:

(i) N-Methyl 2-nitroethylnitramine (Methyl-NENA) (CAS 17096–47–8)

(ii) N-Ethyl 2-nitroethylnitramine (Ethyl-NENA) (CAS 85068–73–1)

(iii) N-Propyl 2-nitroethylnitramine (CAS 82486–83–7)

(iv) N-Butyl-2-nitroethylnitramine (BuNENA) (CAS 82486–82–6)

(v) N-Pentyl-2-nitroethylnitramine (CAS 85959–06–9)

(vi) Polyo-NIMO (poly nitratoethylnitramine, poly-NIMO, poly[3-nitratomethyl-3-methyl oxetan]) (CAS 84051–81–0)

(11) PNO (Poly(3-nitrooxetane))

(12) TVOPA 1,2,3-Tris [1,2-bis(difluoroamino)ethoxy]propane; triis vinyl oxide propene adduct (CAS 53159–39–0)

(13) Polynitrothiocarbonates

(14) FPFP (poly-2,2,3,3,4,4,5,5,6-heptafluoro-2-trifluoromethyl-3-oxaheptane-1,7-diformal)

(15) PGN (Polyglycidyl nitrate or poly[nitratoethylene] poly-GLYN) (CAS 27814–48–8)

(16) M1, M2, and M3 thickeners.

(h) Additives, as follows:

(1) Basic copper salicylate (CAS 62320–94–9);

(2) BHGEA (Bis-(2-hydroxyethyl)glycolamide) (CAS 17409–41–5);

(iii) Ferrocene carboxylic acids and ferrocene carboxylic acid esters;

(iv) n-butylferrocene (CAS 31904–29–7);

(v) Ethyferrocene (CAS 1273–89–8);

(vi) Propyferrocene;

(vii) Pentyferrocene (CAS 1274–00–6);

(viii) Dicyclopentylferrocene;

(ix) Dicyclohexylferrocene;

(xi) Diethylferrocene (CAS 173–97–8);

(xii) Dipropylferrocene;

(xiii) Dibutylferrocene (CAS 1274–08–4);

(xiv) Dihexylferrocene (CAS 93894–59–8);

(xv) Acetylenetriylferrocene (CAS 1271–55–2)/1,1’-diacetylferrrocene (CAS 1273–94–5) or

(xv) Other ferrocene derivatives that do not contain a six carbon aromatic functional group attached to the ferrocene molecule;

(5) Lead beta-resorcylate (CAS 20936–32–7);

(6) Lead citrate (CAS 14450–60–3);

(7) Lead-copper chelates of beta-resorcylate or salicylates (CAS 68411–07–4);

(8) Lead maleate (CAS 19136–34–6);

(9) Lead salicylate (CAS 15748–73–9);

(10) Lead stannate (CAS 12036–31–0);

(11) MAPO (tris-(2-methyl aziridinyl)phosphine oxide) (CAS 57–39–6); BOBBA–8 (bis(2-methyl aziridinyl)-2-(2-hydroxypropoxy) propylaminophosphate oxide) and other MAPO derivatives;

(12) Methyl BAPO (bis(2-methyl aziridinyl)methylaminophosphine oxide) (CAS 85068–72–0);

(13) 3-Nitraza-1,5-pentane disocyanate (CAS 7406–61–9);

(14) Organometallic coupling agents, as follows:

(i) Neopentyl[bialyl]oxy, tri [dialyl]phosphatotitanate (CAS 103850–22–2);
also known as titanium IV, 2,2\text{bis} 2-propanenolato-methyl, butanolate, tris\((\text{diocyl}) \) phosphato (CAS 110438–25–0), or LICA 12 (CAS 103850–22–2); (ii) Titanium IV, [(2-propanenolato-1)methyl, n-propanolatomethyl] butanolate-1, tris\((\text{diocyl}) \) pyrophosphate, or KR3538; or (iii) Titanium IV, [(2-propanenolato-1)methyl, propanolatomethyl] butanolate-1, tris\((\text{diocyl}) \) phosphato; (15) PCDE (Polycyanodifluoroaminoethylene oxide); (16) Certain bonding agents, as follows: (i) 1,1R,1S-trimesoyl-tris\((2\text{-ethylaziridine}) \) (HX–868, BITA) (CAS 7722–73–8); or (ii) Polyfunctional aziridine amides with isophthalic, trimesic, isocyanuric, or trimethyladipic backbone also having a 2-methyl or 2-ethyl aziridine group; Note to paragraph (ff)(ii)(ii): Included are 1) 1,1H-Isophthaloyl-bis\((2\text{-methylaziridine}) \) (HX–752) (CAS 7652–64–4); 2) 2,4,6-tris\((2\text{-ethyl}1\text{-aziridinyl})\)-1,3,5-triazine (HX–874) (CAS 14924–91–9); and 3) 1,1R,1S-trimethyladipoylbis\((2\text{-ethylaziridine}) \) (HX–877) (CAS 71463–62–2). (17) Superfine iron oxide\((\text{Fe}_3\text{O}_4, \text{hematite}) \) with a specific surface area more than 250 m\(^2\) /g and an average particle size of 0.003 micrometers or less (CAS 1309–37–1); (18) TEPAN (HX–879) (tetraethylenepentaamineacrylonitrile) (CAS 68412–45–3); cyanoethylated polyamines and their salts; (19) TEPANOL (HX–878) (tetraethylenepentaamineacrylonitrileglycidol) (CAS 110445–33–5); cyanoethylated polyamines adducted with glycidol and their salts; (20) TPB (triphenyl bismuth) (CAS 603–33–8); or (21) Tris\((\text{ethoxyphenyl}) \) bismuth (TEPB) (CAS 90591–48–3). (g) Precursors, as follows: (1) BCMO (bischloromethyloxetane) (CAS 142173–26–0); (2) DADN\((1,5\text{-diacetil-3,7-dinitro-1,3,5,7-tetraazacyclocotane}) \); (3) Dinitroazetidine-t-butyl salt (CAS 125735–38–8); (4) CL–20 precursors (any molecule containing hexaazaisowurtzitane) \((\text{e.g.}, \text{HBIW}) \) (hexabenzyhexaazaisowurtzitane), TAIW \((\text{tetraacetyldibenzyhexaazaisowurtzitane}) \); (5) TAT \((1,3,5,7\text{-tetraacetyl-1,3,5,7-tetraazaacyclocotane}) \) (CAS 41378–98–7); (6) Tetraazadecalin (CAS 5409–42–7); (7) 1,3,5-trichlorobenzene (CAS 108–70–3); or (8) 1,2,4-trihydroxybutane \((1,2,4\text{-butanetrioil}) \) (CAS 3068–00–6). (b) Any explosive, propellant, pyrotechnic, fuel, oxidizer, binder, additive, or precursor that: (1) is classified; (2) is manufactured using classified production data; or (3) is being developed using classified information. “Classified” means classified pursuant to Executive Order 13526, or predecessor order, and a security classification guide developed pursuant thereto or equivalent, or to the corresponding classification rules of another government. (l) Developmental explosives, propellants, pyrotechnics, fuels, oxidizers, binders, additives, or precursors therefore developed under a contract with the U.S. Government not otherwise controlled under this category. (j) Technical data (as defined in §120.10 of this subchapter) and defense services (as defined in §120.9 of this subchapter) directly related to the defense articles numerrated in paragraphs (a) through (l) of this category (see also §123.20 of this subchapter). (k) The following interpretations explain and amplify the terms used in this category and elsewhere in this subchapter: (1) Category V contains explosives, energetic materials, propellants, and pyrotechnics and specially formulated fuels for aircraft, missile, and naval applications. Explosives are solid, liquid, or gaseous substances or mixtures of substances, which, in their primary, booster, or main charges in warheads, demolition, or other military applications, are required to detonate. (2) The resulting product of the combination or conversion of any substance controlled by this category into an item not controlled will no longer be controlled by this category provided the controlled item cannot easily be recovered through dissolution, melting, sieving, etc. As an example, beryllium converted to a near net shape using hot isostatic processes will result in an uncontrolled part. A cured thermoset containing beryllium powder is not controlled unless meeting an explosive or propellant control. The mixture of beryllium powder in a cured thermoset shape is not controlled by this category. The mixture of controlled beryllium powder mixed with a typical propellant binder will remain controlled by this category. The addition of dry silica powder to dry beryllium powder will remain controlled. (3) Paragraph (c)(4)(ii)(A) of this category does not control boron and boron carbide enriched with boron-10 (20% or more of total boron-10 content). (4) Theoretical specific impulse \((\text{Isp}) \) is calculated using standard conditions \((1000 \text{ psi} \text{ chamber pressure expanded to } 14.7 \text{ psi}) \) and measured in units of pound-force-seconds per pound-mass (lbf-s/lbm) or simplified to seconds \((s) \). Calculations will be based on shifting equilibrium. (5) Particle size is the mean particle diameter on a weight basis. Best industrial practices will be used in determining particle size and the controls may not be undermined by addition of larger or smaller sized material to shift the mean diameter. Note 1: To assist the exporter, an item has been categorized by the most common use. Also, where appropriate, references have been provided to the related controlled precursors. Note 2: Chemical Abstract Service (CAS) registry numbers do not cover all the substances and mixtures controlled by this category. The numbers are provided as examples to assist government agencies in the license review process and exporters when completing their license application and export documentation. * * * * * Dated: April 24, 2012. Rose E. Gottemoeller, Acting Under Secretary, Arms Control and International Security, Department of State. [FR Doc. 2012–10455 Filed 5–1–12; 8:45 am] BILLING CODE 4710–25–P DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 943 [SATS No. TX–060–FOR; Docket ID: OSM–2012–0007] Texas Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are announcing receipt of a proposed amendment to the Texas regulatory program \((\text{Texas program}) \) under the Surface Mining Control and Reclamation Act of 1977 \((\text{SMCRA or the Act}) \). Texas proposes revisions to its regulations regarding: definitions; review of permit applications; criteria