related to the priority area of Education and Community-Based Programs. Potential applicants may download a copy of Healthy People 2020, at http://www.healthypeople.gov.

Interested individuals are reminded that the list of eligible health and allied professions is effective for applicants for the 2012–2013 academic year. These priorities will remain in effect until superseded. Applicants who apply for health career categories not listed as priorities during the current scholarship cycle will not be considered for a scholarship award.


Randy Grinnell,
Deputy Director, Indian Health Service.

[FR Doc. 2012–8517 Filed 4–9–12; 8:45 am]
BILLING CODE 4165–16–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, Public Health Service, HHS.

ACTION: Notice.

SUMMARY: The inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 202 to achieve expeditious commercialization of results of federally-funded research and development. Foreign patent applications are filed on selected inventions to extend market coverage for companies and may also be available for licensing.

ADDRESSES: Licensing information and copies of the U.S. patent applications listed below may be obtained by writing to the indicated licensing contact at the Office of Technology Transfer, National Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, Maryland 20852–3804; telephone: 301–435–5031; Tedd.Fenn@nih.gov. A signed Confidential Disclosure Agreement will be required to receive copies of the patent applications.

Nonpathogenic Bacteria, Paenibacillus alvei, Useful as a Natural Biocontrol Agent for Elimination of Food-borne Pathogenic Bacteria

Description of Technology: This newly isolated non-pathogenic bacterial strain (TS–15) has shown the ability kill or inhibit a wide variety of harmful bacteria including many of the most common food-borne pathogens such as Salmonella, Escherichia, Listeria, Shigella, Enterobacter and Staphylococcus. The TS–15 strain may provide a natural low cost means to help protect the food supply. The strain may be used as a biocontrol agent in the form of a pesticide or pretreatment to soils in which fruits and vegetable are grown. Preventative use of the TS–15 strain in biocontrol measures may prevent many of the millions of illnesses in the U.S. that are caused by food-borne pathogens each year. Such prevention may also reduce the associated costs of treatment for such illnesses. Furthermore, isolation and development of the antibiotic compounds produced by the TS–15 strain may yield useful new compositions to help treat bacterial illness, including infections by some pathogens resistant to standard antibiotics.

Potential Commercial Applications

• Agriculture—pesticide.
• Medicine—antibiotic.

Competitive Advantages: Low cost natural means of prevention of many food-borne bacterial illnesses.

Development Stage: Early-stage. Inventors: Eric Brown (FDA), Jie Zheng (FDA), and Alex Enurah.


Licensing Contact: Tedd Fenn; 301–435–5031; Tedd.Fenn@nih.gov.

Collaborative Research Opportunity: The FDA Center for Food Safety and Applied Nutrition is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize Paenibacillus alvei (TS–15). For collaboration opportunities, please contact Alice Welch at alice.welch@fda.hhs.gov.

Glass Capillary Arrays for Calibration, Validation, and Quality Assurance of Quantitative Measurements from Diffusion MRI Applications

Description of Technology: NIH scientists have developed a tool for calibration and quality assurance for MRI measurements. These Glass Capillary Arrays (GCAs) allow reliable means to instrument calibration and data measurement validation of various MRI scanning parameters. A variety of GCA conformations is available, so they have broad utility in MRI applications ranging from material sciences to clinical and biological MRI.

Potential Commercial Applications

• Calibration, quality assurance, and quality control for diffusion MRI applications using physics and mathematics algorithms combined with known GCA properties.
• GCAs are come in various diameters and thicknesses, so can be utilized in a wide range of sciences (material and biological).
• Provides known standards for adjustment of various parameters, including magnetic field gradient, magnetic field homogeneity, and radiofrequency pulse.

Competitive Advantages

• Allows sufficient quality assurance and instrument calibration not previously available for advanced diffusion MRI.
• GCAs are non-toxic and biologically and environmentally safe, so can be stored without special permits or requirements.


Licensing Contact: John Stansberry, Ph.D.; 301–435–5236; stansbe@email.nih.gov.

Diffusion MRI of Beating Hearts and Other Moving Tissues in Live Patients

Description of Technology: Diffusion Tensor Imaging (DTI) is an improved form of Magnetic Resonance Imaging (MRI) that provides microscopic details about tissue structure based on water diffusion. DTI is commonly used to visualize the brain when examining patients with neurological disorders or strokes. Currently, DTI faces technical limitations preventing imaging of moving tissues, such as the beating heart, spinal cord, and base of the brain. The NIH inventors have established an improved method allowing application of DTI to moving tissues. Using DTI to examine patients’ hearts will allow for better detection of location and severity of ischemia and for probing general muscle structure and integrity. This method can be applied to various diffusion models including Diffusion Weighted Imaging (DWI).

Potential Commercial Applications

• Heart disease diagnosis.
• Evaluating new drugs for effects on heart.
• Planning surgical procedures.
• Imaging spinal cord, base of brain, and periventricular zones.
• Enhanced imaging of other tissues.
Competitive Advantages
- Application of state-of-the-art DTI to a wider range of tissues.
- Works with multiple diffusion models including DWI.

Development Stage: Early-stage.
Inventor: Peter J. Basser (NICHD).
Publication: Rohde G, et al.


Related Technologies

Licensing Contact: John Stansberry, Ph.D.; 301–435–5236; stansbej@mail.nih.gov.


Richard U. Rodriguez,
Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.

[FR Doc. 2012–8577 Filed 4–9–12; 8:45 am]