Questions regarding burden and/or the collection activity requirements should be directed to Sheila Carey at (202) 708–6287 or via her internet address Sheila_Carey@ed.gov. Individuals who use a telecommunications device for the deaf (TDD) may call the Federal Information Relay Service (FIRS) at 1–800–877–8339.

DEPARTMENT OF ENERGY

Record of Decision for the Department of Energy’s Waste Management Program: Treatment and Disposal of Low-Level Waste and Mixed Low-Level Waste; Amendment of the Record of Decision for the Nevada Test Site

AGENCY: Department of Energy.

ACTION: Record of decision.

SUMMARY: For the management of low-level waste (LLW) analyzed in the Final Waste Management Programmatic Environmental Impact Statement (WM PEIS), the Department of Energy (DOE) has decided to perform minimum treatment at all sites and continue, to the extent practicable, disposal of on-site LLW at the Idaho National Engineering and Environmental Laboratory (INEEL), the Los Alamos National Laboratory (LANL) in New Mexico, the Oak Ridge Reservation (ORR) in Tennessee, and the Savannah River Site (SRS) in South Carolina. In addition, the Department has decided to make the Hanford Site in Washington and the Nevada Test Site (NTS) available to all DOE sites for LLW disposal. INEEL and SRS also will continue to dispose of LLW generated by the Naval Nuclear Propulsion Program. For the management of mixed low-level waste (MLLW) analyzed in the WM PEIS, the Department has decided to treat MLLW at the Hanford Site, INEEL, ORR and SRS, and to dispose of MLLW at the Hanford Site and NTS.

The Department also has decided to amend its 1996 ROD for the NTES Environmental Impact Statement, to implement the Expanded Use Alternative for waste management activities at NTS.

The Department acknowledges the impacts this decision will have in the States of Nevada and Washington, which will continue their role in supporting the nation’s goal to clean up the nuclear weapons complex, much as they supported the nation’s nuclear weapons program. This decision enables the Department to integrate waste management activities among sites to promote expeditious, compliant, and cost effective cleanup.

FOR FURTHER INFORMATION CONTACT: Copies of the Final WM PEIS and this Record of Decision (ROD) are available in DOE public reading rooms and selected libraries located across the United States; the WM PEIS also is available on the internet at www.osti.gov/bridge (select “Advanced Search,” go to the box labeled “Select Field” and scroll down to “Identifying Number,” then key in “DOE/EIS–0200–F”). A list of the public reading rooms can be accessed on the Internet at http://www.em.doe.gov under “Publications” and then “List of Publications.” To request copies of the WM PEIS, this ROD, or a list of the reading rooms and public libraries, contact: The Center for Environmental Management Information, P.O. Box 23769, Washington, DC 20026–3769; telephone 1–800–736–3282 (in Washington, DC, 202–863–5084).

For information on the WM PEIS or this ROD, contact: Ms. Karen Guevara, WM PEIS Program Manager, U.S. Department of Energy, Office of Environmental Management, 19901 Germantown Road, Germantown, MD 20874; telephone 301–903–4981.

SUPPLEMENTARY INFORMATION:

Background

The WM PEIS (DOE/EIS–0200F), issued in May 1997, studied the potential nation-wide impacts of managing four types of radioactive waste (LLW, MLLW, transuranic waste, and high-level waste) and non-wastewater hazardous waste generated by defense and non-defense activities at 54 sites around the United States. The WM PEIS analyzes the potential environmental impacts of broad alternatives for DOE’s waste management program, and was designed to provide part of the basis for DOE decisions on programmatic configurations of sites for waste management activities. WM PEIS analyses include evaluating potential impacts associated with transporting wastes by truck and by rail.

Three RODs have been issued under the WM PEIS. These are the transuranic waste ROD (63 FR 3629, January 23, 1998), the non-wastewater hazardous waste ROD (63 FR 41810, August 5, 1998), and the high-level waste ROD (64 FR 46661, August 26, 1999).

This ROD applies only to the treatment and disposal of LLW and MLLW as analyzed in the WM PEIS. DOE prepared this ROD in accordance with NEPA (42 U.S.C. §§ 4321 et seq.), the Council on Environmental Quality’s regulations for implementing NEPA (40 CFR Parts 1500–1508), and DOE’s NEPA Implementing Procedures (10 CFR Part 1021).

Definitions of LLW and MLLW

Low-Level Waste is all radioactive waste not classified as high-level waste, transuranic waste, spent nuclear fuel, or by-product tailings containing uranium or thorium from processed ore (as defined in Section 111(e)2 of the Atomic Energy Act of 1954 [42 U.S.C. 2011 et seq.]), and not classified as hazardous waste under the Resource Conservation and Recovery Act (RCRA). Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as LLW provided that the concentration of transuranics is less than 100 nanocuries per gram. Since the World War II Manhattan Project, DOE and its predecessor agencies have generated LLW from a variety of activities, including weapons production, nuclear reactor operations, environmental restoration activities, and research.

Mixed Low-Level Waste is all radioactive waste not classified as high-level waste, transuranic waste, spent nuclear fuel, or the expected nationwide distribution of low level waste (LLW and MLLW) or the expected nationwide distribution of low level waste (LLW and MLLW) and was designed to provide part of the basis for DOE decisions on programmatic configurations of sites for waste management activities. WM PEIS analyses include evaluating potential impacts associated with transporting wastes by truck and by rail.

Three RODs have been issued under the WM PEIS. These are the transuranic waste ROD (63 FR 3629, January 23, 1998), the non-wastewater hazardous waste ROD (63 FR 41810, August 5, 1998), and the high-level waste ROD (64 FR 46661, August 26, 1999).

This ROD applies only to the treatment and disposal of LLW and MLLW as analyzed in the WM PEIS. DOE prepared this ROD in accordance with NEPA (42 U.S.C. §§ 4321 et seq.), the Council on Environmental Quality’s regulations for implementing NEPA (40 CFR Parts 1500–1508), and DOE’s NEPA Implementing Procedures (10 CFR Part 1021).

Definitions of LLW and MLLW

Low-Level Waste is all radioactive waste not classified as high-level waste, transuranic waste, spent nuclear fuel, or by-product tailings containing uranium or thorium from processed ore (as defined in Section 111(e)2 of the Atomic Energy Act of 1954 [42 U.S.C. 2011 et seq.]), and not classified as hazardous waste under the Resource Conservation and Recovery Act (RCRA). Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as LLW provided that the concentration of transuranics is less than 100 nanocuries per gram. Since the World War II Manhattan Project, DOE and its predecessor agencies have generated LLW from a variety of activities, including weapons production, nuclear reactor operations, environmental restoration activities, and research.

Mixed Low-Level Waste is all radioactive waste not classified as high-level waste, transuranic waste, spent nuclear fuel, or the expected nationwide distribution of low level waste (LLW and MLLW) and was designed to provide part of the basis for DOE decisions on programmatic configurations of sites for waste management activities. WM PEIS analyses include evaluating potential impacts associated with transporting wastes by truck and by rail.

Three RODs have been issued under the WM PEIS. These are the transuranic waste ROD (63 FR 3629, January 23, 1998), the non-wastewater hazardous waste ROD (63 FR 41810, August 5, 1998), and the high-level waste ROD (64 FR 46661, August 26, 1999).

This ROD applies only to the treatment and disposal of LLW and MLLW as analyzed in the WM PEIS. DOE prepared this ROD in accordance with NEPA (42 U.S.C. §§ 4321 et seq.), the Council on Environmental Quality’s regulations for implementing NEPA (40 CFR Parts 1500–1508), and DOE’s NEPA Implementing Procedures (10 CFR Part 1021).

Definitions of LLW and MLLW

Low-Level Waste is all radioactive waste not classified as high-level waste, transuranic waste, spent nuclear fuel, or by-product tailings containing uranium or thorium from processed ore (as defined in Section 111(e)2 of the Atomic Energy Act of 1954 [42 U.S.C. 2011 et seq.]), and not classified as hazardous waste under the Resource Conservation and Recovery Act (RCRA). Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as LLW provided that the concentration of transuranics is less than 100 nanocuries per gram. Since the World War II Manhattan Project, DOE and its predecessor agencies have generated LLW from a variety of activities, including weapons production, nuclear reactor operations, environmental restoration activities, and research.

Mixed Low-Level Waste is all radioactive waste not classified as high-level waste, transuranic waste, spent nuclear fuel, or the expected nationwide distribution of low level waste (LLW and MLLW) and was designed to provide part of the basis for DOE decisions on programmatic configurations of sites for waste management activities. WM PEIS analyses include evaluating potential impacts associated with transporting wastes by truck and by rail.

Three RODs have been issued under the WM PEIS. These are the transuranic waste ROD (63 FR 3629, January 23, 1998), the non-wastewater hazardous waste ROD (63 FR 41810, August 5, 1998), and the high-level waste ROD (64 FR 46661, August 26, 1999).

This ROD applies only to the treatment and disposal of LLW and MLLW as analyzed in the WM PEIS. DOE prepared this ROD in accordance with NEPA (42 U.S.C. §§ 4321 et seq.), the Council on Environmental Quality’s regulations for implementing NEPA (40 CFR Parts 1500–1508), and DOE’s NEPA Implementing Procedures (10 CFR Part 1021).
component of MLLW is subject either to Environmental Protection Agency regulations promulgated under RCRA or State hazardous waste regulations promulgated under RCRA. DOE has generated MLLW as a result of research, development, production of nuclear weapons, and environmental restoration activities.

Alternatives Considered for Treatment and Disposal of LLW and MLLW

In the WM PEIS, the term “alternative” generally refers to a nationwide configuration of sites for treating, storing, or disposing of a waste type. The WM PEIS analyzed No Action, Decentralized, Regionalized, and Centralized Alternatives for LLW and MLLW treatment and disposal. As shown in Tables 3.4–2 and 3.6–2 for LLW, and Tables 3.4–1 and 3.6–1 for MLLW, the number of sites considered for treatment and disposal of LLW and MLLW under the action alternatives is greatest for the Decentralized Alternatives and fewest for the Centralized Alternatives. The WM PEIS action alternatives for LLW and MLLW did not include storage alternatives; LLW and MLLW will be stored at the site where they are generated until they are treated and disposed of.

For LLW treatment, in addition to these categories of alternatives, the WM PEIS evaluated two treatment approaches: minimum treatment and volume reduction. Minimum treatment is defined as the least amount of LLW treatment required to allow either on-site disposal or transportation to another site for disposal. Minimum LLW treatment includes basic handling, packaging, and solidification of liquid and fine particulate LLW. Therefore, in all LLW alternatives, all sites with LLW perform at least minimum treatment on all of their LLW, regardless of whether the waste is further treated using volume reduction methods and regardless of whether the waste is to be disposed of on-site or at another site. For volume reduction, the WM PEIS analyzed thermal treatment (e.g., incineration), compaction, and size reduction (e.g., shredding) to decrease the volume of LLW needing disposal.

For MLLW treatment, the WM PEIS analyzed thermal treatment (e.g., incineration), separations processes, evaporation, and solidification (e.g., grouting) to meet RCRA land disposal restrictions.

The following summarizes the alternatives that DOE analyzed for treatment and disposal of LLW and MLLW:

No Action Alternative. For each waste type, the WM PEIS analyzed a single “no action” alternative involving the use of currently existing or planned waste management facilities at DOE sites. Although the no action (or “status quo”) alternative may not comply with applicable laws and regulations, analysis of such an alternative is required under NEPA regulations, and provides an environmental baseline against which the impacts of other alternatives can be compared. Under the No Action Alternative for LLW, LLW would be treated using existing facilities and then disposed of at the six existing DOE LLW disposal sites as follows: INEEL, LANL, and ORR would each dispose of its own LLW; and the Hanford Site, NTS, and SRS would each dispose of its own waste and waste from specific DOE sites. Under the No Action Alternative for MLLW, no new facilities would be constructed, not all MLLW would be treated to meet RCRA land disposal restrictions, and MLLW would be placed in indefinite storage.

Decentralized Alternative. For each waste type, the WM PEIS analyzed a single decentralized alternative for treating and disposing of waste at a large number (16) of DOE sites. Unlike the “no action” alternative, a decentralized alternative may require the siting, construction and operation of new facilities or the modification of existing facilities. Under the LLW Decentralized Alternative, as shown in Table 7.3–2, LLW would undergo only minimum treatment at all DOE waste generating sites and would be disposed of at 16 DOE sites. Under the MLLW Decentralized Alternative, as shown in Table 6.3–2, MLLW would be treated on-site at DOE waste generating sites and would be disposed of at 16 DOE sites.

Regionalized Alternatives. For each waste type, the WM PEIS analyzed several alternatives to consolidate waste management activities by transporting wastes to fewer sites for treatment or disposal. For LLW, the WM PEIS analyzed seven Regionalized Alternatives, with volume reduction treatment at 11 or fewer DOE sites, followed by disposal at up to 12 sites. For MLLW, the WM PEIS analyzed four Regionalized Alternatives, ranging from treatment at 37 DOE sites to treatment at only four sites, followed by disposal at 12, six or a single DOE site.

Centralized Alternatives. For each waste type, the WM PEIS analyzed one or more alternatives for consolidating waste management activities at a small number of centralized sites for treatment or disposal. For LLW, the WM PEIS analyzed one Centralized Alternative, with volume reduction treatment at seven sites or at a single site, followed by disposal at a single site. For MLLW, the WM PEIS analyzed one Centralized Alternative, with MLLW treatment and disposal occurring at a single site.

Preferred Alternatives. The WM PEIS identified preferred alternatives using criteria established (after considering public comments) in Section 1.7.3 of the Final WM PEIS. For LLW treatment, DOE identified its preferred alternative to be minimum treatment of LLW at all sites that generate LLW (the Decentralized Alternative). For MLLW treatment, DOE identified its preferred alternative to be a combination of regionalized and decentralized alternatives, consisting of treatment at the Hanford Site, INEEL, ORR and SRS, or on-site treatment, as would be consistent with Site Treatment Plans issued under the Federal Facility Compliance Act, Pub. L. 102–386.

The Final WM PEIS also identified DOE’s preferred alternatives for LLW and MLLW disposal as regional disposal at two or three disposal sites, to be selected from the six candidate sites at which DOE currently disposes of LLW or MLLW: the Hanford Site, INEEL, LANL, NTS, ORR, and SRS. On December 10, 1999, DOE published (64 FR 69241) a Notice of Preferred Alternatives announcing its preferred LLW and MLLW disposal sites. For LLW disposal, DOE identified its preferred alternative to be disposal at the Hanford Site and NTS. In addition, to the extent practicable and consistent with current practice, DOE would continue disposal of on-site LLW at INEEL, LANL, ORR, and SRS. INEEL and SRS also would continue to dispose of LLW generated by the Naval Nuclear Propulsion Program. This preferred alternative for LLW disposal is a combination of the preferred LLW disposal alternative identified in the Final WM PEIS (i.e., regionalized disposal at two sites—the Hanford Site and NTS) and the Decentralized Alternative described in the Final WM PEIS (disposal of on-site generated LLW at four sites—INEEL, LANL, ORR, and SRS). For MLLW disposal, DOE identified its preferred alternative to be disposal at the Hanford Site and NTS (a Regionalized Alternative).

Public Comments on Preferred Alternatives and DOE Responses

In response to the December 1999 Notice, the Department received eight letters as discussed below.

The Governor of Nevada, in the context of addressing concerns about DOE’s activities regarding Yucca Mountain (which is outside the scope of the WM PEIS), urged the Secretary of Energy “to continue to assist the state in
assuring that adequate health, safety, and environmental safeguards are in place to ensure the safety of Nevada’s citizens upon receipt of the additional low-level and mixed waste at the NTS.” The “Mitigation of Impacts from Treatment and Disposal of LLW and MLLW” section of this ROD includes several commitments that address this request, including: (1) Assistance to States, Tribal and local governments, and other public entities concerning human health, environmental, and economic impacts; (2) stringent application of administrative controls, including disposal facility waste acceptance criteria and stable waste form requirements; (3) implementation of transportation planning and control programs to reduce transportation risk; and (4) rigorous quality assurance programs for the characterization of LLW and MLLW. Previously, the Department entered into a Memorandum of Agreement with the State of Nevada (July 1998) to provide State regulators with greater involvement in waste disposal matters.

In a separate letter, the Nevada Department of Transportation indicated concern with vehicle configuration and routing as it would relate to safe operations on various highway systems. While the WM PEIS evaluated potential impacts associated with transporting wastes by truck and by rail (as noted in the “Background” section of this ROD), this ROD does not make transportation routing or mode decisions. In implementing this decision, DOE will comply with all applicable Department of Transportation regulations. In addition, as mentioned above, a later section of this ROD lists mitigation measures DOE will continue during LLW and MLLW treatment and disposal; two of these address the Nevada Department of Transportation’s concern: (1) Training to ensure DOE and non-DOE emergency response personnel are knowledgeable of emergency response procedures; and (2) implementation of transportation planning and control programs to reduce transportation risk.

The Hanford Advisory Board (one of several site-specific advisory boards chartered under the Federal Advisory Committee Act) advised that before off-site LLW and MLLW are imported into the Hanford Site, “there should be adequate opportunity for public education and involvement.” The Department believes it has provided adequate opportunity for public education and involvement during the process of reaching the decisions presented in this ROD. The Department provided a 150-day public comment period for the WM PEIS and received more than 1,500 comments. The Final WM PEIS responded to these, including comments of the Hanford Advisory Board. In addition, since publication of the Final WM PEIS, the Department has continued to share information and discuss the pending decisions in various public forums. The pending decision was among the topics discussed in the Intersite Discussions convened by the League of Women Voters in the Summer of 1998 and a LLW Seminar sponsored by the Nevada Citizens’ Advisory Board in August 1998, both of which were attended by members of the Hanford Advisory Board. Further, the Department issued a September 1998 Information Package on Pending LLW and MLLW Disposal Decisions, which was provided to all site-specific advisory boards (including the Hanford Advisory Board), and others.

In a separate letter, the Hanford Advisory Board also advised that no off-site wastes be disposed of in LLW burial grounds on the Hanford Site until the regulatory determination that the waste previously disposed of there has been accurately characterized as LLW and not MLLW. This site-specific implementation issue is beyond the scope of the WM PEIS. However, DOE will consult with regulators to determine an appropriate course of action.

An individual from Washington State stated that DOE was in violation of NEPA when it named preferred disposal sites because the May 1997 WM PEIS only covered LLW and MLLW treatment. In fact, the WM PEIS analyzed both treatment and disposal of LLW and MLLW.

The State of Arkansas Department of Finance and Administration noted its support of the Department’s stated preferences for LLW and MLLW disposal and offered no further comments. The State of Missouri Office of Administration stated that the agency had completed its review and had no comments or recommendations to offer. A letter from the South Carolina Department of Natural Resources provided no comments or recommendations on the December 1999 notice.

Upon consideration of comments received during the WM PEIS public comment period and, as detailed above, on the December 1999 notice, the Department has reached the following decisions for LLW and MLLW treatment and disposal.

LLW Treatment

Tables 7.16-1 and 7.16-2 in the Final WM PEIS compare alternatives with respect to the treatment of LLW. In general, the tables present estimates of potential worker and off-site population fatalities, the ability of sites to meet air and groundwater quality standards, and costs for the various LLW alternatives analyzed in the WM PEIS. Chapter 7 also discusses other types of LLW impacts, including cultural resource and environmental justice concerns. All of the environmental factors were considered in identifying environmentally preferable alternatives and in making the decision stated below.

Environmentally Preferable Alternatives: For LLW treatment, seven of the alternatives analyzed in the WM PEIS (the Decentralized, Regionalized 1, 3, 6 and 7, and Centralized 1 and 2 Alternatives) would result in similarly low environmental impacts and are the environmentally preferable LLW treatment alternatives. These alternatives involve only minimum treatment (as defined earlier), and thus would result in the fewest potential worker fatalities. No alternative would present environmental justice concerns. None of these alternatives would result in off-site transportation risks for treatment, because each site would treat its own waste on-site.

Decision: The Department has decided to implement the Preferred Alternative specified in the Final WM PEIS for the treatment of LLW. Under this decision, each site will perform minimum treatment on its LLW, although each site may perform additional treatment, which would be useful to decrease overall costs. This decision does not preclude DOE’s use of commercial treatment facilities, consistent with current DOE orders and policy.

Basis for Decision: DOE has decided to pursue minimum treatment as its overall strategy for LLW treatment because volume reduction would not offer sufficient benefits to offset the increase in human health effects and costs it would entail. All DOE sites with LLW must perform at least minimum treatment on all of their LLW, regardless of whether the waste is further treated using volume reduction methods. A programmatic volume reduction treatment strategy would pose greater worker hazards, because workers would be exposed to risks from additional treatment processes. The analyses did not demonstrate that these more immediate worker risks would be offset by corresponding long-term human health or environmental risk reduction due to volume reduction. Volume reduction also could pose additional transportation impacts; because not all
Under this decision, DOE will implement a combination of the preferred LLW disposal alternative identified in the Final WM PEIS (i.e., regionalized disposal at two DOE sites—the Hanford Site and NTS) and the Decentralized Alternative (disposal of on-site generated LLW at four sites—INEEL, LANL, ORR, and SRS). Basis for Decision: DOE’s decision is based on low impacts to human health, operational flexibility, and relative implementation cost. The Hanford Site and NTS provide environmental safety benefits inherent to arid sites, where evaporation rates exceed rainfall by approximately 10 to 1 or more. The local geology at NTS greatly restricts the potential for any contamination to move into the groundwater, which is located 800 feet below the surface. Both the Hanford Site and NTS LLW disposal facilities have expansion capability and can dispose of a wide range of radionuclides. Using two disposal facilities provides operational flexibility to align waste streams with facility waste acceptance criteria and access to an alternate disposal facility should the other facility’s operations be interrupted for any reason.

MLLW Treatment

Tables 6.16–1 and 6.16–2 in the Final WM PEIS compare alternatives with respect to the treatment of MLLW. In general, the tables present estimates of potential worker and off-site population fatalities, the ability of sites to meet air and groundwater quality standards, and costs for the various MLLW alternatives analyzed in the WM PEIS. Chapter 7 also discusses other types of MLLW costs for the various MLLW alternatives evaluated in the WM PEIS. With the appropriate project-specific NEPA review, any site could conduct MLLW treatment on-site. The potential environmental impacts of all alternatives for treatment of MLLW evaluated in the WM PEIS are small, with no individual alternative clearly showing the lowest overall impacts. The No Action Alternative is not acceptable because it would not meet DOE’s long-term waste management goals nor comply with applicable RCRA requirements.

MLLW Disposal

Tables 6.16–1 and 6.16–2 in the Final WM PEIS compare alternatives with respect to the disposal of MLLW. In general, the tables present estimates of potential worker and off-site population fatalities, the ability of sites to meet air and groundwater quality standards, and costs for the various MLLW alternatives evaluated in the WM PEIS. Chapter 6 also discusses other types of MLLW impacts, including cultural resource and

Disposal of LLW

Tables 7.16–1 and 7.16–2 in the Final WM PEIS compare alternatives with respect to the disposal of LLW. In general, the tables present estimates of potential worker and off-site population fatalities, the ability of sites to meet air and groundwater quality standards, and costs for the various LLW alternatives analyzed in the WM PEIS. Chapter 7 also discusses other types of LLW costs for the various LLW alternatives considered in identifying environmentally preferable alternatives and in making the decision stated below. Environmentally Preferable Alternatives: For LLW disposal, the Decentralized and Regionalized Alternatives pose the least environmental impacts and are the environmentally preferable disposal alternatives. The Decentralized and all Regionalized Alternatives pose similar transportation fatality impacts, which are lower than for the Centralized Alternatives. Potential fatalities from facility operation are low and similar for all alternatives. No alternative would present environmental justice concerns.

Decision: The Department has decided to establish regional LLW disposal at two DOE sites: the Hanford Site and NTS. Specifically, the Hanford Site and NTS will each dispose of its own LLW on-site, and will receive and dispose of LLW that is generated and shipped (by either truck or rail) by other sites that meet the waste acceptance criteria. In addition, DOE will continue, to the extent practicable, disposal of on-site LLW at INEEL, LANL, ORR, and SRS. INEEL, LANL, ORR, and SRS also will continue to dispose of LLW generated by the Naval Nuclear Propulsion Program.

Use of the term “regional” disposal does not impose geographical restrictions on which DOE sites may ship waste to a disposal site; the term is used only to be consistent with the WM PEIS analysis of regionalized alternatives. This decision also does not preclude DOE’s use of commercial disposal facilities, consistent with current DOE orders and policy. This was the preferred alternative that DOE announced in the December 1999 Notice discussed above. Under this decision, DOE will indefinitely store waste at the disposal site rather than disposed of.)

Decision: DOE has decided to implement the Preferred Alternative specified in the Final WM PEIS for the treatment of MLLW. DOE will conduct regional MLLW treatment at the Hanford Site, INEEL, ORR, and SRS, or on-site, as would be consistent with current Site Treatment Plans. Current Site Treatment Plans were negotiated among DOE, the host state, and/or the Environmental Protection Agency under the Federal Facility Compliance Act, and may undergo periodic renegotiation. Use of the term “regional” treatment does not impose geographical restrictions on which DOE sites may ship waste (by either truck or rail) to a given treatment site; the term is used only to be consistent with the WM PEIS analysis of regionalized alternatives. DOE’s decision does not preclude DOE’s use of commercial treatment facilities, consistent with DOE orders and policy.

Basis for Decision: The four regional treatment sites offer unique treatment capabilities needed by other sites in the DOE complex. This decision takes advantage of infrastructure capabilities that already exist or have been decided upon at the Hanford Site, INEEL, ORR and SRS—which are capable of MLLW treatment to meet RCRA land disposal restrictions. The decision also avoids environmental impacts and costs associated with construction of new facilities.

Potential impacts from the selected configuration are within those estimated for regionalized and decentralized alternatives as analyzed in the WM PEIS. With the appropriate project-specific NEPA review, any site could conduct MLLW treatment on-site. The potential environmental impacts of all alternatives for treatment of MLLW evaluated in the WM PEIS are small, with no individual alternative clearly showing the lowest overall impacts. The No Action Alternative is not acceptable because it would not meet DOE’s long-term waste management goals nor comply with applicable RCRA requirements.

MLLW Treatment

Tables 6.16–1 and 6.16–2 in the Final WM PEIS compare alternatives with respect to the treatment of MLLW. In general, the tables present estimates of potential worker and off-site population fatalities, the ability of sites to meet air and groundwater quality standards, and costs for the various MLLW alternatives evaluated in the WM PEIS. Chapter 6 also discusses other types of MLLW impacts, including cultural resource and

MLLW Disposal

Tables 6.16–1 and 6.16–2 in the Final WM PEIS compare alternatives with respect to the disposal of MLLW. In general, the tables present estimates of potential worker and off-site population fatalities, the ability of sites to meet air and groundwater quality standards, and costs for the various MLLW alternatives evaluated in the WM PEIS. Chapter 6 also discusses other types of MLLW impacts, including cultural resource and

MLLW Treatment

Tables 6.16–1 and 6.16–2 in the Final WM PEIS compare alternatives with respect to the treatment of MLLW. In general, the tables present estimates of potential worker and off-site population fatalities, the ability of sites to meet air and groundwater quality standards, and costs for the various MLLW alternatives evaluated in the WM PEIS. Chapter 6 also discusses other types of MLLW impacts, including cultural resource and

MLLW Disposal

Tables 6.16–1 and 6.16–2 in the Final WM PEIS compare alternatives with respect to the disposal of MLLW. In general, the tables present estimates of potential worker and off-site population fatalities, the ability of sites to meet air and groundwater quality standards, and costs for the various MLLW alternatives evaluated in the WM PEIS. Chapter 6 also discusses other types of MLLW impacts, including cultural resource and
environmental justice concerns. All of the environmental factors were considered in identifying environmentally preferable alternatives and in making the decision stated below.

Environmentally Preferable Alternatives: For MLLW disposal, all of the alternatives have low and similar impacts, with Regionalized Alternative 3 being the environmentally preferable alternative because disposal would require the fewest engineered enhancements to avoid exceeding drinking water standards. No alternative would present environmental justice concerns.

The No Action alternative is based on indefinite storage and does not prepare the waste for disposal, i.e., permanent isolation from the human environment. For the 20-year waste management period considered in the WM PEIS, the potential impacts under the No Action alternative for MLLW disposal are smaller than those identified under the action alternatives, and on this short-term basis, the No Action alternative could be considered to be the environmentally preferred alternative. However, the No Action alternative does not include shipment (or transportation impacts) of MLLW for disposal. Further, the No Action alternative would not protect human health and the environment from such long-term threats as deteriorating containers or loss of institutional control and cannot be considered environmentally preferable.

Decision: The Department’s decision is to establish regional MLLW disposal operations at two DOE sites: the Hanford Site and NTS. The Hanford Site and NTS will each dispose of its own MLLW on-site, and will receive and dispose of MLLW generated and shipped (by truck or rail) by other sites, consistent with permit conditions and other applicable requirements. Use of the term “regional disposal” does not impose geographical restrictions on which DOE sites may ship waste to a disposal site; the term is used only to be consistent with the WM PEIS analysis of regionalized alternatives. This decision does not preclude DOE’s use of commercial disposal facilities, consistent with current DOE orders and policy. This decision is the preferred alternative that DOE announced in its December 10, 1999 Notice of Preferred Alternatives.

Basis for Decision: DOE’s decision to regionalize MLLW disposal at the Hanford Site and NTS is based on low impact, low cost, operational flexibility, and relative implementation cost. The Hanford Site and NTS are the only two DOE sites that have MLLW disposal facilities already constructed. Use of these existing facilities will avoid environmental impacts and costs associated with facility construction. Further, DOE does not foresee needing a third regional MLLW disposal facility for the estimated volume of MLLW to be disposed of during the next 20 years. Using two disposal facilities provides operational flexibility to align waste streams with facility waste acceptance criteria and access to an alternate disposal facility should the other facility’s operations be interrupted for any reason.

Mitigation of Impacts from Treatment and Disposal of LLW and MLLW

Chapter 12 of the WM PEIS describes measures that DOE could take to minimize the potential impacts of its waste management activities. Mitigation measures are an integral part of the Department’s operations, so as to avoid, reduce, or eliminate potentially adverse environmental impacts. Some of the more important mitigation measures that DOE will continue during the treatment and disposal of LLW and MLLW are:

- Development and implementation of pollution prevention plans.
- Assistance to States, Tribal and local governments, and other public entities concerning human health, environmental, and economic impacts.
- Development of “cleaner” waste treatment, storage and disposal technologies.
- Stringent application of administrative controls, including disposal facility waste acceptance criteria and stable waste form requirements.
- Maintenance and enhancement of pollution control systems to reduce toxicity of air and surface water effluents.
- Reuse of existing facilities rather than construction of new facilities.
- Training to ensure workers understand operational safety limits within which a facility can operate while limiting risks and adequately protecting the environment.
- Training to ensure DOE and NDOE emergency response personnel are knowledgeable of emergency response procedures.
- Implementation of transportation planning and control programs to reduce transportation risk.
- Rigorous quality assurance programs for the characterization of LLW and MLLW.

These are routine mitigation measures for which a mitigation action plan is not required. Site-specific, non-routine mitigation measures may also be identified and implemented in the course of further decision making under site-specific NEPA reviews.

Amendment of the Record of Decision for NTS

On December 9, 1996, DOE issued a ROD (61 FR 65551) for the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (NTS EIS). That ROD cited the then-pending Final WM PEIS and stated that subsequent programmatic decisions “may require changes to the Waste Management Program at NTS in the future,” and “that in the interim, pending those programmatic decisions, DOE will maintain the current level of LLW and MLLW management activity as described in the No Action Alternative in the NTS EIS.” For LLW, the decision meant that “disposal of LLW will continue for waste streams from current [DOE approved] on-site and off-site generators” and that “approval of other waste generators for disposal is pending future programmatic decisions.” For MLLW, the decision meant that “DOE will continue to manage MLLW which is currently on-site or which may be generated by DOE at NTS.”

The NTS EIS addressed the environmental impacts of four operational scenarios: (1) Continue Current Operations (No Action), (2) Discontinue Operations, (3) Expanded Use, and (4) Alternate Use of Withdrawn Lands. The ROD identified DOE’s decision to implement a combination of elements of three of these alternatives. DOE decided that most activities would be pursued at levels described by the Expanded Use Alternative. In addition, DOE decided to undertake certain public education activities analyzed under the Alternate Use of Withdrawn Lands Alternative. As stated above, DOE also decided that, pending programmatic decisions, NTS LLW and MLLW management operations would be conducted under the Continue Current Operations Alternative.

Under the Continue Current Operations Alternative, the NTS EIS analyzed the environmental impacts for a ten-year period of disposal of 349,294 cubic meters of LLW in either of two Radioactive Waste Management Sites (Areas 3 and 5) at the NTS and 18,285 total shipments via legal weight trucks on public highways. Under the Expanded Use Alternative, the NTS EIS analyzed 1,041,422 cubic meters of LLW and 49,084 shipments. While there is a substantial difference in the volumes of waste and numbers of
made at an EIS scoping meeting to be held at the Bonneville Power Administration, Room 122, 905 NE 11th Avenue, Portland, Oregon, on Tuesday, March 14, 2000, from 1:00 p.m. to 4:00 p.m. At the informal meeting, a brief overview of the EIS and presentation of background information will be followed by an open house during which attendees may discuss the EIS with BPA’s EIS team. Written information will also be available, and BPA staff will answer questions and accept both oral and written comments.

BPA invites comments and suggestions on the proposed scope of the Draft EIS. Send comment letters and requests to be placed on the project mailing list to Communications, Bonneville Power Administration—KC–7, P.O. Box 12999, Portland, Oregon, 97212. The phone number of the Communications office is 503–230–3478 in Portland; toll-free 1–800–622–4519 outside of Portland. Comments may also be sent to the BPA Internet address: comment@bpa.gov. Please be sure to note that your comments are on the Fish and Wildlife Implementation Plan EIS.

FOR FURTHER INFORMATION CONTACT:

SUPPLEMENTARY INFORMATION:
Throughout the Pacific Northwest region there are several ongoing processes to develop plans and programs for the management, recovery, and mitigation of the Columbia River Basin’s fish and wildlife resources. These plans and programs will help to shape a regional fish and wildlife policy direction that will guide BPA’s mitigation and recovery efforts, including its funding, for the next decade or more. BPA expects to shift its fish and wildlife spending accordingly.

BPA currently funds over 70 percent of the fish and wildlife mitigation and recovery efforts on behalf of the Federal Columbia River Power System. Consequently, BPA has a responsibility to understand the impacts of those efforts and to ensure it can fund them efficiently. Therefore, BPA is preparing an EIS that examines the impacts that may arise from implementing one of the fish and wildlife policy directions reflected in the alternatives being considered in the ongoing regional processes. A Notice of Intent to Prepare an EIS was published in the Federal Register on October 20, 1999 (64 FR 50488). A Notice of Scoping Meeting was also previously published in the Federal Register on January 6, 2000 (65 FR 765). That scoping meeting was held on February 3, 2000, in Portland, Oregon, in conjunction with several other meetings related to fish and wildlife recovery efforts in the Pacific Northwest.

Issued in Portland, Oregon, on February 18, 2000.

Roger E. Seifert,
Special Assistant to the Vice President.

[FR Doc. 00–4439 Filed 2–24–00; 8:45 am]

BILLING CODE 6450–01–P

DEPARTMENT OF ENERGY

Office of Energy Efficiency and Renewable Energy

Advisory Committee on Appliance Energy Efficiency Standards

ACTION: Notice of open meeting.

SUMMARY: This notice announces a meeting of the Energy Conservation Program for Consumer Products: Advisory Committee on Appliance Energy Efficiency Standards. Federal Advisory Committee Act (Pub. L. No. 92–463, 86 Stat. 770) requires that public notice of these meetings be announced in the Federal Register.

DATE AND TIME: March 28, 2000, 12:30 p.m.–4:30 p.m.

SUPPLEMENTARY INFORMATION: Purpose of the Meeting: The Charter of the Advisory Committee has been renewed for two years to December, 2000. This is the third meeting of the Committee since the charter was renewed. The Committee will review and deliberate on DOE’s activities regarding appliance energy efficiency standards and provide comments and recommendations to the Department.

Preliminary Agenda:
• Introductions, Agenda Review (12:30 p.m.)