[Federal Register Volume 74, Number 154 (Wednesday, August 12, 2009)]
[Proposed Rules]
[Pages 40540-40560]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: E9-18842]
[[Page 40540]]
=======================================================================
-----------------------------------------------------------------------
DEPARTMENT OF THE INTERIOR
Fish and Wildlife Service
50 CFR Part 17
[Docket No. FWS-R9-ES-2009-0057] [90100 16641FLA-B6]
Endangered and Threatened Wildlife and Plants; Annual Notice of
Findings on Resubmitted Petitions for Foreign Species; Annual
Description of Progress on Listing Actions
AGENCY: Fish and Wildlife Service, Interior.
ACTION: Notice of review.
-----------------------------------------------------------------------
SUMMARY: In this notice of review, we announce our annual petition
findings for foreign species, as required under section 4(b)(3)(C)(i)
of the Endangered Species Act of 1973, as amended. When, in response to
a petition, we find that listing a species is warranted but precluded
by higher priority listing actions, we must complete a new status
review each year until we publish a proposed rule or make a
determination that listing is not warranted. These subsequent status
reviews and the accompanying 12-month findings are referred to as
``resubmitted'' petition findings.
Information contained in this notice describes our status review of
20 foreign taxa that were the subjects of previous warranted-but-
precluded findings, most recently summarized in our 2008 Notice of
Review. Based on our current review, we find that 20 species (see Table
1) continue to warrant listing, but that their listing remains
precluded by higher priority listing actions.
With this annual notice of review (ANOR), we are requesting
additional status information for the 20 taxa that remain warranted but
precluded by higher priority listing actions. We will consider this
information in preparing listing documents and future resubmitted
petition findings for these 20 taxa. This information will also help us
to monitor the status of the taxa and in conserving them.
DATES: We will accept information on these resubmitted petition
findings at any time.
ADDRESSES: This notice is available on the Internet at http://www.regulations.gov, and http://endangered.fws.gov/. Supporting
information used in preparing this notice is available for public
inspection, by appointment, during normal business hours at the Branch
of Listing, 4401 N. Fairfax Drive, Room 420, Arlington, Virginia 22203.
Please submit any new information, materials, comments, or questions
concerning this notice to the above address.
FOR FURTHER INFORMATION CONTACT: Chief, Branch of Listing, Endangered
Species Program, (see ADDRESSES); by telephone at 703-358-2171; or by
facsimile at 703-358-1735). Persons who use a telecommunications device
for the deaf (TDD) may call the Federal Information Relay Service
(FIRS) at 800-877-8339.
SUPPLEMENTARY INFORMATION:
Background
The Endangered Species Act of 1973, as amended (Act) (16 U.S.C.
1531 et seq.), provides two mechanisms for considering species for
listing. First, we can identify and propose for listing those species
that are endangered or threatened based on the factors contained in
section 4(a)(1) of the Act. We implement this mechanism through the
candidate program. Candidate taxa are those taxa for which we have
sufficient information on file relating to biological vulnerability and
threats to support a proposal to list the taxa as endangered or
threatened, but for which preparation and publication of a proposed
rule is precluded by higher priority listing actions. The second
mechanism for considering species for listing is for the public to
petition to add species to the Lists of Endangered and Threatened
Wildlife and Plants (Lists). The species covered by this notice were
assessed through the petition process.
Under section 4(b)(3)(A) of the Act, when we receive a listing
petition, we must determine within 90 days, to the maximum extent
practicable, whether the petition presents substantial scientific or
commercial information indicating that the petitioned action may be
warranted (90-day finding). If we make a positive 90-day finding, we
are required to promptly commence a review of the status of the
species, whereby, in accordance with section 4(b)(3)(B) of the Act we
must make one of three findings within 12 months of the receipt of the
petition (12-month finding). The first possible 12-month finding is
that listing is not warranted, in which case we need not take any
further action on the petition. The second possibility is that we may
find that listing is warranted, in which case we must promptly publish
a proposed rule to list the species. Once we publish a proposed rule
for a species, sections 4(b)(5) and 4(b)(6) govern further procedures,
regardless of whether or not we issued the proposal in response to the
petition. The third possibility is that we may find that listing is
warranted but precluded. A warranted-but-precluded finding on a
petition to list means that listing is warranted, but that the
immediate proposal and timely promulgation of a final regulation is
precluded by higher priority listing actions. In making a warranted-but
precluded finding under the Act, the Service must demonstrate that
expeditious progress is being made to add and remove species from the
lists of endangered and threatened wildlife and plants.
Pursuant to section 4(b)(3)(C)(i) of the Act, when, in response to
a petition, we find that listing a species is warranted but precluded,
we must make a new 12-month finding annually until we publish a
proposed rule or make a determination that listing is not warranted.
These subsequent 12-month findings are referred to as ``resubmitted''
petition findings. This notice contains our resubmitted petition
findings for foreign species previously described in the 2008 Notice of
Review (73 FR 44062; July 29, 2008) and that are currently the subject
of outstanding petitions.
Previous Notices
The species discussed in this notice were the result of three
separate petitions submitted to the U.S. Fish and Wildlife Service
(Service) to list a number of foreign bird and butterfly species as
threatened or endangered under the Act. We received petitions to list
foreign bird species on November 24, 1980, and May 6, 1991 (46 FR
26464; May 12, 1981, and 56 FR 65207; December 16, 1991, respectively).
On January 10, 1994, we received a petition to list 7 butterfly species
as threatened or endangered (59 FR 24117; May 10, 1994).
We took several actions on these petitions. To notify the public on
these actions, we published petition findings, listing rules, status
reviews, and petition finding reviews that included foreign species in
the Federal Register on the following dates:
Date FR Citation
May 12, 1981.............................. 46 FR 26464
January 20, 1984.......................... 49 FR 2485
May 10, 1985.............................. 50 FR 19761
January 9, 1986........................... 51 FR 996
July 7, 1988.............................. 53 FR 25511
December 29, 1988......................... 53 FR 52746
April 25, 1990............................ 55 FR 17475
September 28, 1990........................ 55 FR 39858
November 21, 1991......................... 56 FR 58664
December 16, 1991......................... 56 FR 65207
March 28, 1994............................ 59 FR 14496
May 10, 1994.............................. 59 FR 24117
January 12, 1995.......................... 60 FR 2899
May 21, 2004.............................. 69 FR 29354
April 23, 2007............................ 72 FR 20184
Our most recent review of petition findings was published on July
29, 2008 (73 FR 44062).
[[Page 40541]]
Since our last review of petition findings in July 2008, we have
taken four listing actions related to species previously included in
this notice (see Preclusion and Expeditious Progress section for
additional listing actions that were not related to this notice). On
December 8, 2008, we published two proposed rules to list species under
the Act: One to list the medium tree finch (73 FR 74434), and the other
to list the black-breasted puffleg (73 FR 74427). On December 24, 2008,
we published a proposed rule to list the Andean flamingo, the Chilean
woodstar, and the St. Lucia forest thrush (73 FR 79226). On July 7,
2009, we published a proposed rule to list the blue-billed curassow,
the brown-banded antpitta, the Cauca guan, the gorgeted wood-quail, and
the Esmeraldas woodstar (74 FR 32307).
Findings on Resubmitted Petitions
This notice describes our resubmitted petition findings for 20
foreign species for which we had previously found proposed listing to
be warranted but precluded. We have considered all of the new
information that we have obtained since the previous findings, and we
have reviewed the listing priority number (LPN) of each taxon for which
proposed listing continues to be warranted but precluded, in accordance
with our Listing Priority Guidance published September 21, 1983 (48 FR
43098). Such a priority ranking guidance system is required under
section 4(h)(3) of the Act. Using this guidance, we assign each taxon
an LPN of 1 to 12, whereby we first categorize based on the magnitude
of the threat(s) (high versus moderate-to-low), then by the immediacy
of the threat(s) (imminent versus nonimminent), and finally by
taxonomic status; the lower the listing priority number, the higher the
listing priority (i.e., a species with an LPN of 1 would have the
highest listing priority).
As a result of our review, we find that warranted-but-precluded
findings remain appropriate for these 20 species. We emphasize that we
are not proposing these species for listing by this notice, but we do
anticipate developing and publishing proposed listing rules for these
species in the future, with an objective of making expeditious progress
in addressing all 20 of these foreign species within a reasonable
timeframe.
Table 1 (see end of this notice) provides a summary of all updated
determinations of the 20 taxa in our review. All taxa in Table 1 of
this notice are ones for which we find that listing is warranted but
precluded and are referred to as ``candidates'' under the Act. The
column labeled ``Priority'' indicates the LPN. Following the scientific
name of each taxon (third column) is the family designation (fourth
column) and the common name, if one exists (fifth column). The sixth
column provides the known historic range for the taxon. The avian
species in Table 1 are listed taxonomically.
Findings on Species for Which Listing Is Warranted but Precluded
We have found that, for the 20 taxa discussed below, publication of
proposed listing rules will continue to be precluded over the next year
due to the need to complete pending, higher priority listing actions.
We will continue to monitor the status of these species as new
information becomes available (see Monitoring, below). Our review of
new information will determine if a change in status is warranted,
including the need to emergency list any species or change the LPN of
any of the species. In the following section, we describe the status of
and threats to the individual species.
Birds
Southern helmeted curassow (Pauxi unicornis)
The southern helmeted curassow is one of the least frequently
encountered South American bird species because of the inaccessibility
of its preferred habitat and its apparent intolerance of human
disturbance (Herzog and Kessler 1998). The southern helmeted curassow
is known only from two distinct populations in central Bolivia and
central Peru (BirdLife International 2009a).
The Bolivian population of the nominate species (Pauxi unicornis
unicornis) remained unknown to science until 1937 (Cordier 1971).
Subsequently, it has been observed in the adjacent Ambor[oacute] and
Carrasco National Parks (Brooks 2006; Herzog and Kessler 1998), and has
recently been found in Isiboro-Secure Indigenous Territory and National
Park (TIPNIS), along the western edge of the Mosetenes Mountains,
Cochabamba, Bolivia. Recent surveys have located few southern helmeted
curassows across the northern boundary of Carrasco National Park, where
it was historically found (MacLeod 2007 as cited in BirdLife
International 2009a). In Ambor[oacute] National Park, the southern
helmeted curassow is regularly sighted on the upper Rio Saguayo (Wege
and Long 1995). Extensive surveys over the last several years have
failed to locate the species in Madidi National Park, La Paz (Hennessey
2004a as cited in BirdLife International 2009a8; Maccormack in litt.
2004 as cited in BirdLife International 2008; MacLeod in litt. 2003 as
cited in BirdLife International 2009a), on the eastern edge of the
Mosetenes Mountains in Cochabamba, and in the Rio Tambopata area near
the Bolivia/Peru border.
In Peru, a subpopulation (Pauxi unicornis koepckeae) is known only
from the Sira Mountains in Huanuco (Tobias and del Hoyo 2006). In 2005,
a team from the Armonia Association (BirdLife in Bolivia) saw one and
heard three southern helmeted curassow in the Sira's: the first
sighting of the distinctive endemic Peruvian race since 1969 (BirdLife
International 2008). Limited reports suggest that the southern helmeted
curassow is rare here (MacLeod in litt. 2004 as cited in BirdLife
International 2008; Maccormack in litt. 2004 as cited in BirdLife
International 2009a; Mee et al. 2002), and evidence suggests the
population is declining (Gasta[ntilde]aga and Hennessey 2005 as cited
in BirdLife International 2009a). The southern helmeted curassow occurs
at densities up to 20 individuals/square kilometer (km\2\); however, in
recent surveys only 1 or 2 individuals have been observed (Macleod 2007
as cited in BirdLife International 2008).
According to the International Union for Conservation of Nature and
Natural Resources (IUCN) /Species Survival Commission (SSC) Cracid
Specialist Group the southern helmeted curassow is critically
endangered and should be given immediate conservation attention (Brooks
and Strahl 2000).
The southern helmeted curassow inhabits dense, humid, lower montane
forest and adjacent evergreen forest at 450 to 1,200 meters (m)
(Cordier 1971; Herzog and Kessler 1998). It prefers eating nuts of the
almendrillo tree (Byrsonima wadsworthii (Cordier 1971)), but also
consumes other nuts, seeds, fruit, soft plants, larvae, and insects
(BirdLife International 2008). Clutch size of the southern helmeted
curassow is probably two, as in other Cracidae. However, the only nest
found contained only one egg (Banks 1998; Cox et al. 1997; Renjifo and
Renjifo 1997 as cited in BirdLife International 2008).
The southern helmeted curassow was previously classified as
``Vulnerable'' on the IUCN Red List. In 2005, it was uplisted to its
current status as ``Endangered'' (BirdLife International 2009a;
BirdLife International 2004). Southern helmeted curassow populations
are estimated to be declining very rapidly due to
[[Page 40542]]
uncontrolled hunting and habitat destruction; this species has a small
range and is known only from a few locations, which continue to be
subject to habitat loss and hunting pressures. The total population of
mature southern helmeted curassow is estimated to be between 1,000 and
4,999 individuals (BirdLife International 2009a). The subspecies in
Peru is estimated to have fewer than 400 individuals (Gasta[ntilde]aga
in litt. 2007 as cited in BirdLife International 2009a). Estimated
decline in the overall population over 10 years or 3 generations past
is 50 to 79 percent. However, the quality of this estimate is poor
(BirdLife International 2009b). The Rio Leche area in Peru experienced
a 100 percent population decline in less than 5 years because of
hunting pressures. Similar human pressures are ongoing throughout the
species' range. The observed decline likely infers that a 50-percent
population loss occurred between 1995 and 2005. Unless threats are
mitigated this trend will probably continue for the next several years
(Macleod in litt. 2005). Hunting is probably the biggest threat to
southern helmeted curassow in all parts of its range (Gasta[ntilde]aga
2006 as cited in BirdLife International 2009a). The species is often
hunted for meat and its casque, or horn (Collar et al. 1992), which the
local people use to fashion cigarette-lighters (Cordier 1971). In the
Ambor[oacute] region of Bolivia, the bird's head is purportedly used in
folk dances (Hardy 1984 as cited in Collar 1992).
In Bolivia, forests within the range of the southern helmeted
curassow are being cleared for crop cultivation by colonists from the
altiplano (Maillard 2006 as cited in BirdLife International 2009a).
Rural development, including road building, inhibits its dispersal
(Fjeldsa in litt. 1999 as cited in BirdLife International 2008; Herzog
and Kessler 1998). In Peru, in addition to hunting, southern helmeted
curassow habitat is threatened by subsistence agriculture (MacLeod in
litt. 2000 as cited in BirdLife International 2009a), forest clearing
by colonists, illegal logging, mining, and oil exploration (BirdLife
International 2009a). The southern helmeted curassow is dependent upon
pristine habitat. Therefore, its presence is critical for determining
priorities for conservation (Brooks 2006).
In Bolivia, large parts of southern helmeted curassow habitat are
ostensibly protected by inclusion in the Amboro and Carrasco National
Parks and in the Isiboro-Secure Indigenous Territory and National Park.
However, pressures on the species' populations continue (BirdLife
International 2009a; BirdLife International 2000). In recent years,
extensive field surveys of southern helmeted curassow habitat have
resulted in little success in locating the species (Hennessey 2004a;
MacLeod in litt. 2004 as cited in BirdLife International 2009a;
Maccormack in litt. 2004 as cited in BirdLife International 2009a;
MacLeod in litt 2003 as cited in BirdLife International 2009a; Mee et
al. 2002). The Association Armonia has been attempting to estimate
southern helmeted curassow population numbers to identify its most
important populations, and is evaluating human impact on the species'
natural habitat. In addition, Armonia is carrying out an environmental
awareness project to inform local people about the threat to southern
helmeted curassow (BirdLife International 2009a) and is conducting
training workshops with park guards to help improve chances for its
survival (Llampa 2007 as cited in BirdLife International 2009a).
The southern helmeted curassow does not represent a monotypic
genus. It faces threats that are moderate in magnitude as the
population is fairly large; however, the population trend has been
declining rapidly. The threats to the species are ongoing and,
therefore, imminent. Thus, we have assigned this species a priority
rank of 8.
Bogota rail (Rallus semiplumbeus)
The Bogota rail is found in the East Andes of Colombia on the
Ubat[eacute]-Bogot[aacute] Plateau in Cundinamarca and Boyac[aacute].
In Cundinamarca, the Bogota rail has been observed in at least 21
locations. It occurs in the temperate zone, at 2,500-4,000 m
(occasionally as low as 2,100 m) in savanna and p[aacute]ramo marshes
(BirdLife International 2008; BirdLife International 2007). Bogota rail
frequent wetland habitats with vegetation-rich shallows that are
surrounded by tall, dense reeds and bulrushes (Stiles in litt. 1999 as
cited in BirdLife International 2009). It inhabits the water's edge, in
flooded pasture and along small overgrown dykes and ponds (Salaman in
litt.1999 as cited in BirdLife International 2009; Fjeldsa 1990 as
cited in BirdLife International 2009; Fjeldsa and Krabbe 1990 as cited
in BirdLife International 2009; Varty et al. 1986 as cited in BirdLife
International 2009). Nests have been recorded adjoining shallow water
in beds of Scirpus and Typha spp. (Stiles in litt. 1999 as cited in
BirdLife International 2009). The Bogota rail is omnivorous, consuming
a diet that includes aquatic invertebrates, insect larvae, worms,
mollusks, dead fish, frogs, tadpoles, and plant material (BirdLife
International 2009; Varty et al. 1986 as cited in BirdLife
International 2009; BirdLife International 2006).
The Bogota rail is listed as endangered by IUCN primarily because
its range is very small and is contracting because of widespread
habitat loss and degradation. Furthermore, available habitat has become
widely fragmented (BirdLife International 2007). Wetland drainage,
pollution, and siltation on the Ubat[eacute]-Bogot[aacute] plateau have
resulted in major habitat loss and few suitably vegetated marshes
remain. All major savanna wetlands are threatened, predominately
because of draining, but also by agricultural runoff, erosion, dyking,
eutrophication caused by untreated sewage effluent, insecticides,
tourism, hunting, burning, reed harvesting, fluctuating water levels,
and increasing water demand. Additionally, road construction may result
in colonization and human interference, including introduction of
exotic species in previously stable wetland environments (Cortes in
litt. 2007 as cited in BirdLife International 2009). The current
population is estimated to range between 1,000-2,499 individuals,
though numbers are expected to decline over the next 10 years or 3
generations by 10 to 19 percent (BirdLife International 2009). Although
the Bogota rail population is declining, it is still uncommon to fairly
common, with a few notable populations, including nearly 400 birds at
Laguna de Tota, approximately 50 bird territories at Laguna de la
Herrera, approximately 110 birds at Parque La Florida, and populations
at La Conejera marsh and Laguna de Fuquene (BirdLife International
2009). Some Bogota rails occur in protected areas such as Chingaza
National Park and Carpanta Biological Reserve. However, most savanna
wetlands are virtually unprotected (BirdLife International 2009).
The Bogota rail does not represent a monotypic genus. It is subject
to threats that are moderate in magnitude and ongoing and, therefore,
imminent. We have assigned a priority rank of 8 to this species.
Takahe (Porphyrio hochstetteri, previously known as P. mantelli)
The Takahe, a flightless rail endemic to New Zealand, is the
world's largest extant member of the rail family (del Hoyo et al.
1996). The species, Porphyrio mantelli, has been split into P. mantelli
(extinct) and P. hochstetteri (extant) (Trewick 1996). BirdLife
International (2000) incorrectly assigned the name P. mantelli to the
extant form, while the name P. hochstetteri was incorrectly assigned to
the extinct form.
[[Page 40543]]
Fossils indicate that this bird was once widespread throughout the
North and South Islands. The Takahe was thought to be extinct by the
1930s until its rediscovery in 1948 in the Murchison Mountains,
Fjordland (South Island) (Bunin and Jamieson 1996; New Zealand
Department of Conservation (NZDOC) 2009b). Soon after its rediscovery,
a Takahe Special Area of 193 square miles (mi\2\) (500 km\2\) was set
aside in Fiordland National Park for the conservation of Takahe
(Crouchley 1994; NZDOC 2009c). Today, the species is present in the
Murchison and Stuart Mountains and has been introduced to four island
reserves (Kapiti, Mana, Tiritiri Mantangi, and Maud) (Collar et al.
1994). The population in the Murchison Mountains is important because
it is the only mainland population that has the potential for
sustaining a large, viable population (NZDOC 1997).
Originally, the species occurred throughout forest and grass
ecosystems. Today, Takahe occupy alpine grasslands (BirdLife
International 2007). They feed on tussock grasses during much of the
year, with snow tussocks (Chionochloa pallens, C. flavescens, and C.
crassiuscula) being their preferred food (Crouchley 1994). By June, the
snow cover usually prevents feeding above tree line, and birds move
into forested valleys in the winter and feed mainly on the rhizome of a
fern (Hypolepis millefolium). Research by Mills et al. (1980) suggested
that Takahe require the high-carbohydrate concentrations in the
rhizomes of the fern to meet the metabolic requirement of
thermoregulation in the mid-winter, subfreezing temperatures. The
island populations eat introduced grasses (BirdLife International
2007). Takahe form pair bonds that persist throughout life and
generally occupy the same territory throughout life (Reid 1967). Their
territories are large, and Takahe defend them aggressively against
other Takahe, which means that they will not form dense colonies even
in very good habitat. They are long-lived birds, probably between 14
and 20 years (Heather and Robertson 1997) and have a low reproductive
rate, with clutches consisting of 1 to 3 eggs. Only a few pairs manage
to consistently rear chicks each year. Although under normal conditions
this is generally sufficient to maintain the population, populations
recover slowly from catastrophic events (Crouchley 1994).
The Takahe is listed as ``Endangered'' on the IUCN Red List because
it has an extremely small population (BirdLife International 2006).
When rediscovered in 1948, it was estimated that the population was
about 260 pairs (del Hoyo 1996; Heather and Robertson 1997). By the
1970s, Takahe populations had declined dramatically, and it appeared
that the species was at risk of extinction. In 1981, the population
reached a low at an estimated 120 birds. Since then, the population has
fluctuated between 100 and 180 birds (Crouchley 1994). At first,
translocated populations increased only slowly, probably due to young
pair-bonds and the quality of the founding population (Bunin et al.
1997). In recent years, the total Takahe population has had significant
growth; in 2004, there was a 13.6 percent increase in the number of
adult birds, with the number of breeding pairs up 7.9 percent (BirdLife
International 2005). As of August 2007, birds in the Takahe Special
Area had increased to 168, and the current national population was 297.
However, this mainland population was thought to be at carrying
capacity (Greaves 2007), and Island reserves also appeared to be at
carrying capacity (NZDOC 2007). Thus, a high priority of the recovery
program is to establish a second viable mainland population to further
increase the total population size (Greaves 2007). Overall, population
numbers are slowly increasing due to intensive management of the island
reserve populations, but fluctuations in the remnant mainland
population continue to occur (BirdLife International 2000).
The main cause of the species' historical decline was competition
for tussock grasses by grazing red deer (Cervus elaphus), which were
introduced after the 1940s (Mills and Mark 1977). The red deer
overgrazed the Takahe's habitat, eliminating nutritious plants and
preventing some grasses from seeding (del Hoyo et al. 1996). The NZDOC
has controlled red deer through an intensive hunting program in the
Murchison Mountains since the 1960s, and now the tussock grasses are
close to their original condition (BirdLife International 2005).
Predation by introduced stoats (Mustela erminea) is believed to be
a current risk to the species (Bunin and Jamieson 1995; Bunin and
Jamieson 1996; Crouchley 1994). The NZDOC is running a trial stoat
control program in a portion of the Takahe Special Area to measure the
effect on Takahe survival and productivity. Initial assessment
indicates a positive influence (NZDOC 2007). Other potential
competitors or predators include the introduced brush-tailed possum
(Trichosurus vulpecula) and the threatened weka (Gallirallus
australis), a flightless woodhen endemic to New Zealand (BirdLife
International 2008). In addition, severe weather is a natural limiting
factor to this species (Bunin and Jamieson 1995). Weather patterns in
the Murchison Mountains vary from year to year. High chick and adult
mortality may occur during extraordinarily severe winters, and poor
breeding may result from severe stormy weather during spring breeding
season (Crouchley 1994). Research confirms that severity of winter
conditions adversely affects survivorship of Takahe in the wild,
particularly of young birds (Maxwell and Jamieson 1997).
Since 1983, the NZDOC has been involved in managing a captive-
breeding and release program to boost Takahe recovery. Excess eggs from
wild nests are managed to produce birds suitable for releasing back
into the wild population in the Murchison Mountains. Some of these
captive-reared birds have also been used to establish four predator-
free offshore island reserves. Since 1984, these birds have increased
the total population on islands to about 60 birds (NZDOC 2009a).
Captive-breeding efforts have increased the rate of survival of chicks
reaching 1 year of age from 50 to 90 percent (NZDOC 1997). However,
Takahe that have been translocated to the islands have higher rates of
egg infertility and low hatching success when they breed, contributing
to the slow increase in the islands' populations. Researchers
postulated that the difference in vegetation between the native
mainland grassland tussocks and that found on the islands might be
affecting reproductive success. After testing nutrients from all
available food sources, they concluded that there was no effect, and
advised that a supplementary feeding program for the birds was not
necessary or recommended (Jamieson 2003). Further research on Takahe
established on Tiritiri Matangi Island estimated that the island can
support up to 8 breeding pairs, but suggested that the ability of the
island to support Takahe is likely to decrease as the grass/shrub
ecosystem reverts to forest. The researchers concluded that, although
the four island populations fulfilled their role as an insurance
against extinction on the mainland at the time of the study, given
impending habitat changes on the islands, it is unclear whether these
island populations will continue to be viable in the future without an
active management plan (Baber and Craig 2003a; Baber and Craig 2003b).
Maxwell and Jamieson (1997) studied survival and recruitment of
captive-reared and wild-reared Takahe on Fiordland. They concluded that
captive rearing of
[[Page 40544]]
Takahe for release into the wild increases recruitment of juveniles
into the population.
There is growing evidence that inbreeding can negatively affect
small, isolated populations. Jamieson et al. (2006) suggested that
limiting the potential effects of inbreeding and loss of genetic
variation should be integral to any management plan for a small,
isolated, highly inbred island species, such as the Takahe. Failure to
address these concerns may result in reduced fitness potential and much
higher susceptibility to biotic and abiotic disturbances in the short
term and an inability to adapt to environmental change in the long
term.
The Takahe does not represent a monotypic genus. The current wild
population is small, and the species' distribution is extremely
limited. It faces threats that are moderate in magnitude because the
NZDOC has taken measures to aid the recovery of the species. The NZDOC
has implemented a successful deer control program and implemented a
captive-breeding and release program to augment the mainland population
and establish four offshore island reserves. Predation by introduced
species and reduced survivorship resulting from severe winters,
combined with the Takahe's small population size and naturally low
reproductive rate are threats to this species that are imminent and
ongoing. Therefore, we have assigned this species a priority rank of 8.
Chatham oystercatcher (Haematopus chathamensis)
Chatham oystercatcher is the rarest oystercatcher species in the
world (DOC 2001). It is endemic to the Chatham Island group (Marchant
and Higgins 1993; Schmechel and Paterson 2005), which lies 534 mi (860
km) east of mainland New Zealand. The Chatham Island group comprises
two large, inhabited islands (Chatham and Pitt) and numerous smaller
islands. Two of the smaller islands (Rangatira and Mangere) are nature
reserves, which provide important habitat for the Chatham
oystercatcher. The Chatham Island group has a biota quite different
from the mainland. The remote marine setting, distinct climate, and
physical makeup have led to a high degree of endemism (Aikman et al.
2001). The southern part of the Chatham oystercatcher range is
dominated by rocky habitats with extensive rocky platforms. The
northern part of the range is a mix of sandy beach and rock platforms
(Aikman et al. 2001).
Pairs of Chatham oystercatchers occupy their territory all year,
while juveniles and subadults form small flocks or occur alone on a
vacant section of the coast. The nest is a scrape usually on a sandy
beach just above spring-tide and storm surge level or among rocks above
the shoreline and are often under the cover of small bushes or rock
overhangs (Heather and Robertson 1997).
Chatham oystercatcher is classified as `Endangered' on the IUCN Red
List because it has an extremely small population (BirdLife
International 2009). It is listed as `critically-endangered' by the New
Zealand Department of Conservation (DOC 2008a), making it a high
priority for conservation management (DOC 2007). In the early 1970s the
Chatham oystercatcher population was approximately 50 birds (del Hoyo
1996). In 1988, based on past productivity information, it was feared
that the species was at risk of extinction within 50 to 70 years (Davis
1988 as cited in Schmechel and Paterson 2005). However, the population
increased by 30 percent overall between 1987 and 1999, except trends
varied in different areas of the Chatham Islands (Moore et al. 2001).
Surveys taken over a 6-year period recorded an increase in Chatham
oystercatchers from approximately 100 individuals in 1998 (Marchant and
Higgins 1993) to 320 individuals (including 88 breeding pairs) in 2005
(Moore 2005a). Although the overall population has significantly
increased over the last 20 years, the population on South East Island
(Rangatira), an island free of mammalian predators, has gradually
declined since the 1970s. The reason for the decline is unknown
(Schmechel and O'Connor 1999).
Predation, nest disturbance, invasive plants, and spring tides and
storm surges are factors threatening the Chatham oystercatcher
population (DOC 2001, Moore 2005). Feral cats (Felis catus) have become
established on two of the Chatham Islands after being introduced as
pets. Severe reduction in Chatham oystercatcher numbers is attributed
in part by heavy cat predation. Another predator, the weka (Gallirallus
australis), an endemic New Zealand rail, introduced to the Chatham
Islands in the early 1900s, is not considered as much a threat to the
Chatham oystercatcher as feral cats because they only prey on eggs when
adult oystercatchers are not present. Other potential predators include
the Norway rat (Rattus norvegicus), the ship rat (R. rattus),
Australian brush-tailed possum (Trichsurus vulpeculs), and hedgehog
(Erinaceus europaeus). However, these species are not considered a
serious threat because of the large size of the oystercatcher eggs.
Native predators include the red-billed gull (Larus scopulinus), and
southern black-backed gull (L. dominicanus) (Moore 2005b). Nest
destruction and disturbance is caused by people fishing, walking, or
driving, and by livestock. When a nesting area is disturbed, adult
Chatham oystercatchers often abandon their eggs for up to an hour or
more, leaving the eggs vulnerable to opportunistic predators. Eggs are
also trampled by livestock (Moore 2005a).
Another obstacle to Chatham oystercatcher populations is marram
grass (Ammophila arenaria), introduced to New Zealand from Europe to
protect farmland from sand encroachment. It has spread to the Chatham
Islands where it binds beach sands forming tall dunes with steep
fronts. In many marram-infested areas, the strip between the high tide
mark and the foredunes narrows as the marram advances seaward.
Consequently, the Chatham oystercatcher is forced to nest closer to
shore where nests are vulnerable to tides and storm surges. The dense
marram grass is unsuitable for nesting (Moore and Davis 2005). In a
study done by Moore and Williams (2005), the authors found that, along
the narrow shoreline, many eggs were washed away and the adults would
not successfully breed without human intervention. Oystercatcher eggs
could easily be moved away from the shoreline by fieldworkers and
placed in hand-dug scrapes surrounded by tidal debris and kelp. Video
cameras placed to observe nests indicated that feral cats are a major
nest predator. After three summers of video recording, 13 of the 19
nests recorded were predated by cats. When a cat was present eggs
usually lasted only one or two days. Of the remaining six nest
failures, weka were responsible for three; red-billed gull, one; sheep-
trampling, one; and sea wash, one (Moore 2005b).
The birds of the Chatham Island group are protected. The NZDOC
focused conservation efforts in the early 1990s on predator trapping
and fencing to limit domestic stock access to nesting areas. In 2001,
the NZDOC published the Chatham Island oystercatcher recovery plan
2001-2011 (DOC 2001), which outlines actions such as translocation of
nests away from the high tide mark and nest manipulation to further the
conservation of this species. These actions may have helped to increase
hatching success (DOC 2008b). Artificial incubation has been tried but
did not increase productivity. Additionally, livestock have been
[[Page 40545]]
fenced and signs erected to reduce human and dog disturbance. Marram
grass control has been successful in some areas. Intensive predator
control combined with nest manipulation has resulted in a high number
of fledglings (BirdLife International 2009).
The Chatham oystercatcher does not represent a monotypic genus. The
current population has 311 individuals, and the species only occurs on
the small Chatham Island group. It faces threats that are moderate in
magnitude because the NZDOC has taken measures to aid the recovery of
the species. Threats are ongoing and, therefore, imminent. We have
assigned this species a priority rank of 8.
Orange-fronted parakeet (Cyanoramphus malherbi)
The orange-fronted parakeet, also known as Malherbe's parakeet, was
treated as an individual species until it was proposed to be a color
morph of the yellow-crowned parakeet, C. auriceps, in 1974 (Holyoak
1974). Further taxonomic analysis suggested that it should once again
be considered a distinct species (Kearvell et al. 2003; ITIS 2008).
At one time, the orange-fronted parakeet was scattered throughout
most of New Zealand, although the two records from the North Island are
thought to be dubious (Harrison 1970). This species has never been
common (Mills and Williams 1979). During the nineteenth century, the
species' distribution included South Island, Stewart Island, and a few
other offshore islands of New Zealand (NZDOC 2009a). Currently, there
are four known remaining populations, all located within an 18.6-mi
(30-km) radius in beech (Nothofagus spp.) forests of upland valleys
within Arthur's Pass National Park and Lake Sumner Forest Park in
Canterbury, South Island (NZDOC 2009a), and two populations established
on Chalky and Maud Islands (Elliott and Suggate 2007). This species
inhabits southern beech forests, with a preference for locales
bordering stands of mountain beech (N. solandri) (del Hoyo 1997; Snyder
et al. 2000; Kearvell 2002). It is reliant on old mature beech trees
with natural cavities or hollows for nesting. Breeding is linked with
the irregular seed production by Nothofagus; in mast years with a high
abundance of seeds, parakeet numbers can increase substantially. In
addition to eating seeds, the orange-fronted parakeet feeds on fruits,
leaves, flowers, buds, and invertebrates (BirdLife International 2009).
The orange-fronted parakeet has an extremely small population and
limited range. The species is listed as ``Critically Endangered'' on
the IUCN Red List, ``because it underwent a population crash following
rat invasions in 1990-2000, and it now has a very small and severely
fragmented population that has declined during the past ten years''
(BirdLife International 2009). It is listed in Appendix II of the
Convention on International Trade in Endangered Species (CITES) as part
of a general listing for all parrots (CITES 2008). The NZDOC (2009b)
considers the orange-fronted parakeet, or kakariki, to be the rarest
parakeet in New Zealand. Because it is classified as ``Nationally
Critical'' with a high risk of extinction, the NZDOC has been working
intensively with the species to ensure its survival. The population is
estimated at 100 to 200 individuals in the wild and declining (NZDOC
2009a).
There are several reasons for the species' continuing decline; one
of the most prominent risks to the species is believed to be predation
by introduced species, such as stoats (Mustela erminea) and rats
(Rattus spp.) (BirdLife International 2009). Large numbers of stoats
and rats in beech forests cause large losses of parakeets. Stoats and
rats are excellent hunters on the ground and in trees. When they
exploit parakeet nests and roosts in tree holes, they particularly
impact females, chicks, and eggs (NZDOC 2009c). The NZDOC introduced
``Operation ARK,'' an initiative to respond to predator problems in
beech forests to prevent species' extinctions, including orange-fronted
parakeets. Predators are methodically controlled with traps, toxins in
bait stations, bait bags, and aerial spraying, when necessary (NZDOC
2009d). Despite these controls, predation by introduced species is
still a threat because they have not been eradicated from this species'
range.
Habitat loss and degradation are also considered threats to the
orange-fronted parakeet (BirdLife International 2007b). Large areas of
native forest have been felled or burnt, decreasing the habitat
available for parakeets (NZDOC 2009c). Silviculture of beech forests
aims to harvest trees at an age when few will become mature enough to
develop suitable cavities for orange-fronted parakeets (Kearvell 2002).
The habitat is also degraded by brush-tailed possum (Trichosurus
vulpecula), cattle, and deer browsing on plants, which changes the
forest structure (NZDOC 2009c). This is a problem for the orange-
fronted parakeet, which uses the ground and low-growing shrubs while
feeding (Kearvell et al. 2002).
Snyder et al. (2000) reported that hybridization with yellow-
crowned parakeets had been observed at Lake Sumner. Other risks include
increased competition between the orange-fronted parakeet and the
yellow-crowned parakeet for nest sites and food in a habitat
substantially modified by humans, competition with introduced finch
species, and competition with introduced wasps (Vespula vulgaris and V.
germanica) for invertebrates as a dietary source (Kearvell et al.
2002).
The NZDOC closely monitors all known populations of the orange-
fronted parakeet. Nest searches are conducted, nest holes are
inspected, and surveys are carried out in other areas to look for
evidence of other populations. In fact, the surveys successfully
located another orange-fronted parakeet population in May 2003 (NZDOC
2009d). A new population was established in 2006 on the predator-free
Chalky Island. Eggs were removed from nests in the wild, and foster
parakeet parents incubated the eggs and cared for the hatchlings until
they fledged and were transferred to the island. Monitoring later in
the year (2006) indicated that the birds had successfully nested and
reared chicks. Additional birds will be added to the Chalky Island
population, in an effort to increase the genetic diversity of the
population (NZDOC 2009d). A second self-sustaining population has been
established on Maud Island (NZDOC 2008).
The orange-fronted parakeet does not represent a monotypic genus.
The current wild population ranges between 100 and 200 individuals, and
the species' distribution is extremely limited. It faces threats that
are moderate in magnitude because the NZDOC has taken important
measures to aid in the recovery of the species. The NZDOC implemented a
successful captive-breeding program for the orange-fronted parakeet.
Using captive-bred birds from the program, NZDOC established two self-
sustaining populations of the orange-fronted parakeet on predator-free
islands. The NZDOC monitors wild nest sites and is constantly looking
for new nests and new populations, as evidenced by the 2003 discovery
of a new population. Finally, the NZDOC determined that the species'
largest threat is predation and initiated a successful program to
remove predators. The threats of competition for food and highly
altered habitat are ongoing and, therefore, imminent. Thus, we have
assigned this species a priority rank of 8.
Uvea parakeet (Eunymphicus uvaeensis)
The Uvea parakeet, previously known as Eunymphicus cornutus, is
currently
[[Page 40546]]
treated as two species: E. cornutus and E. uvaeensis (Boon et al. 2008;
BirdLife International 2007). The Uvea parakeet is found only on the
small island of Uvea in the Loyalty Archipelago, New Caledonia
(Territory of France). The island is only 42 mi\2\ (110 km\2\) (Juniper
and Parr 1998). The Uvea parakeet is found primarily in old-growth
forests, notably, those dominated by the pine tree Agathis australis
(del Hoyo et al. 1997). Most birds occur in about 7.7 mi\2\ (20 km\2\)
of forest in the north, although some individuals are found in strips
of forest on the northwest isthmus and in the southern part of the
island, with a total area of potential habitat of approximately 25.5
mi\2\ (66 km\2\) (BirdLife International 2009, CITES 2000b). Uvea
parakeets feed on the berries of vines and the flowers and seeds of
native trees and shrubs (del Hoyo et al. 1997). They also feed on
limited crops in adjacent cultivated land. The greatest number of birds
occurs close to gardens with papayas (BirdLife International 2009).
Uvea parakeet nest in cavities of native trees, and have a clutch size
of 2 to 3 eggs with some double clutches (Robinet and Salas 1999).
Early population estimates of Uvea parakeet were alarmingly low--70
to 90 individuals (Hahn 1993). Surveys in 1993 by Robinet et al. (1996)
yielded estimates of approximately 600 individuals. In 1999, it was
believed that 742 individuals lived in northern Uvea, and 82 in the
south (Primot 1999 as cited in BirdLife International 2009). Six
surveys conducted between 1993 and 2007 indicated a steady increase in
population numbers in both areas (Verfaille in litt. 2007 as cited in
BirdLife International 2009). Even though populations are currently
increasing, any reduction in conservation efforts or introduction of
invasive species (particularly the ship rat, Rattus rattus and the
Norway rat, R. norvegicus) could lead to rapid declines (Robinet et al.
1998, BirdLife International 2009). Although the Uvea parakeet has a
number of predators, the absence of the ship rat and Norwegian rat on
Uvea is a major factor contributing to its survival. Norway rats are
prolific invaders of islands and can rapidly establish large
populations (Russell 2007). Additionally, impacts of the rat appear to
be more severe on smaller islands (Martin et al. 2000). In one study,
it was determined that the low rate of predation on nest sites of Uvea
parakeet was related to the absence of ship rat and Norwegian rat.
However, these rat species are present on the other Loyalty Islands and
on Grande Terre (Robinet and Salas 1996). Experimental egg predation
rates were four times higher on Lifu where R. rattus occurs (Robinet et
al. 1998).
Preventive measures have been taken at the port and airport to
prevent introduction of invasive rats and should continue to be
reinforced (Robinet and Salas 1996), but there is concern that these
rats may be introduced in the future (CITES 2000b). However, as of
2007, the island remained rat free (Verfaille in litt. 2007 as cited in
BirdLife International 2009). Introductions of Uvea parakeets to the
adjacent island of Lifou (to establish a second population) in 1925 and
1963 failed (Robinet et al. 1995 as cited in BirdLife International
2009), possibly because of the presence of ship rats and Norwegian rats
(Robinet in litt. 1997 as cited in Snyder et al. 2000). Robinet et al.
(1998) studied the impact of rats in Uvea and Lifou on the Uvea
parakeet and concluded that Lifou is not a suitable place for
translocating Uvea parakeet unless active habitat management is carried
out to protect it from invasive rats. They also suggested it would be
valuable to apply low-intensity rat control of the Polynesian rat (R.
exulans) in Uvea immediately before the parakeet breeding season.
Uvea parakeet is threatened by habitat loss, capture of juveniles
for the pet trade, and predation (BirdLife International 2009). The
forest habitat of the Uvea parakeet is threatened by clearance for
agriculture and logging. In 30 years, approximately 30 to 50 percent of
primary forest has been removed (Robinet et al. 1996). The island has a
young and increasing human population of almost 4,000 inhabitants. The
increase in population will most probably lead to more destruction of
forest for housing, cultivated fields, and plantations, especially
coconut palms, the island's main source of income (CITES 2000a). The
species is also threatened by the illegal pet trade, mainly for the
domestic market (BirdLife International 2007). Nesting holes are cut
open to extract nestlings, which renders the holes unsuitable for
future nesting. The lack of nesting sites is believed to be a limiting
factor for the species (BirdLife International 2009). Also, Robinet et
al. (1996) suggested that the impact of capture of juveniles on the
viability of populations is not obvious with long-lived species that
are capable of re-nesting, such as Uvea parakeet. The current capture
of 30 to 50 young Uvea parakeets each year for the pet trade may be
unsustainable. In a study of the reproductive biology of Uvea parakeet,
Robinet and Salas (1999) found that the main causes of chick death were
starvation of the third chick within the first week after hatching,
raptor (presumably the native brown goshawk (Accipiter fasciatus)
predation of fledglings, and human harvest for the pet trade.
Additionally, the invasion of bees into Uvea in 1996 has resulted
in competition with Uvea parakeet over nesting sites. This has resulted
in a reduction of known Uvea parakeet nesting sites by 10 percent
between 2000 and 2002 (Barr[eacute] in litt. 2003 as cited in BirdLife
International 2009). Studies by Robinet et al. (2003) indicate the
density of breeding Uvea parakeet is positively related to the
distribution of suitable trees. Consequently, the number of suitable
trees may limit the number of breeding pairs. In two cases, Robinet et
al. (2003) observed successful nesting after human restoration of
former nest sites that had been destroyed by illegal collectors. This
further indicates the deleterious effect of nest-site limitation.
Additionally, forest fragmentation as a result of increased numbers of
coconut plantations acts as a barrier to dispersal. This could possibly
explain the lack of recolonization in southern Uvea (Robinet et al.
2003). Uvea parakeet was uplisted from Appendix II to Appendix I of
CITES in July 2000 because of its small population size, restricted
area of distribution, loss of suitable habitat, and the illegal pet
trade (CITES 2000b).
A recovery plan for the Uvea parakeet was prepared for the period
1997-2002, which included strong local participation in population and
habitat monitoring (Robinet in litt. 1997 as cited in Snyder et al.
2000). The species has recently increased in popularity and is
celebrated as an island emblem (Robinet and Salas 1997, Primot in litt.
1999 as cited in BirdLife International 2009). Conservation actions,
including in situ management (habitat protection and restoration),
recovery efforts (providing nest boxes and food), and public education
on the protection of Uvea parakeet and its habitat are ongoing (Robinet
et al. 1996). Increased awareness of the plight of the Uvea parakeet
and improvements in law enforcement capability are helping to address
illegal trade of the species. A captive-breeding program has been
discussed but not begun (BirdLife International 2009). A translocation
program to restock this species into the southern portion of Uvea was
cancelled under a new recovery plan (2003) because the population is
considered viable and is expected to increase naturally (Barr[eacute]
in litt. 2003, Anon 2004 as cited in BirdLife International 2009).
Measures are now being taken to control
[[Page 40547]]
predators and prevent further colonization by rats (BirdLife
International 2009). Current Uvea parakeet numbers are increasing, but
any relaxation of conservation efforts or introduction of nonnative
rats or other predators could lead to a rapid decline (BirdLife
International 2009). The Soci[eacute]t[eacute] Cal[eacute]donienne
d'Ornithologie (SCO) received funding to test artificial nests, and
BirdLife Suisse (ASPO) is continuing to destroy invasive bees nests and
is placing hives in forested areas to attract bees for removal
(Verfaille in litt. 2007 as cited in BirdLife International 2009).
The Uvea parakeet does not represent a monotypic genus. The Uvea
parakeet faces threats that are moderate because important management
efforts have been put in place to aid in the recovery of the species.
However, all of these efforts must continue to function, because this
species is an island endemic with restricted habitat in one location.
Threats to the species are imminent because illegal trade still occurs
and the removal of 30 to 50 percent of the old-growth forest, which the
birds depend on for nesting holes, negatively impacts the reproductive
requirements of the species. We have assigned this species a priority
rank of 8.
Blue-throated macaw (Ara glaucogularis)
The blue-throated macaw is endemic to forest islands in the
seasonally flooded Beni Lowlands (Lanos de Mojos) of Central Bolivia
(Jordan and Munn 1993; Yamashita and de Barros 1997). It inhabits a
mosaic of seasonally inundated savanna, palm groves, forest islands,
and humid lowlands. This species is found in areas where palm-fruit
food is available, especially motacu palm (Attalea phalerata) (Jordan
and Munn 1993; Yamashita and de Barros 1997), and it depends on motacu
palms for nesting (Birdlife International 2008d). It inhabits
elevations between 656 and 984 ft (200 and 300 m) (BirdLife
International 2008c; Brace et al. 1995; Yamashita and de Barros 1997).
These macaws are not found to congregate in large flocks, but are seen
most commonly traveling in pairs, and on rare occasions may be found in
small flocks (Collar et al. 1992). The blue-throated macaw nests
between November and March in large tree cavities where one to two
young are raised (BirdLife International 2000).
The taxonomic status of this species was long disputed, primarily
because the species was unknown in the wild to biologists until 1992.
Previously it was considered an aberrant form of the blue-and-yellow
macaw (A. ararauna), but the two species are now known to occur
sympatrically without interbreeding (del Hoyo et al. 1997). BirdLife
International (2008b) estimated the total wild population to be between
250 and 300 and noted the population has some fragmentation. Surveys
indicate the population may now be slowly increasing following dramatic
declines in the 1970s and 1980s. Biologists surveying for this species
in 2004 found more birds than in previous surveys by searching specific
habitat types - palm groves and forested islands - and predicted more
birds would be found by concentrating searches in these areas (Herrera
et al. 2007). Through a population viability analysis (PVA) of this
species, Strem (2008) found that, while there was a low probability of
extinction over the next 50 years, the small population size, as well
as low population growth rates, makes this species very vulnerable to
any threat. The low probability of extinction is not unexpected given
that the blue-throated macaw is a long-lived species and the 50-year
simulation timeframe is relatively short for such species. However,
Strem (2008) found that impacts such as habitat destruction and
harvesting had significant negative effects on the probabilities of
extinction (increasing the probability of extinction), which
reemphasizes the importance of addressing these threats for this
species.
The blue-throated macaw was historically at risk from trapping for
the national and international cage-bird trade, and some illegal trade
may still be occurring. Between the early 1980s and early 1990s, an
estimated 1,200 or more wild-caught individuals were exported from
Bolivia, and many are now in captivity in the European Union and in
North America (BirdLife International 2008b, World Parrot Trust 2003).
In 1984, Bolivia outlawed the export of live parrots (Brace et al.
1995). However, in 1993 (Jordan and Munn 1993) investigators reported
that an Argentinean bird dealer was offering illegal Bolivian dealers a
high price for blue-throated macaws. Armonia Association (BirdLife in
Bolivia) monitored the wild birds that passed through a pet market in
Santa Cruz from August 2004 to July 2005. Although nearly 7,300 parrots
were recorded in trade, the blue-throated macaw was absent in the
market during the monitoring period, which may point to the
effectiveness of the ongoing conservation programs in Bolivia (BirdLife
International 2007). There are a number of blue-throated macaws in
captivity, with over 1,000 registered in the North American studbook.
Because these birds are not too difficult to breed, the supply of
captive-bred birds has increased (Waugh 2007), helping to alleviate
pressure on illegal collecting of wild birds, but not completely
eliminating illegal collection.
The blue-throated macaw is also at risk from habitat loss and
possible competition from other birds, such as other macaws, toucans,
and large woodpeckers (BirdLife International 2008b; World Parrot Trust
2008). Until recently, all known sites of the blue-throated macaw were
on private cattle ranches, where local ranchers typically burn the
pasture annually (del Hoyo 1997). This results in almost no recruitment
of palm trees, which are central to the ecological needs of the blue-
throated macaw (Yamashita and de Barros (1977)). In addition, in Beni
many palms are cut down by the local people for firewood (Brace et al.
1995). Thus, although the palm groves are more than 500 years old,
Yamashita and de Barros (1977) concluded that the palm population
structure suggests long-term decline.
Despite some recent surveys that indicate the population may be
slowly increasing, this species remains categorized as ``Critically
Endangered'' on the 2009 IUCN Red List, ``because its population is
extremely small and each isolated subpopulation is probably tiny and
declining as a result of illegal trade'' (BirdLife International 2009).
It is listed in Appendix I of CITES (CITES 2006) and is legally
protected in Bolivia (Juniper and Parr 1998). The Eco Bolivia
Foundation patrols existing macaw habitat by foot and motorbike, and
the Armonia Association is searching the Beni lowlands for more
populations (Snyder et al. 2000). Additionally, the Armonia Association
is building an awareness campaign aimed at the cattlemen's association
to ensure that the protection and conservation of these birds is at a
local level (e.g., protection of macaws from trappers and the sensible
management of key habitats, such as palm groves and forest islands, on
their property) (BirdLife International 2008a; Llampa 2007; Snyder et
al. 2000). In October 2008, Armonia Association announced it had
purchased a large 8,785-acre (3,555-hectare) ranch for the purpose of
establishing a protected area for the blue-throated macaw (BirdLife
International 2008d). The new Barba Azul Nature Reserve protects
excellent savanna habitat and 20 blue-throated macaws are known to nest
here. The organization has also been experimenting with artificial nest
boxes;
[[Page 40548]]
the macaws have been using these, and this promises to be a way to
boost breeding success while habitat restoration is under way in the
new reserve.
The blue-throated macaw does not represent a monotypic genus. It
faces threats that are moderate in magnitude because wild birds are no
longer taken for the legal wild-bird trade as a result of the species'
CITES listing, and it is also legally protected in Bolivia. Wildlife
managers in Bolivia are actively protecting the species and searching
for additional populations, and the species is now protected in one
nature reserve. Threats to the species are ongoing and, therefore,
imminent because hunters still trap the birds for the illegal bird
trade and annual burning on private ranches continues. Therefore, we
have assigned this species a priority rank of 8.
Helmeted woodpecker (Dryocopus galeatus)
The helmeted woodpecker is endemic to the southern Atlantic forest
region of southeastern Brazil, eastern Paraguay, and northeastern
Argentina (BirdLife International 2009). It is found in tall lowland
Atlantic and primary and mature montane forest and has been recorded in
degraded and small forest patches. However, it is usually found near
large forest tracts (Chebez 1995b as cited in BirdLife International
2009; Clay in litt. 2000 as cited in BirdLife International 2009).
Helmeted woodpecker forage primarily in the middle story of the forest
interior (Brooks et al. 1993 cited in BirdLife International 2009; Clay
in litt. 2000 as cited in BirdLife International 2009).
Recent field work on the helmeted woodpecker revealed that the
species is less rare than once thought (BirdLife International 2009),
although its range is highly restricted (Mattsson et al. 2008). It is
listed as Vulnerable by the IUCN (IUCN 2008). The current population is
estimated at between 10,000 and 19,999 individuals and decreasing.
Because the helmeted woodpecker is difficult to locate except when
vocalizing and is silent most of the year, its numbers are probably
underestimated. The overall status of the helmeted woodpecker is
unclear. However, it is not common anywhere it is known to exist
(BirdLife International 2009), and in one of the few remaining large
fragments of Atlantic forest in Paraguay it is considered to be near
threatened (Alberto et al. 2007). The greatest threat to the helmeted
woodpecker is widespread deforestation (BirdLife International 2009;
Cockle 2008 as cited in BirdLife International 2009). Numerous
sightings since the mid-1980s include one pair in the Brazilian State
of Santa Catarina in 1998, where the species had not been seen since
1946 (del Hoyo et al. 2002). The helmeted woodpecker is protected by
Brazilian law, and populations occur in numerous protected areas
throughout its range (Chebez et al. 1998 as cited in BirdLife
International 2009; Lowen et al. 1996 as cited in BirdLife
International 2009; Wege and Long 1995 as cited in BirdLife
International 2009). Further studies are needed to clarify species
distribution and status (del Hoyo et al. 2002).
The helmeted woodpecker does not represent a monotypic genus. The
magnitude of threat to the species is moderate because the population
is much larger than previously thought and imminent because the forest
habitat upon which the species is dependent is constantly being altered
by humans. We, therefore, have assigned this species a priority rank of
8.
Okinawa woodpecker (Dendrocopos noguchii, previously known as
Sapheopipo noguchii)
The Okinawa woodpecker lives in the northern hills of Okinawa
Island, Japan. Okinawa is the largest island of the Ryukyus Islands, a
small island chain located between Japan and Taiwan (Brazil, 1991;
Stattersfield et al. 1998; Winkler et al. 2005). This species is
confined to Kunigami-gun, or Yambaru, with its main breeding areas
located along the mountain ridges between Mt. Nishime-take and Mt. Iyu-
take, although it also nests in well-forested coastal areas (Research
Center, Wild Bird Society of Japan 1993, as cited in BirdLife
International 2001). It prefers undisturbed, mature, subtropical
evergreen broadleaf forests, with tall trees greater than 7.9 in (20
cm) in diameter (del Hoyo 2002; Short 1982). Trees of this size are
generally more than 30 years old and are confined to hilltops (Brazil
1991). Places with conifers appear to be avoided (Short 1973; Winkler
et al. 1995). The Okinawa woodpecker has been sighted just south of
Tanodake in an area of entirely secondary forest that was too immature
for use by woodpeckers to excavate nest cavities, but Brazil (1991)
thought this may have involved birds displaced by the clearing of
mature forests. The Okinawa woodpecker feeds on large arthropods,
notably beetle larvae, spiders, moths, and centipedes, fruit, berries,
seeds, acorns, and other nuts (del Hoyo 2002; Short 1982; Winkler et
al. 2005). They forage in old-growth forests with large, often moribund
trees, accumulated fallen trees, rotting stumps, debris, and
undergrowth (Brazil 1991; Short 1973). This woodpecker nests in holes
excavated in large old trees, often a hollow in Castanopsis cuspidate
and Machilus thunbergii trees (del Hoyo 2002; Ogasawara and Ikehara
1977; Short 1982).
Until recently the Okinawa woodpecker was considered to belong to
the monotypic genus Sapheopipo. This view was based on similarities in
color patterns, external morphology, and foraging behavior. Winkler et
al. (2005) analyzed partial nucleotide sequences of mitochondrial genes
and concluded that this woodpecker belongs in the genus Dendrocopos.
Given the other species in this genus, scientists no longer consider
the Okinawa woodpecker to belong to a monotypic genus.
The Okinawa woodpecker is considered one of the world's rarest
extant woodpecker species (Winkler et al. 2005). The elimination of
forests by logging and the cutting and gathering of wood for firewood
are the main causes of its small and lessening numbers (Short 1982),
but the greatest danger to this woodpecker is the fragmentation of its
population into scattered tiny colonies and isolated pairs (Short
1973). The species is categorized on the IUCN Red List as ``Critically
Endangered,'' because it comprises a single diminutive, declining
population, which is put at risk by the continued loss of old-growth
and mature forest to logging, dam construction, agricultural clearing,
and golf course construction. Its limited range and tiny population
make it vulnerable to extinction from disease and natural disasters
such as typhoons (BirdLife International 2008). Feral dogs and cats and
the introduced Javan mongoose (Herpestes javanicus) and weasel (Mustela
itatsi) are possible predators of the woodpecker. Additionally, feral
pigs damage potential ground-foraging sites (BirdLife International
2003). During the 1930s, the Okinawa woodpecker was considered nearly
extinct. By the early 1990s, the breeding population was estimated to
be about 75 birds (BirdLife International 2008a). The current
population estimate ranges between 146 and 584 individuals, with a
projected future 10-year decline of 30 to 49 percent (BirdLife
International 2008b). The species is legally protected in Japan and
occurs in small protected areas on Mt. Ibu and Mt. Nishime (BirdLife
International 2008a). The Yambaru, a forest area in the Okinawa
Prefecture, was proposed to be designated as a national park in 1996,
and conservation organizations have purchased sites where the
woodpecker occurs to establish private wildlife preserves (BirdLife
International 2008; del Hoyo et
[[Page 40549]]
al. 2002). However, information from the Japanese Ministry of
Environment shows that the national park has not been established
(Japanese Ministry of Environment 2009), and conservationists recommend
that a major protected area be created to protect all the area's
remaining natural forest (BirdLife International 2003).
The Okinawa woodpecker faces threats that are moderate in magnitude
because the species is legally protected in Japan and its range occurs
in several protected areas. However, the threats to the species are
imminent because the old-growth habitat, upon which the species is
dependent, continues to be removed, and preferable habitat continues to
be altered for agriculture and golf courses. Therefore, we have
assigned this species a priority rank of 8.
Yellow-browed toucanet (Aulacorhynchus huallagae)
The yellow-browed toucanet is known from only two localities in
north-central Peru--La Libertad, where it is uncommon, and Rio Abiseo
National Park, San Martin, where it is very rare (BirdLife
International 2009; del Hoyo et al. 2002; Wege and Long 1995). Its
estimated range is only 174 mi\2\ (450 km\2\) (BirdLife International
2009). There have been recent reports of yellow-browed toucanet from
Leymebambe (T. Mark in litt. 2003, as cited in BirdLife International
2009). It inhabits a narrow altitudinal range between 6,970 and 8,232
ft (2,125 and 2,510 m), preferring the canopy of humid, epiphyte-laden
montane cloud forests, particularly areas that support Clusia trees
(del Hoyo et al. 2002; Fjeldsa and Krabbe 1990; Schulenberg and Parker
1997). This narrow distributional band may be related to the occurrence
of the larger grey-breasted mountain toucan (Andigena hypoglauca) above
7,544 ft (2,300 m) and to the occurrence of the emerald toucanet
(Aulacorhynchus prasinus) below 6,888 ft (2,100 m) (Schulenberg and
Parker 1997). The restricted range of yellow-browed toucanet remains
unexplained, and recent information indicates that both of the
suggested competitors have wider altitudinal ranges that completely
encompass that of yellow-browed toucanet (Clements and Shany 2001, as
cited in BirdLife International 2008; Collar et al. 1992; del Hoyo et
al. 2002; J. Hornbuckle in litt. 1999, as cited in BirdLife
International 2009). The yellow-browed toucanet does not appear to
occupy all potentially suitable forest available within its range
(Schulenberg and Parker 1997).
Deforestation has been widespread in this region, but has largely
occurred at lower elevations than habitat occupied by the yellow-browed
toucanet (BirdLife International 2009; Barnes et al. 1995). However,
coca growers have taken over forests within its altitudinal range,
probably resulting in some reductions in this species' range and
population (BirdLife International 2009; Plenge in litt. 1993, as cited
in BirdLife International 2009). Nevertheless, much forest remains,
though forest at all elevations has likely been affected (Plenge in
litt. 1993, as cited in BirdLife International 2009). Most of the area
is only lightly settled by humans (Schulenberg and Parker 1997).
However, the human population surrounding the Rio Abiseo Park was
steadily increasing during the 15 years prior to 2002, primarily
because of the advent of mining operations in the area (Obenson 2002).
The yellow-browed toucanet is listed as `Endangered' on the IUCN
Red List because of its very small range and extant population records
from only two locations (BirdLife International 2009). The current
population size is unknown, but the population trend is believed to be
decreasing (BirdLife International 2009).
The yellow-browed toucanet does not represent a monotypic genus.
The magnitude of threat to the species is moderate and nonimminent
given that the majority of deforestation has not yet occurred at the
elevations occupied by this species. Therefore, we have assigned this
species a priority rank of 11.
Brasilia Tapaculo (Scytalopus novacapitalis)
The Brasilia tapaculo is a small bird found in swampy gallery
forest, disturbed areas of thick streamside vegetation, and dense
secondary growth of the bracken fern (Pteridium aquilinum), from
Goi[aacute]s, the Federal District, and Minas Gerais, Brazil (Negret
and Cavalcanti 1985, as cited in Collar et al. 1992; Collar et al.
1992; BirdLife International 2008). The Brasilia Tapaculo will
occasionally colonize disturbed areas near streams (BirdLife
International 2003). This species has only been recorded locally within
Formas in Goi[aacute]s, around Bras[iacute]lia. Particular sites where
the species has been located, at low densities, include Serra Negra (on
the upper Dourados River) and the headwaters of the S[atilde]o
Francisco, both in Minas Gerais; and Serra do Cip[oacute] and Caraca in
the hills and tablelands of central Brazil (Collar et al. 1992).
Although the species was once considered rare (Sick and Texeira
1979, as cited in Collar et al. 1992), it is now found in reasonable
numbers in certain areas of Brasilia (D. M. Teixeira, in litt. 1987, as
cited in Collar et al. 1992). Silviera (1998) found this species to be
very common in and around Serra da Canastra National Park in Minas
Gerais. The population is estimated at more than 10,000 birds, with a
decreasing population trend (BirdLife International 2008). The IUCN
categorizes Brasilia tapaculo as ``Near Threatened'' (BirdLife
International 2008). The species occupies a very limited range and is
presumably losing habitat around Brasilia. Its distribution now appears
larger than initially believed, and the swampy gallery forests where it
is found are not conducive for forest clearing, leaving the species'
habitat less vulnerable to this threat than previously thought.
However, dam building for irrigation on rivers that normally flood
gallery forests is an emerging threat (Antas 2007; D. M. Teixeira in
litt. 1987, as cited in Collar et al. 1992). The majority of locations
of this species lie within established reserves, and both fire risk and
drainage impacts are reduced in these areas (Antas 2007). The Brasilia
tapaculo is currently protected by Brazilian law (Bernardes et al.
1990, as cited in Collar et al. 1992), and it is found in six protected
areas (Machado et al. 1998, as cited in BirdLife International 2008;
Wege and Long 1995). However, annual burning of adjacent grasslands
limits the extent and availability of suitable habitat, as does wetland
drainage and the sequestration of water for irrigation (Machado et al.
1998, as cited in BirdLife International 2008).
The Brasilia tapaculo does not represent a monotypic genus. The
magnitude of threat to the species is moderate because the population
is much larger than previously believed and preferred habitat is swampy
and difficult to clear. Threats are imminent, however, because habitat
is being drained or dammed for agricultural irrigation, and grassland
burning limits the extent of suitable habitat. Therefore, we have
assigned this species a priority rank of 8.
Codfish Island fernbird (Bowdleria punctata wilsoni)
The Codfish Island fernbird is found only on Codfish Island--a
Nature Reserve of 3,448 acres (ac) (1,396 hectares (ha))--located 1.8
mi (3 km) off the northwest coast of Stewart Island, New Zealand (IUCN
1979, McClelland 2007). There are five subspecies of Bowdleria
punctata, each restricted to a
[[Page 40550]]
single island and its outlying islands. The North and South Islands'
subspecies are widespread and locally common. The Stewart Island and
the Snares' subspecies are moderately abundant (Heather and Robertson
1997). In 1966, the status of the Codfish Island subspecies (B.
punctata wilsoni) was considered relatively safe (Blackburn 1967), but
estimates dating from 1975 indicated a gradually declining population
numbering approximately 100 individuals (Bell 1975 as cited in IUCN
1979). McClelland (2007) wrote that in the past the Codfish Island
fernbird was restricted to low shrubland on the top of Codfish Island
with a few individuals around the coastal shrubland; the birds are
thought to have been eliminated from forest habitat by the Polynesian
rat (Rattus exulans) (McClelland 2007). The IUCN (1979) concluded that
the absence of the fernbird from areas of Codfish Island that it had
formerly occupied in the mid-1970s evidenced a decline.
Fernbirds are sedentary and their flight is weak. They are
secretive and reluctant to leave cover. They feed in low vegetation or
on the ground, eating mainly caterpillars, spiders, grubs, beetles,
flies, and moths (Heather and Robertson 1997).
Codfish Island's native vegetation has been modified by the
introduced Australian brush-tailed possum (Trichosurus vulpecula).
Codfish Island fernbird populations have also been reduced due to
predation by weka (Gallirallus australis scotti) and Polynesian rats
(Merton 1974, personal communication, as cited in IUCN 1979). Several
conservation measures have been undertaken by the New Zealand DOC. The
weka and possum were eradicated from Codfish Island in 1984 and 1987,
respectively (McClelland 2007). The Polynesian rat was eradicated in
1997 (Conservation News 2002, McClelland 2007). The Codfish Island
fernbird population has been rebounding strongly with the removal of
invasive predator species. Additionally, it has successfully colonized
the forest habitat, which greatly expanded its range. Although there is
no accurate estimate on the current size of the Codfish Island fernbird
population (estimates are based on incidental encounter rates in the
various habitat types on the island), the current population is
believed to be several hundred. Thus, McClelland (2007) concluded that
is it likely that the population has peaked and is now stable.
To safeguard the Codfish Island fernbird, the New Zealand DOC
established a second population on Putauhinu Island--a small 356-ac
(144 ha), privately owned island located approximately 25 mi (40 km)
south of Codfish Island. The Putauhinu population established rapidly,
and McClelland (2007) reported that it is believed to be stable. While
there are no accurate data on the population size or trends on
Putauhinu, the numbers are estimated to be 200 to 300 birds spread over
the island (McClelland 2007). Even with a second population, the
fernbird remains vulnerable to naturally occurring storm events because
of its restricted range and small population size.
The Codfish Island fernbird is a subspecies that is now facing
threats that are low to moderate in magnitude because the removal of
invasive predator species and the establishment of a second population
have allowed for a strong rebound in the subspecies' population.
Threats are nonimminent because the conservation measures to prevent
the invasion of predatory invasive species have proven to be very
successful. We have, therefore, assigned this subspecies a priority
rank of 12.
Ghizo white-eye (Zosterops luteirostris)
The Ghizo white-eye is endemic to Ghizo, a very densely populated
island in the Solomon Islands in the South Pacific (BirdLife
International 2008). Birds are locally common in the remaining tall or
old-growth forest, which is very fragmented and comprises less than
0.39 mi\2\ (1 km\2\). It is less common in scrub close to large trees
and in plantations (Buckingham et al. 1995 and Gibbs 1996, as cited in
BirdLife International 2008), and it is not known whether these two
habitats can support sustainable breeding populations (Buckingham et
al. 1995, as cited in BirdLife International 2008). The IUCN Red List
classifies this species as ``Endangered,'' because of its very small
population that is considered to be declining due to habitat loss. It
further notes that the species would be classified as ``Critically
Endangered'' if the species' range was judged to be severely fragmented
(BirdLife International 2008). The population estimate for this species
is 250 to 999 birds. Biologists recommended that systematic surveys be
conducted for this species to verify its conservation status (Sherley
2001). While there are no data on population trends, the species is
suspected to be declining due to habitat degradation (BirdLife
International 2008). The very tall old-growth forest on Ghizo is still
under some threat from clearance for local use as timber, firewood, and
gardens, and the areas of other secondary growth, which are suboptimal
habitats for this species, are under considerable threat from clearance
for agricultural land (BirdLife International 2008).
The Ghizo white-eye does not represent a monotypic genus. It faces
threats that are moderate in magnitude because forest clearing, while a
concern, does not appear to be proceeding at a pace to rapidly denude
the habitat. Threats are imminent because the old-growth forest which
the species is dependent upon, is still being cleared for local use,
and secondary growth is being converted for agricultural purposes.
Therefore, we have assigned this species a priority rank of 8.
Black-backed tanager (Tangara peruviana)
The black-backed tanager is endemic to the coastal Atlantic forest
region of southeastern Brazil, with records from Rio de Janeiro, Sao
Paulo, Parana, Santa Catarina, Rio Grande do Sul, and Espirito Santo
(Argel-de-Oliveira in litt. 2000, as cited in BirdLife International
2008). It is largely restricted to coastal sand-plain forest and
littoral scrub, or restinga, and has also been located in secondary
forests (BirdLife International 2008). The black-backed tanager is
generally not considered rare within suitable habitat (BirdLife
International 2008). It has a complex distribution with periodic local
fluctuations in numbers owing to seasonal movements in response to the
ripening of areoira Schinus fruit, at least in Rio de Janeiro and Sao
Paulo (BirdLife International 2008). This species is more common in Sao
Paulo during the winter and records from Espirito Santo are only from
the winter season. Clarification of the species' seasonal movements
will provide an improved understanding of the species' population
status and distribution, but currently populations appear small and
fragmented and are probably declining rapidly in response to extensive
habitat loss (BirdLife International 2008). Population estimates range
from 2,500 to 10,000 individuals (BirdLife International 2008), and it
is considered ``Vulnerable'' by the IUCN (BirdLife International 2008).
The species is negatively impacted by the rapid and widespread loss of
habitat for beachfront development and occasionally appears in the
illegal cage-bird trade (BirdLife International 2008). Only small
portions of the tanager's range occur in six protected areas, none of
which have effective protection (BirdLife International 2008).
The black-backed tanager does not represent a monotypic genus. The
threat to the species is low to moderate in
[[Page 40551]]
magnitude due to the species' fairly large population size and range.
The threat is, however, imminent because the species is put at risk by
ongoing rapid and widespread loss of habitat due to beachfront
development. Therefore, we have assigned this species a priority rank
of 8.
Lord Howe pied currawong (Strepera graculina crissalis)
The Lord Howe pied currawong is a separate subspecies from the five
mainland pied currawongs (Strepera graculina spp.). It is endemic to
the Lord Howe Island, New South Wales, Australia. The Lord Howe pied
currawong can be found anywhere on the 7.7-mi\2\ (20-km\2\) island
(Hutton 1991), as well as on offshore islands such as the Admiralty
group (Garnett and Crowley 2000). The Lord Howe pied currawong breeds
in rainforests and palm forests, particularly along streams. Its
territories include sections of streams or gullies that are lined by
tall timber (Garnett and Crowley 2000). The highest densities of Lord
Howe pied currawong nests are located on the slopes of Mt. Gower and in
the Erskine Valley, with smaller numbers on the lower land to the north
(Knight 1987, as cited in Garnett and Crowley 2000). The nest is placed
high in a tree and is made of a cup of sticks lined with grass and palm
thatch (Department of Environment & Climate Change (DECC) 2005). Most
of the island is still forested, and the removal of feral animals has
resulted in the recovery of the forest understory (World Wildlife Fund
(WWF) 2001).
The Lord Howe pied currawong is omnivorous and eats a wide variety
of food, including native fruits and seeds (Hutton 1991), and is the
only remaining native island vertebrate predator (DECC 2005). It has
been recorded taking seabird chicks, poultry, and chicks of the Lord
Howe woodhen (Tricholimnas sylvestris) and white tern (Gygis alba). It
also feeds on dead rats and has been observed catching live rats to eat
(Hutton 1991). A Department of Environmental Conservation (DEC)
scientist observed that food brought to Lord Howe pied currawong
nestlings was, in decreasing order: invertebrates, fruits, reptiles,
and nestlings of other bird species (Lord Howe Island Board (LHIB)
2006).
The Lord Howe pied currawong is listed as `Vulnerable' under the
New South Wales Threatened Species Conservation Act of 1995 because it
has a limited range, only occurring on Lord Howe Island (DECC 2004). It
also is listed as `Vulnerable' under the Commonwealth Environment
Protection and Biodiversity Conservation Act of 1999. These laws
provide a legislative framework to protect and encourage the recovery
of vulnerable species (DEC 2006a). The Lord Howe Island Act of 1953, as
amended, established the LIHB, made provisions for the LHIB to care,
control, and manage the island, and established 75 percent of the land
area as a Permanent Park Preserve (DEC 2007). In 1982, the island was
inscribed on the World Heritage List for its outstanding natural
universal values (Department of the Environment and Water Resources
2007).
In the Action Plan for Australian Birds 2000 (Garnett and Crowley
2000), the Lord Howe pied currawong population was estimated at
approximately 80 mature individuals. In 2006, initial results from a
color band survey suggested that the population size was 180 to 200 in
number (LHIB 2006). Complete results reported by the Foundation for
National Parks & Wildlife (2007) estimated the breeding population of
the Lord Howe pied currawong was 80 to 100 pairs, with a nesting
territory in the tall forest areas of about 12 acres (ac) (5 hectares
(ha)) per pair. The population size is limited by the amount of
available habitat and the lack of food during the winter (Foundation
for National Parks & Wildlife 2007).
The Lord Howe Island Biodiversity Management Plan was finalized in
2007, and is the formal National and NSW Recovery Plan for threatened
species and communities of the Lord Howe Island Group (DEC 2007a). The
main threat identified for the Lord Howe pied currawong is habitat
clearing and modification (DEC 2007b). Lord Howe Island is unique among
inhabited Pacific Islands in that less than 10 percent of the island
has been cleared (WWF 2001) and less than 24 percent has been disturbed
(DEC 2007a). Although large-scale clearing of native vegetation no
longer occurs on Lord Howe Island, the impact of vegetation clearing on
a small scale needs to be assessed (DEC 2007a). A lesser threat to the
Lord Howe pied currawong is human interaction with the species. Prior
to the 1970s, locals would shoot this currawong because it preys on
nestling birds (Hutton 1991). The Lord Howe pied currawong remains
unpopular with some residents. It is unknown what effect this localized
killing has on the overall population size and distribution of the
species (Garnett and Crowley 2000). Also, the Lord Howe pied currawong
often preys on ship (black) rats (Rattus rattus) and may be subject to
nontarget poisoning during rat-baiting programs (DEC 2007b). Close
monitoring of the population is needed because this small, endemic
population is susceptible to catastrophic events, such as disease or
introduction of a new predator (Garnett and Crowley 2000).
The Lord Howe pied currawong is a subspecies facing threats that
are low in magnitude and nonimminent because of the conservation
efforts taken for the island as a whole. Therefore, we have assigned
this subspecies a priority rank of 12.
Invertebrates
Harris' mimic swallowtail (Eurytides (syn. Mimoides) lysithous
harrisianus)
Harris' mimic swallowtail is a subspecies endemic to Brazil
(Collins and Morris 1985). Although the species' range includes
Paraguay, the subspecies has not been confirmed there (Collins and
Morris 1985; Finnish University and Research Network (Funet) 2004).
Occupying the lowland swamps and sandy flats above the tidal margins of
the coastal Atlantic Forest, the subspecies prefers alternating patches
of strong sun and deep shade (Brown 1996; Collins and Morris 1985).
This subspecies is polyphagous, meaning that its larvae feed on more
than one plant species (Kotiaho et al. 2005). Information on preferred
hostplants and adult nectar-sources was published in the 12-month
finding (69 FR 70580; December 7, 2004). This subspecies mimics at
least three Parides species, including the fluminense swallowtail;
details on mimicry were provided in the 12-month finding (69 FR 70580;
December 7, 2004) and in the 2007 Notice of Review (72 FR 20184; April
23, 2007). Researchers believe that this mimicry system may cause
problems in distinguishing this subspecies from the species that it
mimics (Brown, in litt. 2004; Monteiro et al. 2004).
Harris' mimic swallowtail was previously known in Espirito Santo
and Rio de Janeiro (Collins and Morris 1985; New and Collins 1991).
However, there are no recent confirmations in Espirito Santo. In Rio de
Janeiro, Harris' mimic swallowtail has recently been confirmed in three
localities. Two colonies are located on the east coast of Rio de
Janeiro, at Barra de S[atilde]o Jo[atilde]o and Maca[eacute], and the
other in Poco das Antas Biological Reserve, further inland. The Barra
de S[atilde]o Jo[atilde]o colony is the best-studied. Since 1984, it
has maintained a stable size, varying between 50 to 250 individuals
(Brown 1996; K. Brown, Jr., in litt. 2004; Collins and Morris 1985),
and was reported to be viable, vigorous, and stable in 2004 (K. Brown,
Jr., in litt. 2004). There are no estimates of the size
[[Page 40552]]
of the colony in Poco das Antas Biological Reserve, where it had not
been seen for 30 years prior to its rediscovery there in 1997 (K.
Brown, Jr., in litt. 2004). Population estimates are lacking for the
colony at Maca[eacute], where the subspecies was netted in Jurubatiba
National Park in the year 2000, after having not been seen in the area
for 16 years (Monteiro et al. 2004). The Brazilian Institute of the
Environment and Natural Resources (Instituto Brasileiro do a Meio
Ambiente de do Recursos Naturais Renov[aacute]veis; IBAMA) considers
this subspecies to be critically imperiled (MMA 2003; Portaria No.
1,522 1989) and ``strictly protected,'' such that collection and trade
of the subspecies are prohibited (Brown 1996). Harris' mimic
swallowtail was categorized on the IUCN Red List as ``Endangered'' in
the 1988, 1990, and 1994 IUCN Red Lists (IUCN 1996). However, it has
not been reevaluated using the 1997 IUCN Red List criteria, nor has it
been incorporated into the 2007 IUCN Red List database (IUCN 2007).
Habitat destruction is the main threat to this subspecies (Brown
1996; Collins and Morris 1985), especially urbanization in Barra de
S[atilde]o Jo[atilde]o, industrialization in Maca[eacute] (Jurubatiba
National Park), and previous fires in the Poco das Antas Biological
Reserve. As described in detail for the fluminense swallowtail (below),
Atlantic Forest habitat has been reduced to 5 to 10 percent of its
original cover. More than 70 percent of the Brazilian population lives
in the Atlantic forest, and coastal development is ongoing throughout
the Atlantic Forest region (Butler 2007; Conservation International
2007; Critical Ecosystem Partnership Fund (CEPF) 2007a; Hofling 2007;
Hughes et al. 2006; The Nature Conservancy 2009; Peixoto and Silva
2007; Pivello 2007; World Food Prize 2007; WWF 2007).
Both Barra de S[atilde]o Jo[atilde]o and the Poco das Antas
Biological Reserve, two of the known Harris' mimic swallowtail
localities, lie within the S[atilde]o Jo[atilde]o River Basin. The
current conditions at Barra de S[atilde]o Jo[atilde]o appear to be
suitable for long-term survival of this subspecies. The Barra de
S[atilde]o Jo[atilde]o River Basin encompasses a 535,240-ac (216,605-
ha) area, 372,286 ac (150,700 ha) of which is managed as protected
areas. The preferred environment of open and shady areas (Brown 1996;
Collins and Morris 1985) continues to be present in the region, with
approximately 541 forest patches averaging 314 ac (127 ha) in size,
covering nearly 68,873 ha (170,188 ac), and a minimum distance between
forest patches of 0.17 mi ( 276 m) (Teixeira 2007). In studies between
1984 and 1991, Brown (1996) determined that Harris' mimic swallowtails
in Barra de S[atilde]o Jo[atilde]o flew a maximum distance of 0.62 mi
(1000 m); it follows that the average flying distance would be less
than this figure. Thus, the average (0.17 mi (276 m)) distance between
forest patches in the Barra de S[atilde]o Jo[atilde]o River Basin is
clearly within the flying distance of this subspecies. The colony at
Barra de S[atilde]o Jo[atilde]o has maintained a stable population for
20 years, indicating that the conditions available there remain
suitable.
Harris' mimic swallowtail ranges within two protected areas: Poco
das Antas Biological Reserve and Jurubatiba National Park. These
protected areas are described in detail for the fluminense swallowtail
below. The Poco das Antas Biological Reserve (Reserve) was established
to protect the golden lion tamarin (Leontopithecus rosalia) (Decree No.
73,791 1974), but the Harris' mimic swallowtail, which occupies the
same range, may benefit indirectly by efforts to conserve golden-lion-
tamarin habitat (De Roy 2002; Teixeira 2007; WWF 2003). Habitat
destruction caused by fires in Poco das Antas Biological Reserve
appears to have abated, and the revised management plan indicates that
the Reserve will be used for research and conservation, with limited
public access (CEPF 2007a; IBAMA 2005). The Jurubatiba National Park
(Park) is located in a region that is undergoing continuing development
pressures from urbanization and industrialization (Brown 1996; CEPF
2007b; IFC 2002; Khalip 2007; Otero and Brown 1984; Savarese 2008), and
there is no management plan in place for the Park (CEPF 2007b).
However, as discussed for the fluminense swallowtail, the Park is
considered to be in a very good state of conservation (Rocha et al.
2007).
Harris' mimic swallowtail is a subspecies and does not represent a
monotypic genus. Based on the above information, we have determined
that habitat destruction is a threat to the subspecies. The magnitude
of the threat is low because suitable habitat continues to exist for
this polyphagous subspecies; the best-studied colony has maintained a
stable and viable size for nearly two decades; an additional locality
has been confirmed; the subspecies is strictly protected by Brazilian
law; and two colonies are located within protected areas. While the
protected areas in which this subspecies is found continue to be
threatened with potential habitat destruction from urbanization and
industrialization, the threat of habitat destruction is nonimminent
because such destruction within those protected areas is not ongoing at
this time. Therefore, we have assigned the subspecies a priority rank
of 12.
Jamaican kite swallowtail (Eurytides marcellinus)
The Jamaican kite swallowtail is endemic to Jamaica, preferring
wooded, undisturbed habitat containing the only known larval hostplant
West Indian lancewood (Oxandra lanceolata); adult preferences have not
been reported (Bailey 1994; Collins and Morris 1985). Since the 1990s,
adult Jamaican kite swallowtails have been observed in the Parishes of
St. Thomas and St. Andrew in the east; westward in St. Ann, Trelawny,
and St. Elizabeth; and, in the extreme western coast Parish of
Westmoreland (Bailey 1994; Harris 2002; Mohn 2002; Smith et al. 1994;
WRC 2001). There is only one known breeding site in the eastern coast
town of Rozelle (St. Thomas Parish) (Bailey 1994; Collins and Morris
1985; Garraway et al. 1993; Smith et al. 1994), although it is possible
that other sites exist given the widely dispersed nature of the larval
food plant (R. Robbins, in litt. 2004). Rozelle may also be referred to
in the literature as Roselle (e.g., Anderson et al. 2007). The Jamaican
kite swallowtail maintains a low population level. It occasionally
becomes locally abundant in Rozelle during the breeding season in early
summer and again in early fall (Bailey 1994; Brown and Heineman 1972;
Collins and Morris 1985; Garraway et al. 1993; Smith et al. 1994), and
experiences episodic population explosions, as described in the 12-
month finding (69 FR 70580; December 7, 2004) and in the 2007 ANOR (72
FR 20184; April 23, 2007). The species is protected under Jamaica's
Wildlife Protection Act of 1998 and is included in Jamaica's National
Strategy and Action Plan on Biological Diversity, which has established
specific goals and priorities for the conservation of Jamaica's
biological resources (Schedules of The Wildlife Protection Act 1998).
Since 1985, the Jamaican kite swallowtail was categorized on the IUCN
Red List as `Vulnerable' it has not been reevaluated using the 1997
criteria (IUCN 2008; Gimenez Dixon 1996).
Habitat destruction has been considered a primary threat to the
Jamaican kite swallowtail. In Rozelle, there has been extensive habitat
modification for agricultural and industrial purposes, such as mining
(Gimenez Dixon 1996; WWF 2001). The Jamaican kite's larval food plant,
West Indian lancewood, is threatened by clearing for cultivation and by
felling for the commercial timber industry (Collins
[[Page 40553]]
and Morris 1985; Windsor Plywood 2004). Monophagous butterflies tend to
be more threatened than polyphagous species, in part due to their
specific habitat requirements (Kotiaho et al. 2005), and harvest and
clearing reduces the availability of the only known larval food plant.
Habitat modification poses an additional threat because the swallowtail
does not thrive in disturbed habitats (Collins and Morris 1985).
Rozelle is also subject to naturally occurring, high-impact stochastic
events, such as regularly-occurring hurricanes, as elaborated in the
2007 ANOR (72 FR 20184; April 23, 2007). According to the Economic
Commission for Latin America and the Caribbean (ECLAC), United Nations
Development Programme (UNDP), and Planning Institute of Jamaica (PIOJ)
(2004), hurricane-related weather damage in the last two decades along
the coastal zone of Rozelle has resulted in the erosion and virtual
disappearance of the once-extensive recreational beach. Most recently,
Hurricane Ivan, a Category 5 hurricane that hit the island in 2004,
caused severe local damage to Rozelle Beach, including road collapse
caused by the erosion of the cliff face and shoreline. The estimated
restoration cost from Hurricane Ivan damage was $23 million U.S.
Dollars (US$) ($1.6 million Jamaican Dollars (J$) (ECLAC et al. 2004).
Thus, while we do not consider stochastic events to be a primary threat
factor for this species, we believe that the damage caused by
hurricanes is contributing to habitat loss.
Habitat destruction in western Parishes also threatens adult
Jamaican kite swallowtails. Cockpit Country, encompassing 30,000 ha
(74,131 ac) of rugged forest-karst (a specialized limestone habitat)
terrain, spans four Western Parishes, including Trelawny and St.
Elizabeth, where adult Jamaican kite swallowtails have been observed
(Gordon and Cambell 2006). Eighty-one percent of this region remains
forested, although fragmentation is occurring as a result of human-
induced activities (Tole 2006). Current threats to Cockpit Country
include bauxite mining, unregulated plant collecting, extensive
logging, conversion of forest to agriculture, illegal drug cultivation,
and expansion of human settlements. These activities contribute to
threats to the hydrology system from in-filling, siltation,
accumulation of solid waste, and invasion by nonnative, invasive
species (Cockpit Country Stakeholders Group and JEAN (Jamaica
Environmental Advocacy Network 2007; Gordon and Cambell 2006; Tole
2006)).
Currently, the Blue and John Crow Mountains National Park, located
on the inland portions of St. Thomas and St. Andrew and the southeast
portion of St. Mary Parishes, is the only protected area in which adult
Jamaican Kite swallowtails have been observed (Bailey 1994; Jamaica
Conservation and Development Trust (JCDT) 2006). Created in 1993, this
Park encompasses 122,367 ac (49,520 ha) of mountainous, forested
terrain that ranges in elevation from 492 to 7,402 ft (150 m to 2,256
m) and is considered one of the best-managed protected areas in Jamaica
(JCDT 2006). Deforestation is currently a threat in the Blue Mountains
(Tole 2006). In 2003, the Jamaican National Environment and Planning
Agency identified Rozelle and Cockpit Country (which spans at least
four Western Parishes, including Trelawny and St. Elizabeth, where
adult Jamaican kites have been observed) as priority locations to
receive protected area status within the next 5 to 7 years (NEPA 2003).
The status of this proposal is not included in the 2007 Environmental
Action Plan Status Report (NEPA 2007).
The Jamaican kite swallowtail has been collected for commercial
trade (Collins and Morris 1985; Melisch 2000; Schutz 2000) and has been
protected under the Jamaican Wildlife Protection Act since 1998. This
Act carries a maximum penalty of US$1439 (J$100,000) or 12 months
imprisonment for violating provisions of the Act, which appears to be
effectively protecting this species from illegal trade (NEPA 2005).
This species is not listed under CITES, nor is it listed on the
European Commission's Annex B (Eur-Lex 2008), both of which regulate
international trade in animals and plants of conservation concern.
However, we are not aware of any recent seizures or smuggling in this
species into or out of the United States (Office of Law Enforcement,
U.S. Fish and Wildlife Service, Arlington, Virginia, in litt. 2008).
Therefore, we believe that overutilization is not currently a
contributory threat factor for the Jamaican kite swallowtail.
The Jamaican kite swallowtail does not represent a monotypic genus.
The current threat to the species is moderate in magnitude because
habitat destruction is occurring at the species' only known breeding
site, but Jamaica has taken regulatory steps to preserve their native
swallowtail species and their habitat. The threat is imminent because
habitat destruction is ongoing and stochastic events are unpredictable.
Therefore, we have assigned this species a priority rank of 8.
Fluminense swallowtail (Parides ascanius)
The fluminense swallowtail is endemic to Brazil's ``restinga''
habitat within the Atlantic Forest region (Thomas 2003). Restingas form
on sandy, acidic, and nutrient-poor soils in the tropical and
subtropical moist broadleaf forests of coastal Brazil. Restinga
habitat, also referred to as ``fluminense vegetation,'' is
characterized by medium-sized trees and shrubs that are adapted to
coastal conditions (Kelecom 2002). The species is monophagous (Otero
and Brown 1984), meaning that its larvae feed only on a single plant
species (Kotiaho et al. 2005); information on larval hostplant
preferences is provided in the April 23, 2007 Notice of Review (72 FR
20184).
The historical range of this species has probably always been
limited to coastal Rio de Janeiro State (Gelhaus et al. 2004), but it
was historically reported in Rio de Janeiro, Espirito Santo, and Sao
Paulo. However, there are no recent confirmations in Espirito Santo or
Sao Paulo. In Rio de Janeiro, the species is reported in five
localities, including: Barra de S[atilde]o Jo[atilde]o and Maca[eacute]
(in the Restinga de Jurubatiba National Park), along the coast; and,
Poco das Antas Biological Reserve, further inland (Keith S. Brown, Jr.,
Livre-Docent, Universidade Estadual de Campinas, Brazil, in litt. 2004;
Soler 2005). Uehara-Prado and Fonseca (2007) recently reported a
verified occurrence within [Aacute]rea de Tombamento do Mangue do rio
Para[iacute]ba do Sul. Fluminense swallowtail has also been reported in
Parque Natural Municipal do Bosque da Barra (Instituto Iguacu 2008).
The fluminense swallowtail is sparsely distributed throughout its
range, reflecting the patchy distribution of its preferred habitat
(Otero and Brown 1984; Tyler et al. 1994; Uehara-Prado and Fonseca
2007). However, the species can be seasonally common, with sightings of
up to 50 individuals in one morning in the Barra de S[atilde]o
Jo[atilde]o location. The population estimate in Barra de S[atilde]o
Jo[atilde]o ranges from 20 to 100 individuals (Otero and Brown 1984).
The colony within Poco das Antas Biological Reserve (Reserve) was
rediscovered in 1997, after a nearly 30-year absence from this locality
(K. Brown, Jr., in litt. 2004). Researchers noted only that ``large
numbers'' of swallowtails were observed (K. Brown, Jr., in litt. 2004;
Dr. Robert Robbins, Research Entomologist, National Museum of Natural
History, Department of Entomology, Smithsonian Institution, Washington,
D.C., in litt. 2004). There are no population estimates for the other
[[Page 40554]]
colonies. However, individuals from the viable population in Barra de
S[atilde]o Jo[atilde]o migrate widely in some years, which is likely to
enhance interpopulation gene flow among existing colonies (K. Brown,
Jr., in litt. 2004).
Brazil considers the fluminense swallowtail to be ``Imperiled''
(MMA 2003; Portaria No. 1,522 1989). According to the 2008 IUCN Red
List (Gimenez Dixon 1996), the fluminense swallowtail has been
categorized as ``Vulnerable'' since 1983, based on its small
distribution and a decline in the number of populations caused by
habitat fragmentation and loss. However, this species has not been
reevaluated using the 1997 IUCN Red List categorization criteria.
Habitat destruction has been the main threat to this species (Brown
1996; Collins and Morris 1985; Gimenez Dixon 1996). Monophagous
butterflies tend to be more threatened than polyphagous species
(Kotiaho et al. 2005), and the restinga habitat preferred by fluminense
swallowtails is a highly specialized environment that is restricted in
distribution (K. Brown, Jr., in litt. 2004; Otero and Brown 1986;
Ueraha-Prado and Fonseca). Moreover, fluminense swallowtails require
large areas to maintain viable populations (K. Brown, Jr., in litt.
2004; Otero and Brown 1986; Ueraha-Prado and Fonseca). The Atlantic
Forest habitat, which once covered 540,543 mi\2\ (1.4 million km\2\),
has been reduced 5 to 10 percent of its original cover and harbors more
than 70 percent of the Brazilian population (Butler 2007; Conservation
International 2007; Critical Ecosystem Partnership Fund (CEPF) 2007a;
Hofling 2007; The Nature Conservancy 2009; World Wildlife Fund (WWF)
2007). The restinga habitat upon which this species depends has been
reduced by 6.56 mi\2\ (17 km\2\) each year between 1984 and 2001,
equivalent to a loss of 40 percent of restinga vegetation over the 17-
year period (Temer 2006). The major ongoing human activities that have
resulted in habitat loss, degradation, and fragmentation include
conversion for agriculture, plantations, livestock pastures, human
settlements, hydropower reservoirs, commercial logging, subsistence
activities, and coastal development (Butler 2007; Hughes et al. 2006;
Pivello 2007; The Nature Conservancy 2007; Peixoto and Silva 2007;
World Food Prize 2007; WWF 2007).
Uehara-Prado and Fonseca (2007) estimated that Rio de Janeiro
contains 4,140,127 ac (1,675,457 ha) of suitable habitat (Uehara-Prado
and Fonseca 2007). While the presence of suitable habitat should not be
used to infer the presence of a species, this research should
facilitate more focused efforts to identify and confirm additional
localities and the conservation status of the fluminense swallowtail
(Uehara-Prado and Fonseca 2007). Analyzing the correlation between the
distribution of fluminense swallowtail and the existing protected areas
within Rio de Janeiro, Uehara-Prado and Fonseca (2007) found that only
two known occurrences of the fluminense swallowtail correlated with
protected areas, including the Poco das Antas Biological Reserve. The
researchers concluded that the existing protected area system may be
inadequate for the conservation of this species.
The Poco das Antas Biological Reserve and the Jurubatiba National
Park are the only two protected areas considered large enough to
support viable populations of the fluminense swallowtail (K. Brown,
Jr., in litt. 2004; Otero and Brown 1984; R. Robbins, in litt. 2004).
The Poco das Antas Biological Reserve (Reserve), established in 1974,
encompasses 13,096 ac (5,300 ha) of inland Atlantic Forest habitat
(CEPF 2007a; Decree No. 73,791 1974). According to the 2005 revised
management plan (IBAMA 2005), the Reserve is used solely for
protection, research, and environmental education. Public access is
restricted, and there is an emphasis on habitat conservation, including
protection of the R[iacute]o S[atilde]o Jo[atilde]o. This river runs
through the Reserve and is integral to creating the restinga conditions
preferred by the fluminense swallowtail. The Reserve was plagued by
fires in the late 1980s through the early 2000s, but there have been no
recent reports of fires. Between 2001 and 2006, there was an increase
in the number of private protected areas near or adjacent to the Poco
das Antas Biological Reserve and Barra de S[atilde]o Jo[atilde]o
(Critical Ecosystem Partnership Fund (CEPF) 2007a). Corridors are being
created between existing protected areas and 13 privately protected
forests, by planting and restoring habitat previously cleared for
agriculture or by fires (De Roy 2002).
The Jurubatiba National Park (14,860 ha; 36,720 mi\2\), located in
Maca[eacute] and established in 1998 (Decree of April 29 1998), is one
of the largest contiguous restingas (specialized sandy, coastal
habitats) under protection in Brazil (CEPF 2007b; Rocha et al. 2007).
The Maca[eacute] River Basin forms the outer edge of the Jurubatiba
National Park (Park) (International Finance Corporation (IFC) 2002) and
creates the restinga habitat preferred by the fluminense swallowtail
(Brown 1996; Otero and Brown 1984). Rocha et al. (2007) described the
habitat as being in a very good state of conservation, but lacking a
formal management plan. Threats to the Maca[eacute] region include
industrialization for oil reserve and power development (IFC 2002) and
intense population pressures (including migration and infrastructural
development) (Brown 1996; CEPF 2007b; IFC 2002; Khalip 2007; Otero and
Brown 1984; Savarese 2008).
Commercial exploitation has been identified as a potential threat
to the fluminense swallowtail (Collins and Morris 1985; Melisch 2000;
Schutz 2000). The species is easy to capture, and species with
restricted distributions or localized populations, such as the
fluminense swallowtail, tend to be more vulnerable to overcollection
than those with a wider distribution (K. Brown, Jr., in litt. 2004; R.
Robbins, in litt. 2004). This species has not been formally considered
for listing in the Appendices of CITES (http://www.cites.org). However,
the European Commission listed fluminense swallowtail on Annex B of
Regulation 338/97 in 1997 (Dr. Ute Grimm, German Scientific Authority
to CITES (Fauna), Bonn, Germany, in litt. 2008), and the species
continues to be listed on this Annex (Eur-Lex 2008). This listing
requires that imports from a non-European Union country be accompanied
by a permit that is only issued if the Scientific Authority has made a
positive nondetriment finding, a determination that trade in the
species will not be detrimental to the survival of the species in the
wild (U. Grimm, in litt. 2008). There has been no legal trade in this
species into the European Union since its listing on Annex B (U. Grimm,
in litt. 2008), and we are not aware of any recent reports of seizures
or smuggling in this species into or out of the United States (Office
of Law Enforcement, U.S. Fish and Wildlife Service, Arlington,
Virginia, in litt. 2008). The fluminense remains strictly protected
from commerce in Brazil (K. Brown, Jr., in litt. 2004). For the reasons
outlined above, we believe that overutilization is not currently a
threat factor for the fluminense swallowtail.
Parasitism could be a factor threatening the fluminense
swallowtail. Recently, Tavares et al. (2006) discovered four species of
parasitic chalcid wasps (Brachymeria and Conura species; Hymenoptera
family) associated with fluminense swallowtails. Parasitoids are
species whose immature stages develop on or within an insect host of
another species, ultimately killing the host (Weeden et al. 1976). This
is the first report of parasitoid association with fluminense
swallowtails (Tavares et al. 2006). To date, there is no information as
to the
[[Page 40555]]
extent and effect that these parasites are having on the fluminense
swallowtail.
Although Harris' mimic swallowtail and the fluminense swallowtail
face similar threats, there are several dissimilarities that influence
the magnitude of these threats. Fluminense swallowtails are monophagous
(Otero and Brown 1984), meaning that its larvae feed only on a single
plant species (Kotiaho et al. 2005). In contrast, Harris' mimic
swallowtail is polyphagous (Brown 1996; Collins and Morse 1985), such
that its larvae feed on more than one species of plant (Kotiaho et al.
2005). In addition, although their ranges overlap, Harris' mimic
swallowtails tolerate a wider range of habitat than the highly
specialized restinga habitat preferred by fluminense swallowtail. Also
unlike the Harris' mimic swallowtail, fluminense swallowtails require a
large area to maintain a viable population (K. Brown, Jr., in litt.
2004; Monteiro et al. 2004).
The fluminense swallowtail does not represent a monotypic genus.
The species is currently at risk from habitat destruction and
potentially from parasitism; however, we have determined that
overutilization is not currently a threat factor for the fluminense
swallowtail. The current threat of habitat destruction is of high
magnitude because the species: (1) occupies highly specialized habitat;
(2) requires large areas to maintain a viable colony; and (3) is only
found within two protected areas considered to be large enough to
support viable colonies. However, additional populations have been
reported, increasing previously known population numbers and
distribution. The threat of habitat destruction is nonimminent because
most habitat modification is the result of historical destruction that
has resulted in fragmentation of the current landscape; however, the
potential for continued habitat modification exists, and we will
continue to monitor the situation. On the basis of this information, we
have assigned the fluminense swallowtail a priority rank of 5.
Hahnel's Amazonian swallowtail (Parides hahneli)
Hahnel's Amazonian swallowtail is endemic to Brazil and is found
only on sandy beaches where the habitat is overgrown with dense scrub
vegetation (Collins and Morris 1985; New and Collins 1991; Tyler et al.
1994). Hahnel's Amazonian swallowtail is likely to be monophagous.
Information on larval and adult hostplant preferences was provided in
the Federal Register 12-month finding (69 FR 70580; December 7, 2004)
and in the 2007 ANOR (72 FR 20184; April 23, 2007).
Hahnel's Amazonian swallowtail is known in three localities along
the tributaries of the middle and lower Amazon River basin in the
states of Amazonas and Par[aacute] (Collins and Morris 1985; New and
Collins 1991; Tyler et al. 1994; Brown 1996). Two of these colonies
were rediscovered in the 1970s (Collins and Morris 1985; Brown 1996).
Hahnel's Amazonian swallowtail is highly localized, reflecting the
distribution of its highly specialized preferred habitat (Brown in
litt. 2004). The population size of Hahnel's Amazonian swallowtail is
not known. However, within the area of its range, Hahnel's Amazonian
swallowtail populations are small (Brown in litt. 2004). Hahnel's
Amazonian swallowtail is not nationally protected (MMA 2003; Portaria
No. 1522 1989), although Par[aacute] has listed it as endangered on its
newly created list of threatened species (Resoluc[atilde]o 054 2007;
Decreto No. 802 2008; Secco and Santos 2008). Hahnel's Amazonian
swallowtail continues to be listed as `Data Deficient' by the IUCN Red
List (Gimenez Dixon 1996).
Competition is a potential threat to Hahnel's Amazonian
swallowtail. Researchers have posited that it might suffer from host-
plant competition with any of three other butterfly species that occupy
a similar range (Collins and Morris 1985, Wells 1983, Brown 1996, ANOR
2007, 72 FR 20184; April 23, 2007). However, there is insufficient
information to conclude that competition is a factor affecting this
species.
Habitat alteration (e.g., for dam construction and waterway crop
transport) and destruction (e.g., clearing for agriculture and cattle
grazing) are ongoing in Par[aacute] and Amazonas, where this species is
found (Fearnside 2006; Hurwitz 2007). Current research on population
declines is lacking. However, researchers believe that, because
Hahnel's Amazonian swallowtail has extremely limited habitat
preferences, any sort of river modification would have an immediate and
highly negative impact on the species (Wells et al. 1983; New and
Collins 1991).
Hahnel's Amazonian swallowtail has been collected for commercial
trade (Collins and Morris 1985; Melisch 2000; Schutz 2000). Although
not strictly protected from collection throughout Brazil, the state of
Par[aacute] recently declared the capture of Hahnel's Amazonian
swallowtail for purposes other than research to be forbidden (Decreto
No. 802 2008). There continues to be limited trade in the species over
the internet. However, it has not been ascertained whether this trade
represents new collections or older, established ones (DSA 2008).
Hahnel's Amazonian swallowtail is listed on Annex B of Regulation 338/
97 (Eur-Lex 2008), and there has been no legal trade in this species
into the European Union since its listing on Annex B in 1997 (Grimm in
litt. 2008). Hahnel's Amazonian swallowtail has not been formally
considered for listing in the Appendices of CITES (http://www.cites.org). Additionally, recent seizures or smuggling of Hahnel's
Amazonian swallowtail into or out of the United States have not been
reported (Office of Law Enforcement, U.S. Fish and Wildlife Service,
Arlington, Virginia in litt. 2008). Species with restricted
distributions or localized populations, like Hahnel's Amazonian
swallowtail, are more vulnerable to overcollection than those with a
wider distribution (Brown in litt. 2004; Robbins in litt. 2004).
Hahnel's Amazonian swallowtail does not represent a monotypic
genus. The primary threat of habitat destruction is moderate because of
the species' specialized habitat requirements. However, the threat is
imminent because habitat alteration is ongoing. Illegal collection and
trade have not been reported. Therefore, we have assigned this species
a priority rank of 8.
Kaiser-I-Hind swallowtail (Teinopalpus imperialis)
The Kaiser-I-Hind swallowtail is native to the Himalayan regions of
Bhutan, China, India, Laos, Myanmar, Nepal, Thailand, and Vietnam
(Baral et al. 2005; Food and Agriculture Organization (FAO) 2001; FRAP
1999; Igarashi 2001; Masui and Uehara 2000; Osada et al. 1999; Shrestha
1997; TRAFFIC 2007; Tordoff et al. 1999; Trai and Richardson 1999).
This species prefers undisturbed (primary), heterogeneous, broad-
leaved-evergreen forests or montane deciduous forests, and flies at
altitudes of 4,921 to 10,000 ft (1,500 to 3,050 m) (Collins and Morris
1985; Igarashi 2001; Tordoff et al. 1999). Information on this
polyphagous species' biology and food plant preferences is provided in
the 2007 Notice of Review (72 FR 20184). It should be noted that
Collins and Morris (1985) reported that the adult Kaiser-I-Hind
swallowtails do not feed. This is a correction to the 2007 Notice of
Review (72 FR 20184), which stated that the adult food plant
preferences were unknown. Since 1996, the Kaiser-I-Hind swallowtail has
been categorized on the
[[Page 40556]]
IUCN Red List as a species of ``Lower Risk/near threatened''; it has
not been reevaluated using the 1997 criteria (Gimenez Dixon 1996). The
species is considered ``Rare'' by Collins and Morris (1985). Despite
its widespread distribution, local populations are not abundant
(Collins and Morris 1985). The known localities and conservation status
of the species within each range country follows:
Bhutan: The species was reported to be extant in Bhutan (Gimenez
Dixon 1996; FRAP 1999), although details on localities or status
information were not provided.
China: The species has been reported in Fuji, Guangxi, Hubei,
Jiangsu, Sichuan, and Yunnan Provinces (Collins and Morris 1985;
Gimenez Dixon 1996; Igarashi and Fukuda 2000; Sung and Yan 2005; United
Nations Environment Programme - World Conservation Monitoring Center
(UNEP - WCMC) 1999). The species is classified by the 2005 China
Species Red List as ``Vulnerable'' (China Red List 2006).
India: Assam, Manipur, Meghalaya, Sikkim, and West Bengal (Bahuguna
1998; Collins and Morris 1985; Gimenez Dixon 1996; Ministry of
Environment and Forests 2005). There is no recent status information on
this species (N. Chaturvedi, Curator, Bombay Natural History Society,
Mumbai, India, in litt. 2007).
Laos: The species has been reported (Osada et al. 1999), but no
further information is available (Southiphong Vonxaiya, CITES
Coordinator, Vientiane, Lao, in litt. 2007).
Myanmar: The species has been reported in Shan, Kayah (Karen) and
Thaninanthayi (Tenasserim) states (Collins and Morris 1985; Gimenez
Dixon 1996). There is no status information.
Nepal: The species has been reported in Nepal (Collins and Morris
1985; Gimenez Dixon 1996), in the Central Administrative Region at two
localities: Phulchoki Mountain Forest (Baral et al. 2005; Collins and
Morris 1985) and Shivapuri National Park (Nepali Times 2002; Shrestha
1997). There is no status information.
Thailand: The species has been reported in the northern province of
Chang Mai (Pornpitagpan 1999). The Scientific Authority of Thailand
recently confirmed that the species has limited distribution in the
high mountains (>1,500 m (4,921 ft)) of northern Thailand and is found
within three national parks. However, no biological or status
information was available (S. Choldumrongkul, Forest Entomology and
Microbiology Group, Department of National Parks, Bangkok, Thailand, in
litt. 2007).
Vietnam: The species has been confirmed in three Nature Reserves
(Tordoff et al. 1999; Trai and Richardson 1999), and the species is
listed as ``Vulnerable'' in the 2007 Vietnam Red Data Book, due to
declining population sizes and area of occupancy (Dr. Le Xuan Canh,
Director of the Institute of Ecology and Biological Resources, CITES
Scientific Authority, Hanoi, Vietnam, in litt. 2007).
Habitat destruction is the greatest threat to this species, which
prefers undisturbed high-altitude habitat (Collins and Morris 1985;
Igarashi 2001; Tordoff et al. 1999). In China and India, the Kaiser-I-
Hind swallowtail populations are at risk from habitat modification and
destruction due to commercial and illegal logging (Yen and Yang 2001;
Maheshwari 2003). In Nepal, the species is at risk from habitat
disturbance and destruction resulting from mining, fuel wood
collection, agriculture, and grazing animals (Baral et al. 2005;
Collins and Morris 1985; Shrestha 1997). Nepal's Forest Ministry
considered habitat destruction to be a critical threat to all
biodiversity, including the Kaiser-I-Hind swallowtail, in the
development of their biodiversity strategy (HMGN 2002). Habitat
degradation and loss caused by deforestation and land conversion for
agricultural purposes is a primary threat to the species in Thailand
(Hongthong 1998; FAO 2001). The species is afforded some protection
from habitat destruction in Vietnam, where it has been confirmed in
three Nature Reserves that have low levels of disturbance (Tordoff et
al. 1999; Trai and Richardson 1999).
The Kaiser-I-Hind swallowtail is highly valued and has been
collected for commercial trade, despite range country regulations
prohibiting or restricting such activities (Collins and Morris 1985;
Schutz 2000). In China, where the species is protected by the Animals
and Plants (Protection of Endangered Species) Ordinance (1989), which
restricts import, export, and possession of the species, species
purportedly derived from Sichuan were being advertised for sale on the
internet for 60 U.S. Dollars (USD). In India, the Kaiser-I-Hind
swallowtail is listed on Schedule II of the Indian Wildlife Protection
Act of 1972, which prohibits hunting without a license (Collins and
Morris 1985; Indian Wildlife Protection Act 2006). However, between
1990 and 1997, illegally collected specimens were selling for 500
Rupees (12 USD) per female and 30 Rupees (0.73 USD) per male (Bahuguna
1998). In Nepal, the Kaiser-I-Hind swallowtail is protected by the
National Parks and Wildlife Conservation Act of 1973 (His Majesty's
Government of Nepal (HMGN) 2002). However, the Nepal Forestry Ministry
determined in 2002 that the high commercial value of its ``Endangered''
species on the local and international market may result in local
extinctions of species such as the Kaiser-I-Hind (HMGN 2002).
In Thailand, the Kaiser-I-Hind swallowtail and 13 other
invertebrates are listed under Thailand's Wild Animal Reservation and
Protection Act (WARPA) of 1992 (B.E. 2535 1992), which makes it illegal
to collect wildlife (whether alive or dead) or to have the species in
one's possession (S. Choldumrongkul, in litt. 2007; FAO 2001; Hongthong
1998; Pornpitagpan 1999). In addition to prohibiting possession, WARPA
prohibits hunting, breeding, and trading; import and export are only
allowed for conservation purposes (Jeerawat Jaisielthum, CITES
Management Authority, Bangkok, Thailand, in litt. 2007). According to
the Thai Scientific Authority, there are no captive breeding programs
for this species; however, the species is offered for sale by the
Lepidoptera Breeders Association (2009), being marketed as derived from
a captive breeding program in Thailand, although specimens were
recently noted as being ``out of stock'' (Lepidoptera Breeders
Association 2009).
In Vietnam, Kaiser-I-Hind swallowtails are reported to be among the
most valuable of all butterflies (World Bank 2005). In 2006, the
species was listed on Schedule IIB of Decree No. 32 on ``Management of
endangered, precious and rare forest plants and animals.'' A Schedule
IIB-listing restricts the exploitation or commercial use of species
with small populations or considered by the country to be in danger of
extinction (L.X. Canh, in litt. 2007). In a recent survey conducted by
TRAFFIC Southeast Asia (2007), of 2000 residents in Hanoi, Vietnam, the
Kaiser-I-Hind swallowtail was among 37 Schedule IIB-species that were
actively being collected, and the majority of the survey respondents
were unaware of legislation prohibiting collection of Schedule IIB-
species. Thus, overutilization for illegal domestic and possibly
international trade via the internet is a threat to this species, and
within-country protections are inadequate to protect the species from
illegal collection throughout its range.
The Kaiser-I-Hind swallowtail has been listed in CITES Appendix II
since 1987 (UNEP-WCMC 2008a). Between 1991 and 2005, 160 Kaiser-I-Hind
[[Page 40557]]
swallowtail specimens were traded internationally under CITES permits
(UNEP WCMC 2006), and between 2000 and 2008, 157 specimens were traded
(UNEP WCMC 2009). The most recent CITES trade data are available for
the year 2008. Reports that the Kaiser-I-Hind swallowtail is being
captive-bred in Taiwan (Yen and Yang 2001) remain unconfirmed. Since
1993, there have been no reported seizures or smuggling of this species
into or out of the United States (Office of Law Enforcement, U.S. Fish
and Wildlife Service, Arlington, Virginia, in litt. 2008). Therefore,
on the basis of global trade data, we do not consider legal
international trade to be a contributory threat factor to this species.
The Kaiser-I-Hind swallowtail does not represent a monotypic genus.
The current threats of habitat destruction and illegal collection are
moderate to low in magnitude due to the species' wide distribution, but
imminent due to ongoing habitat destruction, high market value for
specimens, and inadequate domestic protections for the species or its
habitat. Therefore, we have assigned this species a priority rank of 8.
Preclusion and Expeditious Progress
This section describes the actions that continue to preclude the
immediate proposal of listing rules for the 20 species described above.
In addition, we summarize the expeditious progress we are making, as
required by section 4(b)(3)(B)(iii)(II) of the Act, to add qualified
species to the lists of endangered or threatened species and to remove
from these lists species for which protections of the Act are no longer
necessary.
Section 4(b) of the Act states that the Service may make warranted-
but-precluded findings only if it can demonstrate that (1) An immediate
proposed rule is precluded by other pending proposals and that (2)
expeditious progress is being made on other listing actions. Preclusion
is a function of the listing priority of a species in relation to the
resources that are available and competing demands for those resources.
Thus, in any given fiscal year (FY), multiple factors dictate whether
it will be possible to undertake work on a proposed listing regulation
or whether promulgation of such a proposal is warranted but precluded
by higher priority listing actions.In FY 2009, we have begun to
transfer the listing of foreign species under the Act from the Division
of Scientific Authority, within the Service's International Affairs
program, to the domestic Endangered Species Program. In addition to the
responsibility for development of listing proposals and promulgation of
final rules for domestic species, whether internally driven or as the
result of a petition, the Listing Branch within the Washington Office
of the Endangered Species program will have responsibly for listing
determinations for foreign species as well. During this transition
period (the remainder of FY 2009) the DSA and WO Endangered Species
Program are sharing the work on listing actions for foreign species.
The work on foreign species is being funded from a separate account
than the work on domestic species. Starting in FY 2010, the Service
anticipates that the WO Endangered Species program will have full
responsibility for foreign species ESA listing actions. In FY 2009, we
have limited funds to work on foreign species listing determinations.
All funds available are being used to complete the pending listing
actions listed below. These actions are either the subject of a court-
approved settlement agreement or subject to an absolute statutory
deadline and, thus, are higher priority than work on proposed listing
determinations for the 20 species described above. Therefore, in the
upcoming year, publication of proposed rules for the 20 species
described above is precluded.
ESA foreign species listing actions funded in FY 2009 but not yet
completed
------------------------------------------------------------------------
Species Action
------------------------------------------------------------------------
Actions Subject to Court Order/Settlement Agreement
------------------------------------------------------------------------
3 species of Procellarids Final listing determination
------------------------------------------------------------------------
3 other species of Procellarids Final listing determination
------------------------------------------------------------------------
7 bird species from Brazil Proposed listing
determination
------------------------------------------------------------------------
Salmon crested cockatoo Proposed listing
determination
------------------------------------------------------------------------
6 bird species from Peru Proposed listing
determination
------------------------------------------------------------------------
6 bird species from Asia & Eurasia Proposed listing
determination
------------------------------------------------------------------------
Actions with Statutory Deadlines
------------------------------------------------------------------------
14 species of parrots 12-month petition finding
------------------------------------------------------------------------
Morelet's crocodile 12-month petition finding
and Proposed delisting
determination
------------------------------------------------------------------------
Despite the priorities that preclude publishing proposed listing
rules for these 20 species described in this notice, we are making
expeditious progress in adding to and removing species from the Federal
lists of threatened and endangered species. Our expeditious progress
since publication of the 2008 Notice of Review, July 29, 2008, to the
current date includes preparing and publishing the following:
ESA foreign species listing actions published in FY 2009
----------------------------------------------------------------------------------------------------------------
Publication Date Title Actions FR Pages
----------------------------------------------------------------------------------------------------------------
8/19/2008 90-Day Finding on a Notice 90-day petition 73 FR 48359-48362
Petition To List the finding; not
Northern Snakehead substantial
Fish (Channa argus)
----------------------------------------------------------------------------------------------------------------
12/8/2008 Listing the Medium Tree Proposed Listing, 73 FR 74434-74445
Finch (Camarhynchus Endangered
pauper) as Endangered
Throughout Its Range
----------------------------------------------------------------------------------------------------------------
12/8/2008 Proposed Rule To List Proposed Listing, 73 FR 74427-74434
Black-Breasted Puffleg Endangered
as Endangered
Throughout Its Range
----------------------------------------------------------------------------------------------------------------
[[Page 40558]]
12/18/2008 12-Month Finding on a Notice 12-month 73 FR 77264-77302
Petition To List petition finding, Not
southern rockhopper warranted; Proposed
penguin (Eudyptes Listing, Threatened
chrysocome), northern
rockhopper penguin
(Eudyptes moseleyi),
macaroni penguin
(Eudyptes
chrysolophus), and
emperor penguin
(Aptenodytes forsteri)
and Proposed Rule To
List southern
rockhopper penguin as
Threatened in the
Campbell Plateau
Portion of Its Range
----------------------------------------------------------------------------------------------------------------
12/18/2009 12-Month Finding on a Notice 12-month 73 FR 77303-77332
Petition and Proposed petition finding,
Rule To List the Warranted; Proposed
yellow-eyed penguin Listing, Threatened
(Megadyptes
antipodes), white-
flippered penguin
(Eudyptula minor
albosignata),
Fiordland crested
penguin (Eudyptes
pachyrhynchus),
Humboldt penguin
(Spheniscus
humboldti), and erect-
crested penguin
(Eudyptes sclateri) as
Threatened Throughout
Their Range
----------------------------------------------------------------------------------------------------------------
12/18/2008 12-Month Finding on a Notice 12-month 73 FR 77332-77341
Petition and Proposed petition finding,
Rule To List the Warranted; Proposed
African Penguin Listing, Threatened
(Spheniscus demersus)
as Endangered
Throughout Its Range
----------------------------------------------------------------------------------------------------------------
12/24/2008 Listing Three Foreign Proposed Listing, 73 FR 79226-79254
Bird Species From Endangered
Latin America and the
Caribbean as
Endangered Throughout
Their Range
----------------------------------------------------------------------------------------------------------------
2/03/2009 Notice of 90-day Notice 90-day petition 73 FR 5908-5910
petition finding and finding; substantial
initiation of status
review of the wood
bison to determine if
reclassification of
this subspecies is
warranted under the
Act
----------------------------------------------------------------------------------------------------------------
7/ 07/2009 Proposed Rule to List Proposed Listing, 74 FR 32307 32349
Five Foreign Bird Endangered
Species in Colombia
and Ecuador, South
America, under the
Endangered Species Act
----------------------------------------------------------------------------------------------------------------
7/14/2009 90-Day Finding on a Notice 90-day petition 74 FR 33957 33960
Petition to List 14 finding; substantial
Parrot Species as
Threatened or
Endangered
----------------------------------------------------------------------------------------------------------------
.Our expeditious progress also includes work on pending listing
actions described above in our ``precluded finding,'' but for which
decisions had not been completed at the time of this publication.
We have endeavored to make our listing actions as efficient and
timely as possible, given the requirements of the relevant law and
regulations and the constraints relating to workload and personnel. We
are continually considering ways to streamline processes or achieve
economies of scale, such as by batching related actions together.
Despite higher listing priorities that preclude us from issuing listing
proposals for the 20 species described in this Notice of Review, the
actions described above collectively constitute expeditious progress.
Monitoring
Section 4(b)(3)(C)(iii) of the Act requires us to ``implement a
system to monitor effectively the status of all species'' for which we
have made a warranted-but-precluded 12-month finding, and to ``make
prompt use of the [emergency listing] authority [under section 4(b)(7)]
to prevent a significant risk to the well being of any such species.''
For foreign species, the Service's ability to gather information to
monitor species is limited. The Service welcomes all information
relevant to the status of these species, because we have no ability to
gather data in foreign countries directly and cannot compel another
country to provide information. Thus, this ANOR plays a critical role
in our monitoring efforts for foreign species. With each ANOR, we
request information on the status of the species included in the
notice. Information and comments on the annual findings can be
submitted at any time. We review all new information received through
this process as well as any other new information we obtain using a
variety of methods. We collect information directly from range
countries by correspondence, from the peer-reviewed scientific
literature, unpublished literature, scientific meeting proceedings, and
CITES documents (including species proposals and reports from
scientific committees). We also obtain information through the permit
application processes under CITES, the Act, and the Wild Bird
Conservation Act. We also consult with staff members of the Service's
Division of International Conservation and the IUCN species specialist
groups, and we attend scientific meetings to obtain current status
information for relevant species. As previously stated, if we identify
any species for which emergency listing is appropriate, we will make
prompt use of the emergency listing authority under section 4(b)(7) of
the Act.
Request for Information
We request the submission of any further information on the species
in this notice as soon as possible, or whenever it becomes available.
We
[[Page 40559]]
especially seek information: (1) indicating that we should remove a
taxon from consideration for listing; (2) documenting threats to any of
the included taxa; (3) describing the immediacy or magnitude of threats
facing these taxa; (4) identifying taxonomic or nomenclatural changes
for any of the taxa; or (5) noting any mistakes, such as errors in the
indicated historic ranges.
References Cited
A list of the references used to develop this notice is available
upon request (see ADDRESSES section).
Authors
This Notice of Review was authored by the staff of the Endangered
Species Program, U.S. Fish and Wildlife Service (see ADDRESSES
section).
Authority
This Notice of Review is published under the authority of the
Endangered Species Act (16 U.S.C. 1531 et seq.).
Date: July 29, 2009.
James J. Slack
Acting Director, Fish and Wildlife Service.
Table 1. - Annual Notice of Review
(C = listing warranted but precluded)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Status
------------------------------------------------------------ Scientific name Family Common name Historic range
Category Priority
--------------------------------------------------------------------------------------------------------------------------------------------------------
BIRDS
--------------------------------------------------------------------------------------------------------------------------------------------------------
C.................................. 8..................... Pauxi unicornis....... Craciidae............ southern helmeted Bolivia, Peru
curassow............
C.................................. 8..................... Rallus semiplumbeus... Rallidae............. Bogota rail.......... Colombia
C 8..................... Porphyrio hochstetteri Rallidae............. Takahe............... New Zealand
C 8..................... Haematopus Haematopodidae....... Chatham oystercatcher Chatham Islands, New
chathamensis......... Zealand
C.................................. 8..................... Cyanoramphus malherbi. Psittacidae.......... orange-fronted New Zealand
parakeet............
C.................................. 8..................... Eunymphicus uvaeensis. Psittacidae.......... Uvea parakeet........ Uvea, New Caledonia
C.................................. 8..................... Ara glaucogularis..... Psittacidae.......... blue-throated macaw.. Bolivia
C.................................. 8..................... Dryocopus galeatus.... Picidae.............. helmeted woodpecker.. Argentina, Brazil,
Paraguay
C.................................. 8..................... Dendrocopus noguchii.. Picidae.............. Okinawa woodpecker... Okinawa Island, Japan
C.................................. 11.................... Aulacorhynchus Ramphastidae......... yellow-browed Peru
huallagae............ toucanet............
C.................................. 8..................... Scytalopus Conopophagidae....... Brasilia tapaculo.... Brazil
novacapitalis........
C.................................. 12.................... Bowdleria punctata Sylviidae............ Codfish Island Codfish Island, New
wilsoni.............. fernbird............ Zealand
C.................................. 8..................... Zosterops luteirostris Zosteropidae......... Ghizo white-eye...... Solomon Islands
C.................................. 8..................... Tangara peruviana..... Thraupidae........... black-backed tanager. Brazil
C.................................. 12.................... Strepera graculina Cracticidae.......... Lord Howe pied Lord Howe Islands,
crissalis............ currawong........... New South Wales
--------------------------------------------------------------------------------------------------------------------------------------------------------
INVERTEBRATES
--------------------------------------------------------------------------------------------------------------------------------------------------------
C.................................. 12.................... Eurytides (= Graphium Paplionidae.......... Harris' mimic Brazil, Paraguay
or Mimoides)lysithous swallowtail.........
harrisianus..........
C.................................. 8..................... Eurytides (= Graphium Paplionidae.......... Jamaican kite Jamaica
or Neographium or swallowtail.........
Protographium or
Protesilaus)
marcellinus..........
C.................................. 5..................... Parides ascanius...... Paplionidae.......... Fluminense Brazil
swallowtail.........
C.................................. 8..................... Parides hahneli....... Paplionidae.......... Hahnel's Amazonian Brazil
swallowtail.........
C.................................. 8..................... Teinopalpus imperialis Paplionidae.......... Kaiser-I-Hind Bhutan, China, India,
swallowtail......... Laos, Myanmar,
Nepal, Thailand,
Vietnam
--------------------------------------------------------------------------------------------------------------------------------------------------------
[[Page 40560]]
[FR Doc. E9-18842 Filed 8-7- 09; 8:45 am]
BILLING CODE 4310-55-S