that it would require operators to inspect more often than required to ensure safety. We are issuing this AD to revise the definition of shop visit and to detect cracks in the low-pressure (LP) turbine stage 1, 2, and 3 discs, which could result in an uncontained release of LP turbine blades and damage to the airplane.

(e) Compliance

Comply with this AD within the compliance times specified, unless already done.

(1) Initial Inspection Requirements

At the next engine shop visit after the effective date of this AD, perform a visual and a fluorescent penetrant inspection of the LP turbine stage 1, 2, and 3 discs.

(2) Repeat Inspection Requirements

At each engine shop visit after accumulating 1,500 cycles since the last inspection of the LP turbine stage 1, 2 and 3 discs, repeat the inspections specified in paragraph (e)(1) of this AD.

(3) Remove Cracked Discs

If you find cracks, remove the disc from service.

(f) Definitions

For the purpose of this AD, an “engine shop visit” is induction of an engine into the shop for any purpose where:

(1) All the blades are removed from the high-pressure (HP) compressor disc and the HP turbine disc, or

(2) All the blades are removed from the intermediate pressure turbine disc.

(g) Alternative Methods of Compliance (AMOCs)

The Manager, Engine Certification Office, FAA may approve AMOCs for this AD. Use the procedures found in 14 CFR 39.19 to make your request.

(h) Related Information

(1) Contact Alan Strom, Aerospace Engineer, Engine Certification Office, FAA, Engine & Propeller Directorate, 12 New England Executive Park, Burlington, MA 01803; phone: (781) 238–7143; fax: (781) 238–7199; email: alan.strom@faa.gov, for more information about this AD.

(2) Refer to MCAI European Aviation Safety Agency Airworthiness Directive 2009–0244, dated November 9, 2009, and Rolls-Royce plc Alert Service Bulletin No. RB.211–72–AC272 for related information. Contact Rolls-Royce plc, P.O. Box 31, Derby, DE24 8BJ, United Kingdom; phone: 011 44 1332 242424, fax: 011 44 1332 249936; or email: http://www.rollsroyce.com/contact/civil_team.jsp, for a copy of this service information or download the publication from https://www.aeromanager.com.

(i) Material Incorporated by Reference

None.

DEPARTMENT OF TRANSPORTATION
Federal Aviation Administration

14 CFR Part 39

RIN 2120–AA64

Airworthiness Directives; General Electric Company Turbofan Engines

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Final rule.

SUMMARY: We are supersedung two existing airworthiness directives (ADs) for General Electric Company (GE) CF6–45 and CF6–50 series turbofan engines with certain low-pressure (LPT) rotor stage 3 disks installed. The existing ADs currently require inspections of high-pressure turbine (HPT) and LPT rotors, engine checks, and vibration surveys. This new AD retains the requirements of the two ADs being superseded, adds an optional LPT rotor stage 3 disk removal after a failed HPT blade borescope inspection (BSI) or a failed engine core vibration survey, establishes a new lower life limit for the affected LPT rotor stage 3 disks, and requires removing these disks from service at times determined by a drawdown plan. This AD was prompted by the determination that a new lower life limit for the LPT rotor stage 3 disks is necessary. We are issuing this AD to prevent critical life-limited rotating engine part failure, which could result in an uncontained engine failure and damage to the airplane.

DATES: This AD is effective March 6, 2012.

The Director of the Federal Register approved the incorporation by reference of a certain publication listed in this AD as of February 22, 2011 (76 FR 6323, February 4, 2011) and AD 2011–18–01, Amendment 39–16783 (76 FR 52213, August 22, 2011). Those ADs apply to the specified products. The NPRM published in the Federal Register on October 19, 2011 (76 FR 64844). That NPRM proposed to retain the requirements of AD 2011–02–07 and AD 2011–18–01, except that reporting to the FAA would no longer be required and there would be an optional LPT rotor stage 3 disk removal after a failed HPT blade BSI or a failed engine core vibration survey. That NPRM also proposed to establish a new lower life limit for the LPT rotor stage 3 disk part numbers listed in Table 1 of the proposed AD, and proposed to require removing these disks from service at times determined by a drawdown plan.

Comments

We gave the public the opportunity to participate in developing this AD. The following presents the comments received on the proposal and the FAA’s response to each comment.

Support for the NPRM as Written

One commenter, The Boeing Company, supports the NPRM (76 FR 64844, October 19, 2011) as written.
We also determined that these changes will not increase the economic burden on any operator or increase the scope of the AD.

Costs of Compliance

We estimate that this AD will affect 387 CF6–45 and CF6–50 series turbofan engines installed on airplanes of U.S. registry. We also estimate that it will take about 8 work-hours to perform the HPT blade inspection, 6 work-hours to perform a vibration survey, 4 work-hours to perform an ultrasonic inspection, 2 work-hours to perform an EGT resistance check, 1 work-hour to perform an EGT thermocouple inspection, and 7 work-hours to clean and perform an fluorescent-penetrant inspection of the LPT rotor stage 3 disk for each engine. The average labor rate is $85 per work-hour. The cost estimate for the work just described was covered in the two ADs we are superseding. For this AD, we estimate that a replacement LPT rotor stage 3 disk prorated part cost is $75,000. Based on these figures, we estimate the total cost of this AD to U.S. operators to be $29,025,000.

Authority for This Rulemaking

Title 49 of the United States Code specifies the FAA’s authority to issue rules on aviation safety. Subtitle I, Section 106, describes the authority of the FAA Administrator. Subtitle VII, Aviation Programs, describes in more detail the scope of the Agency’s authority.

We are issuing this rulemaking under the authority described in Subtitle VII, Part A, Subpart III, Section 44701, “General requirements.” Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations for practices, methods, and procedures the Administrator finds necessary for safety in air commerce. This regulation is within the scope of that authority because it addresses an unsafe condition that is likely to exist or develop on products identified in this rulemaking action.

Regulatory Findings

We have determined that this AD will not have federalism implications under Executive Order 13132. This AD will not have a substantial direct effect on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government.

For the reasons discussed above, I certify that this AD:

1. Is not a “significant regulatory action” under Executive Order 12866,
3. Will not affect intrastate aviation in Alaska, and
4. Will not have a significant economic impact, positive or negative, on a substantial number of small entities under the criteria of the Regulatory Flexibility Act.

List of Subjects in 14 CFR Part 39

Air transportation, Aircraft, Aviation safety, Incorporation by reference, Safety.

Adoption of the Amendment

Accordingly, under the authority delegated to me by the Administrator, the FAA amends 14 CFR part 39 as follows:

PART 39—AIRWORTHINESS DIRECTIVES

§ 39.13 [Amended]

The FAA amends § 39.13 by removing airworthiness directive (AD) 2011–02–07, Amendment 39–16580 (76 FR 6323, February 4, 2011) and AD 2011–02–07, Amendment 39–16783 (76 FR 52213, August 22, 2011), and adding the following new AD:

(a) Effective Date

This airworthiness directive (AD) is effective March 6, 2012.

(b) Affected ADs

(c) Applicability

This AD applies to General Electric Company [GE] CF6–45A, CF6–45A2, CF6–50A, CF6–50C, CF6–50CA, CF6–50C1, CF6–50C2, CF6–50C2B, CF6–50C2D, CF6–50E, CF6–50E1, CF6–50E2, and CF6–50E2B turbofan engines, including engines marked on the engine data plate as CF6–50C2–F and CF6–50C2–R, with any of the low-pressure turbine (LPT) rotor stage 3 disk part numbers listed in Table 1 of this AD installed.
(d) Unsafe Condition
This AD was prompted by the determination that a new lower life limit for the LPT rotor stage 3 disks listed in Table 1 of this AD is necessary. We are issuing this AD to prevent critical life-limited rotating engine part failure, which could result in an uncontained engine failure and damage to the airplane.

(e) Compliance
Comply with this AD within the compliance times specified, unless already done.

(f) Borescope Inspections (BSI) of High-Pressure Turbine (HPT) Rotor Stage 1 and Stage 2 Blades
For the BSIs required by paragraphs (f)(1), (f)(2), and (f)(3) of this AD, inspect the blades from the forward and aft directions. Inspect all areas of the blade airfoil. Your inspection must include blade leading and trailing edges and their convex and concave airfoil surfaces. Inspect for signs of impact, cracking, burning, damage, or distress.

(i) An exhaust gas temperature (EGT) above redline. ... Within 10 cycles.
(ii) A shift in the smoothed EGT trending data that exceeds 18 °F (10 °C), but is less than or equal to 36 °F (20 °C).
(iii) A shift in the smoothed EGT trending data that exceeds 36 °F (20 °C).
(iv) Two consecutive raw EGT trend data points that exceed 18 °F (10 °C), but is less than or equal to 36 °F (20 °C), above the smoothed average.
(v) Two consecutive raw EGT trend data points that exceed 36 °F (20 °C) above the smoothed average

(1) Perform an initial BSI of the HPT rotor stage 1 and stage 2 blades within 10 cycles after the effective date of this AD.
(2) Thereafter, repeat the BSI of the HPT rotor stage 1 and stage 2 blades within every 75 cycles since last inspection (CSLI).
(3) Borescope-inspect the HPT rotor stage 1 and stage 2 blades within the cycle limits after the engine has experienced any of the events specified in Table 2 of this AD.
(4) Remove any engine from service before further flight if the engine fails any of the BSIs required by this AD.

TABLE 1—APPLICABLE LPT ROTOR STAGE 3 DISK PART NUMBERS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9061M23P06</td>
<td>9061M23P07</td>
</tr>
<tr>
<td>9061M23P10</td>
<td>1473M90P01</td>
</tr>
<tr>
<td>9061M23P12</td>
<td>9061M23P14</td>
</tr>
<tr>
<td>1479M75P02</td>
<td>1479M75P03</td>
</tr>
<tr>
<td>1479M75P07</td>
<td>1479M75P08</td>
</tr>
<tr>
<td>1479M75P14</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TABLE 2—CONDITIONAL BSI CRITERIA

<table>
<thead>
<tr>
<th>Condition</th>
<th>Then borescope-inspect:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>Within 10 cycles.</td>
</tr>
<tr>
<td>(ii)</td>
<td>Within 10 cycles.</td>
</tr>
<tr>
<td>(iii)</td>
<td>Before further flight.</td>
</tr>
<tr>
<td>(iv)</td>
<td>Before further flight.</td>
</tr>
<tr>
<td>(v)</td>
<td>Before further flight.</td>
</tr>
</tbody>
</table>

(g) Actions Required for Engines With Damaged HPT Rotor Blades
For those engines that fail any BSI requirements of this AD, before returning the engine to service:
(1) Remove the LPT rotor stage 3 disk from service; or
(2) Perform a fluorescent-penetrant inspection (FPI) of the inner diameter surface forward cone body (forward spacer arm) of the LPT rotor stage 3 disk as specified in paragraphs (k)(2) through (k)(3) of this AD.

(h) EGT Thermocouple Probe Inspections
(1) Inspect the EGT thermocouple probe for damage within 50 cycles after the effective date of this AD or before accumulating 750 CSLI, whichever occurs later.
(2) Thereafter, re-inspect the EGT thermocouple probe for damage within every 750 CSLI.
(3) If any EGT thermocouple probe shows wear through the thermocouple guide sleeve, remove and replace the EGT thermocouple probe before further flight, and ensure the turbine mid-frame liner does not contact the EGT thermocouple probe.

(i) EGT System Resistance Check Inspections
(1) Perform an EGT system resistance check within 50 cycles from the effective date of this AD or before accumulating 750 cycles since the last resistance check on the EGT system, whichever occurs later.
(2) Thereafter, repeat the EGT system resistance check within every 750 cycles since the last resistance check.
(3) Remove and replace, or repair any EGT system component that fails the resistance system check before further flight.

(j) Ultrasonic Inspection (UI) of the LPT Rotor Stage 3 Disk Forward Spacer Arm
Within 75 cycles after the effective date of this AD, perform a UI of the forward spacer arm of the LPT rotor stage 3 disk. Use Appendix A of GE Service Bulletin (SB) No. CP9–50 S/B 72–1312, Revision 1, dated October 18, 2010, paragraph 4. except for paragraph 4.12, to do the UI.

(k) Engine Core Vibration Survey
(1) Within 75 cycles after the effective date of this AD, perform an initial engine core vibration survey.
(2) Use about a one-minute acceleration and a one-minute deceleration of the engine between ground idle and 64% N2 (about 8250 rpm) to perform the engine core vibration survey.
(3) Use a spectral/trim balance analyzer or equivalent to measure the N2 rotor vibration.
(4) If the vibration level is above 5 mils Double Amplitude then, before further flight, remove the engine from service.
(5) For those engines that fail any engine core vibration survey requirements of this AD, then before returning the engine to service:
 (i) Remove the LPT rotor stage 3 disk from service; or
 (ii) Perform an FPI of the inner diameter surface forward spacer arm of the LPT rotor stage 3 disk as specified in paragraphs (l)(1)(i) through (l)(1)(iii) of this AD.
(6) Thereafter, within every 350 cycles since the last engine core vibration survey, perform the engine core vibration survey as required in paragraphs (k)(1) through (k)(5) of this AD.
(7) If the engine has experienced any vibration reported by maintenance or flight crew that is suspected to be caused by the engine core (N2), perform the engine core vibration survey as required in paragraphs (k)(1) through (k)(5) of this AD within 10 cycles after the report.
(8) Vibration surveys carried out in an engine test cell as part of an engine manual performance run fulfill the vibration survey requirements of paragraphs (k)(2) through (k)(3) of this AD.

(l) Initial and Repetitive FPI of LPT Rotor Stage 3 Disks
(1) At the next shop visit after the effective date of this AD:
 (i) Clean the LPT rotor stage 3 disk forward spacer arm, including the use of a wet-abrasive blast, to eliminate residual or background fluorescence.
 (ii) Perform an FPI of the LPT rotor stage 3 disk forward spacer arm for cracks and for a band of fluorescence. Include all areas of the disk forward spacer arm and the inner diameter surface forward spacer arm of the LPT rotor stage 3 disk.

(iii) Remove the disk from service before further flight if a crack or a band of fluorescence is present.

(2) Thereafter, clean and perform an FPI of the LPT rotor stage 3 disk forward spacer arm, as specified in paragraphs (l)(1)(i) through (l)(1)(iii) of this AD, at each engine shop visit that occurs after 1,000 cycles since the last FPI of the LPT rotor stage 3 disk forward spacer arm.

(m) Removal of LPT Rotor Stage 3 Disks

Remove LPT rotor stage 3 disks listed in Table 1 from service as follows:

(1) For disks that have fewer than 3,200 flight cycles since new (CSN) on the effective date of this AD, remove the disk from service before exceeding 6,200 CSN.

(2) For disks that have 3,200 CSN or more on the effective date of this AD, do the following:

(i) If the engine has a shop visit before the disk exceeds 6,200 CSN, remove the disk from service before exceeding 6,200 CSN.

(ii) If the engine does not have a shop visit before the disk exceeds 6,200 CSN, remove the disk from service at the next shop visit after 6,200 CSN, not to exceed 3,000 cycles from the effective date of this AD.

(n) Installation Prohibition

(1) After the effective date of this AD, do not install or reinstall in any engine any LPT rotor stage 3 disk that exceeds the new life limit of 6,200 CSN.

(2) Remove from service any LPT rotor stage 3 disk that is installed or re-installed after the effective date of this AD, before the disk exceeds the new life limit of 6,200 CSN.

(o) Definitions

(1) For the purposes of this AD, an EGT above redline is a confirmed over-temperature indication that is not a result of EGT system error.

(2) For the purposes of this AD, a shift in the smoothed EGT trending data is a shift in a rolling average of EGT readings that can be confirmed by a corresponding shift in the trending of fuel flow or fan speed/core speed (N1/N2) relationship. You can find further guidance about evaluating EGT trend data in GE Company Service Rep Tip 373 “Guidelines For Parameter Trend Monitoring.”

(3) For the purposes of this AD, an engine shop visit is the induction of an engine into the shop after the effective date of this AD, where the separation of a major engine flange occurs; except the following maintenance actions, or any combination, are not considered engine shop visits:

(i) Induction of an engine into a shop solely for removal of the compressor top or bottom case for airfoil maintenance or variable stator vane bushing replacement.

(ii) Induction of an engine into a shop solely for removal or replacement of the stage 1 fan disk.

(iii) Induction of an engine into a shop solely for replacement of the turbine rear frame.

(iv) Induction of an engine into a shop solely for replacement of the accessory gearbox or transfer gearbox, or both.

(v) Induction of an engine into a shop solely for replacement of the fan forward case.

(4) For the purposes of this AD, a raw EGT trend data point above the smoothed average is a confirmed temperature reading over the rolling average of EGT readings that is not a result of EGT system error.

(p) Previous Credit

(1) A BSI performed before the effective date of this AD using AD 2010–06–15, Amendment 39–16240 (75 FR 12661, March 17, 2010) or AD 2010–12–10, Amendment 39–16331 (75 FR 32649, June 9, 2010) or AD 2011–02–07, Amendment 39–16580 (76 FR 6323, February 4, 2011) within the last 75 cycles, satisfies the initial BSI requirement in paragraph (f)(1) of this AD.

(2) A UI performed before the effective date of this AD using AD 2011–02–07, Amendment 39–16580 (76 FR 6323, February 4, 2011) or GE SB No. CF6–50 S/B 72–1312, dated August 9, 2010 or GE SB No. CF6–50 S/B 72–1312 Revision 1, dated October 18, 2010, satisfies the inspection requirement in paragraph (j) of this AD.

(3) (i) An engine core vibration survey performed before the effective date of this AD using AD 2011–02–07, Amendment 39–16580 (76 FR 6323, February 4, 2011) or GE SB No. CF6–50 S/B 72–1313, dated August 9, 2010 or GE SB No. CF6–50 S/B 72–1313 Revision 1, dated October 18, 2010, within the last 350 cycles, satisfies the initial survey requirement in paragraphs (k)(1) through (k)(5) of this AD.

(ii) An FPI of the LPT rotor stage 3 disk forward spacer arm performed before the effective date of this AD using AD 2011–18–01, Amendment 39–16783 (75 FR 52213, August 22, 2011), within the last 1,000 flight cycles of the LPT rotor stage 3 disk, satisfies the initial inspection requirements in paragraphs (l)(1)(i) through (l)(1)(iii) of this AD.

(q) Alternative Methods of Compliance (AMOCs)

(1) AMOCs previously approved for AD 2010–06–15, Amendment 39–16240 (75 FR 12661, March 17, 2010) are not approved for this AD. However, AMOCs previously approved for AD 2010–12–10, Amendment 39–16331 (75 FR 32649, June 9, 2010), AD 2011–02–07, Amendment 39–16580 (76 FR 6323, February 4, 2011), or AD 2011–18–01, Amendment 39–16783 (76 FR 52213, August 22, 2011) are approved for this AD.

(2) The Manager, Engine Certification Office, may approve alternative methods of compliance for this AD. Use the procedures found in 14 CFR 39.19 to make your request.

(r) Related Information

(1) For more information about this AD, contact Tomasz Rakowski, Aerospace Engineer, Engine Certification Office, FAA, Engine & Propeller Directorate, 12 New England Executive Park, Burlington, MA 01803; phone: (781) 238–7735; fax: (781) 238–7199; email: tomasz.rakowski@faa.gov.

(2) For service information identified in this AD, contact General Electric Company, GE–Aviation, Room 285, 1 Neumann Way, Cincinnati, OH 45215, phone: (513) 552–3272; email: geae.aoc@ge.com.

(s) Material Incorporated by Reference

(1) You must use the following service information to do the UIs required by this AD, unless the AD specifies otherwise. The Director of the Federal Register approved the incorporation by reference (IBR) under 5 U.S.C. 552(a) and 1 CFR part 51 of the following service information on July 22, 2011: General Electric Company Service Bulletin No. CF6–50 S/B 72–1312 Revision 1, dated October 18, 2010.

(2) For service information identified in this AD, contact General Electric Company, GE–Aviation, Room 285, 1 Neumann Way, Cincinnati, OH 45215, phone: (513) 552–3272; email: geae.aoc@ge.com.

(3) You may review copies of the service information that is incorporated by reference at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call (202) 741–6030, or go to: http://www.archives.gov/federal-register/ibr/ibr_locations.html.

Issued in Burlington, Massachusetts, on January 20, 2012.

Peter A. White, Manager, Engine & Propeller Directorate, Aircraft Certification Service.

[FR Doc. 2012–1953 Filed 1–30–12; 8:45 am]