

(iii) The requirements of (b)(2)(iii) are met; and

(iv) The child restraint system has one or more of the labels described in paragraph (b)(2)(ii)(A) through paragraph (b)(2)(ii)(C).

(3) This section does not prohibit the certificate holder from providing child restraint systems or, consistent with safe operating practices, determining the most appropriate passenger seat location for the child restraint system.

* * * * *

PART 135—AIR TAXI OPERATORS AND COMMERCIAL OPERATORS

7. The authority citation for part 135 continues to read as follows:

Authority: 49 U.S.C. app. 1354(a), 1355(a), 1421 through 1431, and 1502; 49 U.S.C. 106(g).

8. Section 135.128 is amended by removing the sentence in paragraph (a)(2)(ii)(A) that begins with "Vest-* * *", by removing the final "and" in paragraph (a)(2)(ii)(C), by revising paragraph (a)(1) and the introductory text of paragraph (a)(2)(ii), by adding a new paragraph (a)(2)(ii)(D), and by revising paragraph (b) to read as follows:

§ 135.128 Use of safety belts and child restraint systems.

(a) * * *

(1) Be held by an adult who is occupying an approved seat or berth, provided the child has not reached his or her second birthday and the child does not occupy or use any restraining device; or

(2) * * *

(ii) Except as provided in subparagraph (b)(2)(ii)(D) of this section, the approved child restraint system bears one or more labels as follows:

* * * * *

(D) Notwithstanding any other provision of this section, booster-type child restraint systems (as defined in Federal Motor Vehicle Standard No. 213 (49 CFR 571.213)), vest- and harness-type child restraint systems, and lap held child restraints are not approved for use in aircraft; and

(b) Except as provided in paragraph (b)(3), the following prohibitions apply to certificate holders:

(1) No certificate holder may permit a child, in an aircraft, to occupy a booster-type child restraint system, a vest-type child restraint system, a harness-type child restraint system, or a lap held child restraint system during take off, landing, and movement on the surface.

(2) Except as required in paragraph (b)(1) of this section, no certificate holder may prohibit a child, if requested by the child's parent, guardian, or

designated attendant, from occupying a child restraint system furnished by the child's parent, guardian, or designated attendant provided:

(i) The child holds a ticket for an approved seat or berth or such seat or berth is otherwise made available by the certificate holder for the child's use;

(ii) The requirements of paragraph (a)(2)(i) are met;

(iii) The requirements of (a)(2)(iii) are met; and

(iv) The child restraint system has one or more of the labels described in paragraph (a)(2)(ii)(A) through paragraph (a)(2)(ii)(C).

(3) This section does not prohibit the certificate holder from providing child restraint systems or, consistent with safe operating practices, determining the most appropriate passenger seat location for the child restraint system.

* * * * *

Issued in Washington, DC, on May 19, 1995.

William J. White,

Acting Director, Flight Standards Service.

[FR Doc. 95-12800 Filed 6-7-95; 8:45 am]

BILLING CODE 4910-13-M

49 CFR Part 571

[Docket No. 74-09; Notice 41]

RIN 2127-AF46

Federal Motor Vehicle Safety Standards; Child Restraint Systems

AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation.

ACTION: Notice of proposed rulemaking (NPRM).

SUMMARY: This proposed rule, and a companion proposed rule issued by the Federal Aviation Administration (FAA), address the use of child harnesses and backless child restraints in aircraft. This document proposes to amend a provision in Federal Motor Vehicle Safety Standard No. 213, "Child Restraint Systems," that permits those restraints to be certified for use in both motor vehicles and aircraft. This rule complements an FAA proposal, published elsewhere in today's **Federal Register**, that would prohibit the use of booster seats, and vest- and harness-type child restraint systems on aircraft even if the restraints are certified for aircraft use.

Under the current FAA regulations, aircraft-certified child restraints may be used on aircraft. However, because testing has raised concerns about the safety of using harnesses and backless child restraint systems on the types of seats found in aircraft, FAA is publishing, in today's **Federal Register**, an NPRM that would prohibit the use of booster seats, and vest- and harness-type child restraint systems on aircraft even if they are certified for aircraft use.

NHTSA is, in turn, concerned that if FAA were to ban harnesses and backless

booster seats from being used on aircraft, continuing to permit the certification of those restraints for aircraft use could be confusing to the public. Accordingly, this document proposes to require manufacturers to label these restraints as not being for aircraft use.

DATES: Comments on this proposed rule must be received by the agency no later than July 10, 1995.

ADDRESSES: Comments should refer to the docket number and notice number and be submitted in writing to: Docket Section, National Highway Traffic Safety Administration, Room 5109, 400 Seventh Street SW., Washington, DC 20590. Telephone: (202) 366-5267. Docket hours are 9:30 a.m. to 4:00 p.m. Monday through Friday.

FOR FURTHER INFORMATION CONTACT: Dr. George Mouchahoir, Office of Vehicle Safety Standards (telephone 202-366-4919), or Ms. Deirdre Fujita, Office of the Chief Counsel (202-366-2992), National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. For information on FAA's proposal, contact Ms. Donell Pollard (AFS-203), Air Transportation Division, Flight Standards Service (telephone 202-267-3735), Federal Aviation Administration, 800 Independence Avenue SW., Washington, DC 20591.

SUPPLEMENTARY INFORMATION: This document proposes to amend the provision in Federal Motor Vehicle Safety Standard No. 213, "Child Restraint Systems," that permits child restraint systems to be certified for use in both motor vehicles and aircraft. This rule complements an FAA proposal, published elsewhere in today's **Federal Register**, that would prohibit the use of booster seats, and vest- and harness-type child restraint systems on aircraft even if the restraints are certified for aircraft use.

The types of child restraint systems that are the subject of this NPRM are harnesses and backless child restraints. A harness typically consists of a vest or a series of straps that form a vest-like garment, that attaches at the back of the harness to a vehicle seat's lap belt. Harnesses are generally intended for children who weigh from 25 to 50 pounds, and some require the use of a tether strap to supplement the lap belt. A backless child restraint system is a type of child booster seat that has a structural element (typically a shield) designed to restrain forward motion of the child's torso in a frontal crash. Backless child restraint systems are generally intended for children weighing from 30 to 60 pounds.

(“Backless child restraint system” is defined in S4 of FMVSS 213; see, 59 FR 37167, July 21, 1994). Backless child restraint systems are also known as “backless booster seats” or “shield-type” booster seats.

Background

Standard 213 permits manufacturers to certify their restraints¹ for aircraft use if they are certified for use in motor vehicles and meet an additional requirement, an inversion test. The provisions permitting such certification were added to the standard in 1984 (49 FR 34357; August 30, 1984), partly in response to suggestions of the National Transportation Safety Board (NTSB) that DOT simplify its standards for the performance of child restraints on aircraft by combining all technical requirements into a single standard (NTSB Safety Recommendations A-83-1, February 24, 1983). Prior to the amendment, FAA had its own child restraint standard, Technical Standard Order C100 (TSO C100). TSO C100 and FMVSS 213 had different performance requirements, methods of certification and testing procedures.

In the 1984 rulemaking, NHTSA and FAA concluded that the DOT child restraint requirements should be consolidated in FMVSS 213 and that a TSO C100 inversion test was the only performance requirement from the FAA standard that needed to be incorporated into FMVSS 213. In the inversion test, the combination of a child restraint, test dummy and aircraft passenger seat is rotated to an inverted position and held there. During the test, the child restraint must not experience any failure or deformation that could seriously injure or prevent the subsequent removal of the occupant.

Prior to the 1984 rulemaking, a manufacturer wishing to designate a child restraint model as suitable for aircraft had to submit information to FAA to obtain its approval of the model. As a result of this pre-1984 approval process, there was a disparity between the number of child restraints available for use in motor vehicles and the number available for use in aircraft. In 1984, approximately 28 models of child

restraints were produced under FMVSS 213 for use in motor vehicles. The child restraint manufacturers obtained TSO authorizations for only five of the 28 models, or only 16 percent of the total production of child restraints.

The lack of FAA approval of most motor vehicle child restraints for use in aircraft aroused several safety concerns. One was that some families traveling by air were discouraged from taking unapproved child restraints with them and thus did not have them available for use at their destination to protect their children while the family was driving. The other concern was that those families who nevertheless took their unapproved child restraints on trips had to stow the restraints in the aircraft cargo compartment, and thus were not able to use them to protect their children during the flight.

The effect of the 1984 rulemaking was to speed certification of child restraints for use in aircraft, and thereby increase the availability of aircraft-certified child restraints. Since then, manufacturers have been able, under FMVSS 213, to “self-certify” their child restraints for aircraft use by ensuring that they pass all of the standard’s motor vehicle requirements and the inversion test. As a result, there has been a tremendous increase in the number of child restraints certified for use in aircraft.

FAA complemented NHTSA’s rulemaking by amending its Federal Aviation Regulations (FARs) (14 CFR Parts 91, 121, 125 and 135) to provide for the in-flight use of aircraft-certified child restraints. The amendments required the air carriers to allow the use of any child restraint having a labeling indicating that it is certified to FMVSS 213, manufactured under the standards of the United Nations, or approved by a foreign government, as long as the restraint can be secured to a forward-facing passenger seat. An infant or child who is accompanied by a parent, guardian, or properly designated attendant and who is properly placed in a device that meets the labeling requirements of the FARs and that, in turn, is properly secured in an approved aircraft seat using the safety belt, has been considered by FAA to comply with its regulations requiring each person to occupy an approved seat during takeoff and landing.

There are currently many different types of child restraint systems that are certified as complying with FMVSS 213’s motor vehicle and aircraft requirements, and thus permitted by FAA for use on aircraft. In addition to harnesses and shield boosters, these systems included “infant seats,” which position an infant so that the baby faces

toward the rear of the motor vehicle or aircraft; “car beds,” which position the child laterally across the vehicle or aircraft seat; and “convertible” child seats, which convert so that they can be used rear-facing with infants and forward-facing with toddlers. In addition, there are restraint systems, such as the “belly belt,” that are certified for use in airplanes by foreign countries. Belly belts restrain a small child on the lap of an adult and consist of a short loop of webbing with buckle hardware on the ends. The belt is buckled around the child’s abdomen and is secured to the adult’s safety belt by routing the adult’s safety belt through a small loop of webbing sewn on the belly belt. Belly belts are certified for airplane use by the Civil Aviation Authority of the United Kingdom. However, belly belts cannot meet the performance requirements of FMVSS 213 and therefore have not been certified for use in the United States.

FAA Withdrawal of Approval

Elsewhere in today’s **Federal Register**, FAA is proposing to withdraw approval for the use of harnesses and booster seats on aircraft. The FAA is also emphasizing the existing prohibition in all aircraft against the use of lap held child restraints, including belly belts. The action responds to recent research by FAA’s Civil Aeromedical Institute (CAMI). The practical effect of that amendment would be to ban all use of these restraints on aircraft.

The CAMI research is discussed in a report entitled, “The Performance of Child Restraint Devices in Transport Airplane Passenger Seats,” a copy of which has been placed in the NHTSA rulemaking docket for this notice. (Persons wishing to obtain a copy of the report should contact FAA at the address given in the “For Further Information” section at the beginning of this final rule document.) CAMI dynamically tested six types of restraining devices: Child harnesses, booster seats, rear-facing infant seats, convertible child restraint systems, airplane seat lap belts, and belly belts. The first four devices were evaluated for their ability to fit and adjust to an airplane passenger seat and lap belt. The lap belt was evaluated for its ability to secure test dummies representative of children two and three years old. Fit and adjustment was not considered an issue for the installation of the belly belt. All of the devices were evaluated for their performance in aircraft seats with and without “breakover” seat backs (a breakover feature allows the seat back to rotate forward easily when impacted by an occupant from behind).

¹ One type of child restraint, the “belt positioning” booster seat, is not eligible for such certification. These restraints, which are intended for use by children weighing from 30 to 60 pounds, are designed for use with a lap/shoulder belt system. FMVSS No. 213 does not permit these restraints to be certified for aircraft use because aircraft passenger seats typically lack shoulder belts. See amendment of FMVSS 213 to permit manufacture of belt-positioning child seats (59 FR 37167; July 21, 1994). In its NPRM, the FAA proposes to ban the use of belt-positioning booster seats on airplanes.

They were also evaluated, using anthropomorphic test dummies representing children, for their ability to limit occupant head excursion, head and chest acceleration and abdominal forces. In addition, the test program evaluated the effect that the impact load of an "aft row occupant" had on the performance of a child restraint located in an aircraft seat immediately in front of the aft row occupant. The aft row occupant impact load was generated in tests called "double row tests," using an adult test dummy placed in the aft row seat.

Booster Seat Tests

CAMI tested four models of shield-type booster seats in six dynamic tests, three of which involved single row tests, and the other three, double row tests. With regard to fit and adjustment of the booster seats to the airplane seat, CAMI found that three had fit and adjustment problems. One booster seat had problems fitting an airplane seat because of the limited width between arm rests on the passenger seat. This may have occurred because of the difference in width between the representative aircraft seat (about 20 inches wide) used in FMVSS 213 and the aircraft seat (17.25 inches wide) used in the CAMI testing. Two booster seats had incompatibility problems between the buckle/webbing path molded in the front shield and the airplane web path and buckle position of the lap belt on the airplane passenger seat used by CAMI. In fact, the webbing could not be installed over the front shield in accordance with the positioning instruction of the booster seats' manufacturers. CAMI also found that one of the four booster seats failed structurally, and two of the others allowed forward head excursion in excess of the 32-inch distance permitted by FMVSS 213.

CAMI also found a problem with the loads that the child dummies restrained in the tested booster seats experienced when the boosters were on a seat with a breakaway seat back and exposed to loads from the aft row occupant. Its tests showed that loads from an aft row adult occupant resulted in an increase in abdominal loading of the dummy in a booster seat, as compared to the abdominal loading of a dummy in an aircraft lap belt with an adult aft-row occupant. The CAMI study states that, when placed in a seat with a breakaway seat back, the booster seat encounters problems because:

With no back shell, the typical booster seat does not provide protection from the forces transmitted by the airplane seat back during horizontal impact conditions. Traditionally,

restraint systems in airplanes have been designed to avoid loads transmitted to the soft tissues of the abdomen. A child restrained in a booster seat may be forced against the rigid shield due to the seat back breakaway action. For the intended size of children in booster seats, the load path of these breakaway forces may include the abdominal region.

It is to be noted that CAMI also found that the abdominal loads on a child dummy placed in a shield-type booster seat secured to an airplane seat with a locked seat back were higher than on a child dummy secured in a typical airplane seat lap belt with a locked seat back. The FAA recognizes in its NPRM, however, that there are no accepted criteria to assess the relationship between differences in measured levels of abdominal loadings and any resulting risk of abdominal injury, and the type and severity of such injury.

Harness Tests

CAMI tested one type of harness restraint. The restraint consisted of a torso vest with straps over the shoulders and around the waist, and a crotch strap. The shoulder and abdomen straps were attached to a rectangular metal plate on the back of the restraint. The airplane lap belts were routed through a loop of webbing attached to the metal back plate on the restraint.

The restraint was tested with a three-year-old test dummy in two single row tests. CAMI found incompatibility problems between the harness and the airplane seat lap belts: "With the lap belts adjusted to the minimum length, the [harness] could be moved forward approximately 7 inches before tension was developed in the belts. This was considered unsatisfactory for testing." CAMI also found grossly excessive excursion of the child anthropomorphic test dummy(ATD) restrained in the harness:

The ATD moved forward and over the front edge of the seat cushion and proceeded to submarine toward the floor. Elasticity in the webbing of the harness and the lap belts then heaved the ATD rearward. The force pulling the ATD back into the seat appeared to be applied by the Gz [crotch] strap directly through the pubic symphysis of the pelvic bone.

Based on this finding, CAMI concluded that a harness performs poorly in protecting the child occupant.

NHTSA Proposal

NHTSA has tentatively concluded that, if FAA were to adopt its proposed ban on the use of harnesses and backless booster seats on aircraft, consumers would be confused if manufacturers were to continue nevertheless to certify

these types of restraints for aircraft use. Accordingly, NHTSA proposes to amend FMVSS 213 to require manufacturers to label these child restraint systems as not being for use on aircraft. The standard already requires that belt-positioning booster seats be so labeled.

In issuing this proposal, NHTSA believes that it is important to emphasize several points about the use and performance of child restraints. First, there are significant differences between the seating environment of motor vehicles and that of aircraft. Second, because of those differences, the problems encountered with child restraint use in aircraft are not encountered with child restraint use in motor vehicles. Therefore, notwithstanding this proposal, the use of harnesses and booster seats in motor vehicles continues to be important for child safety.

The problems reported by CAMI, i.e., the combined effects of aircraft seatback breakaway designs and aft occupant impacts, are not encountered in motor vehicles. The seat back in a motor vehicle is designed to remain fixed in a crash and not "breakaway" in the manner of an airplane seat. Also, a vehicle seat containing a child restraint is less likely to be impacted from the rear by an adult than is an aircraft containing a child restraint. There are several reasons for this. First, child restraints are recommended for use in the rear vehicle seating positions. Thus, if a child restraint is installed as recommended, there will not, in most cases, be any passenger rearward of the child restraint who could impact and load the seat containing the child restraint in the event of a frontal crash. Exceptions would be in vehicles, such as vans and some station wagons, which have three rows of seats. Second, if there were a passenger seated behind the seat containing a child restraint, and that person were sitting in an outboard seating position, the person would have a lap/shoulder belt system available for use. Most aircraft lack shoulder belts. If the vehicle passenger were restrained by that belt system, the person would not load the seat with the child restraint in the manner observed in the CAMI study. Third, given the number of persons typically carried in a motor vehicle, it is unlikely there would be an adult seated behind a child in a child restraint, regardless of the number or pattern of seats in the vehicle.

Further, harnesses and other child restraints are tested under FMVSS 213 on a seat assembly that is representative of a motor vehicle seat, and that is equipped with a safety belt

representative of the lap belt in the center rear seating position. In its compliance testing, the agency has not found a problem between the vehicle lap belt and a child harness such as that found by CAMI between an airplane lap belt and a harness. In addition, NHTSA has not found in its compliance testing the type of fit and adjustment problems between booster seats and the vehicle seats that CAMI found between booster seats and the aircraft seats.

Booster seats could fit better on vehicles than aircraft in part because of the design of the belt restraints with which the boosters are attached to the vehicle. The position of the buckle for an aircraft seat belt assembly is very different from that of a buckle for a vehicle seat belt assembly. An aircraft seat belt assembly is designed so that when it is buckled, the buckle is located midway between the anchorages, in front of the user's abdomen. A motor vehicle lap/shoulder belt or lap-only belt is designed so that the buckle is located to the side of the user's torso, near the hip, when the belt is buckled.

Another reason for believing that the problems reported by CAMI are not indicative of the performance of child restraints in motor vehicles is the difference between the crash pulse used by CAMI and the crash pulse used in FMVSS 213 testing. In its testing of head excursion, head and chest acceleration and abdominal forces, CAMI used a crash pulse appropriate for aircraft. FMVSS 213 testing, by contrast, involves the use of a motor vehicle crash pulse.

In view of the problems revealed by the CAMI testing, NHTSA and FAA will consider whether there is a need for future rulemaking to improve FMVSS 213's requirements for aircraft-certified child restraints other than harnesses and booster seats. The agencies are developing possible requirements and procedures that could improve the assessment of the performance of child restraint systems in the aircraft environment. Among other issues, the agencies will consider whether the seat assembly used under FMVSS 213 in testing child restraints for aircraft use sufficiently represents an aircraft passenger seat. Child restraints certified as complying with FMVSS 213's aircraft requirements are currently tested on a "representative aircraft passenger seat" (S7.3 of FMVSS 213). FMVSS 213 also specifies that FAA approved aircraft safety belts are used to test child restraints that are certified to the aircraft requirements.

Proposed Effective Date

The proposed effective date is 90 days after the publication of a final rule in the **Federal Register**.

Rulemaking Analyses and Notices

Executive Order 12866 (Regulatory Planning and Review) and DOT Regulatory Policies and Procedures

NHTSA has evaluated the impacts of this proposal and has determined that it is significant within the meaning of the Department of Transportation's regulatory policies and procedures. The rulemaking action is significant because of the substantial public interest in issues involving child seats on aircraft. This rule is a significant regulatory action under E.O. 12866.

While this action is significant because of the public interest associated with it, NHTSA tentatively concludes that a rule resulting from this notice would have minimal impacts. In 1991, there were an estimated 1,200,000 booster seats produced. The consumer cost of a label is estimated to be \$0.09 to \$0.17, and total annual costs of a separate label range from \$108,000 to \$204,000. However, adding a sentence to the existing label, most likely the course of action taken in response to this rulemaking, would cost much less. This cost might be \$0.01 per label, resulting in a total annual cost of \$12,000. There is an added economic benefit of this proposed rule. Since booster seats would no longer be permitted to be certified for aircraft, there would be no need to perform the inversion test. Thus, testing costs to the child restraint manufacturer would be slightly reduced.

The agency is concerned whether this rulemaking action could affect consumers' use of booster seats before and after the air portion of their trips. In the 1984 rulemaking that allowed child restraints to be certified for use on motor vehicles and aircraft, NHTSA recognized that parents might not use child restraints to transport their children to and from the airport if the child restraint could not be used on the aircraft. The data indicated that child safety was not a critical issue for aircraft in terms of the number of child deaths, but that it was a large problem for motor vehicles before and after the flight. Many State laws that require the use of child seats in motor vehicles do not cover all the ages of children that might use booster seats. If booster seats may not be used on aircraft, and if parents are not willing to stow them with their luggage, NHTSA is concerned about the possibility that they could be left home altogether. As a result, the number of

child injuries in motor vehicle accidents might increase. NHTSA requests comments on how it should assess this issue. The agency is particularly interested in information concerning how many of these booster seats are currently in use and on the availability of booster seats at car rental agencies.

Regulatory Flexibility Act

NHTSA has considered the effects of this proposal under the Regulatory Flexibility Act. I hereby certify that this rule, if adopted, would not have a significant economic impact on a substantial number of small entities. Of the 11 current child restraint manufacturers known to the agency (not counting manufacturers of built-in restraints), there are six that qualify as small businesses. This is not a substantial number of small entities. Regardless of the number of small entities, the proposed rule would not have a significant economic impact on these entities. As noted above, the labeling costs associated with this rulemaking would be minimal. Further, the agency believes sales of booster seats would be minimally affected by this rulemaking, if at all. NHTSA believes almost all consumers decide to purchase a child restraint based on their intent to use the restraint in a motor vehicle, not in aircraft.

Executive Order 12612 (Federalism)

This rulemaking action has been analyzed in accordance with the principles and criteria contained in Executive Order 12612. The agency has determined that this proposed rule would not have sufficient federalism implications to warrant the preparation of a Federalism Assessment.

National Environmental Policy Act

NHTSA has analyzed this rulemaking action for the purposes of the National Environmental Policy Act. The agency has determined that implementation of this action would not have any significant impact on the quality of the human environment.

Executive Order 12778 (Civil Justice Reform)

This proposed rule would not have any retroactive effect. Under section 49 U.S.C. 30103, whenever a Federal motor vehicle safety standard is in effect, a State may not adopt or maintain a safety standard applicable to the same aspect of performance which is not identical to the Federal standard, except to the extent that the State requirement imposes a higher level of performance and applies only to vehicles procured for the State's use. 49 U.S.C. 30161 sets

forth a procedure for judicial review of final rules establishing, amending or revoking Federal motor vehicle safety standards. That section does not require submission of a petition for reconsideration or other administrative proceedings before parties may file suit in court.

Submission of Comments on This Proposal

There is a 30-day comment period for this notice. The FAA provides a 30-day comment period for its proposal. NHTSA believes the comment period for the agencies' proposals should be identical since the two rulemaking actions complement each other. The comment period is shorter than 60 days so that FAA can expeditiously assess what action should be taken to address what that agency has tentatively concluded to be a possible safety problem.

Interested persons are invited to submit comments on this proposed rule. It is requested, but not required, that 10 copies be submitted.

All comments must not exceed 15 pages in length. (49 CFR 553.21). Necessary attachments may be appended to these submissions without regard to the 15-page limit. This limitation is intended to encourage commenters to detail their primary arguments in a concise fashion.

If a commenter wishes to submit certain information under a claim of confidentiality, three copies of the complete submission, including purportedly confidential business information, should be submitted to the

Chief Counsel, NHTSA, at the street address given above, and seven copies from which the purportedly confidential information has been deleted should be submitted to the Docket Section. A request for confidentiality should be accompanied by a cover letter setting forth the information specified in the agency's confidential business information regulation. 49 CFR Part 512.

All comments received before the close of business on the comment closing date indicated will be considered, and will be available for examination in the docket at the above address both before and after that date. To the extent possible, comments filed after the closing date will also be considered. Comments received too late for consideration in regard to the proposal will be considered as suggestions for further rulemaking action. Comments will be available for inspection in the docket. The NHTSA will continue to file relevant information as it becomes available in the docket after the closing date, and it is recommended that interested persons continue to examine the docket for new material.

Those persons desiring to be notified upon receipt of their comments in the rules docket should enclose a self-addressed, stamped postcard in the envelope with their comments. Upon receiving the comments, the docket supervisor will return the postcard by mail.

List of Subjects in 49 CFR Part 571

Imports, Motor vehicle safety, Motor vehicles.

In consideration of the foregoing, NHTSA proposes to amend 49 CFR Part 571 as set forth below.

PART 571—[AMENDED]

1. The authority citation for Part 571 would continue to read as follows:

Authority: 49 U.S.C. 322, 30111, 30115, 30117 and 30166; delegation of authority at 49 CFR 1.50.

2. Section 571.213 would be amended by revising S5.5.2(n) to read as follows:

§ 571.213 Standard No. 213, Child Restraint Systems.

* * * * *

S5.5.2 * * * * *

(n) Child restraint systems, other than belt-positioning seats, harnesses and backless child restraint systems, that are certified as complying with the provisions of section S8, shall be labeled with the statement "This Restraint is Certified for Use in Motor Vehicles and Aircraft." Belt-positioning seats, harnesses and backless child restraint systems shall be labeled with the statement "This Restraint is Not Certified for Use in Aircraft." The statement required by this paragraph shall be in red lettering and shall be placed after the certification statement required by paragraph (e) of this section.

* * * * *

Issued on May 19, 1995.

Barry Felrice,

Associate Administrator for Safety Performance Standards.

[FR Doc. 95-12801 Filed 6-7-95; 8:45 am]

BILLING CODE 4910-59-P