power and responsibilities among the various levels of government. Therefore, it is determined that this proposal would not have federalism implications under Executive Order 13132.

For the reasons discussed above, I certify that this proposed regulation (1) is not a "significant regulatory action" under Executive Order 12866; (2) is not a "significant rule" under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and (3) if promulgated, will not have a significant economic impact, positive or negative, on a substantial number of small entities under the criteria of the Regulatory Flexibility Act. A copy of the draft regulatory evaluation prepared for this action is contained in the Rules Docket.

A copy of it may be obtained by contacting the Rules Docket at the location provided under the caption ADDRESSES.

List of Subjects in 14 CFR Part 39
Air transportation, Aircraft, Aviation, Safety, Safety.

The Proposed Amendment

Accordingly, pursuant to the authority delegated to me by the Administrator, the Federal Aviation Administration proposes to amend part 39 of the Federal Aviation Regulations (14 CFR part 39) as follows:

PART 39—AIRWORTHINESS DIRECTIVES

1. The authority citation for part 39 continues to read as follows:
 Authority: 49 U.S.C. 106(g), 40113, 44701.

§ 39.13 [Amended]

2. Section 39.13 is amended by adding a new airworthiness directive to read as follows:

Note 1: This AD applies to each helicopter identified in the preceding applicability provision, regardless of whether it has been otherwise modified, altered, or repaired in the area subject to the requirements of this AD. For helicopters that have been modified, altered, or repaired so that the performance of the requirements of this AD is affected, the owner/operator must request approval for an alternative method of compliance in accordance with paragraph (d) of this AD.

The request should include an assessment of the effect of the modification, alteration, or repair on the unsafe condition addressed by this AD; and if the unsafe condition has not been eliminated, the request should include specific proposed actions to address it.

Compliance: Required as indicated, unless accomplished previously.

To prevent failure of the hose, resulting in failure of hydraulic pressure to the brakes on the affected landing gear wheel and subsequent loss of control of the helicopter during a run-on landing, accomplish the following:

(a) Within 10 hours time-in-service (TIS), inspect the hose for crazing, pinching, distortion, or leaks as illustrated in Area A of Figure 1 of Eurocopter Alert Telex No. 32.00.09, for Model SA–365N and N1, AS–365N2, and AS 365 N3 helicopters, and Alert Telex No. 32A004, for Model EC 155B helicopters, both dated July 31, 2002 (Alert Telexes).

(b) If crazing, pinching, distortion, or leaks exist, replace the hose with an airworthy hose before further flight.

(c) At the next 100-hour TIS inspection, inspect the hose and the emergency flotation gear pipe to ensure adequate clearance and adjust the landing gear leg, if necessary, in accordance with the Operational Procedure, paragraph 2.B.2., of the applicable Alert Telexes.

(d) An alternative method of compliance or adjustment of the compliance time that provides an acceptable level of safety may be used if approved by the Manager, Regulations Group, Rotorcraft Directorate, FAA. Operators shall submit their requests through an FAA Principal Maintenance Inspector, who may concur or comment and then send it to the Manager, Regulations Group.

Note 2: Information concerning the existence of approved alternative methods of compliance with this AD, if any, may be obtained from the Regulations Group.

(e) Special flight permits may be issued in accordance with 14 CFR 21.197 and 21.199 to operate the helicopter to a location where the requirements of this AD can be accomplished.

Note 3: The subject of this AD is addressed in Direction Generale De L’Aviation Civile (France) AD No. 2002–475–007(A) and AD No. 2002–474–058(A), both dated September 18, 2002.

Issued in Fort Worth, Texas, on March 31, 2003.

David A. Downey,
Manager, Rotorcraft Directorate, Aircraft Certification Service.

[FR Doc. 03–8329 Filed 4–4–03; 8:45 am]

BILLING CODE 4910–13–U

DEPARTMENT OF TRANSPORTATION
Federal Aviation Administration

14 CFR Part 39

RIN 2120–AA64

Airworthiness Directives; Pratt and Whitney PW4000 Series Turbofan Engines

AGENCY: Federal Aviation Administration, DOT.

ACTION: Notice of proposed rulemaking (NPRM).

SUMMARY: The Federal Aviation Administration (FAA) proposes to supersede an existing airworthiness directive (AD), that is applicable to Pratt and Whitney (PW) model 4000 series turbofan engines. That AD currently requires interim actions to address engine takeoff power loss events until the high-pressure-compressor (HPC) case is redesigned and available for incorporation on the PW4000 engines. This proposal would require the same actions as that AD, adds on-wing Testing-21 to Boeing 747 and MD–11 airplanes, and adds the requirement to install a new Ring Case Configuration (RCC) rear HPC on engines installed in the Boeing Fleet. This proposal is prompted by the development of an RCC rear HPC for PW4000 series turbofan engines installed in the Boeing fleet. The actions specified in the proposed AD are intended to prevent engine takeoff power losses due to HPC surge.

DATES: Comments must be received by May 7, 2003.

ADDRESSES: Submit comments in triplicate to the Federal Aviation Administration (FAA), New England Region, Office of the Regional Counsel, Attention: Rules Docket No. 2000–NE–47–AD, 12 New England Executive Park, Burlington, MA 01803–5299. Comments may be inspected at this location, by appointment, between 8 a.m. and 4:30 p.m., Monday through Friday, except Federal holidays. Comments may also be sent via the Internet using the following address: 9–anadcomment@faa.gov. Comments sent via the Internet must contain the docket number in the subject line.

The service information referenced in the proposed rule may be obtained from Pratt & Whitney, 400 Main St., East Hartford, CT 06108, telephone (860) 565–6600; fax (860) 565–4503. This information may be examined, by appointment, at the FAA, New England Region, Office of the Regional Counsel, 12 New England Executive Park, Burlington, MA.

FOR FURTHER INFORMATION CONTACT:

SUPPLEMENTARY INFORMATION:
Comments Invited

Interested persons are invited to participate in the making of the
proposed rule by submitting such written data, views, or arguments, as they may desire. Communications should identify the Rules Docket number and be submitted in triplicate to the address specified above. All communications received on or before the closing date for comments, specified above, will be considered before taking action on the proposed rule. The proposals contained in this action may be changed in light of the comments received.

Comments are specifically invited on the overall regulatory, economic, environmental, and energy aspects of the proposed rule. All comments submitted will be available, both before and after the closing date for comments, in the Rules Docket for examination by interested persons. A report summarizing each FAA-public contact concerned with the substance of this proposal will be filed in the Rules Docket.

Commenters wishing the FAA to acknowledge receipt of their comments submitted in response to this action must submit a self-addressed, stamped postcard on which the following statement is made: “Comments to Docket Number 2000–NE–47–AD.” The postcard will be date stamped and returned to the commenter.

Availability of NPRM’s

Discussion

On October 11, 2002, the FAA issued AD 2002–21–10, Amendment 39–12916 (67 FR 65484, October 25, 2002), that:

• Establishes a minimum rebuild standard for engines and requires operators to remove PW4000 engines with cutback stators from service,
• Limits the number of PW4000 engines with potentially reduced stability margin to no more than one engine on each airplane,
• Removes engines from service using engine stagger limit criteria,
• Returns engines to service after having exceeded HPC cyclic limits or after shop maintenance by either passing engine fuel spike stability tests or overhauling the HPC,
• Performs repetitive test cell engine fuel spike stability tests at certain cycle intervals,
• Establishes a rules based criterion to determine the engine category on Airbus airplanes,
• Establishes criteria to allow engine stagger without Testing-21 for engines over their respective limits,
• Establishes criteria which may require Testing-21 on engines that have complied with Boeing/McDonnell Douglas/Airbus Fan Thrust Deterioration Mode (FTDM) ADs,
• Reestablishes the HPT/HPC cyclic mismatch criteria, and
• Adds criteria to address engine installation changes, aircraft transfers, and thrust rating changes.

That action was prompted by investigation and evaluation of PW4000 series turbofan engines surge data, and continuing reports of surges in the PW4000 fleet. That condition, if not corrected, could result in engine takeoff power losses due to HPC surge.

Since that AD was issued, PW issued service bulletin PW4ENG 72–755, dated February 28, 2003, that introduces a new RCC rear HPC for engines installed on Boeing airplanes.

Although the RCC rear HPC has been certified to 14 CFR part 33 and 14 CFR part 25 on Boeing airplanes, it has not completed certification to 14 CFR part 25 on Airbus and McDonnell Douglas airplanes.

Manufacturer’s Service Information

The FAA has reviewed and approved the technical contents of the following PW service information:

• Internal Engineering Notice (IEN) 02KCW13, dated October 14, 2002
• IEN 02KCW13A, dated October 14, 2002
• IEN 02KCW13C, dated July 25, 2002
• IEN 02KCW13D, dated July 29, 2002
• IEN 02KCW13E, dated November 21, 2002
• IEN 02KCW13F, dated October 14, 2002
• IEN 02KCW13H, dated December 9, 2002
• SB PW4ENG72–714, Revision 1, dated November 8, 2001
• SB PW4ENG72–749, dated June 17, 2002
• IEN 96KC973D, dated October 12, 2001
• Temporary Revision (TR) TR 71–0018, dated November 14, 2001
• TR 71–0026, dated November 14, 2001
• TR 71–0035, dated November 14, 2001
• Cleaning, Inspection, and Repair (CIR) procedure CIR 51A357, Section 72–35–68, Inspection/Check-94, Indexes 8–11, dated September 15, 2001
• CIR 51A357, Section 72–35–68, Repair 16, dated June 15, 1996
• PW4000 PW engine manual (EM) 50A443, 71–00–00, TESTING–21, dated March 15, 2002
• PW4000 PW EM 50A822, 71–00–00, TESTING–21, dated March 15, 2002
• PW4000 PW EM 50A605, 71–00–00, TESTING–21, dated March 15, 2002

Additional Service Information

The FAA has reviewed and approved the technical contents of Chromalloy Florida Repair Procedures, 00 CFL–039–0, dated December 37, 2000 and 02 CFL–024–0, dated September 15, 2002.

FAA’s Determination of an Unsafe Condition and Proposed Actions

Since an unsafe condition has been identified that is likely to exist or develop on other PW4000 series turbofan engines of this same type design, the proposed AD would supersede AD 2002–21–10 to require the same actions as that AD, adds on-wing Testing-21 to Boeing 747 and MD11 airplanes, and adds the requirement to install a new RCC rear HPC on engines installed in the Boeing fleet as follows:

• For engines installed on Boeing 767 airplanes, by May 31, 2006 and thereafter, ensure that at least one Configuration I engine is installed on the airplane. After May 31, 2006, the non-Configuration I engine installed on the airplane must have incorporated the Haynes material in the HPC inner case rear hoot.
• For engines installed on Boeing 747 airplanes, by January 31, 2007 and thereafter, ensure that no more than one non-Configuration I engine is installed on the airplane. After January 31, 2007, the non-Configuration I engine installed on the airplane must have incorporated the Haynes material in the HPC inner case rear hoot.
• Prior to June 30, 2009 or whenever the HPC module is disassembled to a level that separates the HPC rear case assembly at H flange from the HPC module, whichever occurs first, incorporate the RCC rear HPC. Engines incorporating the RCC rear HPC are Configuration I engines.

The actions are required to be done in accordance with the service information described previously and have been coordinated with the Transport Airplane Directorate.

Economic Analysis

There are approximately 2,300 engines of the affected design in the worldwide fleet. The FAA estimates that 550 engines installed on aircraft of U.S. registry would be affected by this proposed AD. The FAA also estimates that it would take approximately 183 work hours per engine to perform the
Regulatory Analysis
This proposed rule does not have federalism implications, as defined in Executive Order 13132, because it would not have a substantial direct effect on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government.

Accordingly, the FAA has not consulted with state authorities prior to publication of this proposed rule.

For the reasons discussed above, I certify that this proposed regulation (1) is not a “significant regulatory action” under Executive Order 12866; (2) is not a “significant rule” under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and (3) if promulgated, will not have a significant economic impact, positive or negative, on a substantial number of small entities under the criteria of the Regulatory Flexibility Act. A copy of the draft regulatory evaluation prepared for this action is contained in the Rules Docket. A copy of it may be obtained by contacting the Rules Docket at the location provided under the caption ADDRESSES.

List of Subjects in 14 CFR Part 39
Air transportation, Aircraft, Aviation safety, Safety.

The Proposed Amendment
Accordingly, pursuant to the authority delegated to me by the Administrator, the Federal Aviation Administration proposes to amend part 39 of the Federal Aviation Regulations (14 CFR part 39) as follows:

PART 39—AIRWORTHINESS DIRECTIVES

1. The authority citation for part 39 continues to read as follows:

Authority: 49 U.S.C. 106(g), 40113, 44701.

§39.13 [Amended]
2. Section 39.13 is amended by removing Amendment 39–12916, (67 FR 63484, October 25, 2002, and by adding a new airworthiness directive:

Applicability: This airworthiness directive (AD) is applicable to Pratt and Whitney (PW) model PW4050, PW4052, PW4056, PW4060, PW4060A, PW4060C, PW4062, PW4152, PW4156, PW4156A, PW4158, PW4160, PW4460, PW4462, and PW4650 turbofan engines. These engines are installed on, but not limited to, certain models of Airbus Industrie A300, Airbus Industrie A310, Boeing 747, Boeing 767, and McDonnell Douglas MD–11 series airplanes.

Note 1: This AD applies to each engine identified in the preceding applicability provision, regardless of whether it has been modified, altered, or repaired in the area subject to the requirements of this AD. For engines that have been modified, altered, or repaired so that the performance of the requirements of this AD is affected, the owner/operator must request approval for an alternative method of compliance in accordance with paragraph (w) of this AD. The request should include an assessment of the effect of the modification, alteration, or repair on the unsafe condition addressed by this AD; and, if the unsafe condition has not been eliminated, the request should include specific proposed actions to address it.

Compliance: Compliance with this AD is required as indicated, unless already done.

To prevent engine takeoff power losses due to high-pressure-compressor (HPC) surges, do the following:

(a) When complying with this AD, determine the configuration of each engine on each airplane using the following Table 1:

<table>
<thead>
<tr>
<th>Configuration description</th>
<th>Designator</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Phase 1 without high pressure turbine (HPT) 1st turbine vane cut back stator (1TVCB)</td>
<td>A</td>
</tr>
<tr>
<td>(2) Phase 1 with 1TVCB</td>
<td>B</td>
</tr>
<tr>
<td>(3) Phase 3, 2nd Run</td>
<td>C</td>
</tr>
<tr>
<td>(4) Phase 3, 1st Run</td>
<td>D</td>
</tr>
<tr>
<td>(5) HPC Cutback Stator Configuration Engines</td>
<td>E</td>
</tr>
<tr>
<td>(6) Engines that have passed Testing—21</td>
<td>F</td>
</tr>
<tr>
<td>(7) Phase 3, 1st Run Subpopulation Engines. These engines are identified by model and serial numbers (SNs) as follows: PW4152: SN 724942 through SN 724944 inclusive; PW4158: SN 728518 through SN 728533 inclusive; PW4052, PW4056, PW4060, PW4060A, PW4060C, PW4062: SN 727732 through SN 728000 inclusive and SN 729010 inclusive; PW4460, PW4462: SN 733813 through SN 733840 inclusive</td>
<td>G</td>
</tr>
</tbody>
</table>
(8) Engines from Configuration G that have have passed Testing-21.

(9) Engines installed on Boeing airplanes with a build standard that incorporates a ring case configuration (RCC) rear HPC.

Configuration E Engines Installed on Boeing 747, 767, and MD-11 Airplanes
(b) For Configuration E engines, do the following:
(1) Before further flight, limit the number of engines with Configuration E as described in Table 1 of this AD, to one on each airplane.
(2) Remove all engines with Configuration E from service before accumulating 1,300 cycles-since-new (CSN) or cycles-since-conversion (CSC) to Configuration E, whichever is later.

Configuration G and H Engines Installed on Boeing 747, 767, MD-11, and Airbus A300 and A310 Airplanes
(c) For Configuration G and H engines installed on Boeing 747, 767, MD-11, and Airbus A300 and A310 airplanes, except as provided in paragraph (b) of this AD:
(1) Before further flight, remove from service engines that exceed the HPC CSN, CSO, or CST limits listed in Table 2 of this AD, to no more than one engine per airplane.
(2) Prior to return to service and installed on MD11 airplanes, engines must meet the requirements of paragraph (i) of this AD.
(3) Prior to return to service and installed on Airbus or McDonnell Douglas airplanes, Configuration G or H engines must meet the requirements of paragraph (i) of this AD.

Engines Installed on Boeing 747 Airplanes
(e) Except as provided in paragraph (b) and (c) of this AD, before further flight, and thereafter, manage the engine configurations installed on Boeing 747 airplanes as follows:
(1) Limit the number of Configuration A, B, C, or E engines that exceed the HPC CSN or HPC CSO limits listed in Table 3 of this AD, to no more than one engine per airplane.

Engines Installed on Boeing 747 Airplanes
(f) Except as provided in paragraph (b) and (c) of this AD, before further flight, and thereafter, manage the engine configurations installed on Boeing 747 airplanes as follows:
(1) Limit the number of Configuration A, B, C, or E engines that exceed the HPC CSN or HPC CSO limits listed in Table 3 of this AD, to no more than one engine per airplane.

Table 1.—Engine Configuration Listing—Continued

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Configuration description</th>
<th>Designator</th>
</tr>
</thead>
<tbody>
<tr>
<td>H...............</td>
<td>Engines that have successfully passed Testing-21 performed in accordance with paragraph (i) or (j) of this AD. Once an engine has passed a Testing-21, it will remain a Configuration H engine until the HPC is overhauled, or is replaced with a new or overhauled HPC.</td>
<td>Engines that have incorporated PW SB PW4ENG 72–55, dated February 28, 2003, or have been manufactured with an RCC rear HPC.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Designator</th>
<th>Configuration E Engines Installed on Boeing 747, 767, and MD-11 Airplanes</th>
<th>Configuration G and H Engines Installed on Boeing 747, 767, MD-11, and Airbus A300 and A310 Airplanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW4056..................</td>
<td>B747: 1,700 CSN 600 cycles-since-passing Testing-21 (CST)</td>
<td>G .. 1,700 cycles-</td>
</tr>
<tr>
<td>PW4052..................</td>
<td>B767: 3,000 CSN 600 CST</td>
<td>G .. 600 CST</td>
</tr>
<tr>
<td>PW4056..................</td>
<td>MD-11: 2,100 CSN 600 CST</td>
<td>H .. 1,700 cycles-</td>
</tr>
<tr>
<td>PW4060..................</td>
<td>B747: 2,800 CSN 600 CST</td>
<td>G .. 2,800 cycles-</td>
</tr>
<tr>
<td>PW4060A.................</td>
<td>B767: 3,000 CSN 600 CST</td>
<td>G .. 2,800 cycles-</td>
</tr>
<tr>
<td>PW4060C.................</td>
<td>B767: 3,000 CSN 600 CST</td>
<td>G .. 2,800 cycles-</td>
</tr>
<tr>
<td>PW4062..................</td>
<td>MD-11: 2,100 CSN 600 CST</td>
<td>H .. 2,100 cycles-</td>
</tr>
<tr>
<td>PW4460..................</td>
<td>A300/310: 2,800 CSN 600 CST</td>
<td>H .. 2,100 cycles-</td>
</tr>
<tr>
<td>PW4462..................</td>
<td>A300/310: 2,800 CSN 600 CST</td>
<td>H .. 2,100 cycles-</td>
</tr>
</tbody>
</table>

Table 2.—Configuration G and H Limits

<table>
<thead>
<tr>
<th>Configuration Designator</th>
<th>Configuration G and H Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B747 PW4056.............</td>
<td>G: 1,700 CSN 600 cycles-since-passing Testing-21 (CST)</td>
</tr>
<tr>
<td>B767 PW4052.............</td>
<td>G: 3,000 CSN 600 CST</td>
</tr>
<tr>
<td>B747 PW4056.............</td>
<td>H: 2,800 CSN 600 CST</td>
</tr>
<tr>
<td>B767 PW4060.............</td>
<td>H: 3,000 CSN 600 CST</td>
</tr>
<tr>
<td>MD-11 PW4460............</td>
<td>H: 2,100 CSN 600 CST</td>
</tr>
<tr>
<td>A300/310 PW4456...........</td>
<td>H: 2,100 CSN 600 CST</td>
</tr>
<tr>
<td>A300/310 PW4458...........</td>
<td>H: 2,100 CSN 600 CST</td>
</tr>
</tbody>
</table>

Table 3.—Engine Limits for Boeing Airplanes

<table>
<thead>
<tr>
<th>Configuration Designator</th>
<th>Engine Limits for Boeing Airplanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.........................</td>
<td>B747–PW4056: 1,400 CSN or CSO</td>
</tr>
<tr>
<td>B.........................</td>
<td>B747–PW4052: 4,400 CSN or CSO</td>
</tr>
<tr>
<td>C.........................</td>
<td>B747–PW4056: 750 CSN or CSO</td>
</tr>
<tr>
<td>D.........................</td>
<td>B747–PW4056: 800 CSN or CSO</td>
</tr>
<tr>
<td>E.........................</td>
<td>B747–PW4052: 4,400 CSN or CSO</td>
</tr>
<tr>
<td>F.........................</td>
<td>B767–PW4060A: 3,000 CSN or CSO</td>
</tr>
<tr>
<td>G.........................</td>
<td>B767–PW4062: 2,000 CSN or CSO</td>
</tr>
<tr>
<td>H.........................</td>
<td>MD–11 PW4460: 2,000 CSN or CSO</td>
</tr>
<tr>
<td>I.........................</td>
<td>MD–11 PW4460: 2,000 CSN or CSO</td>
</tr>
</tbody>
</table>
(2) The single Configuration A, B, C, or E engine per airplane that exceeds the HPC CSN or CSO limits listed in Table 3 of this AD, must be limited to 2,600 HPC CSN or CSO for Configuration A, B, or C engines, or 1,300 HPC CSN or CSO to Configuration E, whichever is later, for Configuration E engines.

(3) Remove from service Configuration D engines before accumulating 2,600 CSN.

(4) Remove from service Configuration F engines before accumulating 800 CST.

(5) Prior to return to service and installed on Boeing airplanes, Configuration A, B, C, D, and F engines must meet the requirements of paragraph (f) of this AD.

See Table 4.

(1) Determine the number of Group 3 takeoff surges experienced by engines in your fleet before April 13, 2001. Count surge events for engines that had an HPC overhaul and incorporated either SB PW 4ENG 72–484 or SB PW4ENG 72–575 at the time of overhaul. Do not count surge events for engines that did not have the HPC overhaul (i.e. 1st run engine) or had the HPC overhaul but did not incorporate either SB PW4ENG 72–484 or SB PW4ENG 72–575. See paragraph (v)(5) of this AD for a definition of a Group 3 takeoff surge.

(2) Determine the number of cumulative HPC CSO accrued by engines in your fleet before April 13, 2001. Count HPC CSO for engines that had an HPC overhaul and incorporated either SB PW4ENG 72–484 or SB PW4ENG 72–575 at the time of overhaul. Do not count HPC CSO accrued on your engines while operating outside your fleet.

(3) Calculate the surge rate by dividing the number of Group 3 takeoff surges determined in paragraph (f)(1) of this AD, by the number of cumulative HPC CSO determined in paragraph (f)(2) of this AD, and then multiply by 1,000.

(4) If the surge rate calculated in paragraph (f)(3) of this AD is less than 0.005, go to paragraph (f)(5) of this AD. If the surge rate calculated in paragraph (f)(3) of this AD is greater than or equal to 0.005, go to paragraph (f)(6) of this AD.

(5) If the cumulative HPC CSO determined in paragraph (f)(2) of this AD is greater than or equal to 200,000 cycles, use A300 PW4158 Category 3 limits of Table 4 of this AD. If less than 200,000 cycles, go to paragraph (f)(7) of this AD.

(6) If the surge rate calculated in paragraph (f)(3) of this AD is greater than 0.035, use A300 PW4158 Category 3 limits of Table 4 of this AD. If less than or equal to 0.035, go to paragraph (f)(7) of this AD.

(7) Determine the percent of takeoffs with greater than a 1.45 Takeoff EPR data for engines operating in your fleet. Count takeoffs from a random sample of at least 700 airplane takeoffs that has occurred over at least a 3-month time period, for a period beginning no earlier than 23 months prior to the effective date of this AD.

(8) If there is insufficient data to satisfy the criteria of paragraph (f)(7) of this AD, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(9) If the percentage of takeoffs with greater than a 1.45 Takeoff EPR data determined in paragraph (f)(7) of this AD is greater than 31%, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(10) If there is insufficient data to satisfy the criteria of paragraph (f)(7) of this AD, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(11) If the percentage of takeoffs with greater than a 1.45 Takeoff EPR data determined in paragraph (f)(7) of this AD is less than or equal to 31%, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(12) If the percentage of takeoffs with greater than a 1.45 Takeoff EPR data determined in paragraph (f)(7) of this AD is less than or equal to 200,000 cycles, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(13) If the percentage of takeoffs with greater than a 1.45 Takeoff EPR data determined in paragraph (f)(7) of this AD is less than or equal to 200,000 cycles, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(14) For operators whose engine fleets are initially classified as Category 2 in accordance with paragraph (f) of this AD, determine the percent of takeoffs with greater than a 1.45 Takeoff EPR data for engines operating in your fleet. Count takeoffs from a sample of at least 200 takeoffs that occurred over the most recent six month time period since the last categorization was determined, or the total number of takeoffs accumulated over 6 months if less than 200 takeoffs.

(15) See paragraph (f)(6) of this AD for definition of Takeoff EPR data.

(16) If there is insufficient data to satisfy the criteria of paragraph (f)(2) of this AD, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(17) If the percentage of takeoffs with greater than a 1.45 Takeoff EPR data determined in paragraph (h)(2) of this AD is greater than 37%, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(18) If the percentage of takeoffs with greater than a 1.45 Takeoff EPR data determined in paragraph (h)(2) of this AD is greater than 21% and less than or equal to 37%, use A300 PW4158 Category 1 limits of Table 4 of this AD.

(19) If the percentage of takeoffs with greater than a 1.45 Takeoff EPR data determined in paragraph (h)(2) of this AD is less than or equal to 21%, use A300 PW4158 Category 2 limits of Table 4 of this AD.

(20) If there is insufficient data to satisfy the criteria of paragraph (h)(2) of this AD, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(21) If the percentage of takeoffs with greater than a 1.45 Takeoff EPR data determined in paragraph (h)(2) of this AD is less than or equal to 21%, use A300 PW4158 Category 2 limits of Table 4 of this AD.

(22) Engines Installed on Airbus A300 and A310 Airplanes

See paragraph (f)(1) through (f)(9) to determine which Airbus A300 PW4158 engine category 1, 2, or 3 limits of the following Table 4 of this AD apply to your engine fleet:

<table>
<thead>
<tr>
<th>Configuration designator</th>
<th>A300 PW4158</th>
<th>A300 PW4158</th>
<th>A300 PW4158</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>category 1, and A310 PW4156 and PW4156A</td>
<td>category 2, and A310 PW4152</td>
<td>category 3</td>
</tr>
<tr>
<td>A</td>
<td>900 CSN or CSO</td>
<td>4,400 CSN or CSO</td>
<td>500 CSN or CSO</td>
</tr>
<tr>
<td>B</td>
<td>2,200 CSN or CSO</td>
<td>4,400 CSN or CSO</td>
<td>1,600 CSN or CSO</td>
</tr>
<tr>
<td>C</td>
<td>2,200 CSO</td>
<td>4,400 CSO</td>
<td>1,600 CSO</td>
</tr>
<tr>
<td>D</td>
<td>4,400 CSN</td>
<td>Not Applicable</td>
<td>1,600 CSN</td>
</tr>
<tr>
<td>E</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>4,400 CSN</td>
</tr>
<tr>
<td>F</td>
<td>800 CST</td>
<td>800 CST</td>
<td>800 CST</td>
</tr>
</tbody>
</table>

(23) To Be Installed on Airbus or McDonnell Douglas Airplanes

See paragraph (i) of this AD for definition of Takeoff EPR data.

(24) If there is insufficient data to satisfy the criteria of paragraph (h)(2) of this AD, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(25) If the percentage of takeoffs with greater than a 1.45 Takeoff EPR data determined in paragraph (h)(2) of this AD is greater than 37%, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(26) If the percentage of takeoffs with greater than a 1.45 Takeoff EPR data determined in paragraph (h)(2) of this AD is greater than 21% and less than or equal to 37%, use A300 PW4158 Category 3 limits of Table 4 of this AD.

(27) If the percentage of takeoffs with greater than a 1.45 Takeoff EPR data determined in paragraph (h)(2) of this AD is less than or equal to 21%, use A300 PW4158 Category 3 limits of Table 4 of this AD.

Return to Service Requirements for Engines

To Be Installed on Airbus or McDonnell Douglas Airplanes

(i) Engines removed from service in accordance with paragraph (f) of this AD, must be limited to 2,600 HPC CSN or CSO for Configuration A, B, or C engines, or 1,300 HPC CSN or CSO to Configuration E, whichever is later, for Configuration E engines.

(ii) Engines removed from service in accordance with paragraph (f) of this AD, must be limited to 2,600 HPC CSN or CSO for Configuration A, B, or C engines, or 1,300 HPC CSN or CSO to Configuration E, whichever is later, for Configuration E engines.

(iii) Engines removed from service in accordance with paragraph (f) of this AD, must be limited to 2,600 HPC CSN or CSO for Configuration A, B, or C engines, or 1,300 HPC CSN or CSO to Configuration E, whichever is later, for Configuration E engines.
(1) After passing a cool-engine fuel spike stability test (Testing-21) that has been done in accordance with the PW4000 Engine Manuals (EM) as applicable, except for engines configured with Configuration E, or engines that have experienced a Group 3 takeoff surge:

(i) PW4000 EM 50A443, dated September 15, 2002, TESTING–21, dated March 15, 2002, and PW4000 EM 50A482, dated November 14, 2001,

(2) Engines tested before the effective date of this AD, in accordance with the PW4000 EM 50A443, Temporary Revision No. 71–0026, dated November 14, 2001; or PW4000 EM 50A482, Temporary Revision No. 71–0018, dated November 14, 2001; or PW Internal Engineering Notice (IEN) 96KC973D, dated October 12, 2001, meet the requirements of Testing–21; or

(3) After passing an on-wing Testing–21 on PW4460 and PW4462 engines installed on the MD–11 airplanes that have been done in accordance with Major IEN 02KCW13H, dated December 9, 2002 or done prior to the approval of Major IEN 02KCW13H, dated December 9, 2002 in accordance with Minor IEN 02KCW13F, dated October 14, 2002 except for engines configured with Configuration E, or engines that have experienced a Group 3 takeoff surge; or

(4) The engine HPC was replaced with an HPC that is new from production with no time in service; or

(5) The engine HPC has been overhauled, or the engine HPC replaced with an overhauled HPC with zero cycles since overhaul; or

(6) An engine that is either below or exceeds the limits of Table 3 or Table 4 of this AD may be removed and installed on another airplane without Testing–21, as long as the requirements of paragraph (c), (d), or (e) of this AD are met at the time of engine installation.

Return to Service Requirements for Engines To be Installed on Boeing 747 or 767 Airplanes

(i) Engines removed from service in accordance with paragraph (c), (d), or (e) of this AD may be returned to service and installed on Boeing airplanes under the following conditions:

(1) After passing a cool-engine fuel spike stability test (Testing–21) that has been done in accordance with PW4000 EM 50A605, 71–00–00, Testing–21, dated March 15, 2002, except for engines configured with Configuration E, or engines that have experienced a Group 3 takeoff surge; or

(2) Engines tested before the effective date of this AD, in accordance with PW4460 EM 50A605, dated September 15, 2002, except for engines configured with Configuration E, or engines that have experienced a Group 3 takeoff surge; or

(3) For PW4056 engines installed on Boeing 747 and 767 airplanes, after successfully completing on-wing Testing–21 in accordance with Major IEN 02KCW13E, dated November 21, 2002 or if done prior to the approval of Major IEN 02KCW13E dated November 21, 2002 in accordance with Minor IEN’s 02KCW13E, dated October 14, 2002, 02KCW13A, dated October 14, 2002, 02KCW13C, dated July 25, 2002, or 02KCW13D, July 29, 2002 except for engines configured with Configuration E, or engines that have experienced a Group 3 takeoff surge; or

(4) An engine that is either below or exceeds the limits of Table 3 or Table 4 of this AD may be removed and installed on another airplane without Testing–21, as long as the requirements of paragraph (c), (d), or (e) of this AD are met at the time of engine installation.

(5) Engine that has incorporated the RCC rear HPC in accordance with PW SB PW4ENG 72–755, dated February 28, 2003. Completing this SB changes the engine configuration to Configuration I.

Phase 0 or Phase 1, FB2T or FB2B Fan Blade Configurations

(k) For Configuration A, B, C, D, E, F, G, and H engines with Phase 0 or Phase 1, FB2T or FB2B fan blade configurations complying with the requirements of AD 2001–09–05, (66 FR 22908, May 5, 2001), AD 2001–09–10, (66 FR 21853, May 2, 2001), or AD 2001–01–10, (66 FR 4449, January 22, 2001), do the following:

(1) Operators complying with the ADs listed in paragraph (k) of this AD using the weight restriction compliance method, must perform Testing–21 in accordance with paragraph (i) or (j) of this AD whenever any quantity of fan blades are replaced with new fan blades, overhauled fan blades, or with fan blades having the leading edges recontoured after the effective date of this AD, if during the shop visit overhaul shop separation of a major engine flange, located between “A” flange and “T” flange, does not occur.

(2) If an operator changes from the weight restriction compliance method to the fan blade leading edge recontouring method after the effective date of this AD, Testing–21 in accordance with paragraph (i) or (j) of this AD is required each time fan blade leading edge recontouring is done, if the fan blades accumulate more than 450 cycles since new or since fan blade overhaul, or since the last time the fan blade leading edges were recontoured.

Minimum Build Standard for Engines Installed on Boeing 747 and 767 Airplanes

(m) For engines to be returned to service and installed on Boeing 747 and 767 airplanes, after the effective date of this AD, any HPC module that is disassembled to a level that separates the HPC rear case assembly at H flange from the HPC module may not be returned to service unless the RCC rear HPC is incorporated in accordance with PW SB PW4ENG 72–755, dated February 28, 2003.

Stability Testing Requirements for Engines to be Installed on Airbus or McDonnell Douglas Airplanes

(n) For engines to be installed on Airbus or McDonnell Douglas airplanes, after the effective date of this AD, Testing–21 must be performed in accordance with paragraph (i) of this AD, before an engine can be returned to service after having undergone maintenance in the shop, except under any of the following conditions:

(1) The engine HPC was overhauled, or replaced with an overhauled HPC with zero cycles since overhaul; or the engine HPC was replaced with an HPC that is new from production with no time in service.

(2) The shop visit did not result in the separation of a major engine flange located between “A” flange and “T” flange; or

(3) Engines with an HPC having zero CSN or CSO, or engines that successfully passed Testing–21 with zero CST; and are split at Flange E for transportation reasons as specified in the applicable Storage/Transport section of the applicable Engine Manual.

Stability Testing Requirements for Engines to be Installed on Boeing 747 or 767 Airplanes

(o) For engines to be installed on Boeing 747 or 767 airplanes, after the effective date of this AD, Testing–21 must be performed in accordance with paragraph (j) of this AD, before an engine can be returned to service after having undergone maintenance in the
shop, except under any of the following conditions:

(1) Engine HPC has incorporated the RCC rear HPC in accordance with PW SB PW4ENG 72–755, dated February 28, 2003. Completing this SB changes the engine configuration to Configuration I.

(2) The shop visit did not result in the separation of a major engine flange located between “A” flange and “T” flange; or

(3) Engines that successfully passed Testing-21 with zero CST, and are split at Flange E for transportation reasons as specified in the applicable Storage/Transport section of the applicable EM.

Thrust Rating Changes, Installation Changes, and Engine Transfers

(p) When a thrust rating change has been made by using the Electronic Engine Control (EEC) programming plug, or an installation change has been made during an HPC overhaul, use the lowest cyclic limit of Table 3 or Table 4 of this AD, associated with any engine thrust rating change or with any installation change made during this period. See paragraph (v)(2) for definition of HPC overhaul period.

(q) When a PW4158 engine is transferred to another PW4158 engine operator whose engine fleet has a different category, use the lowest cyclic limit in Table 4 of this AD that was used or will be used during the affected HPC overhaul period.

(r) When a PW4158 engine operator whose engine fleet change in accordance with paragraph (h) of this AD, use the lowest cyclic limit in Table 4 of this AD that were used or will be used during the affected HPC overhaul period.

(s) Engines with an HPC having zero CSN or CSO at the time of thrust rating change, or installation change, or engine transfer between PW4158 engine operators, or subsequent change in operator engine fleet change in accordance with paragraph (h) of this AD in the direction of lower to higher Table 4 limits, are exempt from the lowest cyclic limit requirement in paragraphs (p), (q), and (r) of this AD.

Engines That Surge

(t) For engines that experience a surge, and after troubleshooting procedures are completed for airplane-level surge during forward or reverse thrust, do the following:

(1) For engines that experience a Group 3 takeoff surge, remove the engine from service before further flight if airplane-level troubleshooting procedures require immediate engine removal, and perform Testing-21 in accordance with paragraph (i) or (j) of this AD, as applicable.

(ii) For Configuration E engines, remove engine from service within 25 CIS or before further flight if airplane-level troubleshooting procedures require immediate engine removal.

(3) Paragraphs (t)(1) and (t)(2) are not applicable to engines that incorporate the RCC rear HPC in accordance with PW SB PW4ENG 72–755, dated February 28, 2003.

Terminating Action for Boeing Airplanes

(u) For Boeing operators with PW4000 engines installed on Boeing 747 or Boeing 767 airplanes, modify the engine HPC assembly by incorporating the RCC rear HPC in accordance with PW SB PW4ENG 72–755, dated February 28, 2003 as follows:

(i) For engines installed on Boeing 767 airplanes, manage the engine configuration installed on the airplanes in your fleet as follows:

(ii) By May 31, 2006 and thereafter, ensure that at least one Configuration I engine is installed on three airplanes.

(iii) After May 31, 2006, the non-Configuration I engine installed on the airplane must have incorporated the Haynes material in the HPC inner case rear hook during the original engine build or during an HPC overhaul in accordance with PW SB PW4ENG 72–714, dated June 27, 2000 or Revision 1, dated November 8, 2001, or Chromalloy Florida Repair procedure 00CFL–039–0, dated December 27, 2000.

(v) For engines installed on Boeing 747 airplanes, manage the engine configuration installed on the airplanes in your fleet as follows:

(i) By January 31, 2007 and thereafter, ensure that no more than one non-Configuration I engine is installed on the airplane.

(ii) After January 31, 2007, the non-Configuration I engine installed on the airplane must have incorporated the Haynes material in the HPC inner case rear hook during the original build or during an HPC overhaul in accordance with PW SB PW4ENG 72–714, dated June 27, 2000 or Revision 1, dated November 8, 2001, or Chromalloy Florida Repair procedure 00CFL–039–0, dated December 27, 2000.

(3) Prior to June 30, 2009 or whenever the HPC module is disassembled to a level that separates the HPC rear case assembly at H plane from the HPC module, whichever occurs first, incorporate the RCC rear HPC in accordance with PW SB PW4ENG 72–755, dated February 28, 2003.

(4) For engines that experience a surge, and after troubleshooting procedures:

(i) Exercise no more than the following:

(ii) Unstable engine parameters (EPR, N1, N2, and fuel flow) at a fixed thrust setting.

(iii) Exhaust gas temperature (EGT) increase.

(iv) Flames from the inlet, the exhaust, or both.

Definitions

(v) For the purposes of this AD, the following definitions apply:

(1) An HPC overhaul is defined as restoration of the HPC stages 5 through 15 blade tip clearances to the limits specified in the applicable fits and clearances section of the engine manual.

(2) An HPC overhaul period is defined as the time period between HPC overhauls.

(3) An HPT overhaul is defined as restoration of the HPT stage 1 and 2 blade tip clearances to the limits specified in the applicable fits and clearances section of the engine manual.

(4) A Phase 3 engine is identified by a (-3) suffix after the engine model number on the data plate or if incorporated at original manufacture, or a “CN” suffix after the engine serial number if the engine was converted using PW SB PW4ENG 72–490, PW4ENG 72–504, or PW4ENG 72–572 after original manufacture.

(5) A Group 3 takeoff surge is defined as the occurrence of any of the following engine symptoms that usually occur in combination:

(a) An attempted airplane takeoff operation (either at reduced, derated or fully rated takeoff power setting) after takeoff power set, which can be attributed to no specific and correctable fault condition affecting airplane and/or engine configuration during forward thrust troubleshooting procedures:

(i) Engine noises, including rumblings and loud “bang(s).”

(ii) Unstable engine parameters (EPR, N1, N2, and fuel flow) at a fixed thrust setting.

(iii) Exhaust gas temperature (EGT) increase.

(iv) Flames from the inlet, the exhaust, or both.

(6) Takeoff EPR data is defined as Maximum Takeoff EPR if takeoff with Takeoff-Go-Around (TOGA) is selected or Flex Takeoff EPR if takeoff with Flex Takeoff (FLXTO) is selected. Maximum Takeoff EPR or Flex Takeoff EPR may be recorded using any of the following methods:

(i) Manually recorded by the flight crew read from the Takeoff EPR power management table during flight preparation (see Aircraft Flight Manual (AFM) chapter 5.02.00 and 6.02.01, or Flight Crew Operation Manual (FCOM) chapter 2.09.20) and then adjusted by adding 0.010 to the EPR value recorded; or

(ii) Automatically recorded during Takeoff at 0.18 Mach Number (Mn) (between 0.15 and 0.20 Mn is acceptable) using an aircraft automatic data recording system and then adjusted by subtracting 0.010 from the EPR value recorded; or

(iii) Automatically recorded during takeoff at maximum EGT, which typically occurs at 0.25–0.30 Mn, using an aircraft automatic data recording system.

(7) HPC rear case assembly is defined as the HPC rear case with heat shields and other minor detail parts installed within the HPC rear case, but not including the HPC rear segmented stators.

Alternative Methods of Compliance

(vi) An alternative method of compliance or adjustment of the compliance time that provides an acceptable level of safety may be
used if approved by the Manager, Engine Certification Office (ECO). Operators must submit their request through an appropriate FAA Principal Maintenance Inspector, who may add comments and then send it to the Manager, ECO.

Note 3: Information concerning the existence of approved alternative methods of compliance with this airworthiness directive, if any, may be obtained from the ECO.

Special Flight Permits

(x) Special flight permits may be issued in accordance with §§ 21.197 and 21.199 of the Federal Aviation Regulations (14 CFR 21.197 and 21.199) to operate the airplane to a location where the requirements of this AD can be done.

Testing-21 Reports

(y) Within 60 days of test date, report the results of the cool-engine fuel spike stability assessment tests (Testing-21) and on-wing Testing-21 to the ANE–142 Branch Manager, Engine Certification Office, 12 New England Executive Park, Burlington, MA 01803–5299, or by electronic mail to 9-ane-surge-ad-reporting@faa.gov. Reporting requirements have been approved by the Office of Management and Budget and assigned OMB control number 2120–0056. Be sure to include the following information:

1. Engine serial number.
2. Engine configuration designation per Table 1 of this AD.
3. Date of the cool-engine fuel spike stability test or on-wing Testing-21, as applicable.
4. HPC Serial Number, and HPC time and cycles-since-new and since-compressor-overhaul at the time of the test.
5. Results of the test (Pass or Fail).

Issued in Burlington, Massachusetts, on March 31, 2003.

Francis A. Favara,
Acting Manager, Engine and Propeller Directorate, Aircraft Certification Service.

[FR Doc. 03–8328 Filed 4–4–03; 8:45 am]
BILLING CODE 4910–13–U

DEPARTMENT OF JUSTICE
Parole Commission

28 CFR Part 2
Paroling, Recommitting, and Supervising Federal Prisoners: Prisoners Serving Sentences Under the United States and District of Columbia Codes

AGENCY: Parole Commission, Justice.

ACTION: Proposed rule.

SUMMARY: The U.S. Parole Commission is proposing to revise three rules that describe the conditions of release for federal and District of Columbia offenders on parole supervision, and District of Columbia offenders serving terms of supervised release. The proposed revision consolidates similar provisions for the three groups of offenders and makes the conditions easier to read and understand. There are some minor changes in the directions given to the releasees. Finally, the Commission proposes to generally apply a condition presently required for some DC supervised releasees convicted of domestic violence offenses to all persons under supervision who were convicted of domestic violence offenses.

DATES: Comments must be received by May 7, 2003.

ADDRESSES: Send comments to Office of General Counsel, U.S. Parole Commission, 5550 Friendship Blvd., Chevy Chase, Maryland 20815.

FOR FURTHER INFORMATION CONTACT: Office of General Counsel, U.S. Parole Commission, 5550 Friendship Blvd., Chevy Chase, Maryland 20815, telephone (301) 492–5959. Questions about this publication are welcome, but inquiries concerning individual cases cannot be answered over the telephone.

SUPPLEMENTARY INFORMATION: The Parole Commission has the responsibility of imposing and enforcing conditions of release for those federal and District of Columbia offenders who have been released to parole supervision and those District of Columbia felons sentenced to a term of supervised release. Section 4209 of Title 18 U.S. Code describes the conditions of release that must be imposed for federal parolees, and permits the Commission to impose other conditions that are reasonably related to the nature and circumstances of the parolee’s offense and the history and characteristics of the parolee, and other limitations that are reasonable to protect the public welfare. As a result of the transfer of parole authority required by the National Capital Revitalization and Self-Government Improvement Act of 1997, Pub. L. 105–33, and laws now codified at DC Code 24–131(a) and (c) the Commission has the same broad authority granted to the former District of Columbia Board of Parole to release a prisoner on parole “upon such terms and conditions as the Board shall from time to time prescribe.” DC Code 24–404(a). For District of Columbia offenders on supervised release, the Commission has the authority to impose conditions of supervised release as provided in 18 U.S.C. 3583 using the procedures outlined in the federal parole statutes. DC Code 24–133(c)(2) and 24–403.01(b)(6).

Through the conditions of release the Commission provides guides and limitations for the releasee’s conduct while under supervision. See 18 U.S.C. 4209(b) and 3583(f). The Commission imposes and enforces the conditions primarily to protect the public from a recurrence of criminal behavior by the releasee. The conditions are listed on a certificate given to the releasee at the outset of the supervision term.

Examples of general conditions of release are requirements that the releasee obey all laws, remain within the geographical limits of the supervision district, and give complete and accurate reports of his activities to the supervision officer. Some conditions are required by statute, e.g., that the offender refrain from unlawful use of a controlled substance or that a sex offender comply with sex offender registration laws. The Commission may also impose special conditions of release to address specific problems evident from the releasee’s history, such as a requirement that the releasee participate in a drug treatment program or a mental health aftercare program.

The releasee’s supervision officer is responsible for the day-to-day implementation of the release conditions. If the releasee violates a condition of release, the consequence may range from an informal reprimand from the supervision officer or modification of release conditions to the releasee’s return to prison through a revocation proceeding. Therefore, it is important that the releasee be fully aware of the specific conditions of supervision so that he can understand and comply with them.

Under the present format of the rules, the Commission has described the conditions of release that generally apply to persons on supervision in three separate rules within Part 2 of 28 CFR. Section 2.40 describes the conditions of parole for federal parolees. Section 2.85 covers conditions of parole for DC parolees. Section 2.204 lists the conditions of supervised release for DC supervised releasees. Each of these rules lists in full the general conditions of

2 For federal parolees, the supervision officer is a U.S. Probation Officer, 28 CFR 2.38. DC Code offenders on parole or supervised release in the District of Columbia are supervised by community supervision officers of the Court Services and Offender Supervision Agency of the District of Columbia, 28 CFR 2.91.