bypasses the human metabolic machinery needed to convert the drug into its active metabolite(s).

- Decreased CNS side effects.

Development Stage: In vivo data available (animal).

Inventors: Irving W. Wainer, Ph.D. (NIA), Carlos A. Zarate, M.D. (NIMH), Ruin Moaddel, Ph.D. (NIA), Michel Bernier (NIA), Michael E. Goldberg, M.D., Marc C. Toriman, Ph.D.

Publications:

3. Ibrahim L, et al. Course of Improvement in Depressive Symptoms to a Single Intravenous Infusion of Ketamine vs. Add-on Riluzole: Results from a Four-Week, Double-Blind, Placebo-Controlled Study. Neuropsychopharmacology, in press.

Related Technologies: HHS Reference No. E–174–2006/0—

- Related international applications

Licensing Contact: Jaime M. Greene, M.S.; 301–435–5559; greenejaime@mail.nih.gov.

Collaborative Research Opportunity: The National Institute on Aging, Laboratory of Clinical Investigation, Bioanalytical Chemistry and Drug Discovery Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize this technology. For collaborative opportunities please contact Nicole Guyton, Ph.D. at darackn@mail.nih.gov.

Improved DNA-Protein Vaccination Protocols

Description of Technology: Nucleic acid based vaccines are attractive alternatives to conventional vaccines for a number of reasons. One of the issues with nucleic acid based vaccines is the poor immunogenicity in humans. The subject technology is a method for eliciting improved immune responses with DNA based vaccines. The method involves co-administration of a nucleic acid vaccine with a protein vaccine for the same antigen of interest that is encoded by the DNA vaccine in a prime-boost protocol. This methodology increased the immune responses in a SIV macaque model to examine DNA based vaccines of HIV and vaccine protocols. The methodology can potentially be applied to other disease indications to elicit greater immune responses.

Potential Commercial Applications: Improve immunogenicity of nucleic acid based vaccines.

Competitive Advantages: The methodology increases the immune response of DNA based vaccines.

Development Stage:

- Early-stage
- Pre-clinical
- In vitro data available
- In vivo data available (animal)

Licensing Contact: Kevin W. Chang, Ph.D.; 301–435–5018; changke@mail.nih.gov.

Dated: February 8, 2012.

Richard U. Rodriguez,

Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.

[FR Doc. 2012–3412 Filed 2–13–12; 8:45 am]

BILLING CODE 4140–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Center for Scientific Review; Notice of Closed Meetings

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of the following meetings.

The meetings will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which