[From the U.S. Government Printing Office, www.gpo.gov]
WATER QUALITY-MONITORING IN THE PAMLICO/ALBDIARLE PENINSULA NORTH CAROLINA DEPARTMENT.OF NATURAL RESOURCES COMMUNITY DEVELOPMENT DIVISION OF ENVIRONMENTAL MANAGEMENT WATER QUALITY SECTION March 1984 TD 224 .N8 W38 1984 CEIP REPORT 39 The prepal@ation of this report (map, document, etc.) was financed through a Coastal Energy Impact Program grant provided by the North Carolina Coastal Management Program, through funds provided by the Coastal Zone Managemenj nded-, t Act of 1972, as-ame which is'administered by the Office of Coastal Zone Managementi- National Oceanic and Atmospheric Administration. This CEIP grant was part of NOAA grant number NA-83-AA-D-CZ 028.--@:.- Table of Contents Page Table of Contents i List of Tables List of Figures summary iv Introduction 1 ,Description of Study Area 2 Methodology of Sampling and Sample Analyses 16 Water Column Parametric Data 17 Fish Analysis 39 Sediment Discussion 57 Phytoplankton and Chlorophyll a Analysis 58 Benthic Macroinvertebrate-Analysis 65 References 72 AM -To TABLES Table Page (s) 1. List of Sub-basin 03-03-07 National-Pollutant Discharge Elimination System (NPDES) Permitted Discharges 5-8 2. List of Sub-basin 03-01-53 NPDES Permitted Discharges 10 3. List of Sub-basin 03-01-51 NPDES Permitted Discharges 12 4. Sampling Site Locations, Stream Classifications, and Sample types 13 5. Sampling Site Characteristics 14 6. Tabulation of Water Column Parametric Data 20-30 7. Mercury Observations by Station 34 8.' Mercury Data-by Station 35-38 9. Mercury in Fish Data 42-43 10. Cadmium in Fish Data 44-45 11. Copper in Fish Data 47-48 12. Lead in Fish Data 49-50 13. Zinc in Fish Data 52-53 14. Fish Tissue Data 54,56 15. Sediment Metals by Station 57 16. Taxa Richness, by Group, June 1983 68 17. Average Salinity. by Percentage and,Dissolved Oxygen (mg/1) at Seven-Sites 69 Taxa Richness, by Group, Combined for August 1982 and June 1983 70 19. Distribution of Abundant Chiro'nomid Taxa, July 1983 FIGURES Figure Page 1. Map of the Pamlico-, Albemarle Peninsula 2 2. Map of Sub-basin 03-03-07 National Pollutant Discharge Elimination System (NP.DES) Permitted Discharges 4 3. Map of Sub-basin 03-01-53 NPDES Permitted Discharges 9 4. Map-of Sub-basin 03-01-51 NPDES Permitted Discharges 11 5. Map of Pamlico- Albemarle Peninsula Sampling Site Locations 15 6. Graph of Mean Station Salinities 18 7. Graph of Percentage of Station Salinity Values Above 1. 0 PPTH 18 8. Graph of Mean Conductivity by Station 19 -9. Graph of Mean Total Residue by Station 19 10. Graph of Nitrogen and Phosphorus Concentrations in Bath Creek, Pungo River, and Scuppernong River, 1983 62- 11. Graph of Chlorophyll- a, Phytoplankton. Biomass, and Phyto- plankton Density at Bath Creek, Pungo Creek, Pantego Creek, Pungo River, and Scuppernong River, 1983 63 12. Graph'of Surface Water Salinity (PPTH) in.Bath Creek, Pungo Creek, Pantego Creek, and Scuppernong River, 1983 64. Summary Between January 1983 and February 1984, eleven sites in the Pamlico- Albemarle peninsula area were sampled for a wide range of water quality parameters. Primary emphasis ofthe study was placed-upon whether or not mercury exists in the ambient water, sediment,.and fish tissue present in the area ofinterest. A secondary purpose was to assess ambient water quality by examination of macroinvertebrate and phytoplankton communities. Eighty-seven water samples for total mercury analysis were collected during the study. Nine samples (10%) were determined to contain levels of total mercury above the Division of Environmental Management (DEM) laboratory's detection limit of 0.2 ug/l. Of these nine samples, the values were 0.3 ug/l (seven samples), 0.4 ug/l (one sample), and 1.6 ug/l (one sample). However, these values for total mercury may,represent either sample contamination or difficulty in analytical accuracy rather than actual environmental conditions. Fish were.collected from seven sites in the study area. Mercury was found in 73 out of a total of 102 fish (7.2%) that were analyzed for mercury. Of the fish containing mercury, one-contained a mercury concentration greater AM, than the Food and Drug Administeation's-act@,,[email protected] 1.0 mg/kg. This Ip fish was a bowfin (from Kendrick Creek) containing a mercury level of 1.3-mg/kg. Mercury was found at nine sites selected for sediment analysis. Thirteen /o) contained levels of mercury ranging up to. 0.1mg/kg. out of fifteen samples (86* There are no prescribed limits on mercury in sediment, thus these findings do not indicate violations of water quality standards and simply signify the. presence of mercury in the substrate environment. Although the sources of mercury compounds present in the Pamlico - Albemarle peninsula have not been determined, the measurement of this ubiquitous metallic element has been detailed to an extent that provides a-greater understanding of its presence in the Pamlico- Albemarle environment. At all sitea, with one exception, conductivity, salinity, and. dissolved residue values were found to be positively associated-..-@These values were indicative of'salt water intrusion from the nearby estuartne-areas.- iv The six stations sampled for phytoplankton indicated much variation in phytoplankton standing crop, utilization of available nutrients, and potential-for algal blooms. Pantego Creek, Pungo Creek, and Bath Creek showed the most potential for problems associated with eutrophication. In these creeks, inorganic nutrients were reduced to low levels and dominance by certain groups of algae (blue-greens in the summer, dinoflagellates in the fail) were observed. The Pungo River did not exhibit the same tendencies toward dominace by blue-greens shown by the three other creeks and available nutrients were not depleted early in the growing season. This may have been due to either a difference in water quality or simply the location of the station sampled. The stations on the north side of the peninsula had more nutrients than were utilized throughout the growing season. Factors other than nitrogen and phosphorous appeared to be limiting phytoplankton growth in the Alligator River and Scuppernong River. There was extensive aquatic macrophyte growth at both ofthese locations. Benthic.;nacroinvertebrates Were collected at seven sites in the Pamlico- Albemarle peninsula during June 1983. Data is also available from six of these sites-sampled in August 1982. Three sites drain into the Albemarle Sound and four sites drain into the more saline Pamlico Sound. Taxa richness values were low at all sites. Low macroinvertebrate diversity in this area is due, in part, to low current velocities, low dissolved oxygen values', and variable salinity. Intrusions of brackish water constitute a severe stress for most freshwater organisms, leading to a sharp decline in species richness. For this reason it is difficult todirectly compare the Albemarle and Pamlico sites. Within the.Albemnrle area, Kendrick Creek clearly had the best water quality. This conclusion is based on taxa richness and the abundance of certain indicator organisms. The poorest water quality was noted at the Scuppernong River area. This area had a low number of intolerant species and abundant "enrichment" indicators. -Within the Pamlico area, the stations with the poorest water quality were Pantego Creek and Pungo Creek-. This evaluati:on is based on the-abundance-of- both "enrichment" and "high organic indicator species.. Data from iBath__Creek_-::-- and the Pungo River indicated similar problems, but of, lesser severity-.-.- v INTRODUCTION Since the 1973-74 Organization of Petroleum Exporting Countriesloil embargo and oil price increase, the United States has undertaken initiatives to become energy self-sufficient. Of the many different technologies being studied and/or utilized, production of alcohol for fuel is one energy source that has been developed in the United States. A source of material suitable for methanol production and fuel exists in mass quantities in coastal wetland areas of North Carolina. This material is an organically rich substance known as peat. Peat consists of partially decomposed and, thus, carbonized plant matter. In North Carolina, these peat deposits lie near or at the surface of certain coastal areas. If such areas are drained of water, then the peat can be harvested. Once the peat has been harvested and dried, it can be burned ,to produce a gas essential to the production of methanol. The process of converting peat to methanol has raised concerns about the release of trace metals, particularly mercury, into the surrounding environ- ment. Research conducted on peat has indicated that the substance has the potential to absorb and retain metals (Krauskopf, 1967). In fact, some man- AML ufdcturing facilities that have mercury compounds in their waste-st.reams utilize peat as a filter to remove mercury from their wastewater. In December of 1980, a Peat Mining Task Force was organized to analyze issues associated with peat mining impacts. This knowledgeable group recommended that precautions be taken to protect the quality of the coastal water and dependent fish population in the area of intended peat mining.. The task group also emphasized that peat mining studies in other areas of the world can not be extrapolated to predict peat mining impacts in North Carolina. The goal of this portion of the Coastal Energy Impact Program (CE IN study was to determine levels of mercury (and other parameters) in the aquatic environment and if such levels are above government standards for water and-- fish tissue found in the Pamlico- Albemarle area. DESCRIPTION OF STUDY AREA The Pamlico- Albemarle Peninsula is a low-lying region bordered by three sounds - the Albemarle, Pamlico, and Croatan, and by an estuarine water body; the Pamlico River. The 1634 square mile peninsular area is naturally charac- terized by deep organic soils, extensive swamps, marshes, evergreen wetlands, elevations of fifteen feet or less, and a low tidal range. There are about 600 square miles of peat deposits, some as deep as 16 feet. The volume of peat resources is estimated at 300 million dry tons. The area is well-populated in terms of fish and wildlife (,F-i&,Ire 1). While the peninsula is 7(Ylo covered by forests, other land uses include four natural lakes, agriculture, small towns aid roads,all of which account for use of the remaining 3(y/& of the l1and area. V. .7 Figure 1 The Pamlico/Albemar-le Peninsula of North Carolina (outlined) An 2 Point and Non-Point Sources There are 77 discharges with NPDES permits located in the three sub- basins of the study area. Several of the large facilities (e.g. Texas Gulf Sulfur, Inc., N.C. Phosphate Co., National Spinning Co., and Whitetail Farms) possess more than one permit. The categories and numbers of dis- charging facilities are: seafood processing companies (21), manufacturing and service industries (9), municipal wastewater plants (7), water filtration plants (4), housing developments (4), state facilities (2), a large agribusiness operation, and a camp. (See Tables 1, 2, and 3 and Figures 2, 3, and 4). Non-point sources in the study area consist of towns, forests, and agri- cultural operations. Due to the,extensive area being famed, rainfall runoff from this activity has more potential impact on the ambient waters than the scattered small towns or the forested areas. Hydrology .Flow in the study area is affected by wind-driven tidal influence as well as currents from inland rivers. Fresh water present in the Pamlico'._@. Albemarle peninsula is drained from a 14,200 square-milearea (Walker, 1965). During times of low river flow or storm-driven ocean tides, the salinity of water in the peninsula area increases. Heavy spring rains pro- duce a flushing action that serves to lower salinity as-well as mitigate possibly destructive algal blooms in the Pamlico waters.. Due to the vast, physical dimensions of the sounds in the study area, total flow information is not available (Giese et. al., 1979). 3 AML lp FiguTp 2. 1*4 111V11%,t jk Aii Ilk P,4AI(.I('O Rif-t.K 2 U-Ot 55 "'Its S b-I dlt SWAMP I-.- GU .030307 10 5 L -07 Table- 1. S ub -b as in 0 3-0 3 Map 11 Discharger Receiving Strear, Latitude Alonrzitud- 1 Belhaven WWTP' Battalina Creek 35032'23.5" 76 036'44. NCO026492 (Beaufort) 2 @aola Ice Cream Co. Pamlico .35032'27". 77 003'19 NCO007595 (Beaufort) 3 Washington WWTP Kennedy Creek 35033'27" 77004'31 NCO020648 (Beaufort) 4 National Spinning Co. Tar River 350 33'20" 77004'50 NCO001627 (Beaufort) 5 Murray Nixon Fishery Far Creek 35030'29.5" 75059'3C NCO040746 (Hyde) 6 "lid-East Regional Housing Authority UT Swanquarter Bay 35025'32" 76020'02 NCO035751 (Hyde) 7 Engelha rd, Fish, S .hrimp .-& Oyster - Co, F.ar _. CrIee.k 35030'29" 75059'Y NCO000744 (Hyde) 8 Beaufort Co Elementary UT Pantevo Cr. 35 0.35'11" 76040'0-. NC0.036919 (Beaufort) 0 0 9 Singer Home Furniture- UT to Cranford Cr 35 3100' 77 06'0@ NCO033197 (Beaufort) 10 N.C. Phosphate Co Pamlico River 35024'35" 76049'3' NCO028126 001 (Beaufort) 11 N.C. Phosphate Co. Pamlico River 35()22'55.5'! 76041'0( NCO028126 - 002 (Beaufort) 12 Daniel's Seafood Muddy Creek 35020'34"' 760411'2' NCO038296 (Beaufort) 13 Carolina Seafood Muddy Creek 35P20'34.5". 76'43-'2( NCO004057 (Beaufort) 14 Texas Gulf, Inc UT to South Cr 35019'49" 76'44'5' NCO003255 005B (Beaufort) 005CD 15 Texas Gulf, Inc UT to South Cr 35019'35" '76045'0 NCO003255 005CE (Beaufort) 16 Texas Gulf, Inc. UT to Short- Creek 35 019'31" 76.044'5 -NCO003255 -005CC (Beaufort) 17 Texas Gulf, Inc. UT to South Creek 35019121,r 76044'5 NCO003255 005C (Beaufort) 005CF 5 Table I (Cont.) M-ap Jq! Discharger Receiving S tream, Latitude Lonqgitud 18 Texas Gulf, Inc UT t 'o Little Creek 35018'45" 76045'q04q2 NCqO003255 - 005D (Beaufort) - 005CG 19 Texas Gulf, Inc UT to Short Cr 35019'40" 76 0 44'22 NCqO003255 - 005CB (Beaufort) 20 Texas Gulf, Inc. UT to Long Cr. 35 019'21" .7604411 NCqO003255 - 005A (Beaufort) - 005CA 21 Aurora WWTP South Creek 35017'50.5" 76046!3'q. NCqO021521 (Beaufort) 22 National Spinning Kennedy Creek 0 NCO041548 - 001 (Beaufort) 35 33'17" 77004'3q( - 002 35033'13" 7700413q;' - 003, 35033tqO511 770043q' 23 Water Care of Pamlico UT to Kennedy Cr 35033f22-51 77004tqi NCO039268 (Beaufort) 24 Mid-East Regional Hou UT to Chapel,- Branch.-, ---35038qV59_ it sing 7707" 1 NCqO040452 (Beaufort) 25 Texas Gulf, Inc. Pamlico River 35023105t 7604612, NCqO003255 (Beaufort) 26 Texas Gulf,. Inc. Pamlico River 35023136-511 760482 NCqO003255 Oll (Beaufort) 27 Texas Gulf, Inc South Creek 35020,481, 7604311 NCqO003255 - 001C (Beaufort) 28 Texas Gulf, Inc. Bond Creek' 35020`18q2" .7604212q- NCO003255 - 002 (Beaufort) 29 Texas Gulf, Inc. UT to Lon0qg-Creek- 35019'37 7604314 NCO003255 -003B (Beaufort), 30 Texas Gulf,. Inc. Long Creek @-140q7 76044q1G NC2qO003255 - 00q03A (Beaufort) tqc 31 Texas Gulf, Inc. UT to Long Creek 35q019fl32qVt 76043 NC2qO003255 .q;q--0q04A .,.:._(,Beaufort,)-- -dick Texas Gulf, Inc. Bond Creek 35-q* 19 13" 76042q14 NC0qO003255 - 004B .(Beaufort)- 33 Texas Gulf, Inc Bond-Creek 35020'33-5q11 76o421C NC6qO003255 q-@OOIA -.,(.Beaufort-) 34 Texas Gulf, INC. .-:,,'South- Creek 216qV 5 4- 7q*8q6o4212 qvqrqnqnn-,q.7qiqgr - nqniq ------ Table 1 (Cont.) Map' Receiving Stream Laticude Discharger 35 Blue Channel Co. Pantego Creek 35032.109" 76-37'22 NCO040771 (Beaufort) 36 Belhaven Fish & Oyster Pantego Creek 35032112-511 160317126@ NCO001198 (Beaufort) 37 Belhaven WTP UT Shoemaker 35032150-511 7697,144 NCO002925 (Beaufort 38 Spencers Rest Home UT Pantego Cr. 35035107" 76040120 NCO040584 (Beaufort) 39 Aurora Packing Co. South Creek 35018,1611 76046157 NCO004081 (Beaufort) 40 Potter Oil Co. Bailey Creek 35018'30" 76048 33 NCO037044 (Beaufort) 41 Shiu - Ling Lu Pamlico River 35023121" 76-35'1@ NCO045209 (Beaufort) 42 Captn CArls Seafood Germantown Bay 35025'33" .7.6027'31 NCO03229b (Hyde) 43 Clark Marina UT Swanquarter Bay 35024,16-511 7602010@ NCO007196 (Hyde) 44 SwanquarterCrab UT SwanquarterBay 35024127" -76020101 NCO002551 (Hyde) 45 Mattamuskeet School Juniper Canal 35026124.5" 76013'0' NCO032468 (HydO 46 White Tail.Farms Intracoastal Waterway 350331.25-". 76,0253( NCO050288 001 (Hyde) 47 Whitetail Farms Intercoastal-Waterway 35133'51't 76q23'1( .,NCO050288 (Hyde) 48 Whitetail Farms Intercoastal Waterway 35034,17" 760201W NCO050288 - 003 .(Hyde.) 49 Whitetail Farms Intracoastal Waterway 35034,48.5" T601714 NCO050288 (Hyde) 50 Whitetail Farms Boundary Canal . ..... 350 -311.46.5" 7602010 NCO050288 (Hyde) 51 Whitetail Farms Boundary Canal NCO050288 -006 (Hyde) @@35032-!-17", 76019'0 7601815 -007 .35033.'561t ceased discharging Table 1 (Cont.). Map @I Discharger Receiving Stream Latitude Longitude 52 Whitetail Farms Boundary Canal .3503315011 76017'58 NCO050298 - 008 (Hyde) 53 C@'roon Brothers Seafood Oyster'Creek 35019,14-511 76033142@ NCO002470 (Pamlico) 54 Harbor Packing Co. Oyster Creek 35019114.5't- 76033t4O*' NCO002500 (Pamlico) 55 Lowland Seafood Eastham Creek 35017,47ty 76035'05 NCO004090 (Pamlico) 56 Sadler Seafood Co Goose Creek 35019114.5" 7603314C NCO049964 (Pamlico) 57 Camp Hardee Pamlico River 35028'27" 76059'44 NCO055476 (Beaufort) - 58 Hopkins Seafood & Grocery N.'Prong Wright Creek 3502442-" 76036'1@': NCO051667 (Beaufort) 59 Jordan Seafood Wright Creek 35024'49" 76.035'2E NCO051675 .'Beaufort) 60 Sea Safari Ltd. Pantego Creek 35032tO6" 76037'IE NCO046647 (Beaufort) Gl@% .'Po. 0 limb. oce IL OF C, tft 4 #YOE Cc 41 a AII'g ft'v0 t 01 ce. -15 Bee 7ree C C. anal 4a ona'VQ C-4,z 30 F AfoUntoo nal Gin nal %; 47 rQ BUY110" Cr est rn Occasin ana' 1-7 Canal B Cf. CanalA cf- cr ro z: drick en IL Table 2 Sub-basin 03-01-53 Map -Receiving Stream Discharger Latitude Longirudc 1 Columbia WWTP Scuppernong River 35055'11" 76015'12. N00020443 (Tyrrell) 2 Voliva, W.B. Oil Co. Scuppernong River 35055'04" 76015'18" NCO037664 (Tyrrell) 3 Roper WTP UT to Main Canal 3505235" 76036'42. NCO031925 (Washington) 4 N.C. Dept of Correction UT to Deep Creek 35054'59" 7.6027'55" NCO027901 (Washington) 5 Creswell WTP UT to Scuppernong 35052'35.1v 76023'24' NCO027600 (Washington) 6 Creswell High School UT to Scuppernong 35052'341, 7602335' NCO033022 (Washington)- 7 Roper WWTP Kendrick Creek 35053'12" 760 36'50' NCO036315 (Washington) 8 Lantern Acres UT to Scuppernong_-.Riir.__ 35949144M 76019100 NCO048810*001 (TyrreLl) 9 Creswell WWTP Scuppernong River - NCO048861 (Washington) 1P 1-0 Agmbk Figuye 4 'A 7-Or ......... 1#'41 IIJ- IM It zli 03 C" 51 Is iA- it Table 3 Sub-basin 03-01-51 0 Mar, Discharqp-- Receiving Stream L a t id e Loncitude 1 Dare Co. Water NCO035670 UT to Croatan Sound (Dare) 35053,13.5" 75*39140" 2 Manteo WWTP NCO025488 Shallow Bag Bay (Dare) 35054,28.5" 75040'12.5" 3 Wanchese Fish #2 Mill Creek (Dare) 35050,23.51, 75037,51.51, NCO033766 4 Wanchese Harbor Devel Mill Creek (Dare) 35*50,261, 75037147.51, NCO041386 5 Lantern Acres UT to NW Fork Alligator 35047,17.51, 761117,20.51' NCO048810-002 River (Tyrrell) 6 James Fletcher Seafood oyster Creek (Dare) 35050'22" 75037'31" NCO050873 7 N.C.D.O.T. Croatan Sound (Dare) 35052'12" 75045'10!' NCO056065 Q Stum@y Point Bay (Dare) 35041'50" 75046'10" Wahoo Sportsman, Inc. NCO049972 9 St. Elmo's Seafood Croatan Sound (Dare) - NCO057738 ANUL lp 12 TABLE 4 Sampling Site Locations, Stream Classifications, Sample Types Map Location Stream Water Number Sampling Site Classification Column Phytoplankton Sediment Benthos Fish (1) Scuppernong River at SR1105 near C-SW x x x x x Columbia, NC 02081166 (2) Alligator River above Cherry SC-SW x x x x x Ridge Landing near Gum Neck, NC 02o8117810 (3) Alligator River at Newport News SC-SW x x Point near Gum Neck, NC 0208117820 (4) Alligator River 3 miles upstream SC-SW x x from Catfish Point near Frying Pan Uj Landing, NC 02o8117830 (5) Alligator River at U.S. Hwy 264 SCI-SW x near Alligator, NC 02o8117840 (6) Kendrick Creek at SR1130 at SC x x x x Mackeys, NC 02081185 (7) Intracoastal Waterway at U.S. Hwy SC-SW x 264 near Scranton, NC 0208455655 0) Bath Creek at N.C. Hwy 92 near Sc x x x x x Bath, NC 02084534 (9) PUP40 River at U.S.,Hwy 264 near SB :x x x x x Popzer, NC 0208455650 (10) Pa,ntego Creek at N.,C. Hwy 92 at Sc X x x x x Belhaven, NC 0208455850 (11) Pungo Creek at N.C. Hwy 92 at, SC :x x x x x Sidney Crossroads, NC 0208457020 Ah W Table 5 Sampling Site Characteristics Map Location Water Bank Number Sampling Site Width Depth Color Substrate Macrophytes Composition 1 Scuppernong River at SR1105 near 300' 201 black silt alligator weed swamp C@lumbia, N.C. 02081166 2 Alligator River above Cherry 500' 251 black silt alligator weed swamp Ridge Landing near Gum Neck, NC 0208117810 3 Alligator River at Newport News .417521 81 black silt none swamp Point near Gum Neck, NC 0208117820 4 Alligator River 3 miles upstream 17,4241 10 f black silt none swamp from Catfish Point near Frying Pan Landing, NC 0208117830 5 Alligator River at U.S. Hwy 264 142256, 101 black silt none swamp near Alligator, NC 0208117840 6 Kendrick Creek at SR1130 near 2501 151 black silt alligator weed swamp Mackeys, NC 02o81185 7 Intracoastal Waterway at U.S. 5001 351 black silt none marsh, swamp Hwy 264 near Scranton, NC 0208455655 8 Bath Creek at N.C. Hwy 92 2)6401 101 brown silt lilly pads 41 high banks ,near Bath, NC 02084534 9 !Pungo River at US Hwy 264 3001 101 blacV silt none marsh pear Ponzer, NC 0208455650 10 Pan@ego 'Creek at NC Hwy 92 at 5001 151 black, silt none marsh, swamp Belhaven, NC 0208455850 1-1 Pungo Creek at NC Hwy 92 at 5001 201 .black silt none marsh, swamp Figure 5 pamlico/Albemarle Peninsula Sampling Site Locations 7- B ... I.I. P, 114 32 PIv 7:Z- -Z 7 6 elps L@ke Ph z Z- son Ur 'JA; k.1 t- -n rop 5 New Lake P 7, to - 7 T 7 2-z"CT L I i" 111 A -1: --T 3 --MATTAMUSKEET I ATI V C Methodology of Sampling and Sample Analyses Grab water samples were obtained at each site. Metals samples were collected in disposable plastic pint bottles. Other samples were collected in prepared reusable bottles. Chlorophyll a and phytoplankton samples were collected at 0.15 m below the water surface;. 'Benthic macroinvertebrates were collected by using standardized qualitative techniques (DEM, 1983). Sediment samples were collected by using a Wildco-Petersen dredge device. The collected samples were stored in acid-rinsed, glass, half-pint jars. Fish-samples were collected by using electroshccking techniques and stationary gill nets. All samples were properly preserved and cooled upon collection and then transported to the D.N.R.C.D. laboratory located near Cary, North Carolina where they were analyzed by appropriate procedures listed in Standard Methods for the Examination of Water and'Wastewater. Dif@solved oxygen, pH, alkalinity, temperature, conductivity and visual observations of cloud cover percentage, wind direction and force, presence of dead fish, degree of water turbidity, odor, and flow, presente of. suds, oil, floating debris, and sludge were assessed and recorded at each site. Conductivity, salinity, and temperature were determined by the use of a Yellow Springs Instrument (Y.S.I.) Model 33 S-C-T meter. This type of meter was subjected to twice-daily calibration procedures involving standards-of known values in order to provide accurate, reliable, quality-assured data. The dissolved oxygen concentration of water at all sample sites was determined by the use of a Y.S.I. model 57 dissolved oxygen meter. This meter was subjected to twice-daily Winkler calibration procedures to provide quality assurance for data. The pH values of water collected at all sites in this study were.determined by use of a Corning.Model 4 pH meter. This pH meter was also used to.assist in accurate acidity and alkalinity titration determinations,- The--.. pH- data-.-..,.. was quality-assured by twice-daily calibration..of..,[email protected] against buffers of known pH values. WATER COLUMN PARAMETRIC DATA Salinity, Conductivity, and Total Residue Each station within the study area, except for one, had detectable salinity levels. Mean salinities at these -stations ranged from 0.28 ppth to 6.6 ppth (Figure 6). Kendrick Creek at S.R. 1300 at Mackeys, N.C. (02081185) was the only station where no salinity values were above the detection.limit of 0.1 ppth. The Scuppernong River at S.R. 1105 near Columbia (02081166) had low salinity values with only 15% above 1.0 ppth (Figure 7). The salinity levels in these estuarine areas are due to the mixing of fresh and salt water by wind and tidal forces. The salinity in this area is also dependent on freshwater flow conditions. Salinity is more likely to be present in higher concentrations when low flow conditions exist in the river system draining upstream freshwater areas, thus allowing more salt water intrusion. Storm-driven ocean tides may also push saline waters further upstream. The creeks and rivers on the southern side of the peninsula had higher salinities during the drought conditions in the latter part.of 1983. The slightly saline conditions at most of the stations were the cause of hIgh con- ductivity and total residue values. These two parameters were present in greater concentrations when higher salinities were present. These values, ranging from 72 umhos/cm3 to 19,530 umhos/cm3 for conductivity and from 130 mg/l to 12,900 mg/_1 for total residue should not be considered abnormal- as this is quite ordinary when the dissolved constituents in seawater are present.' Conductivity is a direct measurement of the water's capacity to conduct an electric current. The highest mean conductivity value (9990 umhos/cm 3 occurred at the Intracoastal Waterway at U.S. Hwy 264 at Scranton (0208455655) .(Figure 8). The highest mean salinity value (6.6 ppth) was found here, also. The highest mean total residue value (5685 mg/1) was found at Bath Creek at N.C. Hwy 92 near Bath (02084534) (Figure 9). Due to the salinity present in the study area, the major type of residue at every station-was dissolved.._ residue. Data sum-aaries'for these and other water column parameters are presented_--- - ---- ----- in-Table 6. 17 C.E.I.P. STUDY MEAN SALINITY BY STATION 7- 6.6 5.9 p 5@3 5,4 p 4.5 T 4- 3.9 3.7 4.1 3- 2- 1 O@3 0.0 obv olp Figure 6 C.E.I.P. STUDY OF SALINITY VALUES ABOVE i.0 PPTH BY STATION 200- 180- i6o- 140- 120- 100 100 100 100 1 oe 100- 93 93 88 87 60- 40- 20 IS lb lb z zq@ z z z LMO@23 Figure 7 18 C.E.I.P. STUDY MEAN CONDUCTIVITY BY STATION 9990 10,000- 95S7 9,000- 88,14 8078 8,000- U 7,000- 6681 M H 6,000- 11 5901 S519 0 S 5,000- 4496 C M 4,000- 3,000- 2,000- 1,000- 911 401 0 MR. (bI ZI Z1, Z1, Figure C.E.I.P. STUDY MEAN TOTAL RESIDUE BY STATION 7,000- 6,000- 5627 568S 5587 5203 5,000- M 4,000- G 3527 33S2 L 3219 3,000- 2354 2,000- 1,000- 332 258 ....... 0, f4p @ 52113 527 Figure 9 19 Table 6 Water Cclimn Parametric Data Tabulat-;on 0-108 SCUPPERNONG R SR 110S NR COLUMBIA NC PEAT 37177 NORTH CAROLINA TYRRELL SOUTHEAST 030151 PASOUOTANK /TYF'A/AMBNT/STREAM 1INC01wo 03010205000 INDEX MILES PARAMETE F@ RMK NUM Ib E R MEA@ VARiANCE STAN D@V COEF* VAR STAND ER MAXIMUM MININI 00010 WATER TEMP CENT 26 18.7153 47.75S8 6.?1055 .367246 1.3555-2:7 29-0000 5 - 70- 000'76 TURB T R B I D M T R HACH FTU 11 16.9364 184.829 13.5952 .802721 4.09910 45.0000 6.80@ 00094 CNDUCTVY FIELD MICROMHO 26 400.885 299050 546;855 1.36412 1,07.2-47 2380.00 9i.0- 00300 DO MG/L 26 3.33076 6.44462 2.53863 .762175 .497865 8.20000 .100 00310 -SOD 5 CIA MG/L 18 2.51111 1.369ZO @1 .1701 7/ . .4639" .27581:2 5 a 00000 1 - -'(' 00400 PH SU 25 @.09199 .25.2452 .502446 .092476 .100489 -j.70000 -4.6C- 00431 T ALK @rIELD MG/L 8 23.7500 70.2143 9.37940 .35"817 2i96256 40.0000 10.0 00480 SALINITY PPTH 19 .284210 .280292 .529426 1.86280 .121459 2.10000 .00c K 1 .100000 .100000 - I "'. . .' TOT 20 .275000 .267237 .516949 1.87982 .115597 2.10006 .00Q Aft 00500 RESIDUE TOTAL MG/L 18 332.500 99277.6 315.084 .9476-10 74.265@ 1400.00 160. 00530 RESIDUE TOT NFLT MG/L 18 10.5556 74.8497 8.65157 .819622 2.03919 41-0000 3.00 01002 ARSENIC AS,TOT US/L- K 8 10.0000 .000000, .000000 - - .000000 10.0000 10.0 01027 CADMIUM CD,TOT UG/L K 11 22.7273 91.8187 9.04537 .397996 2.72728 50.0000 20.0 01034 CHROMIUM CRFTOT UG/L 1 60.0600 60.0000 60.0 K 10 50.0000 .000000 .000000 .000000 50.0000 50.0, TOT 11 so 9091 9 09-158 3 01539 @59231 909174 60 0000 50 0 01042 COPPER CUYTOT UG/L K il 21:81S2 [email protected] 6:03026 :276387 i.81819 40:0000 20:0 01051 LEAD PB,TOT UG/L N., 11 100.000 .000000 .000000 .000000 100.000 160. 01067 NICKEL NIyTOTAL UG/L K 11 100.000 .000000 .000000 .000000 100.000 100. 01092 ZINC ZNPTOT UG/L 1 30.0000 30.0000 30.0 K 10 23 0000 90 0000 9.48683 .412471 3.00000 50.0000 20.0 TOT 11 23:6363 85:4555 9 24421 391101 2 78723 50 0000 20 0 31616 FEC COLI MFM-FCBR /100ML 10 1792.00 285E+08 5i45.05 @.98273 1;90.25 17;00.0 10:0 K 1 10.0000 10.0000 10.c TOT 11 1630.00 .260E+08 50?9.14 3.12831 1537.45 17000-0 10.C 32209 CHLRPHYL A UG/L 15 11.1813 212.567 14.5797 1.30393 3.76446 51.0000 1.0C K 3 1.00000 .000000 .000000 .000000 1.00000 1.0c TOT 18 9.48444 190.300 13.7949 1.45448 3.25149 51.0000 1.0C 32213 PHPHTN-A FLR MTHD UG/L 11 5.15545 6.807e4 2.6091B .506102 .786698 10.0000 2.00 K 7 1.00000" .000000 .000000 .000000 1.00000 1.00 TOT 18 3.53944 8.34976 2.88959 .816398 .681084 10-0000 1.0C 32217 CHLRPHYL A UG/L 17 11.823S 215.904 14.6937 1.24275 3.56374 4-0.0000 I.OC Adak 20 Table 6 continued 020ail7el ALLIGATOR R US CHERRY RIDGE LANDING PEAT 37177 NORTH CAROLINA TYRRELL SOUTHEAST 030151 PASQUOTANK /TYPA/AMBNT/ESTURY 21NCO1WQ 821030 PARAMETER RMK NUMBER MEAN, VARIANCE STAN DEV COEF VAR STAND ER MAXIMUM MINIMUM 00010 WATER TEMP CENT 9 19.8444 64.3579 8.02.234 .404261 2.67411 29-2000 9.00000 00076 TURB TRBIDMTR HACH FTU 4 4.30000 9.42668 3.07029 .714021 1.53514 8.20000 1.-00000 00094 CNDUCTVY FIELD MICROMHO 9 4495.55 .136E+08 3690.97 -821027 1230.32 10140.0 288.000 00300 DO MG/L 9 6.25555 4.46036 2.11196 .337613 .703985 9.60000 4.10000 00310 BOB 5 DAY MG/L 5 1.22000 .052001 -228036 .186915 .101981 1.60000, 1.OOOOA -00400 _PH SU 8 5.62500 .476438 .690245 .122710 .244038 6.60060@ 4.50000 00 431 T ALK FIELD MG /L 2 6.00000 72'.0006 8.48528 1.41421 6.00000- 12.0000 000000 00480 SALINITY PPTH 6- 4.51666 4.57370 2.13862 .473496 .873089 7.00000 . i.90000 00500 RESIDUE TOTAL MGIL S 2354.00 3873129 1968.03 .836035 890.128 4610.00 270.000 00530 RESIDUE TOT NFLT MG/L 5 5.20000 16.7000 4.08656 .785878 1.82757 12.0000 2.00000 01002 ARSENIC ASPTOT UG/L K 1 10.0000 10.0000 10.0000 01027 CADMIUM CDPTOT UG/L K 5 26@0000 180 000 13;4164 .516016 6 00000 50 0000 20 0000 01034 CHROMIUM CR,TOT UG/L K 5 50.0000 .00;000 .0 0000 .;00000 50:0000 50:0000 01042 COPPER CUPTOT UG/L K 5 24.0000 80.0000 8o94427 .372678 4.00000 40-0000 @20.0000 01051 LEAD PBFTOT UG/L K 5 100.000 .000000 .000000 .000000 100.000 100.000 0106Z NICKEL NI,TOTAL UG/L K 5 100.000 .000000 .000000 .000000 100.000 100.000 01092 ZINC ZNYTOT UG/L 1 40.0000 - 40.0000 40.0000 K 4 27.5000 225.000 15.0000 .545454 7.50000 50.0000 20.0000 TOT 5 30.0000 200.000 14.1421 .471404 6.32456 50-0000 20.0000 31616 FEC COLI MFM-FCBR /100ML 3 113.333 15233.3 123.423 1.08903 71.2585 250.000 10@0000 K 2 10.0000 .000000 .000000 .000000 10.6000 10 00001 TOT 5 72 0000 10820.0 104 019 1 44471 46 5188 250.000 10:0000 32209 CHLRPHYL A UG/L 4 4.;0000 4.33333 2.0;167 Z2592 1.;4083 7.00000 2.00000 K 2 1.00000 .000000 .000000 .000000 1.00000 1.00000; TOT 6 3.33333 5.86668 2.42212 .726637 ..988828 7.00000 1 000001 32213 PHPHTN-A FLR MTHD UG/L 5 2.00000 1.00000 1.00000 .500000 .447214 3.00060 1:00000' K 1 1.00000 1.00000 1-.00000i TOT 6 1.83333 .966669 .983193 .536287 .401387 3.00000 1.00000 32217 CHLRPHYL A UG/L 6 4.50000 5.90000 2.42899 -.539776 .991632 8.00000 1.00000 21 Table 6 continued 0208117820 ALLIGATOR RIVER NEWPORT NEWS POINT PEAT 37177 NORTH CAROLINA TYRRELL SOUTHEAST 030151 PASQUOTANK /TYPA/AMBNT/ESTURY 21NCOIWQ 811024 PARAMETER RMK NUMBER MEAN VARIANCE STAN BEV COEF VAR STAND ER MAXIMUM MINIMUM 00010 WATER TEMP CENT " 20-1818 43.2848 6-57912 .325993 1.40267 27.0000 8.00000 00076 TURB TRBIDMTR HACH FTU 3 9.10000 91.8301 9-582-80 1.05305 5.53263 20.0000 2.00000- 00094 CNDUCTVY FIELD MICROMHO 22 5811.09 7159027 2675.64 .460436 570.447 12000.0 1520.00 .00300 DO MG/L :@;2 8.14090 3.41384 1.84744 .226933 .393876 11.21000 3.40000 00310 BOD 5 DAY MG/L 10 1,14000 .113778 .337310 .295886 .106667 1.80000 .700000 00400 PH su 21 6.31428 .212317 .460779 .072974 .100550 7.00000 5.20000 00431 T ALK FIELD MG/L 1 10.0000 72.0000 8.48528 .848528 6.00000 16.0000 4.00000 00480 SALINITY PPTH 19 3.85789 2.93704 1.71378 .444227 .393168 7.00000 1.00000 00500 RESIDUE TOTAL MG/L 11 3219.09 12168e9 1103.13 .342683 332.605 4400.00 930.000 00530 RESIDUE "TOT NFLT MG/L 11 10.0000 50.2000 7.08520 .7oes19 2.13427 26.0000 2.00000 01027 CADMIUM CDvTOT UG/L K 3 30.0000 300.000 17.3205 .577350 10.0000 ;0.0000 20.0000 01034 CHROMIUM CR,TOT UG/L K 3 50.0000 .000000 .000000 .000000 50.0000 50.0000 01042 COPPER CUPTOT UG/L K 3 26.6667 133.334 11.5470 .433014 6.66669 40,0000 20.0000 01051 LEAD PBPTOT UG/L K 3 100.000 .000000 .000000 .000000 100.000 100.000 01067 NICKEL NIrTOTAL UG/L K 3 100.000 .000000 .000000 .000000 100.000 100.000 01092 ZINC ZNvTOT UG/L K 3 30.0000 300-000 17.3205 .577350 10.0000 50.0000 20.0000 31616 FEC COLI MFM-FCBR /100ML 1 30-0000 30.0000 30.0000 K 2 10.0000 .000000 .000000 .000000 10.0000 10.0000 TOT 3 16.6667 133.334 11.5470 .692822 6@66668 30.0000 10-0000 32209 CHLRPHYL A UG/L 12 4.32500 3-14022 1-77207 .409726 .511551 7.00000 1.00000: 32213 PHPHTN-A FLR MTHD UG/L 8 2.15500 .763635 e73862 .405505 .308957 3.24000 1.00000 K 4 1.00000 .000000 .000000 .000000 1.00000 1.00000 TOT 12 1.77000 .809352 .899640 .508272 .259704 3.24000 1.00000 32217 CHLRPHYL A UG/L 11 5.18182 4.96365 2.22792 .429950 .671744 9-00000 2-00000 22 Table 6 ccntinued Ah 020811783C ALLIGATOR RIVER 3 MILES US CATFISH POINT PEAT 37177 NORTH CAROLINA TYRRELL SOUTHEAST 030151 PASOUOTANK /TYPA/AMBNT/ESTtJRY 21NC01WO 811024 PARAMETER RMK NUMBER MEAN VARIANCE STAN DEV COEF VAR STAND ER MAXIMUM MINIMUM 00010 WATER TEMP. CENT 22 19.8681 46.5716 6.8-434 ;343482 1.45495 27.2000 9.10000 00076 TURP TRBIDMTR HACH FTU 3 9.43333 83.763S 9.15-224 .970203 5.28405 2-0.0000 4.00006 00094 CNDUCTVY FIELD MICROMHO 22- 5900.68 2323078 1524.16 .-'S8303 324.?53 7400-00 2850-00 00300 . DO MG/L 22- e.66818 3.08611 .1.75673 .201-665 .37453- 11.5000 4.56oo,,.,. 00310 BOD 5 DAY MG/L 10 1.07000 .100111 .316403 .295704 .100056 1.60000 .500000 00400 PH SU 21 6.58095 .124609 .353000 .053640 .077031 7.60000 6.00000 00431 T ALK FiELD MG/L 14.5000 40.5000 6.36396 .43e894 4.50000 19.0000 10.0000 00480 SALINITY PPTH 18 3.84444 .862635 .91-8781 .241591 -218916 5.30000 1.6000-.,-' 00500 RESIDUE TOTAL MG/L 11 3494.55 8722" 933-932 .267254 '81.591 4410-00 1700.00 ASk 00530 RESIDUE TOT NFLT MG/L 11 1-5.5454 1596.57 39.8755 1.56@97 12.0230 140.000 3.00000 01027 CADMIUM CDYTOT UG/L K 3 30 0000 300-000 17-3205 .577350 10.0000 50.0000 20-0000 w 01034 CHROMIUM CRYTOT UG/L K 3 50:0000 .000000 .000000 .000000 50.0000 50.0000 01042 COPPER CU,TOT UG/L K 3 2-6.6667 133.334 ll.S470 .433014 6.66669 40.0000 20.0000 01051 LEAD PB,TOT UG/L K 3 100.000 .000000 .000000 .000000 100.000 100.000 01067 NICKEL NIrTOTAL UG/L K 3 100.000 .000000 .000000 .000000 100.000 100.000 01092 ZINC ZNYTOT UG/L K 3 30.0000 300.000 17.320S .577350 10.0000 50.0000 20.0000 31616 FEC COLI MFM-FCBR /100ML K 3 10.0000 .000000 1000000 .000000 10.0000 10-0000 32209 CHLRPHYL A UG/L 11 4.40182 3.32405 1.82320 .414192 .549715 9.00000 2.00000 32213 PHPHTN-A FLR MTHD UG/L 5 4.19600 7.71209 2.77706 .661836 1.24194 8.00000 1.00000 K 6 1.00000 .000000 .000000 .000000 1.00000 1.00000; TOT 11 2.45273 5.87059 2.42293 .987852 .730541 8.00000 1.00000 32217 CHLRPHYL A UG/L 10 5,70000 12.9000 3-59166 .630116 1.13578 15.0000 2.000OOr 23 Table 6 continued 0208117840 ALLIGATOR R & US HWY64 NR ALLIGATOR NC PEAT 37177 NORTH CAROLINA TYRRELL SOUTHEAST 030151 PASQUOTANK /TYPA/AMBNT/ESTURY 2INC01WQ BI 1024 PARAMETER RMK NUMBER MEAN, VARIANCE STAN DEV COEF VAR STAND ER MAXIMUM MINIMUM 00010 WATER TEMP CENT 22- 19.7908 44.9689 .6.70589 .338838 1.42970 27.5000 8.00000 00076 TURB TRBIDMTR HACH FTU 3 9.46666 35.2534 5.93746 .627196 3.42799 16.0000 4.40000- 00094 CNDUCTVY FIELD MICROMHO 22 5519.45 1616188 1271.29 .230330 271.041 7170.00 3050.00 00300 DO MG/L - 8.67272 -1.3S547 1.53475 .176963 .327211 10.9000 6.00000 -00310' BOD 5 DAY MGIL 10 1.20000. .057780 .240374 .20031' ..0760.13 1.60000 ..900000 00400 PH su 21 6.58571 .108313 .329109 04997@ .071817 7.60000 6.10000 0OA31 T ALK FIELD MG/L 2 14.5000 40.5000 6.36396 :438894 4.50000 19.0000 10.0000 00480 SALINITY PPTH 2- 1 3-65714 .732581 .855909 .2-34038 .186775 5.40000 1.80000 00500 RESIDUE TOTAL MG/L 11 3351.8-2 719437 848.196 .253056 255.741 4200.00 1806.00 00530 RESIDUE TOT NFLT MG/L 11 11.5455 140.473 11.8521 1.02656 3.57355 45.0000 1.00000 01027 CADMIUM CDrTOT UG/L K 3 30.0000 300.000 -17.3205 .57735o 10.0000 50.0000 20.0000 01034 CHROMIUM CRtTOT UG/L K 3 50.0000 .000000 ..000000 .000000 50.0000 50.0000 01042 COPPER CUPTOT UG/L K 3 2.6.6667 133.334 11.5470 .433014 6.66669 40.0000 20.0000 01051 LEAD PBrTOT UG/L K 3 100.000 .000000 .000000 .000000 100.000 100.000 01067 NICKEL NIPTOTAL UG/L K 3 100.000 .000000 .000000 .000000 100.000 100.000 01092 ZINC ZN,TOT UG/L K 3 30.0000 300.000 17.3205 .577350 10.0000 50.0000 20.0000. 31616 FEC COLI MFM-FCBR /100ML K 3 10.0000 .000000 .000000 .000000 10.0000 10.0000, 32209 CHLRPHYL A UG/L 11 5.84091 7.32844 2.70711 .463474 .816224 11.0000 2.00000 32213 PHPHTN-A FLR MTHD UG/L 4 2.64500 2.89077 1,70023 .642808 .850113 5.00000 1.00000 K 7 1.00000 .000000 .000000 .000000 1.00000 1.000001 TOT 11 1.59818 1.55604 1.24741 .780522 .376110 5.00000 1.00000' 32217 CHLRPHYL A UG/L 10 6.50000 11.6111 3.40751 .524232 1.07755 12.0000 2.00000 .300000 .300000 24 Table 6 continued 0.0811st KENDRICK CR 0 SR1300 MACKEYS NC PEAT 37187 NORTH CAROLINA WASHINGTON SOUTHEAST 030153 PASQUOTANK /TYPA/AKBNT/ESTURY 21NC01WO 811024 INDEX MILES PARAMETER @MK N@MBER MEAN', VARiANCESTAN DE*V COEF* VAR STAND ER MAXIMUM MINIMUM 00010 WATER TEMP CENT 9 19.0555 54.3781 7.37415 .386982 2.45805 29.0000 6.20000 00076 TURB TRBIDMTR HACH FTU 6 23.7833 795.482 28.2043 1.18588 11.5144 80.0000 5.20000 00094 CNDUCTVY FIELD MICROMHO 9 911.333 4586926 2141.71 2.35009 713.904 6600.00 72.0000 00300 bo MG/L 9 5.46666 10.9276 3.30568 .604699 1.10189 10.2000 -100000 00310 BOD 5 DAY MG/L 8 2.02500 .742.150 B61482 .425423 .304580 3.30000 1.00000 00400 PH SU 9 6.13333 .367584 .606287 .098851 .202096 7.00000 5.20WO 00431 T ALK FIELD MG/L 4 25.0000 120.667 10.9848 .439393 5.49242- 739.0000 14.0000 00480 SALINITY PPTH 1 .000000 .000000 .00000(., K 2 .100000-.372E-08 .000000 - .000000 .100000 .100000 TOT 3 .066667 .003333 .057735 .866027 .033333 .100000 .000000 00500 RESIDUE TOTAL MG/L 8 258.000 11025.4 105.002- .40698S 37.1238 419.000 130.000- 00530 RESIDUE TOT NFLT MGIL 8 10.2500 132,786 11-5233 1.1-2422 4.07409 38.0000 3;0000,', 01002 ARSENIC ASPTOT UG/L K 2 10.0000 .000000 .000000 .000000 10.0000 10.000.0 01027 CADMIUM CDrTOT UG/L 1 20.0000 20.0000 20.0000 K 5 26.0000 180.000 13.4164 -516016 6.00000 50.0000 20-0000 TOT 6 25.0000 150.000 12-2474 .489898 5.00000 50.0000 20-0000 01034 CHROMIUM CRPTOT UG/L K 6 50.0000 .000000 .000000' .000000 50.0000 50.0000 01042 COPPER CU,TOT UO/L K 6 23.3333 66.6670 8.16499 .34992e 3.33334 40.0000 20-0000 01051 LEAD PB,TOT UG/L 1 100.000 100.000 100.000 K 5 100.000 .000000 .000000 .000000 100.000 100.000 TOT 6 100.000 .000000 .000000 .000000 100.000 100.000 01067 NICKEL NI,TOTAL UG/L 1 100.000 100.000 100.000 K 5 100.000 .000000 .000000 .000000 100.000 100.000 TOT 6 100.000@ .000000 .000000 .000000 100.000 100.000 01092 ZINC ZN,TOT UG/L 1 90.0000 90.0000 90.0000 K 5 26.0000 180.,000 13.4164 '.516016 6.00000 50.0000 20.0000 TOT 6 36.6667 826.668 28-7518 .784141 11.7379 90.0000 20.0000 31616 FEC COLI MFM-FCBR /100ML 6 703.333 2453547 1566.38 2.22708 639.472 3900.00 20.0000 32209 CHLRPHYL A UG/L 7 10.0000 148.333 12.1792 1.21792 4.60331 35.0000 1.00000 K 1 1.00000 1.00000 1.00000 TOT 8 8.87500 137.268 11.7161. 1.32013 4.14228 35.0000 1-00000 32213 PHPHTN-A FLR MTHD UGIL S 5.20000 9.20002 3.03315 .583299 1.35647 10.0000 2.00000 K S 1.00000 .000000 .000000 .000000 1.00000 1.00000 TOT 8 3.62500 9.78214 3.15945 .871573 1.11703 10.0000 1-00000 32217 CHLRPHYL A UG/L 8 11.5000 184.286 13.5752 1.18045 4.79955 41.0000 .2.00000 25 Table 6 continued 02084556t INTRACOASTAL WATERWAY US HWY264 SCRANTON PEAT 37095 NORTH CAROLINA HYDE SOUTHEAST 030151 PASQUOTANK /CANAL/TYPA/AMBNT 21NC01WO 811024 INDEX MILES PARAMETER @MK N@MBER MEA@ VARIANCE ;TAN D@V COE@ VAR STAND ER MAXIMUM MINIMUM 00010 WATER TEMP CENT 8 19.2750 75.6994 8.70054 .451390 3.07610 31.3000 4.00000 00076 TURB TRBIDMTR HACH FTU 10 11.4200 54.8507 7.40612 -648522 2.3420' 25.0000 4.00000 00094 CNBUCTVY FIELD MICROMHO 8 9990.50 .302E+08 5498.21 .550344 1943.91 16320.0 1600-00 00300 DO MG/L 8 7.77500 8.01357 2.83082 -364093 1.00085 11.0000 3.50000 00310 BOD 5 DAY MG/L 7 '2.80000 3.09335 1.75879 -628141 .664762 6.30000 1. 10000' L 1 7.70000 7.70000 7.70000 TOT 8 3.41250 5.652.70 2.37754 -696716 .840587 7.70000 1.10000 00400 PH SU 7 6.74285 .306274 .553421 -082075 .209173 7.60000 6.00000 00431 T ALK FIELD MG/L 7 3L.3857 362-221 19.0321 -606394 7.19346 62.6000 8.00000 00480 SALINITY PPTH 8 6 1.19253 11.0000 .800000 -62500 13-3650 3.65582 -551321 00500 RESIDUE TOTAL MG/L 6 5626.66 .276E+08 5261.07 .935024 2147 S' 12900@0 350.000 00530 RESIDUE TOT NFLT MG/L 10 25.3000 333.568 18.2638 -72.1891 5-77;5@ [email protected] 5-00000@ 01002 ARSENIC ASPTOT UG/L K -3 10.0000 .000000 .000000 .000000 10.0000 10.0000 01027 CADMIUM CDrTOT UG/L K 11 30.9091 229.092 15.1358 -489687 4.56361 50-0000 26-0000 01034 CHROMIUM CRPTOT UG/L K 11 50.0000 .000000 .000000 .000000 50.0000 ;0.0000 01042 COPPER CUrTOT UG/L 1 60.0000 60-0000 60.0000 K 10 26.0000 93.Z333 9.66092 -371574 3.05505 40.0000 20.0000 TOT 11 29.0909 189.092 13.7511 .472694 4.14611 6q.0000 20.0000 01051 LEAD PB,TOT UG/L 4 150.000 3333.33 57.7350 -384900 28.8675 200.000 100.000 K 7 100.000 -000000 .000000 .000000 100.000 100.000 TOT 11 118.182 1636.37 40.4521 -342287 12.1968 200.000 100-000 01067 NICKEL NT,TOTAL UG/L K 11 100.000 .000000 .000000 .000000 100.000 .100.000 01092 ZINC ZNrTOT UG/L 3 46.6667 233.336 15.2753 -327329 8.81922 60.0000 30-0000 K 8 27.5000 192.957 13.ee73 .504993 4.90990 50.0000 20-0000. TOT 11 32.7273 261.819 16.1808 -494414 4.87870 60.0000 20-0000 31616 FEC COLI MPM-FCBR /100ML 5 58.0000 5070.00 71.2039 1.22765 31.8434 180.000 10.0000 32209 CHLRPHYL A UG/L 8 27.2500 831.357 28.8333 L.05810 10.1941 76.0000 1-00000 K 1 1.00000 1.00000 1.00000 TOT 9 24.3333 804.000 2B.3549 1.16527 9.45163 76.0000 1.00000 32213 PHPHTN-A FLR MTHD UG/L 6 6.33333 7.86669 2.80476. .442857 1.14504 11.0000 3.00000 K 3 1.00000 -000000 -000000 .000000 1.00000 1.00000 TOT 9 4.55556 12-0278 3.46811 .761292 1.15604 11.0000 1.00000 32217 CHLRPHYL A UG/L. 9 25.3333 595.750 24.4080 -963474 8.13600 66.000.0- 3.00000 26 Table 6 continued 0208453L BATH CREEK @ NC HWY 92 NEAR BATH NC PEAT 37013 NORTH CAROLINA BEAUFORT SOUTHEAST 030307 TAR-PAMLICO RIVER /TYPA/AMBNT/ESTURY 21NCOIWQ 770527 INDEX MILES PARAMETER RMK NUMBER MEA@ VARiANCE STAN DEV COEF VAR STAND ER MAXIMUM MINIMUM 00010 WATER TEMP CENT 16 20.6625 51.1349 7.15087 .346080 1.78772 30.9000 10.0000 00676 TURB TRBIDMTR HACH FTU 14, 13.0714 107.559 10.3711 .793415 2-77178 44.0000 5.00000 00094 CNDUCTVY FIELD MICROMHO 16 8077.81 .339E+08 58-25.88 .7212-20 1456.47 17180.0 540.000 00300 DO MG/L 16 8.94999 2.72407 1.65048 .184411 .412619 10.BOO'O 4.30000 00310 Borl 5 DAY MG/L 14 3.96428 1.5332-9 1.2382-6 .312354 .33@939 6.10000 1.70000 L 1 8.40000 8.40000 8.40000 TOT 15 4.25999 2.73547 1.65393 .388246 .427042 3.40000 1.70000 60400 PH su 15 7.51999 .814610 -902557 .116912 .233039 B.90000 6.00000 00431 T ALK FIELD MG/L 14 38.0571 2?9.536 17.3071 .454766 4,62552 65.0000 18.0000 00480 SALINITY PPTH 15 5.25333 12.3370 3-51240 .668605 .906898 10-8000 .000000 00500 RESIDUE TOTAL MG/L 4 5685.00 9;61498 3124.34 .549576 1562.17 84.80.00 @2970.0(',, 00530 RESIDUE TOT NFLT MG/L 15 15.0000 38.5714 6-21059 .414039 1.60357 32.0000 8.00000- 01002 ARSENIC ASPTOT UG/L K 9 10.0000 .000000 .000000 .000000 10.0000 10.0000 01027 CADMIUM CD,TOT UG/L K 14 26.4286 163.188 12.7745 .483360 3.41413 50.0000 20.0000 01034 CHROMIUM CR,TOT. UG/L K 14 50.0000 .000000 .000000 .000000 50.0000 50.000 0 01042 COPPER CUYTOT UG/L K 14 24.2857 72.5282 8.51635- .350673 2.27609 40.0000 .20.0000 01051 LEAD PBvTOT UG/L 3 100.000 .000000 .000000 .000000 100.000 100.000 K 11 100.000 .000000 .000000 .000000 100.000 .100.000 TOT 14 100.000 .000000 1000000 .000000 100.000 100-000 01067 NICKEL NIPTOTAL UG/L K 14 100.000 .000000 .000000 .000000 100.000 100.000 01092 ZINC ZNYTOT UG/L 3 36.6667 433.334 .20.8167 .567728 12.0185 60.0000 20.0000 K 11 25.4545 147.273 12.1356 .476757 3.65903 50.0000 20,0000 TOT 14 27.8@71 202.748 14-2390 .511143 3.80552 60.0000 20.0000 31616 FEC COLI MFM-FCBR /100ML 11 51.8182 4S36.36 69.5440 1.34208 20.9683 240%000 10-0000 K 5 10.0000 .000000 .000000 @000000 10.0000 10.0000 TOT 16 38.7500 3625.00 60.2080 1.55375 15.0520 240.000 10.0000 32209 CHLRPHYL A UG/L 15 26.7333 793.496 28.1691 1.05371 7.27322 120@000 4.00000 32213 PHPHTN-A.. FLR MTHD UG/L 14 8.64286 39.7857 6.30759 .729804 1.68577 27.0000 1-00000 K 1 1.00000 1.00000 1.00000 TOT 15 8.13333 40.8381 6.39047 @7e5713 1.65001 27.0000 1.00000 32217 CHLRPHYL A UG/L 15 32.1333 900.981 30,0164 .934119 7.75019 130.000 4.00000 27 Alb, Lable continued 020845f PUNGO RIVER &US HWY 264 NR PONZER NC PEAT 37013 NORTH CAROLINA BEAUFORT SOUTHEAST 030307 TAR-PAMLICO /TYPA/AMBNT/ESTURY 21NCOIWG 811024 INDEX MILES PARAMETER RMK N6MBER MEA@ VARiANCE STAN DiV C06 VAR STAND ER MAXIMUM MINIMUM 00010 WATER TEMP CENT 14 20.5071 48.5168 6.96540 .339658 1.86158 32,0000 11-0000 00076 TURB TRBIDMTR HACH FTU 16 8.01875 37.8722 6.15404 .767457 1-53851 28.0000 3-30000 000?4 CNDUCTVY FIEL.11 MICROMHO 14 6681.21 .306E+08 5535.17 .828469 1479.34 15300.0 136.000 00300 DO MG/L 14 7.17142 4.75452 2.18049 .304052 -582760 11.2000 4.0000, 00310 BOD 5 DAY MG/L 14 1.86428 .610175 .781137 .419002 -208768 3.80000 1.0000@ 00400 PH SU 14 6.51428 .445951 .667796 .102513 .178476 7.20000 4.6000C 00431 T ALK FIELD MG/L 13 25.2846 1S8.471 12.5885 .497873 3.49143 56.5000 8-0000, 00435 T ACDITY CAC03 MG/L 17.0000 2.00000 1.41421 .083139 1-00000 18.0000 16.000@ 00480 SALINITY PPTH 14 4.05714 10.4488 3.23246 .796733 .863910 9.00000 .000,00- 00500 RESIDUE TOTAL MG/L 6 3526.67 .149E+08 3865.89 1.09619 1578.24. 10800.0 200..0u, .00530 RESIDUE TOT NFLT MG/L 17 8.11765 27.8603 5.27829 -6502.24 1.29017 1B.0000 2-0000, 01002 ARSENIC AS,TOT UG/L K 12 10.0000 .000000 .000000 .000000 10.0000 10,000. 01027 CADMIUM CD,TDT UG/L K 17 25.2941 138.971 11.7886 .466061 2-85916 50.0000 20.00'" 01034 CHROMIUM CR,TOT UG/L K 17 50.0000 .000000 .000000 .000000 50.0000 50-00G 01042 COPPER CU:TOT UG/L K 17 23.5294 61.7654 7.85910 .334012 1.90611 40.0000 20.00t- 01051 LEAD PB TOT UG/L 2 150.000 5000.00 70.7107 .471404 50.0000 200.000 100.00. K 15 100.000 .000000 .000000 .000000 100.000 100.009 TOT 17 105.882 588.242 24.2537 .229063 5.98239 '200.000 100.00; 01067 NICKEL NIPTOTAL UG/L K 17 100.000 .000000 .000000 .000000 100.000 100.00( 01092 ZINC ZNPTOT UG/L 2 20.0000 .000000 .000000 .000000 20.0000 20-000@ K 15 26.0000 154.286 12.4212 .477738 3.20713 50.0000 20.000, TOT 17 25.2941 138.971 11.7886 .466061 2.85916 50-0000 20.000( 31616 FEC COLI MFH-FCBR /100ML a 122.500 20392.9 142.804 1.16574 50.48a7 440.000 20.000- K 2 10.0000 .000000 .000000 .000000 10.0000 10.000, TOT 10 100.000 18111.1 134.578 1.34577 42.5571 440.000 10.000k 32209 CHLRPHYL A UG/L 9 11.8889 158.611 12.5941 1.05932 4.19803 34.0000 1.0000, K 2 1.00000 .000000 000000 .000000 1.00000 1.00004 TOT 11 9.90909 146.291 12.0951 1.2.2060 3.64680 34.0000 1-0000, 322-13 PHPHTN-A FLR MTHD UG/L 10 4.60000 16.0444 4.00555 .870772 1-26667 IS.0000 1-00001 K 1 1.00000 1.00000 1.0000, TOT 11 4.27273 15.6182 3.95199 .924933 1.19157 '15.0000 1.0000' 32217 CHLRPHYL A UG/_L Ll L2.7273 177.018 13.3048 1.04538 4-01155 43.0000 3-0000- 28 lable 6 continued 02'0845' PANTEGO CREEK @ NC HWY 92 @BELHAVEN NC PEAT 37013 NORTH CAROLINA BEAUFORT SOUTHEAST 030307 TAR-PAMLICO /TYPA/AMBNT/ESiURY 21NC01WQ 811024 INDEX MILES PARAMETER RMK NUMBER MEA@ VARiANCE ;TAN DiV COE@ VAR STAND ER MAXIMUM MINIMUM 00010 WATER TEMP CENT 15 19.6066 46.7974 6.84086 .348906 1.76630 29.9000 10-0000 00076 TURB TRBIDMTR HACH FTU 16 14,7625 116,535 10.7952 .731256 2.469979 36.0000 4.10000 00094 CNDUCTVY FIELD MICROMHO 15 8843.86 .314E+08 5607.73 .634081 1447.91 19530.0 880.000 00300 DO MG/L 15 9.09333 6.24927 2.49985 .2.74911 .645459 16.2000 5.6000C 00310 BCD 5 DAY MG/L 14 4.45713 13. 8_226 3.71788 .834141 .993645 16.0000 1.00000 L 1 7.60000 7.60000 7.6000C TOT 15 4.66666 13.4938 3.67339 .787156 .948465 16.0000 1.0000( 00400 PH SU 14 7,53571 .576360 .759184 .100745 .202900 8.60000 6.0000( 00431 T ALK FIELD MG/L 14 38.7143 253.231 15.9132 .411043 4.25299 65.6000 9.0000( 00435 T ACDITY CAC03 MG/L 1 16.0000 16.0000 16.000@_ 00480 SALINITY PPTH .1.5 5.43333 lf.5467 3.39804 .62540' .877371 1'2.5000 .40000i 00500 RESIDUE TOTAL MG/L. 6 5203.33 .202E+08 4503.01 .865408 1838.35 12200.0 930.00, 00530 RESIDUE TOT NFLT MG/L 17 18.2941 188.846 13.7421 .751178 3.33296 60.0000 6.0000@ 01002 ARSENIC AS,TOT UG/L K 11 10.0000 .000000 .000000 .000000 10.0000 10-000, 01027 CADMIUM CDYTOT UG/L K 16 25.6250 146.250 12.0934 .471937 3.0-233.5 50-0000 20-000 01034 CHROMIUM CRYTOT UG/L 1 60.0000 60.0000 60.000, K is 50.0000 .000000 .000000 .000000 50.0000 50-000' TOT 16 50.6250 6.25000 2.50000 .049383 .625000 60.0000 50.000t 01042 COPPER CU,TOT UCT/L 1 20 0000 .20.0000 20.000, K 15 24:0000 68.5714 8.28079 .345033 2.13809 40.0000 20.000- TOT 16 23.7500 65.0000 8.06226 .339463 2-01556 40.0000 20.000- 01051 LEAD PBFTDT UG/L 4 100.000 .000000 .000000 .000000 100.000 100.00, K 12 100.000 .000000 .000000 .000000 100.000 100.00. TOT 16 100.000 .000000 .000000 .000000 100.000 100.00, 01067 NICKEL NI,TOTAL UG/L K 16 100.000 .000000 .000000 .000000 100.000 100.00 01092 ZINC ZNPTOT UG/L 6 55.5000 2309.50 48.0572 .865896 19.6193 150.000 23.000 K 10 27.0000 210.000 1-4.4914 .499703 4.58258 50.0000 20.000 TOT 16 38.9375 1071.40 32.7322 .840634 B.18304 150.000 20.000 31616 FEC COLI MFM-FCBR /100ML 10 27.0000 467.778 -21.6282 .801043 6.83943 80.0000 10.000 K 1 10.0000 10.0000 10.000 TOT 11 25.4545 447.273 21.1489 .830847 6.376,61 90.0000 10.000 32209 CHLRPHYL A UG/L 15' 33.2667 608.925 24.6764. .741775 6.37142 74.0000 1.0000 K 2 1.00000 .000000 .000000 .000000 1.00000 1.0000 TOT 17 29.4706 647.640 25.4488 .863532 6.17223 74.0000 L.0000 32-213 PHPHTN-A FLk MTHD UG/L 14 11.4286 238.264 15.4358 1.35063 4.12539 60.0000 2.0000 K 3 1.00000 .000000 .000000 .000000 1.00000 1.0000 TOT 17 9.58823 210.382- 14.S046 1.51-275 3.51787 60.0000 1.0000 32217 CHLRPHYL A UG/L 17 35.7059 1106.72 33.2674 .931707 8.06853 120.000 3.0000 .29 Table 6 continued 0208457( PUNGO CK NC HUY 92 @SIDNEY CROSSROADS NC PEAT 37013 NORTH CAROLINA BEAUFORT SOUTHEAST 030307 TAR-PAMLICO /TYPA/AMBNT/ESTURY 21NC01WO B11024 INDEX MILES PARAMETER @MK N&BER MEA@ VARiANCE @TAN DiV COE@ VAR STAND ER MAXIMUM MINIMUM 00010 WATER TEMF* CENT 15 19.8333 46.9972 6.85545 .345653 1.77007 29,9000 10-0000 00076 TURB TRBIDMTR HACH FTU 16 14.8000 128.793 11.3487 .766805 2.83718 45.0000 5.00000 00094 CNDUCTVY FIELD MICROMHO 14, 9557.14 .255E+08 5049.82 .529382 1349.62 18860.0 1580.00 00300 DO MG/L 15 9.01999 5.46991 2i33857 .259265 .603816 15.3000 6.00000 00310 BOD 5 DAY MG/L 14 4.98571 28.9336 5.37900 1.07888 1.43760 23.0000 1.40000 L 1 8.60000 8.60000 8.60000 TOT 15 5.22666 27.7378 5.26667 1 00765 1.35985 23.0000 1.40000 00400 PH su 14 7.4;285 .549936 .741577 -@98971 .19819S a 90000 6 10000 00431 T ALK FIELD MG/L 14 :37.4600 194.672 13 -9525 .373062- 3.7-2896 6;.6000 1;-0000. 00480 SALINITY PPTH 15 3.86666 8.84525 2.97410 .506949 .767908 11.9000 1.00000 00500 RESIDUE TOTAL MG/L 6 5586.66 .12'E+08 3495.62 .625707 1427.08 8950.00 540.000 00530 RESIDUE TOT NFLT MG/L 17 19.4706 35;.265 18.8485 .968049 4.557143 80.0000 7.OOOOC, 01002 ARSENIC ASPTOT UG/L K 11 10.0000 .000000 .000000 .000000 10.0000 10.0000 01027 CADMIUMM CD:TOT UG/L K 16 25.,6250 146.250 12.0934 .471937 3.02335 50.0000 20.0000 01034 CHROMIU CR TOT UG/L K 16 50.0000 .000000 .000000 .000000 50.0000 50.0000 01042 COPPER CUYTOT UGYL K 16 23.7500 65.0000 8.06226 .339463 2.01556 40.0000 20.0000 01051 LEAD PB,TOT UG/L 3 133.333 3333.35 57.7352 .433014 33.3334 100.;000 100-000 K 13 100.000 .000000 .000000 .000000 100.000 100.000 TOT 16 106.250 625.000 25-0000 .235294 6.1-5000 200.000 100.000 01067 'NICKEL NI,TOTAL UG/L K 16 100-000 -000000 .000000 .000000 100.000 100.000 01092 ZINC ZNiTOT UG/L 2 23.0000 18.0000 4.24264 .184463 3.00000 26.0000 20-0000 K 14 27-1571 251.916 15.8719 .584445 4.24193 50.0000 .200000 TOT 16 26.6375 "-L.543 14.8843 .558773 3.72108 50.0000 .200000 31616 FEC COLI MFM-FCBR /100ML 10 85.0000 10250.0 101.242 1.19108 32.0156 350-000 10-0000 K 1 10.0000 10.0000 10-0000 TOT 11 78.1818 9736.37 98-6730 1.26210 29.7510 350.000 LO-0000 32209 CHLRPHYL A UG/L 15 43.0000 3503.00 59-1861 1.37642 15.2818 190.000 2.00000 32213 PHPHTN-A FLR MTHD UO/L 12 7.33333 26.9697 5.19324 .708169 1.49916 IS.-OOOO 2-00000 K 3 1.00000 .000000 .000000 .000000 1.00000 .1.00000 TOT 15 6.06667 28.0667 5-29780 .873264 1.36789 18.0000 1.00000 32217 CHLRPHYL A UG/L 15 44.4667 261?.55 [email protected] 1.15101 13.2150 160.000 5-00000 JM@ 30 Dissolved Oxygen, Biochemical Oxygen Demand' and Fecal Coliform Bacteria Dissolved oxygen levels were low at several stations in the study area. The Scuppernong River at SR 1105 near Columbia (02081166) had 80% of all dissolved oxygen (DO) values below the state standard of 5.0 mg/l (daily average). The low dissolved oxygen levels at this station were probably due to a combination of swampy waters (with naturally low DO's) and impact from non-point source pollution. Agricultural runoff could have had an affect on the low DO level at this station. The Alligator River above .Cherry Ridge Landing near Gum Neck (0208117810) and Kendrick Creek (02081185)'. had approximately one third of all DO levels below the state standard. This was likely due to the swampy conditions at these locations. Five-day biochemical oxygen demand (BOD 5) is the amount ofoxygen which is utilized in 5 days in a water-sample. One slightly elevated BOD 5- (5.0 mg/1) occurred at the Scuppernong River station (0201166). This value, along with the low DO values here, could have been caused by agricultural runoff. The Intracoastal Waterway station (0208455655) had two slightly elevated BOD 5 values: one greater than 7.7 mg/l and the other, 6.3 mg/l. Bath Creek at NC Hwy 92 near Bath (02084534) had four BOD5 values that were somewhat elevated. These values were one greater than 8.4 mg/l, 6.1 mg'/l, 5.0 mg/l, and 5.2 mg/.1. Pantego Creek at NC Hwy 92 at Belhaven (0209455850) had several high BOD 5 values with the highest being 16 mg/l. These could have been caused by,the effluent discharges from fish processing plants in the area. About one fourth of all BOD values at Pungo Creek at NC Hwy 92 at Sidney Crossroads (0208457020) 5 were elevated. The highest BOD 5 value found here was-23-mg/l.- A few elevated fecal coliform bacteria values were found-in-the CEIP study .area. The Scuppernong River station (02081166) had one very high value of 17,000/100 ml which is above the state standard,of 100/100 ml., This was probably due to runoff, as the highest turbidity value--for-this station (45 NTU) occurred on the same day (December 13, 1982@ . One elevated- fecal coliform bacteria value (3900/100 ml) occurred at Kendrick Creek at Mackeys (02081185). It is likely that this elevated coliform value was also..due-to-runoff. 31 Chlorop 11 a Corrected Elevated chlorophyll a values above the.state standard of 40 ug/1. occurred at several stations. The Scuppernong River station (02081166) had- one value of 51 ug/l in 1982. The Intracoastal Waterway near Scranton (0208455655) had 3 values above the 40 ug/1 standard. These values were 76 ug/l, 45 ug/l, and 58 ug/l. A single high value of 120 ug/1 occurred at Bath Creek (02084534). Approximately one-third of chlorophyll a corrected values at Pantego Creek at Belhaven (0208455850) were above the state standard with the highest.value being 74 ug/l. Pungo Creek at Sidney Crossroads (0208457020) had about one-fourth of all chlorophyll a values above the standard. The highest chlorophyll a corrected value found here was 190 ug/l, which was the highest value found in the study area for this parameter. It is clear from this information that waterways around the Pamlico/Albemarle peninsula have the ability to support algal populations in excess of the current state standards for chl a. It is likely that physical factors other than nutrients may be limiting potential nuisance problems. Metals Stations within the CEIP study.area were sampled for various metals in the water column. Only zinc, lead, chromium, and mercury were found in levels above detectiorilimits. One zinc value of 30 ug/l was found at the Scuppernong River at SR 1105 near Columbia, NC (02081166). The value for zinc was slightly above the detection limit of 20 ug/1 and probably does not indicate a problem level. A zinc value of 90 ug/1 was found at Kendrick Creek at SR 1300 at Mackeys, N.C..(02081185). The American Fisheries Society (AFS), in A Review of the EPA Red Book: Quality Criteria for'Water, sugge.-ats a criteria of 50 ug/1 for zinc in waters with less than 150 mg/1 hardness. Hardness values at this station' are in this range, therefore, the positive. z inc Value found-- at.-"this- station exceeds the AFS criteria. However, it should be noted that this.is only one observation andmay not indicate a problem situation. A zinc value'of-'150 ug/1 occurred at Pantego Creek at N.C. Hwy 92 At Belhaven (0208455850). In the AFS 32 review of the redbook publication mentionedabove, a recommended level of 600 ug/ql for zinc is given for waters with hardness values in the same range that existed at this station. Therefore, this zinc value i 8 probably no cause for concern. Two elevated lead values of 200 ug/ql were found at the Intracoastal Water- wq@y at US Hwy 264 near Scranton (0208455655). These values are above the state standard of 30 ug/l. A possible source of these elevated lead values could be leaded gasoline from boats since many boats use the Intracoastal Waterway. The Pungo River at U.S. Hwy 264 near Ponzer (0208455650) also had a lead value of 200 ugq/ql. A 200 ug/ql lead value occurred at Pquqngo Creek at N.C. Hwy 92 at Sidney Crossroads (0208457020) as well. A chromium value of 60 ug/ql occurred at the qSuppernong River station (02081166). This value was well below the 100 ug/ql criteria for freshwater, aquatic life listed in the Quality Criteria for Water book published by the U.S. Environmental Protection Agency. Total mercury analyses were completed on 87 water samples collected* during, the study period January 1, 1983 through February 1984 (Tables 8 & 9). Nine samples (q10q1.) were above the laboratory detection limit of 0.2 ug/ql for mercury. Of the nine samplesgreater than 0.2 ug/ql, seven were equal to 0.3 ugAl, one was equal to 0.4 ug/, and one observation was equal to 1.6 ug/ql.. The evaluation of mercury concentration data in surface waters is cqmpli- cated by a wide range of published criteria and standards which are listed below. Imoortant Mercury Criteria MERCURY DETECTION LIMITS: AS OF JANUARY 1982 PRIOR TO JANUARY iga2 0.2 ug/1 0.ug/ MERCURY CRITERIA AND STANDARDS FOR THE PROTECTION OF: ORGANIZATION AHD DATE FRESHWATR SALTWATER DOMESTIC INGESTION- 11STION AQUATIC AQUATIC WATER OF WATER OF AQUATIC LIFE LIFE SUPPLY AND AQUATIC ORGANISMS ORGANISMS ALONE EPA "RED BOOK" (1976) q0q.q05 quqg1 GAO quqg/q1 2.0 ug/q1 ENVIROqMNTAL MANAGEMENT (1979) q0.q05 ug/q1 q0.05 uqgqJ 1 qO.05.ug/q1 -EPA QUALITY CRITERIA (1980) - 9.2 ug/q1 O.6qiO g/q1 0-144- uqg/1 u0qiqll q24 hour 24 hour average average -- -------- - -- q4. quqgq/q1 3.7 ug/1 qaq,qy aqrq- any- rime time U.S.S.Rq. (1963) q5.q0 ugq/q1 WORLD HEALTH ORGANIZATION (1971) q1.0 ug/q1 FOOD-AND DRUG, ADM Nq1 SqTIqUTqION ACTtqON LEVEL FOR MERCURY CqOHr-FqlqIqL9qL4.q11q,qCIqLq@Lq-!qUqrqj-qSiqlq- q=qqqUE 1976 - 0.q5 mg/kg 1978 - 1.0 mqg/kg It is probable that a wide range of values is a result of the diffi- culties in obtaining precise analytical measurements as well as the variation of effects of different forms of mercury. Prior-to January of 1982, the laboratory detection capabilities of DEM prohibited the quantification of mercury samples with concentrations below.0.5 ug/l. As of January 1, 1982 this detection level was lowered to 0.2 ug/l. Prior to the use of the 0.2 ug/l detection limit, the reliability of data in the low concentration range was often suspect. Data reliability was further complicated by frequent sample contamination with mercuric chloride (used as a preservative for nutrient samples). In January of 1983, mercuric chloride preservation of nutrient samples was discontinued. Since that time, data reliability has improved. The values above the detection limit of-0.2 ug/1 encountered during this study period probably represent either contamination (in the case of the one 1.6 ug/l observation) or difficul@ies in analytical accuracy (standard deviation' 0.07 ug/1) rather than environmental conditions. These conclusions are supported tissue-analyses; the best available monitoring tool to-assess the potential threat of mercury pollution. Table 7 Mercury Observations January 1983 - February 1984 Samples Samples Samples #-Samples Samples Station > 0.2 ug/1 0.3 ug/1 0.4ug/l >0.4 ug/1 02081166 12 0 0 0 0 02o8117816 3 0 0 0 0 0208117820 2 1 1 0 0 0208117830 2 1 1 0 0 0208117840 2 1 1 0 0 02o81185 5 1 0 0 1 02084534 11 2 2- 0 0 0208455650 16 1 0 1 01 0208455655 8 0 0 -:0 0 0208455850 13 0 0 -.0 0. 0208457020 13 2 2 0 0 87 7 1 34 Table Mercury Data SCUPPERN('NG R (D 131--@ 110',.J MIR COLUMBIA NC' NORTH CAROLI'NA TYRRELL 0 8 11. 6 6 D A -f DE1--'TH M 1: RCURY 1:7 [-", 0 M I-1 G,!, T 0 T A I TO DAY M F-F E R, U G L @3 3 / 0 41"18 1:1. 0 0 0 0 @',K' B 3/ 1 , 0 k 0 K 1. 01:7 (. 181 3 0 6 /1 *7 '.) 1 0 K 8 3 6/x"! 1 1 8 3 /0 0 1.2 1.0 00 0 0 121 K 1(33/08/30 10 4 () 0 0 K 8311,109/15 12 00 00-0 0,,2K 8 3 / 10 /"-7.14 :1. 0 40-00.0 0.2K 8 3 /-11 /17 1.0 50 00.0 0,- 2K 83/121/15 10 30 00.0 0. 2K 84/01/30 13 40 00.0 0.2K 84/02/13 09 1.5 00.0 0.2K ALLIGATOR R US CHERRY RIDGE LANDING NORTH CAROLINA TYRRELL 0208117810 DATE TIME DEPTH MERCURY, FROM OF H09TOTAL TO DAY METER UGII/L 83/04/18 13 45 00.0 -04-2K 83/07/26 13 00 00.0 Of'2k 84/01/30 11 40 00.0 0. 2K ALLIGATOR RIVER & NEWPORT NEWSPOINT NORTH CAROLINA TYRRELL 0208117820 DATE TIME DEPTH MERCURY FROM OF HGr.TOTAL TO DAY METER UG/L 83/04/18 12.50 00.0 0*2K 83/09/20 13 35 00.0 0*3 35 Table 8 cont. ALLIGATOR RIVER 3 MILES US CATFISH POINT NORTH CAROLINA TYRRELL 02081.17830 D AT E T'IME DEF"TH MERCURY FROM OF' HGyTOTAL To DAY M ET E F,, UG/L 8 3 0 4/1. 11-:1 20 00.0 0.3 8 3 0 9 / '210 1 *-3 15 00.0 0 . 21 ALLIGATOR R @ US HWY64 NR ALLIGATOR NC T y R R 1:7 L L NORTH CAROLINA 020811','7840 D AT E TIME .10--PTH MERCURY FROM 01" 1--1 G 9 T OT A I... To DAY METER, U G 8 3 // 0 4 1. S 1. 2- 0 0 0 0 @ 0 0 . 2 1.1*1" 8 3.1/ 0 9 2 0 12 30 00.0 0.3 J<ENDRICKS CR @ SR1300 @ MACKEYS NC 37187 NORTH CAROLINA WASHINGTON 02081185 DATE TIME DEPTH MERCURY FROM OF HG YTOTAL TO DAY METER UG/L 83/03/16 10 00 00.0 1.6 83/04/28 12 00 00.0 0-21< B3/07/27 13 45 00.0 0.2K 83/10/06 13 45 00.0 0-2K 84/01/30 14 20 00.0 0+21K INTRACOASTAL WATERWAY 2 US HWY264 SCRANTON@ NORTH CAROLINA HYDE 0208455655 DATE TIME DEPTH MERCURY FROM OF HGYTOTAL TO DAY UG/L 83/03/07 15 00 00.0 0.2 83/04/19 16 10 00.0 0,,2K 83/05/-17 15 00 07.9B 0,2K AIL 83/07/19 10 20 00.0 0.2K mp 83/07/25 14 30 00.0 0.2K 83/08//10 17 30 00.0 0.2K 83/10/13 15 00 00.0 0.2K B4/01/26-15 41,5-00.-0 - --O,,2K 36 Table 8 cont. B--f-)TH CRE-EK @ NC HWY 92 N1::*A-1""1' BATH NC NORTH CAROLINA BEAUFORT 09210 1-3 4 5 3 4 D AT E T I M E 11 E PT 1-1 MERCURY FROM OF HG Y TOTAL TO D A Y METE-R UG/L 83/03/07 11 45 00.()' 0.3 83/04/25 .10 10 00.0 0 . 12K 83/05/26 10 30 00.0 0-2K (83/06/2-3 12 10 0040 0.2K 83/07/215 11 30 OOoO 0.2K B3/08/15 15 1115 00.0 0.3 8 3.1/ 0 9 8 16 10 00.0 0.2K S *,*z,./'L 0 /1. 3 127- 30 00@,O 0 2 1,!%" 8 3 1 J. 1/ 0 9 1.5 30 00.0 0 2 K 8 3 / 14 15 00 00.0 0 '2K 8 4 0 1. // *1216 13 15 OOoO () III K 84/02/27 13 15 00.0 0.2 PUNGO RIVER GhUS HWY 264 NR PONZER MC NORTH CAROLINA BEAUFORT 0208455650 TIME DEPTH MERCURY DATE FROM OF HGYTOTAL TO DAY METER UG/L 83/03/03 14 10 00.0 0*2K 83/03/07 15 00 00.0 0.2 83/04/19 16 45 00.0 0.21K 83/04/25 12,55 00+0 0-2K 83/05/16 04.3B 0.2K 83/05/26 13 30 00.0 0.2K 83/06/23 14 45 00.0 0.2K 83/07/19 10 45 00.0 0*2K 83/07/25 13 30 00.0 0.2K 83/08/10 16 10 00.0 0.2K 83/08/15 12 00 00.0 0.4 83/09/28 14 10 00.0 O.2K 83/10/13 14 20 00.0 0-2K 83/11/09 12 30 00.0 O*2K 83/12/14 11 15 00.0 0-2K 84/01/26 15 10 00.0 0-2K 84/02/27 15 15 00.0 0*2 37 Table '8 cont. PANTEGO CREEK 0-h NC HWY 92 @BEI-HAVE'N NC' NORTH CAROLINA BEAUFORT 0208455850 DATE TIME DEPTH MERCURY FROM OF FIG Y TO DAY METER' UG/L 83/03/07 13 1.0 00.0 0.2 "'33/04/1.9 14 20 O.2K 83/04/25 11 40 00.0 Ool'c'.'K 83/05/17 1.2 40 01-Br-3 0--2K 83/05/26 12 15 00.0 0 *2K, (B3/06/23 13 55 00.0 0 . 83/07/25 13 00 00.0 0*2K 83/08/1.5 1.3 00 00.0 0.2 33/09/28 14 50 00.0 O*2K 83/10/13 13 50 00.0 Oo2K 83/11/09 13 30 00.0 0-2K 93/12/14 11 40 00.0 0*2K 84/01/26 14 35 00.0 0*2K 84/02/27 14 50 00.0 0*2K PUNGO CK @ NC HWY 92 @SIDNEY CROSSROADS NC NORTH CAROLINA BEAUFORT 0208457020 DATE TIME DEPTH MERCURY FROM OF HGYTOTAL TO DAY METER UG/L 83/03/07 12 40 00.0 0.3 83/04/19 13 20 00.0 0-2K 83/04/25 11 05 00.0 0*2K 83V05117 12 00 04.9B 0*2K 83/05/26 11 30 00*0 0.2K 83/06/23 13 20 00.0 0*2K B3/07/25 12 30 00.0 0*2K 83/08/15 14 20 00.0 -0.-3.- 83/09/28 1 c) 20 00.0 0#2K 83/10/13 13 15,00*0 O*2K 83/11/09 14 20 00,0 0--* 2K 83/12/14 14 15 00.0 002K AU 84/01/26 14 10 00,0 0+2K FISH ANALYSIS Fish from seven sites in the Pamlico-Albemarle Peninsula were collected between May 17, 1983 and January 11, 1984. Tissue samples were from 113 fish (19 species) and represented several levels of the food chain; first order predators, second order predators, and omnivores. Species included american eel, black crappie, bluegill sunfish, bowfin, brown bullhead, carp, chain pickerel', chub sucker, gizzard shad, large- mouth bass, longnose gar, pumpkinseed, stripped bass, stripped mullet, warmouth, white catfish, white perch, yellow bullhead, and yellow perch. Fish were collected at seven locations by electroshocking and by means of gill nets. The fish that were collected were wrapped in aluminum foil and then placed iri large plastic bags with ice to await laboratory preparation. Each fish was identified tospecies level,_ weighed to, the nearest 'gram,, and measured to the nearest tenth of a centimeter. Each fish was scaled and fillet portions were removed. Me skin was removed from the fillet -in alum' and the fillet was then homogenized in a blender and wrapped Inum. foil. If a fish was too small to obtain a sufficient quantity of fillet, a whole scaled fish sample was used. The metals analysis on the fish tissue samples was done by flameless atomic absorption. All f ish tissue results are reported in mg/kg wet weight (Table. 1.4 Concentrations are reported as actual concentrat .-ions or as a "less than" value based on the laboratory's current detection limits whichare-as follows. Mercury 0.02 mg/kg Arsenic 0.40 mg/kg Cadmium. 0.20 mg/kg Chromium, Tbt al 0.05 mg/kg Clopper 0.20 mg/kg Nickel 1.00 mg/kg Lead 1.00 mg/kg Zinc 0.20 mg/kg 39 Flor statistical purposes all "less than" values are taken to be the detection level, thus maximizing all metal values to represent worst case conditions. For example: less than 0.5 would be expressed as 0.5. One hundred and two samples were analyzed for mercury, 99 samples were aIhalyzed for cadmium, chromium, nickel, lead, and zinc, and 87 samples were analyzed for arsenic. The results for mercury, cadmium, copper, lead, and zinc had a significant number of values above detection and will thus be discussed separately. The results for arsenic, chromium, and nickel were mostly below the detection level and will be discussed at this point. All arsenic values were less than the detection level. Of the 99 samples analyzed for nickel, only two were above the detection level. These two samples were 1.7 mg/kg and 1.1 mg/kg from sunfish collected at station 02081185,. Kendrick Creek near Mackeys. Only 7 of the 99 samples analyzed for chromium were above the detection level. This should be of little concern since chromium is recognized as an essential trace element for humans (NAS, 1974) and chromium deficiencyis a greater nutritional concern than overexposure (EPA-1976). Mercury Mercury is a silver-white metal which exists in hundreds of different forms. Certain microorganisms have been found to convert,inorganic and organic forms of mercury to the highly toxic methyl and dimethyl mercury, thus making any form of mercury potentially available to the.environmen (Jensen & Jernelov, 1969). Methyl mercury h-as been shown to be a particular threat because of its ability to bioaccumulate with increases in body weight and'trophic level (FDli, Williams, W-Clary, Wright, and Burrell, 1977). The current Flood and Drug Administration "action. level" is 1.0 mg/kg. for .,fish tissue. One hundred and two samples were analyzed for mercury in the Pamlico -Albemarle area. The average fish -Cissue conce-atrat:LorL-was--Q-@,99.,-.-,--- mg/kg (Table.9) with station 02081185 on Kendrick Creek,having the highest average (0.21 mg/kg) and station 0208455850.- on. Pantego -07eek-@-@ having the l6west (0.02 mg/kg)... This level is well below the FDA.a@ction Ask level of 1 rnZ/kg and also below the average value of 0.1-2 mg/kg for the North my I Carolina Statewide Ambient Fish Tissue Network 1980-1983. The National Pesticide Monitoring Program in 1976/1977 recorded a Nationwide Mercury Average of 0.11 mg/kg (May & WKinney, 1981). Fish from B. Everett Jordan Lake, which is in central @brth Carolinaon the Haw River and is downriver from a considerable number of industrial dischargers, had an average mercury concentration of 0.22 mg/kg (NRCD, 1983). In areas where mercury is a problem, the mercury levels found are much higher. In LaHontan Reservoir, Nevada, where the drainage area has been contaminated with mercury via gold and silver mining, an average concentration of 1.72 mg/kg in fish muscle tissue was found (Cooper, 1983). In the Holston River, Tlennessee, 135 kilometers below an abandoned chloro- alkali plant, an average concentration in muscle was 0.85 mg/kg (Hildebrand, Andrew, and Huckabee, 1976). In %rth Carolina, where mercury was introduced into a stream system by a battery plant, concentrations averaged 0.59 mg/kg (NRCD unpublished). In conclusion, the mercury concentration of 0..09 mg/kg is well below the FDA action level of 1.0 mg/kg and shoul4,.be- of little concern environmentally. Cadmium Cadmium is a soft, white metal similar to zinc and lead inmany properties. Biologically, cadmium is a nonessential, nonbeneficial element recognized to be of high toxic potential and able to accumulate in various body tis.sues (EPA-1976). Ninety-nine samples were analyzed for cadmium in the Pamlico-Albemarle area (TablelO)and only 21 percent of the samples were above detection. An average concentration of 0.21 mg/kg was found. Station 0208455850, Pantego Creek at Highway 92, had the highest average level of cadmium (0.24 mg/kg) and the greatest percentage of samples above -detection (89%). The levels of cadmium which were found in the Pamlico-Albemarle fish -do are not easily interpreted because fish tissue samples. were. only@ ne-on fillets, and whole f ish The fillets and whole fish samples are less significant because cadmium accumulates to a greater extent in the kidney, 41 Mercury Table f of of Length Weight Total of Mercury Conc. Sampling Fish Species (cm) (80 of Hg Detectable (mg/kg) Stations Sampled Sampled Avg Max Min Avg Max Min Samples Hg Samples Avg Max Min 7 19 31.3 74-0 .1.3.3 489 3075 38 .1.02 75 .09 1.3 .02 of of Total of Mercury Conc. Fish Species of Hg Detectable (mg/kg) Station Sampled Sampled Samples Hg 'Samples Xv--g Max Min 020811.66 27 9 27 26 0.1-5 0.34 0.02 0208117810 9 3 5 5 0.06 0.3-9 0.03 02-0811,95 .1.7 7 10 in 0.21 1.30 0.04 02084534 24 9 24 .1@ 4 0.06 0.16 0.01? 0208455650 9 4 9 7 0.04 0.08 0.02 0200455Q50 9 2 9 1 0.02 0.04 0.02 02OR457020 3-8 -9 0.04 0.12 0.02- W-rcury Continued of Avg Avg Total of Mercury Cone. Common Fish Ln Wt of Hg Detectable (mg/kg) Name Sampled (cm) (gr) Samples fig Samples Avg Max Min American Ee 1 .1 4R.5 275 1. 1 91ack Crapoie 2 -- .05 .05 .05 24.2 235 2 2 Jo . 11 .09 9.1upoill Siinfish 14 1-4.8 R3 8 6 .04 .09 .02 POW.fin 9 -4-9.2 1215 9 9 .31- 1.30 .09 Brown BuIlhead 31.3 @36 3.1 R .06 .27 .02 Caro 4-4j. 1457 8 4 .04 .09 .02 Chain Pickeral 9' 42.2 609 9 9 .3.2 .27 .02 Gizzard Shad 1 32.1 300 1 0 o2 .02 .0 Laraemouth Bass 4. 29.2 395 4 4 .1- 3, .3.6 .09 I-onanose Gar 7 64.2 840 7 7 .13 .31 .06 Pumpkinseed 6 15.9 97 3 .03 .05 .02 Stripped Mullet 3 29.3 311 3 0 .0? .02 .02 Warmouth 5 1.7.6 144 5 5 J.7 .27 .03 1W White Cat:EiM. 10 34.1 676 10 8 .04 .07 o2 White Pprch 17 20.3 -1-39 12 5 .03 .13 .02 Yellow FAillhead .1. 31.5 4.63 1 -1 .18 .18 .18 Yellow Pearch 3 19.6 106 .2 2 .05 .05 .04 Chub Sucker 26.4 320 1 1 .08 .08 .08 Stripped Bass 27.5 247 0 A2 .02 .02 Cadmium - Tablp- 10 of of of Length Weight Total of Cadmium Conc. Sampling Fish Species (cm) (gr) of Cd Detectable (mg/kg) @tations Sampled Sampled Avg Max Min Avg Max Min Samples Cd Samples Avg Max Min 7 1.10 18 30.9 74.0 13.3 490 3075, 38 99 21, 0.21 .33 0.20 of of Total of Cadmium Conc. Fish Species of Cd Detectable (mg/kg) Station Sampled S amp le d Samples Cd Samples Avg Max Min 02081166 27 9 27 0 0.20 0.20 0.20 4= 020811.7810 9 3 5 3 0.22 0.25 0.20 02081185 1-7 7 10 0 0.20 0.20 0.20 02084534 24 9 24 4 0.22 0.30 0.20 0208455650 6 2 6 0 0.20 0.20 0.20 0208455850 9 2 9" 8 0.24 0.28 0.20 020S457020 18 8 18 6 0.23 0.33 0.20 777--- Cadmium continued of Avg Avg Total of Cadmium Conc. Common Fish Ln Wt. of Cd Detectable (mg/kg) Name Sampled (cm) (gr) Samples Cd Samples Avg Max I Min Black Crappie 2 24.2 235 2 0 0.23 0.31 0.2 Blueqill. Sunfish 1.4 14.8 8 1 0.21. 0.39 0.2 T3owf in 9 419.2 1-215 9 0 0.20 0.2-0 0.2 Brown aillhead 1.1 31.3 436 11 2 0.22 0.31 0.2 Carp 8 44.1 1457 8 0 0.20 0.20 0.2 Chain Pickeral 9 42.2 609 9 2 0.22 0.33 0.2 Chub &icker 1 26.4 320 1 0 0.20 0.20 0.2 Gizzard Shad 1 32.1 300 1 0 0.20 0.20 .0.2 Largemouth Bass 4. 29.2 395 4 1 0.23 0.30 0.2 Lonanose Gar 6 63.5 931 6 0 0.20 0.20 0.2 Pun;kinseed 6 15.9 97 6 .1 0.21 0.28 @.0.2 Stripped Bass 1 27.5 247 1 0 0.20 '0.20 .0.2 14= Stripped t1ullet 3 29.3 311 3 1 0.?0 0 ..@O 0.2 Warmouth 142 0 o.30 0.2) 0.2 White Catfish 1-0 34.1 676 1-0. 4 0.22 0.30 0.2 White Perch 17 20.3 139 1-2 8 0.22 M8 0.2 Yellow Billhead 1 31.5 463 1 0 0.20 0.20 0.2 Yellow Perch 3 19.6 i06 2 0 0.20 0.20 0.2 ;@T liver, and gill tissues and to a lesser extent in the muscle tissue (Benoit, Leonard, Christensen, & Fiandt, 1976). With this in mind, the levels of cadmium recorded in the Pamlico-Albemarle area, particularly in Pantego Creek, may be of some environmental significance since the levels of cadmium in the kidneys, gills, and livers of these are probably greater than the values we recorded. Copper Copper is a minor nutrient for both plants and animals at low concentrations, but is toxic to aquatic life at concentrations only slightly higher (EPA-1980A). In the Pamlico-Albemarle study, 99 samples were analyzed for copper (Table 11) -with an average concentration of 1.09 mg/kg. Station 0208455850, Pahtego Creek at Hwy. 92, had the highest average concentration, 4.7.4 mg/kg and station 02081185 Kendrick Creek near Mackeys had the lowest (0.55 mg/kg). The highestconcentration of copper was in a white perch (11.0 mg/kg). The N.C. Statewide Ambient Fish Tissue Network, comprising 196 copper samples from 42 different stations,showed copper concentrations averaging 2.1 mg/kg with a maximum of 33 mg/k@ and a minimum of.less than 0.2 mg/kg. In the National Pesticide @bnitoring Program (NPMP) 1980 study, of 24 samples, a mean of 0.78 mg/kg was reported (NPMP, 1980). Th fish from B. Everett Jordan Lake during 1982 and 1983, an average concentration of 0.53 mg/kg was found (NRCD, 1983). 'Ihe copper concentration of 1.09 mg/kg in the Pamlico-Albemarle.area is below the @brth Carolina statewide average of 2.1 mg/kg,and should be of little concern. The average.concentration at station 0208455850, Pantego, Creek at Hwy. 92, however, at 4.74 mg/kg is over twice the statewide average. Lead Lead is a toxic metal that tends to accumulate.in the-tissue-of man and animals (EPA, 1976). It is ubiquitous in nature being a part of the earth's cmst, but the largest portion of lead which contaminates the environment comes from airborne particles (EPA, 1980). 46 (bpper Table 11 per Conc. of of of Length Weight Total of COP Sampling Fish Species (cm) of Cu Detectable (mg/kg) Stations Sampled Sampled Avg Max Min Avg Max Min Samples Cu Samples Avg ax Min 7 UO 3.8 30.9 74.0 1.3.3 490 3075 38 go 93 1.09 11.0 .7() of of Total of Copper Conc. Fish Species of Cu Detectable (mg/kg) Station Sampled Sampled Samples Cu Samples Avg Max Min 02093-166 27 9 27 26 0.63 2.50 0.20 0208117810 9 3 55 4 .1- 40 4.10 0.20 24 24 0.817 4.20 0.40 02084534 24 0.94 3.50 0.33 020f,15q650 6 2 0208455850 9 2 9 9 4.74 1-1.0 2.10 0208457020- 1-8 3@8 .115 O.Aq 1.1.0 0.20 020913.05 17 7 1-0 9 0.55. 0.96 0.20 of Avg Avg Total of Coppel Coumion Fish Ln Wt of CU Detectable Name Sampled (cm) (gr) Samples Cu Samplef; Avg tjax @1111 .Black Crappie 2 24.2 235 2 2 0.50 .0.51 0.48 Bluegill Sunfish 14 14.8 83 '8 8 0.72 1.20 0.37 Bowfin 9 49.2 1215 9 8 0.28 0.35 0.20 Brown Bullhead 11 31.3 436 11 11 0.78 2.50 0.35 Carp 8 44.1 1457 8 8 0.76 1.10 0.29 Chain Pickeral 9 42.2 609 9 6 0.39 0.89 0.20 Chub Sucker 1 26.4 320 1 1 1.00 1.00 1.00 Gizzard Shad 1 32.1 300 1 1 1.10 1.10 1.10 Larcjemout'h Bass 4 29.2 395 4 4 0.54 0.74 0.42 Longnose Gar 6 63.5 831 6 5 0.96 3.50 0.20 Pumpkinseed 6 15.9 97 6 5 0.45 0.88 0.20 Ptripped Bass 1 27..5 247 1 1 0.55 0.55 0.55 Stripped Millet 3 "29.3 311 3 3 1.66 2.20 0.69 4::'i White Catfish 10 34.1 676 10 10 .52 1.10 .28 CQI Warmouth 4 17.1 142 4 4 .49 0.82 0.31 White Perch 17 20.3 139 12 12 4.28 11.00 1.7 Yellow Perch 3 19.6 106 2 2 0.76 0.81 0.71 Yellow Bullhead 1 31.5 463 1 1 0.94 0.94 0.94 Lead Table 12 of of of Length Ile I gh U. I- a 1 C) I Lead Con.c. Sampling Fish Species (C111) (B-r) of 01) oet.ecLal)le (mg/kQ Stations Sampled S amp 1.e d Avg Max -;@v@ Max M-4 n f;, Somples Avg Max Min 7 '110 18 30.9 74.0 13.3 490 3075 38 99 36 1-.47 5.3 1.0 of of 'Potal of 1,uad Ct)lic. F i sh species of Pb De Le c Station Sampled Sampled Samples Pb I w, Avj), M a x Min 02081166 27 9 27 2 1.14 2.1 1.0 0208117810 9 3 5 3 2.80 5.3 1.0 02081185 17 7 10 7 2.01 3.1 1.0 02084534 24 9 24 7 1.40 2.8 1.0 0208455650 6 2 6 1 1.02 1.1 1.0 0208455850 9 2 9 9 2.14 3.1 1.3 18 7 1.43 2.8 1.0 0208457020 18 8 Lead continued of Avg Avg Total. of Lea(l Cimc. Fish I'll Wt of PI) DeLecLablu Commbn Sampled CIR) (gr) S amp le s Pb Smyles Avg M M-1,11 Black Crappie 2 24.2 235 2 2 1.95 2.1 1.8 5luegill Sunfish 14 14.8 83 8 8 2.33 3.1 1.6 Bowfin 9 49.2 1215 9 0 1.00 1.0 1.0 Brown Bullhead 11 31.3 436 11 2 1.15 1.9 1.0 Carp 8. 44.1 1457 8 0 1.00 1.0 1.0 Chain.Pickeral 9 42.2 609 9 0 1.00 1.0 1.0 Chub Sucker 1 26.4 320 1 0 1.00 1.0 1.0 Gizzard Shad 1 32.1 300 1 1 1.80 1.8 1.8 29.2 395 4 0 1.00 1.0 1.0 Largemouth Bass Longnose: Gar 6 63.5 831 6 1 1.02 1.1 1.0 .6 15.9 97 6 6 2.30 2.8 1.9 Ptimpkin6eed 27.5 247 1 1 1.80 1.8 1.8 Stripped Bass@ Stripped Millpt 3 29.3 311 3 2 1.73 2.8 1.0 4 17.1 142 4 0 1.0 1.0 1.0 Marmouth, 676 @,.White Catfish 10. 34.1 10 1 1.21 3.1 1.0 2.40 5.3 1.0 @White:Perc 17 20.3 139 12 10 h .;.Yellow BullM@Ld 31.5 463 1 0 1.0 1.0 1.0 1.8 2.6 1.0 Yellow Perch 19.6 106 2 1 i V, .1 k4,: 4. Lead continued of Avg Avg Total. of ("inic. COITU116@' Fish Im W t of PI) De Lee L abIc -k-, NajW Sampled (CIII) S amp Ie 9 f1b samples Avg N;-) 14111 Black Crappie 2 24.2 235 2 2 1.95 2.1 1.8 Bluegill Sunfish 14 14.8 83 8 8 2.33 3.1 1.6 Bowfin 9 49.2 1215 9 0 1.00 1.0 1.0 Brown Bullhead 11 31.3 436 11 2 1.15 1.9 1.0 8 44.1 1457 8 0 1.00 1.0 1.0 Carp Chain Pickeral 9 42.2 609 9 0 1.00 1.0 1.0 Chub Sucker 1 26.4 320 1 0 1.00 1.0 1.0 Gizzard Shad 1 32.1 300 1 1 1.80 1.8 1.8 Largemouth Bass .4 29.2 395 4 0 1.00 1.0 1.0 Longnose Gar 6 63.5 831 6 1 1.02 1.1 1.0 Pumpkinseed .6 15.9 97 6 6 2.30 2.8 1.9 Strippe-d Bass 27.5 247 1 1 1.80 1.8 1.8 Stripped Millet 3 29.3 311 3 2 1.73 2.8 1.0 WarmoUth,. 4 17.1 142 4 0 1.0 1.0 1.0 ,,J., 34.1 676 10 1 1.21 3.1 1.0 J, White tatfish 10 White: Perch." 17 20.3 139 12 10 2.40 5.3 1.0 Yelio Bulihe.'id 1 31.5 463 1 0 1.0 1.0 1.0 W YelloW Perch ..3 19.6 106 2 1 1.8 2.6 1.0 p 4, Ninety-nine samples were analyzed for lead in the Pamlico-Albemarle area (Table 12). A mean concentration of 1.49 mg/kg was found. Station 0208117810, Alligator River near Gum Neck, had the highest average concentration (2.80 mg/kg). The N.C. Statewide Ambient Fish Tissue Network found an average lead concentrationlof 1.23 mg/kg. A mean lead level of 0.39 mg/kg has been reported in the National Pesticide Monitoring Program 1976/1977 (May & W-Kinney, 1981). The levels of lead as an average are not very significant because of the high detection level , 1.0 mg/kg. Of all the samples analyzed for lead, only 36 percent were above detection. Only at station 0208455850., Pantego Creek at Hwy 92, were all samples above detection, which in itself may be of some concern. Zinc Zinc is a common trace constituent of natural waters and is a, required trace element in the metabolism of most organisms (EPA, 1980s). Ninety-nine samples were analyzed for zinc in fish tis@sue in the.- Pamlico-Albemarle area (Table 13). The average zinc concentration was 8.93 mg/kg with station 02081185, Kendrick Creek near Mackeys, having the highest mean (16.05 mq/kg). The N.C. Statewide Ambient Fish Tissue Network 1980-1982 reported an average zinc level of 14.6 mg/kg. A level of 24.5 mg/kg for meats, poultry, and fish was provided by Mahaffey, et. al. (1975). Since the zinc levels in the Pamlico-Albernarle region are below.the N.C. statewide average, and below that suggested for fish, meats-,-and poultry, they appear to pose no problem. 51 ,0 @M A I AM Zinc Table 13 of of of Length We i gh t ro L, .a Zinc Coac. Sampling Fish Species (em) 0 1 zu Dc@ Le cti.11) A 0. --i 0 - -- - --(-IlIzi Stations Sampled S amp le d Avg Max -Ti -n Av g I Ma x, Mill Samp les 7,11 Samples Avg Max Min 7 110 18 30.9 74.0 13.3 490 3075 38 99 99 8.93 35 2.1 of. of 'fo t a 1. of Zinc Conc. Species of zil De V. (! c t at) le k-n Fish @@Lation Sampled Sampled Samples Zil Samples Avj) Man M.1 11 02081166 27 9 27 27 4.54 10.0' 2.1 0208117810 9 3 5 5 13.10 27.0 3.2 02081185 17 7 10 10 16.05 35.0 2.4 02084534 24 9 24 24 8.01 19.0 2.9. 0208455650 6 2 6 6 6.50 8.1 4.7 0208455850 9 2 9 9 15.70 26.0 9.9 0208457020 18 8 18 18 9.10 16.0 3.6 AMUM6dAAAfiOMU9OLMAAft AA.Ad AAjALA Ad--AjAwAUA,& Zinc continued Z111C Collc. Total of of Avg Avg # of Zn D(2 t (I c t0b 1-(-! /k g) Conlition Fish Wt es Avil I'lax ffln N a nie 8anipled r) S a nip I e S Zn Smnp I Black C!rappie 2 24.2 235 2 2 12.05 15.0 9.1 Bluegill Sunfish 14 14.8 83 8 8 17.38 33.0 12.0 Bowfin 9 49.2 1215 9 9 2.49 3.3 2.1 Brown Bullhead 11 31.3 436 11 11 5.82 12.0 2.8 Carp 8 44.1 1457 8 8 9.38 15.0 7.3 Chain Pickeral 9 42.2 609 9 9 6.38 19.0 3.0 Chub Sucker 1 26.4 320 1 1 4.30 4.3 4.3 Gizzard Shad 1 32.1 300 1 1 10.00 10.0 10.0 LArgemouth Bass 4 29.2 395 4 4 4.80 9.1 3.2 Longnose Gar 6 63.5 831 6 6 3.97 8.1 2.5 Pumpkinseed 6 15.9 97 6 6 18.17 35.Q 11.0 Stripped Bass 1 27.5 247 1 1 12.0 12.0 12.0 Stripped Millet 3 29.3 311 3 3 8.97 12.0 2.9 4 17.1 142 4 4 4.63 6.3 3.6 ..Warmouth 676 10 10 6.08 12.0 3.2 White Catfish 10 34.1 White Perc6 17 20.3 139 .12 12 15.37 27.0 3.5 Yellow Bullhead 1 31.5 463 1 1 2.90 2.9 2.9 Yellow Perch 3 19.6 106 2 2 8.6 13.0. 4.2. Table 14 Fish Tissue Data SAMPLE# DATE STATION SP. L(CM) W(GR) TYPE HG AS CD CR.T cu NI P? ZN MG/KG MG/KG MG/KG MGIKG MG/KG MG/KG MG/KG MG/ 001411 830608 02081185 BF 58.0 1985 F 1.3 0.2K 0.50K 0.26 1.0K 1.OK - 4 001412 330608 02081185 LG 74.0 1131 F 0.12 0.2-K 0-50K 0.11 1.OK 1.0K 1.5 001413 830608 02.081185 BKS 27.4 310 w 0.08 0.2-K 0.50K 0.51 1.OK 1.8 15 001414 930608 02081185 CHP 39.6 430 F 0.27 0.2K 0.50K 0.20K 1.0K 1.OK 9.0 001415 830608 02081195 YP 17 3 57 WC2 0.05 O.2K 0.50K 0.71 1.OK 2.6 13 001415 830608 02-081185 YP 18:0 64 001416 830608 02081185 BGS 18. 9 116 w 0.05 0.2K 0.50K 0.67 1.0K .I @17 001417 830608 02-081185 BGS 18.6 112 w 0.08 0.2K 0.50K 0.56 1.0K 2.1 13 001418 830608 02081185 BGS 15.0 115 1JC4 0.04 0.2@ 0-59 0.96 1.0K 3.0 f) 001418 830608 02081185 BGS 16.0 61 001418 830608 02081185 RGS 15.7 76 001418 830608 0208118S SGS 14.9 55 001419 330608 02081185 BGS 14 3 55 WC4 0.04 0.2K 0.119 0.83 1.- 3.1 33 001419 B30608 02-081185 BGS 14:4 54 001419 930608 02081185 BGS 13.4, 45 001419 830608 02081185 BGS 13.3 41 001420 830608 02081185 SF 16.7 85 w 0.05 0.2K 0.50K 0.53 1.1 2.4 3- 001576 840110 02084S34 SF 16.3 129 w 0.02K 0.4K 0.2K 0.50K 0.43 1.OK 2.2 1- 1 001577 840110 02084534 SF 15.7 126 w 0.02K .0.4K 0.28 0.50K 0.88 1..0K 2.8 is 'gift 001578 840110 02084534 BGS 16 6 98 w 0 02K 0, 4K 0 2K 0 :3OK 0 59 1.0K 1.6 1- 001579 840110 02084534 BGS 17:3 126 w 0:04 0:4K 0-;0 O:ZOK 1:2 1.OK 2.0 15 001580 840110 02O84S34 BGS 16.5 115 w 0.03 0.4K 'O.2K O.SOK 0.61 1.OK 1.9 12 001581 840110 02O84S34 WP 22.1 220 w 0.04- 0.4K 0,2K 0.30K 1.0K 1.9 9.. 001582 840110 02084534 BRB 26.3 232 w 0.02K 0.4K 0.2K 0.50K 0.79 1.0K 1.OK B.. 001583 840110 02084534 BRB 29.2 296 w 0o02K 0.4K 0.2K 0.50K 0.78 1.OK 1.8 12 001584 840110 02084ti34 BRB 30.@ 401 F 0.05 0.4K 0.2K 0.50K 0.60 1.0K 1.0K 4. 001585 840110 02084534 BRB 29 195 F 0.02K 0.4K 0.2K 0.50K 1.0 1.OK 1.0K 4 001586 840110 02084S34 BRB @9.7 i27 F 0.03 0.4K 0-29 0.50K 0.52 i.OK 1.OK 001587 840110 02084534 Smu 31.9 379 F 0.02K 0.4K O.,2K 0.50K 0.69 1.OK 1.0K 001588 840110 02084S34 YP 23.4 198 F 0.04 0.4K 0.2K 0.50K 0.81 1.0K 1.0K 4. jc 001589 840110 02084534 CHP 36.3 426 F 0.02K 0.4K 0.2K 0.50K . 0.89 1.0K 1.OK. 001590 840110 02084534 CHP 41.6 497 F 0.11 0.4K 0.2K O.SOK 0.52 1.0K I-OK 001591 840110 02084534 CHP 46 759 F 0.08 0.4K 0.2K 0.50K O@42 1.0K 1.0K 001592 840110 02084534 CHP 46.3 853 F 0.13 0.4K 0.2K 0.50K 0.40 1.0K 1.0N 001593 840111 02084534 CHP 48.8 984 F 0.11 0.4K 0.2K 0.50K 0.42' 1.OK 1.OK 3- 001594 840111 02084534 CHP 48.8 984 F(D) 0.13 0.4K 0.2K 0.50K 0.64 1.0K i.0K 3. 001595 840111 02084534 ccS 26.4 320 F 0.08 0.4K 0.2K O-SOK 1.0 1.0K i.cr, 4. 001596 840111 02084534 LMB 28.6 298 w 0.09 0.4K 0.30 0.50K 0.74 i.oK i.OK Q, 001597 840110 02084534 LMB 27.1 333 F 0.09 0.4K 0.2K 0.50K 0.42- 1.0K. 1,OK 3. 001598 840111 020845 .34 LMB 2-8.6 434 F 0.16 0.4K .0.2K 0.50K 0.53 1.0K 1.011, 3. 001599 840110 02084534 LMB 3-2.6 515 F 0.11 0.4K 0.2K 0.50K 0.45 1.0K 1.0K 3. 001610 840110 02084534 WP 23.8 2.67 w 0.03 0.4K 0.2K 0.50K 4.2 1.0K 1.0K V 54 Table 14 cont. SAMPLE4 DATE STATION SP. L(CM) W(GR) TYPE HG AS CD CR.T cu NI PB ZN MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/V 001403 830608 02081166 GSH 32.1 300 w 0.02K 0.2K 0.50K 1.1 1.0K !.a 10 001404 830608 02081166 SKS 21.0 160 w 0.11 0.2K 0.50K 0.48 1.OK 2.1 9.1 001405 830608 02081166 LG 71.0 S95 F 0.31 0.2K 0.50K 0.10K 1.0K 1.0K I - 001519 B31208 02081166 45.7 813 F 0.11 0.4K 0.2K 0.50K 0.@q 1.0K 1.0K 2.- 001520 331208 02081166- BF 59.2 1885 F 0.31 0,4K 0.1-t< 0.50K 0.33 1.0K 1.0K "F 00151-1 931-208 0-2081160 BF 44.2 Sol F, 0.14 0.4K 0.2K 0.50K 0.35 1.0K 1.0@ 001@'22 8312-08 0208116o EIF 40.7 652 F 0.09 O,4K 0.2K 0.50K 0.31 1.0K 1.0r, 001',23 8311-08 02081166 BF 51 1159 F 0.34 0.4K 0.2K 0.50K 0.25 1.0K 1.()F1 001'@-24 831208 02081166 BF 43.8 776 F 0.17 0.4K 0.1K 0.50K 0.27 1.0K 1.0K 001'w25 831208 02081166 BF 42.7 765 F 0.17 0.4K 0.@K 0.50K 0.19 1.0K 1.OK 001-.26 831208 02081166 C: .58.5 3075 F 0.08 0.4K 0.2K 0.50K 0.65 1.0K 1.0K 001'427 831208 02081166 c 48 1684 F 0.09 0.4K 0.-1K 0.50K 0.98 I.QK 1.OK. 00151-8 831208 02081166 c 51.4 2043 F 0.06 0.4K 0.2K 0.50K 0.75 1.0K 1.0K 001S29 831208 0.2081166 c 49.e 16-15 F 0.04 0.4K 0.2K 0.50K 1.1 1.0K 1.0K 9 001530 8312-08 02081166 LG 62.5 7-15 F 0.11 0.4K 0.2K 0.50K 0.52 1.0K 1.OK 3 001531 831208 02081166 LG 68.7 1053 F 0.17 0.4K 0.2K 0.50K 0.85 1.0K 1.OK 4..-. 001532 831.208 0208116@6 LG 55.S 830 F 0.08 0.4K 0.2K 0.64 0.48 1.0K 1.OK 3,@ 00IS33 831208 02081166 BREt 36.3 602 F 0.04 0.4K 0.2K 0.50K 0.60 1.0K 1.0K .E 001S34 831208 02081166 BRB 34 533 F 0.09 0.4K 0.2K -0.50K 0.52 1.OK 1.0K, 2.E 001535 8312-08 02081166 BRB 33.1 483 F 0.27 0,4K 0.2K 0.50K 0.56 I.bK 1.0K' .4.-- 001536 931-208 02-081166 BRB 31.5 420 F 0.06 0.4K 0.2K 1.4 -1.5 1.OK 1.OK 3.c 001S37 831208 02-081166 YEB 31.5 463 F 0.18 0.4K 0.2K 0.50K 0.94 1.0K 1.OK 2.@- 001!538 331208 02-081166 UP 20.7 170 F 0.13 0.4K 0.2K 0.50K 0.83 1.0K 1.0K 3.: 001539 831108 02081166 w is 160 F 0.19 0.4K 0-@K 0.50K 0.36 1.OK 1.0K 3., 001540 831;08 02081166 w 17 144 F 0.17 0.4K 0.2K 0.50K 0.31 1.0K 1.0K 3..' 001541 831208 02081166 w 16.5 130 F 0.24 0.5K 0.2K 0.58 0.8-1 1.OK 1.OK 001542 831208 02081166 w 17 135 F 0.14 0.4K 0.2K 'O.50K 0.48 1.0K 1.0K 001406 830616 0208117810 BF 57.5 1?96 F 0.19 0.2K 0.50K 0.20K 1.OK 1.0K 3.1 001407 830616 0208117810 WHC 3-2.0 554 F 0.04 0.2K 0.50K 0.23 110K I.Oh" 3- 001408 830616 0208117810 WHC 21.0 125 w 0.03 0.25 0.50K 0.79 1.OK 3.1 1, 001409 B30616 0208117810 WP 18.0 73 WC3 0.03 0.21-1 0.57 4.1 1.0K 3.6 27 001409 830616 0208117810 WP 17.2 63 001409 830616 02.08117810 WP 17.0 61 001410 830616 0208117810 WP '15.7 39 WC3 0.03 0.1@ 0.50K 1.7 1.0K 5.3 ?o 001410 830616 02-081,17810 WP 15.6 38 001410 830616 0208117910 WP 15.3 48 55 Table 14 cont. SAMPLE* DATE STATrON SP. L(CM) W(GR) TYPE HG AS CD CR.T cu Nr PB ZN MG/KG MG7/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/ 001354 830615 0208455650 LG 49.0 350 w 0.08 0.20K 0.53 3.5 I.OK 1.1 8.1 001355 830615 0208455650 WHC 38.0 832 F 0.03 0.20K 0.50K 0.38 I.OK I.OK 6.-- 001356 830615 0208455650 WHC 37.5 703 F 0.03, 0.20K 0.50K 0.4-2 I.OK 1-OK- 6- 001357 830615 0208455650 WHC 33.8 598 F 0.02K 0.20K 0.50K 0.33 1.OK I.OK '4.7 001358 830615 0208455650 WHC 31.9 480 w 0.02K 0.20K 0.50K 0.47 I.OK I.OK 6. 001359 830615 0208455650 WHC 28.2 285 w 0.02 0.20K 0-50K 0.5-1 I.OK I.OK 001360 830517 0208455650 AME 48.5 275 F 0.05 001361 830517 0208455650 w 19.5 149 F 0.03 001362 830517 0208455650 LG 68.5 895 F 0.06 001343 930615 0208455850 WF' 23.1, 203 w 0.02-K 0.28 0.50K 5.2 110K 3.1 It3 001344 830615 0208455850 WFI -13.8 125 w 0.02K 0.- 0.50K 2-@ 9'. 001345 830615 0208455850 WP @.L3 201 w 0.02K 0.21 0.50K @.3 I..OK 1.3 il 001346 830615 0208455850 WP 22.1 174 w 0.02K 0.28 0.50K 7.3 1.OK 2.7, 1@ 001347 830615 0208455850 WP 23.3 209 w 0.02K 0.23 0.50K 11.0 1.OK 119 - 001348 830615 0208455850 WP 22.3 176 w 0.02K 0.26 0.50K 3.7 1.OK 1.4 18 830615 0208455850 WP 21.6 164 w 0.04 0.26 0.50K 6.2 I.OK 2.1 17 001350 830615 0208455850 smu 30.0 286 w 0.02K 0.20K 0.50K 2.2 1.OK 1.4 1, 001351 830615 0208455850 smu 26.6 268 w 0,02K 0.20 0.50K 2.1 1.OK 2.8 11@ 001352 830616 0208457020 WP 20.6 138 w 0.02K 0.20K 0.50K O.Se 1.OK 1.9 13 001353 830616 0208457020 STB 27 5 2-47 W. 0 02K 0 20K 0 50K 0 55 1 OK I a 12 001560 840111 0208457020 c 33:4 657 F 0:02K 0.4K ;-2K 0:50K 0:29 1:OK I:OK 9.- 001561 840111 0208457020 -C 44.2 1285 F 0.02K 0.4K 0.2K -0.50K 0.81 1.OK 1.OK 15 001562 840111 0208457020 C "36.4 707 F 0.02K 0.4K 0.-IK 0.50K 0.76 1.bK I.OK 7-1 001563 840111 0208457020 c 31.2 578 F 0.02K 0.4K 0-2K 0.50K 0.75 1.OK 1.OK 7.: 001564 840111 02084570@-O WHC 40.8 1270 F 0.05 0.4K 0.23 0,50K 0.28 1.OK I.OK 4.- 001565 840111 02084570.20 WHC 38.6 930 w 0.07 0.4K 0.30 0.50K 0-69 1.OK 1.OK 6., 001566 840111 020e45702.0 WHC 39.6 980 F 0.06 0.4K 0.24 0.50K 1.1 I.OK 1.OK 3.c 001567 840111 0208457020 BRB 40.2 982 F 0.05 0.4K 0.31 0.50K 0.31, 1.OK I.OK 4 001568 840111 0208457020 CHP 43.1 553 F 0.12 0.4K 0.-33 0.50K 0.20K 1.OK I.OK' 4.-' 001569 840111 0208457020 CHP 40.6 513 F O@12 .0.4K 0.25 0.50K 0.30 1.OK 1.OK 7..' 001570 840111 0208457020 CHP 37.7 467 F 0.11 0.4K 0.2K 0.50K 0.20K 1.OK 1.OK 3., 001571 840111 0208457020 RRB 25.7 229 w 0.0-1 0.4K 0.2K' 0.50K 0.40 I.OK 1.9 10 001572 840111 0208457020 BGS 14.7 -72 w 0.02K 0.4K- 0.2K 0.50K 0.37 I.OK 2.8 16 001573 840111 0208457020 SF 15.6 87 w 0.0;.;K 0.4K 0.2K 0.50K 0.36 1.0K, 2.5 15 .001,574 840111 0208457020 SF 15.1 67 w 0.02 O.'4K 0.11K O."OK 0.20K 1.OK 1.9 13 001575 840111 0208457020 SF 16.1 89 w 0.02 0.4K 0.2K 0.50K 0.30 1.OK -1.0 11 56 Table 14 cont. SAMPLE* DATE STATION SP. L(CM) W(GR) TYPE HG AS CD CR.T cu NI PB ZN MG/KG MG7/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/ 001354 830615 0208455650 @LG 49.0 350 w 0.08 0.20K 0.53 3.5 1.0K 1.1 .B.-i 001355 830615 0208455650 WHC 38.0 832 F 0.03 0.20K 0.50K 0.38 1.0K I-OK 6.7 001356 830615 0208455650 WHC 37.5 703 F 0.03. 0.20K 0.50K 0.42 1.0K I-OK 6.4' 001357 e30615 0208455650 WHC 33.8 598 F 0.02K 0.20K 0.50K 0.33 1.OK 1-OR 4.7, 001358 830615 0208455650 WHC 31.9 480 w 0.02K 0.20K 0.50K 0.47 1.0K 1.OK' 6... 001359 830615 0208455650 WHC 28.2 285 w 0.02 0.20K 0. 50K, 0.52 1.0K 1.OK 7.@ 001360 830517 0208455650 AME 48.5 275 F 0.05 001361 830517 0-208455650 w 19.5 149 F 0.03 001362 830517 0208455650 LG 68.5 895 F 0.06 001343 830615 0208455850 WF' 23.1 203 w 0.02K 0.28 0.50K 5. 2 1. ()K 3.1 1@3 001344 830615 0;-08455850 WF' 2-3.8 11-5 w 0.02-K 0.23 0.50K 2. 1 1. ()K 2.1 9. 001345 830615 0208455850 WF' 22.8 201 w 0.02K 0.21 0.50K @.3 1.0K 1.3 11 001346 830615 0208455850 WP 22.1 174 w 0.02K 0.28 0.50K 7.3 1.0K 17 001347 830,615 0208455850 WP 23.3 209 w 0.02K 0.23 0.50K 11.0 1.0K 1.9 26 001348 830615 0208455850 WP 22.3 176 w 0.02K 0.26 0.50K 3.7 1.OK 1.4 18 001349 B30615 0208455850 WF 21.6 164 w .0.04 0..26 0.50K 6.2 1.OK-- 2.1 17 001350 830615 0208455850 smu 30.0 286 w O..02K 0.20K 0.50K 2.2 1.0K 1.4 12 001351 830615 0208455850 Smu 26.0 268 w 0.02K 0.20 0.50K .1.1 1.OK 2.8 1" 001352 830616 02oe457020 w P 20.6 138 w 0.02K 0.20K 0.50K 0.88 1.0K 1.9 13. 001353 830616. 0208457020 STB 27.5 2-47 w 0.02K 0.20K 0.50K 0.55 1.OK 1.8 12 001560 S40111 0208457020 c 33.4 657 F 0.02K 0.4K 0.2K 0.50K 0.29 1.0K 1.0K 9.,; 001561 840111 0208457020 c 44.2 1285 F 0.02K 0.4K 0.2K '-0.50K 0.81 1.0K I-OK 001562 840111 0208457020 c 36.4 707 F 0.02K 0.4K -0.2K 0.50K 0.76 l.'bK 1-OK 7.@. 001563 840111 0208457020 c 31.2 578 F 0.02K 0.4K 0.2K 0.50K 0.75 1.0K 1.OK 7.- 001564 940111 0208457020 WHC 40.8 1270 F 0.05 0.4K 0.23 0.,50K 0.28 1.0K 1..0K 4.- 001565 840111 0208457020 WHC 38.6 930 w 0.07 0.4K 0.30 0.50K 0.69 1.OK 1.0K 6., 001566 840111 .0208457020 WHC 39.6 980 F 0.06 0.4K 0.24 0.50K 1.1 1.0K 1-OK 3.c 001567 840111 020845701-0 BRB 40.2 982 F 0.05 0.4K 0.31 0.50K 0.31, 1.0K 1.0K 4 001568 840111 0208457020 CHP 43.1 553 F 0.12 0.4K 0.-33 0.50K 0.110K 1.OK 1.0K 4.'@ 001569 840111 0208457020 CHP 40.6 513 F 0.12 0.4K 0.25 0.50K 0.30 1 OK 1-OK 7 . @- 001570 840111 0208457010 CHP 37.7 467 F 0.11 0.4K 0.2K 0.50K 0.20K 1:0K I-OK 3..- 001571 840111 0208457020 BRB 2-5.7 229 w 0.01 0.4K O.'K' 0-50K 0.40 1.OK 119 10 001571. 840111 0208457020 BGS 1:4.7 '7;- w 0.0-@K 0.4K- 0.- 2K.. 0.50K 0.37 1.OK 2.8 16 001573 840111 0208457020 SF 15.6 87 w 0.02K 0.4K 0.2K 0.50K 0.36 1. OK' 2.5 15 001574 840111 0208457020 SF 15.1 67 w 0.02 O.'4K 0.1-K 0.50K 0.20K 1.0K 1.9 13 001575 840111 0208457020 SF 16.1 89 w 0.02 0.4K 0.2K 0.50K 0.30 1.OK 2.0 11 5-6.. Sediment Discussion Sediment at nine of the eleven stations within the study area was sampled for metals. Metals sampled for were cadmium, chromium, copper, mercury, nickel,. lead, and zinc.. In "A 96-hour bioassay-of Otter Creek, Ohio", an article in, the Journal of Water Pollution Control, October 1977, Bayliss L. Prater and Max A. Anderson suggested sediment criteria for polluted waters from data taken from several harbors. Two parameters sampled during this study, arsenic and lead, indicated values that are considered heavily polluted according to these criteria. The high arsenic value occurred at station # 0208455650 (Pungo River at U.S. Hwy 264 near Ponzer, N.C.). This arsenic value was 8.6 mg/kg. The high lead value occurred at station # 02081166 (Scuppernong River at SR 1105@ near Columbia, N.C.). The lead value here was 140 mg/kg. Sediment mercury values were fairly low at all stations with a maximum value of 0.1 mg/kg. Values for sediment metals at the nine stations are found in table 15. TABLE 15 SEDIMENT METALS (MG/KG) (K refers to "less than" values) STATION DATE As Cd Cr Cu. Hg Ni Pb Zn 02081166 820921 3.9K -50K 11 8.8 .1 6.5 140 59 830609 5-3K .97 34 11 .1 17 25 93 02o81178lo 820921 6.1K -50K 17 3.1 .05 6-8 13 21 830616 6-7K .20K 18 5 .05 8.6 17 26 0208117820 820921 5.8K .50K 19 3.9 .05 6.7 13 28 02o811783o 820921 2.8K -50K 8.9 .97 .04 4.4 39 17 02081185 830609 4.2K .73 39 15 .1 16 32 97 82084534 820107 6.1 .95 27 15 .02K 11 32 94 830623 7.9 .75 38 13 .1 15 40 78 0208455650 830303 .1 830420 .02 830615 7.9K .41 22 8.90 .1 12 19 40 830810 8.6 .80 23 10 .02K 13 26 45 0208455850 830615 6.4 .58 32 15 .1 20 36 100 0208457020 830613 6.2K .46 35 12 --l 17-- 38---- 80 57 PHYTOPIANKTON AND CHLOROPHYLL a ANALYSIS Phytoplankton and chlorophyll a data was analyzed for several rivers and creeks associated with the CEIP studyincluding Bath Creek, Pungo Creek, Pantego Creek, Pungo River, Scuppernong River, and the Alligator River. Results indicated very different levels of phytoplankton standing crops and dominant species in these waters (Figure 11). The creeks and rivets on the south side of the peninsula had intru- sions of saline waters during the last few months of 1983.(Figure 12). All stations sampled in these creeks and rivers were dominated totally, or in part, in the late summer and fall by flagellates common to brackish or saline waters. Species dominant in the.spring and early summer were more indicative of waters with little or no salinity. Bath Creek, Pungo Creek, and Pantego Z> Creek exhibited the potential for high levels of phytoplankton growth as well as ideal conditions for dominance of phytoplankton by blue-greens. Total inorganic nitrogen concentrations were reduced to low levels (<.01 Auk mg/1) in these creeks by early summer and an adequate supply of other nutrients was available (Figure 10). Colonial blue-green algae dominated the phytoplankton at these sites until salinities increased in late summer. With continued nutrient loading and proi,er environmental conditions, any of these creeks appear to be capable of supporting surface bloom of flagellated greens, Euglena sp., or blue-greens during the spring or summer. These creeks also seem capable of maintaining high numbers of dinoflagellates. in the fall. The Pungo River supported less phytoplankton biomass than the creeks described above. There was no major spring pulse of algal growth, there- fore,reduction of total inorganic nitrogen in the water column was much .More gradual during the summer at the Pungo River site. Fall phytoplankton species composition was similar at the Pungo River and at Bath, Pungo, and Pantego Creeks but phytoplankton density was 1-2 orders of magnitude less at the Pungo River site. Shallow light penetration and more dynamic.flow- and mixing patterns at the Pungo River site might have accounted for this. difference, but no flow or light data was available. 58 Two stations on the north side of the peninsula on the Alligator and Scuppernong Rivers did not have a strong intrusion of saline water during late summer and fall-(Figure 15).- Algal populations in these rivers were not strongly dominated by one taxa. or class of phytoplankton in any of'* the observed samples. Inorganic nutrients in the water column on the Scuppernong River were never reduced to extremely low levels during the study period and were probably influenced more by productivity of aquatic macrophytes than by phytoplankton. 'nie relatively low concentrations of chlorophyll a, in the presence of available nutrients, indicated that algal growth was limited by factors other than nutrients. Light pene- tration or chelation of trace metals due to humics in these dark waters may have helped limit phytoplankton production. Bath Creek 02084534 Seasonal increases in phytoplankton growth, as indicated by chloro- phyll a, began in March. This growth reduced inorganic nitrogen concen- Amok trations to low leveis byMay. Spring phytoplankton were dominated by diatom (Bacillariophyceae) and greens (Chlorophyceae). Small filamerp- tous blue-green algae dominated phytoplankton density during the summer but dinoflagellates dominated algal biomass during that period. The maximum chlorophyll concentration (40 ug/1) was recorded in July. Chloro- phyll a levels declined in the fall, as did phytoplankton density, but maxim= phytoplankton biomass was measured in December. A brackish water dinoflagellate (Heterocapsa triquetra) was responsible for 60% of the bio- mass measured in Bath Creek at that time (8.5 mg/1). Intrusion of saline water in Bath Creek in the last 6 months of 1983 was indicated by the dominance of brackish water species. Pungo, Creek 02084S7020 A spring pulse in phytoplankton growth occurred in may in Pungo Creek. Although phyt6plankton density and biomass were not measured in chlorophyll a concentration of 63 ug/1 was recorded- -A-. green f lagelldte......- (Chlamydomonas sp.) was responsible for this bloom. Chl=ydomonas. sp- often responds to warming temperatures and high levels of-nutrients avail- 59 able in the spring in fresh waters of North Carolina. The-growth of phytoplankton in May reduced total inorganic nitrogen concentrations to low levels in Pungo Creek. A second, smaller peak of chlorophyll a (32 ug/1) occurred in July. A rather large dinoflagellate (Gymnodinium nelsonii) con- stituted 94% of algal biomass (14.4 mg/1) at that time. Small filamentous blue-g-reen algae (Phormidium sp. and Anabaenopsis circularis.) dominated phytoplankton density during the summer when units/ml approached 100,000 .(August) in Pungo Creek. As'salinity increased and temperatures decreased in the falland winter, brackish water flagellates (Cryptophyceae, Chryso- phyceae, Prasinophyceae, and Dinophyceae) ivere abundant in the algal sam- ples analyzed. Pantego Creek 02084SS8SO Phytoplankton in Pantego Creek responded to high nutrients and warming temperatures in May of 1983. An assortment of fresh water-green algae (Chlorophyceae) were responsible for a chlorophyll a maximum of 74 ug/l in May. Elevated total inorganic nitrogen concentrations (3.53 mg/1) present in March were reduced to very low levels (.03 mg/1) by May... Sum- mer phytoplankton populations were dominated by blue-green algae, and in- organic nutrients remained low during the summer. Ihe introduction of saline water in the late summer and fan was accompanied by a shift in phytoplankton populations to brackish water flagellates. Flagellates dominated the December phytoplankton biomass and density. Heterocapsa triquetra dominated algal biomass (S.S9 mg/1) at this time and chlorophyll a levels rose to 36 ug/l. Pungo River 02084SS650 Chlorophyll a measurements in the Pungo River at Ponzer did not in- dicate a major pulse of phytoplankton growth in the spring of 1983. De- creases in total inorganic nitrogen concentrations were much more gradual in the river than in nearby creeks. The maximum chlorophy-11a concen.- tration recorded was 9 ug/l in both September and October-when flagellates biomass and, in the Dinophyceae and Cryptophyceae dominated phytoplankton. density. Salinity measurements of 5-10 ppth were recorded during this period, which would favor the brackish water flagellates observed. @60 Scuppernong River 02081166 There was a steady decline in total inorganic nitrogen in the Scupper-- nong River during the late spring of 1983. However, this decline did not C> correlate well with phytoplankton growth as indicated by chlorophyll a m@asurements. Phytoplankton standing crops were relatively low throughout 1983 as indicated by 6 maximum phytoplankton density of 2218 units/mi, a maximum phytoplankton biomass of 1.34 mg/l; and a maxiTan chlorophyll a concentration of"'ll ug/1 in July. No particular group of algae totally dominated phytoplankton in the Scuppernong R-iver in the samples analyzed. inorganic nutrients were not reduced to undetectable levels throughout the growing season, and total inorganic nitrogen increased to high levels (2.16 mg/1) in December. This increase may not have been associated with reduced phytoplankton growth, but rather with reductions in the productivity of aquatic macrophytes. Alligator River at Cherry Ridge Landing 0208117810 Samples procured from this@ station in the spring and summer of 1983 indicated that phytoplankton were probably not the major primary producer. The chlorophyll a concentrations in April, July and September were <1, <1, and 4.0 ug/1 respectively. Total inorganic nitrogen concentrations remained abovedetectable levels in all samples, as did total phosphorus. Apparently something other than nutrients'is- limiting phytoplankton growth in the Alligator River. 61 Figure 10 NITROGEN AND PHOSPHORUS CONCENTRATIONS IN BATH CREEK@ PUNGO CREEK, PANTEGO CREEK, PUNGO RIVER, AND SCUPPERNONG RIVER (MG/L), 1983 BATH CREEK PUNGO CREEK z 3.5 PANTEGO CREEK gel z z z E- Z @-A 0 z w PUNGO RIVER z z E- 2.0- 2.9 SCUPPERNONG RIVER 1.5- - 0.6 1.0. - 0.4 0.5- 0.2 i F m A m i J- A 0 N D DATE Total organic nitrogen Total inorganic nitrogen @PANT@GO CREEK -7- SCUPPERNONG RI@VER Total phosphorus '62 Figure 11 CHLOROPHYLL.-a, PHYTOPLANKTON BIOMASS, AND PHYTOPLANKTON DENSITY AT BATH CREEK, PUN.GO CREEK, PANTEGO CREEK, PUNGO RIVER, AND SCUPPERNONG RIVER, 1983 BATH CREEK PUNGO CREEK @4 >4 A4 z PANTEGO CREEK Ask z z 0 i I . I " - ca E-4 z PUNGO RIVER pq >4 z P4 E- z -7 < 1.4 105- SCUPPERNONG RIVER 100 20 04 1041 75 15 >4 1 3- 0 50 10 P4 102 25 5 U* c i F M A M j J A S 0 W-T D D A T E U=UNITS/ML Density C=uG/L Chlorophyll-a B=MG/L _ii@ Biomass Adak 63 4 SURFACE WATER SALINITY (PPTH) IN BATH CREEK, PUNGO CREEK, PANTEGO CREEK, PUNGO RIVER, AND SCUPPERNONG RIVER, 1983 .13- S u R F A' c E W Ap 7.8- Tp ET R H s 5.2 A L I N 1 2.6- T Y O-L MAR APR MAY JUN JUL AUG SEP OCT NOV DEC BATH CREEK PUNGO RIVER !P.UNG0 CREEK MONTH SCUPPERNONG R. ........,....:-!PANTEGO CREEK BFANIHIC IMACROINVERTEBRATE ANALYSIS Benthic macroinvertebrates were collected using a standardized qualitative technique (DIM, 1983). This collection method is directed at a couplete inventory of all species present with some indication of relative abundance. Two crews worked simultaneously, one working at shore areas and the other taking dredge samples in deeper water. Table 16 presents taxa richness, by group, at all sites. Maximum taxa richness (46) was low, as expected for this area. The Albemarle- Pamlico peninsula is an area with low aquatic macroinvertebrate diversity. This is due, in part, to low current velocities, low dissolved oxygen values, and variable salinities. This area has been so extensively modi- fied by man (agriculture, silviculture) that undisturbed "control" areas are largely absent. Salinity values are themostimportant factors regulating taxa. rich. ness at the Albemarle -Pamlico sites. Most freshwater species are oligo- haline; intolerant of salinities greater than 0.5% (Kendall, 1983). Overall salinities are lowest on the north side of the peninsula, as.the Albemarle Sound is much fresher than the Pamlico Sound. Only two sites (Kendrick Creek and Scuppernong River) Are freshwater sites (Table 17). These two sites had the highest taxa richness with estuarine species being rare or absent. At both sites, the macToinvertebrate fauna was abundant only at bank areas. In midstream, areas, only Chaoborus pun- ctipennis and Limnodrilus were common. This distribution pattern in- dicates that very low dissolved oxygen concentrations are present for long periods in deeper water. A similar distribution of species was noted at the Alligator River, but overall taxa, richness was lower (31). This decline can be attributed to the occasional intrusion of brackish water (Table 17). Note that the number of estuarine species is higher at this site (3) than at either Kendrick Creek or vie Scuppernong River. Therefore, the reduced taxa. richness at this site cannot be attributed to a decline in water quality. 65 In fact, the higher number of TrichopteTa at this site suggests better water quality., When taxa richness for June 1983 is combined with taxa richness for August 1983, values increase at all sites. However, a large increase is seen only at Kendricks Creek. This indicates better water quality at this station (Table 18). The number of estuarine species per site is much greater at-Pamlico sites (13-20) than at Albemarle sites (0-3). These species are primarily in the groups Polychaeta, Crustacea and Mollusca (Table 16). The higher salinity is associated, as expected, with lower taxa richness (22-33 taxa). There are few between-station differences in total taxa. richness at tribu- tary sites. Taxa richness declines at Pamlico River sites as higher salinities eliminate almost all freshwater species. Note that the-normal diversity of true estuarine organisms, at salinities of S-10%, is very low P/IcLusky 1981). Table 16 gives only a few clues to suggest any between- station differences in water quality at Pamlico sites. Note the higher than expected taxa richness for estuarine organisms (especially Crustacea)- at Pungo Creek. This suggests more stable salinities for this stream. The Pungo River has the highest number of freshwater species suggesting greater input of freshwater after heavy rains. Other indications of water quality differences can be found in the distribution of chironomid (midge) species (Table 19). The high organic group is abundant in midstream samples at Pungo Creek, Pantego Creek, and Bath Creek, particularly at the first tivo sites. The dominance of this group indicates low (but not zero) dissolved oxygen conditions, and high input of particulate organic carbon,(POC). This POC probably originates as phytoplankton. It is likely that normal estuarine mixing and/or wind mixing prevents the extended periods of nea:r anoxia deduced for some Albemarle sites. The "Enricllunent Group" includes 2 chironomids collected-as epi-fauna. at shore areas. These species were abundant at 2 Albemarle sites-(SCUpper- nong River, Alligator River) and 3 Pamlico sites (Bath Creek, Pungo Creek, Aft and the Pungo River) 66- The benthic macroinvertebrate data can be used to rank stations according to overall water quality. No attempt is made, however, to com-. pare Albemarle sites,with Pamlico sites due to marked salinity differences. Within the Albemarle area, Kendrick Creek clearly had the best water quality. This is based on higher taxa richness (1982 + 1983) and the rarity of species indicating enrichment and/or organic loading. The Scuppernong River appears to have the poorest water quality based on low numbers of intolerant species and the abundance of "enrichment" indicators. Unpublished data shows extensive deoxygenation at this site. Within the Pamlico area, the stations with poorest water quality were Pantego Creek and Pungo Creek. Fish kills have been reported at both stations. This rating is based primarily on the abundance of "enrichment" and "high organic" indicators. Pungo Creek may be marginally better, as data indicates more stable salinities at this site. Pungo, River also has similar water quality problems, but the abundance of "high organic" in- dicators is less. Note, however, that August 1982 samples found similar communities at Pantego Creek and the Pungo River. Both sites were domin- ated by a capitellid polychaete, Nlediomastus, indicating a high orgganiC loading. Data from Bath Creek indicates similar problems, but not to the same degree. The abundance of organic indicator species was consistently less at this site in 1982 and 1983. 67 Table 16. Taxa Richness, by group, June 1983 Basin: Albemarle Pamlico ,Site Kendrick Scuppernong Alligator Bath 1"ungo Pantego Pungo Pamlico River Group Cr. River River Cr. Cr. --Cr.---. Rivet- f ry t. Great Island Ephemeroptera 2 1 - 2 2 7 Trichoptera 1 - 4 - - - Coleop tera 5 4 - I Odonata 3 4 2 1 Hemiptera 3 4 3 - Diptera: Misc. 2 3 2 1 2 1 1 - Diptera: Chiron. 9 12 9 13 7 10 9 3 2 Oligochaeta 3 6 2 1 3 - 1* - Hirudinea 2 2 - - - - - - co Polychaeta - - 3* 2* 2* 4* P 4* Crustacea 4 3 6 8* 12* 9* 8* 8* 12* Mollusca 5 5 .3 2* 5* 3* 3* S* P Other 3 2 Total 42 46 31 31 31 33 29 22 23 Estuarine species 0 1 3 Is -20 13 14 19 20 Freshwater species 42 4S 28 16 11 20 is 3 3 Unique Species** 10 14 8 3 3 3 1 3 s M ting (From Assessment Document) G-F G-F G-F G-F G-F F F F/G-F G Primarily estuarine species Collected at only I site Table 17-- Average Salinity %/Dissolved Oxygen (mg/1) DO Measured Predicted N Surface Bottom* Salinity (Surface) Salinity+ Kendrick Cr. 8 6.1 0.1 <2 Sduppernong R. 17 3.1 3.2** 0.2 (0-2.1) <2 Alligator R. 4 6.3 6.1 3.3 (0-7.0) <2 Bath Cr. 14-1S 8.8'-- 4.9 (0-10.8) 3-9 Pungo Cr. 14 9.0 5.9 (1.0-11.9) 5-11 Pantego Cr. 14 9.0 S.4 CO.4-12.S) 5-11 PLmgo R. 13 7.1 4.0 (0-9.0) 5-11 Pamlico (Hickory Pt.) 5-11 Pamlico (Great Island) 14-17 *.Based on very limited data ** May be <1.0 + From Giese et al. (1979) 69 Table 18. Taxa Richness, by group, August 82,& June 83 Basin: Albemarle Pamlico Station: Kendrick Scapernong Alligator Bath Pantego Pungo R. Group Ephemeroptera 4 1 2 2 Trichoptera 2 - 4 - Coleoptera 6 4 - 1 Odonata 4 4 2 1 1 1 Hemiptera 3 4 3 - - .1 Diptera: Misc. 5 3 3 1 1 2 Diptera: Chiron. 16 12 12 14 13 9 Oligochaeta 7 8 1 2 4 2 Hirudinea 3 2 - - - Polychaeta 2 3 5 4 Crustacea 4 3 7 9 10 8 Mollusca 8 5 6 4 5 4 Other 6 2 1 2 Ibtal 68 48 41 35 43 35 ip 70 Table 19. Distribution of Abundant Chironondd Taxa, July 1983 Basin: 'Albemarle Pamlico Station: Kendrick Scapernong Alligator Bath Pungo Cr. Pantego Pungo R. Taxa High OrgaUic Group Chironomus spp. x x x Procladius sp. x x Enrichment Group Dicrotendipes spp. (2) x x x x x Glyptotendipes sp. x Other' Ablabesmyia-peleensis x A. parajanta x x Larsia x Parachironomus monochromus x x Polypedilum illinoense x x x x x x x Phaenopsectra, sp. 3 x Stenochironomus sp. x Tanytarsus spp.. x X Very abundant Abundant Rare or comon ,qU.FEREqNCES American Public Health Association. 1980. Standard Mlethods for the Examination of Water and Wastewater., ISth edition. Benoit, D.A., E.N. Leonard, G.M. Christensen, and J.T. Fiandt. 1976. Toxic Effects of Cadmium on Three Generations of Brook Trout (Salvelinus Fontinalisj. Trans. Amer. Fish. qboc. qlqOS:SSO-560. Cooper, James J. 1983. Total Mercury qin Fishes and Selected Biota in Lahontan Reservoir, Nevada. 1'9q81, Bull. Environ. Contam. Toxicol. 31, 9-q17. Division of Environmental Management. 1983. Biological Series #.LOS. Qualitative Sampling of Ben-6qCqhic II-lacqro invertebrates: A Reliable, Cost Effective, Biomonitori4qf4qig Technique. Giese, G. L. , H. B. Wilder, and G. qG. Parker, Jr. 1979. Hydrology of Maj or Estuaries and Sounds of North Carolina. U.qS.G.S. Open-File Report 79-46. Hildebrand, S.G., A.W. Andren, and J.W. qfqluckabee, 19'q/6. Distribution and Bioaccumulation of Mercury in Biotic and Abiotic Conpartments of a Contaminated River-Reservoir System. In Andres, 0qR.W., P.V. Hodson, and D.E. Konasewich q(Eds.) Toxicity to Biota of Metal Forms in Natural Waters. Great Lakes 2qRes. Adv. Bd., Stand. Comm.. Sci. Basis Water Qual. Criteria Inter. JT. Comm. Res. Adv. Bd.: 211-232. Jensen, qS. and A. Jernelov. 1969. biological Methylation of Mercury. Nature 23, 753. Kendall, D.R. _qL983. "The Role of Physical - Chemical. Factors qiqn Structuring Subtidal Marine and Estuarine Benthos". Tech. Report 2qEqL-83-2. U.S. Army Engineer Waterways Experiment Station, Vicksburg, q@,qIiss- Koli, A.K., W.R. Williams, qE.B. MqcClary, E.L. Wright, and J.M. Burrell. 1977. Mercury Levels in Freshwater Fish of the State of South Carolina. Bull. 2qLq-28qhviron. Contam. To08qxicol. 17q- 2qB32qZq-89. Krauskopf, 28qK.B. 1967. Introduction to Geochemistry. 8qNq1qcGraw-Hill_q,,_q.0qNq1q'0q@1q._ Mahaffey, K.R., et. al. 19q*/S. Heavy Metal Exposure From Food. 16qEnviron. Health Perspec., 12:63. 72 May, Thomas W. and G. L. McKinney. 1981. Cadmium, Lead, Mercury, Arsenic, and Selenium Concentrations in Freshwater Fish, 1976-1977, - National Pesticide Monitoring Program. Pesticide Monitoring Journal 15:1. McLusky, Donald S. 1981. The Estuarine Ecosystem. Halsted Press, N.Y. National Academy of Sciences. 1978. An Assessment of Mercury in the Environment. Panel of Mercury, Washington, D.C. NRCD'.;@ 1983. Mercury and Other Metals in the Fish of B. Everett Jordan Lake, N.C. N.C. Dept. of Natural Resources and Community Development, Ralleigh. Prater, B.L. and Max A. Anderson. 1977. "A 96-Hour Bioassay of Otter Creek, Ohio." Journal of the Water Pollution Control Federation. Washington, D.C. US EPA. 1976. Quality Criteria for Water, U.S. Environmental Protection Agency, Washington, D.C. US EPA. 1980A. Ambient Water Quality Criteria.for Copper, EPA-440/5-80-057, U.S. Environmental Protection Agency, Washington, D.C. US EPA. 198OB. Ambient Water Quality Criteria for Lead, EPA 440/5-80-057, U.S. Environmental Protection Agency, Washington, D.C. US EPA. 1980. Ambient Water Quality Criteria for Mercury, EPA 440/5-80-058 U.S. Environmental Protection Agency, Washington, D.C. U.S. EPA. 1980C. Ambient Water Quality Criteria for-Zinc, EPA-440/5-80-079, U.S. Environmental Protection Agency, Washington, D.C. Walker, Patrick N. 1 962 (revised 1965). Drainage Areas of Selected Sites on Stream in North Carolina. U.S.G.S. Open-File Report. 73 - @- ilmillimmillmill 3 6668 14101 0738