DEPARTMENT OF HEALTH AND HUMAN SERVICES

Food and Drug Administration

[Docket No. 96D–0030]

International Conference on Harmonisation; Guideline on the Validation of Analytical Procedures: Methodology; Availability

AGENCY: Food and Drug Administration, HHS

ACTION: Notice.

SUMMARY: The Food and Drug Administration (FDA) is publishing a guideline entitled, “Validation of Analytical Procedures: Methodology.” The guideline was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guideline provides recommendations on how to consider various validation characteristics for each analytical procedure. The guideline is an extension to the ICH guideline entitled, “Text on Validation of Analytical Procedures.”

DATES: Effective May 19, 1997. Submit written comments at any time.

ADDRESSES: Submit written comments on the guideline to the Dockets Management Branch (HFA–305), Food and Drug Administration, 12420 Parklawn Dr., rm. 1–23, Rockville, MD 20857. Copies of the guideline are available from the Drug Information Branch (HFD–210), Center for Drug Evaluation and Research, Food and Drug Administration, 5600 Fishers Lane, Rockville, MD 20857.

FOR FURTHER INFORMATION CONTACT: Regarding the guideline: Linda L. Ng, Center for Drug Evaluation and Research (HFD–570), Food and Drug Administration, 5600 Fishers Lane, Rockville, MD 20857, 301–827–8050. Regarding ICH: Janet J. Showalter, Office of Health Affairs (HFY–20), Food and Drug Administration, 5600 Fishers Lane, Rockville, MD 20857, 301–827–0864.

SUPPLEMENTARY INFORMATION: In recent years, many important initiatives have been undertaken by regulatory authorities and industry associations to promote international harmonization of regulatory requirements. FDA has participated in many meetings designed to enhance harmonization and is committed to seeking scientifically based harmonized technical procedures for pharmaceutical development. One of the goals of harmonization is to identify and then reduce differences in technical requirements for drug development among regulatory agencies. ICH was organized to provide an opportunity for tripartite harmonization initiatives to be developed with input from both regulatory and industry representatives. FDA also seeks input from consumer representatives and others. ICH is concerned with harmonization of technical requirements for the registration of pharmaceutical products among three regions: The European Union, Japan, and the United States. The six ICH sponsors are the European Commission, the European Federation of Pharmaceutical Industries Associations, the Japanese Ministry of Health and Welfare, the Japanese Pharmaceutical Manufacturers Association, the Centers for Drug Evaluation and Research and Biologics Evaluation and Research, FDA, and the Pharmaceutical Research and Manufacturers of America. The ICH Secretariat, which coordinates the preparation of documentation, is provided by the International Federation of Pharmaceutical Manufacturers Associations (IFPMA). The ICH Steering Committee includes representatives from each of the ICH sponsors and the IFPMA, as well as observers from the World Health Organization, the Canadian Health Protection Branch, and the European Free Trade Area.

In the Federal Register of March 7, 1996 (61 FR 9316), FDA published a draft tripartite guideline entitled, “Validation of Analytical Procedures: Methodology.” The notice gave interested persons an opportunity to submit comments by June 5, 1996. After consideration of the comments received and revisions to the guideline, a final draft of the guideline was submitted to the ICH Steering Committee and endorsed by the three participating regulatory agencies at the ICH meeting held on November 6, 1996. In the Federal Register of March 1, 1995 (60 FR 11260), the agency published a guideline entitled, “Text on Validation of Analytical Procedures.” The guideline presents a discussion of the characteristics that should be considered during the validation of the analytical procedures included as part of registration applications submitted in Europe, Japan, and the United States. The guideline discusses common types of analytical procedures and defines basic terms, such as “analytical procedure,” “specificity,” and “precision.” These definitions are meant to bridge the differences that often exist between various compendia and regulators of the European Union, Japan, and the United States.

This guideline provides guidance and recommendations on how to consider the various validation characteristics for each analytical procedure. In some cases, (for example, the demonstration of specificity) the overall capabilities of a number of analytical procedures in combination may be investigated in order to ensure the quality of the drug substance or drug product.

This guideline represents the agency’s current thinking on the validation of analytical procedures. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. An alternative approach may be used if such approach satisfies the requirements of the applicable statute, regulations, or both.

As with all of FDA’s guidelines, the public is encouraged to submit written comments with new data or other new information pertinent to this guideline. The comments in the docket will be periodically reviewed, and, where appropriate, the guideline will be amended. The public will be notified of any such amendments through a notice in the Federal Register.

Interested persons may, at any time, submit written comments on the final guideline to the Dockets Management Branch (address above). Two copies of any comments are to be submitted, except that individuals may submit one copy. Comments are to be identified with the docket number found in brackets in the heading of this document. The guideline and received comments may be seen in the office above between 9 a.m. and 4 p.m., Monday through Friday. An electronic version of this guideline is available via Internet using the World Wide Web (WWW) (http://www.fda.gov/cder/guidance.htm).

The text of the guideline follows: Validation of Analytical Procedures: Methodology

Introduction

This document is complementary to the ICH guideline entitled “Text on Validation of Analytical Procedures,” which presents a discussion of the characteristics that should be considered during the validation of analytical procedures. Its purpose is to provide some guidance and recommendations on how to consider the various validation characteristics for each analytical procedure. In some cases (for example, demonstration of specificity), the overall capabilities of a number of analytical procedures in combination may be investigated in order to ensure the quality of the drug substance or drug product. In addition, the document provides an indication of the data that should be presented in a new drug application.
All relevant data collected during validation and formulae used for calculating validation characteristics should be submitted and discussed as appropriate.

Approaches other than those set forth in this guideline may be applicable and acceptable provided that the applicant chooses the validation procedure and protocol most suitable for their product. However, it is important to remember that the main objective of validation of an analytical procedure is to demonstrate that the procedure is suitable for its intended purpose. Due to their complex nature, analytical procedures for biological and biotechnological products in some cases may be approached differently than in this document.

Well-characterized reference materials, with documented purity, should be used throughout the validation study. The degree of purity necessary depends on the intended use.

In accordance with the parent document, for the sake of clarity, this document considers the various validation characteristics in distinct sections. The arrangement of these sections reflects the process by which an analytical procedure may be developed and evaluated. In practice, it is usually possible to design the experimental work such that the appropriate validation characteristics can be considered simultaneously to provide a sound, overall knowledge of the capabilities of the analytical procedure, for instance: Specificity, linearity, range, accuracy, and precision.

1. Specificity

An investigation of specificity should be conducted during the validation of identification tests, the determination of impurities, and the assay. The procedures used to demonstrate specificity will depend on the intended objective of the analytical procedure.

It is not always possible to demonstrate that an analytical procedure is specific for a particular analyte (complete discrimination). In this case, a combination of two or more analytical procedures is recommended to achieve the necessary level of discrimination.

1.1. Identification

Suitable identification tests should be able to discriminate between compounds of closely related structures which are likely to be present. The discrimination of a procedure may be confirmed by obtaining positive results (perhaps by comparison with a known reference material) from samples containing the analyte, coupled with negative results from samples which do not contain the analyte.

In addition, the identification test may be applied to materials structurally similar to or closely related to the analyte to confirm that a positive response is not obtained. The choice of such potentially interfering materials should be based on sensible scientific judgment with a consideration of the interferences that could occur.

1.2. Assay and Impurity Test(s)

For chromatographic procedures, representative chromatograms should be used to demonstrate specificity, and individual components should be appropriately labeled. Similar considerations should be given to other separation techniques.

Critical separations in chromatography should be investigated at an appropriate level. For critical separations, specificity can be demonstrated by the resolution of the two components which elute closest to each other.

In cases where a non-specific assay is used, other supporting analytical procedures should be used to demonstrate overall specificity. For example, where a titration is adopted to assay the drug substance for release, the combination of the assay and a suitable test for impurities can be used.

The approach is similar for both assay and impurity tests:

1.2.1. Impurities Are Available

For the assay, this should involve demonstration of the discrimination of the analyte in the presence of impurities and/or excipients; practically, this can be done by spiking pure substances (drug substance or drug product) with appropriate levels of impurities and demonstrating that the assay result is unaffected by the presence of these materials (by comparison with the assay result obtained on unspiked samples). For the impurity test, the discrimination may be established by spiking drug substance or drug product with appropriate levels of impurities and demonstrating the separation of these impurities individually and/or from other components in the sample matrix.

1.2.2. Impurities Are Not Available

If impurity or degradation product standards are unavailable, specificity may be demonstrated by comparing the test results of samples containing impurities or degradation products to a second well-characterized procedure, e.g., pharmacopeial method or other validated analytical procedure (independent procedure). As appropriate, this should include samples stored under relevant stress conditions: Light, heat, humidity, acid/base hydrolysis, and oxidation.

For the assay, the two results should be compared.

For the impurity tests, the impurity profiles should be compared.

Peak purity spikes may be useful to show that the analyte chromatographic peak is not attributable to more than one component (e.g., diode array, mass spectrometry).

2. Linearity

A linear relationship should be evaluated across the range (see section 3) of the analytical procedure. It may be demonstrated directly on the drug substance (by dilution of a standard stock solution) and/or separate weighings of synthetic mixtures of the drug product components, using the proposed procedure. The latter aspect can be studied during investigation of the range.

Linearity should be evaluated by visual inspection of a plot of signals as a function of analyte concentration or content. If there is a linear relationship, test results should be evaluated by appropriate statistical methods, for example, by calculation of a regression line by the method of least squares. In some cases, to obtain linearity between assays and sample concentrations, the test data may have to be subjected to a mathematical transformation prior to the regression analysis. Data from the regression line itself may be helpful to provide mathematical estimates of the degree of linearity.

The correlation coefficient, y-intercept, slope of the regression line, and residual sum of squares should be submitted. A plot of the data should be included. In addition, an analysis of the deviation of the actual data points from the regression line may also be helpful for evaluating linearity.

Some analytical procedures, such as immunoassays, do not demonstrate linearity after any transformation. In this case, the analytical response should be described by an appropriate function of the concentration (amount) of an analyte in a sample.

For the establishment of linearity, a minimum of five concentrations is recommended. Other approaches should be justified.

3. Range

The specified range is normally derived from linearity studies and depends on the intended application of the procedure. It is established by confirming that the analytical procedure provides an acceptable degree of linearity, accuracy, and precision when applied to samples containing amounts of analyte within or at the extremes of the specified range of the analytical procedure. The following minimum specified ranges should be considered:

- For the assay of a drug substance or a finished (drug) product: Normally from 80 to 120 percent of the test concentration.
- For content uniformity: Covering a minimum of 70 to 130 percent of the test concentration, unless a wider, more appropriate range, based on the nature of the dosage form (e.g., metered dose inhalers), is justified;
- For dissolution testing: +/-20 percent over the specified range; e.g., if the specifications for a controlled released product cover a region from 20 percent, after 1 hour, up to 90 percent, after 24 hours, the validated range would be 0–110 percent of the label claim;
- For the determination of an impurity: From the reporting level of an impurity to 120 percent of the specification;
- For impurities known to be unusually potent or to produce toxic or unexpected pharmacological effects, the detection/quantitation limit should be commensurate with the level at which the impurities must be controlled.

Note: For validation of impurity test procedures carried out during development, it may be necessary to consider the range around a suggested (probable) limit;

If assay and purity are performed together as one test and only a 100 percent standard
is used, linearity should cover the range from the reporting level of the assay specification to 120 percent of the assay specification.

4. Accuracy

Accuracy should be established across the specified range of the analytical procedure.

4.1. Assay

4.1.1. Drug substance:

Several methods of determining accuracy are available:

(a) Application of an analytical procedure to an analyte of known purity (e.g., reference material);

(b) Comparison of the results of the proposed analytical procedure with those of a second well-characterized procedure, the accuracy of which is stated and/or defined (independent procedure, see section 1.2.);

(c) Accuracy may be inferred once precision, linearity, and specificity have been established.

4.1.2. Drug product:

Several methods for determining accuracy are available:

(a) Application of the analytical procedure to synthetic mixtures of the drug product components to which known quantities of the drug substance to be analyzed have been added;

(b) In cases where it is impossible to obtain samples of all drug product components, it may be acceptable either to add known quantities of the analyte to the drug product or to compare the results obtained from a second, well-characterized procedure, the accuracy of which is stated and/or defined (independent procedure, see section 1.2.);

(c) Accuracy may be inferred once precision, linearity, and specificity have been established.

4.2. Impurities (Quantitation)

Accuracy should be assessed on samples (drug substance/drug product) spiked with known amounts of impurities.

In cases where it is impossible to obtain samples of certain impurities and/or degradation products, it is considered acceptable to compare results obtained by an independent procedure (see section 1.2.). The response factor of the drug substance can be used with instrumental methods.

Visual evaluation may be used for noninstrumental methods but may also be used with instrumental methods. The detection limit is determined by the analysis of samples with known concentrations of the analyte and by establishing the minimum level at which the analyte can be reliably detected.

6. Detection Limit

Several approaches for determining the detection limit are possible, depending on whether the procedure is noninstrumental or instrumental. Approaches other than those listed below may be acceptable.

6.1. Based on Visual Evaluation

Visual evaluation may be used for noninstrumental methods but may also be used with instrumental methods.

The detection limit is determined by the analysis of samples with known concentrations of the analyte and by establishing the minimum level at which the analyte can be reliably detected.

6.2. Based on Signal-to-Noise

This approach can only be applied to analytical procedures that exhibit baseline noise. Determination of the signal-to-noise ratio is performed by comparing measured signals from samples with known low concentrations of the analyte and establishing the minimum concentration at which the analyte can be reliably detected. A signal-to-noise ratio between 3 or 10:1 is generally considered acceptable for estimating the detection limit.

6.3 Based on the Standard Deviation of the Response and the Slope

The detection limit (DL) may be expressed as:

\[
DL = \frac{3.3\sigma}{S}
\]

where \(\sigma\) = the standard deviation of the response

\(S\) = the slope of the calibration curve

The detection limit may be estimated from the calibration curve of the analyte. The estimate of \(\sigma\) may be carried out in a variety of ways, for example:

6.3.1. Based on the standard deviation of the blank

Measurement of the magnitude of analytical background response is performed by analyzing an appropriate number of blank samples and calculating the standard deviation of these responses.

6.3.2. Based on the calibration curve

A specific calibration curve should be studied using samples containing an analyte in the range of DL. The residual standard deviation of the regression line or the standard deviation of y-intercepts of regression lines may be used as the standard deviation.

6.4. Recommended Data

The detection limit and the method used for determining the detection limit should be presented. If DL is determined based on visual evaluation or based on signal-to-noise ratio, the presentation of the relevant chromatograms is considered acceptable for justification.

In cases where an estimated value for the detection limit is obtained by calculation or extrapolation, this estimate may subsequently be validated by the independent analysis of a suitable number of samples known to be near or prepared at the detection limit.

7. Quantitation Limit

Several approaches for determining the quantitation limit are possible, depending on whether the procedure is noninstrumental or instrumental. Approaches other than those listed below may be acceptable.

7.1. Based on Visual Evaluation

Visual evaluation may be used for noninstrumental methods, but may also be used with instrumental methods.

The quantitation limit is generally determined by the analysis of samples with known concentrations of the analyte and by establishing the minimum level at which the analyte can be quantitatively detected.

7.2. Based on Signal-to-Noise

This approach can only be applied to analytical procedures that exhibit baseline noise. Determination of the signal-to-noise ratio is performed by comparing measured signals from samples with known low concentrations of the analyte and establishing the minimum concentration at which the analyte can be reliably detected. A signal-to-noise ratio between 3 or 10:1 is generally considered acceptable. A typical signal-to-noise ratio is 10:1.

7.3. Based on the Standard Deviation of the Response and the Slope

The quantitation limit (QL) may be expressed as:
where \(\sigma \) = the standard deviation of responses

\[
QL = \frac{10 \sigma}{S}
\]

where \(\sigma \) = the standard deviation of responses

\(S \) = the slope of the calibration curve

The slope \(S \) may be estimated from the calibration curve of the analyte. The estimate of \(\sigma \) may be carried out in a variety of ways, for example:

7.3.1. Based on standard deviation of the blank

Measurement of the magnitude of analytical background response is performed by analyzing an appropriate number of blank samples and calculating the standard deviation of these responses.

7.3.2. Based on the calibration curve

A specific calibration curve should be studied using samples containing an analyte in the range of QL. The residual standard deviation of a regression line or the standard deviation of y-intercepts of regression lines may be used as the standard deviation.

7.4 Recommended Data

The quantitation limit and the method used for determining the quantitation limit should be presented.

The limit should be subsequently validated by the analysis of a suitable number of samples known to be near or prepared at the quantitation limit.

8. Robustness

The evaluation of robustness should be considered during the development phase and depends on the type of procedure under study. It should show the reliability of an analysis with respect to deliberate variations in method parameters.

If measurements are susceptible to variations in analytical conditions, the analytical conditions should be suitably controlled or a precautionary statement should be included in the procedure. One consequence of the evaluation of robustness should be that a series of system suitability parameters (e.g., resolution test) is established to ensure that the validity of the analytical procedure is maintained whenever used.

Examples of typical variations are:
- Stability of analytical solutions
- Extraction time
- Influence of variations of pH in a mobile phase
- Influence of variations in mobile phase composition

In the case of gas-chromatography, examples of typical variations are:
- Different columns (different lots and/or suppliers)
- Temperature
- Flow rate

9. System Suitability Testing

System suitability testing is an integral part of many analytical procedures. The tests are based on the concept that the equipment, electronics, analytical operations, and samples to be analyzed constitute an integral system that can be evaluated as such. System suitability test parameters to be established for a particular procedure depend on the type of procedure being validated. See pharmacopoeias for additional information.

William K. Hubbard,
Associate Commissioner for Policy Coordination.

[FR Doc. 97-13063 Filed 5-16-97; 8:45 am]

BILLING CODE 4160-01-F