SUMMARY: This notice is to inform the public that the Substance Abuse and Mental Health Services Administration (SAMHSA) intends to award approximately $250,000 for up to fifteen months to expand grant activities funded under the Technical Assistance Center for Mental Health Promotion and Youth Violence Prevention to implement a Back to School media campaign targeted at the Gulf Coast schools impacted by the Deepwater oil spill. This is not a formal request for applications. This award is contingent upon the availability of funding. Assistance will be provided only to the current grantee, National Center for Mental Health Promotion and Youth Violence Prevention based on the receipt of a satisfactory application that is approved by an independent review group.

Funding Opportunity Title: SM–10–

Catalog of Federal Domestic Assistance (CFDA) Number: 93.243.

Justification: Only an application from the current grantee, National Center for Mental Health Promotion and Youth Violence Prevention at Educational Development Corporation (EDC), will be considered for funding under this announcement. Fifteen-months funding may become available to implement a Back to School media campaign targeted at the Gulf Coast States Impacted by the Deepwater Oil Spill grant through a Single Source Supplement Grant to the current grantee, National Center for Mental Health Promotion and Youth Violence Prevention. The supplement will serve to maximize efficiencies created under the current grant, and its impact on the residents of the Gulf Coast region have led to an urgent need for disaster behavioral health communications services targeting school aged children, youth and their families. This supplement will serve to maximize efficiencies created under the current grant, service infrastructure. It would be inefficient and duplicative to fund additional technical assistance services for a Back to School Media Support for Gulf Coast States Impacted by the Deepwater Horizon Oil Spill grant through a second organization.

Contact: Shelly Hara, Substance Abuse and Mental Health Services Administration, 1 Choke Cherry Road, Room 8–1095, Rockville, MD 20857; telephone: (240) 276–2321; E-mail: shelly.hara@samhsa.hhs.gov.

Toian Vaughn,
SAMHSA Committee Management Officer.

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, Public Health Service, HHS.

ACTION: Notice.

SUMMARY: The inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 207 to achieve expeditious commercialization of results of Federally-funded research and development. Foreign patent applications are filed on selected inventions to extend market coverage for companies and may also be available for licensing.

ADDRESS: Licensing information and copies of the U.S. patent applications listed below may be obtained by writing to the indicated licensing contact at the Office of Technology Transfer, National Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, Maryland 20852–3804; telephone: 301/496–7057; fax: 301/402–0220. A signed Confidential Disclosure Agreement will be required to receive copies of the patent applications.

System and Method for Producing Nondiffracting Light Sheets that Improves the Performance of Selective Plane Illumination Microscopy (SPIM)

Description of Invention: The technology offered for licensing relates to a system and method of producing nondiffracting beams of light that spatially overlap, but do not interfere with each other when intersecting the detection plane of an optical arrangement. The system includes an illumination source (i.e. ultrafast laser) for transmitting a beam of light through the optical arrangement that includes a diffraction grating for diffracting the light beam to produce beams of light having different wavelengths, which are then passed through an annular aperture that transforms the beams of light into nondiffracting beams having different wavelengths. The method can be readily utilized in Selective Plane Illumination Microscopy (SPIM), a system that provides optical sectioning of a sample that is labeled with fluorescent dyes. SPIM can provide quantitative three-dimensional maps of the distribution of a fluorophore within the sample with high spatiotemporal resolution and an excellent signal-to-noise ratio. The standard SPIM technique however produces nonuniform axial resolution, which is caused by the diffraction of the laser beam through the sample, causing degradation in the optical sectioning, and forcing a compromise between field of view and axial resolution.

Techniques for decoupling field of view and axial resolution have previously utilized nondiffracting beams (e.g. Bessel beams) for sample illumination. The resulting interference from multiple nondiffracting beams degrades the quality of optical sectioning and the quality of the image. The present technology utilizing nondiffracting noninterfering beams is intended to alleviate the problems associated with the currently used SPIM techniques.

Applications: In Selective Plane Illumination Microscopy (SPIM) used for optical sectioning and imaging of biological samples.

Development Status: Proof of concept has been demonstrated.
Inventors: Andrew York, Yicong Wu, Hari Shroff (NIBIB)

Relevant Publications

Licensing Status: Available for licensing.

Licensing Contacts

- Uri Reichman, Ph.D., MBA; 301–435–4616; UR7@nih.gov
- Michael Shmilovich, Esq.; 301–435–5019; shmilovm@mail.nih.gov

Collaborative Research Opportunity: The NIBIB Section on High Resolution Optical Imaging is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize the non-diffracting Light Sheets for SPIM. Please contact Hari Shroff at 301–435–1995 or hari.shroff@nih.gov for more information.

Method of Producing Immortalized Primary Human Keratinocytes for HPV Investigation, Testing of Therapeutics, and Skin Graft Generation

Description of Invention: One of the major limitations of using cultured keratinocytes for research studies is that primary keratinocytes senesce after a few passages. Keratinocytes from specific anatomical sites are also difficult to culture. Scientists at the NIH have demonstrated that primary keratinocytes, from several anatomical sites, when treated with a small-molecule inhibitor of the ROCK protein maintain a proliferative state and become immortal without genetic modification to the cells. Keratinocytes are also the host cells for human papillomaviruses (HPVs) and other viruses and this technology enables the study of those viruses that do not immortalize cells. In addition, this technology may enhance the quantity of material available for skin grafts, as current grafting techniques are limited by the amount of donor material immediately available. Thus, this technology may provide an ideal model environment for producing large quantities of both normal and diseased primary human keratinocytes from small numbers of primary cells from individual hosts or anatomical sites for research purposes, testing of therapeutics, skin graft generation and HPV investigation.

Applications

- Promotion of sustained primary human keratinocyte proliferation in vitro.
- Human skin graft cultures and techniques.
- Immortalization of both normal and diseased cells from individual hosts.
- Immortalization of “difficult to establish” keratinocytes from different anatomical sites.
- In vitro assay for investigating the full life cycle of HPV.
- In vitro screen for HPV inhibitors.

Advantages

- Allows culture and immortalization of many types of keratinocytes that are difficult to establish and pass in culture.
- Allows isolation of diseased and normal keratinocytes from individual hosts for research and therapeutic purposes.
- Current HPV investigations are limited by keratinocyte senescence.
- Skin graft generation is currently dependent on slow culture of limited quantities of donor material.

Development Status: Early stage: cellular assays using primary human cells.

Market: Over 6 million individuals become infected by genital HPV every year and over 500,000 new cases of anal and genital warts are diagnosed annually in the United States (http://www.cancer.org). At least 40,000 American burn victims are hospitalized annually, including 25,000 admissions to hospitals with specialized burn centers (http://www.ameriburn.org) and skin grafts for diabetic ulcers are increasing. Skin disease is very prevalent and is estimated to affect greater than 50% of individuals in Western countries (Rea et al., British Journal of Preventive and Social Medicine 30: 107–14, 1976).

Inventors: Alison McBride (NIAID), Sandra E. Chapman (NIAID), Jonathan C. Vogel (NCI), Atsushi Terumuma (NCI).

Licensing Status: Available for licensing.

Licensing Contact: Jeffrey Clark Klein, Ph.D.; 301–594–4697; kleinjc@mail.nih.gov

Collaborative Research Opportunity: The National Institute of Allergy and Infectious Diseases, Laboratory of Viral Diseases is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize methods of producing immortalized primary human keratinocytes. Please contact Johanna Schneider, Ph.D. at 301–451–9824 or schneiderjs@niaid.nih.gov for more information.

Novel Drugs for the Treatment of Schizophrenia

Description of Invention: Because psychosis and cognitive decline are among the most common debilitating afflictions of humans, the search for new treatments is very important and timely.

Researchers at the NIH have found that genetic variations on the PIK3CD gene are associated with schizophrenia in Caucasian and African American families and can affect normal human cognition functions such as memory, IQ and executive cognition. The inventors have shown that an inhibitor of the phosphatidylinositol 3-kinase p110 delta (PIK3CD) enzyme, which is encoded by the PIK3CD gene, significantly improves a migratory response that is critically impaired in schizophrenic patients. This drug, as well as other PIK3CD inhibitors, could provide effective treatments of psychosis and cognitive decline.

Applications: Novel target for development of therapeutics of CNS disorders including schizophrenia, psychosis, and cognitive deficiency.

Development Status: Early stage: in vivo rodent and in vitro human cells.

Market: According to BioPortfolio, the world schizophrenia market was $12 billion in 2004. Schizophrenia affects approximately 0.5% of both the U.S. and world populations.

Inventors: Amanda J. Law and Daniel R. Weinberger (NIMH).

Publication: In preparation.
Resonance Imaging for in vivo imaging. The presently described improvements to CW–EPR will allow changes of blood perfusion and oxygenation in tumors to be observed in nearly real-time, while improved resolution will permit angiogenesis in and around tumors to be monitored in a non-invasive manner. Additionally, rapid scan imaging provides excellent temporal resolution and will help quantify pharmacokinetics and metabolic degradation kinetics of bioactive and redox sensitive free radicals such as nitroxides.

Applications

- Enhanced spatial, temporal, and spectral resolution of Continuous Wave- Electron Paramagnetic Resonance Imaging.
- Real-time assessment of changes in blood perfusion and oxygenation.

Development Status: Preliminary experiments have been conducted and the technology has been tested for feasibility.

Inventors: Sankaran Subramanian et al. (NCI).

Patent Status

Licensing Status: Available for licensing.

Licensing Contacts

- Uri Reichman, PhD, MBA; 301–435–4616; UR7a@nih.gov.
- John Stanberry, PhD; 301–435–5236; js828e@nih.gov.

Collaborative Research Opportunity: The National Cancer Institute, Radiation Biology Branch, is seeking statements of capability or interest from parties interested in collaborative research to further develop improved hardware in terms of higher gradient & sweep frequencies and compatible AC amplifiers and evaluate, or commercialize the above rapid scan-rotating gradients strategy for performing routine in vivo radiofrequency CW EPR imaging in small animals. Please contact John D. Hewes, PhD, at 301–435–3121 or hewesj@mail.nih.gov for more information.

Dated: August 20, 2010.

Richard U. Rodriguez, Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.

[FR Doc. 2010–21347 Filed 8–26–10; 8:45 am]

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, Public Health Service, HHS.

ACTION: Notice.

SUMMARY: The inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 207 to achieve expeditious commercialization of results of federally-funded research and development. Foreign patent applications are filed on selected inventions to extend market coverage for companies and may also be available for licensing.

ADDRESSES: Licensing information and copies of the U.S. patent applications listed below may be obtained by writing to the indicated licensing contact at the Office of Technology Transfer, National Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, Maryland 20852–3804; telephone: 301/496–7057; fax: 301/402–0220. A signed Confidential Disclosure Agreement will be required to receive copies of the patent applications.

An XMRV Tool Box: Expression Plasmids, Genes, and Proteins for All Components of the Xenotropic Murine Leukemia Virus-Related Virus (XMRV)

Description of Invention: The xenotropic murine leukemia virus-related virus (XMRV) has been implicated as a possible causative agent of prostate cancer and chronic fatigue syndrome (CFS). Scientists at the National Institutes of Health (NIH) and Science Applications International Corporation in Frederick, MD (SAIC–Frederick) have developed sixty-four (64) protein expression plasmids for components of XMRV. One or more