[Federal Register Volume 76, Number 138 (Tuesday, July 19, 2011)]
[Proposed Rules]
[Pages 42631-42654]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: 2011-17943]
=======================================================================
-----------------------------------------------------------------------
DEPARTMENT OF THE INTERIOR
Fish and Wildlife Service
50 CFR Part 17
[Docket No. FWS-R6-ES-2010-0047; MO 92210-0-0008]
Endangered and Threatened Wildlife and Plants; 12-Month Finding
on a Petition To List Pinus albicaulis as Endangered or Threatened With
Critical Habitat
AGENCY: Fish and Wildlife Service, Interior.
ACTION: Notice of 12-month petition finding.
-----------------------------------------------------------------------
SUMMARY: We, the U.S. Fish and Wildlife Service (Service), announce a
12-month finding on a petition to list Pinus albicaulis (whitebark
pine) as threatened or endangered and to designate critical habitat
under the Endangered Species Act of 1973, as amended (Act). After
review of all available scientific and commercial information, we find
that listing P. albicaulis as threatened or endangered is warranted.
However, currently listing P. albicaulis is precluded by higher
priority actions to amend the Lists of Endangered and Threatened
Wildlife and Plants. Upon publication of this 12-month petition
finding, we will add P. albicaulis to our candidate species list. We
will develop a proposed rule to list P. albicaulis as our priorities
and funding will allow. We will make any determination on critical
habitat during development of the proposed listing rule. In any interim
period, we will address the status of the candidate taxon through our
annual Candidate Notice of Review.
DATES: The finding announced in this document was made on July 19,
2011.
[[Page 42632]]
ADDRESSES: This finding is available on the Internet at http://www.regulations.gov at Docket Number FWS-R6-ES-2010-0047. Supporting
documentation we used in preparing this finding is available for public
inspection, by appointment, during normal business hours at the U.S.
Fish and Wildlife Service, Wyoming Ecological Services Field Office,
5353 Yellowstone Road, Suite 308A, Cheyenne, WY 82009. Please submit
any new information, materials, comments, or questions concerning this
finding to the above address.
FOR FURTHER INFORMATION CONTACT: R. Mark Sattelberg, Field Supervisor,
Wyoming Ecological Services Field Office (see ADDRESSES); by telephone
at 307-772-2374; or by facsimile at 307-772-2358. If you use a
telecommunications device for the deaf (TDD), please call the Federal
Information Relay Service (FIRS) at 800-877-8339.
SUPPLEMENTARY INFORMATION:
Background
Section 4(b)(3)(A) of the Act (16 U.S.C. 1531 et seq.) requires
that, for any petition to revise the Federal Lists of Endangered and
Threatened Wildlife and Plants that contains substantial scientific or
commercial information that listing a species may be warranted, we make
a finding within 12 months of the date of receipt of the petition. In
this finding, we determine whether the petitioned action is: (a) Not
warranted, (b) warranted, or (c) warranted, but immediate proposal of a
regulation implementing the petitioned action is precluded by other
pending proposals to determine whether species are threatened or
endangered, and expeditious progress is being made to add or remove
qualified species from the Federal Lists of Endangered and Threatened
Wildlife and Plants. Section 4(b)(3)(C) of the Act requires that we
treat a petition for which the requested action is found to be
warranted but precluded as though resubmitted on the date of such
finding, that is, requiring a subsequent finding to be made within 12
months. We must publish these 12-month findings in the Federal
Register.
Previous Federal Actions
On February 5, 1991, the Great Bear Foundation of Missoula,
Montana, petitioned the Service to list Pinus albicaulis under the Act,
stating the species was rapidly declining due to impacts from mountain
pine beetles, white pine blister rust, and fire suppression. After
reviewing the petition, we found that the petitioner had not presented
substantial information indicating that listing P. albicaulis may be
warranted. We published this finding in the Federal Register on January
27, 1994 (59 FR 3824).
On December 9, 2008, we received a petition dated December 8, 2008,
from the Natural Resources Defense Council (NRDC) requesting that we
list Pinus albicaulis as endangered throughout its range and designate
critical habitat under the Act. The petition clearly identified itself
as such and included the requisite identification information for the
petitioner, as required by 50 CFR 424.14(a). Included in this petition
was supporting information regarding the species' natural history,
biology, taxonomy, lifecycle, distribution, and reasons for decline.
The NRDC reiterated the threats from the 1991 petition, and included
climate change and successional replacement as additional threats to P.
albicaulis. In a January 13, 2009, letter to NRDC, we responded that we
had reviewed the information presented in the petition and determined
that issuing an emergency regulation temporarily listing the species
under section 4(b)(7) of the Act was not warranted. We also stated that
we could not address the petition promptly because of staff and budget
limitations. We indicated that we would process a 90-day petition
finding as quickly as possible.
On December 23, 2009, we received NRDC's December 11, 2009, notice
of intent to sue over our failure to respond to the petition to list
Pinus albicaulis and designate critical habitat. We responded in a
letter dated January 12, 2010, indicating that other preceding listing
actions had priority, but that we expected to complete the 90-day
finding during the 2010 Fiscal Year. On February 24, 2010, we received
a formal complaint from NRDC for our failure to comply with issuing a
90-day finding on the petition. On May 7, 2010, we responded in writing
to the formal complaint and provided answers to their claims and
allegations.
We completed a 90-day finding on the petition, which was published
in the Federal Register on July 20, 2010 (75 FR 42033). In that finding
we determined that the petition presented substantial information such
that listing Pinus albicaulis may be warranted, and announced that we
would be conducting a status review of the species. We opened a 60-day
information collection period to allow all interested parties an
opportunity to provide information on the status of Pinus albicaulis
(75 FR 42033), and received 20 letters from the public.
This 12-month finding is based on our consideration and evaluation
of the best scientific and commercial information available. We
reviewed the information provided in NRDC's petition, information
available in our files, other available published and unpublished
information, and information received from the public. Additionally, we
consulted with recognized Federal and non-Federal Pinus albicaulis
experts, plant pathologists, and plant geneticists. All information
received has been carefully considered in this finding.
Funding was made available during the 2010 and 2011 Fiscal Years
for work on the status review. This notice constitutes our 12-month
finding on the December 9, 2008, petition to list Pinus albicaulis as
endangered throughout its range and designate critical habitat under
the Act.
Species Information
Taxonomy and Life History
Pinus albicaulis Engelm. (whitebark pine) is a 5-needled conifer
species placed in the subgenus Strobus, which also includes other 5-
needled white pines. This subgenus is further divided into two sections
(Strobus and Parrya), and under section Strobus, into two subsections
(Cembrae and Strobi). The traditional taxonomic classifications placed
P. albicaulis in the subsection Cembrae with four other Eurasian stone
pines (Critchfield and Little 1966, p. 5; Lanner 1990, p. 19). However,
recent phylogenetic studies (Liston et al. 1999, 2007; Syring et al.
2005, 2007; as cited in Committee on the Status of Endangered Wildlife
in Canada (COSEWIC) 2010, p. 4) showed no difference in monophyly
(ancestry) between subsection Cembrae and subsection Strobi and merged
them to form subsection Strobus. No taxonomic subspecies or varieties
of P. albicaulis are recognized (COSEWIC 2010, p. 6). Based on this
taxonomic classification information, we recognize P. albicaulis as a
valid species and a listable entity.
Pinus albicaulis is typically 5 to 20 meters (m) (16 to 66 feet
(ft)) tall with a rounded or irregularly spreading crown shape. On
higher density conifer sites, P. albicaulis tends to grow as tall,
single-stemmed trees, whereas on open, more exposed sites, it tends to
have multiple stems (McCaughey and Tomback 2001, pp. 113-114). Above
tree line, it grows in a krummholz form (stunted, shrub-like growth)
(Arno and Hoff 1989, p. 6). This pine species is monoecious, (both male
pollen and female seed cones are on the same tree). Its characteristic
dark brown to purple seed cones are 5 to 8 centimeters (cm)
[[Page 42633]]
(2 to 3 inches (in.)) long and grow at the outer ends of upper branches
(Hosie 1969, p. 42).
Stone pines (so-called for their stone-like seeds) include five
species worldwide, and Pinus albicaulis is the only stone pine that
occurs in North America (McCaughey and Schmidt 2001, p. 30).
Characteristics of stone pines include five needles per cluster,
indehiscent seed cones (scales remain essentially closed at maturity)
that stay on the tree, and wingless seeds that remain fixed to the cone
and cannot be dislodged by the wind. Because P. albicaulis seeds cannot
be wind-disseminated, primary seed dispersal occurs almost exclusively
by Clark's nutcrackers (Nucifraga columbiana) in the avian family
Corvidae (whose members include ravens, crows, and jays) (Lanner 1996,
p. 7; Schwandt 2006, p. 2). Consequently, Clark's nutcrackers
facilitate P. albicaulis regeneration and influence its distribution
and population structure through their seed caching activities (Tomback
et al. 1990, p. 118).
Pinus albicaulis is a hardy conifer that tolerates poor soils,
steep slopes, and windy exposures and is found at alpine tree line and
subalpine elevations throughout its range (Tomback et al. 2001, pp. 6,
27). It grows under a wide range of precipitation amounts, from about
51 to over 254 cm (20 to 100 in.) per year (Farnes 1990, p. 303). Pinus
albicaulis may occur as a climax species, early successional species,
or seral (mid-successional stage) co-dominant associated with other
tree species. Although it occurs in pure or nearly pure stands at high
elevations, it typically occurs in stands of mixed species in a variety
of forest community types.
Pinus albicaulis is a slow-growing, long-lived tree with a life
span of up to 500 years and sometimes more than 1,000 years (Arno and
Hoff 1989, pp. 5-6). It is considered a keystone, or foundation species
in western North America where it increases biodiversity and
contributes to critical ecosystem functions (Tomback et al. 2001, pp.
7-8). As a pioneer or early successional species, it may be the first
conifer to become established after disturbance, subsequently
stabilizing soils and regulating runoff (Tomback et al. 2001, pp. 10-
11). At higher elevations, snow drifts around P. albicaulis trees,
thereby increasing soil moisture, modifying soil temperatures, and
holding soil moisture later into the season (Farnes 1990, p. 303).
These higher elevation trees also shade, protect, and slow the
progression of snowmelt, essentially reducing spring flooding at lower
elevations. Pinus albicaulis also provides important, highly nutritious
seeds for a number of birds and mammals (Tomback et al. 2001, pp. 8,
10).
Pinus albicaulis trees are capable of producing seed cones at 20-30
years of age, although large cone crops usually are not produced until
60-80 years (Krugman and Jenkinson 1974, as cited in McCaughey and
Tomback 2001, p. 109). Therefore, the generation time of P. albicaulis
is approximately 60 years (COSEWIC 2010, p. v). Like many other species
of pines, P. albicaulis exhibits masting, in which populations
synchronize their seed production and provide varying amounts from year
to year. During years with high seed production, typically once every
3-5 years in P. albicaulis (McCaughey and Tomback 2001, p. 110), seed
consumers are satiated, resulting in excess seeds that escape predation
(Lorenz et al. 2008, pp. 3-4). Pinus albicaulis seed predators are
numerous and include more than 20 species of vertebrates including
Clark's nutcracker (Nucifraga columbiana), pine squirrels (Tamiasciurus
spp.), grizzly bears (Ursus arctos), black bears (Ursus americanus),
Steller's Jay (Cyanocitta stelleri), and Pine Grosbeak (Pinicola
enucleator) (Lorenz et al. 2008, p. 3). Seed predation plays a major
role in P. albicaulis population dynamics, as seed predators largely
determine the fate of seeds. However, P. albicaulis has co-evolved with
seed predators and has several adaptations, like masting, that has
allowed the species to persist despite heavy seed predation (Lorenz et
al. 2008, p. 3-4).
Seeds not retrieved by Clark's nutcrackers or other seed predators
are subsequently available for germination when conditions are
favorable (McCaughey and Tomback 2001, p. 111). In years with low seed
production, most seeds are predated and, therefore, unavailable for
germination (Lorenz et al. 2008, p. 4). A single nutcracker can cache
up to an estimated 98,000 P. albicaulis seeds during good seed crop
years (Hutchins and Lanner 1982, p. 196). They may bury seeds near
parent trees or travel up to 22 kilometers (km) (14 miles (mi)) away at
varying elevations. Cache sites have been found to occur on forest
floors, above treeline, in rocky outcrops, meadow edges, clearcuts, and
burned areas (Tomback et al. 1990, p. 120). Pinus albicaulis seedlings
have highly variable survival rates; seedlings originating from
nutcracker caches ranged from 56 percent survival over the first year
to 25 percent survival by the fourth year (Tomback 1982, p. 451).
While Pinus albicaulis is almost exclusively dependent upon Clark's
nutcracker for seed dispersal, the reverse is not true as Clark's
nutcracker forage on seeds from numerous species of pine. The frequency
of nutcracker occurrence and probability of seed dispersal from a P.
albicaulis forest is strongly associated with the number of available
cones. A threshold of 1,000 cones per hectare (ha) (2.47 acres (ac)) is
needed for a high likelihood of seed dispersal by nutcrackers, and this
level of cone production occurs in forests with a live basal area (the
volume of wood occurring in a given area) greater than 5 square meters
(m) per ha (McKinney et al. 2009, p. 603). For an adult Clark's
nutcracker to survive a subalpine winter (accounting for those seeds
consumed by rodents and those fed to juvenile nutcrackers), it would
need to cache seeds from 767 to 2,130 cones (McKinney et al. 2009, p.
605). Clark's nutcrackers are able to assess cone crops, and if there
are insufficient seeds to cache, they will emigrate in order to survive
(McKinney et al. 2009, p. 599).
Distribution
Pinus albicaulis occurs in scattered areas of the warm and dry
Great Basin but it typically occurs on cold and windy high-elevation or
high-latitude sites in western North America. As a result, many stands
are geographically isolated (Arno and Hoff 1989, p. 1; Keane et al.
2010, p. 13). Its range extends longitudinally between 107 and 128
degrees west and latitudinally between 27 and 55 degrees north
(McCaughey and Schmidt 2001, p. 33). The distribution of P. albicaulis
includes coastal and Rocky Mountain ranges that are connected by
scattered populations in northeastern Washington and southeastern
British Columbia (Arno and Hoff 1990, p. 268; Keane et al. 2010, p.
13). The coastal distribution of P. albicaulis extends from the Bulkley
Mountains in British Columbia to the northeastern Olympic Mountains and
Cascade Range of Washington and Oregon, to the Kern River of the Sierra
Nevada Range of east-central California (Arno and Hoff 1990, p. 268).
Isolated stands of P. albicaulis are known from the Blue and Wallowa
Mountains in northeastern Oregon and the subalpine and montane zones of
mountains in northeastern California, south-central Oregon, and
northern Nevada (Arno and Hoff 1990, p. 268; Keane et al. 2010, p. 13).
The Rocky Mountain distribution of P. albicaulis ranges from northern
British Columbia and Alberta to Idaho, Montana, Wyoming, and Nevada
(Arno and Hoff 1990, p. 268; Keane et al. 2010,
[[Page 42634]]
p. 13), with extensive stands occurring in the Yellowstone ecosystem
(McCaughey and Schmidt 2001, p. 33). The Wind River Range in Wyoming is
the eastern most distribution of the species (Arno and Hoff 1990, p.
268; McCaughey and Schmidt 2001, p. 33) (Figure 1).
BILLING CODE 4310-58-P
[GRAPHIC] [TIFF OMITTED] TP19JY11.120
BILLING CODE 4310-58-C
In general, the upper elevational limits of Pinus albicaulis
decrease with increasing latitude throughout its range (McCaughey and
Schmidt 2001, p. 33). The elevational limit of the species ranges from
approximately 900 m (2,950 ft) at its northern limit in British
Columbia up to 3,660 m (12,000 ft) in the Sierra Nevada (McCaughey and
Schmidt 2001, p. 33). Pinus albicaulis is typically found growing at
alpine timberline or with other high-mountain conifers just below the
timberline and upper montane zone (Arno and Hoff 1990, p. 270;
McCaughey and Schmidt 2001, p. 33). In the Rocky Mountains, common
associated tree species include P. contorta var. latifolia (lodgepole
pine), Picea engelmannii (Engelmann spruce), Abies lasiocarpa
(subalpine fir), and Tsuga mertensiana (mountain hemlock). Common
associated tree species are similar in the Sierra Nevada and Blue and
Cascade Mountains,
[[Page 42635]]
except lodgepole pine is present as P. contorta var. murrayana (Sierra-
Cascade lodgepole pine) and mountain hemlock is absent from the Blue
Mountains (Arno and Hoff 1990, p. 270; McCaughey and Schmidt 2001, pp.
33-34).
Roughly 44 percent of the species' range occurs in the United
States, with the remaining 56 percent of its range occurring in British
Columbia and Alberta, Canada (COSEWIC 2010, p. iv). In Canada, the
majority of the species' distribution occurs on private lands (Achuff
2010, pers. comm.). In the United States, approximately 96 percent of
land where the species occurs is federally owned or managed. The
majority is located on U.S. Forest Service (USFS) lands (approximately
81 percent, or 4,698,388 ha (11,609,969 ac)). The bulk of the remaining
acreage is located on National Park Service (NPS) lands (approximately
13 percent, or 740,391 ha (1,829,547 ac)). Small amounts of P.
albicaulis also can be found on Bureau of Land Management lands
(approximately 2 percent, or 119,598 ha (295,534 ac)). The remaining 4
percent is under non-Federal ownership.
Trends
Mortality data collected in multiple studies throughout the range
of Pinus albicaulis strongly suggests that the species is in range-wide
decline (Table 1). Although the majority of available data was
collected in the last several decades, the decline in P. albicaulis
populations likely began sometime following the 1910 introduction of
the exotic disease white pine blister rust. Although we do not have a
study that quantifies the rate of decline across the entire range, we
conclude that the preponderance of data from the studies listed below
and elsewhere in this status review provides evidence of a substantial
and pervasive decline throughout almost the entire range of the
species.
Table 1--Summary of Results From Studies Documenting the Decline of Pinus albicaulis in the United States and
Canada
[Adapted from Keane et al. 2010, p. 127]
----------------------------------------------------------------------------------------------------------------
Percent
Study year Geographic area decline Source
----------------------------------------------------------------------------------------------------------------
United States
----------------------------------------------------------------------------------------------------------------
1992.................................. Southern Bitterroot National 14 Arno et al. (1993).
Forest.
1992.................................. Western Montana............... 51 Keane and Arno (1993).
1993.................................. Bob Marshall Wilderness....... 44 Keane et al. (1994).
1995.................................. Eastern Cascades.............. 2 Hadfield et al. (1996).
1996.................................. Bitterroot National Forest.... 29 Hartwell and Alaback (1997).
1997.................................. Intermountain Region.......... 1 Smith and Hoffman (1998,
2000).
2000.................................. Selkirk Mountains............. 34 Kegley et al. (2001).
2001.................................. Umpqua National Forest........ 10 Goheen et al. (2002).
2003.................................. Western Cascades, Washington.. 41 Shoal and Aubry (2004).
2003.................................. Eastern Cascades.............. 16 Shoal and Aubry (2004).
2005.................................. Washington, Oregon............ 35 Summary of multiple studies
in Ward et al. (2006).
2007.................................. Oregon, Washington............ 21 Shoal (2007).
2008.................................. Mt. Rainier, North Cascades... 31 Rochefort (2008).
2008.................................. Greater Yellowstone........... 70 Bockino (2008).
2008.................................. Glacier National Park......... 60 Smith et al. (2008).
2008.................................. Central Idaho................. 31 Hicke and Logan (2009).
----------------------------------------------------------------------------------------------------------------
Canada
----------------------------------------------------------------------------------------------------------------
1997.................................. British Columbia.............. 21 Campbell (1998); Campbell and
Antos (2003).
2001.................................. British Columbia.............. 19 Zeglen (2002, 2007).
2007.................................. Canadian Rocky Mountains...... 57 Smith et al. (2008).
----------------------------------------------------------------------------------------------------------------
In Canada, based on current mortality rates, it is anticipated that
Pinus albicaulis will decline by 57 percent by 2100 (COSEWIC 2010, p.
19). The value for this anticipated decline is likely an underestimate,
as it assumes current mortality rates remain constant into the
foreseeable future. Past trends have shown that mortality rates have
been increasing over the last several decades (this is discussed in
more detail under Factor C, Disease or Predation). The range of
mortality rates for P. albicaulis in the United States are similar to
those in Canada, which suggests that the anticipated rates of decline
will be similar.
Summary of Information Pertaining to the Five Factors
Section 4 of the Act (16 U.S.C. 1533) and implementing regulations
(50 CFR part 424) set forth procedures for adding species to the
Federal Lists of Endangered and Threatened Wildlife and Plants. Under
section 4(a)(1) of the Act, a species may be determined to be
endangered or threatened based on any of the following five factors:
(A) The present or threatened destruction, modification, or
curtailment of its habitat or range;
(B) Overutilization for commercial, recreational, scientific, or
educational purposes;
(C) Disease or predation;
(D) The inadequacy of existing regulatory mechanisms; or
(E) Other natural or manmade factors affecting its continued
existence.
In making this finding, information pertaining to Pinus albicaulis
in relation to the five factors provided in section 4(a)(1) of the Act
is discussed below.
In considering what factors might constitute threats to a species,
we must look beyond the exposure of the species to a particular factor
to evaluate whether the species may respond to that factor in a way
that causes actual impacts to the species. If there is exposure to a
factor and the species responds negatively, the factor may be a threat,
and, during the status review, we attempt to determine how significant
a
[[Page 42636]]
threat it is. The threat is significant if it drives, or contributes
to, the risk of extinction of the species such that the species
warrants listing as endangered or threatened as those terms are defined
in the Act. However, the identification of factors that could impact a
species negatively may not be sufficient to compel a finding that the
species warrants listing. The information must include evidence
sufficient to suggest that these factors are operative threats that act
on the species to the point that the species may meet the definition of
endangered or threatened under the Act.
Factor A. The Present or Threatened Destruction, Modification, or
Curtailment of Its Habitat or Range
Fire and Fire Suppression
Fire is one of the most important landscape-level disturbance
processes within high-elevation Pinus albicaulis forests (Agee 1993, p.
259; Morgan and Murray 2001, p. 238; Spurr and Barnes 1980, p. 422),
and has been important to perpetuating early seral (successional stage)
P. albicaulis communities (Arno 2001, p. 82; Shoal et al. 2008, p. 20).
Without regular disturbance, primarily from fire, these forest
communities follow successional pathways that eventually lead to
dominance by shade-tolerant conifers such as Abies lasiocarpa, Picea
engelmannii, and Tsuga mertensiana, to the exclusion of P. albicaulis
(Keane and Parsons 2010, p. 57). When fire is present on the landscape,
P. albicaulis has an advantage over its competitors for several reasons
(Keane and Parsons 2010, p. 57). The Clark's nutcracker serves as the
main dispersal agent for P. albicaulis by caching seeds in disturbed
sites, such as burns. Fire creates sites that are suitable for this
seed caching behavior and that most importantly contain optimal growing
conditions for P. albicaulis (Tomback et al. 2001, p. 13). In addition,
Clark's nutcrackers can disperse seeds farther than the wind-dispersed
seeds of other conifers, thereby facilitating P. albicaulis succession
in burned sites over a broad geographic area (McCaughey et al. 1985,
Tomback et al. 1990, 1993 in Keane and Parsons 2010, p. 58).
Additionally, P. albicaulis has thicker bark, a thinner crown, and a
deeper root system, which allow it to withstand low-intensity fires
better than many of its competitors (Arno and Hoff 1990 in Keane and
Parsons 2010, p. 58). Historically, fire has been an important factor
in maintaining healthy stands of P. albicaulis on the landscape.
Fires in the high-elevation ecosystem of Pinus albicaulis can be of
low intensity, high intensity, or mixed intensity. These varying
intensity levels result in very different impacts to P. albicaulis
communities. Low-intensity, surface-level ground fires occur frequently
under low-fuel conditions. These fires remove small-diameter, thin-
barked seedlings and allow large, mature trees to thrive (Arno 2001, p.
82). Low-intensity fires also reduce fuel loads and competition from
fire-susceptible conifers, shrubs, and grasses, thereby opening up
spaces necessary for the shade-intolerant P. albicaulis to regenerate
and thus maintain prominence in seral communities (Arno 1986 in Keane
et al. 1994, p. 215). High-intensity fires occur where high fuel loads,
ladder fuels (vegetation below the crown level of forest trees, which
allows fire to move from the forest floor to tree crowns), and other
compounding conditions result in increased flammability (Agee 1993, p.
258). High-intensity fires, often referred to as stand replacement
fires, or crown fires (Agee 1993, p. 16), produce intensive heat,
resulting in the removal of all or most of the vegetation from the
ground. High-intensity fires begin the process of vegetative succession
by opening seed beds that become available for the establishment and
development of shade-intolerant species like P. albicaulis. High-
intensity fires are generally less frequent because it takes longer
time intervals to build the large fuel accumulations necessary to
promote these types of fires (Agee 1993, p. 258). Mixed-intensity fires
are most common and result in a mosaic of dead trees, live trees, and
open sites for regeneration (Arno 1980, p. 460; Keane 2001a, p. 17). In
general, historical fire return intervals in P. albicaulis communities
have been estimated at between 50 and 300 years (Arno 1980, p. 461).
Beginning in the 1930s, a policy of fire suppression was
effectively implemented by the USFS (Arno 1980, p. 460; USFS 2000, p.
1). During the 1970s, in recognition of the importance of wildfire to
maintenance of healthy forests, the USFS began a policy shift away from
total fire suppression (Cohen 2008, p. 21; USFS 2000, p. 1). However,
despite this shift, fire suppression is still carried out, most
frequently in areas where a threat to human health and safety are
anticipated, and we expect this trend of fire suppression to continue
into the future (Arno 1980, p. 460; Cohen 2008, p. 21; Keane 2011a,
pers. comm.).
Fire suppression has had unintended negative impacts on Pinus
albicaulis populations (Keane 2001a, entire), due to this shift from a
natural fire regime to a managed fire regime. Stands once dominated by
P. albicaulis have undergone succession to more shade-tolerant conifers
(Arno et al. 1993 in Keane et al. 1994, p. 225; Flanagan et al. 1998,
p. 307). Once shade-tolerant conifer species become firmly established,
the habitat is effectively lost to P. albicaulis until a disturbance
like fire once again opens the area for P. albicaulis regeneration.
Determining the total amount of P. albicaulis habitat lost to
succession rangewide is difficult, as there is seldom a historic
baseline for comparison, and the degree of succession is very specific
to local conditions (Keane 2011a, pers. comm.). Shade-tolerant conifer
species grow more densely than shade-intolerant conifer species like P.
albicaulis (Minore 1979, p. 3). Denser stands eliminate the open sites
that are often used by Clark's nutcracker for seed caching and which
are also the sites required to facilitate the regeneration of the
shade-intolerant P. albicaulis. Additionally, the growth of more
homogeneously structured stands with continuous crowns and increased
surface fuels has resulted in fires that are larger and more intense
(Keane 2001b, p. 175).
Pinus albicaulis cannot withstand high-intensity fires; during such
fires, all age and size classes can be killed. However, newly burned
areas provide a seedbed for P. albicaulis, and if stands of unburned
cone-producing P. albicaulis are nearby (i.e., within the range of
Clark's nutcracker caching behavior), Clark's nutcrackers will cache
those seeds on the burned site, and regeneration is very likely.
However, the introduction of the disease white pine blister rust and
the current epidemic of the predatory mountain pine beetle
(Dendroctonus ponderosae) have reduced or effectively eliminated P.
albicaulis seed sources on a landscape scale (see Factor C, Disease or
Predation). Although there is variation in the degree to which specific
stands have been impacted, over the range of P. albicaulis the
widespread incidence of poor stand health from disease and predation,
coupled with changes in fire regimes, means that regeneration of P.
albicaulis following fire is unlikely in many cases (Tomback et al.
2008, p. 20).
Fire and Fire Suppression and the Interaction of Other Factors
Environmental changes resulting from climate change are expected to
exacerbate the already observed negative effects of fire suppression
(i.e., forest succession, increased fire intensity) (see the Climate
Change section below). These environmental
[[Page 42637]]
changes are predicted to increase the number, intensity, and extent of
wildfires (Aubry et al. 2008, p. 6; Keane 2001b, p. 175). Already,
large increases in wildfire have been documented and are particularly
pronounced in Northern Rockies forests, which account for 60 percent of
documented increases in large fires (Westerling et al. 2006, p. 941,
943). Some of the increase has been independent of past management
activities and, thus, appears to be a direct result of warming trends
in the last several decades (Westerling et al. 2006, p. 943).
Fire suppression is also expected to negatively interact with white
pine blister rust and mountain pine beetle predation. As forests become
more dense, individual Pinus albicaulis are more vulnerable to white
pine blister rust and infestation by mountain pine beetle (see Factor
C, Disease and Predation). As mortality from white pine blister rust
and mountain pine beetle increase, forest succession to more dense
stands of shade-tolerant conifers is accelerated (Keane 2011a, pers.
comm.).
Summary of Impacts of Fire and Fire Suppression
Fire suppression results in conditions that favor the dominance of
shade-tolerant species such as Abies lasiocarpa, Picea engelmannii, and
Tsuga mertensiana, which form dense stands that eventually exclude
Pinus albicaulis (Agee 1993, p. 252; Arno 2001, p. 83). We assume that
fire suppression efforts that create these impacts will continue to
occur into the future. Where P. albicaulis persists, dense forest
structure crowds and stresses individual trees, making them more
susceptible to white pine blister rust, infestation by mountain pine
beetle, and mortality. Succession to more shade-tolerant species also
results in less P. albicaulis regeneration because P. albicaulis is
shade-intolerant, and seeds will not survive if cached in heavily
shaded forest stands. The interaction between fire suppression and
environmental effects from climate change exacerbates the impacts to P.
albicaulis, and in the future will be particularly devastating to P.
albicaulis populations as P. albicaulis seed sources are expected to
become increasingly limited by continued impacts from white pine
blister rust and mountain pine beetle.
The balance of a natural fire regime with related vegetative
successive processes has been disrupted across the Pinus albicaulis
ecosystem. As a result, Pinus albicaulis has lost its competitive
advantage and trends indicate its presence has been reduced on the
landscape. Because there is seldom a historic baseline for comparison
and the degree of succession is very locally specific, we are not able
to quantify what portion of the species decline can be attributed to
fire management and changes in fire regimes. However, we consider the
current fire regime and fire management practices to be threats that
limit the abundance of the species and weaken P. albicaulis
communities, such that other factors create additional negative impacts
to the species.
The effects of changing fire regimes and fire suppression on Pinus
albicaulis, combined with the interaction of white pine blister rust
and mountain pine beetles, have created more homogenous forest stands
with reduced numbers of P. albicaulis compared to historic subalpine
landscapes. These effects are becoming more pronounced with climate
change (Morgan and Murray 2001, p. 300), creating a trajectory toward
forest stands without P. albicaulis. The species appears likely to be
in danger of extinction, or likely to become so within the foreseeable
future, because of habitat losses due to changes to the fire regime,
particularly when viewed in combination with climate change, disease,
and predation.
Climate Change
The Intergovernmental Panel on Climate Change (IPCC) was
established in 1988 by the World Meteorological Organization and the
United Nations Environment Program in response to growing concerns
about climate change and, in particular, the effects of global warming.
Although the extent of warming likely to occur is not known with
certainty at this time, the IPCC has concluded that warming of the
climate is unequivocal, and that continued greenhouse gas emissions at
or above current rates will cause further warming (IPCC 2007, p. 30).
Climate change scenarios estimate that the mean air temperature could
increase by over 3 [deg]C (5.4 [deg]F) by 2100 (IPCC 2007, p. 46). The
IPCC also projects that there will very likely be regional increases in
the frequency of hot extremes, heat waves, and heavy precipitation
(IPCC 2007, p. 46), as well as increases in atmospheric carbon dioxide
(IPCC 2007, p. 36).
We recognize that there are scientific differences of opinion on
many aspects of climate change, including the role of natural
variability in climate. In our analysis, we rely primarily on synthesis
documents (e.g., IPCC 2007; Global Climate Change Impacts in the United
States 2009) that present the consensus view of a very large number of
experts on climate change from around the world. We have found that
these synthesis reports, as well as the scientific papers used in those
reports or resulting from those reports, represent the best available
scientific information we can use to inform our decision and have
relied upon them and provided citations within our analysis.
Direct habitat loss from climate change is anticipated to occur
with current habitats becoming unsuitable for P. albicaulis as
temperatures increase and soil moisture availability decreases (Hamman
and Wang 2006, p. 2783; Schrag et al. 2007, p. 8; Aitken et al. 2008,
p. 103). Habitat loss is expected because (1) temperatures become so
warm that they exceed the thermal tolerance of P. albicaulis and the
species is unable to survive or (2) warmer temperatures favor other
species of conifer that currently cannot compete with P. albicaulis in
cold high-elevation habitats. Pinus albicaulis is widely distributed
and thus likely has a wide range of tolerance to varying temperatures
(Keane 2011c, pers.comm.). Therefore, increasing competition from other
species that can not normally persist in current P. albicaulis habitats
is possibly the more probable climate-driven mechanism for habitat
loss.
Given the anticipated loss of suitable habitat, P. albicaulis
persistence will likely be dependent on the species' ability to either
migrate to new suitable habitats, or adapt to changing conditions
(Aitken et al. 2008, p. 95). Historical (paleoecological) evidence
indicates that plant species have generally responded to past climate
change through migration, and that adaptation to changing climate
conditions is less likely to occur (Bradshaw and McNeilly 1991, p. 12;
Huntley 1991, p. 19). Adaptation to a change in habitat conditions as a
result of a changing climate is even more unlikely for P. albicaulis,
given its very long generation time of approximately 60 years (Bradshaw
and McNeilly 1991, p. 10). The rate of latitudinal plant migration
during past warming and cooling events is estimated to have been on the
order of 100 m (328 ft) per year (Aitken et al. 2008, p. 96). Given the
current and anticipated rates of global climate change, migration rates
will potentially need to be substantially higher than those measured in
historic pollen records to sustain the species over time. A migration
rate of at least a magnitude higher (1,000 m (3,280 ft)) per year is
estimated to be necessary in order for tree species to be capable of
tracking suitable habitats under projected warming trends (Malcolm et
[[Page 42638]]
al. 2002, entire). Latitudinal migration rates on this scale may
significantly exceed the migration abilities of many plant species,
including P. albicaulis (Malcolm et al. 2002, p. 844-845; McKenney et
al. 2007, p. 941).
Pinus albicaulis may have an advantage in its ability to migrate
given that its seeds are dispersed by Clark's nutcracker. As mentioned
above, Clark's nutcrackers can disperse seeds farther than the wind-
dispersed seeds of other conifers (McCaughey et al. 1985, Tomback et
al. 1990, 1993 in Keane and Parsons 2010, p. 58). However, migration of
P. albicaulis to the north may be impeded by the disease white pine
blister rust, which is currently present at the northern range limits
of P. albicaulis (Smith et al. 2008, Figure 1, p. 984; Resler and
Tomback 2008, p. 165).
Pinus albicaulis already is typically the first species to
establish on cold, exposed high-elevation sites, thus the species could
potentially migrate higher in elevation to more suitable habitats.
Shifts in the optimum elevation for many high-elevation plant species
have already been documented under current warming trends (Lenoir et
al. 2008, p. 1770). However, elevational migration as a refuge from
temperature increase has limits, because eventually, suitable habitat
may not be present even on mountaintops due to continuing temperature
increases.
Climate change is expected to significantly decrease the
probability of rangewide persistence of Pinus albicaulis. Projections
from an empirically based bioclimatic model for P. albicaulis showed a
rangewide distribution decline of 70 percent and an average elevation
loss of 333 m (1,093 ft) for the decade beginning in 2030 (Warwell et
al. 2007, p. 2). At the end of the century, less than 3 percent of
currently suitable habitat is expected to remain (Warwell et al. 2007,
p. 2). Similarly, climate envelope modeling on P. albicaulis
distribution in British Columbia estimated a potential decrease of 70
percent of currently suitable habitat by the year 2055 (Hamman and Wang
2006, p. 2783). The area occupied by P. albicaulis in the Greater
Yellowstone Ecosystem also is predicted to be significantly reduced
with increasing temperature under various climate change scenarios
(Schrag et al. 2007, p. 6). Pinus albicaulis is predicted to be nearly
extirpated under a scenario of warming only and warming with a
concomitant increase in precipitation (Schrag et al. 2007, p. 7).
The above studies all suggest that the area currently occupied by
P. albicaulis will be severely reduced in the foreseeable future. We
recognize, however, that there are many limitations to such modeling
techniques, specifically for P. albicaulis. For example, climate
envelope models use current environmental conditions in the
distribution of the species' range to determine whether similar
environmental conditions will be available in the future given
predicted climate change. Pinus albicaulis, however, is a very long-
lived species, and current environmental conditions may not closely
resemble environmental conditions present when the trees currently on
the landscape were established (Keane 2001c, pers. comm.).
Additionally, these models also describe current environmental
variables in averages taken over large areas. Pinus albicaulis may
experience very different environmental conditions even over a small
range as individuals can be separated by thousands of meters (Keane
2011c, pers. comm.).
Climate Change and the Interaction of Other Factors
In addition to direct habitat loss, Pinus albicaulis is expected to
experience decrease in population size from synergistic interactions
between habitat changes as a result of climate change and other threat
factors including altered fire regimes, disease, and predation. Pinus
albicaulis has evolved with fire, and under many conditions, fire is
beneficial to the species (see Fire and Fire Suppression above).
However, environmental changes resulting from climate change are
expected to alter fire regimes resulting in increased fire intervals,
increased fire severity, and habitat loss (Westerling et al. 2006, p.
943).
Pinus albicaulis also evolved with the predatory native mountain
pine beetle (Dendroctonus ponderosae). However, the life cycle of the
mountain pine beetle is temperature dependent, and warming trends have
resulted in unprecedented mountain pine beetle epidemics throughout the
range of P. albicaulis (the interaction of mountain pine beetle and P.
albicaulis is discussed further below under Factor C, Predation) (Logan
et al. 2003, p. 130; Logan et al. 2010, p. 896). At epidemic levels,
mountain pine beetle outbreaks become stand-replacing events killing 80
to 95 percent of suitable host trees, and in many parts of the P.
albicaulis range, those levels of mortality have already been reached
(Gibson et al. 2008, p. 10). Even populations of P. albicaulis once
considered mostly immune to mountain pine beetle epidemics are now
being severely impacted; mountain pine beetles have now moved into
areas previously climatically inhospitable for epidemic-level mountain
pine beetle population growth (Carroll et al. 2003 in Gibson et al.
2008, p. 4; Raffa et al. 2008, p. 503; Logan et al. 2010, p. 895).
Given ongoing and predicted environmental changes resulting from global
climate change, we expect the expansion of habitat favorable to
mountain pine beetle (and mountain pine epidemics) to continue into the
foreseeable future.
Summary of Impacts of Climate Change
Given projected increases in temperature, a significant loss of the
cool high-elevation habitats of Pinus albicaulis is expected. Rapid
warming is likely to outpace the ability of P. albicaulis to migrate to
suitable habitats. Additionally, adaptation to warming conditions for
this long-lived species seems unlikely. Synergistic interactions
between environmental changes resulting from climate change, wildfire,
disease, and mountain pine beetle also are negatively impacting P.
albicaulis rangewide. In particular, mountain pine beetle epidemics
brought about by increasing temperatures are currently having
significant negative impacts on P. albicaulis rangewide. The species
appears likely to be in danger of extinction, or likely to become so
within the foreseeable future, because of environmental changes
resulting from climate change that are exacerbating other threats,
particularly when viewed in combination with fire suppression, disease,
and predation, that appear to be beyond the natural adaptive
capabilities and tolerances of P. albicaulis.
Summary of Factor A
We analyzed the effects of fire and fire suppression and climate
change as related to the present or threatened destruction,
modification, or curtailment of the habitat or range of Pinus
albicaulis. As identified in our analysis above, fire historically
played an integral role in maintaining healthy stands of P. albicaulis
on the landscape. As a result of past and present fire suppression,
forest stands where P. albicaulis were once prominent have become dense
stands of shade-tolerant conifers. This change in forest composition
and structure combined with the exacerbating environmental effects
resulting from climate change, has resulted in an increase in the
severity, intensity, and frequency of wildfires. We expect that
changing fire regimes and fire suppression efforts that create these
impacts will continue to affect the species into the foreseeable
future. Pinus albicaulis can regenerate, even following stand-replacing
burns, if
[[Page 42639]]
a seed source is available. However, widespread predation and disease
currently impacting P. albicaulis are limiting available seed sources,
reducing the probability of regeneration following increasing wildfire
episodes, and increasing the rate of forest succession.
The pace of predicted effect of climate change will outpace many
plant species' ability to respond to the concomitant habitat changes.
Pinus albicaulis is potentially particularly vulnerable to warming
temperatures because it is adapted to cool, high-elevation habitats.
Therefore, current and anticipated warming is expected to make its
current habitat unsuitable for P. albicaulis. The rate of migration
needed to respond to predicted environmental effects of climate change
will be significant (Malcolm et al. 2002, p. 844-845; McKenney et al.
2007, p. 941). Whether P. albicaulis is capable of migrating at a pace
sufficient to move to areas that may be more favorable to survival
under future habitat conditions is not known. Moreover, the degree to
which Clark's nutcracker could facilitate this migration is also not
known. In addition, the presence of significant white pine blister rust
infection in the northern range of P. albicaulis could serve as a
barrier to effective northward migration. P. albicaulis survives at
high altitudes already, so there is little remaining habitat for the
species to migrate to higher elevations in response to warmer
temperatures. Adaptation in response to a rapidly warming climate also
is unlikely as P. albicaulis is a long-lived species. Climate models
suggest that climate change is expected to act directly to
significantly decrease the probability of rangewide persistence in P.
albicaulis within the next 100 years. This time interval is less than
two generations for this long-lived species. In addition, projected
environmental changes resulting from climate change are a significant
threat to P. albicaulis, because the impacts of these environmental
effects interact with other stressors such as mountain pine beetle
epidemics and wildfire, resulting in habitat loss and population
decline.
On the basis of a review of the best scientific and commercial
information available concerning present threats to Pinus albicaulis
habitat, their synergistic effects, and their likely continuation in
the future, we conclude that the present or threatened destruction,
modification, or curtailment of its habitat or range is a threat to P.
albicaulis.
Factor B. Overutilization for Commercial, Recreational, Scientific, or
Educational Purposes
Commercial Harvest
Pinus albicaulis is not targeted for commercial timber production
in any part of its range (Arno and Hoff 1989, p. 5; COSEWIC 2010, p.
12; Keane et al. 2010, p. 30). At lower elevations where P. albicaulis
occurs with species of commercial interest, some incidental harvest of
P. albicaulis does take place. The average yearly estimated harvest of
P. albicaulis in the United States is less than 405 ha (1,000 ac)
(Losensky 1990 in Keane et al. 2010, p. 30). We have no information to
indicate that harvest is a significant threat to the species or is
contributing to the rangewide decline, or decline in any portion of the
range of P. albicaulis.
Recreational Use
Pinus albicaulis stands are subject to a variety of nonconsumptive
recreational activities including hiking and camping. These activities
have the potential to cause negative impacts in localized areas through
degradation of habitat in areas experiencing overuse. However, we have
no information to indicate that recreational use is a threat to P.
albicaulis.
Scientific and Educational Use
Pinus albicaulis is the subject of many scientific research
studies. Currently, there is significant interest in collecting seed
cones from individuals identified as being resistant to white pine
blister rust. Given the relatively low number of seeds being collected,
it is highly unlikely that seed removal is contributing to P.
albicaulis declines. We have no information to indicate that P.
albicaulis is being used consumptively for educational purposes.
Therefore, the best available scientific information does not indicate
that scientific and educational uses are a significant threat to P.
albicaulis.
Summary of Factor B
We conclude that the best scientific and commercial information
available indicates that overutilization for commercial, recreational,
scientific, or educational purposes is not a threat to Pinus
albicaulis.
Factor C. Disease or Predation
Disease
White Pine Blister Rust
White pine blister rust is a disease of 5-needled pines caused by a
nonnative fungus, Cronartium ribicola (Geils et al. 2010, p. 153). It
was introduced into western North America in 1910 near Vancouver,
British Columbia (McDonald and Hoff 2001, p. 198). White pine blister
rust initially spread rapidly through maritime and montane
environments, which have environmental conditions more conducive to
spread of infection, but over several decades, it spread through
continental and alpine environments throughout western North America
(Geils et al. 2010, p. 163). White pine blister rust's rate and
intensity of spread is influenced by microclimate and other factors
(described below). Therefore, the incidence of white pine blister rust
at stand, landscape, and regional scales varies due to time since
introduction and environmental suitability for its development. It
continues to spread into areas originally considered less suitable for
persistence, and it has become a serious threat, causing severe
population losses to several species of western pines, including Pinus
albicaulis, P. monticola (western white pine), and P. lambertiana
Dougl. (sugar pine) (Schwandt et al. 2010, pp. 226-230). Its current
known geographic distribution in western North America includes all
U.S. States (except Utah, as well as the Great Basin Desert) and
British Columbia and Alberta, Canada (Tomback and Achuff 2010, pp. 187,
206).
The white pine blister rust fungus has a complex life cycle: It
does not spread directly from one tree to another, but alternates
between living primary hosts (i.e., 5-needle pines) and alternate
hosts. Alternate hosts in western North America are typically woody
shrubs in the genus Ribes (gooseberries and currants) but also may
include herbaceous species of the genus Pedicularis (lousewort) and the
genus Castilleja (paintbrush) (McDonald and Hoff 2001, p. 193; McDonald
et al. 2006, p. 73). Ribes is widespread in North America and, while
most species are susceptible to white pine blister rust infection, they
vary in their susceptibility and capability to support innoculum
(spores) that are infective to white pines, depending on factors such
as habitat, topographic location, timing, and environment (Zambino
2010, pp. 265-268). A wide-scale Federal program to eradicate Ribes
from the landscape was conducted from the 1920s to the 1960s. However,
due to the abundance of Ribes shrubs, longevity of Ribes seed in the
soil, and other factors, white pine blister rust continued to spread,
and pathologists realized that eradication was ineffective in
controlling white pine blister rust. White pine blister rust is now
pervasive in high-altitude 5-
[[Page 42640]]
needled pines within most of the western United States (McDonald and
Hoff 2001, p. 201).
White pine blister rust progresses through five spore stages to
complete each generation: Two spore stages occur on white pine (Pinus
spp.), and three stages occur on an alternate host. The five fungal
spore stages require specific temperature and moisture conditions for
production, germination, and dissemination. The spreading of spores
depends on the distribution of hosts, the microclimate, and the
different genotypes of white pine blister rust and hosts (McDonald and
Hoff 2001, pp. 193, 202). Local meteorological conditions also may be
important factors in infection success, infection periodicity, and
disease intensity (Jacobi et al. 2010, p. 41).
On white pines, spores enter through openings in the needle
surface, or stomates, and move into the twigs, branches, and tree
trunk, causing swelling and cankers to form. White pine blister rust
attacks seedlings and mature trees, initially damaging upper canopy and
cone-bearing branches and restricting nutrient flows; it eventually
girdles branches and trunks, leading to the death of branches or the
entire tree (Tomback et al. 2001, p. 15, McDonald and Hoff 2001, p.
195). White pine blister rust can kill small trees within 3 years, and
even one canker can be lethal. While some infected mature trees can
continue to live for decades, their cone-bearing branches typically
die, thereby eliminating the seed source required for reproduction
(Geils et al. 2010, p. 156). In addition, the inner sapwood moisture
decreases, making trees prone to desiccation and secondary attacks by
insects (Six and Adams 2007, p. 351). Death to upper branches results
in lower or no cone production and a reduced likelihood that seed will
be dispersed by Clark's nutcrackers (McKinney and Tomback 2007, p.
1049). Similar to a total loss of cone production, even when cone
production is low there could be a loss of regeneration for two
reasons: (1) Clark's nutcrackers abandon sites with low seed
production; and (2) the proportion of seeds taken by predators becomes
so high that no seeds remain for regeneration (COSEWIC 2010, p. 25).
Each year that an infected tree lives, the white pine blister rust
infecting it continues to produce spores, thereby perpetuating and
intensifying the disease. A wave, or massive spreading, of new blister
rust infections into new areas or intensification from a cumulative
buildup in already-infected stands occurs where Ribes shrubs are
abundant and when summer weather is favorable to spore production and
dispersal. Spores can be produced on pines for many years, and
appropriate conditions need to occur only occasionally for white pine
blister rust to spread and intensify (Zambino 2010, p. 265). The
frequency of wave years depends on various factors, including
elevation, geographical region, topography, wind patterns, temperature,
and genetic variation in the rust (Kendall and Keane 2001, pp. 222-
223).
Because its abundance is influenced by weather and host
populations, white pine blister rust also is affected by climate
change. If conditions become moister, white pine blister rust will
likely increase; conversely, where conditions become both warmer and
drier, it may decrease. Because infection is usually through stomates,
whatever affects the stomates affects infection rates (Kliejunas et al.
2009, pp. 19-20). Stomates close in drought conditions and open more
readily in moist conditions.
In general, weather conditions favorable to the intensification of
white pine blister rust occur more often in climates with coastal
influences than in dry continental climates (Kendall and Keane 2001, p.
223). Due to current climate conditions in western North America, white
pine blister rust now infects Pinus albicaulis populations throughout
all of its range except for the interior Great Basin (Nevada and
adjacent areas) (Tomback and Achuff 2010, Figure 1a, p. 187). However,
the small uninfected area in the Great Basin accounts for only 0.4
percent of P. albicaulis distribution in the United States. The
incidence of white pine blister rust is highest in the Rocky Mountains
of northwestern Montana and northern Idaho, the Olympic and western
Cascade Ranges of the United States, the southern Canadian Rocky
Mountains, and British Columbia's Coastal Mountains (Schwandt et al.
2010, p. 228; Tomback et al. 2001, p. 15).
White Pine Blister Rust Infection Rates
Researchers have used various sampling methods to assess the
effects of white pine blister rust on Pinus albicaulis and the amounts
of infection present; therefore, exact comparisons between studies are
not possible. While white pine blister rust occurs throughout almost
all of P. albicaulis' range, not all trees are infected and infection
rates vary widely. Furthermore, it can be difficult to detect white
pine blister rust, especially if cankers occur on gnarled canopy
branches where infections may remain undetected (Rochefort 2008, p.
294). However, despite slight differences in sampling methods general
trends can be identified from the published literature (Schwandt et al.
2010, p. 228). Trends strongly indicate that white pine blister rust
infections have increased in intensity over time and are now prevalent
even in trees living in cold, dry areas originally considered less
susceptible (Tomback and Resler 2007, p. 399), such as the Greater
Yellowstone Ecosystem (Table 2).
Table 2--Percentage of Live Trees With Blister Rust Infection on Plots/
Transects From Recent Surveys
[Adapted from Schwandt 2006, Table 1, p. 5]
------------------------------------------------------------------------
Geographic region--number of reports Range of
[reference] infection (%) Mean (%)
------------------------------------------------------------------------
British Columbia (rangewide) [Campbell 0-100 50.0
and Antos 2000]........................
British Columbia (rangewide) [Zeglen 11-52.5 38.0
2002]..................................
Northern Rocky Mountains (United States 0-100 43.6
and Canada) [Smith et al. 2006]........
Selkirk Mountains, northern Idaho--5 57-81 70.0
stands [Kegley et al. 2004]............
Colville National Forest, northeast 23-44 41.4
Washington--2 reports [Ward et al.
2006]..................................
Greater Yellowstone Ecosystem [2005].... 0-100 25.0
Intermountain West (Idaho, Nevada, 0-100 35.0
Wyoming, California) [Smith and Hoffman
2000]..................................
Blue Mountains, northeast Oregon [Ward 0-100 64.0
et al. 2006]...........................
Coast Range, Olympic Mountains, 4-49 19.0
Washington--2 reports [Ward et al.
2006)..................................
Western Cascades, Washington and Oregon-- 0-100 32.3
6 reports (Ward et al. 2006]...........
Eastern Cascades, Washington and Oregon-- 0-90 32.3
13 reports [Ward et al. 2006]..........
Coastal Mountains, southwest Oregon 0-100 52.0
[Goheen et al. 2002]...................
[[Page 42641]]
California, Statewide [Maloney and 0-71 11.7
Dunlap 2006]...........................
------------------------------------------------------------------------
While numerous studies have reported the incidence of white pine
blister rust on Pinus albicaulis and subsequent mortality, few have
reported on rates of change. The Greater Yellowstone Whitebark Pine
Monitoring Working Group's monitoring results from resurveys conducted
in 2008-2009 indicated an average of 32.4 percent of live trees had
blister rust, a 12.4 percent increase from their overall 2007 baseline
estimate of 20 percent (Greater Yellowstone Whitebark Pine Monitoring
Working Group 2010, p. 67).
Additional information on trends has been reported for Canada. In
the Canadian Rockies, stands surveyed in 2003 and 2004 had an overall
infection level of 42 percent and 18 percent mortality. These were
remeasured in 2009 and found to have increased to 52 percent infection
and 28 percent mortality (Smith et al. 2010, p. 67). Infection and
mortality from white pine blister rust were present in all stands, with
the highest levels occurring in the southern portions of the study
area. The high mortality and infection levels, high crown kill, and
reduced regeneration potential in the southern portion of their study
area suggests that long-term persistence of P. albicaulis is unlikely
(Smith et al. 2008, p. 982).
Pinus albicaulis infected with white pine blister rust has
increased in all regions of the Canadian Rockies, where it ranged from
7 to 70 percent in 2003-2004 to 13 to 83 percent in 2009. Further,
based on current mortality rates, the estimated P. albicaulis
population decline within 100 years is 78 percent in the Canadian
Rockies, 97 percent in Waterton Lakes National Park, and 57 percent for
all of Canada (COSEWIC 2010, p. viii and Table 4, p. 19). Pinus
albicaulis was designated in April 2010 as endangered in Canada due to
the high risk of extirpation. Based on these studies showing rates of
change in the United States and Canada as well as the plethora of
infection percentage data, we conclude that the trend of white pine
blister rust infection is increasing rangewide.
Genetic Investigations of White Pine Blister Rust Resistance and
Virulence
Genetic research and development on white pine blister rust
resistance may offer the best long-term prospect for control (Kinloch,
Jr. 2003, p. 1045); however, understanding the dynamics of resistance
to white pine blister rust, as well as its virulence and evolution, is
incomplete (Schwandt et al. 2010, p. 241; Richardson et al. 2010, p.
321). In Pinus albicaulis, some rust resistance has been documented on
the landscape and in seeds, suggesting some level of heritable
resistance (Hoff et al. 2001, p. 350; Mahalovich et al. 2006, p. 95). A
limited number of P. albicaulis rust-resistance trials, in which
seedlings are grown from rust-resistant seeds under varying conditions,
have produced progeny seedlings with a range of resistance levels from
0 percent resistance in some areas to more than 40 percent resistance
in other areas (Sniezko 2011, pers. comm.). In the northwestern United
States, where white pine blister rust has infected trees for as long as
60 years or more, P. albicaulis rust-resistance trial results have
indicated a trend of increasing resistance levels from southern Oregon
north to Mount Rainier in Washington (Sniezko 2011, pers. comm.).
Despite some encouraging results in limited trials, efforts are in
early stages. Further, effective rust-resistance breeding programs to
develop P. albicaulis trees for planting will likely take decades (Hoff
et al. 2001, p. 359), and their outcomes are uncertain.
Even if genetic resistance is identified in Pinus albicaulis,
hybridization between different white pine blister rust populations or
mutations within populations could result in genetic variation in
virulence, creating a new assortment of genes and behaviors (McDonald
and Hoff 2001, p. 210). The potential for development of new white pine
blister rust strains between eastern and western North America with
greater virulence, fitness, and aggressiveness is currently unknown
(Schwandt et al. 2010, p. 241). While North American populations of
white pine blister rust have low genetic diversity and differentiation
overall (Richardson et al. 2010, p. 316), rust genotypes with specific
virulence to major resistance genes currently exist in some local
populations at high frequencies (Kinloch, Jr. 2003, p. 1044). The
reintroduction of white pine blister rust from goods imported from
abroad also poses a serious danger to genetic selection and breeding
programs. In Asia, white pine blister rust exists with different
alternate host affinities and also may contain additional genes with
wider virulence (Kinloch, Jr. 2003, pp. 1044, 1046).
Management and Restoration Efforts
Most current management and research focuses on producing white
pines with inherited resistance to white pine blister rust, but also
includes natural regeneration and silvicultural treatments, such as
appropriate site selection and preparation, pruning, and thinning
(Zeglen et al. 2010, p. 347). While genetic management of white pine
blister rust is actively conducted for several 5-needled white pine
species breeding programs, including the USFS' resistance screening
programs for P. albicaulis, these investigations are only preliminary
(King et al. 2010, p. 293).
High-elevation pines such as P. albicaulis also present management
challenges to restoration due to remoteness, difficulty of access, and
conflicting wilderness values (wilderness values are discussed in more
detail under Factor D) (Schwandt et al. 2010, p. 242). Furthermore, the
vast scale at which planting rust-resistant trees would need to occur
will make it challenging to restore P. albicaulis throughout its range.
For example, approximately 5 percent of the historical distribution of
the commercial species Pinus monticola (western white pine) was planted
with resistance-improved stock between 1976 and 1996; however, the
rates of planting have declined since then, and given current rates of
planting, 60 years would now be required to plant an additional 5
percent (Schwandt et al. 2010, pp. 241-242). Therefore, current
planting efforts appear to be insufficient to restore P. albicaulis
throughout its range.
[[Page 42642]]
Model Predictions
Several models have been developed to predict residence times of
white pine blister rust infection and long-term persistence of Pinus
albicaulis. Ettl and Cottone (2004, pp. 36-47) developed a spatial
stage-based model to examine P. albicaulis persistence in the presence
of heavy white pine blister rust infections in Mt. Rainier National
Park. They predicted median time to quasi extinction (population of
less than 100 individuals) is 148 years, which represents approximately
two to three generations of P. albicaulis. The most recent modeling
effort by Hatala et al. (in press) is the first known study of the rate
of blister rust progression and residence time in P. albicaulis. Their
analysis compares four possible white pine blister rust dynamic
infection models in P. albicaulis at the ecosystem scale (Greater
Yellowstone Ecosystem) and predicts that on average, P. albicaulis
trees live with white pine blister rust infection for approximately 20
years before succumbing to the disease. Their model also predicts that,
within all their study sites, an average of 90 percent of the trees
will be infected with white pine blister rust by the year 2013, while
two other models calculated a 90 percent infection level within sites
by the years 2026 and 2033. These results predict white pine blister
rust will continue to spread within P. albicaulis in 10-20 years to a
level where almost all trees will be impacted. Based on these modeling
results, we conclude that, in addition to white pine blister rust
occurring across almost the entire range of P. albicaulis, individual
sites with white pine blister rust infection will continue to increase
and intensify, ultimately resulting in stands that are no longer viable
and potentially facing extirpation.
Summary of White Pine Blister Rust
Despite white pine blister rust's complex life cycle and the
exacting environmental conditions required for reproduction and
transmission, it has successfully spread across almost the entire range
of Pinus albicaulis, and its frequency of occurrence and intensity of
infection are increasing. Although some P. albicaulis regeneration has
been documented in portions of its range, the change in overall P.
albicaulis population structure will reduce the number of large trees,
expose surviving trees to higher white pine blister rust infection
levels, and reduce the number of mature, cone-producing trees. The
likelihood of sustaining P. albicaulis in suitable habitats is further
diminished in locations where populations are small (Schwandt et al.
2010, p. 235). While P. albicaulis trees will continue to persist on
the landscape, P. albicaulis forests may become functionally extinct
(Keane 2011b, pers. comm.). Where additional threats occur, the pattern
of forest renewal may be disrupted, leading to severe declines and
potential extirpation of P. albicaulis (Larson 2009, pp. 45-46).
Therefore, we believe that white pine blister rust is a significant
threat to P. albicaulis.
Predation (Herbivory)
Insect Predation
Pinus albicaulis trees are fed upon by a variety of insects;
however, none has had a more widespread impact than the native mountain
pine beetle (Dendroctonus ponderosae Hopkins). The mountain pine beetle
is recognized as one of the principal sources of P. albicaulis
mortality (Raffa and Berryman 1987, p. 234; Arno and Hoff 1989, p. 7).
Mountain pine beetles are true predators on P. albicaulis and other
western conifers because, to successfully reproduce, the beetles must
kill host trees (Logan and Powell 2001, p. 162; Logan et al. 2010, p.
895). Upon locating a suitable host (i.e., large-diameter tree with
greater resources for brood production success), adult female mountain
pine beetles emit pheromones that attract adult males and other adult
females to the host tree. This attractant pheromone initiates a
synchronized mass attack for the purpose of overcoming the host tree's
defenses to mountain pine beetle predation. Once a tree has been fully
colonized, the beetles produce an anti-aggregation pheromone that
signals to incoming beetles to pass on to nearby unoccupied trees.
Almost all host trees, even stressed individuals, will mount a chemical
defense against these mass attacks. However, given a sufficient number
of beetles, even a healthy tree's defensive mechanisms can be exhausted
(Raffa and Berryman 1987, p. 239). Following the pheromone-mediated
mass attack, male and female mountain pine beetles mate in the phloem
(living vascular tissue) under the bark of the host tree. Females
subsequently excavate vertical galleries where they lay eggs. Larvae
hatched from these eggs feed on the phloem, pupate, and emerge as
adults to initiate new mass attacks of nearby suitable trees (Gibson et
al. 2008, p. 3). Mountain pine beetle development is directly
controlled by temperature. The entire mountain pine beetle life cycle
(from egg to adult) can take between 1 and 2 years depending on ambient
temperatures. Warmer temperatures promote a more rapid development that
facilitates a 1-year life cycle (Amman et al. 1997, p. 4; Gibson et al.
2008, p. 3).
Beetle activity in the phloem mechanically girdles the host tree,
disrupting nutrient and water transport and ultimately killing the host
tree. Additionally, mountain pine beetles carry on their mouthparts
symbiotic blue-stain fungi, which are introduced into the host tree.
These fungi also inhibit water transport and further assist in killing
the host tree (Raffa and Berryman 1987, p. 239; Keane et al. 2010, p.
34).
Mountain pine beetles are considered an important component of
natural forest disturbance (Raffa et al. 2008, p. 502; Bentz et al.
2010, p. 602). At endemic or `natural' levels, mountain pine beetle
remove relatively small areas of trees, changing stand structure and
species composition in localized areas. However, when conditions are
favorable, mountain pine beetle populations can erupt to epidemic
levels and create stand-replacing events that kill 80 to 95 percent of
suitable host trees (Keane et al. 2010, p. 34). Such outbreaks are
episodic, can have a magnitude of impact on the structure of western
forests greater than wildfire (the other major component of natural
forest disturbance), and are often the primary renewal source for
mature stands of western pines (Hicke et al. 2006, p. 1). Mountain pine
beetle outbreaks typically subside only when suitable host trees are
exhausted or temperatures are sufficiently low to kill larvae and
adults (Gibson et al. 2008, p. 2).
The range of mountain pine beetle completely overlaps with the
range of Pinus albicaulis, and mountain pine beetle epidemics affecting
P. albicaulis have occurred throughout recorded history (Keane et al.
2010, p. 34). Recent outbreaks occurred in the 1930s, 1940s, and 1970s,
and numerous `ghost forests' of dead P. albicaulis still dot the
landscape as a result (Arno and Hoff 1989, p. 7; Ward et al. 2006, p.
8).
Despite recorded historical impacts to the species, Pinus
albicaulis has not been considered an important host of mountain pine
beetle in the past. Unlike the lower elevation sites occupied by
mountain pine beetle's primary hosts P. contorta Douglas (lodgepole
pine) and P. ponderosae (ponderosa pine), the high-elevation sites
occupied by P. albicaulis typically have been climatically inhospitable
to mountain pine beetle (Logan and Powell 2001, p. 161). At the low
temperatures typical of high-elevation sites, mountain pine beetle
mostly experience a 2-year life cycle, which is not favorable to
epidemic outbreaks (i.e., eruptive population growth). Warmer
[[Page 42643]]
temperatures promote a 1-year life cycle, which facilitates the
synchronized mass attacks important in overcoming host tree defenses
(Logan and Powell 2001, p. 167).
However, unlike previous epidemics, the current mountain pine
beetle outbreak is having an increasingly significant impact on Pinus
albicaulis (Logan et al. 2003, p. 130; Logan et al. 2010, p. 896). The
reported mortality rates of mostly mature trees (i.e., large-diameter
trees) can be as high as 96 percent (Gibson et al. 2008, p. 9). In 2007
alone, P. albicaulis trees on almost 202,342 ha (500,000 ac) were
killed. At the time this was the highest recorded mountain pine beetle
mortality ever reported for P. albicaulis (Gibson et al. 2008, p. 2).
The number of acres with mountain pine beetle-killed P. albicaulis
trees continues to increase significantly rangewide, and in 2009 P.
albicaulis trees on an estimated 809,371 ha (2,000,000 ac) were killed
(Service 2010).
Trends of environmental effects from climate change have provided
the favorable conditions necessary for the current, unprecedented
mountain pine beetle epidemic in high-elevation communities across the
western United States and Canada (Logan and Powell 2001, p. 167; Logan
et al. 2003, p. 130; Raffa et al. 2008, p. 511). Warming trends have
resulted in not only intensified mountain pine beetle activity in high-
elevation Pinus albicaulis forests, but have resulted in mountain pine
beetle range expansion into more northern latitudes and higher
elevations (Logan and Powell 2003, p. 131; Carroll et al. 2003 in
Gibson et al. 2008, p. 4; Raffa et al. 2008, p. 503; Logan et al. 2010,
p. 895). Winter temperatures are now warm enough for winter survival
for all mountain pine beetle life stages and for maintenance of the 1-
year life cycle that promotes epidemic mountain pine beetle population
levels (Bentz and Schen-Langenheim 2007, p. 47; Logan et al. 2010, p.
896). Along with warmer winter conditions, summers have been drier,
with droughts occurring through much of the range of P. albicaulis
(Bentz et al. 2010, p. 605). Mountain pine beetles frequently target
drought-stressed trees, which are more vulnerable to attack as they are
less able to mount an effective defense against even less dense mass
attacks by mountain pine beetles (Bentz et al. 2010, p. 605). Given
ongoing and predicted environmental effects from climate change, we
expect the expansion of habitat favorable to mountain pine beetle (and
mountain pine epidemics) to continue into the foreseeable future.
Current management and research continue to explore methods to
control mountain pine beetle mainly with the use of the pesticide
Carbaryl and the anti-aggregation pheromone called Verbenone. Both
methods can be effective for limited time periods (Progar 2007, p.
108). However, use of either control method may be prohibitively
expensive and challenging given the scale of mountain pine beetle
outbreaks (i.e., millions of acres) and the inaccessibility of much of
P. albicaulis habitat. Currently these methods are mostly being
suggested for use in targeted protection of high-value trees (e.g.
individuals resistant to white pine blister rust, stands in
recreational areas) rather than as a large-scale restoration tool
(Keane et al. 2010, p. 94). Therefore, these control methods are not
currently sufficient to protect the species as a whole from mountain
pine beetle predation.
Summary of Predation
Mountain pine beetle outbreaks are becoming more common throughout
the range of the whitebark pine and are having increasingly significant
impacts on Pinus albicaulis. In some locations, mortality rates are as
high as 96 percent. There are no known ways to stop a mountain pine
beetle epidemic once it has started (Raffa et al. 2008, p. 514).
Mountain pine beetle epidemics typically subside when the availability
of suitable hosts is exhausted. In a worst-case scenario, there could
be 95 percent mortality of mostly cone-bearing (i.e., reproductive)
adults by the time the current epidemic collapses (Keane et al. 2010,
p. 35). Therefore, we expect the ongoing epidemic to continue to
intensify and expand in the future. Additionally, we expect ongoing and
predicted environmental effects from climate change (see Factor A,
Climate Change) to create more favorable conditions for mountain pine
beetle outbreaks to persist in P. albicaulis habitats into the
foreseeable future.
Synergistic Interactions Between Disease and Predation
White pine blister rust and mountain pine beetle act both
individually and synergistically to threaten Pinus albicaulis
rangewide. Mountain pine beetle will preferentially attack P.
albicaulis infected with, and weakened by, white pine blister rust (Six
and Adams 2007, p. 351). This preference results in increased
susceptibility of P. albicaulis to mountain pine beetle-caused
mortality. Mountain pine beetles and white pine blister rust also
interact in other ways that threaten P. albicaulis regeneration and
persistence. Mountain pine beetles preferentially target large mature
trees. As a result, large trees are removed from populations, leaving
smaller trees for regeneration in a less competitive environment.
Unfortunately, white pine blister rust is not selective and infects all
age and size classes of P. albicaulis. Thus, in the current environment
that contains epidemic levels of mountain pine beetle and a nearly
ubiquitous presence of white pine blister rust, P. albicaulis that have
escaped mountain pine beetle mortality are still susceptible to white
pine blister rust, and the possibility of regeneration following
mountain pine beetle epidemics is jeopardized. Conversely, the small
percentage of P. albicaulis individuals that are genetically resistant
to white pine blister rust, and thus critical to species persistence,
are still vulnerable to mountain pine beetle attack.
White pine blister rust and mountain pine beetle further impact the
probability of P. albicaulis regeneration because both act to severely
decrease seed cone production. White pine blister rust does this by
killing cone-bearing branches, such that even if the tree itself
remains alive for some time, seed production is compromised. Mountain
pine beetles decrease seed production by targeting and killing larger
trees, which are the main trees that bear cones. A severe reduction in
seed production has the potential to limit the effectiveness of the
masting strategy employed by P. albicaulis (see Taxonomy and Life
History), such that the proportion of seeds taken by seed predators
will eventually become too high to allow regeneration. Additionally,
severe seed reduction disrupts the relationship between P. albicaulis
and Clark's nutcracker. Clark's nutcrackers eventually abandon P.
albicaulis stands when seed production is too low (McKinney et al.
2009, p. 599).
Limited research has focused on detecting amounts of Pinus
albicaulis regeneration. Most remaining high-elevation P. albicaulis
stands in the U.S. Intermountain West that are climax communities have
little regeneration (Kendall and Keane 2001b, p. 228). In contrast, new
and advanced P. albicaulis regeneration was documented on the majority
of plots in southwestern Montana and eastern Oregon, indicating that
the Wallowa and Pioneer Mountains sites seem to be more vigorous and to
be regenerating better than sites farther north in the Rockies (Larson
2007, pp. 16-18). However, there is much P. albicaulis site
[[Page 42644]]
variability and the regeneration on some of these sites was preceded by
a particularly large cone crop in 2006. In addition, as seedlings grow,
their increased foliage surface area becomes a larger target for
infection by white pine blister rust spores (Tomback et al. 1995, p.
662). Therefore, despite observed regeneration, the level of effective
regeneration (i.e., seedlings that actually reach a reproductive age)
is questionable given the high incidence of white pine blister rust
currently on the landscape. We conclude that P. albicaulis regeneration
will generally be less successful in the future than it has been in the
past.
Summary of Factor C
Disease in the form of white pine blister rust and predation from
mountain pine beetle are contributing, individually and in combination,
to the decline of Pinus albicaulis rangewide. White pine blister rust
is now ubiquitous on the landscape; millions of acres (hectares) of P.
albicaulis have been infected, and that number is increasing yearly.
Due to the warmer temperatures and drier conditions brought on by
climate change within the range of P. albicaulis, mountain pine beetle
epidemics now occur at unprecedented levels, causing mortality in
millions of acres (hectares) of P. albicaulis, much of which was
previously thought to be mostly climatically immune from large-scale
mountain pine beetle attacks. Additionally, the interaction between
white pine blister rust and the mountain pine beetle further
intensifies the impact of both threats. White pine blister rust and
mountain pine beetle are impacting P. albicaulis equally in both Canada
and the U.S. portion of the range. In other words, there is currently
no refuge from these threats (COSEWIC 2010, p. viii).
There is no known way to control or reduce or eliminate either
threat at this time, particularly at the landscape scale needed to
effectively conserve this species. Thus, we expect both disease and
predation to continue to heavily impact Pinus albicaulis. On the basis
of a review of the best scientific and commercial information available
concerning present threats to P. albicaulis from white pine blister
rust and mountain pine beetle, their synergistic effects, and their
likely continuation in the future, we conclude that disease and
predation is a threat to P. albicaulis.
Factor D. The Inadequacy of Existing Regulatory Mechanisms
In determining whether the inadequacy of existing regulatory
mechanisms constitutes a threat to Pinus albicaulis, we focused our
analysis on existing Federal, State, and Canadian laws and regulations
that apply to P. albicaulis habitats and could potentially address the
four main threats to the species--the loss of habitat from fire
suppression and the environmental effects of climate change under
Factor A and mortality from white pine blister rust and mountain pine
beetle under Factor C. Regulatory mechanisms may preclude the need for
listing if such mechanisms are judged to adequately address the
threat(s) to the species such that listing is not warranted.
Conversely, threats on the landscape are exacerbated when not addressed
by existing regulatory mechanisms, or when the existing mechanisms are
inadequate (or not adequately implemented or enforced).
Federal Laws and Regulations
More than 96 percent of the distribution of Pinus albicaulis in the
contiguous United States is federally owned or managed (Service 2011,
p. 1), 34 percent of which is designated as wilderness.
The Wilderness Act of 1964
The USFS and other Federal agencies manage lands designated as
wilderness areas under the Wilderness Act of 1964 (16 U.S.C. 1131-
1136). Within these areas, the Wilderness Act states the following: (1)
New or temporary roads cannot be built; (2) there can be no use of
motor vehicles, motorized equipment, or motorboats; (3) there can be no
landing of aircrafts; (4) there can be no form of mechanical transport;
and (5) no structure or installation may be built. Considerable amounts
of Pinus albicaulis occur within wilderness areas managed by the USFS
and NPS (31 percent and 2.5 percent of the total United States
distribution, respectively) (Service 2011, p. 1) and, therefore, are
afforded protection from direct loss or degradation by some human
activities (e.g., commercial timber harvest, road construction, some
fire management actions).
Conversely, the regulations covering wilderness areas on Federal
lands also may impede or restrict potential activities necessary for
restoring P. albicaulis (Aubry 2011, pers. comm.; Reinhart 2010, pers.
comm.). Currently, there are inconsistent policy interpretations across
wilderness areas (Schwandt 2011, pers. comm.). Consequently, Federal
agencies are engaged in ongoing discussions regarding whether
restoration of P. albicaulis in wilderness areas is appropriate, and if
so, what types of actions would be allowed. Taking action on P.
albicaulis restoration in wilderness areas could compromise the
``untrammeled'' value of wilderness, but not taking action may
compromise the ``naturalness'' value of wilderness by allowing the
extirpation of a keystone species. If restoration actions are not
restricted under the Wilderness Act, they would likely be limited
(Reinhart 2011, pers. comm.). To date, limited surveys and monitoring
of P. albicaulis trees and cone collecting for seeds have occurred in
wilderness areas (Schwandt 2011, pers. comm.). While the Wilderness Act
may allow for some restoration actions, it does not directly address or
alleviate the threats of environmental effects resulting from climate
change, white pine blister rust, mountain pine beetle, or fire
suppression. The Wilderness Act does influence some fire management
actions, which are described under Federal Wildland Fire Management
Policies, Plans, and Guides below.
National Environmental Policy Act of 1970
All Federal agencies are required to adhere to the National
Environmental Policy Act (NEPA) of 1970 (42 U.S.C. 4321 et seq.) for
projects they fund, authorize, or carry out. The Council on
Environmental Quality's regulations for implementing NEPA (40 CFR 1500-
1518) state that agencies shall include a discussion on the
environmental impacts of the various project alternatives (including
the proposed action), any adverse environmental effects that cannot be
avoided, and any irreversible or irretrievable commitments of resources
involved (40 CFR 1502). Additionally, activities on non-Federal lands
are subject to NEPA if there is a Federal nexus. Since NEPA is a
disclosure law, it does not require subsequent minimization or
mitigation measures by the Federal agency involved. Although Federal
agencies may include conservation measures for Pinus albicaulis as a
result of the NEPA process, any such measures are typically voluntary
in nature and are not required by the statute. As NEPA does not provide
any regulatory mechanisms, it does not directly address or alleviate
the threats of the environmental effects resulting from climate change,
white pine blister rust, mountain pine beetle, or fire suppression.
[[Page 42645]]
National Forest Management Act of 1976
Under the National Forest Management Act (NFMA) of 1976, as
amended, (16 U.S.C. 1600-1614), the USFS manages National Forest lands
based on multiple-use, sustained-yield principles, and implement
resource management plans to provide for a diversity of plant and
animal communities. As such, individual forests may identify species of
concern that are significant to each forest's biodiversity. The USFS
recognizes the decline of Pinus albicaulis and is developing various
strategies that focus on restoration, including the Pacific Northwest
Region's Restoration Strategy, individual forest action strategies
(Aubry et al. 2008, entire), and the Rocky Mountain Research Station's
draft General Technical Report, ``A Range-wide Restoration Strategy for
Whitebark Pine (Pinus albicaulis)'' (Keane et al. 2010, entire). The
latter report may provide the most effective rangewide restoration
strategy available because it integrates the genetics, pathology, and
ecology of P. albicaulis.
The USFS also implements P. albicaulis restoration and management
activities (stand thinning, pruning, fire management) on non-wilderness
lands, although P. albicaulis forests are generally not accessed for
commercial forestry commodity extraction and, therefore, tend to be
excluded from most stand improvement actions. The USFS has, along with
university researchers and others, made important strides in
understanding the white pine blister rust pathosystem and mountain pine
beetle life history, researching and propagating rust-resistant P.
albicaulis seeds and seedlings, and developing strategic plans. Their
efforts are encouraging and may provide some benefit to the species at
local scales, but these efforts under the NFMA do not directly address
or alleviate the threats from the environmental effects resulting from
climate change, white pine blister rust, mountain pine beetle, or fire
suppression at the rangewide level of the species.
National Park Service Organic Act of 1916
The NPS Organic Act of 1916 (16 U.S.C. 1 et seq.) as amended,
states that the NPS ``shall promote and regulate the use of the Federal
areas known as national parks, monuments, and reservations to conserve
the scenery and national and historic objects and the wildlife therein
and to provide for the enjoyment of the same in such manner and by such
means as will leave them unimpaired for the enjoyment of future
generations.'' Where Pinus albicaulis occurs in National Parks, the NPS
Organic Act directs the NPS to address P. albicaulis and its health. As
such, the NPS has made considerable efforts to survey and monitor P.
albicaulis stands and identify white pine blister rust infection
levels. While the NPS makes certain that natural processes will occur,
such as natural P. albicaulis regeneration, they may actively intervene
when natural ecological processes are not adequately functioning. In
the case of P. albicaulis, intervention could include restoration
actions, and these actions would likely mimic criteria provided under
the Wilderness Act (D. Reinhart 2011, pers. comm.). While the NPS
Organic Act directs the NPS to address P. albicaulis health, it does
not provide mechanisms that directly address or alleviate the threats
from the environmental effects associated with climate change, white
pine blister rust, mountain pine beetle, or fire suppression.
Clean Air Act of 1970
As explained under Factor A, warming temperatures are expected to
result in direct habitat loss and are also currently causing an
increase in populations of the predatory mountain pine beetle resulting
in significant mortality rangewide. The Clean Air Act of 1970 (42
U.S.C. 7401 et seq.), as amended, requires the Environmental Protection
Agency (EPA) to develop and enforce regulations to protect the general
public from exposure to airborne contaminants that are known to be
hazardous to human health. In 2007, the Supreme Court ruled that gases
that cause global warming are pollutants under the Clean Air Act and
that the EPA has the authority to regulate carbon dioxide and other
heat-trapping gases (Massachusetts et al. v. EPA 2007 [Case No. 05-
1120]).
The EPA published a regulation to require reporting of greenhouse
gas emissions from fossil fuel suppliers and industrial gas suppliers,
direct greenhouse gas emitters, and manufacturers of heavy-duty and
off-road vehicles and engines (74 FR 56260; October 30, 2009). The
rule, effective December 29, 2009, does not require control of
greenhouse gases; rather it requires only that sources above certain
threshold levels monitor and report emissions. On December 7, 2009, the
EPA found under section 202(a) of the Clean Air Act that the current
and projected concentrations of six greenhouse gases in the atmosphere
threaten public health and welfare. EPA's finding itself does not
impose requirements on any industry or other entities, but is a
prerequisite for any future regulations developed by the EPA. At this
time, it is not known what regulatory mechanisms will be developed in
the future as an outgrowth of EPA's finding or how effective they would
be in addressing climate change. Therefore, the Clean Air Act and its
existing implementing regulations do not currently provide regulatory
mechanisms relevant to threats from the environmental effects
associated with climate change, and the synergistic interactions with
white pine blister rust, mountain pine beetle, or fire suppression.
Federal Wildland Fire Management Policies, Plans, and Guides
A variety of Federal fire management policies, plans, and
implementation guides have been developed to both standardize
interagency procedures and provide for a full spectrum of fire
management options, including suppression and allowing some fires to
function in their natural ecological role. Federal Land and Resource
Management Plans also incorporate fire management, including use of
prescribed fire, and typically provide more detailed guidance for
individual agency units, such as a National Forest. These planning and
implementation documents have the potential to benefit the species.
However, these documents are typically broad in scope allowing a wide
degree of latitude in potential fire management actions. We do not have
information to indicate that fire management policies are currently
being used in a way that alleviates the threat of fire suppression
rangewide or contain fire use prescriptions that could protect Pinus
albicaulis. Therefore, at this time we conclude that current fire
management policies are inadequate to reduce or eliminate the threat of
fire suppression across the entire range of P. albicaulis.
State Laws and Regulations
Pinus albicaulis generally has not been tracked by State wildlife
or natural heritage programs in States where the species occurs.
NatureServe's last status review revision of P. albicaulis (October
2008) ranked it as a G3 species, which means the species is vulnerable
across its entire range (NatureServe 2010, p. 1; NatureServe 2011, p.
2). State rankings include Idaho (S4, apparently secure), Montana (S4,
apparently secure), Oregon (S4, apparently secure), and Wyoming (S3,
vulnerable), and Washington, which recently elevated P. albicaulis to
S3 (vulnerable) (Arnett 2011, pers. comm.). California and
[[Page 42646]]
Nevada have not ranked the species. However, these rankings do not
grant P. albicaulis any special status under any State legislation
(NatureServe 2010, p. 1; NatureServe 2011, p. 2). The individual State
rankings of S4 (apparently secure) are contrary to what the most
current data suggest, that is, that P. albicaulis is declining
rangewide. A very minimal amount of the whitebark pine range is known
to occur on State lands. We do not know of any existing State laws or
regulations that address or alleviate impacts from white pine blister
rust, mountain pine beetle, or fire suppression. Additionally, we are
not aware of any State laws or regulations that address the
environmental effects resulting from climate change.
Canadian Federal and Provincial Laws and Regulations
The Committee on the Status of endangered Wildlife in Canada
recently designated Pinus albicaulis as Endangered due to the high risk
of extirpation and recommended the species be protected under Canada's
Species at Risk Act (SARA) (COSEWIC 2010, p. iii). While listing a
species under SARA may provide some benefits, such as providing
official recognition, it provides no legal protection. In addition, it
applies only to Federal lands, and most of P. albicaulis' distribution
in Canada occurs on non-Federal lands (most public lands, or Crown
lands, are under provincial jurisdiction). At the provincial level, in
Alberta, P. albicaulis is currently ranked as S2 (imperiled) and
assessed as Endangered under the Alberta Wildlife Act, and in British
Columbia, it's ranked as S3 (special concern/vulnerable) and blue-
listed (species of special concern) (Wilson 2007, p. 1; Environment
Canada 2010, p. 71; COSEWIC 2010, p. 30). However, these rankings and
assessments do not provide legal protections and only suggest voluntary
conservation measures. Parks Canada has initiated conservation efforts
including monitoring, prescribed fire, white pine blister rust-
resistant tree identification, seed collection, and use of pheromones
to protect apparent blister rust-resistant trees from mountain pine
beetle attack (Wilson 2007, pp. 12-13). The provincial designations
likely benefit the species and raise public awareness; however, they
provide no legal protections, as conservation measures are largely
voluntary.
Summary of Factor D
We examined a number of existing regulatory mechanisms that have
the potential to address current and projected threats to Pinus
albicaulis populations. The majority of P. albicaulis habitat in the
United States occurs on Federal lands, where Federal agencies have
broad regulatory authority to plan and manage land use activities,
including timber harvest, recreation, and a variety of other actions.
Some management activities have the potential to benefit P. albicaulis
and its habitat. However, in our review of existing regulatory
mechanisms, only the policies related to Federal Wildland Fire
Management Policies, Plans, and Guides directly address any of the four
main threats to the species identified in this document. Specifically,
these policies have the potential to reduce or eliminate threats to P.
albicaulis from fire suppression. However, at this time we find that
these policies are inadequate to address this threat.
In summary, the existing regulatory mechanisms currently in place
throughout the range of P. albicaulis are inadequate to reduce or
eliminate any of the four main threats to the species identified
above--the loss of habitat from fire suppression and the exacerbating
environmental effects of climate change under Factor A, and mortality
from white pine blister rust and mountain pine beetle under Factor C.
Therefore, based on our review of the best scientific and commercial
information available, we conclude that existing regulatory mechanisms
are inadequate to protect P. albicaulis or its habitat.
Factor E. Other Natural or Manmade Factors Affecting Its Continued
Existence
We did not identify any other natural or manmade factors that are
likely to significantly threaten the existence of the species.
Therefore, we conclude that the best scientific and commercial
information available indicates that P. albicaulis is not threatened by
other natural or manmade factors affecting its continued existence.
Finding
As required by the Act, we conducted a review of the status of the
species and considered the five factors in assessing whether Pinus
albicaulis is threatened or endangered throughout all or a significant
portion of its range or likely to become so within the foreseeable
future. We examined the best scientific and commercial information
available regarding the past, present, and future threats faced by P.
albicaulis. We reviewed the petition, information available in our
files, other available published and unpublished information, and we
consulted with P. albicaulis experts and other Federal, State, and
tribal agencies. In considering what factors might constitute threats,
we must look beyond the mere exposure of the species to the factor to
determine whether the species responds to the factor in a way that
causes actual impacts to the species. If there is exposure to a factor,
but no response, or only a positive response, that factor is not a
threat.
If there is exposure and the species responds negatively, the
factor may be a threat and we then attempt to determine how significant
a threat it is. If the threat is significant, it may drive or
contribute to the risk of extinction of the species such that the
species warrants listing as threatened or endangered as those terms are
defined by the Act. This does not necessarily require empirical proof
of a threat. The combination of exposure and some corroborating
evidence of how the species is likely impacted could suffice. The mere
identification of factors that could impact a species negatively is not
sufficient to compel a finding that listing is appropriate; we require
evidence that these factors are operative threats that act on the
species to the point that the species meets the definition of
threatened or endangered under the Act.
This status review identified threats to Pinus albicaulis
attributable to Factors A, C, and D. The primary threat to the species
is from disease (Factor C) in the form of the nonnative white pine
blister rust and its interaction with other threats. We found that
white pine blister rust is now nearly ubiquitous throughout the range
of P. albicaulis. White pine blister rust results in the mortality of
an overwhelming majority of infected individuals, and all age classes
of trees are susceptible. Seedlings are killed rapidly, and while some
mature individuals may persist on the landscape for decades following
infection, white pine blister rust typically kills seedcone-bearing
branches. White pine blister rust has impacted millions of acres
(hectares) of P. albicaulis. Currently, colder, drier areas of the
range that were originally thought to be less susceptible to the
disease are now showing considerable rates of infection. Based on
current mortality rates, the estimated population decline for the
northern 56 percent of the range (i.e., Canada), is expected to be 57
percent within 100 years, which is less than two generations for this
species (COSEWIC 2010, pp. viii, 19). However, that is likely an
underestimate, as it assumes current mortality rates remain constant.
[[Page 42647]]
After examining information collected on the incidence of white
pine blister rust, we conclude that white pine blister rust will
continue to intensify and kill Pinus albicaulis throughout its entire
range. The remainder of the range (i.e., United States) is experiencing
similar rates of mortality, and thus we anticipate a decline similar to
that estimated for the northern portion of the range (Canada). A small
percentage of genetic resistance to white pine blister rust is present
in P. albicaulis on the landscape, and research is currently being
conducted to identify and propagate resistant individuals. However,
these programs are still in the early stages and an effective breeding
program will take decades, if it can be achieved at all.
Pinus albicaulis also is currently experiencing significant
mortality from predation (Factor C) by the native mountain pine beetle.
Millions of acres (hectares) of P. albicaulis have been lost in this
decade (i.e., late 1990's to 2011), and we expect that number to
continue to increase. For the last decade in particular, warming
temperatures have facilitated large mountain pine beetle outbreaks even
in areas of P. albicaulis habitat that were previously thought to
inhibit epidemic levels of mountain pine beetle. Given projected
warming trends, we conclude that conditions will remain favorable for
epidemic levels of mountain pine beetle to continue into the
foreseeable future.
We also anticipate that continuing environmental effects resulting
from climate change will result in direct habitat loss (Factor A) for
Pinus albicaulis, a high-elevation species occurring only in cool
mountaintop habitats. Bioclimatic models predict that suitable habitat
for P. albicaulis will decline precipitously within the next 100 years.
Research indicates that northern migration of P. albicaulis is a
possible, but unlikely, response to the projected rate of warming
climatic conditions. Additionally, the presence of white pine blister
rust on the northern portions of the range could potentially impede
effective migration. Adaptation to a rapidly warming climate also seems
unlikely for a species that has an estimated generation time of 60
years.
Past and ongoing fire suppression is also negatively impacting
populations of Pinus albicaulis through direct habitat loss (Factor A).
Many stands of trees once dominated by P. albicaulis are now dense
stands of shade-tolerant conifers. This change in forest structure and
composition facilitates an increased frequency and intensity of
wildfire and an increased susceptibility to predation and disease.
Additionally, environmental changes resulting from changing climatic
conditions are acting alone and in combination with the effects of fire
suppression to increase the frequency and severity of wildfires. P.
albicaulis could potentially regenerate following even stand-replacing
wildfires, if an available seed source is available. However,
widespread predation and disease currently impacting P. albicaulis are
limiting available seed sources, making the probability of regeneration
following wildfire less likely.
In our analysis of Factor D, we examined several Federal mechanisms
that could potentially address the threats to Pinus albicaulis. These
mechanisms may be useful in minimizing the adverse effects to P.
albicaulis from potential stressors such as commercial harvest or
habitat destruction and degradation from road construction; however,
none of these potential stressors rises to the level of a threat to P.
albicaulis. None of the existing regulatory mechanisms we examined
provide adequate protection to P. albicaulis from stressors that rise
to the level of a threat, including white pine blister rust, mountain
pine beetles, the exacerbating effects of environmental change
resulting from changing climatic conditions, and fire suppression.
Thus, we concluded that the existing regulatory mechanisms are
inadequate to address the threats presented above.
In summary, the primary threat to the species is from disease
(Factor C) in the form of the nonnative white pine blister rust and its
interaction with other threats. Pinus albicaulis is also threatened by
significant mortality from predation (Factor C) by the native mountain
pine beetle. Past and ongoing fire suppression is also negatively
impacting populations of P. albicaulis through direct habitat loss
(Factor A). Environmental effects resulting from climate change also
threaten the species through direct habitat loss (Factor A) and by
exacerbating the effects of some of the other threats. Also, the
existing regulatory mechanisms (Factor D) are inadequate to protect P.
albicaulis or its habitat. Therefore, based on the threats described
above attributable to Factors A, C, and D, we believe P. albicaulis is
in danger of extinction, or likely to become so in the foreseeable
future, throughout all or a significant portion of its range.
On the basis of the best scientific and commercial information
available, we find that the petitioned action to list Pinus albicaulis
rangewide is warranted. We will make a determination on the status of
the species as threatened or endangered when we do a proposed listing
determination. However, as explained in more detail below, an immediate
proposal of a regulation implementing this action is precluded by
higher priority listing actions, and progress is being made to add or
remove qualified species from the Lists of Endangered and Threatened
Wildlife and Plants.
We reviewed the available information to determine if the existing
and foreseeable threats render the species at risk of extinction now
such that issuing an emergency regulation temporarily listing the
species under section 4(b)(7) of the Act is warranted. We determined
that issuing an emergency regulation temporarily listing the species is
not warranted for this species at this time, because the threats acting
on the species are not impacting the entire species across its range to
the point where the species will be immediately lost. However, if at
any time we determine that issuing an emergency regulation temporarily
listing Pinus albicaulis is warranted, we will initiate this action at
that time.
Listing Priority Number
The Service adopted guidelines on September 21, 1983 (48 FR 43098)
to establish a rational system for utilizing available resources for
the highest priority species when adding species to the Lists of
Endangered or Threatened Wildlife and Plants or reclassifying species
listed as threatened to endangered status. These guidelines, titled
``Endangered and Threatened Species Listing and Recovery Priority
Guidelines'' address the immediacy and magnitude of threats, and the
level of taxonomic distinctiveness by assigning priority in descending
order to monotypic genera (genus with one species), full species, and
subspecies (or equivalently, distinct population segments of
vertebrates). We assigned Pinus albicaulis a Listing Priority Number
(LPN) of 2 based on our finding that the species faces threats that are
of high magnitude and are imminent. The main threats to P. albicaulis
include disease and predation, and the present or threatened
destruction, modification, or curtailment of its habitat due to
environmental changes and exacerbating effects of climate change and
fire and fire suppression. A secondary threat is caused by the
inadequacy of existing regulatory mechanisms. This is the highest
priority that can be provided to a species under our guidance. Our
rationale for assigning P. albicaulis an LPN of 2 is outlined below.
[[Page 42648]]
Under the Service's LPN Guidance, the magnitude of threat is the
first criterion we look at when establishing a listing priority. The
guidance indicates that species with the highest magnitude of threat
are those species facing the greatest threats to their continued
existence. These species receive the highest listing priority. The
threats that face Pinus albicaulis are high in magnitude because the
major threats (disease, predation, environmental changes and
exacerbating effects of climate change, fire and fire suppression)
occur throughout all of the species' range and are having a
demonstrable effect on the species. The primary threat, white pine
blister rust, currently occurs throughout all of the range of P.
albicaulis except for the interior Great Basin, which accounts for only
0.4 percent of P. albicaulis distribution in the United States. The
incidence of white pine blister rust is highest in the Rocky Mountains
of northwestern Montana and northern Idaho, the Olympic and western
Cascade Ranges of the United States, the southern Canadian Rocky
Mountains, and British Columbia's Coastal Mountains. Trends strongly
indicate that white pine blister rust infections have increased in
intensity over time and are now prevalent in even drier and colder
areas originally considered less susceptible to infection. The other
major threats, predation, fire and fire suppression, and environmental
effects of climate change, which exacerbate some of the threats, also
occur throughout the entire range and have resulted in significant loss
of whitebark pine. We anticipate these threats to continue to impact P.
albicaulis into the foreseeable future.
Under our LPN Guidance, the second criterion we consider in
assigning a listing priority is the immediacy of threats. This
criterion is intended to ensure that the species that face actual,
identifiable threats are given priority over those for which threats
are only potential or that are intrinsically vulnerable but are not
known to be presently facing such threats. The threats are imminent
because rangewide disease, predation, fire and fire suppression, and
environmental effects of climate change are affecting Pinus albicaulis
currently and are expected to continue and likely intensify in the
foreseeable future. These actual, identifiable threats are covered in
detail under the discussion of Factors A and C of this finding and
currently include mortality from white pine blister rust, predation by
mountain pine beetle, fire and fire suppression, and environmental
effects of climate change. Trends indicate that these threats are
currently having a significant negative impact on P. albicaulis.
Attempts to control white pine blister rust and mountain pine beetle
have been ineffective, and we believe both threats will have
increasingly negative impacts on P. albicaulis into the foreseeable
future.
The third criterion in our LPN guidance is intended to devote
resources to those species representing highly distinctive or isolated
gene pools as reflected by taxonomy. Pinus albicaulis is a valid taxon
at the species level and, therefore, receives a higher priority than a
subspecies, but a lower priority than species in a monotypic genus. P.
albicaulis faces high-magnitude, imminent threats, and is a valid taxon
at the species level. Thus, in accordance with our LPN guidance, we
have assigned P. albicaulis an LPN of 2.
We will continue to monitor the threats to Pinus albicaulis, and
the species' status on an annual basis, and should the magnitude or the
imminence of the threats change, we will revisit our assessment of the
LPN.
Work on a proposed listing determination for the Pinus albicaulis
is precluded by work on higher priority listing actions with absolute
statutory, court-ordered, or court-approved deadlines and final listing
determinations for those species that were proposed for listing with
funds from Fiscal Year 2010. This work includes all the actions listed
in the tables below under expeditious progress.
Preclusion and Expeditious Progress
Preclusion is a function of the listing priority of a species in
relation to the resources that are available and the cost and relative
priority of competing demands for those resources. Thus, in any given
fiscal year (FY), multiple factors dictate whether it will be possible
to undertake work on a listing proposal regulation or whether
promulgation of such a proposal is precluded by higher-priority listing
actions.
The resources available for listing actions are determined through
the annual Congressional appropriations process. The appropriation for
the Listing Program is available to support work involving the
following listing actions: Proposed and final listing rules; 90-day and
12-month findings on petitions to add species to the Lists of
Endangered and Threatened Wildlife and Plants (Lists) or to change the
status of a species from threatened to endangered; annual
``resubmitted'' petition findings on prior warranted-but-precluded
petition findings as required under section 4(b)(3)(C)(i) of the Act;
critical habitat petition findings; proposed and final rules
designating critical habitat; and litigation-related, administrative,
and program-management functions (including preparing and allocating
budgets, responding to Congressional and public inquiries, and
conducting public outreach regarding listing and critical habitat). The
work involved in preparing various listing documents can be extensive
and may include, but is not limited to: Gathering and assessing the
best scientific and commercial data available and conducting analyses
used as the basis for our decisions; writing and publishing documents;
and obtaining, reviewing, and evaluating public comments and peer
review comments on proposed rules and incorporating relevant
information into final rules. The number of listing actions that we can
undertake in a given year also is influenced by the complexity of those
listing actions; that is, more complex actions generally are more
costly. The median cost for preparing and publishing a 90-day finding
is $39,276; for a 12-month finding, $100,690; for a proposed rule with
critical habitat, $345,000; and for a final listing rule with critical
habitat, $305,000.
We cannot spend more than is appropriated for the Listing Program
without violating the Anti-Deficiency Act (see 31 U.S.C.
1341(a)(1)(A)). In addition, in FY 1998 and for each fiscal year since
then, Congress has placed a statutory cap on funds that may be expended
for the Listing Program, equal to the amount expressly appropriated for
that purpose in that fiscal year. This cap was designed to prevent
funds appropriated for other functions under the Act (for example,
recovery funds for removing species from the Lists), or for other
Service programs, from being used for Listing Program actions (see
House Report 105-163, 105th Congress, 1st Session, July 1, 1997).
Since FY 2002, the Service's budget has included a critical habitat
subcap to ensure that some funds are available for other work in the
Listing Program (``The critical habitat designation subcap will ensure
that some funding is available to address other listing activities''
(House Report No. 107-103, 107th Congress, 1st Session, June 19,
2001)). In FY 2002 and each year until FY 2006, the Service has had to
use virtually the entire critical habitat subcap to address court-
mandated designations of critical habitat, and consequently none of the
critical habitat subcap funds have been available for other listing
activities. In
[[Page 42649]]
some FYs since 2006, we have been able to use some of the critical
habitat subcap funds to fund proposed listing determinations for high-
priority candidate species. In other FYs, while we were unable to use
any of the critical habitat subcap funds to fund proposed listing
determinations, we did use some of this money to fund the critical
habitat portion of some proposed listing determinations so that the
proposed listing determination and proposed critical habitat
designation could be combined into one rule, thereby being more
efficient in our work. At this time, for FY 2011, we plan to use some
of the critical habitat subcap funds to fund proposed listing
determinations.
We make our determinations of preclusion on a nationwide basis to
ensure that the species most in need of listing will be addressed first
and also because we allocate our listing budget on a nationwide basis.
Through the listing cap, the critical habitat subcap, and the amount of
funds needed to address court-mandated critical habitat designations,
Congress and the courts have in effect determined the amount of money
available for other listing activities nationwide. Therefore, the funds
in the listing cap, other than those needed to address court-mandated
critical habitat for already listed species, set the limits on our
determinations of preclusion and expeditious progress.
Congress identified the availability of resources as the only basis
for deferring the initiation of a rulemaking that is warranted. The
Conference Report accompanying Public Law 97-304 (Endangered Species
Act Amendments of 1982), which established the current statutory
deadlines and the warranted-but-precluded finding, states that the
amendments were ``not intended to allow the Secretary to delay
commencing the rulemaking process for any reason other than that the
existence of pending or imminent proposals to list species subject to a
greater degree of threat would make allocation of resources to such a
petition [that is, for a lower-ranking species] unwise.'' Although that
statement appeared to refer specifically to the ``to the maximum extent
practicable'' limitation on the 90-day deadline for making a
``substantial information'' finding, that finding is made at the point
when the Service is deciding whether or not to commence a status review
that will determine the degree of threats facing the species, and
therefore the analysis underlying the statement is more relevant to the
use of the warranted-but-precluded finding, which is made when the
Service has already determined the degree of threats facing the species
and is deciding whether or not to commence a rulemaking.
In FY 2011, on April 15, 2011, Congress passed the Full-Year
Continuing Appropriations Act (Pub. L. 112-10) which provides funding
through September 30, 2011. The Service has $20,902,000 for the listing
program. Of that, $9,472,000 is being used for determinations of
critical habitat for already listed species. Also $500,000 is
appropriated for foreign species listings under the Act. The Service
thus has $10,930,000 available to fund work in the following
categories: compliance with court orders and court-approved settlement
agreements requiring that petition findings or listing determinations
be completed by a specific date; section 4 (of the Act) listing actions
with absolute statutory deadlines; essential litigation-related,
administrative, and listing program-management functions; and high-
priority listing actions for some of our candidate species. In FY 2010,
the Service received many new petitions and a single petition to list
404 species. The receipt of petitions for a large number of species is
consuming the Service's listing funding that is not dedicated to
meeting court-ordered commitments. Absent some ability to balance
effort among listing duties under existing funding levels, it is
unlikely that the Service will be able to initiate any new listing
determination for candidate species in FY 2011.
In 2009, the responsibility for listing foreign species under the
Act was transferred from the Division of Scientific Authority,
International Affairs Program, to the Endangered Species Program.
Therefore, starting in FY 2010, we used a portion of our funding to
work on the actions described above for listing actions related to
foreign species. In FY 2011, we anticipate using $1,500,000 for work on
listing actions for foreign species which reduces funding available for
domestic listing actions; however, currently only $500,000 has been
allocated for this function. Although there are no foreign species
issues included in our high-priority listing actions at this time, many
actions have statutory or court-approved settlement deadlines, thus
increasing their priority. The budget allocations for each specific
listing action are identified in the Service's FY 2011 Allocation Table
(part of our record).
For the above reasons, funding a proposed listing determination for
the Pinus albicaulis is precluded by court-ordered and court-approved
settlement agreements, and listing actions with absolute statutory
deadlines, and work on proposed listing determinations for those
candidate species with a higher listing priority (i.e., candidate
species with LPNs of 1-2).
Based on the LPN guidance, we have a significant number of species
with a LPN of 2. Using these guidelines, we assign each candidate an
LPN of 1 to 12, depending on the magnitude of threats (high or moderate
to low), immediacy of threats (imminent or nonimminent), and taxonomic
status of the species (in order of priority: monotypic genus (a species
that is the sole member of a genus); species; or part of a species
(subspecies, or distinct population segment)). The lower the listing
priority number, the higher the listing priority (that is, a species
with an LPN of 1 would have the highest listing priority).
Because of the large number of high-priority species, we have
further ranked the candidate species with an LPN of 2 by using the
following extinction-risk type criteria: International Union for the
Conservation of Nature and Natural Resources (IUCN) Red list status/
rank, Heritage rank (provided by NatureServe), Heritage threat rank
(provided by NatureServe), and species currently with fewer than 50
individuals, or 4 or fewer populations. Those species with the highest
IUCN rank (critically endangered), the highest Heritage rank (G1), the
highest Heritage threat rank (substantial, imminent threats), and
currently with fewer than 50 individuals, or fewer than 4 populations,
originally comprised a group of approximately 40 candidate species
(``Top 40''). These 40 candidate species have had the highest priority
to receive funding to work on a proposed listing determination. As we
work on proposed and final listing rules for those 40 candidates, we
apply the ranking criteria to the next group of candidates with an LPN
of 2 and 3 to determine the next set of highest priority candidate
species. Finally, proposed rules for reclassification of threatened
species to endangered are lower priority, because as listed species,
they are already afforded the protection of the Act and implementing
regulations. However, for efficiency reasons, we may choose to work on
a proposed rule to reclassify a species to endangered if we can combine
this with work that is subject to a court-determined deadline.
With our workload so much bigger than the amount of funds we have
to accomplish it, it is important that we be as efficient as possible
in our listing process. Therefore, as we work on proposed rules for the
highest priority species in the next several years, we are preparing
multi-species proposals when appropriate, and these may include
[[Page 42650]]
species with lower priority if they overlap geographically or have the
same threats as a species with an LPN of 2. In addition, we take into
consideration the availability of staff resources when we determine
which high-priority species will receive funding to minimize the amount
of time and resources required to complete each listing action.
As explained above, a determination that listing is warranted but
precluded must also demonstrate that expeditious progress is being made
to add and remove qualified species to and from the Lists of Endangered
and Threatened Wildlife and Plants. As with our ``precluded'' finding,
the evaluation of whether progress in adding qualified species to the
Lists has been expeditious is a function of the resources available for
listing and the competing demands for those funds. (Although we do not
discuss it in detail here, we are also making expeditious progress in
removing species from the list under the Recovery program in light of
the resource available for delisting, which is funded by a separate
line item in the budget of the Endangered Species Program. So far
during FY 2011, we have completed one delisting rule.) Given the
limited resources available for listing, we find that we are making
expeditious progress in FY 2011 in the Listing Program. This progress
included preparing and publishing the following determinations:
FY 2011 Completed Listing Actions
----------------------------------------------------------------------------------------------------------------
Publication date Title Actions FR pages
----------------------------------------------------------------------------------------------------------------
10/6/2010................ Endangered Status for the Proposed Listing Endangered.. 75 FR 61664-61690
Altamaha Spinymussel and
Designation of Critical
Habitat.
10/7/2010................ 12-Month Finding on a Notice of 12-Month petition 75 FR 62070-62095
Petition to List the finding, Not warranted.
Sacramento Splittail as
Endangered or Threatened.
10/28/2010............... Endangered Status and Proposed Listing Endangered 75 FR 66481-66552
Designation of Critical (uplisting).
Habitat for Spikedace and
Loach Minnow.
11/2/2010................ 90[dash]Day Finding on a Notice of 90-day Petition 75 FR 67341-67343
Petition to List the Bay Finding, Not substantial.
Springs Salamander as
Endangered.
11/2/2010................ Determination of Endangered Final Listing Endangered..... 75 FR 67511-67550
Status for the Georgia
Pigtoe Mussel, Interrupted
Rocksnail, and Rough
Hornsnail and Designation of
Critical Habitat.
11/2/2010................ Listing the Rayed Bean and Proposed Listing Endangered.. 75 FR 67551-67583
Snuffbox as Endangered.
11/4/2010................ 12-Month Finding on a Notice of 12-month petition 75 FR 67925-67944
Petition to List Cirsium finding, Warranted but
wrightii (Wright's Marsh precluded.
Thistle) as Endangered or
Threatened.
12/14/2010............... Endangered Status for Dunes Proposed Listing Endangered.. 75 FR77801-77817
Sagebrush Lizard.
12/14/2010............... 12-month Finding on a Notice of 12-month petition 75 FR 78029-78061
Petition to List the North finding, Warranted but
American Wolverine as precluded.
Endangered or Threatened.
12/14/2010............... 12-Month Finding on a Notice of 12-month petition 75 FR 78093-78146
Petition to List the Sonoran finding, Warranted but
Population of the Desert precluded.
Tortoise as Endangered or
Threatened.
12/15/2010............... 12-Month Finding on a Notice of 12-month petition 75 FR 78513-78556
Petition to List Astragalus finding, Warranted but
microcymbus and Astragalus precluded.
schmolliae as Endangered or
Threatened.
12/28/2010............... Listing Seven Brazilian Bird Final Listing Endangered..... 75 FR 81793-81815
Species as Endangered
Throughout Their Range.
1/4/2011................. 90[dash]Day Finding on a Notice of 90-day Petition 76 FR 304-311
Petition to List the Red Finding, Not substantial.
Knot subspecies Calidris
canutus roselaari as
Endangered.
1/19/2011................ Endangered Status for the Proposed Listing Endangered.. 76 FR 3392-3420
Sheepnose and Spectaclecase
Mussels.
2/10/2011................ 12-Month Finding on a Notice of 12-month petition 76 FR 7634-7679
Petition to List the Pacific finding, Warranted but
Walrus as Endangered or precluded.
Threatened.
2/17/2011................ 90[dash]Day Finding on a Notice of 90-day Petition 76 FR 9309-9318
Petition To List the Sand Finding, Substantial.
Verbena Moth as Endangered
or Threatened.
2/22/2011................ Determination of Threatened Final Listing Threatened..... 76 FR 9681-9692
Status for the New Zealand-
Australia Distinct
Population Segment of the
Southern Rockhopper Penguin.
2/22/2011................ 12-Month Finding on a Notice of 12-month petition 76 FR 9722-9733
Petition to List Solanum finding, Warranted but
conocarpum (marron bacora) precluded.
as Endangered.
2/23/2011................ 12-Month Finding on a Notice of 12-month petition 76 FR 991-10003
Petition to List Thorne's finding, Not warranted.
Hairstreak Butterfly as
Endangered.
2/23/2011................ 12-Month Finding on a Notice of 12-month petition 76 FR 10166-10203
Petition to List Astragalus finding, Warranted but
hamiltonii, Penstemon precluded & Not Warraned.
flowersii, Eriogonum
soredium, Lepidium ostleri,
and Trifolium friscanum as
Endangered or Threatened.
2/24/2011................ 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 10299-10310
to List the Wild Plains Finding, Not substantial.
Bison or Each of Four
Distinct Population Segments
as Threatened.
[[Page 42651]]
2/24/2011................ 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 10310-10319
to List the Unsilvered Finding, Not substantial.
Fritillary Butterfly as
Threatened or Endangered.
3/8/2011................. 12-Month Finding on a Notice of 12-month petition 76 FR 12667-12683
Petition to List the Mt. finding, Warranted but
Charleston Blue Butterfly as precluded.
Endangered or Threatened.
3/8/2011................. 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 12683-12690
to List the Texas Kangaroo Finding, Substantial.
Rat as Endangered or
Threatened.
3/10/2011................ Initiation of Status Review Notice of Status Review...... 76 FR 13121-31322
for Longfin Smelt.
3/15/2011................ Withdrawal of Proposed Rule Proposed rule withdrawal..... 76 FR 14210-14268
to List the Flat-tailed
Horned Lizard as Threatened.
3/22/2011................ 12-Month Finding on a Notice of 12-month petition 76 FR 15919-15932
Petition to List the Berry finding, Warranted but
Cave Salamander as precluded.
Endangered.
4/1/2011................. 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 18138-18143
to List the Spring Pygmy Finding, Substantial.
Sunfish as Endangered.
4/5/2011................. 12-Month Finding on a Notice of 12-month petition 76 FR 18684-18701
Petition to List the finding, Not Warranted and
Bearmouth Mountainsnail, Warranted but precluded.
Byrne Resort Mountainsnail,
and Meltwater Lednian
Stonefly as Endangered or
Threatened.
4/5/2011................. 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 18701-18706
To List the Peary Caribou Finding, Substantial.
and Dolphin and Union
Population of the Barren-
ground Caribou as Endangered
or Threatened.
4/12/2011................ Proposed Endangered Status Proposed Listing Endangered.. 76 FR 20464-20488
for the Three Forks
Springsnail and San
Bernardino Springsnail, and
Proposed Designation of
Critical Habitat.
4/13/2011................ 90[dash]Day Finding on a Notice of 90-day Petition 76 FR 20613-20622
Petition To List Spring Finding, Substantial.
Mountains Acastus
Checkerspot Butterfly as
Endangered.
4/14/2011................ 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 20911-20918
to List the Prairie Chub as Finding, Substantial.
Threatened or Endangered.
4/14/2011................ 12-Month Finding on a Notice of 12-month petition 76 FR 20918-20939
Petition to List Hermes finding, Warranted but
Copper Butterfly as precluded.
Endangered or Threatened.
4/26/2011................ 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 23256-23265
to List the Arapahoe Snowfly Finding, Substantial.
as Endangered or Threatened.
4/26/2011................ 90[dash]Day Finding on a Notice of 90-day Petition 76 FR 23265-23271
Petition to List the Smooth- Finding, Not substantial.
Billed Ani as Threatened or
Endangered.
5/12/2011................ Withdrawal of the Proposed Proposed Rule, Withdrawal.... 76 FR 27756-27799
Rule to List the Mountain
Plover as Threatened.
5/25/2011................ 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 30082-30087
To List the Spot-tailed Finding, Substantial.
Earless Lizard as Endangered
or Threatened.
5/26/2011................ Listing the Salmon-Crested Final Listing Threatened..... 76 FR 30758-30780
Cockatoo as Threatened
Throughout its Range with
Special Rule.
5/31/2011................ 12-Month Finding on a Notice of 12-month petition 76 FR 31282-31294
Petition to List Puerto finding, Warranted but
Rican Harlequin Butterfly as precluded.
Endangered.
6/2/2011................. 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 31903-31906
to Reclassify the Straight- Finding, Substantial.
Horned Markhor (Capra
falconeri jerdoni) of
Torghar Hills as Threatened.
6/2/2011................. 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 31920-31926
to List the Golden-winged Finding, Substantial.
Warbler as Endangered or
Threatened.
6/7/2011................. 12-Month Finding on a Notice of 12-month petition 76 FR 33924-33965
Petition to List the Striped finding, Warranted but
Newt as Threatened. precluded.
6/9/2011................. 12-Month Finding on a Notice of 12-month petition 76 FR 32911-32929
Petition to List Abronia finding, Not Warranted and
ammophila, Agrostis rossiae, Warranted but precluded.
Astragalus proimanthus,
Boechera Arabis pusilla, and
Penstemon gibbensii as
Threatened or Endangered.
6/21/2011................ 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 36049-36053
to List the Utah Population Finding, Not substantial.
of the Gila Monster as an
Endangered or a Threatened
Distinct Population Segment.
6/21/2011................ Revised 90-Day Finding on a Notice of 90-day Petition 76 FR 36053-36068
Petition To Reclassify the Finding, Not substantial.
Utah Prairie Dog From
Threatened to Endangered.
6/28/2011................ 12-Month Finding on a Notice of 12-month petition 76 FR 37706-37716
Petition to List Castanea finding, Not warranted.
pumila var. ozarkensis as
Threatened or Endangered.
[[Page 42652]]
6/29/2011................ 90-Day Finding on a Petition Notice of 90-day Petition 76 FR 38095-38106
to List the Eastern Small- Finding, Substantial.
Footed Bat and the Northern
Long-Eared Bat as Threatened
or Endangered.
6/30/2011................ 12-Month Finding on a Notice of 12-month petition 76 FR 38504-38532
Petition to List a Distinct finding, Not warranted.
Population Segment of the
Fisher in Its United States
Northern Rocky Mountain
Range as Endangered or
Threatened with Critical
Habitat.
----------------------------------------------------------------------------------------------------------------
Our expeditious progress also includes work on listing actions that
we funded in FY 2010 and FY 2011 but have not yet been completed to
date. These actions are listed below. Actions in the top section of the
table are being conducted under a deadline set by a court. Actions in
the middle section of the table are being conducted to meet statutory
timelines, that is, timelines required under the Act. Actions in the
bottom section of the table are high-priority listing actions. These
actions include work primarily on species with an LPN of 2, and, as
discussed above, selection of these species is partially based on
available staff resources, and when appropriate, include species with a
lower priority if they overlap geographically or have the same threats
as the species with the high priority. Including these species together
in the same proposed rule results in considerable savings in time and
funding, when compared to preparing separate proposed rules for each of
them in the future.
Actions Funded in FY 2010 and FY 2011 But Not Yet Completed
------------------------------------------------------------------------
Species Action
------------------------------------------------------------------------
Actions Subject to Court Order/Settlement Agreement
------------------------------------------------------------------------
4 parrot species (military 12-month petition finding.
macaw, yellow-billed parrot,
red-crowned parrot, scarlet
macaw) \5\.
4 parrot species (blue-headed 12-month petition finding.
macaw, great green macaw, grey-
cheeked parakeet, hyacinth
macaw) \5\.
4 parrot species (crimson 12-month petition finding.
shining parrot, white
cockatoo, Philippine cockatoo,
yellow-crested cockatoo) \5\.
Longfin smelt.................. 12-month petition finding.
------------------------------------------------------------------------
Actions With Statutory Deadlines
------------------------------------------------------------------------
Casey's june beetle............ Final listing determination.
6 Birds from Eurasia........... Final listing determination.
5 Bird species from Colombia Final listing determination.
and Ecuador.
Queen Charlotte goshawk........ Final listing determination.
5 species southeast fish Final listing determination.
(Cumberland darter, rush
darter, yellowcheek darter,
chucky madtom, and laurel
dace) \4\.
Ozark hellbender \4\........... Final listing determination.
Altamaha spinymussel \3\....... Final listing determination.
3 Colorado plants (Ipomopsis Final listing determination.
polyantha (Pagosa Skyrocket),
Penstemon debilis (Parachute
Beardtongue), and Phacelia
submutica (DeBeque Phacelia))
\4\.
6 Birds from Peru & Bolivia.... Final listing determination.
Loggerhead sea turtle (assist Final listing determination.
National Marine Fisheries
Service) \5\.
2 mussels (rayed bean (LPN = Final listing determination.
2), snuffbox No LPN) \5\.
CA golden trout \4\............ 12-month petition finding.
Black-footed albatross......... 12-month petition finding.
Mojave fringe-toed lizard \1\.. 12-month petition finding.
Kokanee--Lake Sammamish 12-month petition finding.
population \1\.
Cactus ferruginous pygmy-owl 12-month petition finding.
\1\.
Northern leopard frog.......... 12-month petition finding.
Tehachapi slender salamander... 12-month petition finding.
Coqui Llanero.................. 12-month petition finding/
Proposed listing.
Dusky tree vole................ 12-month petition finding.
Leatherside chub (from 206 12-month petition finding.
species petition).
Frigid ambersnail (from 206 12-month petition finding.
species petition) \3\.
Platte River caddisfly (from 12-month petition finding.
206 species petition) \5\.
Gopher tortoise--eastern 12-month petition finding.
population.
Grand Canyon scorpion (from 475 12-month petition finding.
species petition).
Anacroneuria wipukupa (a 12-month petition finding.
stonefly from 475 species
petition) \4\.
3 Texas moths (Ursia furtiva, 12-month petition finding.
Sphingicampa blanchardi,
Agapema galbina) (from 475
species petition).
2 Texas shiners (Cyprinella 12-month petition finding.
sp., Cyprinella lepida) (from
475 species petition).
3 South Arizona plants 12-month petition finding.
(Erigeron piscaticus,
Astragalus hypoxylus,
Amoreuxia gonzalezii) (from
475 species petition).
5 Central Texas mussel species 12-month petition finding.
(3 from 475 species petition).
14 parrots (foreign species)... 12-month petition finding.
Fisher--Northern Rocky Mountain 12-month petition finding.
Range \1\.
Mohave ground squirrel \1\..... 12-month petition finding.
[[Page 42653]]
Western gull-billed tern....... 12-month petition finding.
Ozark chinquapin (Castanea 12-month petition finding.
pumila var. ozarkensis) \4\.
HI yellow-faced bees........... 12-month petition finding.
Giant Palouse earthworm........ 12-month petition finding.
Whitebark pine................. 12-month petition finding.
OK grass pink (Calopogon 12-month petition finding.
oklahomensis) \1\.
Ashy storm-petrel \5\.......... 12-month petition finding.
Honduran emerald............... 12-month petition finding.
Southeastern pop. snowy plover 90-day petition finding.
& wintering pop. of piping
plover \1\.
Eagle Lake trout \1\........... 90-day petition finding.
32 Pacific Northwest mollusk 90-day petition finding.
species (snails and slugs) \1\.
42 snail species (Nevada & 90-day petition finding.
Utah).
Spring Mountains checkerspot 90-day petition finding.
butterfly.
Bay skipper.................... 90-day petition finding.
Eastern small-footed bat....... 90-day petition finding.
Northern long-eared bat........ 90-day petition finding.
10 species of Great Basin 90-day petition finding.
butterfly.
6 sand dune (scarab) beetles... 90-day petition finding.
404 Southeast species.......... 90-day petition finding.
Franklin's bumble bee \4\...... 90-day petition finding.
2 Idaho snowflies (straight 90-day petition finding.
snowfly & Idaho snowfly) \4\.
American eel \4\............... 90-day petition finding.
Gila monster (Utah population) 90-day petition finding.
\4\.
Leona's little blue \4\........ 90-day petition finding.
Aztec gilia \5\................ 90-day petition finding.
White-tailed ptarmigan \5\..... 90-day petition finding.
San Bernardino flying squirrel 90-day petition finding.
\5\.
Bicknell's thrush \5\.......... 90-day petition finding.
Chimpanzee..................... 90-day petition finding.
Sonoran talussnail \5\......... 90-day petition finding.
2 AZ Sky Island plants 90-day petition finding.
(Graptopetalum bartrami &
Pectis imberbis) \5\.
I'iwi \5\...................... 90-day petition finding.
Humboldt marten................ 90-day petition finding.
Desert massasauga.............. 90-day petition finding.
Western glacier stonefly 90-day petition finding.
(Zapada glacier).
Thermophilic ostracod 90-day petition finding.
(Potamocypris hunteri).
Sierra Nevada red fox \5\...... 90-day petition finding.
Boreal toad (eastern or 90-day petition finding.
southern Rocky Mtn population)
\5\.
------------------------------------------------------------------------
High-Priority Listing Actions
------------------------------------------------------------------------
19 Oahu candidate species \2\ Proposed listing.
(16 plants, 3 damselflies) (15
with LPN = 2, 3 with LPN = 3,
1 with LPN = 9).
19 Maui-Nui candidate species Proposed listing.
\2\ (16 plants, 3 tree snails)
(14 with LPN = 2, 2 with LPN =
3, 3 with LPN = 8).
Chupadera springsnail \2\ Proposed listing.
(Pyrgulopsis chupaderae (LPN =
2).
8 Gulf Coast mussels (southern Proposed listing.
kidneyshell (LPN = 2), round
ebonyshell (LPN = 2), Alabama
pearlshell (LPN = 2), southern
sandshell (LPN = 5), fuzzy
pigtoe (LPN = 5), Choctaw bean
(LPN = 5), narrow pigtoe (LPN
= 5), and tapered pigtoe (LPN
= 11)) \4\.
Umtanum buckwheat (LPN = 2) and Proposed listing.
white bluffs bladderpod (LPN =
9) \4\.
Grotto sculpin (LPN = 2) \4\... Proposed listing.
2 Arkansas mussels (Neosho Proposed listing.
mucket (LPN = 2) & Rabbitsfoot
(LPN = 9)) \4\.
Diamond darter (LPN = 2) \4\... Proposed listing.
Gunnison sage-grouse (LPN = 2) Proposed listing.
\4\.
Coral Pink Sand Dunes tiger Proposed listing.
beetle (LPN = 2) \5\.
Miami blue butterfly (LPN = 3) Proposed listing.
\3\.
Lesser prairie chicken (LPN = Proposed listing.
2).
4 Texas salamanders (Austin Proposed listing.
blind salamander (LPN = 2),
Salado salamander (LPN = 2),
Georgetown salamander (LPN =
8), Jollyville Plateau (LPN =
8)) \3\.
5 SW aquatics (Gonzales Spring Proposed listing.
Snail (LPN = 2), Diamond Y
springsnail (LPN = 2), Phantom
springsnail (LPN = 2), Phantom
Cave snail (LPN = 2),
Diminutive amphipod (LPN = 2))
\3\.
2 Texas plants (Texas golden Proposed listing.
gladecress (Leavenworthia
texana) (LPN = 2), Neches
River rose-mallow (Hibiscus
dasycalyx) (LPN = 2)) \3\.
4 AZ plants (Acuna cactus Proposed listing.
(Echinomastus erectocentrus
var. acunensis) (LPN = 3),
Fickeisen plains cactus
(Pediocactus peeblesianus
fickeiseniae) (LPN = 3),
Lemmon fleabane (Erigeron
lemmonii) (LPN = 8), Gierisch
mallow (Sphaeralcea
gierischii) (LPN = 2)) \5\.
FL bonneted bat (LPN = 2) \3\.. Proposed listing.
3 Southern FL plants (Florida Proposed listing.
semaphore cactus (Consolea
corallicola) (LPN = 2),
shellmound applecactus
(Harrisia (= Cereus)
aboriginum (= gracilis)) (LPN
= 2), Cape Sable thoroughwort
(Chromolaena frustrata) (LPN =
2)) \5\.
21 Big Island (HI) species \5\ Proposed listing.
(includes 8 candidate species--
6 plants & 2 animals; 4 with
LPN = 2, 1 with LPN = 3, 1
with LPN = 4, 2 with LPN = 8).
12 Puget Sound prairie species Proposed listing.
(9 subspecies of pocket gopher
(Thomomys mazama ssp.) (LPN =
3), streaked horned lark (LPN
= 3), Taylor's checkerspot
(LPN = 3), Mardon skipper (LPN
= 8)) \3\.
[[Page 42654]]
2 TN River mussels (fluted Proposed listing.
kidneyshell (LPN = 2),
slabside pearlymussel (LPN =
2) \5\.
Jemez Mountain salamander (LPN Proposed listing.
= 2) \5\.
------------------------------------------------------------------------
\1\ Funds for listing actions for these species were provided in
previous FYs.
\2\ Although funds for these high-priority listing actions were provided
in FY 2008 or 2009, due to the complexity of these actions and
competing priorities, these actions are still being developed.
\3\ Partially funded with FY 2010 funds and FY 2011 funds.
\4\ Funded with FY 2010 funds.
\5\ Funded with FY 2011 funds.
We have endeavored to make our listing actions as efficient and
timely as possible, given the requirements of the relevant law and
regulations, and constraints relating to workload and personnel. We are
continually considering ways to streamline processes or achieve
economies of scale, such as by batching related actions together. Given
our limited budget for implementing section 4 of the Act, these actions
described above collectively constitute expeditious progress.
Pinus albicaulis will be added to the list of candidate species
upon publication of this 12-month finding. We will continue to evaluate
this species as new information becomes available. Continuing review
will determine if a change in status is warranted, including the need
to make prompt use of emergency listing procedures.
We intend that any proposed listing determination for Pinus
albicaulis will be as accurate as possible. Therefore, we will continue
to accept additional information and comments from all concerned
governmental agencies, the scientific community, industry, or any other
interested party concerning this finding.
References Cited
A complete list of references cited is available on the Internet at
http://www.regulations.gov and upon request from the Wyoming Ecological
Services Field Office (see ADDRESSES section).
Author(s)
The primary authors of this notice are the staff members of the
Wyoming Ecological Services Field Office.
Authority
The authority for this section is section 4 of the Endangered
Species Act of 1973, as amended (16 U.S.C. 1531 et seq.).
Dated: July 1, 2011.
Daniel M. Ashe,
Director, Fish and Wildlife Service.
[FR Doc. 2011-17943 Filed 7-18-11; 8:45 am]
BILLING CODE 4310-55-P