information collection that has been extended, revised, or implemented on or after October 1, 1995 unless it displays a currently valid OMB control number.

Proposed Collection

Title: Recruitment and Screening for the Insight into Determination of Exceptional Aging and Longevity (IDEAL) Study. **Type of Information Collection Request:** NEW. **Need and Use of Information Collection:** The purpose of the project is to conduct recruitment and screening for the IDEAL Study. A multifaceted recruitment approach will be used to reach the target audience in a wide variety of ways. Those who are interested in participating in the IDEAL study will be asked to complete a two stage recruitment process consisting of a telephone interview and a physical exam. The Stage One interview consists of questions concerning demographics, physical ability, health status, and medical conditions. Those who are eligible after completing the telephone interview will be asked to complete the second stage of the screening process. The physical examination is a modified version of the full BLSA assessment protocol consisting of the following components: General appearance; vital signs; chest and heart auscultation; sensory systems including vision, hearing, sensory proprioception, neuropathy and balance; and movement strength of the upper and lower extremities. In addition the potential participant will also be asked to complete physical performance tests, cognitive exams, an electrocardiogram and a blood draw. **Frequency of Response:** Once. **Affected Public:** Individuals or households. **Type of Respondents:** Healthy individuals who are at least 80 years of age. The annual reporting burden is as follows: **Estimated Number of Respondents:** 1,500; **Estimated Number of Responses per Respondent:** 1; **Average Burden Hours per Response:** 0.833; and **Estimated Total Annual Burden Hours Requested:** 701. There is no annualized cost to respondents. There are no Capital costs to report. There are no Operating or Maintenance Costs to report.

<table>
<thead>
<tr>
<th>Type of respondent</th>
<th>Number of respondents</th>
<th>Frequency of response</th>
<th>Average time per response</th>
<th>Annual hour burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals who complete the phone interview</td>
<td>1,500</td>
<td>1</td>
<td>0.167</td>
<td>251</td>
</tr>
<tr>
<td>Individuals who complete the physical exam</td>
<td>*300</td>
<td>1</td>
<td>1.5</td>
<td>450</td>
</tr>
<tr>
<td>Totals</td>
<td>1,500</td>
<td></td>
<td></td>
<td>701</td>
</tr>
</tbody>
</table>

*These individuals are included in the 1,500 above.

Request for Comments: Written comments and/or suggestions from the public and affected agencies are invited on one or more of the following points: (1) Whether the proposed collection of information is necessary for the proper performance of the function of the agency, including whether the information will have practical utility; (2) The accuracy of the agency’s estimate of the burden of the proposed collection of information, including the validity of the methodology and assumptions used; (3) Ways to enhance the quality, utility, and clarity of the information to be collected; and (4) Ways to minimize the burden of the collection of information on those who are to respond, including the use of appropriate automated, electronic, mechanical, or other technological collection techniques or other forms of information technology.

Direct Comments to OMB: Written comments and suggestions regarding the item(s) contained in the notice, especially regarding the estimated public burden and associated response time should be directed to: Office of Management and Budget, Office of Regulatory Affairs, OIRA submission@omb.eop.gov or by fax to 202–395–6974. Attention: Desk Officer for NIH. To request more information on the proposed project or obtain a copy of the data collection plans and instruments, contact Dr. Luigi Ferrucci, Principal Investigator, NIA Clinical Research Branch, Harbor Hospital, 5th Floor, 3001 S. Hanover, Baltimore, MD 21225, or call this non-toll-free number (410) 350–3936 or E-mail your request including your address to: Ferruccilu@grc.nia.nih.gov.

Comments Due Date: Comments regarding this information collection are best assured of having their full effect if received within 30 days of the date of this publication.

Dated: December 6, 2010.

Melissa Fraczkowski,
Project Clearance Liaison, NIA.

[FR Doc. 2010–31376 Filed 12–13–10; 8:45 am]

BILLING CODE 4140–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, Public Health Service, HHS.

ACTION: Notice.

SUMMARY: The inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 207 to achieve expeditious commercialization of results of federally-funded research and development. Foreign patent applications are filed on selected inventions to extend market coverage for companies and may also be available for licensing.

ADDRESSES: Licensing information and copies of the U.S. patent applications listed below may be obtained by writing to the indicated licensing contact at the Office of Technology Transfer, National Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, Maryland 20852–3804; telephone: 301/496–7057; fax: 301/402–0220. A signed Confidential Disclosure Agreement will be required to receive copies of the patent applications.

Software System for Quantitative Assessment of Vasculature in Three Dimensional Images

Description of Invention: This invention offered for licensing and further development is a software system that provides the capability of efficiently extracting, visualizing and quantifying three dimensional vascular networks from medical and basic research images. Deregulation of angiogenesis plays a major role in a number of human diseases, most notably cancer. A substantial increase in the research effort in this field over the past decade has deepened the understanding of the angiogenic process. However, the lack of methods and software to quantitatively assess vasculature in patients has considerably hampered the ability to directly study the angiogenesis process, as well as to discover and develop new therapeutics to modulate angiogenesis. The present
membered). Also preferable structures
are ones in which the side rings are aryl
rings while the center ring is cycloalkyl
ring. The compounds of the invention
have been identified by integrating
quantitative high-throughput screening
(qHTS) with genetic mapping and in
vivo oocyst formation assay.

Applications: Prevention and
treatment of malaria infections.
Inventors: Xin-zhuan Su and Jing
Yuan (NIAID).

Patent Status: International Patent
Application No. PCT/US2010/047019
filed August 27, 2010. Priority
Application 61/237,417 filed August 27,

Licensing Status: Available for
licensing.

Licensing Contacts: Uri Reichman,
PhD, MBA; 301–435–4616; UT@nih.gov.
Michael Shmilovich, Esq.; 301–
435–5019; ShmilovichM@mail.nih.gov.

A Universal Antigen Delivery Platform
for Enhanced Immune Response

Description of Invention: The present
invention relates to use of the rotavirus
NSP2 octamer as a universal antigen
delivery platform for presenting a high
density of neutralizing epitopes to the
immune system, a strategy for boosting
antigen immunogenicity. This
application is advanced by the well-
defined structural and biochemical
properties of the octamer, its high
stability at a broad range of pH,
temperature and ionic stability, and its
ease of purification (one step) under
nondenaturing conditions. Long
conformationally-dependent antigens are
readily mounted onto the platform
by fusion to the C-terminus of NSP2, a
region of the NSP2 protein positioned
on the exposed surface of the octamer.
The platform can be expressed in and
purified from prokaryotic and
eukaryotic systems.

This technology can be used for rapid
production of subunit vaccines against a
wide range of infectious agents.
Additional uses of the technology
include the generation of delivery
platforms with mounted short peptide
antigens for use in cancer
immunotherapy, production of specific
antisera to conformationally and
nonconformationally-dependent
antigens for research purposes, and
development of epitope targets and
short peptide-antigen presentation
platforms for diagnostic assays.

Applications:
• Vaccines against pathogens.
• Cancer vaccines.
• Antigen-specific antisera.
• Multivalent targets in diagnostic
assays.

Advantages:
• Octameric platform is stable,
efficiently expressed, and easily
purified by a single step method.
• Enables the display of multivalent
conformation-dependent epitopes.
• Effective platform for short peptides
as well as long polypeptides.

Development Status: Proof-of-concept
experiments have shown that the
octamer mounted with short peptides or
long multivalent polypeptides retains its
structural and biophysical features and
is highly effective in presenting foreign
antigens to the immune system. Ease of
purification and final protein yields of
the short or long peptide antigen-
mounted NSP2 octamers were
complicable suggesting that the platform
accommodates a large range of antigen
sizes. The NSP2-platform also served as
an adjuvant, significantly enhancing
immunity of the mounted peptide.

Inventors: John T. Patton (NIAID);
Zenobia F. Taraporewala (NIAID).

Relevant Publications:
1. P Schuck et al. Rotavirus
nonstructural protein NSP2 self-
assembles into octamers that undergo
ligand-induced conformational changes.
9687. [PubMed: 11121414].
2. H Jayaram et al. Rotavirus protein
involved in genome replication and
packaging exhibits a HIT-like fold.
Nature. 2002 May 16;417(6886):311–
315. [PubMed: 12015608].
3. Z Taraporewala et al. Rotavirus
NSP2 octamer as an epitope-mounting
platform. Abstract. 23rd Annual
Meeting of the American Society for
mutation of the rotavirus genome alters
expression of an IRF3-interacting
protein. EMBO J. 2004 Oct

No. 11/293,654 filed 02 Dec 2005 (HHS

Licensing Status: Available for
licensing.

Licensing Contact: Kevin W. Chang,
PhD; 301–435–5018;
changke@mail.nih.gov.

Dated: December 1, 2010.

Richard U. Rodriguez,
Director, Division of Technology Development
and Transfer, Office of Technology Transfer,
National Institutes of Health.

[FR Doc. 2010–30640 Filed 12–13–10; 8:45 am]

BILLING CODE 4140–01–P