
Material Incorporated by Reference

(i) You must use Nomad Service Bulletin NMD–53–22, dated June 4, 2007, to do the actions required by this AD, unless the AD specifies otherwise.

(1) The Director of the Federal Register approved the incorporation by reference of this service information under 5 U.S.C. 552(a) and 1 CFR part 51.

(2) For service information identified in this AD, contact Gippsland Aeronautics Pty Ltd., Latrobe Regional Airport, P.O. Box 881, Morwell Victoria, 3840, Australia; phone: +61 3 5172 1200; fax: +61 3 5172 1201; Internet: www.gippsaero.com.

(3) You may review copies of the service information incorporated by reference for this AD at the FAA, Central Region, Office of the Regional Counsel, 901 Locust, Kansas City, Missouri 64106. For information on the availability of this material at the Central Region, call (816) 329–3768.

(4) You may also review copies of the service information incorporated by reference for this AD at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call (202) 741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

Issued in Kansas City, Missouri, on May 13, 2010.

Kim Smith,
Manager, Small Airplane Directorate, Aircraft Certification Service.

[FR Doc. 2010–12176 Filed 5–28–10; 8:45 am] BILLING CODE 4910–13–P

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 39

RIN 2120–AA64

Airworthiness Directives; Turbomeca Astazou XIV B and XIV H Turboshaft Engines

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Final rule.

SUMMARY: We are adopting a new airworthiness directive (AD) for the products listed above. This AD results from mandatory continuing airworthiness information (MCAI) issued by an aviation authority of another country to identify and correct an unsafe condition on an aviation product. The MCAI describes the unsafe condition as:

Investigation of an uncommanded in-flight shutdown (IFSD) revealed that a third stage turbine wheel rupture was not contained by the turbine casings. The released portion consisted of a turbine blade together with the rim piece immediately below the blade. The rim piece was bounded by two adjacent axial slots and a fatigue crack that had developed between the holes in which the slots terminate. The slots and holes, which are closed by riveted plugs, were introduced by modification AB 173 in order to improve the vibration characteristics of the turbine wheel. Modification AB 208 brings an improvement to modification AB 173 by changing only the riveting detail. SN 283 72 0805 provides instructions for re-boring the holes at overhaul or repair in order to improve their surface condition. A manufacturing process modification has been introduced to improve the surface condition of these holes in third stage turbine wheels. Wheels subject to the improved manufacturing process have S/Ns outside the range specified in Table 1. Although there is only one known event, and although it resulted only in an uncommanded IFSD, with no damage to the aircraft, the possibility exists that additional events may occur, potentially involving damage to the aircraft.

To address the unsafe condition, EASA issued AD 2009–0136, mandating inspection of certain third stage turbine wheels and removal of any damaged wheel. The wheels to be inspected were those whose cycles since new (CSN) would exceed 2,000 by February 1, 2011. Following additional research by Turbomeca on crack initiation and growth, this AD mandates inspections based on new criteria and removal of any damaged wheel.

Comments

We gave the public the opportunity to participate in developing this AD. We received no comments on the NPRM or on the determination of the cost to the public.

Conclusion

We reviewed the available data and determined that air safety and the public interest require adopting the AD as proposed.

Costs of Compliance

Based on the service information, we estimate that this AD will affect about three Astazou engines installed on products of U.S. registry. We also estimate that it will take about 5 work-hours per engine to comply with this AD. The average labor rate is $85 per work-hour. We anticipate no parts to be required. Based on these figures, we estimate the cost of the AD on U.S. operators to be $1,275.

Authority for this Rulemaking

Title 49 of the United States Code specifies the FAA’s authority to issue rules on aviation safety. Subtitle I, section 106, describes the authority of the FAA Administrator. “Subtitle VII: Aviation Programs” describes in more detail the scope of the Agency’s authority.
We are issuing this rulemaking under the authority described in “Subtitle VII, Part A, Subpart III, Section 44701: General requirements.” Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations for practices, methods, and procedures the Administrator finds necessary for safety in air commerce. This regulation is within the scope of that authority because it addresses an unsafe condition that is likely to exist or develop on products identified in this rulemaking action.

Regulatory Findings

We determined that this AD will not have federalism implications under Executive Order 13132. This AD will not have a substantial direct effect on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government.

For the reasons discussed above, I certify this AD:

1. Is not a “significant regulatory action” under Executive Order 12866; and
2. Is not a “significant rule” under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and
3. Will not have a significant economic impact, positive or negative, on a substantial number of small entities under the criteria of the Regulatory Flexibility Act.

We prepared a regulatory evaluation of the estimated costs to comply with this AD and placed it in the AD docket.

Examining the AD Docket

You may examine the AD docket on the Internet at www.regulations.gov; or in person at the Docket Operations office between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains this AD, the regulatory evaluation, any comments received, and other information. The street address for the Docket Operations office (phone (800) 647–5527) is provided in the ADDRESSES section. Comments will be available in the AD docket shortly after receipt.

List of Subjects in 14 CFR Part 39

Air transportation, Aircraft, Aviation safety, Incorporation by reference, Safety.

Adoption of the Amendment

Accordingly, under the authority delegated to me by the Administrator, the FAA amends 14 CFR part 39 as follows:

PART 39—AIRWORTHINESS DIRECTIVES

1. The authority citation for part 39 continues to read as follows:

Authority: 49 U.S.C. 106(g), 40113, 44701.

§ 39.13 [Amended]

2. The FAA amends § 39.13 by adding the following new AD:

Effective Date

(a) This airworthiness directive (AD) becomes effective July 6, 2010.

Affected ADs

(b) None.

Applicability

(c) This AD applies to Turbomeca Astazou XIV B and XIV H turboshaft engines with the following part number (P/N) third stage turbine wheels that incorporate modification AB 173 (Turbomeca Service Bulletin (SB) No. 283 72 0901) or modification AB 208 (Turbomeca SB No. 283 72 0117), but that do not incorporate Turbomeca SB No. 283 72 806:

(1) Third stage turbine wheels P/N 0265257000, all serial numbers (S/Ns);
(2) Third stage turbine wheels P/N 0265257020, all S/Ns;
(3) Third stage turbine wheels P/N 0265257060, all S/Ns;

(5) These engines are installed on, but not limited to, single-engine Aerospatiale AS319B “Alouette III” and AS342J “Gazelle” helicopters.

Reason

(d) European Aviation Safety Agency (EASA) AD No. 2010–0004, dated January 5, 2010, states:

Investigation of an uncommanded in-flight shutdown (IFSD) revealed that a third stage turbine wheel rupture was not contained by the turbine casings. The released portion consisted of a turbine blade together with the rim piece immediately below the blade. The rim piece was bounded by two adjacent axial slots and a fatigue crack that had developed between the holes in which the slots terminate. The slots and holes, which are closed by riveted plugs, were introduced by modification AB 173 in order to improve the vibration characteristics of the turbine wheel. Modification AB 208 brings an improvement to modification AB 173 by changing only the riveting detail. SN 283 72 0805 provides instructions for re-boring the holes at overhaul or repair in order to improve their surface condition. A manufacturing process modification has been introduced to improve the surface condition of these holes in third stage turbine wheels. Wheels subject to the improved manufacturing process have S/Ns outside the range specified in Table 1.

Although there is only one known event, and although it resulted only in an uncommanded IFSD, with no damage to the aircraft, the possibility exists that additional events may occur, potentially involving damage to the aircraft.

To address the unsafe condition, EASA issued AD 2009–0136, mandating inspection of certain third stage turbine wheels and removal of any damaged wheel. The wheels to be inspected were those whose cycles since new (CSN) would exceed 2,000 by February 1, 2011. Following additional research by Turbomeca on crack initiation and growth, this AD mandates inspections based on new criteria and removal of any damaged wheel.

We are issuing this AD to prevent uncontained failures of the third stage turbine wheel, which could result in damage to the helicopter.

Actions and Compliance

(e) Unless already done, do the following actions.

(1) For any affected third stage turbine wheel that on the effective date of this AD has accumulated fewer than 500 cycles-since-last-overhaul or repair, or since-new if the engine has never been overhauled or repaired:

(i) Within 300 additional cycles, perform a dye penetrant inspection on the rear face of the third stage turbine wheel.

(ii) Use Section 2, Instructions to Be Incorporated, of Turbomeca MSB No. 283 72 0804, Version C, dated October 23, 2009, to do the inspection.

(iii) Perform a second dye penetrant inspection when the engine has accumulated between 450 and 550 cycles from the first inspection.

(2) For any affected third stage turbine wheel that on the effective date of this AD, has accumulated 500 or more but fewer than 700 cycles-since-last-overhaul or repair, or since-new if the engine has never been overhauled or repaired:

(i) Within 200 additional cycles, perform a dye penetrant inspection on the rear face of the third stage turbine wheel.

(ii) Use Section 2, Instructions to Be Incorporated, of Turbomeca MSB No. 283 72 0804, Version C, dated October 23, 2009, to do the inspection.

(3) For any affected third stage turbine wheel that on the effective date of this AD, has accumulated 700 or more but fewer than 1,200 cycles-since-last-overhaul or repair, or since-new if the engine has never been overhauled or repaired:

(i) Within 150 additional cycles, perform a dye penetrant inspection on the rear face of the third stage turbine wheel.

(ii) Use Section 2, Instructions to Be Incorporated, of Turbomeca MSB No. 283 72 0804, Version C, dated October 23, 2009, to do the inspection.

(4) If any crack indication is found, then before further flight, remove the third stage turbine wheel from service.

(5) For any affected third stage turbine wheel that on the effective date of this AD has accumulated 1,200 or more cycles-since-last-overhaul or repair, or since-new if the engine has never been overhauled or repaired, no action is required.
相关部门

联邦航空管理局

14 CFR Part 39

RIN 2120–AA64

航空性认证要求；SOGATA 模型 TBM 700 飞机

机构：联邦航空管理局（FAA），交通部（DOT）

操作：最终规则

摘要：我们正在采用新的航空性认证指令（AD）对上述产品。该AD由航空性认证信息（MCAI）引起，由航空业机构确定是否可以不使用航空器的安全条件。MCAI描述了航空器的安全条件。

The Civil Aviation Authority of the United Kingdom (UK) has informed EASA that significant quantities of Halon 1211 gas, determined to be outside the required specification, have been supplied to the aviation industry for use in fire extinguishing equipment. Halon 1211 (BCF) is used in portable fire extinguishers, usually fitted or stowed in aircraft passenger cabins and flight decks.

EASA published Safety Information Bulletin (SIB) 2009–39 on 23 October 2009 to make the aviation community aware of this safety concern.

The results of the ongoing investigation have now established that LyonTech Engineering Ltd, a UK-based company, has supplied further consignments of Halon 1211 (BCF) to L’Hotellier that do not meet the required specification. This Halon 1211 has subsequently been used to fill certain P/N 863520–00 portable fire extinguishers that are now likely to be installed in or carried on certain TBM700 aeroplanes.

The contaminated nature of this gas, when used against a fire, may provide reduced fire suppression, endangering the safety of the aeroplane and its occupants. In addition, extinguisher activation may lead to release of toxic fumes, possibly causing injury to aeroplane occupants.

我们正在采取该AD来要求采取纠正措施，以防止航空性不满足条件。

日期：该AD自2010年7月6日起生效。

您可以通过AD附录在互联网上查看。

我们向公众提供参与发展该AD的机会。我们没有收到关于NPRM的任何评论，或关于确定成本的任何评论。

结论：我们审查了可用数据，并确定了飞行安全和