[From the U.S. Government Printing Office, www.gpo.gov]
NOAA Technical Memorandum NMFS-SEFSC-284 ILI Metal Contaminant Assessment for the Southeast F-1 Atlantic and Gulf of Mexico Coasts: Results of the National Benthic Surveillance Project Over the First Four Years 1984-87 PeterJ. Hanson and David W. Evans Beaufort, North Carolina May 1991 U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION "Al OF CN National Marine Fisheries Service Southeast Fisheries Science Center SH1 1 Beaufort Laboratory .A2 Of S65 No. 284 Armosp"r 2 NOAA Technical Memorandum NMFS-SEFSC-284 ENWT OF Metal Contaminant Assessment for the Southeast Atlantic and Gulf of Mexico Coasts: Results of the National Benthic surveillance Project Over the First Four Years 1984-87 by Peter J. Hanson and David W. Evans Property of CSC Library May 1991 US Department of Commerce NOAA Coastal Services Center Library 2234 South Hobson Avenue Charleston, SC 29405-2413 U.S. DEPARTMENT OF COMMERCE Robert A. Mossbacher, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION John A. Knauss, Administrator NATIONAL MARINE FISHERIES SERVICE William W. Fox, Jr., Assistant Administrator for Fisheries b, A= Technical Memorandums are used f or documentation and timely communication of preliminary results, interim reports, or special-purpose information, and have not received complete formal review, editorial control, or detailed editing. NOTICE The National Marine Fisheries Service, (NMFS) does not approve, recommend or endorse any proprietary product of material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material herein or which has as its purpose any intent to cause directly or indirectly the advertised product to be used or purchase because of NMFS publication. Correct citation of this report is: Hanson, P.J. and D.W. Evans. 1991. Metal Contaminant Assessment for the Southeast Atlantic and Gulf of Mexico Coasts: Results of the National Benthic Surveillance Project Over the First Four Years 1984- 87. NOAA Technical Memorandum NMFS-SEFSC-284, 120 p. Copies of this report can,bE! obtained from: National Marine Fisheries Service Beaufort Laboratory 101 Pivers Island Road Beaufort, N.C. 28516-9722 or National Technical Information Service 5258 Port Royal Road Springfield, VA 22161 Metal Contaminant Assessment for the Southeast Atlantic and Gulf of Mexico Coasts: Results of the National Benthic Surveillance Project Over the First Four Years 1984-87 by Peter J. Hanson David W. Evans Contributors Beeda Lee-Pawlak, Editor David R. Colby Peter H. Crumley William Riggsbee James N. Willis III TABLE OF CONTENTS FOREWORD .................................................... v LIST OF TABLES .............................................. vi LIST OF FIGURES ............................................. viii ABSTRACT .................................................... 1 INTRODUCTION ................................................ 2 METHODS ..................................................... 3 Sampling ................................................. 3 Fish Samples ............................................. 4 Sediment Samples ......................................... 4 Elemental Analysis of Liver Tissues ......................5 Preparation of Sediments for Analysis ....................5 Elemental Analysis of Sediments ..........................5 Quality Control and Assurance ............................5 RESULTS AND DISCUSSION ...................................... 6 Sediments ................................................ 6 Sediment Models ........................................ 6 Four-Year Temporal Trends ..............................8 1987 Intensive Survey ..................................9 Sampling Design ........................................ 12 Liver Tissues ............................................ 13 Spatial Variability (1987 Intensive Survey) ............ 13 Short-term Variability ................................. 16 Four-year Temporal Trends .............................. 17 SUMMARY ..................................................... 19 REFERENCES ...; .............................................. 21 TABLES FIGURES APPENDIX Table A-1 Cycle 1 1984 Locations and Sites of Fish Collection. Table A-2 Cycle 11 1985 Locations and Sites of Fish Collection. Table A-3 Cycle 111 1986 Locations and Sites of Fish collection. Table A-4 Cycle IV 1987 Locations and Sites of Fish Collection. Table A-5 Sediment Stations: Annual Surveys 1984, Cycle I and 1985, Cycle II. Table A-6 Sediment Stations: Annual Surveys 1986, Cycle III and 1987, Cycle IV. Table A-7 Sediment Stations: Intensive Survey 1987, Cycle IV. Table A-8 Elemental Concentrations for 1984-1987 Sediments in the Southeast. Table A-9 Adjusted Elemental Concentrations for 1984-1987 Sediments in the Southeast. Table A-10 Elemental Concentrations for 1984-1987 Liver Tissue in the Southeast. iv FOREWORD This technical memorandum presents trace metal data for the first four years of the National Benthic Surveillance Project, part of the NOAA's National Status and Trends Program (NS&T). It was originally produced as a project report in May 1990 and remains essentially unchanged. It contains data for samples collected in the eight coastal states: North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana and Texas which are collectively referred to as the Southeast region. It has two purposes: 1) to transfer four years of elemental data for both sediments and fish liver tissue to the NS&T data base, and 2) to summarize the major findings to date, understanding that a significant amount of data analysis remains. Manuscripts will be forthcoming in the open. literature on these and future results. v LIST OF TABLES Table 1. Locations sampled in the Southeast Region: Cycles I-IV. Table 2. Accuracy and precision in the analysis of certified reference materials (CRM) during 1984-87. Accuracy reported as median percentage absolute deviation from certified values. Precision reported as median coefficient of variation. Table 3. Baseline models for sediment metals. Table 4. Mean and upper confidence limits for adjusted baseline sediment data. Units: ppm (dry) except percent (dry) for Fe. Table 5. Mean concentrations of trace elements in sediments (adjusted data) at annual survey sites for 1984-87. Units: ppm (dry) except percent (dry) for Fe. Table 6. Analysis of variance for differences and temporal trends among annual-site means using adjusted sediment data for 1984-87. Table 7. Analysis of variance and Dunnetts's T-test for differences among site means using adjusted sediment data for the 1987 intensive surveys. Table 8. Location means and standard errors for adjusted sediment data for 1987 intensive surveys. Five sites at each location. Mean (std. error). ppm Units: (dry) except percent (dry) for Fe. Table 9. Annual-site means and standard errors for adjusted sediment data for 1987 intensive surveys. Mean (std. error). Units: ppm (dry) except percent (dry) for Fe. Table 10. Descriptive models of elemental distributions. Table 11. Cu, Cd, Ag and Zn adjusted sediment data for 1987 intensive surveys at Galveston Bay, St. Johns River and Sapelo Sound. **significantly different (p :5 0.05) from annual site. Table 12. Ratios of mean trace element concentrations in livers at the site of highest concentration to that of lowest concentration for three locations: Sapelo Sound (SAP), St. Johns River (SJR) and Galveston Bay (GAL). Locations were analyzed separately. vi Table 13. Test results of analysis of variance for trace elements in livers showing significant (p :5 0.05) among-site differences within three locations: Sapelo Sound (SAP) , St. Johns River (SJR) and Galveston Bay (GAL). Table 14. Measures of the representativeness of the annual site to the overall location. Ratios of annual site to overall location means and standard deviations for elements in Atlantic croaker livers in 1987. Table 15. Mean trace element concentrations at two sites in Sapelo Sound sampled during July through October 1987. Table 16. Locations where trace elements showed significant (p :5 0.05) year to Year differences (*) in mean concentrations in fish livers for 1984-87. Significant increasing (+) or decreasing (-) trends. A species shift from spot to Atlantic croaker after 1984 occurred at SJR, SAP and ROU. Table 17. Ranges of trace metal concentrations measured in fish livers. Concentration in Ag/g dry weight. Table 18. Mean concentrations (Ag/g) of trace elements in Atlantic croaker livers at annual survey sites for 1984-87. vii LIST OF FIGURES Figure 1. Benthic Surveillance locations along the southern Atlantic and Gulf of Mexico coasts. Figure 2. St. Johns River fish and sediment centroids for 1984-1987. Figure 3. Sapelo Sound fish and sediment centroids for 1984-1987. Figure 4. Galveston Bay fish and sediment centroids for 1984-1987. Figure 5. Silver vs. aluminum plot for 1984-1987 sediment data. Figure 6. Arsenic vs. aluminum plot for 1984-1987 sediment data. Figure 7. Cadmium vs. aluminum plot for 1984-1987 sediment data. Figure 8. Chromium vs. aluminum plot for 1984-1987 sediment data. Figure 9. Copper vs. aluminum plot for 1984-1987 sediment data. Figure 10. Iron vs. aluminum plot for 1984-1987 sediment data. Figure 11. Mercury vs. aluminum plot for 1984-1987 sediment data. Figure 12. Manganese vs. aluminum plot for 1984-1987 sediment data. Figure 13. Nickel vs. aluminum plot for 1984-1987 sediment data. Figure 14. Lead vs. aluminum plot for 1984-1987 sediment data. Figure 15. Selenium vs. aluminum plot for 1984-1987 sediment data. Figure 16. Tin vs. aluminum plot for 1984-1987 sediment data. Figure 17. Thallium vs. aluminum plot for 1984-1987 sediment data. Figure 18. Zinc vs. aluminum plot for 1984-1987 sediment data. Figure 19. Concentrations of zinc in Atlantic croaker livers at intensive survey and annual survey sites at Sapelo Sound. Figure 20. Concentrations of zinc in Atlantic croaker livers at intensive survey and annual survey sites at St. Johns River. viii Figure 21. Concentrations of zinc in Atlantic croaker livers at intensive survey and annual survey sites at Galveston Bay. Figure 22. Concentrations of lead in Atlantic croaker livers at intensive surveys and annual survey sites at Sapelo Sound. Figure 23. Concentrations of lead in Atlantic croaker livers at intensive survey and annual survey sites at St. Johns River. Figure 24. Concentrations of lead in Atlantic croaker livers at intensive survey and annual survey sites at Galveston Bay. Figure 25. Zinc concentrations in individual Atlantic croaker livers in Galveston Bay as a function of fish total length. Figure 26. Temporal trend in the concentration of cadmium in livers of Atlantic croaker at the Mississippi River Delta annual survey site. Figure 27. Temporal trend in the concentration of iron in livers of Atlantic croaker at the Mississippi River Delta annual survey site. ix ABSTRACT Sediment and fish tissue samples have been collected annually for contaminant analysis as part of NOAA's National Status and Trends Program, National Benthic Surveillance Project since 1984. The overall goals of the project are 1) to develop a nationally uniform, long-term data base for contaminants in U.S. coastal areas, 2) to establish the current status and future trends in contaminant levels in sediments and fish, 3) to establish and monitor indicators of harmful effects to fish from contaminants, and 4) to provide an information base for management action to control inputs, concentrations and harmful effects of contaminants. In this report, data are presented for the concentrations of 16 elements (Ag, Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Si, Sn, Tl and Zn) in fish livers and surficial sediments collected annually during 1984-87 along the southeastern Atlantic and Gulf of Mexico coasts at 17 locations. Locations represent major estuarine-coastal systems within the Southeast region (e.g., Galveston Bay, Pamlico Sound and Tampa Bay). Data from annual surveys (one site sampled per location) and intensive surveys (five and six sites sampled per location) are used to present spatial distributions and temporal trends among and within locations, respectively. A method for reducing natural variability of metal concentrations in sediments that is based on linear regression of metals on aluminum is used to improve detection of spatial and temporal trends. The possibility for reduction in variability of metal concentrations in liver tissue based on consideration of fish size (age) is discussed. Based on four years of data, possible modifications to the overall sampling design are suggested. Levels of trace metals in both liver tissue and surficial sediments, as measured at annual survey sites which are selected to represent average conditions at a location, indicate that contamination on a region-wide scale is generally low and near baseline in the southeast. However, although intensive studies indicate that annual sites are reasonably representative of locations, they also indicate the presence within larger locations of small or diffuse areas of elevated concentrations of some trace elements (i.e., "hot spots") in both fish liver and sediments. Contaminant concentrations, although low region-wide, nevertheless correlate with the level of urban-industrial activity adjacent to locations. 2 INTRODUCTION Elemental analyses were conducted on bottom sediment and fish liver samples collected in near-coastal and estuarine waters of the southeastern U.S. as part of NOAA's National Benthic Surveillance Project (NBSP) . The purpose is to prov-, Jle a long-term database, national in scope, with which the present levels of contamination in our nation's waters and temporal trends in these levels can be assessed. Information of sufficient quality and continuity is sought to address important environmental questions. What are the pollution conditions in our coastal waters? Are they getting better or worse? What particular contaminants are the problem? Measurement of contaminant levels in the same sample types over long time periods provides the best change of addressing these questions. Measurement of contaminant levels in the environment not only provides indications of pollution, but also provides 1) a link between contaminant inputs and effects on biota, and 2) a basis for management action to control inputs and harmful effects. Effects from contamination can be controlled only through management of contaminant inputs which requires measurement of contaminant levels in the environment. This report presents elemental data for sediments and liver tissue for the first 4 years of the NBSP project 1984 (Cycle 1), 1985 (Cycle 11), 1986 (Cycle III) and 1987 (Cycle IV) in the southeastern region. Data for 16 elements are included: Ag, Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Si, Sn, Tl, and Zn. Aluminum and silicon were measured in sediment alone. Silicon and thallium were analyzed in earlier cycles but later discontinued. Complete data are contained in the appendix. The data are used to assess the relative levels of elemental contamination in the region, to analyze for temporal trends, and to address the question of the representativeness of sampling sites with regard to the greater location they were proposed to represent. Nineteen sampling locations were established along the southeast Atlantic and Gulf of Mexico coasts, referred to as the Southeast Region, during the 4 initial years of the project (Figure 1 and Table 1). Locations were selected to represent the expected range of contaminant conditions, from natural to impacted. Within each location, a site was selected for 3 sediment collection by criteria established for the national program at its inception METHODS Sampling Fish and sediment samples were collected at 19 locations during 1984-87 over the same August to October period each year (Table 1). In 1984, samples were collected by the National Marine Fisheries Service (NMFS) and contracted state personnel coordinated through the NMFS Southeast Area Marine Assessment Program (SEAMAP) and the participating states of North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana, and Texas. 1985f 1986, and 1987 samples were collected by NMFS personnel aboard the NOAA Ship Ferrel with SEAMAP providing technical assistance. NOAA Selection Criteria Locations: Broad geographic coverage of the coastline is needed to establish a national baseline representative of the diversity of habitats and pollutant impacts present. The assemblage of locations should represent a range of anthropogenic impacts, from relatively pristine to urban-industrial. Sites: A site is an area approximately 2 km in diameter. A site is selected to be subtidal, not intertidal; a depositional zone for sediments; integrative of contaminant accumulations within the location; an area that has not been or will not be dredged or scoured and will not undergo slumping; located outside the zone of initial dilution of a point source discharge and outside the zone of an authorized dumpsite. Stations: Each site contains three stations which are selected to characterize the site. The site criteria discussed above restrict the choice of station positions to particular areas within a location (i.e., a site) which, by definition, have less parameter variability than throughout the entire location. The selection of stations is designed to characterize the site mean and variance for the measured parameters and is not intended to characterize parameter gradients within a more heterogeneous location, such as natural gradients within an estuary or dilution gradients around discharge point. 4 Fish Samples Atlantic croaker (Micropogonias undulatus) and spot (Leiostomus xanthurus) were selected as target species. Atlantic croaker is the primary species principally because its relative abundance is generally greater than spot in the southeastern Atlantic and Gulf coastal waters. Collection of a single species from as many sites as possible is desirable in keeping with program objectives. Fish were collected each year during late summer and early fall to control for seasonal effects and to provide young-of-the-year specimens of maximum size prior to their movement from shallow estuarine waters into deeper waters which occurs with the onset of cooler weather. Young-of-the-year fish are sampled to maximize the probability that they were resident in the collection waters for all or a substantial fraction of their lives and thus have only been exposed to contaminants in those waters. Species collected each year are indicated in Table 1. Fish were collected with bottom trawls equipped with untreated nets. In accordance with program protocol, fish were randomly selected from each trawl and assigned to analytical categories. In 1984, fish were iced immediately after capture. Dissection for histopathology proceeded immediately on the trawl boat or after transfer to another vessel or laboratory, as weather and logistics allowed. Fish for organic and trace metal analysis were returned whole on ice for processing in the field laboratory at the end of each sampling day. In 1985- 87, samples were processed aboard the Ferrel in similar manner, except fish were held alive until processed. Fish were weighed, measured and necropsied. Tissues for trace metals and organics were frozen, those for histopathoiogy were chemically preserved until analysis. Sediment Samples Sediments were sampled with a Smith-MacIntyre grab at three stations within each site. Three grabs were taken a few meters apart at each station for a total of nine grabs per site. Three cores and two scoop samples were taken from each grab. All samples were stored on ice until returned to the field laboratory (1984) or shipboard laboratory (1985-87) for processing. Cores for trace metal, total organic carbon and particle size analyses were frozen. Scoop samples for organic analysis were composited by station and frozen. Transfer of tissue and sediment samples to analytical laboratories followed "chain of custody" protocols to assure transfer in frozen (dry ice), refrigerated (blue ice), or chemically preserved condition as required. 5 Elemental Analysis of Liver Tissues A pressurized, high temperature digestion with nitric acid is carried out in a closed teflon (PFA) vial inside a teflon (TFE) lined stainless steel bomb as reported by Okamato and Fuwa (1984). The procedure is designed to attain sufficient temperature and pressure to effect sample dissolution, minimize contamination, and prevent loss of volatile elements such as; Hg and Se. Digestions are carried out in batches of 12 or 13 samples, 3 or 4 standard reference materials, and 2 process blanks. Samples from each location are randomized among batches to minimize systematic bias. A single diluted digest provides material for all analyses. Ag, As, Cd, Cr, Ni, Pb, Se, Sn, and T1 are analyzed by graphite furnace atomic absorption spectrophotometry (AAS) (PE model Z/3030, Zeeman background corrected). Fe, Mn, Cu, and Zn are analyzed by flame and Hg by cold vapor AAS (PE 603). Preparation of Sediments for Analysis Sediment cores are thawed at room temperature, the top 3 cm is extruded from the core tube, the outer 3 mm of the core sample is rejected, and the sample is placed in a polyethylene weigh boat for drying (60*). The sample is ground. to uniform texture in an agate mortar after drying, and equal weight station composites are prepared from 5-7 grams of sediment from each of the three grabs at a station. Elemental Analysis of Sediments The digestion procedure is modified from methods originally reported by Rantala and Loring (1975). The procedure includes HF, HN03 and HC1 digestion acids in the same digestion bombs described for tissue samples. Aqua Regia (HC1 + HN03) is used to partially oxidize organic matter and to maintain oxidizing conditions which stabilizes such elements as Hg, Se and As. Ag, As, Cd, Cu, Ni, Pb, Sn, and Tl are analyzed by graphite furnace atomic AAS (PE Z/3030) ; Si, Al, Fe, Mn, and Zn are analyzed by flame AAS (PE 603). Cr was analyzed by flame AAS in 1984 and 1985 and by graphite furnace AAS in 1986 and 1987. Hg is analyzed by cold vapor AAS (PE 603) and Se is measured by hydride generation AAS (PE 603 and PE MHS-10 hydride generator). Quality Control and Assurance To assure validity of analytical methods, a QC/QA program is conducted that consists of five parts: 1) use of good laboratory practices, 2) written documentation of methods used, 3) participation in Ocean Assessment Division (OAD) sponsored 6 interlaboratory comparison exercises and QC/QA Workshops, 4) use of Certified Reference Materials (CRM's) , and 5) use of quality control charts. Analyses of certified reference materials provide estimates of accuracy and precision for analysis of sediment and tissue samples. Routine use of the following CRM's is our principal method for day-to-day quality control: for sediment analyses NBS 1646, MESS-1 and BCSS-1 which are all estuarine sediments; for tissue analyses NBS 1566 oyster tissue, NBS 1577 bovine liver and 2 DOLT-1 dog fish liver Measured accuracy and precision varied among reference materials and years. We report median values as a robust measure of central tendency for the four years of analyses reported (Table 2). For most elements, accuracy is within 10% of certified values and precision is less than 10% coefficient of variation. Values substantially greater than 10% are usually associated with elements near the method detection limit. Instrument sensitivity is generally the limiting factor and more sensitive methods and instrumentation would be necessary to lower detection limits. This is the case for Sn, Se, and T1 analyses in sediments and Sn and Hg analyses in tissue. Sample contamination in the laboratory may be a factor for Cr and Ni analyses in biological materials because of low concentrations found in tissue reference materials and fish liver samples. RESULTS AND DISCUSSION Sediments Sediment Models - The metal content of natural fine-grained, aluminosilicate-rich sediments, typical of the type most useful for contaminant monitoring, are well fit by a linear, two-component mixing model using quartz sand and aluminosilicates as the mixing end members. This model was developed and used in this project since 1985 and reported by others (Windom et al., 1989). Benefits of the model are its ability to account for that part of variability in observed metal concentrations associated with varying amounts of natural (i.e., baseline) sediment and to allow adjustment of observed concentrations to a common basis for direct intercomparison. 2 NBS 1646, NBS 1566 and NBS 1577 are available from National Institute of Standards and Technology, Washington, DC. MESS-1, BCSS-1 and DOLT-1 are available from National Research Council of Canada, Ottawa, Ontario. 7 To utilize this approach, a liner model is developed for each element using liner regression to fit element versus aluminum concentrations for an appropriate group of sediments known to represent natural or baseline sediments. Aluminum is used as a direct indicator of aluminosilicate mineral content and, therefore, of the natural trace-element rich component of the sediment. At the inception of the project, nine locations, about half the total number, were selected to represent areas likely to have little or no contaminant impact based on their remoteness from centers of human population and industry (Table 1). Linear models for each of 14 elements (Ag, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sn, Tl, and Zn) were developed with data from these nine b4seline locations for the years 1984-87 (Table 3 and Figures 5-18). The validity of these selected locations and of the subsequently derived models to represent baseline conditions is discussed below. The fitted models were used to numerically adjust observed total concentrations (i.e., total=baseline + contaminant metal concentrations) to those expected with a baseline aluminum concentrations of'8.01% (equivalent to world average shale; Horn and Adams, 1966), thus providing a common basis for comparing sediment concentrations among locations and years. Adjustment is graphically equivalent to translating each measured datum parallel to the fitted line (i.e. , slope) from the measured Al concentration to 8.01%. The metal concentration determined by this procedure, albeit done numerically in practice, is the adjusted metal concentration. Analysis for spatial and temporal relationships used only adjusted sediment data. For most metals, linear models fit the baseline data well, as judged by the coefficients of determination (Table 3). Adequacy of the model and homogeneity of variance were further investigated with plots of residuals against the independent variable Al using a graphical approach (Neter et al. , 1985). Also, the absolute magnitude of the residuals were ranked against Al concentration and subjected to correlation analysis. For 10 of 14 elements, significant (5% level) positive correlations were found. This implies the need for further refinement of the models, possibly using weighted least squares or data transformation approaches. With the present models, unbiased, although not minimum variance estimates, of regression coefficients are obtained which are suitable for the adjustment procedure. Baseline models yield adjusted concentrations in general agreement with world average shale, and for several metals where agreement with the shale model is lacking (i.e., Cu, Pb, Ni, Cr, and Fe) there is close agreement with other large data bases from within the same region (Table 3). If sampling locations selected to represent baseline were in fact significantly contaminated, resulting models would tend to predict concentrations larger than world average shale. Since this is gE!nerally not the case, 8 exceptions being Ag and Pb, the use of these models is supported for data adjustment and prediction of contamination in sediments. Baseline locations show only a few scattered data points above the 95% upper confidence limit (UCL), with no consistent pattern among the metals and locations (Figures 5-18, Table 4). Four baseline locations Pamlico Sound (PAM), Barataria Bay (BAR), Round Island (ROU) and Apalachicola Bay (APA) show more frequent3 elevated concentrations above the 95% UCL for specific metals . This probably reflects a low level of sediment contamination by Pb and Cd at PAM, by Ag at BAR, and by several metals at ROU. Fe, Mn and As are elevated at APA which is consistent with a regional pattern observed at Pensacola Bay (PEN) and Mobile Bay (MOB) and likely reflects natural regional enrichment of these metals. For all elements and locations, 84% of station composites fall below the 95% UCL, 94% at baseline locations and 74% at other locations. This further supports the general conclusion derived from 1984-85 data that elemental contamination, as judged from sediment measurements, is generally low at the annual sampling sites in the Southeastern region. Annual sampling sites were selected by criteria (p. 3) designed to provide sediments reflective of average, integrative contaminant accumulations. Data from intensive surveys (i.e., multiple sites) at St. Johns River (SJR, Fig. 2), Sapelo Sound (SAP, Fig. 3), and Galveston Bay (GAL, Fig. 4) in 1987, d,-scussed later, support both the above general conclusion regarding contamination levels in the Southeastern region and the apparent success in meeting site selection criteria. Even though elemental contamination is generally low in sediments at annual* sites-in the southeast, comparison of overall four-year mean concentrations at baseline (i.e., rural) and non- baseline (i.e., urban-industrial) locations indicates clear differentiation based on these classes for most elements (Table 5). Analysis of variance shows non-baseline sediments are significantly greater (p :5 0.05) than baseline sediments for all metals except As,. Mn, Se and Sn. Metal contamination is clearly evident in sediments at urban-industrial sites based on four-year mean data. It is also evident that many non-baseline sites have metal concentrations at baseline levels. These results suggest that Ag and Cd followed by Pb, Hg, Cu and Zn are the more useful indicators of sediment contamination. Four-Year Temporal Trends - Analysis of variance (ANOVA) was used to test for differences among annual mean concentrations at each location for each element using adjusted concentrations. 3 The positions, names and designation codes for the sampling locations are shown in Figure 1 and Table 1. 9 Temporal trends were detected using ANOVA with orthogonal polynomials and p < 0. 05. Forty significant differences were detected (p :5 0.05) from a possible 238 metal-by-location combinations (Table 6). Twenty-two occurred where all of the individual data points (i.e., station composite samples) were below the 95% UCL and thus represent "baseline" concentrations. These differences are of little environmental importance. Analysis for temporal trends was restricted to the remaining 18 significant differences where one or more station composites had concentrations above the 95% UCL. Formal analysis of monotonic temporal trends were restricted for reasons of statistical interpretation to locations where four years of data are available. Locations with three years of data and an indication of a developing monotonic trend are noted. At the five locations with 4 years of data (CHS, GAL, MRD, SAP, and SJR) none of the significant among-year differences show significant (p :5 0.0'5) monotonic temporal trends. At three locations with three years of data, positive, monotonic temporal trends are evident and bear watching as additional data becomes available: Cd at CCB, Cu and MOB, Cr at PEN and Ni and PEN. 1987 Intensive Survey - The intensive surveys at SJR, SAP and GAL in 1987 provide data for five sites at each location, the annual site sampled in 1984-86 plus four additional sites (Fig. 2- 4). Multiple sites were selected to characterize the range of contaminant levels in sediments at each location, to look for systematic variation in contaminant levels, to determine how representative the annual site is at each location, and to investigate short-term variability at a baseline location (SAP) spanning the -seasonal period (August-October) during which sampling operations are conducted each year. Sites were thus selected in areas known or suspected'of having elevated contaminant levels as well as those expected to be relatively uncontaminated. SJR and GAL were selected for intensive stud, based on 1984-86 data as Y examples of impacted locations, SJR with a relative large number of station composites indicating contamination, and GAL with a small number. SAP is a baseline location with among the fewest elevated station composites. The three locations also exhibit different hydrologic and geographic characteristics: SAP (Fig. 3) is a coastal system with a maze of barrier islands and low lying marsh separating a complex of coastal stream drainage from the Atlantic Ocean; SJR (Fig. 2) is a linear, river-dominated estuarine system with major urban- industrial development and dredged channel in its middle to lower reaches; GAL (Fig. 4) is a broad, shallow, nearly enclosed embayment with episodic river inputs and substantial urban- industrial development at both upstream (Houston Ship-Channel) and bay marginal (Texas City) areas. Differences among sites for each location and element were explored by analysis of variance. Also, the annual site at each 10 location was compared pairwise with each of the other four sites using Dunnett's T test to characterize those sites that were significantly different from the annual site. Ten signif icant differences (p :5 0.05) were detected (Table 7). Eight of these were at GAL and only one each at SJR and SAP. The results at GAL and SAP are not unexpected. Higher spatial variability among sites at impacted locations than at baseline locations could result from heterogeneous contaminant inputs superimposed on the natural heterogeneity of sediments, especially in estuarine sedimentary environments. SJR is the location with the highest concentrations of important contaminant elements (i.e., Ag, Cd, Cu, Hg, Pb, Sn, and Zn) and is among those with the highest frequency of station composites above the 95% UCL. A larger number of significant d1iff-ereffees among sites might be expected at SJR, but this is not SO. The obvious reason is the greater magnitude of within-site variability compared to the other two locations (Table 8). Dunnett's T test (Table 7) shows GAL site C (Morgans Point near the confluence of the upper, channelized section of the Houston Ship Channel and Galveston Bay, Fig. 4) to have concentrations of Ag, Cd, Cu, Pb, and Zn significantly above levels at the annual site D (Eagle Point/Dickinson Bay in Galveston Bay proper). GAL site B (adjacent to Texas City) has significantly elevated Ag, Se, and Sn concentrations. Results of GAL site's B and C reflect their proximity to industrial activities and population centers. The other two sites A (East Bay) and E (Trinity Bay) are in more remote areas of Galveston Bay and have elemental concentrations similar to the annual site D. Differences in metal concentrations among SJR sites (Fig. 2) are not significant but do follow a pattern consistent with our knowledge of contaminant inputs and population centers. Site D (West Mill Cove), the annual site, is generally intermediate between the two sites C (Cedar-Ortega Rivers) and B (Trout River) and the two sites E (Piney Point) and A (Orange Pt.-Orange Park) for the important contaminant elements Ag, Cd, Cu, Hg, Pb, Sn, and Zn. Sites C and B are located on tributaries of the St. Johns River which flow through industrial and population areas of the city of Jacksonville. Sites E and A are located on the St. Johns River upstream of and therefore more remote from Jacksonville. The distributions of mean elemental concentrations, as indicated by measures of variance, are generally more uniform at SAP (Fig. 3) compared to GAL and SJR (Table 8) . Within-site variability at SAP is much less than at GAL or SJR for most elements. Annual-site means (Table 9), overall location means (Table 8), and expected adjusted values computed from baseline models (Table 3) agree closely at SAP for all elements except Mn and Hg. The significant difference for Cd between annual site A (Sapelo Sound-High Pt.) and intensive site C (Sapelo Sound-Inlet), appears real, as the error levels are homogeneous among the five sites. Sites B (Sapelo River-Dog Hammock) , A and C are located in a seaward progression along the longitudinal axis of Sapelo estuary. Cd concentrations in sediments increase along this progression in parallel with increasing average salinity. Sites D (Barbour Island River) and E (South Newport River) both located on tributaries of Sapelo Sound, have Cd concentrations most like the lower salinity sites B and A. Reasons for this trend are not apparent. Comparison of annual-site means crable 9) and location means (Table 8) suggests annual sites are representative of overall locations for most elements, in so far as intensive survey samples are representative of location sediments. Assurance of truly representative samples requires a more extensive sampling program using random, probability based and, possibly, stratified designs. The annual site at SJR appears to underestimate location concentrations for Cr and Se. The comparatively large mean and variance for Mn at the SAP annual site and the apparent lack of representativeness of the annual site for this.element is noted. Analysis of variance was used to investigate short-term variability at SAP to determine if metal concentrations in baseline sediments changed significantly over the three month seasonal sampling period used each year. Analysis of data for collections of the annual site A (Sapelo Sound-High Pt., Fig. 3) in July, August and October indicated no significant differences (p :@ 0.05) in concentration for all metals except-, Mn. The apparent lack of representativeness of this site for Mn at SAP compared to the other four sites was. noted above. Sample collection can proceed anytime within this period without concern for significant effects on variability of baseline levels. The distributions of elemental concentrations and their variability in sediments within locations can be described by one of four qualitative models based on relative characteristics of site means and within-site variance (Table 10). Model 1 (i.e., uniform baseline levels) and model 4 (i. e. , patchy concentrations) represent boundary conditions into which fit most of the 1987 intensive survey data. Large, well defined "hot spots" (model 2) and/or wide spread contamination throughout locations (model 3) are not characteristic of conditions between North Carolina and Texas. Patterns of contaminant metal distributions and their correspondence to the models are illustrated by Ag, Cd, Cu, and Zn data (Table 11). Uniform site means at baseline levels and low, uniform variances characteristic of model 1 are observed at SAP and are typical of unimpacted locations. Data for Ag, Cu and Zn. at SAP fit model 1 while Cd shows a tendency toward model 2. Random contamination in an otherwise natural location or variation inherent in surveys with limited sample size may be the cause. 12 Variable site means and high, variable variances characteristic of model 4 are observed at SJR. This pattern is typical of locations having widespread contamination but with both unimpacted sites and small areas of elevated concentrations (i.e., "hot spots") . Ag, Cd, Cu, and Zn data at SJR show model 4 characteristics. Site A (Orange Pt.-Orange Park) is at or near baseline levels while site C (Cedar-Ortega Rivers) has elevated concentrations for all four metals. Sites B (Trout River) , D (West Mill Cove, the annual site) and E (Piney Pt.) have site means elevated above baseline and variances less than site C but greater than site A. GAL has characteristics intermediate to SAP and SJR. Cu, Ag, and Zn data fit model 4, but the overall levels of contamination, intensity of diffuse "hot spots", and levels of variance are less than at SJR. Cd data fit between models 1 and 2 and indicate an area of contamination at site C (Morgans Pt.). Sampling esign - Results of intensive surveys at GAL, SJR, and SAP imply direction in future sampling design. Location and annual-site means show agreement for almost all metal-site combinations (Tables 8 and 9) even at SJR where high levels of within-site and among-site variance make it the least likely location of the three to show such agreement. Based on existing dar-a, no other locations in the Southeast region should have variance levels higher than SJR. Thus, current annual sites selected by existing criteria (p. 3) appear to provide estimates of metal levels in sediments that are comparable to multiple site samplings and are representative of the whole location to the extent that the criteria provide selection of representative sites. The existing annual sampling design (i.e., one site per location selected with criteria that are arbitrary from a statistical viewpoint) does not significantly bias estimates of mean metal concentration in sediments at the sites sampled intensively in 1987; whether a single annual-site mean is truly representative of each location is not addressed by the present sampling design. An appropriate design would be based on random sampling of a uniform grid designed for each location based on current estimates of variability and incorporating concepts of probability sampling and stratification (Cochran, 1963 and Hansen et al., 1953). Estimates of the areal distribution of contaminant levels at a resolution Commensurate with the proportion of sampling units sampled would result along with the assurance of statistically valid and representative estimates of location means. This would benefit not only sampling design and optimization but also assessment of location wide contamination which is needed for effective environmental management. With multiple locations and a national project scope to maintain, the effort at individual locations must be limited. 13 Based on available data, sampling effort can be redistributed from the current design of equal effort per location to one of more effort at locations with elevated contaminant levels and variance (i.e., contaminated or impacted locations) . At the least, the present criteria for site selection (1). 3) could be retained and sampling frequency altered based on conditions at each location (e.g., baseline locations sampled less frequently than impacted locations). Alternately, more extensive surveys could be considered using random sampling design, with the exact design tailored to the location. Design changes need not produce incompatible data or interfere with temporal trend analysis. Liver Tissues Spatial Variability (1987 Intensive Survey) Atlantic croaker were collected during the 1987 intensive surveys at SJR, SAP and GAL (Fig. 2-4) to test the assumption that annual survey sites adequately represent the location for temporal trends analysis and comparisons to other locations. Information was sought on the levels of within-location variability of element concentrations in livers for both natural (i.e., baseline) and impacted locations. Additional sampling sites for fish collection (four at SAP, four at SJR and five at GAL) were spaced throughout the larger locations both nearer and further from possible contaminant sources, as discussed in the sediment section. In general, ten or twenty fish were sampled at each site within a location at the same sites where sediments were collected. In a few instances, trawlable fish habitat providing sufficient numbers of fish did not coincide with sediment sites meeting the selection criteria. At GAL, fish were sampled over a wider range of sizes than usual to assess the influence of size and age on trace element concentrations, a phenomenon we observed previously at another location. The degree of variability in trace element concentrations among sites within each location can be shown in several ways. Table 12 ranks the different elements according to the ratio of mean concentration at the site with highest mean to that with lowest mean. Large ratios indicate a large range in mean concentrations among sites for that element, hence spatial heterogeneity within the location. Chromium was excluded from this and other analyses because it was generally less than our analytical detection limit in livers. Mercury analyses were still underway and are not reported. Two patterns stand out. First, the elements Pb, Cd, Ag, and Sn generally have higher ratios. These elements are not essential .to most organisms and also are considered important pollutants. They are more heterogeneously distributed within each location than 14 are the essential elements Zn, Se, Fe, Mn, and Cu. It is not known whether As and Ni are essential. This pattern may reflect the greater spatial heterogeneity of environmental exposure of fish to pollutant, non-essential elements or the ability of fish to homeostatically regulate their internal concentrations of essential elements within relatively narrow bounds. The second pattern is the generally lower ratios observed at the rural location SAP compared to the urban locations SJR and GAL. This is especially evident for the non-essential elements Pb, Cd, Ag, and Sn. Again, spatial heterogeneity is likely to be greater where localized inputs of contaminants result in spatial heterogeneity of exposure of fish to elements they cannot regulate internally. Among the urban locations, GAL shows generally larger ratios than SJR. For example, both patterns can be seen in Zn and Pb data for each site at SAP, SJR, and GAL locations. For the essential element Zn, little variability in mean concentration among sites is seen within each location (Figures 19, 20, and 21) . The exceptions are found at sites C and D in GAL (Fig. 4) which show higher mean concentrations (Figure 21). This is the influence of larger sized fish at these sites which elevates the mean concentrations. The nonessential element Pb has a more complex pattern. At SAP, mean Pb concentrations are always low and relatively uniformally distributed (Figure 22). This rural location probably lacks localized Pb sources and represents Pb concentrations in fish at concentrations near the baseline we might expect in southeastern Atlantic croaker. At SJR site C (Cedar- Ortega Rivers, Fig. 2) which is located on a tributary to the St. Johns River, Pb concentrations are higher than in the main channel of the St. Johns River (Figure 23). The remaining four sites have similar Pb concentrations that are somewhat elevated above the presumed baseline observed at Sapelo Sound, suggesting detectable system-wide Pb contamination. In GAL (Fig. 4), three of six sites show significantly elevated mean Pb concentrations in livers (Figure 24). The elevated sites are located near the industrial complex at Texas City (site B) and at the mouth of and within the confines of the Houston Ship Channel (sites C and F) Multiple local sources of Pb exist in Galveston Bay. However, the annual site D at Eagle Point is relatively low in Pb. It is only slightly elevated in Pb concentration in livers compared to the more rural sites A (East Bay) and E (Trinity Bay). The annual site appears to be a representative, integrative site for Pb in Galveston Bay, at least in so far as its mean Pb concentration is intermediate among the concentrations found at both rural and urban-industrial sites. A pattern of interaction between certain essential and non- essential elements was observed at GAL and SJR which suggests that particularly low concentrations of essential elements in livers at polluted sites may be evidence for physiological deficiency. The deficiency in essential elements is paralleled by reduced concentrations of some non-essential elements. For example, mean 15 Ag concentrations at GAL site F (Houston Ship Channel) and SJR site C (Cedar-Oretaga Rivers), among others, are significantly lower than their respective location means and the SAP location mean. SAP appears to be a good indicator of' expected baseline levels. Cu and Zn concentrations also are reduced below expected baseline at GAL site F and SJR site C, indicating deficiency. Fe is well below baseline at GAL site F and equal to baseline at SJR site C. However, these two sites have among the highest Sn and Pb concentrations in livers; sediment data also supports their classification as contaminated sites. This pattern of interrelation may be associated with organic contamination and its effect on liver function. organic data for the intensive survey is not yet available. A more formal analysis of spatial heterogeneity (ANOVA) was conducted at GAL (Fig. 4), SJR (Fig. 2) and SAP (Fig. 3) to address the representativeness of the annual site for the whole location. ANOVA detected significant (p :@ 0. 05) within-location (i.e., among- site) differences for a large number of elements with GAL showing the most spatial heterogeneity of the three locations (Table 13). Two properties, at least, should characterize an annual site if it is to be representative of a location and therefore useful in distinguishing that location from others and in detecting temporal trends. First, the mean concentration at an annual site should be near the overall mean for all sites at the location. Second, the variability about the mean at the annual site should be less than the variability about the overall mean at the location. This is desirable in order to have minimum variance estimates for detection of significant statistical time-trends and differences among locations. Ratios of the mean element concentrations in fish livers at the annual site to the mean for all sites is an indicator of representativeness of the annual site to the overall location. The ratio of the standard deviations of these concentrations are a measure of the relative variability at the annual site compared to the overall location (Table 14). At Sapelo Sound, Cd is the only element with mean concentration at the annual site significantly (p :@ 0.05) different from the location as a whole. It is interesting to note that at SAP, Cd in sediment and liver show the same pattern of increasing concentration in a seaward direction along the estuary and that for most of the remaining elements the annual site and overall location means agree for both sediments and tissue. At St. Johns River mean concentrations of Ag, Mn and Pb at the annual site are significantly different from those for the location as a whole. At Galveston Bay the annual site differs from the location as a whole for most elements. This pattern among locations is consistent with earlier patterns. Sapelo Sound is relatively homogeneous in its trace metal concentrations in fish livers and sediments; the annual site is representative of the location as a whole. St. Johns River is more heterogeneous, and it is more difficult for the annual site to be representative of the whole 16 location. This is certainly the case for Galveston Bay. Neither the annual site nor any other sampled site can adequately represent this location. Trace element distributions are too complex. A similar pattern exists for ratios of standard deviations (Table 14). At.Sapelo Sound, the variability at the annual site does not differ from the location as a whole, except for Sn. At St. Johns River, Pb and Sn are significantly less variable at the annual site than in the location as a whole. Local sources of Sn and Pb to fish at other sites elevate location-wide variability. At Galveston Bay, localized sources of many trace elements elevate location variability in comparison to that at the annual site. However, for Ag, Cu and Zn the opposite is true. The annual site D has greater variability than the location as a whole. This is the result of the greater range in fish size collected at this site and also sites C and F in Galveston Bay and the positive influence of size on the concentration of these three elements in fish livers; see, for example, Figure 25 for the relation between size and Zn concentration. This influence also elevates the annual site mean for these three elements above that for Galveston Bay as a whole. In general, the chosen annual survey sites at SAP, SJR and GAL are good, integrative representatives of the locations as a whole. They succeed least well in this role at Galveston Bay where spatial heterogeneity in element concentrations in liver is greatest due to local contamination inputs. More than one annual survey site may be useful at GAL. The pollutant, non-essential elements Ag, Cd, Pb and Sn show greatest heterogeneity in mean concentrations and are better indicator elements for contamination in fish livers. Short-term Variability - Annual survey sampling is conducted during August through October to control variability derived from seasonal effects. However, it is possible neither to always sample each site at the same time nor to be assurred that fish have the same growth histories from year to year. As a result, f ish of different age, size, sexual maturity or contaminant exposure history may be caught in different years. Observed differences in element concentrations in livers may not reflect only changes in environmental contamination. Fish were collected at SAP three times between July and October (Fig. 3) during the 1987 intensive survey to investigate short-term variability. Anthropogenic sources of trace elements were expected to be minor at SAP, and therefore observed differences in element concentrations in livers were expected to reflect natural processes of fish growth, maturation, feeding, and movement within the location. Atlantic croaker were sampled at site B (Dog Hammock) during July and August and at the annual site C (Sapelo Sound Inlet), a 17 few miles downstream, during August and October (Fig. 3). Mean fish length was similar each time at each site but differed between sites: 151 mm (site B, July) , 153 mm (site B, August) , 170 mm (site C, August) and 171 mm (site C, October). Therefore, size effects which influence element concentrations in Atlantic croaker livers should not be important in the temporal comparisons at each site. Analyses of variance indicated few statistically significant (p :5 0.05) temporal differences at either site. The most striking differences in mean concentrations are for Sn at site B which dropped sharply from July to August and for Cu, Mn, and Zn at site C which dropped between August and October (Table 15). Elevated Sn at site B suggests exposure to Sn contamination, perhaps from boat paints, but local sources of contamination in the Sapelo Sound- location are rare. Decline in concentrations of essential elements Cu, Mn, and Zn at site C probably is a natural phenomenon, although certainly not a consequence of differences in fish size. This points to the need for a better understanding of natural processes that influence trace element levels in fish. Four-year Temporal Trends - Four years of data at five locations CHS, GAL, MRD, SAP, and SJR and three years data at other locations allows an initial attempt al: detecting temporal trends in element concentrations in southeastern fish. The analysis is complicated by a shift in the species from spot to Atlantic croaker after 1984 at ROU, SAP, and SJR. Spot were collected consistently at LOT. Atlantic croaker were consistently sampled at all other locations (Table 1). Analysis of variance with orthogonal contrasts was used to test for differences among years and for linear temporal trends (Table 16). Among the 11 elements Ag, As, Cd, Cu, Fe, Mn, Ni, Pb, Se, Sn, and Zn and the 16 locations APA, BAR, CCB, CHS, GAL, HER, LLM, LOT, MRD, MOB, PAM, PEN, ROU, SAB, SAP, and SJR f or which adequate data exist, there are 176 possible element-location pairings. Seventy-nine significant year-to-year differences (p < 0.05) were found or 44% of those possible. Among the significant differences, 9 have significant linear increasing temporal trends (4 at urban locations, 5 at rural locations) and 13 have linearly decreasing trends (5 at urban locations and 8 at rural locations) . The four year patterns of Cd and Fe concentrations at MRD are good examples (Figures 26 and 27). Cd shows a pattern of significantly declining concentrations while Fe shows a pattern of significant year to year differences without trend. Approximately equal frequencies of increasing and decreasing linear trends are observed for the essential elements Cu, Fe, Mn, Se, and Zn which are homeostatically regulated by fish. These trends are probably chance occurrences and do not reflect changes in environmental contamination. The non-essential elements Ag, Cd, Sn, and especially Pb show declines more often than increases. 18 These observations are consistent with the widely observed decline in Pb inputs to coastal environments over the past 20 years. However, we observe declining trends in Pb concentrations more often at rural locations than at urban ones. This might be unexpected given the generally higher Pb concentrations and more direct inputs at urban compared to rural locations. However, the response at rural locations to the continuous decline since 1972 in Pb consumption in gasoline (Bureau of Mines, 1990) may be more readily detectable for these same reasons. Two things are needed before a clear picture of contaminant trends can emerge. First, more years of data collection are needed to increase statistical power. Second, a better understanding is needed of the processes and biological influences that determine trace element concentrations in fish. Gradually this information is accumulating through studies of species differences and the effect of age, size, maturity, gender, reproductive condition, body condition, and feeding habits. These are probably dominant contributors to the high frequency of significant year to year differences in trace element concentrations we observe at most sites. There is no clear baseline level of trace elements for fish livers in the Southeastern region against which to judge contaminant levels. This is in contrast to the developing baseline for sed_,@7-?nts. The only previc,_'s measurements of elements in livers of spot and Atlantic croaker are from our laboratory for the essential elements Cu, Fe, Mn, and Zn (Cross et al., 1973) and they are similar to the levels we found. A broader perspective can be had by comparing the following measurements of element concentrations in fish livers: the range in location means for southeastern Atlantic croaker over all four years; the range in location means for all species for the first year of the Benthic Surveillance Project on all coasts; and the range of concentrations reported in the literature for many species (Table 17). For the essential elements Cu, Fe, Mn, Se, and Zn, the observed range in southeastern Atlantic croaker is in the middle of the two comparison ranges, as might be expected for homeostatically regulated elements. For non-essential elements, the southeastern range tends to be in the lower ends of the other ranges, suggesting largely uncontaminated sites in the Southeast region. Four-year mean concentrations of elements in Atlantic croaker livers, when classified into rural and urban-industrial sites, do not show a clear differentiation, although overall four-year means at urban- industrial sites tend to be higher than at rural sites for some elements (Table 18). Differences in overall four-year mean concentrations rarely exceed 30% except for the pollutant elements Pb and Sn. This emphasizes the relatively low levels of trace element contamination in the Southeast region, although there exist sites within some locations where significant contamination occurs. Analysis of variance indicates few significant differences in liver 19 concentrations between rural and urban.-industrial fish. Only Pb, Se, Sn and Mn are significant (p :5 0.05). These results point to the complex and poorly understood relationship among many probable factors contributing to observed trace element concentrations in fish livers. We have noted fish size (i.e., age) and the physiological interaction of essential and non-essential elements and organic contaminants as important factors apparent in our data. SUMMARY Four years (1984-87) of trace element data for fish liver tissue and bottom sediments have been completed for the southeast Atlantic and Gulf of Mexico coasts. Samples were collected for annual surveys during August through October each year at one site per location. In 1987 (Cycle 4), intensive surveys were conducted with multiple sites at Sapelo Sound (SAP), St. Johns River (SJR), and Galveston Bay (GAL) to investigate smaller scale spatial variability and short-term temporal variability of elemental concentration in livers and sediments. The data base resulting from annual and intensive surveys was used to address the principal questions asked by the program: What are the present levels of elemental contaminants at important coastal -estuarine locations and are these levels increasing or decreasing with time? Proper interpretation of the data requires ancillary information, such as effects of fish species and size on liver burdens as well as extensive data manipulation, such as correction of sediment data for variable levels of naturally, occurring (i.e., non- anthropogenic) elements. After four Years of annual and intensive surveys, some, but not all, information required to address these program objectives is available. At the rural Sapelo Sound location, spatial and short-term temporal variability of trace elements in both sediments and fish livers are minor. The annual site well represents the location. The intensive surveys at SAP provides a relatively large sample size from a single, homogeneous location that represents natural conditions and can therefore serve as an interim baseline. At the urban- industrial St. Johns River (SJR) and Galveston Bay (GAL) locations, spatial heterogeneity of trace elements are greater in both sediments and liver than at rural Sapelo Sound. Nevertheless, the annual site is a good representative of the location at SJR for trace elements in livers, but less so at GAL; SJR and GAL show An opposite pattern for sediments. Multiple localized contaminant sources (i.e., diffuse "hot spots"), create heterogeneity in sediments and livers. Annual survey sites were selected with criteria designed to provide both sediment and fish samples that represent average conditions at the various locations. Results from intensive surveys indicate this condition was generally met. Annual survey 20 data show that trace element concentrations in the Southeast region are generally low and near baseline for sediments and fish livers. Even annual sites at urban- industrial locations have relatively low concentrations, only slightly elevated above baseline estimates. Intensive sampling at two such locations, SJR and GAL, has identified sites with much higher levels of some pollutant trace elements in both sediments and fish which indicate the presence of small or diffuse "hot spots" within the larger location when overall levels are low or slightly elevated. In addition to providing data directly addressing project objectives, the four-year data base has produced new information useful to this and other survey projects. The concept of modeling sediments over a restricted regional area for determining baseline levels has been shown valid over an extended regional area, i.e., southeastern Atlantic and Gulf of Mexico coasts. Elemental levels in Atlantic croaker livers have been shown to be a function of fish size principally with data (not reported here) from fish collected especially for this purpose in North Carolina. Proj ect data confirm this effect which is important for comparison of contaminant levels in different sized fish. Intensive survey data suggests a pattern of interaction between certain essential and non-essential elements at polluted sites. Low levels of some essential elements and very low levels of some non-essential elements are observed at sites which are expected to have high organic contamination. During 1984-87, significant (p :5 0.05) year to year variability was detected at annual sites for many elements and locations. However, detection of significant linear trends, either positive or negative, was much less common. This is to be expected at locations in a region where contaminant levels are generally low and often near baseline, and in consideration of national efforts to control and reduce pollution in coastal waters. As the data base increases annually so will both our understanding of non- pollutant sources of observed variability in trace element levels and our ability to detect and explain real, even if subtle, trends. Sampling frequency and spatial coverage might be modified to better resolve variable contaminant conditions at the several locations sampled. Rural, unimpacted locations could be sampled less frequently. Urban-industrial locations could be sampled more frequently with supplemental sites to account for their spatial heterogeneity. Alternately, statistically more rigorous surveys could be designed which build upon the concentration and variance data developed to date. The concepts of random, probability and stratified sampling could be incorporated without interfering with ongoing spatial and temporal trend analysis. 21 REFERENCES Bureau of Mines. 1990. Bureau of Mines' minerals yearbook. U.S. Department of Interior, Bureau of Mines, Washington, D.C. Cochran, W.G. 1963. Sampling techniques. 2nd ed. Wiley, New York. 413 p. Cross, F.A., L.H. Hardy, and N.Y. Jones. 1973. Distribution of Mn, Fe, Zn, and Cu among 36 species of adult fish from coastal waters of North Carolina, p. 25-37. In Annual Report to the Atomic Energy Commission by the Atlantic Estuarine Fisheries Center, Beaufort, N.C. Denton, G.R.W., and C. Burdon-Jones. 1986. Trace metals in fish from the Great Barrier Reef. Mar. Poll. Bull. 17:201- 209. Eisler, Ronald. 1981. Trace metal concentrations in marine organisms. Pergamon, New York. 687 p. Hall, R.A., E.Z. Zook, and G.M. Meaburn. 1978. National Marine Fisheries Service survey of trace elements in the fishery resource. U.S. Dept. Commerce. NOAA Tech. Rep. NMFS SSRF-721. 313 p. Hansen, M.H., W.N. Hurwitz, and W.G. Madow. 1953. Sample survey methods and theory, Vol. 1. Methods and applications. Wiley, New York. 638 p. Horn, M.K., and J.A.S. Adams. 1966. Computer-derived geochemical balances and element abundances. Geochim. Cosmochim. Acta 30:279-297. Neter, J., W. Wasserman, and M.H. Kutner. 1985. Applied linear statistical models. 2nd ed. Irwin, Homewood, Ill. 1127 p. U.S. National oceanic and Atmospheric Administration (NOAA) . 1987. A summary of selected data on chemical contaminants in tissues collected during 1984, 1985, and 1986. NOAA Tech. Memo. NOS OMA 38. Okamoto, K., and K. Fuwa. 1984. Low coritamination digestion bomb method using teflon double vessel for biological materials. Anal. Chem. 56:1750-1.760. Rantala, R.T T., and D.H. Loring. 1975. Multi-element analysi; of silicate rocks and marine sediments by atomic absorption spectrophotometry. At. Absorp. Newsl. 14:117-120. 22 Turekian, K.K., and K.H. Wedepahl. 1961. Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull. 72:175-192. Windom, H.L., S.J. Schropp, F.D. Calder, J.D. Ryan, R.G. Smith, Jr., L.C. Burney, F.G. Lewis, and C.H. Rawlinson. 1989. Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. Environ. Sci. Technol. 23:314-320. 0 Table 1. Locations sampled in the Southeast Region: Cycles I-IV. CYCLE-YEAR LOCATION 1-84 11-85 111-86 IV-87 Notes 1. PAM Pamlico Sound, NC A,C A,C A,C D 1 2. CHS Charleston Harbor, SC A,C A,C A,C A,C 3. SAP Sapelo Sound, GA A,S A,C A,C I,C 1 4. SJR St. Johns River, FL A,S A,C A,C I,C 5. BIS Biscayne Bay, FL N N P D 6. LOT Charlotte Harbor, FL A,S A,S A,Z D 1 7. TAM Tampa Bay, FL A,Z A,Z D D 8. APA Apalachicola Bay, FL A,C A,C A,C D 1 9. PEN Pensacola Bay, FL N A,C A,C A,C 10. MOB Mobile Bay, AL A,C A,C A,C D 11. ROU Round Island, MS A,S A,C D A 1,2 12. PAS Pascagoula River, MS N N N A,C 2 13. HER Heron Bay, MS A,C A,C A,C D 1,3 14. MRD Miss. River Delta, LA A,C A,C A,C A,C 15. BAR Barataria Bay, LA A,C A,C D A,C 1 16. GAL Galveston Bay, TX A,C A,C A,C I,C 17. SAB San Antonio Bay, TX A,C A,C A,C D 1 18. CCB Corpus Christi Bay, TX A,C A,C A,C D 19. LLM Lower Laguna Madre, TX A,C A,C A,C D 1 A Annual survey, sediment and fish data for one annual site I Intensive survey, sediment and fish data for one annual plus additional sites C Atlantic croaker data S Spot data N Not sampled (not an established location) P Sampled for pathobiology only Z No Atlantic croaker or spot available for collection D Sampling deferred NOTES: 1. Baseline location 2. In IV-87 ROU was phased out and PAS phased in. In IV-87 fish were collected at PAS and sediments at both ROU and PAS. 3. Sediments were not collected in 1-84 because of weather. Table 2. Accuracy and precision in the analysis of certified reference materials (CRM) during 1984-87. Accuracy reported as median percentage absolute deviation from certified values. Precision reported as median coefficient of variation. TISSUE CRM's SEDIMENT CRM's Element Accuracy Precision Accuracy Precision (Median deviation) (Median CV) (Median % deviation) (Median CV) Ag 3 3 no CRM 14 As 6 5 4 8 Cd 3 3 6 7 Cr 25 14 5 10 Cu 3 2 7 7 Fe 4 3 3 3 Hg 11 16 11 10 Mn 4 4 11 5 Ni 14 12 10 9 Pb 6 8 3 7 Se 9 10 4 25 Sn no CRM 32 2 15 Tl no CRM <DL no CRM 14 Zn 2 3 3 4 Al NA NA 1 3 Si NA NA 2 3 NA, not analyzed DL, detection limit Table 3. Baseline models for sediment metals. Metal Concentration Dataa Regression 2 Prob: At 8.01% In World Metal Source N Coefficient Intercept(B.) BO=O Al Average Shale Ag 1 103 .00676 .0235 .278 .0001 .078 .07 (Ppm) As 1 103 1.65 .111 .698 .8367 13 13 (Ppm) 3 103 7.5 -.7 .77 -- 59 Cd 1 103 .0143 .0581 .177 .0002 .17 .3 (Ppm) Cr 1 103 7.62 11.1 .646 .0001 72 90 (Ppm) 3 103 9.5 4.0 .81 -- 80 Cu 1 103 1.95 -.306 .863 .4271 15 45 (Ppm) 2 340 1.8 -1.4 .64 -- 13 3 103 2.5 2.2 .61 -- 22 Fe (%) 1 103 .502 -.121 .904 .1380 3.9 4.7 2 340 .47 -.08 .91 -- 3.7 3 103 .48 .07 .88 -- 3.9 Hg 1 103 .0125 -.00898 .273 .3750 .091 .4 (Ppm) Mn 1 103 94.6 -95.5 .711 .0018 662 850 (Ppm) 2 340 55 57 .61 -- 498 3 78 46 27 .50 -- 395 Ni 1 103 2.88 .0830 .838 .8946 23 68 (Ppm) 2 340 4.4 -3 .53 -- 32 3 103 2.9 2 .68 -- 25 Pb 1 103 3.02 2.61 .851 .0001 27 20 (ppm) 2 340 3.5 1.5 .62 -- 30 3 103 3.2 2.3 .69 28 Table 3. (Contd) Metal Concentration Data" Regression 2 Prob: At 8.01% In World Metal Source N Coefficient Intercept(B,,) R B0=0 Al Average shale Se 1 103 .0576 .479 .2923 .49 .6 (ppm) Sn 1 102 .343 .290 .507 .0871 3.0 6.0 (ppm) Tl 1 54 00621 .120 .486 .0155 .62 1.4 (ppm) Zn 1 103 11.2 .453 .785 .8763 90 95 (ppm) 2 340 12 -8 .70 -- 88 3 103 12 1 .83 97 a Date Source: 1 1984-7 National Benthic Surveillance Project, southeast region data for baseline locations (PAM, SAP, LOT, APA, Rot), HER, BAR, SAB and LLM) 2 Windom et al., 1989, Georgia and South Carolina data 3 Windom et al., 1989, Florida data b 8.01 weight percent Al is representative of world average shale (Horn and Adams, 1966). b Turekian and Wedepohl, 1961 Table 4. Mean and upper confidence limits for adjusted baseline sediment data. Units: ppm(dry) except percent(dry) for Fe. overall Upper Confidence Limit Element Mean 95% 99% 99.9% Ag .078 .126 .146 .170 As 13.3 18.1 20.2 22.5 Cd .173 .310 .368 .434 Cr 72 97 108 120 Cu 15.3 18.7 20.2 21.9 Fe 3.90 4.62 4.93 5.28 Hg .091 .181 .220 .263 Mn 662 929 1042 1172 Ni 23.1 28.7 31.1 33.8 Pb 26.8 32.4 34.7 37.5 Se .49 .76 .87 1.00 Sn 3.04 4.54 5.17 5.91 Tl .62 .92 1.05 1.21 Zn 90 117 128 140 Table 5. Mean concentrations of trace elements in sediments (adjusted data) at annual survey sites for 1984-87. Units: ppm (dry) except percent (dry) for Fe. Lqcation Element Ag As Cd Cu Hg Fe Cr Mn Ni Pb Se Sn Zn APA .05 17 .06 17 .07 4.6 71 852 23 26 9 1.9 84 Baseline BAR .11 11 .21 16 .09 3.5 69 570 26 25 10 2.6 93 or Rural HER .11 11 .22 16 .11 3.5 65 672 23 25 18 2.1 86 Locations LLM .09 14 .15 14 .08 3.5 53 625 18 26 10 2.6 82 LOT .06 13 .19 16 .11 4.2 77 728 24 26 12 3.1 90 PAM .08 13 .29 16 .12 3.8 84 589 25 33 11 3.1 102 ROU .09 14 .14 15 .12 4.0 75 712 26 28 18 2.3 105 SAB .10 12 .17 15 .09 3.9 68 590 23 25 12 2.5 87 SAP .06 14 .17 14 .08 3.9 75 642 21 27 6 2.6 84 overall group mean .08 13 .17 15 .10 3.9 71 662 23 27 11 2.5 90 CCB .10 10 .39 17 .10 3.9 67 549 23 28 10 2.6 133 Non- CHS .13 17 .20 20 .09 4.2 88 679 24 31 8 2.5 95 Baseline GAL .11 12 .13 17 .11 3.6 71 602 24 29 9 3.0 95 or Urban- Mob .09 16 .10 18 ii 4.7 95 957 33 30 io 2.9 144 Industrial MRD .17 12 .45 22 .07 3.5 76 780 33 26 9 2.4 106 Locations PAS .17 12 .28 21 .11 4.0 85 606 27 35 1 3.8 134 PEM .17 19 .19 20 .18 5.5 124 402 27 39 9 2.3 121 SJR .26 11 .41 24 .19 4.1 79 660 24 50 10 3.9 148 TAM .13 13 .29 19 .14 4.1 74 717 25 28 18 3.0 95 overall group mean .15 14 .27 20 .12 4.1 84 666 26 33 10 2.9 118 ANOVA1 S NS S S S S S NS S S NS NS S I Significant difference between baseline and non-baseline overall means, p :5 0.05; NS, no significant difference. 0 Table 6. Analysis of variance for differences among annual-site means using adjusted sediment data for 1984-87. Location Aq As Cd Cr Cu Fe Hq Mn Ni Pb Se Sn Tl Zn APA BAR x x CCB x x x x CHS x x GAL x x x HER x x LLM x x LOT x x x MOB MRD PAM PEN ROU x SAB SAP x x x SJR TAM x significant difference (p :5 0.05), all data below the 95% upper confidence level significant difference (p :5 0.05), at least one data point (i.e., station composite) above the 95% upper confidence level Table 7. Analysis of variance and Dunnett's T-test for differences among site means using adjusted sediment data for the 1987 intensive surveys. Location Aq As Cd Cr Cu Fe Hcf Mn Ni Pb Se Sn Tla Zn GAL Site A B x x x C(W x x x x x D E SJR Site A B C D(b) E SAP Site A(b) B C x D E significant difference (p :5 0.05) among sites ANOVA x significant difference (p :5 0.05) between annual site and intensive survey sites Dunnett's T-test. Thallium not determined after 1985. b annual survey site Table 8. Location means and standard errors for adjusted sediment data for 1987 intensive surveys. Five sites at each location. Mean (std. error). Units: ppm (dry) except percent (dry) for Fe. Location Aq As Cd Cr Cu Fe Hq GAL .166 11.1 .17 77.0 19.0 3.56 .097 (.014) (.2) (.02) (2.6) (.8) (.03) (.019) SJR .301 10.4 .49 92.1 30.0 4.62 .274 (.075) (-4) (.11) (4.3) (5.3) (.11) (.066) SAP .063 13.7 .16 78.9 15.1 4.10 .067 (.003) (.3) (.01) (2.1) (-2) (.03) (.019) Mn Ni Pb Se Sn Zn GAL 433 28.3 31.8 .42 3.39 102 (28) (-8) (2.2) (.02) (.22) (3) SJR 670 27.4 56.7 1.31 4.48 150 (22) (.8) (9.8) (.15) (.42) (22) SAP 689 23.1 26.9 .48 3.02 91 (26) (.4) (-3) (.02) (.05) (1) Table 9. Annual-site means and standard errors for adjusted sediment data for 1987 intensive surveys. Mean (std. error). Units: ppm (dry) except percent (dry) for Fe. Location Aq As Cd Cr Cu Fe Hq GAL .127 11.1 .13 73.5 18.6 3.53 .126 (site D) (.014) (.8) (.01) (3.2) (.7) (-05) (.025) SJR .251 11.7 .44 76.4 26.3 4.32 .235 (site D) (.129) (-3) (.15) (8.9) (8.0) (.16) (.080) SAP .056 13.9 .16 82.5 16.2 4.14 .108 (site A)- (.012) (.3) (.03) (8.1) (-4) (.07) (.056) Mn Ni Pb Se Sn Zn GAL 451 26.5 27.7 .49 3.06 97 (site D) (63) (1.4) (4.2) (.03) (.21) (3) SiR 677 26e4 49.3 .78 4.17 146 (site D) (36) (1.6) (12.9) (.22) (.76) (38) SAP 814 24.2 28.0 .51 2.96 92 (site A) (83) (1.4) (1.0) (.07) (.10) (4) I I Table 10. Descriptive models of elemental distributions. Within-site Model Site means variance Description 1. Uniform, low Low and uniform Uniform distribution of if at base- across location contaminant across location line levels or baseline levels through- out location result in uniform site means and low variance. 2. Variable Low and variable Well defined contaminant across location gradient or large "hot spot" results in variable site means and low variance. Sampling scale is smaller than spatial scale of element distribution. 3. Uniform and High and uniform Heterogeneous distribution of high across location contaminant across location such that sampling scale is larger than spatial scale of element distribution. This results in relatively uniform site means and high within-site variance. 4. Variable High and variable Poorly defined contaminant across location gradient or small, diffuse "hot spot" results in variable site means and high variance. Sampling scale is larger than spatial scale of element distribution. Table 11. Cu, Cd, Ag and Zn adjusted sediment data for 1987 intensive surveys at Galveston Bay, St. Johns River and Sapelo Sound. significantly different (p:@ 0.05) from annual site. Copper Location Site Mean Std. dev. Std. error Station data GAL A 15 1.2 .7 16 14 15 B 21 1.4 .8 22 21 19 C 23** 3.5 2.0 23 26 20 D(annual) 19 1.2 .7 19 17 20 E 17 .5 .3 17 18 17 overall 19 3.1 .8 SJR A 16 .7 .4 16 15 15 B 31 17 10 50 26 17 C 54 29 17 82 23 57 D(annual) 26 14 8 25 41 13 E 23 16 9 14 41 14 overall 30 19 5 SAP A(annual) 16 .7 .4 17 16 16 B 15 1.0 .6 15 16 14 C 15 .7 .4 16 15 14 D 15 .3 .2 15 14 14 E 15 .9 .5 14 15 15 overall 15 .8 .2 Cadmium GAL A .12 .02 .01 .13 .13 .11 B .12 .02 .01 .12 .13 .11 C .28** .12 .07 .39 .29 .16 D(annual) .13 .02 .01 .12 .12 .15 E .19 .02 .01 .20 .21 .17 overall .17 .08 .02 SJR A .20 .02 .-Ol .21 .21 .19 B .39 .21 .12 .63 .33 .22 C 1.03 .68 .39 1-61 .29 1.20 D(annual) .44 .26 .15 .60 .59 .13 E .38 .28 .16 .22 .70 .22 overall .49 .43 .11 SAP A(annual) .16 .05 .03 .11 .14 .22 B .14 .02 .01 .15 .12 .13 C .24** .03 .02 .20 .24 .27 D .14 .02 .01 .14 .16 .12 E .15 .02 .01 .17 .15 .13 overall .16 .04 .01 Table 11 Cont. Silver Location Site Mean Std. dev. St. error Station data GAL A .13 .016 .009 .12 .14 .11 B .23** .003 .002 .23 .24 .23 c .21** .061 .035 .27 .18 .16 D(annual) .13 .024 .014 .11 .11 .16 E .14 .003 .002 .14 .14 .14 overall .16 .054 .014 SJR A .09 .01 .01 .10 .09 .08 B .25 .15 .09 .42 .20 .13 c .64 .43 .25 .93 .16 .84 D(annual) .25 .23 .13 .21 .49 .05 E .27 .29 .17 .11 .61 .09 overall .30 .29 .08 SAP A(annual) .056 .021 .012 .043 .046 .080 B .062 .012 .007 .071 .066 .047 c .071 .003 .002 .073 .067 .073 D .061 .003 .002 .064 .058 .060 E .064 .003 .002 .067 .061 .062 overall .063 .012 .003 GAL A 93 5 3 96 88 96 B 109 3 2 ill. 104 ill. c 116** 12 7 131 112 107 D(annual) 97 5 3 94 94 102 E 97 3 2 99 100 93 overall 102 12 3 SJR A 86 7 4 95 83 81 B 148 33 19 175 158 110 c 246 140 81 400 123 214 D(annual) 146 66 38 134 217 86 E 124 71 41 86 206 79 overall 150 85 22 SAP A(annual) 92 7 4 84 93 100 B 94 9 5 95 101 85 c 93 3 2 91 98 91 D 86 2 1 87 85 85 E 92 2 1 91 95 90 overall 91 4 1 Table 12. Ratios of mean trace element concentrations in livers at the site of highest concentration to that of lowest concentration for three locations: Sapelo Sound (SAP) , St. Johns River (SJR) and Galveston Bay (GAL) . Locations were analyzed separately. Location SAP SJR GAL Element Ratio Element Ratio Element Ratio Zn 1.1 Zn 1.1 Se 1.5 As 1.1 Cd* 1.4 Zn 2.2 Se 1.5 Fe 1.5 As 2.6 Fe 1.5 Mn 1.6 Mn 3.0 Mn 1.6 Se 1.8 Fe 3.5 CU 1.8 As 1.9 Pb* 4.6 Pb* 1.9 CU 2.1 Ni 5.2 Ni 2.2 Pb* 2.8 Cd* 6.4 Cd* 2.6 Ag* 5.0 Sn* 8.1 Ag* 3.5 Sn* 7.0 CU 8.6 Sn* 4.7 Ni 8.9 Ag* 29.6 Non-essential "pollutant" elements 8 Table 13. Test results of analysis of variance for trace elements in livers showing significant (p :5- 0.05) among-site differences within three locations; Sapelo Sound (SAP), St. Johns River (SJR) and Galveston Bay (GAL). Location SAP SJR GAL Elements showing Ag Fe Ag Ni As Cu Zn significant Cd Mn Pb Cd Fe Ni differences Sn Se Sn Pb Mn Se among sites Sn Elements not Pb Cu As Se Cu Ag showing signifi- As Ni Cd Zn Fe cant differences Zn Mn among sites Table 14. Measures of the representativeness of the annual site to the overall location. Ratios of annual site to overall location means and standard deviations for elements in Atlantic croaker livers in 1987. Ratio of annual site Ratio of annual site std. deviation to overall location mean to overall location mean std. deviation Element SAP SJR GAL SAP SJR GAL Ag 1.03 1.45* 1.25* 1.37 1.64 1.45 As 0.93 1.01 0.80* 1.35 1.12 0.53* Cd 1.41* 0.79 0.65* 1.11 0.69 0.55* Cu 0.93 1.14 1.32* 1.52 1.49 1.22 Fe 0.79 0.91 1.14 1.00 1.12 1.11 Mn 1.04 1.25* 0.68 1.37 1.00 0.19* Ni 0.80 1.00 0.56* 0.88 0.75 0.34* Pb 0.64 0.69* 0.69* 1.11 0.26* 0.30* Se 1.05 0.95 0.92 1.52 1.32 1.32 Sn 0.65 0.70 0.60* 0.13* 0.44* 0.32* Zn 1.00 0.99 1.49* 1.28 1.23 1.59 indicates ratios significantly different (p < 0.05) from 1. Significant difference implies the mean or standard deviation are not the same at the annual site as for the overall location. Table 15. Mean trace element concentrations at two sites in Sapelo Sound sampled during July through October 1987. Element Mean Concentration (aq/q) Site A Site D July August August October Ag 0.12 0.19 0.18 0.18 As 7.59 7.92 6.82 7.43 Cd 0.12 0.16 0.17 0.21 Cr 0.02 0.02 0.00 0.02 CU 26.8 22.1 42.1 17.6 Fe 355 398 360 356 Mn 4.96 6.46 6.65 3.82 Ni 0.12 0.13 0.08 0.08 Pb 0.06 0.07 0.03 0.03 Se 18.4 18.4 19.8 23.0 Sn 1.47 0.19 0.25 0.22 Zn 115 105 130 96 indicates significant difference (p :5 0.05) in means at each site over time. Table 16. Locations where trace elements showed significant (p :5 0.05) year to year differences M in mean concentrations in fish livers for 1984-87. Significant increasing (+) or decreasing (-) trends. A species shift from spot to Atlantic croaker after 1984 occurred at SJR, SAP and ROU. Element Location Aq As Cd Cu Fe Mn Ni Pb Se Sn Zn APA BAR *+ CCB CHS GAL *+ *+ *+ HER LLM *+ LOT *+ MOB MRD PAM *+ PEN *+ ROU SAB *+ SAP SJR Table 17. Ranges of trace metal concentrations measured in fish livers. concentration in gg/g dry weight. Acr As Cd Source MAN MM min max Southeastca) 0.29 0.05 10.4 1.0 1.25 0.07 Nationwide (b) 2.07 0.02 32.7 0.6 19.57 0.07 Worldwide(c) 3.2 <0.4 2000 0.7 100 0.03 Cu Fe Mn Source max min max min max min Southeast 59 11 1154 326 14.8 3.6 Nationwide 118 6 Worldwide 440 2 4600 12 27 0.4 Ni Pb Se Source max min max min max min Southeast 0.74 0.10 0.15 0.03 35 7 Nationwide 2.8 0.04 7.4 0.04 36 1 Worldwide 12 0.4 13 0.16 22 2.4 Sn Zn Source, max min max min Southeast 1.02 0.23 147 78 Nationwide 7.33 0.05 287 71 Worldwide 8 <0.4 4800 7 (a) National Benthic surveillance Project Atlantic croaker, four-year site mean concentrations from southeastern sites for 1984-87. (b) National Benthic Surveillance Project, Multiple species, Single-year site mean concentrations from all sites nationwide in 1984 (NOAA, 1987). (c) Values reported in the literature for multiple species: Eisler, 1981; Hall et al., 1978; and Denton and Burdon- Jones, 1986. Table 18. Mean concentrations (Mg/g) of trace elements in Atlantic croaker livers at annual survey sites for 1984-87. Location Element Ag As Cd Cu Fe Mn Ni Pb Se Sn Zn APA .25 8.6 .74 28 753 5.3 .39 .07 28 .27 150 BAR .08 3.6 .24 30 728 4.9 .45 .07 10 .28 133 Rural HER .14 5.9 .92 28 521 8.8 .35 .05 14 .37 104 Locations LLM .11 9.9 .63 34 560 3.6 ..70 .09 17 .78 128 PAM .12 4.4 .14 11 488 6.2 .34 .06 18 .27 93 ROU .16 3.7 .31 34 495 3.5 .19 .04 13 .29 120 SAB .07 4.2 .29 20 326 6.2 .44 .04 19 .29 114 SAP .28 8.1 .21 45 429 5.8 .13 .03 19 i3 132 Overall .15 6.3 .45 28 541 5.7 .39 .06 18 .35 122 group mean CCB .29 9.1 1.25 59 422 5.3 .47 .12 27 .69 128 C- .'%'7 '1 A K 7 A A @ A no 41 . - e 2 1 0 6 25 39 124 Urban- GAL .17 5.3 .27 39 451 8.1 .58 .15 21 .97 152 Indus- MOB .14 6.2 .13 21 403 8.1 .44 .07 17 .43 110 trial MRD .04 3.4 .53 16 453 14.8 .74 .08 20 .67 102 Locations PAS .15 4.7 .65 30 398 4.9 .26 .05 11 .33 133 PEM .19 7.0 .24 24 1160 5.1 .53 .07 35 .32 112 SJR .15 1.0 .07 21 386 4.1 .10 .12 8 .54 77 Overall .17 6.0 .38 31 533 7.3 .45 .10 21 .59 118 group mean ANOVA1 NS NS NS NS NS S NS S S S NS I Significant difference between rural and urban-industrial overall means, p :5 0.05; NS, no significant difference. Figure 1. Benthic Surveillance locations along the southern Atlantic and Gulf of Mexico coasts. Locations A., B., C., D., F., G., U., K., L., M., N., 0., P., Q., S., T., and U. were sampled during 1984-87, cycles I-IV. A. PAMLICO BOUND M. MISSISSIPPI SOUND - PASCAGOULA RIV. 0. CHARLESTON HARBOR (BOUND ISLAND) C. SAPLEO BOUND H Mississippi BOUND - HERON DAY D. ST. JOHNS DIV. ESTUARY 0: MISSISSIPPI DIV. DELTA 2. BISCAYHR SAY P. BARATARIA SAY F. CHARLOTTE HARBOR Q. GALVESTON DAY G. TAMPA BAY R. LAVACA BAY H. APALACHICOLA DAY S. SAN ANTONIO BAY 1. ST. ANDREWS BAY T. CORPUS CHRISTI DAY J. CHOCTANHATCHEE BAY U. LOWER LAGUNA MADRE K. PENSACOLA DAY L. MOBILE BAY 'i;; GULF OF MEXICO 300251 S U AREA Ile 0 a. 44 084 FL SITEB SITE D ISLAND Mill Cove JACKSONVILLE !'S4 i/ 300 20' 1 winter Point C, SITE C Sadler Point 300151 SITE E Chris phof P0, 086 JACKSONVILLE PINEY NAVAL AIR STATION POINT CO Plumm a P., A, '*.) 30010, ORANGE PARK SITE A 0 ljGE FISH TRAWL CEHNTROIDS FOR 1984, 1985, 1986, AND 1987 - MIT SEDIMENT CENTROIDS FOR 1984, 1985, 1986. AND 1987 s T 11 @--, tt @1,@rl.p It .1 P 0. 000 0 -2 tLV ST JOHNS CO atfis P in 0 01 8 20 3 5' 820 45' 8 20 4 0' Figure 2. St. Johns River fish and sediment centroids for 1984-1987. 4vvp0RT @RIVAA -310 40 Vr Q SITE F z - 870 fq -c SITE E -i co 0 co 4j z ... ir IC cl) SITE D 0 3 V 35' C@' BRORO NECK SOjjt4D s4p OURMILE SITE C ISL N9)-' -0 SppEt t- SITE B Ili AUd DIC T SITE A 117 87 JUw A@ G -89 0 0 C-2 0 10 3V FISH TRAWL CENTROIDS FOR SEDIMENT CENTROIDS FOR I 8 lok2l(y a 15 810 1 (Y Figure. 3 Sapelo Sound fish and sediment centroids for 1984-1987. Lake Anahuac SITE F ANAH AC BAYTOWN 87 A SITE C-.W\ AS "Le 0+ A, -292401 10. 00"I SITE E / 1 871 1 187 <1 1,::zl Smith Pl. 87 ej T\ A F -290301 85w E67 0 SAN LEON EAGLE 86. 004 POIN IT Dickinson Bay SITE A i of Pt 84 84 \A" SITE D Dollar Pt. 0 TEXAS CITY. BN 29020' *aZ Pelican Island SITE B GULF OF MEXICO GALVE ON A 10 0 -290 or FISH TRAWL CENTROIDS FOR 1984. 1985, 1986, AND 1987 SEDIMENT CENTROIDS FOR 1984, 1985, 1986, AND 1987 @@AL 950 50' 40' 30' Figure 4. Galveston Bay fish and sediment centroids for 1984-1987. Sitver 1.0- 0.9 0-8- 0-7- E 0-6- CL D-0-5- CD < 0.4 0-3- - 10 0-2- 0 0.1 ------------ ------ 0.0 I f I I I 1" 11 0 1 2 3 4 5 6 7 8 9 10 11 12 A nercent I PU Figure 5. Silver vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95X confidence limits (dashed lines) for individual predicted values derived from baseline locations (dots). Arsenic 26- 24- 0 22- 10 20 16- CL 14 - CL -12 0 10 - 00 81 @O 00 0 so 10, 0 0 I - 0 'U"W -,* 0 *,So q> *0 0 00 0 0 2- 4#b* 0 0* I_-- 0 0 I I I I r-1 I I I f I I I I I I I I I I I I 0 1 2 3 4 5 6 7 8 9 10 11 12 Al, percent Figure 6. Arsenic vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95Z confidence limits (dashed lines) for Individual predicted values derived from baseline locations (dots). Cadmium 1-6- 1-5- 1.4- 1-3- 1.2 1.1 E 1.0- 0-0-9- CL 0.8 - -d 0.7 - 0 0.6 - <> 0-5- 0.4- >000 0 0 0 0 012 0-3- <> - -0 ------- --------------- 0.2- ---* ------ 4 ----------- 00* 0 * <%* 00 0 0000 0 0 0 0 0 <90 0.1- 0* 00 *DO* - ----- --- so 0 <%)O ---- ---- 0 ------- 0-0- 40, ------------ * I I I f I f I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1, 1 1 1 1 1 1 1 f I I I I I I I I 0 1 2 3 4 5 6 7 8 9 10 11 12 A] norCent I VV Figure 7. Cadmium vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 952 confidence limits (dashed lines) for individual predicted values derived from baseline locations (dots). Chromium 200- 175- 150- 125- E C1 - 0-100- 0 75- 50- 6,0 0 0 25 - CID 0 0. I I f I 0 2 3 4 5 6 7 9 10 11 12 A percent ll Flu Figure 8. Chromium vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95X confidence limits (dashed lines) for Individual predIcted values derived from baseline locations (dots). 0 ID 0- @O0- Copper 80- 70- 60- E 50- 0-40- 030- 20- 0 10- 0 11 111 111 1 of 111111111;IIIr 11 f f I I I i I I I [--I I I I I I I I I I 0 1 2 3 4 5 6 7 8 9 10 11 12 A] , norcent V%A Figure 9. Copper vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression.model (solid line) and 95Z confidence limits (dashed lines) for individual'predicted values derived from baseline locations (dots). Iron 6- 5- < 0 10 0 dpW 0 T-T-r-1- -I f I I f I I 1--r--r-r-T--i I I I I I I I I I I I I 1 1 1 1 1 1 1 1 -F I F 1 1-1 -F I I 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 10 .11 12 percent Figure 10. Iron vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95% confidence limits (dashed lines) for individual predicted values derived from baseline locations (dots). > >0 Mercury 1.0- 0-9- 0-8- 0.7- E 0.6 CL 0.5 - r 0.4" 0-3- 0.2- 00-1 00 0.1 0 00 0 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 Ad , percent Figure 11. Mercury vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95Z confidence limits (dashed lines) for individual predicted values derived from baseline locations (dots). Manganese 1800- 1600- 1400- E 1200 CL CL. 1000 800- 0 600- 16 0 - 004 400- 0 0 0 -OW woo All"; 0 00 0 0#0 00 <@>O -0 200- --0 0:0 0 0 0* 0 0 00-- @ 0 Poo 0 0 - *@- 0. -<ji #0 0 0 00 0 *-@*' lfto'V <ZO 0 <4,- -@*- 0 OU0 % 0 Fr-r--r-T- 0 1 2 3 4 5 6 7 8 9 10 11 12 A] r%jmrCent I VI@A- Figure 12. Manganese vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95Z confidence limits (dashed lines) for Individual predicted values derived from baseline locations (dots). Nickel 45- 40- 10 0 35- 0 30- E 25- 0- -20- z - Ar 15- 0 10- 0 1 17 1 1 1 1 1 1 f I I I I I I I I I I I I I f I I I I I I I I I I I I I I I I I I II I I T-T 0 2 3 4 6 7 8 9 10 11 12 A], Percent Figure 13. Nickel vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95Z confidence limits (dashed lines) for individual predicted values derived from baseline locations (dots). Lead 160- 140- 120- E 100- 0- 80 - CL 60 - 0 0 0 40- 0 10- - 20- 0 0 ID I I I f I I I I I I I I I 0 1 2 3 4 5 6 7 8 9 10 11 12 A, percent Figure 14. Lead vs- aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95Z confidence limits (dashed lines) for Individual predicted values derived from baseline locations (dots). Selenium 2-0- 1-6- 1.4- E 1.2 CD 0.8 0-6- 00,0 0 0.4. 0 0.2 40 too 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 A], percent Figure 15. Selenium vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95% confidence limits (dashed lines) for Individual predicted values derived from baseline locations (dots). Tin 8- 7- 6- .0 5- 0 0 0 E 0- CL4 0 0 0 00 0 0 0 0 0 000 0- 0 CO 31 0 0 0 0 '2@ 0 0 otx-> -Aft 0 a-- i,- > 0 --0 ---T " #'@O . 0 0 6 0 00 0 0 0- 0 JL 00 0 0 1 2 3 4 5 6 7 10 11 12 norcent FJU Figure 16. Tin vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95Z confidence limits (dashed lines) for individual predicted values derived from baseline locations (dots). Thalliurn 1.2- 1.17 0-9-- 0.8 E 0.7- C1 - 00-6- 000 0-5- 0-47 0-3- - 0.2 - --- 0.17- 0-0- 0 1 2 3 4 5 6 7 8 9 10 11 12 A, percent Figure 17. Thallium vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95% confidence limits (dashed lines) for individual predicted values derived from baseline locations (dots). Zinc 400- 1%0- 300 250- E 0-200- 150 .00 0 0 100 0 50- -T--r-r-r-T-T 0 1 T--T I I I I I I 0 1 2 3 4 5 7 8 9 10 11 12 Aj, percent Figure 18. Zinc vs. aluminum plot for 1984-87 sediment data (dots and diamonds) with regression model (solid line) and 95% confidence limits (dashed lines) for individual predicted values derived from baseline locations (dots). 7inc 140- 120- 100- U E 80 - CL CL - rq 60- 40- 20- 0- (AMUO A B C D E I Site Figure 19, Concentrations of zinc (ppm, dry wt.) in Atlantic croaker livers at intensive survey and annual survey sites at Sapelo Sound (SAP). Shown are mean concentrations + one standard deviation. Zinc 140 120- 100- E 80 0- Q- U 60 - 40- 20- (AMA A B C D E Site Figure 20. Concentrations of zinc (ppm, dry wt.) in Atlantic croaker livers at intensive survey and annual survey sites at St. Johns River (SJR). Shown are mean concentrations + one standard deviation. A nc 2W - E a 0-150- 100 50- 0 (andual) A B C D E F Sfte Figure 21. Concentrations of zinc (ppm, dry wt.) in Atlantic croaker livers at intensive survey and annual survey sites at Galveston Bay (GAL). Shown are mean concentrations + one standard deviation. Lead 1.0 0.9 0-8- 0.7- E 0-6- CL - 0-0-5- CL 0.4 - 0-3- -1 0.2- 0.1- 0.0 (anhuaQ A B C D E Site Figure 22. Concentrations of lead (ppm, dry wt.) in Atlantic croaker livers at intensive survey and annual survey sites at Sapelo Sound (SAP). Shown are mean concentrations + one standard deviation. Lead 1.0 0.9 0-8- 0.7 E 0-6- CL - CL 0.5 - CL 0.4 - 0-3- 0.2- U 0-1- U U 0.011 1 ("4 1 1 1 1 A B C D E S it e Figure 23. Concentrations of lead (ppm, dry wt.) in Atlantic croaker livers at intensive survey and annual survey sites at St. Johns River (SJR). Shown are mean concentrations + one standard deviation. Lead 1.0 0.9 0-8- 0.7- E 0-6- CL - CL 0.5 - CL 0.4 - n.11 0-2- 0-1- 0.0 (annUA A B C D E F Site Figure 24. Concentrations of lead (ppm. dry wt.) in Atlantic croaker livers at Intensive survey and annual survey sites at Galveston Bay (GAL). Shown are mean o v concentrations ne standard de lation. Zinc 500- 400- A E 300- CL CL C: 200- N A 000 MO L 0 100- 0 C)* 0 0 U 00 r 11 0 0 0 0- 110 140 170 2W 230 260 290 320 Total Length mm Figure 25. Zinc concentration (ppm, dry wt.) in individual Atlantic croaker livers in Galveston Bay as a function of fish total length. Data from separate sites are distinguished by different symbols: Site A (star), Site B (square), Site C (diamond), Site D (triangle), Site E (filled circle), and Site F (open circle). Cadmium 1;0- 0-9- 0-8- 0-7- E CL 0.6 - 0- -05- _0 * 0 0.4 0.2 0-1- 0.0 1984 1985 1986 1987 Year Figure 26. Temporal trend in the concentration of cadmium (ppm, dry wt.) in livers of Atlantic croaker at the Mississippi River Delta (MRD) annual survey site. Shown are mean concentrations and their 951 confidence intervals of estimate. to Iron 800- 700- 600- 500- E 0- 4W - LT 300 - 200- 100- 0-1 1984 1985 1986 1987 Year Figure 27. Temporal trend in the concentration of iron (ppm, dry wt.) in livers of Atlantic croaker at Mississippi River Delta (MRD) annual survey site. Shown are mean concentrations and their 95X confidence intervals of estimate. APPENDIX Table A-1 Cycle 1 1984 Locations and Sites of Fish Collection. Table A-2 Cycle 11 1985 Locations and Sites of Fish Collection. Table A-3 Cycle 111 1986 Locations and Sites of Fish Collection. Table A-4 Cycle IV 1987 Locations and Site of Fish Collection. Table A-5 Sediment Stations: Annual Surveys 1984 Cycle I and 1985 Cycle II. Table A-6 Sediment Stations: Annual Surveys 1986 Cycle III and 1987 Cycle IV. Table A-7 Sediment Stations: Intensive Survey 1987 Cycle IV. Table A-8 Elemental Concentrations for 1984-87 Sediments in the Southeast. Table A-9 Adjusted Elemental Concentrations for 1984-87 Sediments in the Southeast. Table A-10 Elemental Concentrations for 1984-87 Liver Tissue in the Southeast. Table A-1 Contd. Area of Chart Descr gtion Location Location Trawl Landmarks & Chart No. Name Designation operations Waterway Name Other Locaters (Edition, Date) St. Johns SJR 30*24.461 St. Johns River- W of Clapboard Creek 11491 River, FL 81*31.001 Blount Island N of Back River (16th ed., 4/21/79) Channel 30*23.201 St. Johns River- N of Mill Cove to 81*32.261 Fulton-Dame Pt. SW of beacon 114211 Cut-off Range 30*20.371 St. Johns River- W of Floral Bluff 81*36.631 Arlington Channel SE of beacon 117511 Charlotte LOT 26*45.601 Charlotte Harbor S of Cape Haze 11426 Harbor, FL 82*09.401 N of Pine Island (19th ed., 8/7/76) Apa lachaicola APA 29*37*441 Apalachicula Bay N of Little St. 11404 Bay, FL 84*58.501 George Island (14th ed., 9/l/84) 29*44.181 East Bay W of East Pt. 11 84*55.061 E of Apalachicola River Mobile Bay, MOB 30'17.461 Mobile Bay SE of Cedar Pt. 11376 AL 88'06.001 N of Dauphin (35th ed., 9/12/81) Island Round Island, ROU 30*17.741 Mississippi Sound W of Round Island 11374 Ms 88*35.951 (19th ed.,11/5/83) 30*19.281 Mississippi Sound NW of Round Island it 88*36.651 S of WestPascagoula River Table A-1 Contd. Area of Chart Description Location Location Trawl Landmarks & Chart No. Name Designation operations Waterways Name other Locaters (Edition, Date) Heron Bay, HER 30*11.261 Heron Bay SW of Heron Bay 11371 MS 89*28.751 Bayou NW of Heron Bay (23rd ed., 5/21/81) Pt. 30*11.401 Pipeline Canal W of Heron Bay 11 89*30.051 S intersection Campbell Outside Bayou 30*10.871 Mouth of Pearl S of beacon 11811 it 89*31.401 River Mississippi MRD 29'08-18' Northeast Pass S of Blind Bay 11361 River Delta, 89*02.671 NE of Red Fish (45th ed., 1/9/82) LA Bay 29*06.701 Southeast Pass E of Red Fish Bay 11 89*04.111 29*05.711 Loomis Pass W of Red Fish Bay of 89*07.571 N of Garden Island Bay 29*04.901 Southeast Pass E of Red Fish Bay 89*03.701 NE of Garden Island Bay 29*02.731 Garden Island N of Port Eads 89*08.471 Bay SW of Redfish Bay Table A-1. Cycle 1 1984 Locations and Sites of Fish Collection Area of Chart Description Location Location Trawl Landmarks & Chart No. Name Designation operations Waterway Name Other Locaters (Edition, Date) Pamlico PAM 35*13.571 Jones Bay N of Maiden Pt. 11548 Sound, NC 76*32.821 (29th ed., 5/l/82) 35*12.151 Jones Bay- E.of Boar Pt. of 76*30.051 Inlet S of Sow Island Pt. Charleston CHS 32*45.601 South Channel NW of Ft. Johnson 11524 Harbor, SC 79*54.561 S of Shutes Folly (35th ed.,10/20/84) Island Sapelo SAP 31*32.301 Sapelo Sound N of Dog Hammock If Sound, GA 81*15t771 31*31.781 Sapelo Sound N of High Pt. 11510 81*14.381 E of Dog Hammock (11th ed.,11/15/80) 31*30.511 Mud River S of Dog Hammock 11 81*16.41t SW of High Pt. 31*30.381 Eagle Creek W of Mud River 81*17.711 E of Front River Table A-1 Contd. Area of -Chart Description Location Location Trawl Landmarks & Chart No. Name Designation operations Waterway Name other Locaters (Edition, Date) Barataria BAR 29*26.831 Barataria Bay S of Camp Dewey 11358 Bay, LA 89*58.251 NW of St. Marys Pt. (31st., 8/29/81) 29*25.611 Barataria Bay W of St. Marys Pt. to 89*57.491 E of Manilla 29*21.301 Barataria Bay E of Bassa Bassa Bay 89*59-091 W of Pelican Pt. 29*16.851 Barataria Bay N of Barataria Pass 89*56.801 E of Beauregard Island Galveston GAL 29*30.601 Galveston Bay N of Eagle Pt. 11326 Bay, TX 94*54.571 Eagle Pt.- W of Red Fish (21st ed., 4/7/84) Dickinson Bay Island 29*28.101 Dickinson Bay E of beacon 112711 If 94*57.021 29*27.471 Galveston Bay SE of April Fool Pt. 11 94*54.801 Eagle Pt.- E of beacon 111411 Dickinson Bay 29*27.001 Dickinson Bayou W Of Hwy. ST 146 94'58.841 S of San Leon Station Table A-1 Contd. Area of Chart Description Location Location Trawl Landmarks & Chart No. Name Designation Operations Waterway Name Other Locaters (Edition, Date) San Antonio SAB 28*13.221 San Antonio Bay- SE of Jones Lake 11315 Bay, TX 96*48.291 IcW Between beacons (17th ed., 3/3/84) 116711 & 116911 28*11.001 Cottonwood Bayou SW of Panther Pt. 96*45.001 SE of Mustang Lake Corpus CCB 27*49.521 Corpus Christi SE of Portland 11309 Christi Bay, 97*17.381 Bay E of Rincon Pt. (25th ed.,12/19/81) TX 27'48.80' Corpus Christi N of Corpus Christi 97*18.321 Bay Channel beacon 116211 SE of Indian Pt. Lower Laguna LLM 26*05.201 Laguna Madre NE of Laguna Heights 11302 Madre, TX 97*14.291 NW of Port Isabel (15th ed., 5/12/84) Trawl area within 1 km (.54 naut. mile) rddius of position. Table A-2. Cycle 11 1985 Locations and Sites for Fish Collection. Area of Chart Descrintion Location Location Trawl Landmarks & Chart No. Name Designation operations Waterway Name Other Locaters (Edition, Date) Pamlico PAM 35*13.121 Jones Bay NW of Boar Pt. 11548 Sound, NC 76*31.801 SW of Minktrap Pt. (31st ed., 3/23/85) Charleston CHS 32*50.131 Coastal Atlantic 1.5 naut mile SE of 11531 Harbor, SC 79*40.151 Ocean Capers Island (15th ed.,7/21/84) Sapelo SAP 31*32.601 Sapelo Sound- N of Flag Pond 11510 Sound, GA 81*11.601 Inlet (13th ed.,10/24/84) St. Johns SJR 30*21.021 St. Johns River- NW of Floral Bluff 11491 River, FL 81*36.771 Arlington Channel NE of beacon 117511 (21st ed.,7/7/84) Charlotte LOT 26*45.441 Charlotte Harbor S of Cape Haze 11426 Harbor, FL 82*09.271 N of Pine Island (19th ed., 8/7/76) Apalachicola APA 29*37.501 Apalachicola Bay E of Sand Island 11402 Bay, FL 85*04.00 W of St. Vincent (14th ed., 8/11/84) Bar Pensacola PEN 30*29.831 Pensacola Bay- E of Devil Pt. 11378 Bay, FL 87*08.251 Escambia Bay (20th ed.,12/15/84) Mobile MOB 30*17.901 Mobile Bay N of Mobile Pt. 11376 Bay, FL 88*01.951 N of beacon 112511 (35th ed., 9/12/81) MOB 30*17.151 Mobile Bay SE of Cedar Pt. of 88*05.400 N of beacon "C-311 NE of North Pt. Table A-2 Contd. Area of Chart Description Location Location Trawl Landmarks & Chart No. Name Designation Operations Waterway Name Other Locaters (Edition, Date) Round ROU 30*23.241 Pascagoula River E of Marsh Lake 11374 Island, MS 88*33.901 SW of beacon 11611 (20th ed.,12/29/84) Heron HER 30*11.711 Pearl River SW of Baldwin Lodge 11367 Bay, LA 89*32.101 NE of R.R. Swing (18th ed., 7/28/84) Bridge 30*11.76' Pipeline Canal E of Campbell 89*29.961 Lagoon W of Heron Bay Mississippi MRD 29*05.601 Redfish Bay W of Southeast Pass 11361 River Delta, !.A 89*05z401 SE of North Shore (45th ed.. 1/9/821 Bay Barataria BAR 29*17.041 Pipeline Canal N side of Grand 11358 Bay, LA 89*56.061 Terre Island (31st ed., 8/29/81) between Barataria Pass & Pass Abel -Galveston GAL 29*31.911 Galveston Bay NE of Eagle Pt. 11326 Bay, TX 94*52.381 NE of Redfish (21st ed., 4/7/84) Island Table A-2 Contd. Area of Chart Description Location Location Trawl Landmarks & Chart No. Name Designation operations Waterway Name other Locaters (Edition, Date) San Antonio SAB 28*14.551 San Antonio Bay E of Mustang Lake 11315 Bay, TX 96*46.441 SE of Live Oak Pt. (17th ed., 3/3/84) in I.C.W. 28*11.001 Cottonwood Bayou NE of Bray Cove of 96'45.001 SW of Panther Pt. Corpus Christi CCB 27*49.56' Corpus Christi Bay SE of Indian Pt. 11309 Bay, TX 97*17.091 SW of Long Reef (25th ed.,12/19/81) Lower Laguna LLM 26*05.091 Laguna Madre N of Laguna 11302 Madre Bay, TX 97*15.171 Heights (15th ed., 5/12/84) Trawl area within 1 km (.54 naut. mile) radius of position. Table A-3. Cycle 111 1986 Locations and Sites of Fish Collection. Area of Chart Descrivtion Location Location Trawl Landmarks & Chart No. Name Designation Operations Waterway Name Other Locaters (Edition, Date) Pamlico PAM 35*12.521 Jones Bay NE of Boar Pt. 11548 Sound, NC 76*30.601 SW of Sow Is. Pt. (31st ed., 3/23/85) Charleston CHS 32*45.411 South Channel E of Ft. Johnson 11524 Harbor, SC 79*53.101 W of Ft. Sumter (35th ed.,10/24/84) Sapelo SAP 31*32.621 Sapelo Sound-Inlet N of Flag Pond 11510 Sound, GA 81'11.911 (13th ed., 3/8/86) St. Johns SJR 30'14.141 St. Johns River NE of Piney Pt. 11492 River, FL 81*39.301 (15th ed., 1/24/87) Biscayne BIS2 25*53.351 Biscayne Bay W of Bay Harbor 11467 Bay, FL 80*08.46' Islands (24th ed.,11/30/85) N of Broad Causeway 25*51.891 Biscayne Bay N of Treasure 80*08.951 Island NW of Normandy Isle 25*50.461 Biscayne Bay S of Treasure 80'09.041 Island SW of Normandy Isle 25*47.581 Biscayne Bay N of San Marco 80*10.081 Island S of Julia Tuttle Causeway Table A-3 Contd. Area of Chart Description Location Location Trawl Landmarks & Chart No. Name Designation operations Waterway Name other Locaters (Edition, Date) Biscayne BIS 25045.411 Biscayne Bay NE of Virginia Key 11467 Bay, FL 80*08.801 SW of Fisher Island (24th ed.,11/30/85) Charlotte LOT 26*39.351 Charlotte Harbor E of Indian Field 11426 Harbor, FL 82*05.721 W of Buzzard Bay (19th ed., 8/7/76) 26*47.701 Charlotte Harbor E of Cape Haze 82*05.801 W of Key Pt. of 26*45.601 Charlotte Harbor S of Cape Haze 82*09.951 Apalachicola APA 29*37.501 Apalachicola Bay N of Little St. 11402 Bay, FL 84*58.251 George Island (14th ed., 9/l/84) NW of Government cut 29*37.000 Apalachicola Bay N of Little St. of 85*03.701 George Island W of St. Vincent Bar Pensacola PEN 30*22.611 Pensacola Bay W of Butcherpen 11378 Bay, FL 87*09.001 Pt. (20th ed.,12/15/84) 30*29.611 Escambia Bay E of Devil Pt. 87*08.151 if Mobile MOB 30*18.891 Mobile Bay E of Cedar Pt. 11376 Bay, AL 88*01.801 (35th ed.,9/12/81) Heron HER 30*11.331 Pearl River S of R.R. 11367 Bay, MS 89*31.681 Swing Bridge (18th ed.,7/28/84) Table A-3 Cont. Area of Chart Description Location Location Trawl . I Landmarks & Chart No. Name Designation operations Waterway Name Other Locaters (Edition, Date) Heron HER 30*11.761 Pipeline Canal E of Campbell 11367 Bay, MS 89*29.961 Lagoon (18th ed.,7/28/84) W of Heron Bay Mississippi MRD 29*05.601 Redfish Bay W of Southeast 11361 River Delta, 89*05.401 Pass (45th ed., 1/9/82) LA 29*02.811 Garden Island Bay NE of Port Eads 11361 89'06.751 (45th ed., 1/9/82) Galveston GAL-D 29*27.741* Galveston Bay- SW of April Fool 11326 Bay, TX 94*56.031 Eagle Pt.- Pt. (21st ed., 4/7/84) Dickinson Bay Galveston GAL2 29*43.941 Galveston Bay- N of Barnes Island 11329 Bay, TX 99'02-841 Houston Ship (25th ed.,6/27/87) Channel San Antonio SAB 28*13.371 San Antonio Bay SE of Jones Lake 11315 Bay, TX 96*48.101 NE of beacon 116711 (17th ed., 3/3/84) Corpus Christi CCB 27*48.631 Corpus Christi Bay SE of Indian Pt. 11309 Bay, TX 97*18.881 W of beacon 116111 (25th ed.,12/19/81) Lower Laguna LLM 26*04.931 Laguna Madre NE of Laguna Heights 11302 Madre Bay, TX 97*14.191 (15th ed., 5/12/84) Trawl area within I km (,. 54 naut. mile) radius of position. 2 Only fish for histopathology were collected at this location. Table A-4. Cycle IV 1987 Locations and Sites for Fish Collection. Area of Chart Description Location Location Trawl Landmarks & Chart No. Name Designation Operations Waterway Name Other Locaters (Edition, Date) Charleston CHS 32*45.37' South Channel S of Middle Ground 11524 Harbor, SC 79*54.861 W of Ft. Johnson (35th ed., 10/24/84) 32*45.401 South Channel NW of Ft. Sumter 11 79*52.741 Sapelo SAP-B 30*31.741 Sapelo River- W of Dog Hammock 11510 Sound, GA (July) 81*16.611 Dog Hammock (llth'ed., 11/15/80) SAP-B 31*31.501 Sapelo River- SW of Dog Hammock (Aug.) 81*17.271 Dog Hammock SE of Four Mile SAP-C 31*32.301 Sapelo Sound- N of Blackbeard (Aug.) 81*11.751 Inlet Island SAP-C 31'32.201 Sapelo Sound- N of Concord Shoal (Oct.) 81*10.301 Inlet S of St. Catherine Island SAP-D 31034.501 Barbour Island W of Oldnor Island 81*14.261 River N of Cedar Hammock Island SAP-E 31*38.501 South Newport E of Thomas Landing 81*15.001 River SAP-F 31*38.871 Johnson Creek S of ICW beacon 1112611 of 81*11.361 N of ICW beacon 1112711 St. Johns SJR-A 30*09.761 St. Johns River- SE of Orange Park 11492 River, FL 81*41.121 Orange Pt. NE of beacon 111011 (15th ed., 1/24/87) Orange Park Table A-4 Contd. Area of Chart Description Location Location Trawl . I Landmarks & Chart No. Name Designation Operations Waterway Name Other Locaters (Edition, Date) St. Johns SJR-B 30*20.651 St. Johns River W of Floral Bluff 11491 River, FL 81*36.851 Arlington Channel (21st ed., 7/7/84) SJR-C 30*16.641 Cedar-Ortega River NW of Ortega 11492 81*42.631 NE of Bascule (15th ed., 1/24/87) RR Bridge SJR-D 30*23.501 St. Johns River- NE of Quarantine 11491 81*34.101 Quarantine Island Island (21st ed., 7/7/84) Upper Range SJR-E 30*14.151 St. Johns River- NE of Piney Pt. 11492 81*39.311 Piney Pt. SW of Christopher (15th ed., 1/24/89) Pt. Pensacola PEN 30*22.601 Pensacola Bay N of Butcherpen 11378 Bay, FL 87*08.971 Cove (20th ed.,12/15/84) 30*23.461 Pensacola Bay East Channel 87*12.491 N of beacon 112711 30*22.001 Pensacola Bay N of Fair Pt. 87*12.681 W of Town Pt. 30'21.001 Pensacola Bay NW of Deer Pt. 87*11.881 SE of Fair Pt. 30*20.261 Pensacola Bay SE of Deer Pt. 87*10.501 S of English Navy Cove Table A-4 Contd. Area of chart Description Location Location Trawl Landmarks & Chart No. Name Designation operations1 Waterway Name other Locaters (Edition, Date) Galveston GAL-D 29*30.601 Galveston Bay West Pass 11326 Bay, TX 94*53.571 Eagle Pt.- (23rd ed., 7/18/87) Dickinson Bay 29*30.911 Galveston Bay N of San Leon 94*55.251 Eagle Pt.- Dickinson Bay GAL-E 29*42.381 Trinity Bay Anahuac Channel 94*43.871 29*41.301 Trinity Bay SW of Anahuac 94*44.481 Channel W of Black Pt. 29*35.001 Trinity Bay S of Double 94*46.001 Bayou Channel NE of Smith Pt. GAL-F 29*44.381 Houston Ship NE of beacon 1113901 11329 95*06.781 Channel N of Patrick (25th ed., 6/27/87) Bayou I Trawl area within 1 km (. 54 naut. mile) radius of position. Table A-4 Contd. Area of Chart Description Location Location Trawl I Landmarks & Chart No. Name Designation Operations Waterway Name other Locaters (Edition, Date) Pascagoula PAS 30*21.471 Pasagoula River N of beacon 11411 11374 River, MS 88*33.951 E of Grain (20th ed., 12/29/84) Elevator 30*22.971 Pasagoula River E of beacon 11511 of 88*34.091 W of Krebs Lake Mississippi MRD 29*09.741 Blind Bay N of Northeast 11361 River Delta, 89*03.021 Pass LA W of South Mud (45th ed., 1/9/82) Lumps 29*04.331 Redfish Bay SW of Southeast 11 89'04.651 Pass 29*05.978 Redfish Bay SW of Southeast of 89*06.421 Pass Barataria BAR 29*17.041 Pipeline canal N side of Grand 11358 Bay, LA 89056.061 Terre Island (31st ed., 8/29/81) between Barataria Pass & Pass Abel Galveston GAL-A 29*27.201 East Bay NW of Bolivar Beach 11326 Bay, TX 94*42.601 SW of Elmgrove (23rd ed., 7/18/87) Pt. GAL-B 29ol9.701 Galveston Bay- SE of Swan Lake Re 94*52.801 Texas City S of Texas City GAL-C 29*41.361* Houston Ship W of beacon 119411 of 94*59.441 Channel- in Houston Ship Morgans Pt. Channel N of Morgans Pt. Table A-5. Sediment Stations:Annual Surveys 1984 Cycle I and 1985 Cycle Il. 1984 Cycle 1 1985 CVC12-JLI- Latitude Longitude tude Longitude LOCATION Station (N) (W) (N) (W) Pamlico Sound 1 35'13.901 76,33.601 35*13.901 76'33.601 (PAN) 2 35*13.001 76*30.801 35*13.001 76*30.801 3 35*13.50, 76'32.101 35*13.501 76,32-101 Charleston Harbor 1 32*45.431 79*55.071 32*45.431 79*55.051 (CHS) 2 32*45.421 79*54.451 32*45.421 79*54.471 3 32*45.451 79*54-151 32*45.441 79*54-251 Sapelo Sound 1 31*31.671 81*14.451 31*31.681 81*14-531 (SAP) 2 31*32.171 81'13.621 31*32.181 81*13.661 3 31*32.671 81*14-83' 31*32.641 81*14-911 St. Johns River 1 30*23.951 81*36.251 30*23.971 81036.291 Estury (SJR) 2 30'22.681 81'32.331 30*22.571 81*32.481 3 30*22.53' 81*37.201 30*22.491 81'36.951 Charlotte Harbor 1 26*45.701 82'09.301 26*45.691 82*09.331 (LOT) 2 26*49.80' 82*06.301 26*49.761 82*06-281 3 26'52.331 82*07.701 26*52.341 82*07.701 Tampa Bay 1 27'47.011 82*32.501 27*47.011 82*32-501 (TAM) 2 27*46.061 82*35.471 27*46.061 82*35.471 3 27*47.03' 82*35.94' 27*47.03' 82'35.941 Apalachicola Bay 1 29*37.781 84*58.101 29*37.781 84*58.101 (APA) 2 29*38.301 84'58.501 29*38.301 84058.501 3 29*39.871 84*58.501 29*39.871 84058.501 Pensacola Bay I not established 30022.351 87*14.631 (PEN) 2 30'25.471 87*09-251 3 30*33.001 87*09.501 Mobile Bay 1 30*16.601 88,04-401 30*416.611 88*04-381 (MOB) 2, 30*17.801 88*05.891 30017.911 88*05.90, 3 30'19.001 88*04-401 30*18.981 88*04-401 Round Island 1 30*17.671 88*35.831 30*17.671 88*35-831 (ROU) 2 30*18.331 88*36.831 30*18.331 88*36-831 3 30*19.251 88*37.001 30'19.251 88*37.00, Pascagoula River I not established not established (PAS) 2 3 Table A-5 Contd. 1984 Cycle T 198!5 Qzcle TI Latitude Longitude Latitude Longitude L40CATION Station (N) (W*) (N) (W) Heron Bay (HER) 1 no sample (weather) 30*11.081 89*27.92' 2 30*11.201 89*28.93, 3 30*10.60, 89*28.80, Mississippi River Delta 1 29*06.701 89*0,4.201 29*07.171 89'04.11' (MRD) 2 29*04.801 89'013.601 29*05.511 89'04.061 3 29,08.10, 89*01.701 29*08-161 89*02.41' Barataria Bay (BAR) 1 29*26.901 89*58.701 29*26.901 89,58.701 2 29*20.501 89*56.701 29*20.501 89056.701 3 29'17.501 89*56.001 29*17-241 89*56.041 Galveston Bay (GAL) 1 29*28.281 94*56.17' 29028-281 94*56.251 2 29*29.001 94*54.331 29*29.001 94*54.331 3 29*30.50, 94*53.921 29-30.701 94*54.701 San Antonio Bay (SAB) 1 28*14.171 96*46.171 28*14.171 96*46.171 2 28*13.171 96*[email protected] 28*12.171 96*46.671 3 28'12.331 96*46.17' 28'12-331 96*46.171 Corpus Christi Bay (CCB) 1 27'49.421 97*3.6.451 27*49.421 97*16.451 2 27*49.601 97'2 '7.421 27*49.601 97*17.42' 3 27*49.751 97*18.231 27*49.751 97'18.231 Lower Laguna Madre (LL14) 1 26*05.081 97'IL4.75 1 26*05.081 97*14.751 2 26*06.451 97 * 15.43 1 26*06-451 97'15.431 3 26*08-48' 97-15.96@' 26-08.48- 97-15.90' Table A-6. Sediment Stations: Annual Surveys 1986 cycle III and 1987 Cycle IV. 1986 Cycle 111 1987 Cycle IV Latitude Longitude Latitude Longitude LOCATION Station (N) (W) (N) (W) Pamlico Sound (PAM) 1 35*13.901 76'33.601 no sample (deferred) 2 35*13.001 76*31.501 3 35*12.701 76030.80 Charleston Harbor (CHS) 1 32*45.321 79*55.091 32*45.321 79*53.14' 2 32*45.411 79*54.48' 32*45.41' 79'54.51' 3 32*45.451 79*54.281 32'45.44' 79*54.29' Sapelo Sound (SAP) 1 31*31.671 81'14.48' 31*31.541 81*14.491 2 31*32.161 81*13.671 31*32.131 81*13.68' 3 31*32.621 81*14.851 31*32.661 81*14.87' St. Johns River Estuary 1 30*23.99' 81'36.281 30'23.921 81*36.42' (SJR) 2 30'22.101 81*31.521 30*23.53.1 81*36.25' 3 30*23.421 81,38.15, 30*23.421 81*35.821 Charlotte Harbor (LOT) 1 26*45.931 82*09.171 no sample (deferred) 2 26*49.951 82*06.201 3 26*52.631 82*07.471 Tampa Bay (TAM) 1 no sample (deferred) no sample (deferred) 2 3 Apalachicola Bay (APA) 1 29*37.781 84*58.091 no sample (deferred) 2 29*38.311 84*58.501 3 29*39.851 84*58.45 Pensacola Bay (PEN) 1 30*22.371 84*14.701 30'22.331 87*14.721 2 30*25.421 87*09.291 30*25.471 87*09.251 3 30*32.931 87'09.541 30*32.931 87*09.541 Mobile Bay (MOB) 1 30'16.540 88*04.361 no sample (deferred) 2 30*17.741 88905.89, 3 30*19.00, 88'04.401 Round Island (ROU) 1 no sample (deferred) 30*17.631 88*35.661 2 30*18.281 88*36.371 3 30*19.291 88*36.511 Pascagoula River (PAS) 1 not established 30*23.111 88*33.961 2 30*22.751 88*34.051 3 30'22.371 88'33.781 Table A-6 Contd. 1986 Cycle 111 1987 Cycle IV Latitude Longitude Latitude Longitude LOCATION Station (N) (W) (N) (W) Heron Bay (HER) 1 30*11.081 89*27.921 no sample (deferred) 2 30*11.201 89*28.931 3 3C'10.601 89*28.801 Mississippi River Delta 1 29*07-171 89'04.191 29*07.161 89*04.17' (MRD) 2 29*05.519 89*04.061 29*05.461 89*04.08' 3 29*CB-161 89*02.411 29'08.111 89*02.44' Barataria Bay (BAR) 1 no sample (deferred) 29*26.781 89*59.03, 2 29*20.521 89'56.641 3 29*17.261 89*56.061 4 29*19.98, 89*56.571 Galveston Bay (GAL) 1 29*28.311 94*56.071 29*30.841 94'54.241 2 29*29.041 94'54.421 29*29.05, 94*54.001 3 29'30.391 94*53.831 29*2a.501 94'56.201 San Antonio Bay (SAB) 1 28*14.381 96*46.331 no sample (deferred) 2 28*13.23, 96*46.611 3 28'1.2.Z3' 96*46.241 Corpus Christi Bay (CCB) 1 27'49.54' 97*16.541 no sample (deferred) 2 27*49.651 97*17.440 3 27*49.791 97*18.141 Lower Laguna Madre (LLM) 1 26*05.081 97*14.751 no sample (deferred) 2 26*06-451 97*15.431 3 26*08-481 97*15.901 Table A-7. Sediment Stations: Intensive Survey 1987 Cycle IV. Latitude Longitude Location Site Station (N) M Galveston A 1 29* 27.081 94* 43.051 Bay (GAL) 2 29* 27.211 94* 42.731 3 29* 27.491 94* 42.791 B 1 290 21.691 94* 52.371 2 29* 21.431 94* 52.541 3 29* 21.531 94* 52.191 C 1 290 42.621 95* 00.211 2 29* 42.461 95* 00.301 3 29* 42.131 95* 00.111 D 1 29* 30.841 94* 54.241 2 29* 29.051 94-* 54.001 3 29* 28.501 94* 56.201 E 1 290 37.021 94* 45.551 2 290 36.451 94* 45.451 3 29* 35.851 94* 45.401 St. Johns A 1 30* 09.471 81* 41.031 River 2 30* 09.661 81* 40.941 Estuary 3 30* 09.840 81* 40.851 (SJR) B 1 30* 23.751 81* 38.371 2 30* 23.750 81* 38.701 3 30* 23.681 81* 38.971 C 1 30* 16.241 81* 43.151 2 30* 16.741 81* 42.631 3 30* 16.851 81* 42.271 D 1 30* 23.92' 81* 36.421 2 30* 23.531 81* 36.251 3 30* 23.421 81* 35.821 E 1 30* 14.61' 81' 39.481 2 30* 14.401 81* 39.361 3 30* 14.261 810 39.181 Table A-7 Contd. Latitude Longitude Location Site Station (14) M Sapelo A 1 31031.54 Sound (SAP) 2 3103:2.131 81*13.681 3 31*3:2.661 81*14.871 B 1 31 * 31. 501 81017.431 2 31 * 31. 921 81017.821 3 31*3:2.281 81017.231 C 1 3 1 0 3:2 . 2 0 1 81012.401 2 31*3:2.581 81011.151 3 31 * 32. 691 81*11.991 D 1 31 0 34 . 66 81*14.551 2 31 0 34 . 72 81014.391 3 31*34.721 81014.541 E 1 31*38.751 81015.491 2 31*38.571 81015.351 3 3lo38.291 81*14.561 SAP A 1 31*31.671 81*14.481 October 2 31*32.161 8lol3.671 1987 3 31032.601 81014.801 SAP A 1 31031.681 81014.531 July 2 31*32.181 81013.661 1987 3 31*32.641 81014.911 15 Table A-8. Elemental Concentrations for 1984-87 Sediments in the Southeast. Units: ppm (dry) except Al, Fe, and Si percent (dry). Computer listing of sediment data, 5 pages, 211 observations. Table A-8 Contd. LOC YR MTH SITE STA SURVEY Ag At As Cd Cr Cu Fe Hg Mn Ni Pb Se Si Sn T I Zn APA 84 10 A 1 A 0.025 2.240 4.900 0.009 24.500 4.800 1.150 0.008 284.000 6.200 11.300 0.160 37.420 1.100 0.190 18.000 APA 84 10 A 2 A 0.074 10.890 24.000 0.046 86.800 22.500 6.200 0.082 1041.000 32.200 32.300 0.800 19.180 4.500 0.770 209.000 APA 84 10 A 3 A 0.073 11.350 25.200 0.'080 102.000 23.500 6.490 0.098 1450.000 30.300 33.500 0.610 21.750 3.600 0.800 108.000 APA 85 10 A 1 A 0.046 9.905 19.979 0'.074 77.556 17.278 5.224 0.138 866.946 24.459 27.836 0.726 26.067 3.108 0.671 82.957 APA 85 10 A 2 A 0.050 10.365 15.523 0.081 81.422 18.072 5.843 0.104 1144.441 25.160 29.763 0.547 27.643 5.137 0.470 88.565 APA 85 10 A 3 A 0.063 10.264 16.895 0.132 67.129 21.712 6.280 0.119 1220.651 31.859 33.970 0.604 24.867 4.887 0.419 110.462 APA 86 10 A 1 A 0.053 4.892 22.028 0.058 73.627 14.230 3.657 0.026 186.644 19.078 22.565 0.423 27.653 1.926 62.879 APA 86 10 A 2 A 0.071 11.356 19.902 0.068 89.542 21.031 5.931 0.062 1112.472'28.348 35.124 0.501 25.005 3.902 79.694 APA 86 10 A 3 A -0.081 10.035 17.589 0.107 106.214 23.780 5.299 0.111 1237.149 33.264 38.962 0.597 23.181 3.994 101.299 BAR 84 9 A 1 A 0.125 5.480 8.400 0.278 64.200 15.600 2.710 0.076 441.000 21.500 20.700 0.550 30.770 1.600 0.670 83.000 BAR 84 9 A 2 A 0.090 4.490 5.500 0.220 55.100 10.500 1.970 0.048 298.000 15.600 16.100 0.190 31.130 1.600 0.580 59.000 BAR 84 9 A 3 A 0.055 4.020 4.700 0.080 37.700 5.400 1.370 0.026 235.000 14.200 12.000 0.180 35.300 4.300 0.440 .36.000 BAR 85 9 A I A 0.079 5.052 5.329 0.146 35.061 8.877 1.887 0.057 327.764 17.376 13.965 0.194 32.628 1.374 0.867 60.730 BAR 85 9 A 2 A 0.048 5.370 7.439 0.255 33.601 9.579 2.028 0.066 348.498 18.849 14.866 0.241 35.666 1.469 0.657 56.678 BAR 85 9 A 3 A 0.026 3.253 1.844 0.015 16.030 2.423 0.598 0.032 97.920 4.710 7.546 0.061 30.390 0.951 0.559 23.522 BAR 87 10 A I A 0.136 5.779 7.353 0.246 57.042 15.861 2.105 0.029 426.937 22.829 20.380 0.288 1.530 78.716 BAR 87 10 A 2 A 0.118 5.398 5.917 0.171 56.216 11.951 2.457 0.038 194.411 23.696 16.402 0.271 1.107 62.007 BAR 87 10 A 3 A 0.101 4.244 5.502 0.143 44.571 8.522 1.690 0.182 235.570 16.942 14.785 0.211 1.310 51.054 BAR 87 10 A 4 A 0.091 4.810 3.805 0.100 40.563 8.568 1.630 -0.046 53.433 15.942 14.295 0.152 1.252 55.956 CCB 84 9 A I A 0.049 1.550 2.500 0.152 18.400 4.900 0.740 0.022 169.000 4.500 9.900 0.200 22.830 1.700 0.110 32.000 CCB 84 9 A 2 A 0.042 1.020 1.700 0.093 14.900 2.300 0.460 0.030 100.000 2.100 3.500 0.160 32.280 0.700 0.120 20.000 CCB 84 9 A 3 A 0.111 5.500 8.100 0.314 60.400 12.700 2.590 0.081 506.000 14.900 22.200 0.280 23.170 1.700 0.650 116.000 CCB 85 9 A 1 A 0.018 5.670 3.386 0.311 44.109 10.114 2.800 0.076 410.960 17.555 21.262 0.157 29.665'1.721 0.709 119.169 CC8 85 9 A 2 A 0.077 8.066 9.618 0.299 54.746 14.590 3.854 0.104 620.172 21.880 24.969 0.230 30.179 2.854 1.136 154.812 CCB 85 9 A 3 A 0.092 7.944 8.414 0.489 54.825 13.838 3.787 0.087 743.342 20.572 24.034 0.295 30.879 3.773 0.452 137.645 CCB 86 9 A 1 A 0.144 7.367 8.226 0.514 72.792 18.704 3.360 0.084 78.123 19.488 27.218 0.327 29..914 3.035 127.010 CCO 86 9 A 2 A 0.134 6.966 5.885 0.500 55.389 19.978 3.166 0.070 54.945 19.343 22.797 0.245 29.289 3.228 115.987 CCB 86 9 A 3 A 0.111 4.827 6.518 0.475 54.048 15.057 2.644 0.084 69.622 17.659 27.781 0.164 30.197 2.465 115.642 CHS 84 8 A 1 A 0.189 6.380 14.800 0.141 79.100 17.800 3.420 0.065 455.000 20.100 30.300 0.630 27.930 3.100 0.450 74.000 CHS 84 8 A 2 A 0.153 6.140 13.100 0.163 91.600 17.200 3.420 0.055 558.000 18.200 27.700 0.520 26.000 2.600 0.410 75.000 CHS 84 8 A 3 A 0.116 6.110 14.100 0.158 92.200 13.100 3.340 0.065 662.000 20.800 25.900 0.400 26.420 1.600 0.460 69.000 CHS 85 8 A 1 A 0.102 8.140 15.135 0.171 75.191 21.744 3.969 0.129 549.100 22.382 27.864 0.732 29.613 3.502 0.207 94.039 CHS 85 8 A 2 A 0.113 8.257 18.039 0.208 77.473 20.290 4.287 0.110 740.083 25.355 29.115 O.T79 29.126 5.649 0.491 93.628 CHS 85 8 A 3 A 0.112 8.508 16.932 0.184 75.239 20.634 4.057 0.116 713.849 23.719 29.155 0.762 27.504 2.771 0.722 90.194 CHS 86 8 A 1 A 0.041 1.462 6.607 0.078 22.848 3.729 1.029 0.047 40.744 1.693 7.180 0.181 40.874 1.306 20.274 CHS 86 8 A 2 A 0.141 7.771 18.358 0.203 115.949 25.423 4.036 0.110 697.689 23.429 33.884 0.526 27.657 3.210 91.703 CHS 86 8 A 3 A 0.186 8.021 19.932 0.215 95.442 25.670 4.182 0.099 733.684 25.324 32.121 0.687 26.501 3.104 94.350 CHS 87 8 A 1 A 0.029 1.056 2.342 0.060 18.732 2.260 0.808 0.013 64.518 4.199 7.637 0.136 1.206 19.477 CHS 87 8 A 2 A 0.105 4.709 8.T31 0.273 68.490 10.923 2.286 -0.029 413.189 12.226 26.332 0.281 1.782 72.784 CHS 87 8 A 3 A 0.056 3.705 9.886 0.121 48.368 10.418 2.039 -0.056 78.222 11.363 16.598 0.230 .1.514 54.846 GAL 84 9 D 1 A 0.128 4.760 7.000 0.101 42.500 14.600 2.230 0.047 216.000 16.300 19.800 0.240 35.270 3.600 0.590 60.000 GAL 84 9 D 2 A 0.072 1.090 0.800 0.014 38.500 1.500 0.280 0.016 68.000 2.600 26.400 0.120 40.420 0.700 0.100 5.900 GAL 84 9 b 3 A 0.072 3.250 3.100 0.044 41.700 8.000 1.370 0.027 218.000 12.100 13.600 0.260 37.800 1.800 0.460 36.000 GAL 85 9 D 1 A 0.051 2.528 2.131 0.087 23.176 6.516 0.821 0.037 147.349 6.393 9.511 0.059 38.031 1.095 0.442 24.471 GAL 85 0 D 2 A 0.041 2.314 2.753 0.015 15.487 3.850 0.557 0.029 198.532 4.645 6.531 0.034 30.142 1.1,70 0.136 a6.030 GAL 85 9 D 3' A 0.080 5.215 3.281 0.074 27.718 9.517 1.728 0.032 363.967 14.887 16.543 0.157 38.708 2.321 0.579 46.220 GAL 86 9 D 1 A 0.073 1.262 1.505 0.048 31.191 3.458 0.395 0.019 30.174 2.341 7.132 0.065 44.965 0.963 12.316 Table A-8 Contd. LOC YR MTH SITE STA SURVEY Ag At As Cd Cr Cu Fe Hg Mn Ni Pb- Se Si Sn Tt Zn GAL 86 9 D 2 A 0.105 2.252 3.790 0.057 26.354 5.405 0.650 0.067 41.022 4.108 10.019 0.177 45.135 1.557 22.771 GAL 86 9 D 3 A 0.049 1.326 2.465 0.065 14.190 4.322 0.575 0.029 38.922 3.327 5.909 0.090 34.202 0.772 12.956 GAL 87 9 A 1 1 0.090 3.782 4.582 0.071 37.587 8.058 1.496 0.010 163.218 16.302 12.418 0.153 1.154 48.164 GAL 87 9 A 2 1 0.105 2.570 2.036 0.052 19.060 3.341 0.675 -0.055 25.403 6.682 9.074 0.057 0.492 26.528 GAL 87 9 A 3 1 0.082 3.228 3.084 0.043 29.229 6.083 1.064 0.071 54.368 12.067 12.206 0.133 1.028 41.774 GAL 87 9 B 1 1 0.214 5.264 6.887 0.080 16.622 2.187 0.131 110.075 24.380 26.483 0.132 3.567 79.977 GAL 87 9 8 2 1 0.221 5.623 7.021 0.098 65.550 16.393 2.272 0.013 43.641 23.435 24.254 0.181 4.272 77.538 GAL 87 9 8 3 1 0.212 5.373 6.913 0.077 64.036 14.048 2.228 0.008 95.625 18.819 25.560 0.130 3.541 81.517 GAL 87 9 c 1 1 0.260 6.107 7.868 0.362 81.372 19.680 2.360 0.061 106.007 27.251 36.853 0.415 2.747 109.242 GAL 87 9 C 2 1 0.176 6.756 7.807 0.272 81.300 23.885 2.938 -0.075 460.514 27.486 53.409 0.329 2.884 97.893 GAL 87 9 C 3 1 0.123 2.678 2.537 0.084 33.215 9.175 1.033 0 * 169 37.770 10.954 17.415 0.147 1.081 46.811 GAL 87 9 D 1 A 0.083 3.333 3.654 0.056 35.546 9.821 1.144 0.111 34.472 12.400 13.767 0.177 1.643 41.153 GAL 87 9 D 2 A 0.074 2.516 3.278 0.038 27.513 6.517 0.878 0.015 25.738 8.601 10.375 0.169 0.769 31.731 GAL 87 9 D 3 A 0.137 5.297 5.181 0.114 59.179 14.448 2.111 0.092 75.333 21.342 20.205 0.384 2.365 71.948 GAL 87 9 E 1 1 0.116 5.250 6.541 0.157 60.788 11.439 2.321 0.046 92.768 22.048 17.576 0.210 1.667 67.966 GAL 87 9 E 2 1 0.122 5.076 6.759 0.168 53.666 12.233 2.252 0.084 56.810 21.164 20.504 0.291 2.337 67.115 GAL 87 9 E 3 1 0.113 4.110 4.373 0.115 45.711 9.785 1.690 0.103 85.676 17.908 16.095 0.245 3.011 49.375 HER 85 9 A I A 0.077 5.030 3.521 0.252 31.578 10.384 2.238 0.112 392.617 16.748 15.343 0.318 37.972 1.220 0.285 52.898 HER 85 9 A 2 A 0.082 4.001 5.039 0.100 23.205 6.957 1.584 0.054 373.361 11.923 13.327 0.173 32.488 1.009 0.594 42.579 HER 85 9 A A 0.073 6.065 4.185 0.118 36.777 8.630 2.343 0.091 597.974 14.282 15.784 0.229 36.814 1.710 0.684 56.420 HER 86 9 A 1 A 0.124 5.409 7.811 0.227 66.916 13.811 2.018 0.070 269.117 16.190 18.334 0.290 36.660 1.581 67.167 HER 86 9 A 2 A 0.089 4.441 7.430 0.176 46.516 9.263 1.688 0.012 70.888 11.648 14.632 0.261 40.262 1.126 42.501 HER 86 9 A 3 A 0.103 5.465 9.693 0.210 50.848 13.077 2.124 0.074 660.138 14.683 17.424 0.199 35.229 2.103 57.501 LLM 84 10 A 1 A 0.078 4.900 13.200 0.141 25.600 8.600 2.380 0.035 404.000 10.800 17.900 0.130 27.300 3.000 0.340 56.000 LLM 84 10 A 2 A 0.061 3.060 6.000 0.056 21.000 3.600 0.940 0.021 207.000 3.700 13.200 0.170 33.280 0.800 0.310 21.000 LLM 84 10 A 3 A 0.059 3.520 5.300 0.086 29.200 5.300 1.180 0.039 262.000 5.600 12.600 0.210 27.050 0.700 0.290 31.000 LLM 85 9 A 1 A 0.053 4.491 4.615 0.093 29.528 7.442 1.740 0.047 397.064 8.854 13.756 0.086 32.256 0.986 0.489 46.749 LLM 85 9 A 2 A 0.026 2.360 6.621 0.065 9.804 4.336 1.083 -0.005 279.686 5.884 10.719 0.107 26.132 5.704 0.157 23.840 LLM 85 9 A 3 A 0.080 3.113 4.427 0.048 9.516 4.604 0.815 -0.002 212.996 5.135 9.322 0.062 29.467 0.848 0.301 23.486 LLM 86 9 A 1 A 0.094 4.787 8.688 0.122 25.583 8.643 1.7T3 0.045 41.466 7.707 12.665 0.091 31.075 1.470 43.355 LLM 86 9 A 2 A 0.058 3.307 8.646 0.092 17.722 4.878 0.929 0.032 43.107 2.980 11.728 0.110 35.743 1.682 24.788 LLN 86 9 A 3 A 0.058 2.997 5.565 0.065 12.026 4.019 0.738 0.030 35.587 2.038 9.078 0.121 32.187 1.336 18.969 LOT 84 10 A 1 A 0.004 0.770 1.400 0.074 25.000 2.000 0.570 0.028 37.800 4.100 5.800 0.360 28.870 1.200 0.040 8.600 LOT 84 10 A 2 A 0.017 0.470 1.100 0.075 27.600 0.800 0.380 0.019 19.000 3.300 4.100 0.320 34.060 0.600 0.130 6.400 LOT 84 10 A 3 A 0.005 0.710 1.700 0.087 29.800 0.700 0.540 0.016 26.000 2.500 4.800 0.060 39.070 0.500 0.160 6.600 LOT 85 10 A I A -0.015 0.554 1.211 0.077 12.672 1.125 0.331 0.072 28.013 1.624 2.930 0.102 30.874 0.881 0.059 7.265 LOT 85 10 A 2 A -0.004 0.255 0.006 0.029 15.124 0.522 0.187 0.011 5.440 0.960 1.739 0.122 36.272 0.708 0.085 3.081 LOT 85 10 A 3 A 0.010 1.158 0.870 0.147 27.510 2.679 0.805 0.052 34.210 4.481 5.376 0.342 32.101 1.039 0.276 12.899 LOT 86 10 A 1 A 0.013 0.429 1.932 0.075 14.425 1.173 0.331 -0.025 42.795 1.432 4.613 0.295 44.352 1.008 6.786 LOT 86 10 A 2 A 0.009 0.496 1.770 0.075 15.185 1.951 0.315 -0.021 30.988 2.503 3.823 0.414 37.948 0.313 3.893 LOT 86 10 A 3 A 0.017 0.715 1.502 0.119 19.771 1.810 0.561 -0.004 35.228 2.510 4.383 0.361 44.718 0.639 4.551 MOB 84 9 A 1 A 0.115 10.200 22.000 0.089 92.300 18.800 5.090 0.119 948.000 38.700 30.500 0.630 23.720 5.300 0.900 155.000 MOB 84 9 A 2 A 0.118 9.510 20.500 0.123 84.700 18.400 4.990 0.130 1096.000 36.800 39.900 0.580 25.010 5.800 0.950 172.000 MOB 84 9 A 3 A 0.090 9.420 14.500 0.120 114.000 14.900 4.840 0.124 621.000 40.400 28.400 0.760 24.470 2.600 0.570 156.000 MOB 85 8 A 1 A 0.093 8.136 21.237 0.107 92.702 18.601 5.243 0.131 1150.178 32.225 29.537 0.532 28.175 1.953 0.836 157.104 MOB 85 8 A 2 A 0.078 8.551 8.651 0.082 91.978 19.045 5.784 0.107 1860.923 33.438 31.136 0.455 28.663 2.758 1.069 164.217 MOB 85 8 A 3 A 0.105 7.620 14.760 0.085 86.373 17.480 5.507 0.064 912.219 29.990 32.536 0.585 27.930 2.059 1.038 156.515 Table A-8 Contd. LOC YR MTH SITE STA SURVEY Ag A L As Cd Cr Cu Fe Hg Mn N1 Pb Se S1 Sn TI Zn MOB 86 9 A 1 A 0.096 9.031 15.701 0.114 112.398 21.418 4.348 0.155 727.698 32.598 34.487 0.383 29.502 5.257 130.128 MOB 86 9 A 2 A 0.097 7.720 19.355 0.197 128.824 23.624 5.001 0.128 1423.415 38.424 34.229 0.476 27.069 3.374 158.143 MOB 86 9 A 3 A 0.098 9.365 17.143 0.103 107.901 19.733 4.846 0.097 587.479 31.616 32.628 0.387 27.794 3.269 134.848 MRD 84 9 A 1 A 0.205 6.690 9.900 0.431 92.000 19.200 2.970 0.060 941.000 30.300 21.200 0.480 33.490 2.000 0.550 97.000 MRD 84 9 A 2 A 0.142 4.750 8.900 0.272 56.900 13.100 2.290 0.048 662.000 22.000* 17.800 0.160 31.190 1.800 0.530 67.000 MRD 84 9 A 3 A 0.156 6.010 13.500 0.711 75.600 25.900 3.290 0.078 1370.000 41.300 23.100 0.940 29.660 2.600 0.730 106.000 MRD 85 9 A 1 A 0.056 4.684 3.954 0.146 23.869 5.947 1.500 -0.006 301.812 15.902 12.881 0.103 36.302 1.484 0.255 43.041 MRD 85 9 A 2 A 0.155 5.167 7.247 0.309 43.295 15.738 2.385 0.043 722.185 24.005 18.527 0.286 32.798 1.738 0.549 80.873 MRD 85 9 A 3 A 0.216 5.888 7.634 0.600 48.580 20.966 2.805 0.055 914.939 30.905 23.786 0.423 33.433 2.240 0.790 97.540 MRD 86 9 A 1 A 0.119 8.459 10.757 0.486 57.443 16.073 2.119 0.069 133.675 22.001 19.36,4 0.184 56.380 1.530 68.170 MRD 86 9 A 2 A 0.190 8.576 12.439 0.753 90.697 35.174 3.889 0.101 107a.767 43.354 33.439 0.616 31.068 4.654 137.621 MRD 86 9 A 3 A 0.167 5.598 8.271 0.462 69.513 20.139 2.216 0.072 296.736 22.818 21.625 0.393 37.359 1.932 79.143 MRD 87 10 A 1 A 0.109 4.365 5.556 0.168 41.663 8.315 1.577 0.002 69.354 21.230 12.783 0.096 1.443 50.991 MRD 87 10 A 2 A 0.175 5.512 6.432 0.383 58.119 17.644 2.240 -0.037 153.147 23.163 17.404 0.164 1.695 81.703 MRD 87 10 A 3 A 0.170 6.158 9.529 0.390 68.962 19.952 3.078 0.077 417.781 30.626 17.872 0.333 1.573 94.094 PAM 84 10 A 1 A 0.074 8.330 15.200 0.344 77.300 14.700 3.200 0.129 299.000 21.200 40.000 0.930 26.710 3.500 0.690 102.000 PAM 84 10 A 2 A 0.084 6.270 8.300 0.253 88.700 13.100 3.130 0.075 524.000 19.400 27.900 0.640 29-680 1.700 0.540 78.000 PAM 84 10 A 3 A 0.101 6.900 9.800 0.383 71.800 14.600 3.340 0.133 381.000 26.600 32.100 1.180 29.040 5.600 0.700 128.000 PAM 85 10 A 1 A 0.019 4.435 5.957 0.149 28.774 6.719 1.738 0.081 260.740 12.396 21.893 0.350 33.002 1.187 0.691 53.918 PAM 85 10 A 2 A 0.007 0.652 1.298-0.008 5.406 0.995 0.391 -0.003 166.097 0.807 5.453 0.047 32.392 0.461 0.036 7.594 PAM 85 10 A 3 A 0.067 5.722 10.264 0.334 57.832 14.918 3.403 0.126 491.293 24.812 29.543 0.928 27.831 1.913 0.823 105.893 PAM 86 10 A 1 A 0.016 1.544 9.035 0.046 21.513 3.247 1.184 -0.023 48.934 6.694 7.213 0.109 38.117 0.362 19.113 PAM 86 10 A 2 A 0.079 7.635 5.623 0.426 79.669 16.133 2.809 0.130 403.040 18.699 30.377 0.617 28.857 3.959 79.301 PAM 86 10 A 3 A 0.078 6.232 8.531 0.304 140.374 14.671 2.541 0.100 424.249 20.554 30.183 0.679 31.013 2.672 74-.532 PAS 87 9 A I A 0.137 2.456 3.501 0.148 32.860 8.395 0.991 -0.012 102.816 7.303 16.830 0.208 0.980 56.715 PAS 87 9 A 2 A 0.162 5.336 3.662 0.367 75.614 15.737 2.881 0.167 338.945 22.748 24.210 0.536 2.739 119.528 PAS 87 9 A 3 A OJO2 2.293 5.810 0.119 40.458 12.643 1.253 0.004 58.330 9.645 20.482 0.203 2.887 69.729 PEN 85 8 A 1 A 0.190 8.587 20.951 0.126 108.261 24.885 5.869 0.267 597.295 28.656 43.241 1.012 27.220 4.425 0.325 147.276 PEN 85 8 A 2 A 0.129 10.679 13.518 0.138 93.889 19.441 6.634 0.174 724.509 30.849 47.123 1.159 24.571 2.414 0.790 145.068 PEN 85 8 A 3 A 0.125 9.392 21.118 0.326 104.210 21.350 6.958 0.168 270.487 22.748 @4.853 1.450 27.095 2.298 0.859 136.365 PEN 86 9 A 1 A 0.258 9.547 22.101 0.229 118.188 23.350 5.410 0.149 501.120 27.650 45.790 0.713 23.618 6.511 130.622 PEN 86 9 A 2 A 0.159 10.161 24.784 0.125 119.406 18.321 5.844 0.160 592.531 30.991 48.842 0.722 22.925 2.896 120.304 PEN 86 '9 A 3 A 0.129 9.227 24.100 0.331 140.509 27.850 6.252 0.167 214.361 28.314 38.796 0.963 25.243 3.475 123.494 PEN 87 9 A 1 A 0.292 7.622 17.307 0.173 137.888 22.010 6.519 0.249 545.964 33.356 40.908 0.670 3.358 140.739 PEN 87 9 A 2 A 0.219 10.088 23.661 0.112 177.498 18.673 5.815 0.135 891.815 34.238 49.313 0.768 3.870 147.430 PEN 87 9 A 3 A 0.116 7.807 lt.568 0.274 195.760 24.270 5.499 0.256 320.481 35.942 31.782 0.893 119.633 ROU 84 9 A 1 A 0.084 7.990 13.400 0.085 71.100 13.800 4.110 0.090 644.000 32.100 27.100 0.550 27.840 4.100 0.690 119.000 ROU 84 9 A 2 A 0.066 2.180 5.800 0.049 32.200 4.300 1.340 0.041 283.000 10.100 13.200 0.250 39.740 1.300 0.070 37.000 ROU 84 9 A 3 A 0.081 1.640 3.000 0.047 44.600 4.600 1.000 0.037 169.000 5.300 11.800 0.070 37.920 0.900 0.230 29.000 ROU 85 9 A 1 A 0.066 8.890 11.129 0.488 75.638 13.845 4.073 0.214 759.409 23.034 27.213 0.451 33.981 1.795 0.608 113.653 ROU 85 9 A 2 A 0.048 1.854 2.902 0.004 15.789 3.014 0.934 0.046 170.811 5.734 7.688 0.150 32.277 1.366 -0.090 28.895 ROU 85 9 A 3 A 0.093 5.703 5.991 0.072 50.656 9.409 3.108 0.105 468.291 15.574 21.817, 0.312 34.025 1.851 0.922 82.509 Roti 85 10 A 1 A 0.041 6.161 11.054 0.031 48.539 9.567 2.927 0.098 551.307 18.948 19.353 0.224 36.476 1.803 0.586 83.486 ROU 85 10 A 2 A 0.042 1.601 4.723 0.010 21.963 3.946 1.149 0.029 272.478 7.246 8.723 0.122 31.659 1.123 0.063 33.409 ROU 85 10 A 3 A 0.059 7.106 12.242 0.160 53.759 10.019 3.101 0.130 507.479 20.744 20.930 0.304 37.945 7.061 0.373 80.221 Roti 87 9 A 1 A 0.110 4.914 11.224 0.048 68.968 10.693 2.409 -0.036 44.142 16.528 20.899 0.130 1.727 80.604 Roti 87 9 A 2 A 0.019 0.207 0.518 0.007 1.940 0.758 0.167 0.055 68.807 2.194, 1.943 -0.101 0.327 4.235 Table A-8 Contd. LOC YR MTH SITE STA SURVEY Ag At As Cd Cr Cu Fe H9 Mn Ni Pb Se Si Sn T1 Zn ROU 87 9 A 3 A 0.106 5.730 11.442 0.120 88.858 14.925 3.048 0.067 624.312 27.462 25-305 0.326 . 2.279 96.304 SAS 84 9 A I A 0.153 4.500 6.000 0.104 55.700 8.600 2.110 0.015 312.000 12.900 13.700 0.140 29.980 1.600 0.460 51.000 SAS 84 9 A 2 A 0.058 1.940 3.000 0.045 31.900 2.700 0.700 0.014 100.000 4.900 11.000 0.100 37.780 0.400 0.260 15.000 SAS 84 9 A 3 A 0.063 2.910 3.000 0.065 33.700 5.400 1.300 0.017 206.000 9.000 10.600 0.160 34.340 1.100 0.340 30-000 SAS 85 9 A i A 0.041 4.483 5.700 0.116 33.135 6.930 1.814 0.197 29B.719 12.651 12.804 O.i9B 38.105 1.522 0.354 43.677 SAS 85 9 A 2 A 0.046 3.074 1.524 0.035 15.317 4.493 1.830 0.040 132.741 7.065 8.025 0.093 32.014 0.937 0.233 23.184 SAS 85 9 A 3 A 0.057 4.674 3.340 0.234 38.455 8.717 2.080 0.036 343.018 15.246 14.378 0.192 33.899 1.166 0.579 50.310 SAS 86 9 A I A 0.070 5.973 3.551 0.167 44.833 11.016 2.761 0.037 67.154 14.229 13.556 0.197 29.080 2.310 57.691 SAS 86 9 A 2 A 0.047 1.066 3.529 0.045 11.967 3.435 0.672 -0-003 34.817 5.777 7.488 -0.008 41.624 0.486 15.576 SAS 86 9 A 3 A 0.010 3.804 8.570 0.146 47.352 9.5113 1.803 -0.009 62.876 12.583 16-729 0.164 32.147 1.585 50.019 SAP 84 10 A 1 A 0.047 5.040 11.900 0.088 59.600 6.900 2.560 0.044 361.000 13.800 14-800 0.430 32.930 2.200 0.140 49.000 SAP 84 10 A 2 A 0.009 2.640 6.100 0.072 42.600 3.600 1.440 0.025 386.000 5.900 10.100 0.260 35.730 1.200 0.260 26-000 SAP 84 10 A 3 A 0.007 4.420 8.200 0.102 43.800 7.300 2.260 0.034 462.000 7.100 16.400 0.300 30;000 1.900 0.360 40.000 SAP 85 8 A I A 0.027 7.778 12.137 0.096 69.461 10.667 3.880 0.054 478.684 17.322 20.182 0.529 29.848 1.842 0.472 80.718 SAP 85 8 A 2 A 0.015 5.081 6.716 0.069 24.724 4.308 1.784 0.031 596.255 9.237 12.356 0.223 38.287 . 0.017 31.590 SAP 85 8 A 3 A 0.009 4.393 2.633 0.113 29.905 3.792 1.653 0.035 300.732 9.372 12.205 0.071 37-396 1.083 0.264 31.952 SAP 86 8 A I A 0.075 6.829 18.269 0.182 81.399 11.211 3.414 0.018 5.071 18.844 27.257 0.577 39-607 1.985 63.896 SAP 86 8 A 2 A 0.040 4.355 4.461 0.186 49.815 7.248 1.542 -0-012 200.437 10.905 20.734 0.318 43.580 1.405 43.772 SAP 86 8 A 3 A 0.042 4.474 9.201 0.180 45.986 5.683 1.950 0.031 224.549 8.367 16.930 0.193 36-057 2.239 36.495 SAP 87 7 A I A 0.028 2.813 4.421 0.112 29.494 11.527 1@439 -0-015 82.929 7.041 11.496 O.IT3 0.85a 37.567 SAP 87 7 A 2 A 0.039 2.251 5.062 0.062 23.941 4.033 1.118 -0.063 42.963 5.538 8.740 0.138 0.512 25.643 SAP 87 7 A 3 A 0.017 2.877 5.108 0.141 36.657 3.397 1.389 0.143 148.717 6.387 11. 733 0.271 1.720 31.975 SAP 87 8 A 1 A 0.032 6.402 11.666 0.091 82.669 13.917 3.204 0.063 742.iga 22.443 24.247 0.561 2.214 66.175 SAP 87 8 A 2 A 0.003 1.729 3.069 0.050 19.473 3.893 1.083 -0.053 52.T33 4.365 7.057 0.078 0.922 22.177 SAP 87 8 A 3 A 0.036 1.428 3.223 0.124 34.962 2.712 0.863 0.133 276.545 4.311 9.162 0.070 0.797 25.551 SAP 87 8 8 1 1 0.032 2.217 3.397 0.068 31.818 3.367 1.239 -0.061 65.418 4.797 10.004 0.144 1.142 30.237 SAP 87 8 B 2 1 0.021 1.262 2.137 0.027 37.831 3.013 0.769 -0.071 43.446 3.788 5.748 0.049 0.944 24.865 SAP 87 8 6 3 1 0.011 2.584 5.455 0.054 33.756 1.709 1.116 0.020 82.143 5.285 12.684 0.258 1.052 23.593 SAP 87 8 C 1 1 0.037 2.723 6.802 0.121 47.905 5.485 1.639 -0.055 143.976 10.482 9.937 0.186 1.594 31.757 SAP 87 8 C 2 1 0.025 1.755 3.492 0.152 26.185 2.423 1.001 0.004 111.095 4.740 7.383 0.074 0.740 27.417 SAP 87 8 C 3 1 0.036 2.498 4.544 0.188 41.043 3.580 1.314 -0.031 283.842 7.355 9.960 0.156 G.B49 28.953 SAP 87 8 D 1 1 0.023 1.895 2.675 0.049 24.203 3.290 0.941 -0.055 28.472 4.602 8.693 0.115 0.826 18.387 SAP 87 8 0 2 1 0.017 1.905 3.883 0.074 23.308 2.580 0.859 -0.064 37.538 4.852 7.342 0.037 1.057 16.425 SAP 87 8 0 3 1 0.026 2.897 3.471 0.051 33.540 4.482 1.447 0.184 131.417 8.567 10.488 0.125 1.199 27.318 SAP 87 8 E 1 1 0.038 3.597 8.586 0.104 52.475 4.979 2.076 -0.033 271.351 11.113 13.156 0.254 1.564 41.160 SAP 87 8 E 2 1 0.017 1.517 2.030 0.053 27.346 2.373 0.1175 0.023 B5.998 4.319 6.917 0.169 0.837 21.664 SAP 87 8 E 3 1 0.021 1.862 2.552 0.045 27.852 2.966 0.942 -0.045 46.799 4.951 7.242 0.030 0.819 20.905 SAP 87 10 A I A 0.041 5.576 12.245 0.111 62.615 9.577 1.688 0.011 381.655 16.308 20.818 0.321 1.459 54.189 SAP 87 10 A 2 A 0.036 2.002 5.398 0.086 23.685 3.574 1.006 -0.083 51.013 6.162 8.171 0.131 1.143 23.736 SAP 87 10 A 3 A 0.015 3.892 6.019 0.108 45.540 5.540 1.805 0.243 119.039 9.274 13.723 0.189 1.114 39.184 SJR 84 10 D I A 0.199 5.060 6.800 0.315 55.400 18.400 2.190 0.115 425.000 14.000 50.400 0.100 31.620 2.400 0.560 128.003 SJR 114 10 D 2 A 0.048 1.470 1.500 0.087 29.500 3.600 0.780 0.035 180.000 3.400 12.100 0.680 40.390 1.200 0.160 27.000 SJR 84 10 D 3 A 0.080 1.330 2.200 0.148 31.400 7.300 0.850 0.056 167.000 5.000 16.100 0.250 41.180 0.900 0.210 48.000 SJR 85 a D I A 0.216 4.944 2.539 0.274 37.513 14.334 2.181 0.174 366.739 12.005 38.015 0.465 31-857 2.039 0.765 99.992 SJR 85 8 D 2 A 0.079 4.064 2.236 0.172 21.250 5.675 1.166 0.110 203.971 6.517 19.857 0.199 37.902 1.734 0.708 43.587 SJR 85 8 0 3 A 0.002 1.158 0.596 0.104 7.491 2.024 0.230 0.040 8.691 1.366 4.901 0.079 36.520 0.890 -0.060 81.302 SJR 86 8 D I A 0.375 4.331 8.786 0.471 68.534 19.220 2.442 0.145 405.577 13-200 51.755 0.809 37-485 3.529 122.241 Table A-8 Contd. LOC YR MTH SITE STA SURVEY Ag At As Cd Cr Cu fe Ng Nn Ni Pb Se Si Sn it Zn SJR 86 8 D 2 A 0.527 6.338 8.265 0.771 93.498 35.465 3.881 0.197 332.805 21.617 60.906 1.029 26.494 4.808 181.785 SJR 86 8 D 3 A 0.599 6.372 7.992 0.768 91.324 34.747 3.410 0.266 297.178 20.862 81.188 1.628 26.299 7.553 19o.911 SJR 87 8 A 1 1 0.057 2.176 1.805 0.130 38.909 5.126 1.777 0.153 197.391 6.791 12.291 0.991 2.264 29.685 SJR 87 8 A 2 1 0.066 3.737 1.057 0.146 47.936 6.825 2.590 0.138 209.630 18.044 14.987 1.707 1.860 34.825 SJR 87 8 A 3 1 0.050 3.929 2.349 0.134 62.126 7.424 2.743 0.137 181.206 14.058 14.394 1.687 2.205 35.100 SJR 87 8 8 1 1 0.394 3.737 3.480 0.567 74.151 42.219 2.614 0.246 196.743 18-304 57.735 0.828 4.598 126.827 SJR 87 8 8 2 1 OAT3 3.414 4.215 0.262 56.927 16.555 2.461 0.058 319.227 14.265 46.147 0.459 2.228 106.414 SJR 87 8 B 3 1 0.095 3.248 2.535 0.152 45.791 7.612 1.950 -0.040 265.092 9.853 18.634 0.267 1.723 56-696 SJR 87 8 C 1 1 0.912 4.690 2.175 1.560 94.202 75.830 3.923 1.000 236.684 22.133154.521 1.861 7.773 362.474 SJR 87 8 C 2 1 0.110 1.350 1.413 0.199 22.292 9.562 0.735 0.066 127.239 6.179 31.606 0.302 1.918 48-270 SJR 87 8 C 3 1 0.819 4.305 5.489 1.152 82.208 49.618 2.592 0.583 294.023 18.651 90.761 1.687 4.752 172.410 SJR 87 8 D I A 0.183 3.388 4.637 0.534 58.055 15.602 1.996 0.279 304.641 13.255 33.425 0.348 2.503 81.530 SJR 87 8 D 2 A 0.475 5.648 7.612 0.555 44.919 36.349 3.404 0.261 448.036 22.270 65.433 1.092 4.714 190.453 SJR 87 8 D 3 A 0.011 2.671 2.535 0.057 32.360 3.042 1.363 0.010 112.557 8.220 11.856 0.200 1.056 26.104 SJR 87 8 E 1 1 0.085 4.309 3.498 0.170 81.708 7.119 2.504 0.143 224.203 17.780 16.428 1.367 2.079 44-672 SJR 87 8 E 2 1 0.591 4.903 5.594 0.654 87.266 35.395 3.856 0.224 531.779 23.125 67.756 1.839 3.881 171.281 SJR 87 8 E 3 1 0.069 4.852 2.992 0.179 66.904 7.784 2.787 0.053 364.037 14.955 21.934 1.309 1.746 43-218 TAM 84 10 A I A 0.046 0.470 1.100 0.169 25.800 10-400 0.710 0.031 31.000 2.700 4.300 0.240 28.810 0.700 0.220 11.000 TAM 84 10 A 2 A 0.060 0.320 0.700 0.081 18.000 1.600 0.230 0.012 8.000 2.300 4.200 0.110 43.090 0.800 0.060 6.300 TAM 84 10 A 3 A 0.138 0.580 0.900 0.193 25.300 2.900 0.360 0.039 23.000 3.200 7.400 0.270 39.470 0.500 0.240 10.000 TAM 85 10 A 1 A 0.145 2.132 2.261 0.505 32.779 8.076 1.095 0.168 67.787 9.110 13.243 0.709 31.298 1.470 0.180 35-206 TAM 85 10 A 2 A 0.028 0.272 0.201 0.048 6.666 1.175 0.169 -0.008 7.367 1.687 2.998 0.016 36.200 0.854 0.255 4.536 TAM 85 10 A 3 A O.C44 0.309 0.799 0.143 2.068 1.938 0.231 0.037 3.969 1.965 3.942 0.172 37.600 1.425 0.205 7.632 Table A-9. Adjusted Elemental Concentrations for 1984-87 Sediments in the Southeast. Units: ppm (dry) except Al and Fe percent (dry). Al not adjusted. Adjustment by linear models in Table 2 to 8.01 percent Al. Computer listing of adjusted sediment data, 5 pages, 211 observations. Table A-9 Contd. LOC YR PITH SITE STA SURVEY AG AL AS to CR cu FE NG MN NJ P8 SE SN TL ZN APA 84 10 A 1 A 0.06402 2.2400 14.4137 0.09166 68.464 16.0326 4.04550 0.08013 829.70 22.7900 28.7158 0.49260 3.07822 0.54806 82.898 APA 84 10 A 2 A 0.05452 10.8900 19.2514 0.00474 64.856 16.8934 4.75476 0.04600 768.62 23.9194 23.6072 0.63399 3.51261 0.59128 176.607 APA 84 10 A 3 A 0.05041 11.3500 19.6930 0.03215 76.551 16.9980 4.81392 0.05625 1134.12 20.6968 23.4188 0.41747 2.45490 0.59274 70.434 APA 85 10 A 1 A 0.03341 9.9049 16.8548 0.04675 63.118 13.5894 4.2T357 0.11471 687.74 19.0114 22.1164 0.61720 2.45827 0.55360 61.645 APA 85 10 A 2 A 0.03444 10.3650 11.6396 0.04746 63.478 13.4871 4.66125 0.07471 921.72 18.31186 22.6549 0.41150 4.32967 0.32353 62.077 APA 85 10 A 3 A 0.04802 10.2639 13.1791 0.09927 49.955 17.3247 5.14918 0.09087 1007.49 25.3780 27.1669 0.47405 4.11438 0.27890 85.112 APA 86 10 A 1 A 0.07378 4.8918 27.1691 0.10220 97.386 20.3002 5.22165 0.06534 481.55 28.0432 31.9769 0.60225 2.99509 97.951 APA 86 10 A 2 A 0.04790 11.3559 14.3852 0.02031 64.048 14.5178 4.25175 0.02015 796.04 18.7280 25.0246 0.30824 2.T5441 42.062 APA 86 10 A 3 A 0.06733 10.0349 14.2501 0.07814 90.785 19.83a4 4.28239 0.08531 1045.64 27.4423 32.8505 0.48077 3.29937 78.524 BAR 84 9 A 1 A 0.14211 5.4800 12.5715 0.31424 83.477 20.5252 3.97960 0.10763 680.28 28.7743 28.3364 0.69584 2.46740 0.82700 111.456 BAR 84 9 A 2 A 0.11381 4.4900 11.3038 0.27042 81.921 17.3525 3.73640 0.09200 630.90 25.7208 26.7245 0.39290 2.80681 0.79843 98.591 BAR 84 9 A 3 A 0.08198 4.-0200 11.2788 0.13716 68.102 13.1674 3.37226 0.07588 612.35 25.6721 24.0431 0.41000 5.66795 0.68760 80.877 BAR 85 9 A 1 A 0.09946 5.0525 10.2050 0.18859 57.595 14.6348 3.37097 0.09427 607.47 25.8800 22.8917 0.36400 2.38826 1.05039 93.995 BAR 85 9 A 2 A 0.06627 5.3TO4 11.7915 0.29298 53.713 14.7178 3.35247 0.09851 598.14 26.4382 22.8334 0.39269-2.37396 0.82041 86.366 BAR 85 9 A 3 A 0.05841 3.2529 9.6877 0.08314 52.276 11.6835 2.98499 0.09152 547.82 18.3878 21.9045 0.33504 2.58168 0.85459 77.026 BAR 87 10 A 1 A 0.15120' 5.7787 11.0323 0.27749 74.044 20.2042 3.22509 0.05723 637.96 29.2446 27.1149 0.41702 2.29508 103.813 BAR 87 10 A 2 A 0.13564 5.3976 10.2246 0.20856 76.121 17.0364 3.76840 0.07048 441.48 31.2068 24.2869 0.42161 2.00254 91.389 BAR 87 10 A 3 A 0.12643 4.2437 11.7121 0.19679 T3.269 15.8536 3.58035 0.22877 591.77 27.7709 26.1528 0.42795 2.60116 93.415 BAR 87 10 A 4 A 0.11302 4.8104 9.0808 0.14608 64.942 14.7964 3.23581 -0.00576 356.03 25.1414 23.9522 0.33684 2.34933 91.942 CCB 84 9 A I A 0.09269 1.5500 13.1513 0.24454 67.622 17.4758 3.98175 0.10276 779.96 23.0739 29.3984 0.57237 3.91478 0.51088 104.658 CCO 84 9 A 2 A 0.08927 1.0200 13.2252 0.19313 68.160 15.9076 3.96771 0. 11738 761.08 22.1978 24.5981 0.56292 3.09649 0.55376 98.619 CCB 84 9 A 3 A 0.12798 5.5000 12.2385 0.14996 79.525 17.5863 3.84957 0.11238 743.38 22.1168 29.7760 0.42468 2.56054 0.80576 144.231 CCB 85 9 A I A 0.03340 5.6695 7.2446 0.34438 61.942 14.7306 3.97447 0.10533 632.31 24.2848 28.3269 0.29214 2.52386 0.85412 145.494 CCB 85 97 A A 0.07703 8.0664 915248 0.29820 54.316 14.4800 3.82573 0.10335 614.84 21.7175 24.7982 0.22627 2.83501 1.13263 154.178 CCB 85 9 A 3 A 0.09265 7.9440 8.5227 0.48965 55.328 13.9667 3.81996 0.08777 749.59 20.7621 24.2338 0.29894 3.79528 0.45580 138.387 CCB 86 9 A 1 A 0.14882 7.3675 9.2856 0.52306 77.688 19.9546 3.68281 0.09227 138.89 21.3353 29.1576 0.36443 3.25575 134.237 CCO 86 9 A 2 A 0.14146 6.9658 7.6064 0.51480 63.345 22.0109 3.68999 0.08265 153.70 22.3453 25.9490 0.30475 3.58621 127.731 CCB 86 9 A 3 A 0.13252 4.8267 11.7666 0.52027 78.303 21.2542 4.24097 0.12399 370.68 26.8115 37.3891 0.34703 3.55652 151.445 CHS 84 8 A 1 A 0.20002 6.3800 17.4876 0.16435 91.520 20.9732 4.23796 0.08538 609.16 24.7866 35.2199 0.72396 3.65884 0.55115 92.333 CHS 84 8 A 2 A 0.16565 6.1400 16.1833 0.18979 105.848 20.8404 4.35840 0.07838 734.86 23.5767 33.3443 0.62T79 3.24112 0.52604@ 96.033 CHS 84 8 A 3 A 0.12885 6.1100 17.2327 0.18522 106.677 16.7988 4.29346 0.08875 841.69 26.2629 31.6348 0.50952 2.25141 0.57790 90.370 CHS 85 8 A 1 A 0.10160 8.1404 14.9202 0.16888 74.197 21.4903 3.90309 0.12734 536.77 22.0073 27.4703 0.72455 3.45739 0.19930 92.573 CHS 85 8 A 2 A 0.11178 8.2571 17.6321 0.20448 75.590 19.8089 4.16271 0.10666 716.72 24.6450 28.3688 0.76516 5.56420 0.47599 90-849 CHS 85 8 A 3 A 0.10827 8.5081 16.1107 0.17677 71.444 19.6645 3.80744 0.10936 666.74 22.2868 27.6519 0.73313 2.60019 0.69073 84.591 CHS 86 8 A I A 0.08520 1.4622 17.4029 0.17225 72.738 16.4754 4.31485 0.12890 660.00 20.5188 26.9434 0.55813 3.55043 93.919 CHS 86 8 A 2 A 0.14219 7.7706 18.7530 0.20666 117.773 25.81585 4.15597 0.11275 720.33 24.1177 34.6065 0.53992 3.29233 94.395 CHS 86 8 A 3 A 0.18575 8.0206 19.9150 0.21458 95.361 25.6495 4.17662 0.09867 732.68 25.2934 32.0895 0.68642 3.09990 94.231 CHS 87 8 A 1 A 0.07625 1.0560 13.8081 0.15926 71.718 15.7972 4.29809 0.099T3 722.19 24.1934 28.6267 0.53720 3.58971 97.692 CHS 87 8 A 2 A 0.12765 4.7087 14.1741 0.32009 93.644 17.3502 3.942T3 0.01242 725.41 21.7180 36.2965 0.47179 2.91397 109.915 CHS 87 8 A 3 A 0.08518 3.7047 16.9846 0.18258 81.172 18.7991 4.19928 -0.00168 485.40 23.7419 29.5932 0.47836 2.98966 103.270 GAL 84 9 D 1 A 0.14998 4.7600 12.3586 0.14756 67.263 20.9268 3.86091 0.08763 523.37 25.6445 29.6096 0.42734 4.71425 0.79168 96.554 GAL 84 9 0 2 A 0.11880 1.0900 12.2098 0.11313 91.227 14.9713 3.75259 0.10251 722.46 22.4965 47.2869 0.51889 3.07249 0.52942 83.732 GAL 84 9 D 3 A 0.10419 3.2500 10.9483 0.11219 77.969 17.2664 3.75866 0.08650 668.18 25.7861 27.9673 0.53438 3.43194 0.75538 89.538 GAL 85 9 D I A 0.08824 2.5281 11.1692 0.16570 64.945 17.1880 3.57158 0.10592 665.80 22.1542 26.0566 0.37545 2.97424 0.78252 86.128 GAL 85 9 D 2 A 0.07946 2.3143 12.1438 0.09669 58.885 14.9377 3.41544 0.10064 737.21 21.0210 23.7226 0.36234 3.12272 0.48983 150.092 01, Table A-9 Contd. LOC YR MTH SITE STA SURVEY AG AL AS CD CR cu FE HG MN NI PB SE SN TL ZN GAL 85 9 D 3 A 0.09855 5.2151 7.8890 0.11416 49.014 14.9582 3.13075 0.06675 628.29 22.9231 24.9787 0.31852 3.27948 0.75237 77.655 GAL 86 9 D 1 A 0.11836 1.2621 12.6307 0.14503 82.607 16.5946 3.78072 0.10295 668.36 21.7422 27.4995 0.45418 3.27608 88.212 GAL 86 9 D 2 A 0.14418 2.2519 13.2843 0.13983 70.228 16.6148 3.53948 0.13912 585.59 20.6642 27.3984 0.50876 3.53147 87.535 GAL 86 9 D 3 A 0.09427 1.3256 13.4859 0.16073 65.121 17.3345 3.92897 0.11283 671.10 22.5456 26.0849 0.47482 3.06399 88.138 GAL 87 9 A 1 1 0.11828 3.7819 11.5537 0.13127 69.803 16.2889 3.61756 0.06254 563.09 28.4581 25.1797 0.39644 2.603a4 95.739 GAL 87 9 A 2 1 0.14227 2.5705 11.0051 0.13021 60.507 13.9307 3.40434 0.01298 539.85 22.3218 25.4921 0.37075 2.35710 87.709 GAL 87 9 A 3 1 0.11478 3.2280 10.9681 0.11140 65.665 15.3924 3.46347 0.13078 506.62 25.8160 26.6399 0.40824 2.66745 95.559 GAL 87 9 8 1 1 0.23297 5.2637 11.4148 0.11892 21.9684 3.56492 0.16527 369.80 32.2760 34.7722 0.29075 4.50853 110.866 GAL 87 9 8 2 1 0.23706 5.6231 10.9561 0.13182 83.736 21.0400 3.46930 0.04307 269.38 30.2974 31.4580 0.31882 5.09069 104.384 GAL 87 9 8 3 1 0.22996 5.3726 11.2613 0.11480 84.132 19.1819 3.55170 0.04145 345.06 26.4025 33.5207 0.28201 4.44527 111.181 GAL 87 9 C 1 1 0.27286 6.1073 11.0048 0.38966 95.869 23.3842 3.31476 0.08432 285.95 32.7215 42.5958 0.52498 3.39918 130.642 GAL 87 9 C 2 1 0.18455 6.7563 9.8736 0.29030 90.852 26.3254 3.56719 -0.05970 579.08 31.0904 57.1933 0.40165 3.31405 111.994 GAL 87 9 C 3 1 0.15869 2.6785 11.3281 0.16027 73.838 19.5541 3.70881 0.23582 542.00 26.2829 33.5073 0.45426 2.90929 106.776 GAL 87 9 D 1 A 0.11481 3.3327 11.3656 0.12281 71.185 18.9264 3.49142 0.16918 476.83 25.8483 27.8850 0.44662 3.24667 93.760 GAL 87 9 D 2 A 0.11070 2.5160 12.3365 0.11623 69.3T5 17.2126 3.63466' 0.08357 545.34 24.3977 26.9574 0.48533 2.65243 93.524 GAL 87 9 D 3 A 0.15572 5.2969 9.6548 0.15262 79.852 19.7293 3.47227 0.12574 331.93 29.1424 28.3937 0.53995 3.29515 102.464 GAL 87 9 E 1 1 0.13513 5.2504 11.0909 0.19664 81.815 16.8109 3.70572 0.08088 353.75 29.9824 25.9057 0.36940 2.61290 99.004 GAL 87 9 E 2 1 0.14143 5.0765 11.5958 0.20953 76.018 17.9434 3.72458 0.12018 334.25 29.5981 29.3585 0.46024 3.34231 100.110 GAL 87 9 E 3 1 0.13933 4.1098 10.8040 0.17047 75.429 17.3772 3.64688 0.15189 454.54 29.1223 27.8669 0.46968 4.34817 93.242 HER 85 9 A I A 0.09749 5.0298 8.4345 0.29513 54.285 16.1858 3.73374 0.14963 674.47 25.3162 24.3384 0.48966 2.24161 0.46988 86.417 HER 85 9 A 2 A 0.10947 4.0015 11.6480 0.15715 53.748 14.7607 3.59594 0.10441 752.47 23.4482 25.4258 0.40359 2.38297 0.84319 87.664 HER 85 9 A 3 A 0.08655 6.0648 7.3926 0.14552 51.598 12.4168 3.31913 0.11546 781.94 19.8748 21.6556 0.34099 2.37676 0.80471 78.299 HER 86 9 A 1 A 0.14169 5.4086 12.1003 0.26457 86.737 18.8749 3.32388 0.10233 515.14 23.6693 26.1859 0.44017 2.47311 96.425 HER 86 9 A 2 A 0.11295 4.4413 13.3145 0.22674 73.707 16.2102 3.47924 0.05617 408.40 21.9090 25.4033 0.46673 2.34924 82.640 HER 86 9 A 3 A 0.11994 5.4647 13.8899 0.24613 70.242 18.0320 3.40164 0.10554 900.86 22.0018 25.1068 0.34527 2.97575 86.129 LLM 84 10 A 1 A 0.09903 4.9000 18.3278 0.18555 49.297 14.6543 3.94066 0.07388 698.13 19.7419 27.2870 0.30927 4.06625 0.53299 90.979 LLM 84 10 A 2 A 0.09448 3.0600 14.1616 0.12691 58.716 13.2363 3.42400 0.08288 675.15 17.9324 28.1407 0.45533 2.49708 0.61717 76.675 LLM 84 10 A 3 A 0.08937 3.5200 12.7032 0.15032 63.411 14.0408 3.43317 0.09513 686.64 18.5098 26.1523 0.46882 2.23937 0.56863 81.501 LLM 85 9 A 1 A 0.07639 4.4912 10.4166 0.14319 56.339 14.2927 3.50558 0.09112 729.86 18.9714 24.3775 0.28911 2.19230 0.70746 86.327 LLM 85 9 A 2 A 0.06391 2.3598 15.9371 0.14634 52.855 15.3355 3.91799 0.06523 814.05 22.1298 27.7730 0.43305 7.64156 0.50767 87.390 LLM 85 9 A 3 A 0.11276 3.1126 12.5021 0.11821 46.831 14.1377 3.27270 0.05951 676.17 19.2166 24.1043 0.34419 2.52699 0.60447 78.570 LLM 86 9 A I A 0.11629 4.7865 14.0024 0.16808 50.144 14.9186 3.39068 0.08555 346.33 16.9753 22.3944 0.27643 2.57507 79.611 LLM 86 9 A 2 A 0.09024 3.3071 16.4001 0.15892 53.555 14.0329 3.28928 0.09042 487.a8 16.5019 25.9227 0.38071 3.29436 77.683 LLM 86 9 A 3 A 0.09155 2.9971 13.8306 0.13683 50.222 13.7780 3.25321 0.09227 509.68 16.4508 24.2081 0.41024 3.05476 75.351 LOT 84 10 A 1 A 0.05296 0.7700 13.3374 0. 1 TRI 80.165 16.0943 4.20317 0.11851 722.52 24.9166 27.6527 0.77734 3.68220 0.48928 90.031 LOT 84 10 A 2 A 0.06799 0.4700 13.5321 0.18301 85.251 15.4783 4.16372 0.11326 732.10 24.9792 26.8582 0.75463 3.18505 0.59789 91.205 LOT 84 10 A 3 A 0.05437 0.7100 13.7363 0.19157 85.422 14.9111 4.20328 0.10726 716.40 23.4891 26.8338 0.48079 3.00277 0.61300 88.706 LOT 85 10 A 1 A 0.03584 0.5541 13.5040 0.18351 69.482 15.6398 4.07245 0.16521 733.15 23.0614 25.4344 0.53212 3.43720 0.52144 91.125 LOT 85 10 A 2 A 0.04845 0.2548 12.7931 0.14056 74.215 15.6193 4.07829 0.10801 738.89 23.2579 25.1471 0.56894 3.36643 0.56600 90.306 LOT 85 10 A 3 A 0.05602 1.1580 12.1674 0.24471 79.718 16.0178 4.24307 0.13795 682.24 24.1826 26.0576 0.73697 3.38798 0.70095 89.967 LOT 86 10 A 1 A 0.06417 0.4289 14.4315 0.18397 72.189 15.9317 4.13580 0.07027 759.78 23.2297 27.4950 0.73175 3.60747 92.055 LOT 86 10 A 2 A 0.06023 0.4958 14.1599 0.18232 72.439 16.5789 4.08585 0.07301 741.64 24.1083 26.5031 0.84751 2.88943 88.408 LOT 86 10 A 3 A 0.06618 0.7151 13.5304 0.22366 75.354 16.0113 4.22219 0.08746 725.15 23.4843 26.4013 0.78151 3.14011 86.600 MOB 84 9 A 1 A 0.10019 10.2000 18.3891 0.05763 75.613 14.5367 3.99102 0.09162 740.88 32.4033 23.8899 0.50376 4.54917 0.76410 130.368 MOB 84 9 A 2 A 0.10786 9.5100 18.0268 0.10151 73.271 15.4799 4.23727 0.11125 954.14 32.4872 35.3725 0.49354 5.28573 0.85692 155.129 Table A-9 Contd. LOC YR MTH SITE STA SURVEY AG AL AS CD CR cu FE HG MN NI PB SE SN TL ZN MOB 84 9 A 3 A 0.08046 9.4200 12.1752 0.09980 103.257 12.1551 4.13244 0.10637 487-65 36.3459 24.1442 0.67872 2.11659 0.48250 140.141 MOB 85 8 A 1 A 0.09208 8.1364 21.0281 0.10523 91.739 18.3547 5.17951 0.12943 1138-22 31.8616 29.1556 0.52520 1.90986 0.82827 155.683 MOB 85 8 A 2 A 0.07461 8.5513 7.7583 0.07389 87.853 17.9914 5.51268 0.09988 1809.73 31.8820 29.5023 0.42404 2.57205 1.03555 158.128 MOB 85 8 A 3 A 0.10804 7.6199 15.4035 0.09085 89.346 18.2395 5.70263 0.06936 949.11 31.1114 33.7139 0.60739 2.19275 1.06266 160.903 MOB 86 9 A 1 A 0.08926 9.0307 14.0184 0.09902 104.621 19.4314 3.83542 0.14220 631.17 29.6630 31.4065 0.32440 4.90682 118.648 MOB 86 9 A 2 A 0.09867 7.7197 19.8335 0.20067 131.036 24.1893 5.14629 0.13144 1450.87 39.2583 35.1053 0.49232 3.47347 161.408 MOB 86 9 A 3 A 0.08891 9.3650 14.9085 0.08388 97.577 17.0954 4.16626 0.07990 459.33 27.7200 28.5386 0.30869 2.80444 119.608 MRD 84 9 A 1 A 0.21393 6.6900 12.0764 0.44991 102.058 21.7697 3.63240 0.07650 1065.84 34.0953,25.1842 0.55609 2.45256 0.63191 111.847 MRD 84 9 A 2 A 0.16405 4.7500 14.2751 0.31870 81.739 19.4463 3.92593 0.08875 970.31 31.3732 27.6398 0.34792 2.91767 0.73230 103.667 MRD 84 9 A 3 A 0.16953 6.0100 16.7976 0.73965 90.839 29.7934 4.29364 0.10300 1559.15 47.0504 29.1367 1.05529 3.28569 0.85411 128.495 MRD 85 9 A 1 A 0.07884 4.6840 9.4379 0.19376 49.211 12.4217 3.16938 0.03581 616.37 25.4652 22.9205 0.29488 2.62463 0.46153 80.451 MRD 85 9 A 2 A 0.17390 5.1668 11.9345 0.34984 64.959 21.2734 3.81198 0.07892 991-08 32.1804 27.1087 0.45022 2.71271 0.72520 112.852 MRD 85 9 A 3 A 0.23023 5.8875 11.1334 0.63028 64.752 25.0981 3.87036 0.08182 1115.67 37.0077 30.1924 0.54508 2.96797 0.92204 121.412 MRD 86 9 A 1 A 0.11564 8.4587 10.0174 0.47921 54.024 15.1990 1.89408 0.06299 91.24 20.7111 18.0098 0.15828 1.37580 63.123 MRD 86 9 A 2 A 0.1a650 8.5758 11.5058 0.74444 86.386 34.0722 3.60471 0.09407 1025.26 41.7274 31.7308 0.58383 4.46034 131.258 MRD 86 9 A 3 A 0.18327 5.5979 12.2485 0.49678 87.892 24.8345 3.42615 0.10179 524-86 29.7530 28.9053 0.53173 2.75862 106.273 MRD 87 10 A 1 A 0.13362 4.3649 11.5664 0.22069 69.436 15.4108 3.40627 0.04761 414-09 31.7106 23.7854 0.30578 2.69311 91.989 MRD 87 10 A 2 A 0.19151 5.5121 10.5502 0.41857 77.151 22.5063 3.49346 -0.00617 389.39 30.3454 24.9435 0.30821 2.55184 109.798 MRD 87 10 A 3 A 0.18228 6.1579 12.5829 0.41666 83.074 23.5576 4.00767 0.09968 592.94 35.9511 .23.4624 0.43988 2.20826 114.925 PAN 84 10 A I A 0.07184 8.3300 14.6724 0.33942 74.862 14.0770 3.03942 0.12500 268.74 20.2799 39.0341 0.91155 3.39029 0.67014 98.401 PAM 84 10 A 2 A 0.09577 6.2700 11.1689 0.27793 101.958 16.4873 4.00317 0.09675 688.56 24.4029 33.1519 0.74030 2.29655 0.64798 97.570 PAM 84 10 A 3 A 0.10851 6.9000 11.6302 0.39890 80.258 16.7609 3.89702 0.14688 485.98 29.7915 35.4503 1.24398 5.98056 0.76888 140.485 PAM 85 10 A I A 0.04288 4.4351 11.8513 0.19984 56.013 13.6783 3.53145 0.12575 598.835 22.6749 32.6835 0.55621 2.41298 0.91253 94.126 PAM 85 10 A 2 A 0.05706 0.6517 13.4303 0.09752 61.472 15.3198 4.08391 0.08862 862.012 21.9638 27.6627 0.47165 2.98415 0.49276 90.356 PAR 85 10 A A 0.08269 5.7219 14.0362 0.36686 75.266 19-3721 4z55147 0-`15471 707.690 31.3912 36.4490 1.05952 2.69729 0.96452 131.628 i v . - I PAN 86 10 A 1 A 0.05937 1.5440 19.6965 0.13899 70.780 15.8339 4.42843 0.05809 660.452 25.2850 26.7293 0.48196 2.57923 91.838 PAM 86 10 A 2 A 0.08160 7.6348 6.2421 0.43121 82.528 16.8635 2.99769 0.13446 438.528 19.TT76 31.5100 0.63897 4.08716 83.521 PAM 86 10 A 3 A 0.09014 6.2319 11.4626 0.32978 153.922 18.1329 3.43285 0.12184 592.411 25.6660 35.5496 0.78140 3.28156 94.531 PAS 87 9 A I A 0.17431 2.4561 12.6586 0.22769 75.178 19.2067 3.77851 0.05769 628.073 23.2712 33.5937 0.52780 2.88444 119.181 PAS 87 9 A 2 A 0.17982 5.3360 8.0707 0.40579 95.988 20.9423 4.22314 0.20092 591.843 30.4360 32.2809 0.68967 3.65533 149.604 PAS 87 9 A 3 A 0.14088 2.2934 15.2352 0.20043 84.015 23.7717 4.12193 0.07518 598.977 26.0812 37.7370 0.53238 4.84697 134.026 PEN 85 8 A 1 A 0.18616 8.5870 19.9998 0.11773 103.864 23.761S 5.57922 0.25953 542.721 26.9966 41.4990 0.97883 4.22728 0.28907 140.785 PEN 85 8 A 2 A 0.11071 10.6790 9.1169 0.09948 73.552 14.2450 5.29501 0.14113 472.084 23.1753 39.0669 1.00518 1.49878 0.62486 115.049 PEN 85 8 A 3 A 0.11528 9.3917 18.8400 0.30613 93.682 18.6607 6.26446 0.15038 139.813 18.7753 30.6830 1.37034 1.82404 0.77369 120.825 PEN 86 9 A 1 A 0.24733 9.5474 19.5659 0.20722 106.474 20.3569 4.63870 0.13008 355.722 23.2301 41.1495 0.62486 5.98431 113.331 PEN 86 9 A 2 A 0.14463 10.1612 21.2368 0.09384 103.015 14.1331 4.76456 0.13337 389.080 24.8057 42.3494 0.59807 2.15826 96.109 PEN 86 9 A 3 A 0.12040 9.2274 22.0928 0.31353 131.233 25.4798 5.64110 0.15129 99.223 24.8133 35.1214 0.89324 3.05803 109.801 PEN 87 9 A 1 A 0.29508 7.6218 17.9475 0.17825 140.846 22.7658 6.71407 0.25369 582.677 34.4722 42.0793 0.69262 3.49095 145.105 PEN 87 9 A 2 A 0.20477 10.0885 20.2342 0.08221 161.661 14.6266 4.77223 0.10927 695.243 28.2623 43.0398 0.64807 3.15705 124.053 PEN 87 9 A 3 A 0.11715 7.8074 17.9021 0.27727 197.304 24.6649 5.60092 0.25872 339.644 36.5246 32.3931 0.90508 . 121.912 ROU 84 9 A 1 A 0.08414 7.9900 13.4330 0.08529 71.252 13.8389 4.12004 0.09025 645.892 32.1575 27.1604 0.55115 4.10686 0.69124 119.225 ROU 84 9 A 2 A 0.10543 2.1800 15.4126 0.13251 76.622 15.6494 4.26560 0.11388 834.373 26.8626 30.7969 0.58606 3.29879 0.43178 102.572 ROU 84 9 A 3 A 0.12408 1.6400 13.5029 0.13825 93.136 17.0006 4.19659 0.11663 771.444 23.6152 31.0268 0.43719 3.08392 0.62529 100.646 Table A-9 Contd. LOC YR NTH SITE STA SURVEY AG AL AS CD CR cu FE HG MN NI ps SE SN I L IN ROU 85 9 A I A 0.06015 8.8900 9.6779 0.47540 68.933 12.1321 3.63147 0.20336 676.181 20.5042 24.5564 0.39998 1.49293 0.55318 103.755 ROU 85 10 A I A 0.05373 6.1614 14.1023 0.05758 62.624 13.1662 3.85474 0.12136 726.139 24.2628 24.9331 0.33052 2.43656 0.70059 104.278 ROU 85 9 A 2 A 0.08941 1.8541 13.0523 0.09251 62.694 14.9980 4.02312 0.12323 753.006 23.4334 26.2687 0.50444 3.47617 0.29240 98.133 ROL) 85 10 A 2 A 0.08504 1.6013 15.2897 0.10166 70.794 16.4220 4.36533 0.10916 878.578 25.6721 28.0667 0.49183 3.32027 0.46118 105.490 ROU 85 9 A 3 A 0.10890 5.7030 9.7950 0.10526 68.234 13.9001 4.26575 0.13408 686.477 22.2067 28.7805 0.44474 2.64165 1.06504 108.457 ROU 85 10 A 3 A 0.06500 7.1062 13.7323 0.17280 60.646 11.7785 3.55417 0.14096 592.955 23.3428 23.6581 0.35587 7.37115 0.42861 90-386 R OU 87 9 A I A 0.13129 4.9141 16.3283 0.09209 92.557 16.7198 3.96245 0.00238 336.936 25.4295 30.2436 0.30884 2.78877 - 115.425 ROU 87 9 A 2 A 0.07177 0.2069 13.3836 0.11856 61.396 15.9485 4.08293 0.15293 806.787 24.6301 25.4950 0.34878 3.00206 91.999 ROU 87 9 A 3 A 0.12147 5.7298 15.2018 0.15224 106.232 19.3641 4.19231 0.09564 839.963 34.0180 32.1870 0.45712 3.06028 121.951 SAO 84 9 A I A 0.17674 4.5000 11.7873 0.15428 82.444 15.4330 3.87138 0.05888 643.959 22.9920 24.2943 0.34233 2.80339 0.67781 90.478 SAO 84 9 A 2 A 0.09905 1.9400 13.0083 0.13195 78.150 14.5166 3.74604 0.08988 674.071 22.3526 29.3213 0.44989 2.48107 0.63667 83.272 SAO 84 9 A 3 A 0.09749 2.9100 11.4089 0.13806 72.559 15.3283 3.85928 0.08076 688.333 23.6636 25.9935 0.45398 2.84851 0.65648 87.362 SAO 85 9 A I A 0.06526 4.4825 11.5158 0.16609 60.013 13.7971 3.58430 0.24072 632.331 22.7931 23.4509 0.40142 2.T3143 0.5T336 83.352 SAO 85 9 A 2 A 0.07950 3.0744 9.6615 0.10619 52.924 14.1010 4.30710 0.10134 599.530 21.2560 22.9229 0.37713 2.62911 0.53904 78.697 SAS 85 9 A 3 A 0.07941 4.6740 8.8407 0.28161 63.874 15.2113 3.75426 0.07818 658.525 24.8384 24.4471 0.38405 2.30927 0.78633 87.832 SAO 86 9 A 1 A 0.08383 5.9728 6.9103 0.19605 60.356 14.9818 3.78362 0.06237 259.825 20.0868 19.7053 0.31421 3.00849 80.604 SAS 86 9 A 2 A 0.09391 1.0659 14.9784 0.14468 64.878 16.9533 4.15669 0.08419 691.560 25.7432 28.4482 0.39197 2.86686 93.679 SAS 86 9 A 3 A 0.09887 3.8042 15.5046 0.20635 79.399 17.7704 3.91404 0.04358 460.645 24.6755 29.4239 0.40627 3.02741 97.324 SkP 54 10 k I k G.C67(19 5.0400 16.797C Q.13055 82.230 12.6618 4.G5Q4Q 0.06113 641.988 22.3394 23.7644 0.60120 3.21825 0.32430 82.405 SAP 84 10 A 2 A 0.04532 2.6400 14.9541 0.14893 83.517 14.0539 4.13477 0.09213 893.868 21-3399 26.3084 0.56954 3.04108 0.59324 86.399 SAP 84 10 A 3 A 0.03128 4.4200 14.1192 0.15343 71.154 14.2887 4.06153 0.07888 801.525 17.4221 27.2358 0.50694 3.13081 0.58278 80.378 SAP 85 8 A 1 A 0.02849 7.7784 12.5187 0.09921 71.225 11.1179 3.99573 0.05661 500.583 17.9875 20.8810 0.54190 1.92175 0.48654 83.322 SAP 85 8 A 2 A 0.03455 5.0813 11.5453 0.11087 47.039 10.0097 3.25361 0.06776 8T3.232 17.6574 21.1952 0.39219 . 0.19824 64.530 SAP 85 8 A 3 A 0.03315 4.3928 8.5975 0.16447 57.466 10.8331 3.46786 0.08029 642.826 19.7726 23.1224 0.27903 2.32310 0.48803 72.636 SAP 86 8 A I A 0.08287 6.8294 20.2155 0.19879 90.395 13.5097 4.00689 0.03270 116.725 22.2380 30.8208 0.64540 2.38976 - 77.174 SAP 86 8 A 2 A 0.06439 4.3546 10.4884 0.23807 77.667 14.3645 3.37652 0.03405 546.196 21.4151 31.7667 0.52825 2.65804 84.8a6 SAP 86 8 A 3 A 0.06611 4.4738 15.0314 0.23059 72.930 12.5666 3.724T3 0.07518 558.986 18.5340 27.6037 0.39635 3.45177 76.269 SAP 87 7 A I A 0.06319 2.8126 12.9904 0.18631 69.094 21.6442 4.04708 0.04975 574.452 21.9837 27.1828 0.47262 2.63994 96.021 SAP 87 8 A I A 0.04279 6.4018 14.3175 0.11394 94.922 17.0475 4.01114 0.08289 894.892 27.0669 29.1010 0.65333 2.76521 84.263 SAP 87 10 A I A 0.05764 5.5757 16.2589 0.14554 81.163 14.3155 2.90945 0.04115 611.878 23.3067 28.1650 0.46126 2.29329 81.568 SAP 87 7 A 2 A 0.07771 2.2513 14.5575 0.14486 67.819 15.2438 4.00816 0.009`10 587.596 22.0956 26.1216 0.46997 2.48624 90.414 SAP 87 8 A 2 A 0.04556 1.7292 13.4250 0.13985 67.330 16.1202 4.23490 0.02561 646.741 22.4241 26.0149 0.44038 3. 0 75 73 92.820 SAP 87 10 A 2 A 0.07662 2.0015 15.3050 0.17170 69.467 15.2708 4.02143 -0.00809 619.263 23.4374 26.3067 0.47782 3.20338 91.316 SAP 87 7 A 3 A 0.05213 2.8773 13.5710 0.21403 75.766 13.3893 3.96512 0.20690 634.144 21.1443 27.2248 0.56736 3.47947 89.705 SAP 87 8 A 3 A 0.08019 1.4279 14.0759 0.21851 85.113 15.5252 4.16560 0.21532 899.044 23.2361 29.0284 0.44978 3.05377 99.582 SAP 87 10 A 3 A 0.04316 3.8924 12.8080 0.16715 76.914 13.5558 3.87161 0.29413 508.461 21.1133 26.152 0.42619 2.52524 85.497 SAP 87 8 B 1 1 0.07070 2.2165 12.9494 0.15128 75.961 14.6455 4.14660 0.01184 613.330 21.4539 27.491 0.47762 3.12795 95.398 SAP 87 8 8 2 1 0.06645 1.2619 13.2637 0.12325 89.248 16.1494 4.15496 0.01379 681.642 23.1904 26.116 0.43799 3.25706 100.763 SAP 87 8 8 3 1 0.04739 2.5835 14.4022 0.13170 75.103 14.2727 3.83874 0.08790 595.350 20.8873 29.063 0.57039 2.91262 84.627 SAP 87 8 C 1 1 0.07260 2.7233 15.5190 0.19700 88.187 15.7766 4.29156 0.01067 643.967 25.6825 25.894 0.49091 3.40626 91.219 SAP 87 8 C 2 1 0.06730 1.7554 13.8050 0.24167 73.841 14.5992 4.13922 0.08228 702.625 22.7233 26.261 0.43438 2.88432 97.765 SAP 87 8 C 3 1 0.07'332 2.4979 13.6326 0.26681 83.041 14.3104 4.07971 0.03808 805.143 23.2038 26.597 0.47408 2.73922 90.949 SAP 87 8 D 1 1 0.06437 1.8949 12.7581 0.13673 70.797 15.1945 4.00931 0.02096 606.808 22.1844 27.151 0.46712 2.92292 87.166 SAP 87 8 D 2 1 0.05791 1.9048 13.9493 0.16162 69.826 14.4652 3.92237 0.01204 614.936 22.4062 25.769 0.38868 3.14990 85.093 Table A-9 Contd. LOC YR MTH SITE STA SURVEY AG AL AS CD CR cu FE HG MN NI PB SE SN TL ZN SAP 87 8 D 3 1 0.06035 2.89715 11.9011 0.12393 72.498 14.4358 4.01241 0.24746 614.966 23.2680 25.920 0.41943 2.95152 84.824 SAP 87 8 E 1 1 0.06753 3.59749 15.8617 0.16712 86.096 13.5685 4.28992 0.02216 688.665 23.8004 26.475 0.50807 3.07713 90.789 SAP 87 8 E 2 1 0.06D73 1.51696 12.7361 0.14593 76.820 15.0134 4.13316 0.10451 700.078 22.9882 26.515 0.54301 3.06287 94.694 SAP 87 8 E 3 1 0.06242 1.86243 12.6886 0.13355 74.693 14.9332 4.02656 0.03164 628.206 22.6262 25.797 0.38473 2.92626 90.050 SJR 84 10 D I A 0.21895 5.06000 11.6640 0.35726 77.877 24.1428 3.67037 0.15188 703.997 22.4819 59.304 0.27005 3.41139 0.74306 161.180 SJR 84 10 D 2 A 0.09223 1.47000 12.2832 0.18069 79.331 16.3315 4.06190 0.11676 798.521 22.2040 31.840 1.05699 3.44221 0.56584 100.558 SJR 84 10 0 3 A 0.12518 1.33000 13.2141 0.24369 82.298 20.1041 4.20215 0.13951 798.762 24.2065 36.262 0.63506 3.19020 0.62453 123.133 SJR 85 8 D I A 0.23678 4.94370 7.5952 0.31828 60.877 20.3030 3.7`1944 0.21215 656.T34 20.8213 47.270 0.64178 3.08980 0.95549 134.480 SJR 85 8 D 2 A 0.10617 4.06370 8.7432 0.22822 51.319 13.3568 3.14595 0.15932 577.193 17.9633 31.768 0.42621 3.06662 0.95248 87.973 SJR 85 8 D 3 A 0.04825 1.15784 11.8937 0.20245 59.701 15.3635 3.66897 0.12600 656.735 21.0680 25.583 0.47360 3.23894 0.36507 158.371 SJR 86 8 0 1 A 0.40028 4.33118 14.8521 0.52420 96.564 26.3815 4.28831 0.19122 753.502 23.7774 62.859 1.02068 4.79005 163.618 SJR 86 8 D 2 A 0.53837 6.33764 11.0220 0.79531 106.241 38.7209 4.72057 0.21789 490.969 26.4253 65.954 1.12550 5.38144 200.595 SJR 86 8 D 3 A 0.60999 6.37172 10.6929 0.79151 103.807 37.9359 4.23189 0.28621 452.119 25.5723 86.133 1.72277 8.11429 209.337 SJR 87 8 A 1 1 0.09664 2.17640 11.4237 0.21374 83.358 16.4824 4.70466 0.22642 749.105 23.5640 29.899 1.32T36 4.26359 95.298 SJR 87 8 A 2 1 0.09465 3.73737 8.1015 0.20731 80.491 15.1422 4.73399 0.19185 613.715 30.3290 27.884 1.95345 3.32447 82.881 SJR 87 8 A 3 1 0.07744 3.92916 9.0775 0.19202 93.220 15.3681 4.79059 0.18761 567.153 25.7910 26.711 1.92214 3.60367 80.999 SJR 87 8 6 1 1 0.42284 3.73721 10.5255 0.62818 106.707 50.5367 4.75838 0.29894 600.843 30.5895 70.632 1.07404 6.06326 174.885 SJR 87 8 6 2 1 0.20418 3.41364 11.7933 0.32804 91.948 25.5027 4.76715 0.11502 753.928 27.4810 60.020 0.72443 3.80409 158.111 SJR 87 8 B 3 1 0.12675 3.24826 10.3860 0.22005 82.073 16.8815 4.33930 0.01935 715.434 23.5439 33.006 0.54143 3.35506 110.253 SJR 87 8 C 1 1 0.93446 4.69000 7.6491 1.60787 119.498 82.2928 5.58911 1.04141 550.673 31.6791 164.542 2.05213 8.91104 399.816 SJR 87 8 c 2 1 0.15546 1.34996 12.3937 0.29480 73.038 22.5275 4.07665 0.14894 MAU 25.3284 51.708 0.68597 4.20112 123.178 SJR 87 8 C 3 1 0.84367 4.30484 11.5979 1.20491 110.439 56.8307 4.45171 0.62941 644.439 29.3043 101.944 1.90073 6.02213 214.083 SJR 87 8 D 1 A 0.21410 3.38808 12.2574 0.59986 93.272 24.5995 4.31546 0.33669 741.759 26.5440 47.376 0.61402 4.OB802 133.514 SJR 87 8 D 2 A 0.49127 5.64829 11.5056 0.58884 62.914 40.9461 4.58892 0.29009 671.395 29.0603 72.561 1.22774 5.52336 'IT.AIA SJR 87 8 D 3 A 0.04709 2.67055 11.3383 0.13380 73.044 13.4364 4.04203 0.07704 617.537 23.5720 27.972 0.50801 2.88644 96.159 SJR 87 8 E 1 1 0.11046 4.30889 9.6004 0.22265 109.908 14.3241 4.36131 0.18970 574.236 28,4217 27.599 1.58083 3.34788 86.300 SJR 87 8 E 2 1 0.61202 4.90275 10.7173 0.69847 110.942 41.4438 5.41549 0.26261 825.648 32.0590 77.135 2.01764 4.94602 206.230 SJR 87 8 E 3 1 0.09053 4.85162 8.1998 0.22401 90.969 13.9329 4.37227 0.09263 662.741 24.0356 31.467 1.49155 2.82888 78.741 TAM 84 10 A I A 0.09699 0.47000 13.5321 0.27701 83.251 25.0783 4.49372 0.12526 744.096 24.3792 27.058 0.67463 3.28505 0.68789 95.805 TAM 84 10 A 2 A 0.11201 0.32000 13.3794 0.19116 76.594 16.5703 4.08899 0.10813 735.283 24.4105 27.411 0.55327 3.43648 0.53720 92.793 TAM 84 10 A 3 A 0.18825 0.58000 13.1507 0.29943 81.913 17.3641 4.08852 0.13188 725.693 24.5629 29.826 0.69829 3.04734 0.70107 93.568 TAM 85 10 A I A 0.18498 2.13163 11.9532 0.58938 77.569 19.5196 4.04497 0.24138 623.734 26.01`19 30.986 1.04780 3.48564 0.54444 101.323 TAM 85 10 A 2 A 0.07983 0.27193 12.9594 0.15884 65.626 16.2390 4.05242 0.08861 739.196 23.9353 26.354 0.46247 3.50652 O.T3506 91.569 TAM 85 10 A 3 A 0.09618 0.30881 13.4973 0.25357 60,747 16.9296 4.09543 0.13303 732.310 24.1073 27.186 0.61638 4.06537 0.68246 94.250 Table A-10. Elemental Concentrations for 1984-87 Liver Tissue in the Southeast. Units: ppm (dry). Computer listing of liver data, 16 pages, 720 observations. I Table A-10 Contd. LOC YR MTN SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn N i Pb Se Sn Zn APA 84 9 A A 0.116 7.599 0.562 0.032 21.358 634.812 0.528 9.887 0.260 0.098 32.734 1.642 137.223 APA 84 9 A A 0.071 3.250 0.462 -0.006 14.794 389.534 0.714 5.395 0.221 0.025 16.355 0.335 110.138 APA 84 9 A A 0.035 4.070 0.506 0.025 12.976 502.940 0.395 13-918 0.362 0.076 25.118 0.473 131.163 APA 84 9 A A 0.183 8.501 0.603 0.032 23.096 679-122 0.483 6.515 0.357 0.155 39.913 0.370 186.453 APA 84 9 A A 0.023 3.778 0.319 0.155 12.253 840.740 0.566 5.028 0.805 0.097 42.118 0.150 108.130 APA 84 9 A A 0.059 5.070 0.295 0.040 12.791 475.475 0.356 5.911 0.607 0.001 16.725 0.083 115.795 APA 84 9 A A 0.327 7.657 0.461 -0.001 34.784 542.252 0.537 5.673 0.462 0.090 22.023 - 157.908 APA 84 9 A A 0.295 9.789 0.524 0.017 33.246 593.668 0.355 5.378 0.661 0.146 35.654 132.743 APA 114 9 A A 0.037 7.239 0.330 0.118 11.274 491.414 0.423 6.214 0.281 0.068 25.398 122.148 APA 84 9 A A 0.127 7.610 0.823 0.032 18.025 800.049 0.572 3.435 0.294 0.093 28.033 0.068 116.629 APA 85 10 A A 0.007 3.099 0.900 0.031 6.181 560.193 0.208 4.673 0.133 0.210 32.565 0.135 158.421 APA 85 10 A A 0.527 5.699 0.222 0.010 62.515 678.461 0.666 3.653 0.184 0.064 16.785 0.212 334.505 APA 85 10 A A 0.343 4.941 0.169 0.016 33.748 391.603 0.498 2.664 0.178 0.050 13.947 0.278 162.180 APA 85 10 A A 0.116 2.919 4.930 0.046 16.373 4479.334 1.572 4.342 0.407 0.078 34.011 0.095 107.229 APA 85 10 A A 0.341 11.193 0.159 0.250 20.203 818.784 0.241 3.744 1.687 0.055 41.840 0.195 109.775 APA 85 10 A A 0.921 6.555 0.289 0.033 80.882 346.495 0.811 4.380 0.803 0.045 23.766 0.082 246.475 APA 85 10 A A 0.048 4.603 0.153 0.010 18.771 619.351 0.773 2.490 0.180 0.094 19.881 0.211 107.544 APA 85 10 A A 0.206 6.442 0.178 0.021 40.629 402.368 0.437 3.811 0.309 0.045 27.784 0.319 219.943 APA 85 10 A A 0.532 6.447 0.238 0.004 47.696 487.521 0.626 3.946 0.252 0.079 23.740 0.256 133.008 APA 85 10 A A 0.370 9.993 0.293 -0.023 42.547 837.590 0.544 3.913 0.246 0.040 21.687 0.122 134.673 APA 86 10 A A 0.198 10.127 0.401 -0.005 26.552 530.513 0.688 5.559 0.228 0.024 28.306 0.345 144.885 APA 86 10 A A 0.758 13.194 t.417 0.006 52.724 731.067 0.662 6.067 0.216 0.115 39.337 0.376 150.904 APA 86 10 A A 0.364 16.033 1.462 0.011 30.740 694.351 0.636 5.538 0.220 0.066 39.042 0.233 147.147 APA 86 10 A A 0.232 12.092 1.285 0.091 23.620 912.169 0.597 5.442 0.338 0.019 36.545 0.318 136.129 APA 86 10 A A 0.176 11.234 0.846 0.016 21.968 415.069 1.187 4.906 0.191 0.001 0.045 0.205 132.278 APA 86 10 A A 0.043 8.134 0.474, 0.052 16.351 821.745 0.906 5.286 0.467 -0.010 31.497 0.163 136.560 APA 86 10 A A 0.286 13.893 0.965 0.061 28.999 697.9T33 0. 3 -ta 7.664 Ou. J23 0.052 31.975 0.137 143.408 APA 86 10 A A 0.241 12.902 1.384 -0.001 27.903 817.698 0.328 4.022 0.236 0.049 27.040 0.122 144.031 APA 86 10 A A 0.244 15.103 0.644 0.018 27.518 698.217 1.572 4.904 0.413 0.060 29.128 0.179 160.066 APA 86 10 A A 0.251 18.632 0.835 -0.006 28.113 702.574 0.851 5.821 0.253 0.043 28.882 0.121 168.407 BAR 84 9 A A 0.028 0.760 0.159 0.027 18.751 572.215 0.103 3.792 0.107 0.086 7.760 0.869 77.874 BAR 84 9 A A 0.023 5.802 0.143 0.086 11.692 913.169 0.200 4.394 0.470 0.001 12.046 0.350 70.797 BAR 84 9 A A 0.047 1.329 0.236 0.163 14.936 706.236 0.303 8.663 0.351 0.057 8.677 0.257 100.661 BAR 84 9 A A 0.009 3.329 0.086 0.137 12.155 6T3.072 0.080 8.660 0.415 0.108 14.099 0.405 1T3.750 BAR 84 9 A A 0.204 2.120 0.214 0.101 128.785 541.274 0.075 3.058 0.151 0.117 10.532 -0.081 113.355 BAR 84 9 A A 0.024 1.403 0.132 0.133 8.351 515.318 0.053 6.219 0.139 -0.020 5.204 0.122 67.161 BAR 84 9 A A 0.042 5.341 0.146 0.083 25.799 1001.595 0.133 5.760 0.699 0.142 12.632 129.471 BAR 84 9 A A 0.019 3.162 0.086 0.012 6.453 817.677 0.041 3.470 0.760 0.043 11.188 87.023 BAR 84 9 A A 0.015 4.343 0.060 0.039 11.261 487.160 0.081 1.876 0.584 0.087 8.174 81.1186 BAR 84 9 A A 0.022 2.369 0.094 0.079 15.706 810.236 0.143 4.602 0.210 0.035 8.238 0.037 144.762 BAR 85 9 A A 0.033 4.002 0.059 0.036 23.495 1714.608 0.173 4.530 0.304 0.063 9.724 0.452 143.583 BAR 85 9 A A 0.236 5.274 0.160 0.064 50.895 1811.510 0.302 4.914 0.520 0.166 14.107 0.106 113.927 BAR 85 9 A A 0.137 6.919 1.605 0.017 51.030 1133.605 0.870 3.861 0.970 0.063 13.083 0.212 131.570 BAR 85 9 A A 0.074 4.406 0.216 0.369 35.519 691.207 0.226 5.606 2.017 0.105 15.943 0.133 122.279 BAR 85 9 A A 0.036 2.110 0.015 0.128 15.253 274.613 0.112 4.764 0.214 0.055 7.081 0.021 77.362 BAR 85 9 A A 0.048 4.977 0.422 0.212 23.590 700.685 0.192 5.409 0.486 0.094 16.566 0.196 106.830 BAR 85 9 A A 0.019 2.860 0.029 -0.026 18.203 551.603 0.081 4.471 0.276 0.026 11.619 0.766 78.498 Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn BAR 85 9 A A 0.104 3.193 0.307 0.625 .24.856 590.092 0.138 5.513 1.015 0.047 7.208 1.002 126.901 BAR 85 9 A A 0.311 3.011 0.520 0.077 62.211 1042.659 0.196 3.276 0.468 0.046 10.636 0.196 131.746 BAR 85 9 A A 0.079 4.743 0.123 0.046 41.743 857.583 0.189 3.270 0.823 0.012 16.248 0.199 127.065 BAR 87 10 A A 0.056 4.235 0.075 0.019 19.247 432.255 0.074 5.272 0.193 0.146 7.963 0.039 186.629 BAR 87 10 A A 0.037 2.350 0.040 0.005 9.446 670.104 0.040 6.599 0.389 0.112 10.132 0.058 139.221 BAR 87 10 A A 0.074 2.201 0.056 0.001 25.644 627.696 0.141 3.923 0.143 0.087 9.763 0.305 170.210 BAR 87 10 A A 0.039 1.808 0.384 0.002 27.744 338.830 0.120 3.225 0.098 0.052 6.939 0.149 165.529 BAR 87 10 A A 0.038 3.384 0.464 -0.000 13.655 672.015 0.119 6.390 0.189 0.075 7.096 0.149 68.077 BAR 87 10 A A 0.146 4.965 0.030 -0.009 38.467 404.617 0.046 4.061 0.233 0.054 5.152 0.097 269.070 BAR 87 10 A A 0.052 3.032 0.243 -0.005 14.869 360.824 0.089 3.274 0.185 0.054 7.189 0.121 174.301 BAR 87 10 A A 0.007 3.058 0.157 -0.015 12.614 540.230 0.178 5.193 0.375 0.116 8.944 0.987 86.918 BAR 87 10 A A 0.404 6.005 0.106 -0.014 116.682 542.960 0.238 5.954 0.196 0.125 12'.236 0.150 282.085 BAR 87 10 A A 0.098 5.590 0.869 0.003 20.888 839.586 0.299 6.266 0.509 0.096 11.217 0.168 231.973 CCB 84 9 A A 0.073 13.230 0.178 0.030 38.950 482.169 0.855 5.237 0.130 0.166 42.483 3.909 115.953 CCB 84 9 A A 0.070 9.701 0.286 -0.013 36.786 335.855 0.481 4.314 -0.095 0.060 43.814 0.698 134.399 CCB 84 9 A A 0.187 8.062 0.687 0.017 67.292 464.719 0.467 3.789 . 0.122 20.3T5 1.578 148.877 CCB 84 9 A A 0.117 10.105 0.183 0.046 26.590 312.900 1.704 6.408 0.280 0.088 30.608 0.254 124.010 CCO 84 9 A A 0.132 11.239 0.217 0.015 35.684 253.270 0.341 8.423 0.013 0.018 25.205 0.553 114.397 CCB 84 9 A A 0.102 2.490 0.106 0.013 40.448 345.251 0.538 6.062 0.161 0.022 39.047 0.140 126.157 CCB 84 9 A A 0.291 11.051 0.264 -0.034 57.438 356.669 0.950 2.524 0.084 0.111 36.293 0.263 138.374 CCB 84 9 A A 0.097 12.440 0.172 -0.003 32.626 159.550 0.840 6.901 0.089 0.085 28.286 0.582 106.300 CCB 84 9 A A 0.329 12.366 0.311 0.015 99.651 609.970 0.595 3.656 0.230 0.052 41.231 143.494 CC8 84 9 A A 0.227 14.558 0.371 0.075 48.301 327.492 0.990 7.208 0.252 0.265 41.302 147.444 CCB 85 9 A A 0.045 6.844 0.419 0.141 21.683 472.994 0.482 18.951 0.982 0.137 24.466 0.936 108.356 CCB 85 9 A A 0.110 10.471 0.974 0.118 30.309 605.552 0.370 5.098 1.010 0.199 23.357 0.942 113.568 CCB 85 9 A A 0.366 13.085 0.870 0.017 B4.263 359.218 0.252 2.612 0.612 0.139 17.009 0.499 132.546 CCB 85 9 A A 0.431 9.551 0.937 0.035 91.141 578.510 0.462 3.711 0.491 0.067 23.774 0.349 132.654 CCB 85 9 A A 0.091 4.515 0.229 -0.000 26.942 333.582 0.284 3.227 0.437 0.058 16.867 0.287 92.743 CCB 85 9 A A 0.394 10.329 0.737 0.004 94.524 471.404 0.278 3.609 0.746 0.172 21.392 0.696 144.550 CC6 85 9 A A 0.095 4.176 0.482 0.036 26.837 416.191 0.540 2.260 0.618 0.034 19.734 0.353 135.376 CCB 85 9 A A 0.042 5.694 2.085 0.071 22.298 313.255 1.278 7.555 0.842 0.137 16.134 0.352 124.837 CCB 85 9 A A 0.267 9.501 1.534 0.017 61.365 436.236 0.253 4.112 0.421 0.316 19.793 0.452 109.292 CCB 85 9 A A 0.236 13.742 0.727 0.039 48.477 562.631 0.313 4.474 0.454 0.201 18.062 0.538 107.339 CCB 86 9 A A 0.836 7.306 4.653 -0.052 157.194 262.101 0.596 4.983 0.274 0.106 18.896 0.623 152.019 CCB 86 9 A A 0.064 9.257 1.927 -0.081 61.390 500.227 0.425 4.844 0.338 0.102 29.063 0.846 112.510 CCB 86 9 A A 0.297 12.624 1.611 -0.077 75.170 386.636 0.347 4.744 0.462 0.133 27.179 0.715 126.219 CCB 86 9 A A 2.177 15.381 13.206 -0.062 218.705 271.584 1.015 12.486 0.649 0.304 20.674 0.724 204.869 CCB 86 9 A A 0.044 3.947 1.346 -0.024 35.236 559.883 0.475 5.517 0.583 0.048 20.737 0.444 117.616 CCB 86 9 A A 0.229 7.836 0.327 -0.046 52.795 710.391 0.439 3.922 1.675 0.092 39.406 1.054 159.570 CCB 86 9 A A 0.061 4.649 0.227 -0.068 19.376 218.598 0.155 1.819 0.128 -0.024 14.954 0.516 95.184 CC8 86 9 A A 0.120 5.143 0.863 -0.019 22.880 874.471 0.321 4.236 0.848 0.118 30.762 0.245 105.355 CCB 86 9 A A 0.120 4.752 0.534 -0.103 21-745 370.282 0.234 2.952 0.268 0.128 24.059 0.377 102.667 CCH 86 9 A A 1.073 9.878 1.050 -0.059 128.024 309.866 0.588 4.485 0.520 0.148 25.858 0.524 161.455 CHS 84 8 A A 0.036 8.179 0.029 0.038 13.992 330.480 0.200 5.428 0.141 0.003 14.889 . 94.989 CHS 84 8 A A 0.135 6.456 0.067 0.017 26.121 434.474 0.209 4.813 0.083 0.002 16.241 0.448 125.982 CHS 84 8 A A 0.058 7.060 0.059 0.094 18.039 199.845 0.241 3.215 0.531 0.047 11.398 0.385 93.684 CHS 84 8 A A 0.138 9.255 0.083 0.013 24.453 303.702 0.324 4.806 0.181 0.090 17.311 0.482 116.282 Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn CHS 84 8 A A 0.049 8.525 0.060 0.081 12.809 507.720 0.112 6.167 0.104 0.086 22.746 0.444 91.666 CHS 84 8 A A 0.171 7.171 0.136 0.099 26.059 452.378 0.861 4.853 0.286 0.074 17.832 0.552 133.415 CHS 84 8 A A 0.237 6.821 0.067 0.058 29.879 390.450 0.282 4.441 0.181 -0.008 20.969 0.446 129.933 CHS 84 8 A A 0.405 7.096 0.035 0.015 42.267 402.437 0.337 3.978 0.040 0.023 16.332 0.246 153.759 CHS 84 8 A A 0.143 8.202 0.047 0.009 26.783 758.246 0.189 3.932 0.146 0.070 19.685 0.259 118.783 CHS 84 8 A A O.OB4 8.623 0.068 0.135 17.169 625.417 0.293 4.503 0.036 0.004 20.630 0.368 99.957 CHS 85 8 A A 0.197 11.829 0.253 0.015 41.385 666.920 0.469 3.403 0.148 0.092 44.614 0.397 132.600 CHS 85 8 A A 0.055 12.957 0.413 0.593 24.395 848.967 O.T58 3.658 0.437 0.044 41.949 0.364 126.508 CHS 85 8 A A 0.091 21.267 0.427 0.208 21.983 T34.587 0.787 4.719 0.510 0.350 38.996 0.516 135.134 CHS 85 8 A A 0.313 28.517 0.603 0.096 88.747 2236.159 . 14.216 0.628 0.276 67.872 0.423 397.827 CHS 85 8 A A 0.145 15.437 0.538 0.256 24.475 604.231 0.353 3.388 0.383 0.063 46.055 0.441 106.710 CHS 85 8 A A 0.027 16.783 0.471 2.466 13.687 1750.650 0.687 3.732 0.351 0.127 54.907 0.188 128.096 CHS 85 8 A A 0.127 15.566 0.597 -0.011 23.165 647.386 0.476 3.860 -0.030 0.050 50.910 0.525 120.692 CHS 85 8 A A 0.232 16.978 0.409 0.167 31.460 723.201 0.628 4.561 0.385 0.378 70.405 0.454 115.445 CHS 85 8 A A 0.159 16.007 0.195 0.060 28.035 733.021 0.286 4.450 0.252 0.062 37.585 0.477 126.571 CHS 85 8 A A 0.097 10.087 0.426 0.021 25.622 756.098 0.970 5.665 0.266 0.030 42.993 0.271 140.373 CHS 86 8 A A 0.087 9.580 0.065 -0.066 14.653 352.366 0.119 5.433 0.290 0.003 14.979 0.203 96.077 CHS 86 8 A A 0.226 7.944 0.054 -0.048 29.516 312.113 0.105 5.568 0.018 -0.009 13.646 0.334 93.423 CHS 86 8 A A 2.210 12.896 1.308 -0.053 142.118 726.261 0.470 2.463 0.069 0.008 19.851 0.340 168.043 CHS 86 8 A A 0.288 11.266 0.053 -0.109 28.955 744.087 0.119 2.315 0.082 0.004 24.337 0.509 111.232 CHS 86 8 A A 0.326 7.581 0.102 -0.034 65.163 309.801 0.083 2.117 0.049 0.003 10.314 0.358 142.082 CHS 86 8 A A 0.433 6.147 0.044 0.007 29.583 279.717 0.127 2.772 0.149 -0.001 15.806 0.275 94.282 CHS 86 8 A A 0.456 11.657 0.210 -0.063 48.554 151.878 0.223 3.427 0.045 0.036 12.692 0.169 97.404 CHS 86 8 A A 0.157 10.524 0.095 -0.064 21.782 440.444 0.283 5.050 0.192 0.056 19.364 0.488 122.226 CHS 86 8 A A 0.185 8.110 0.090 -0.064 29.489 460.547 0.287 7.241 0.093 0.071 17.708 0.318 137.999 CHS 86 8 A A 1.026 7.116 OmO56 -0-074 62.564 609.394 0.126 3.149 0.084 0.034 17.712 0.241 115.095 CHS 87 8 A A 0.043 8.190 0.065 0.002 15.781 458.075 0.215 4.744 0.239 0.004 21.037 0.447 103.444 CHS 87 8 A A 0.064 7.482 0.082 0.011 18.235 357.723 0.126 4.525 0.113 0.089 14.971 0.369 96.413 CHS 87 8 A A 0.118 6.465 0.026 0.018 18.785 321.645 0.103 5.190 0.136 -0.007 13.280 0.285 90.633 CHS 87 8 A A 0.633 7.173 0.041 0.005 67.078 401.391 0.143 5.840 0.322 0.047 16.836 0.448 128.838 CHS 87 8 A A 0.441 9.458 0.094 -0.006 57.670 647.148 0.287 4.870 0.285 0.036 22.672 0.612 137.182 CHS 87 8 A A 0.360 6.868 0.075 -0.011 44.668 549.662 0.420 3.525 0.175 0.051 15.510 0.356 108.828 CHS 87 8 A A 0.052 6.539 0.129 0.014 21.975 547.832 0.641 5.290 0.102 0.066 16.049 0.420 119.838 CHS 87 8 A A 0.359 7.014 0.051 0.021 31.491 247.584 0.109 4.431 0.318 0.002 10.399 0.349 96.260 CHS 87 8 A A 0.108 6.482 0.052 0.001 23.623 398.447 0.159 5.275 0.135 -0.011 14.522 0.476 97.862 CHS 87 8 A A 0.251 9.179 0.073 0.005 38.615 383.075 0.127 3.710 0.258 0.004 14.311 0.385 100.529 GAL 84 9 D A 0.049 6.077 0.101 0.081 22.329 343.975 0.092 11.299 0.556 0.243 17.502 0.707 93.888 GAL 84 9 D A 0.020 3.672 0.112 0.387 12.694 338.681 0.040 16.910 1.411 0.149 20.456 1.225 107.727 GAL 84 9 D A 0.023 4.434 0.108 0.526 10.395 375.164 0.089 12.754 0.745 0.349 18.733 2.774 106.367 GAL 84 9 D A 0.034 4.592 0.086 0.365 24.528 238.715 0.131 7.803 0.514 0.176 15.827 2.010 101.523 GAL 84 9 D A 0.041 4.374 0.124 0.164 16.934 214.809 0.122 15.097 1.153 0.200 23.555 1.363 123.503 GAL 84 9 D A 0.026 3.276 0.041 0.136 11.987 825.557 0.015 14.741 1.306 0.034 19.927 0.347 110.301 GAL 84 9 D A 0.007 4.700 0.130 0.074 13.309 369.828 0.476 8.103 1.249 0.300 27.681 0.915 127.966 GAL 84 9 D A 0.089 6.042 0.152 0.195 20.271 229.398 0.247 5.970 0.746 0.139 20.564 136.407 GAL 84 9 D A 0.016 4.137 0.104 12.142 308.971 0.103 23.981 0.782 0.125 26.221 105.542 GAL 84 9 D A 0.018 7.358 0.105 0.308 13.149 357.888 0.236 10.402 0.118 0.184 13.757 0.393 110.248 GAL 85 9 D A 0.030 3.920 0.264 0.033 22.880 325.838 0.182 5.081 0.324 0.236 23.769 1.984 148.351 -Q Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn GAL 85 9 D A 0.017 3.934 0.209 0.032 20.413 815.039 0.275 4.336 0.320 0.178 30.514 1.444 132.135 GAL 85 9 D A 0.161 5.269 0.555 0.024 48.172 405.470 0.483 5.396 0.495 0.363 21.569 1.592 169-396 GAL 85 9 D A 0.030 4.789 0.186 0.045 11.980 536.810 0.323 8.556 0.504 0.109 17.513 0.946 126.504 GAL 85 9 D A 0.019 4.330 0.151 0.101 11.366 598.228 0.128 7.936 0.469 0.070 15.135 0.655 105.677 GAL 85 9 D A 0.024 3.427 0.184 0.184 14.662 508.016 0.310 7.149 0.476 0.164 25.309 1.552 124.870 GAL 85 9 D A 0.049 2.959 0.217 -0.015 28.849 500.345 0.412 5.250 0.178 0.171 25.949 1.145 150.798 GAL 85 9 D A 0.034 4.217 0.158 0.632 16.765 304.671 0.200 9.680 0.415 0.181 16.198 1.538 136.348 GAL 85 9 0 A 0.016 3.743 0.203 0.175 6.538 316.343 0.260 3.077 1.197 0.027 22.304 2.372 74.700 GAL 85 9 D A 0.009 3.853 0.056 0.060 16.588 405.423 0.071 2.851 0.645 0.109 12.996 1.114 96.611 GAL 86 9 D A 0.276 12.633 0.548 -0.003 38.930 378.566 0.779 4.285 0.471 0.120 36.921 0.660 127.379 GAL 86 9 D A 0.023 5.486 0.158 0.010 19.050 459.769 0.245 4.953 0.444 -0.020 18.288 0.962 123.170 GAL 86 9 D A 0.114 5.401 0.524 0.258 39.097 324.864 0.341 5.569 0.555 0.080 17.411 0.744 143.519 GAL 86 9 D A 0.131 9.814 0.667 -0.003 31.840 493.151 0.267 5.739 0.625 0.060 31.279 0.583 122.339 GAL 86 9 D A 0.476 32.736 0.653 0.011 72.912 1367.599 0.648 9.873 1.244 0.146 40.697 1.113 228.091 GAL 86 9 D A 0.173 4.607 0.166 -0.000 48.144 166.591 0.148 4.812 0.260 0.033 11.119 0.407 140.990 GAL 86 9 D A 0.227 4.642 0.501 0.021 39.295 341.884 0.229 4.530 0.887 0.129 24.717 0.664 148.977 GAL 86 9 D A 0.076 4.547 0.099 0.010 28.886 414.320 0.113 4.508 0.722 0.131 18.069 0.612 126.150 GAL 86 9 D A 0.136 11.104 0.727 0.015 23.526 343.412 0.193 3.837 1.329 0.175 25.122 0.465 97.480 GAL 86 9 D A 0.107 4.017 0.636 0.008 48.516 394.536 0.252 4.973 0.681 0.110 18.897 0.573 134.098 GAL 87 9 A 1 0.053 5.138 0.206 0.037 22.997 276.017 0.127 18.877 0.910 0.096 17.281 0.452 128.737 GAL 87 9 A 1 0.639 15.975 0.868 0.067 62.178 788.268 0.193 10.852 0.708 0.080 22.746 0.273 148.282 GAL 87 9 A 1 0.036 6.390 0.131 0.031 16.8T3 435.122 0.128 12.394 0.882 0.078 16.584 0.213 121.082 GAL 87 9 A 1 0.216 10.216 0.591 0.177 41.478 338.108 0.110 24.222 0.516 0.128 16.541 0.455 123.887 GAL 87 9 A 1 0.067 5.979 0.288 0.004 20.146 699.430 0.191 15.363 0.662 0.131 18.750 0.209 115.365 GAL 87 9 A 1 0.370 5.317 0.200 -0.019 41.080 271.699 0.125 8.928 0.336 0.104 10.910 0.255 100.631 GAL 87 9 A 1 0.105 8.036 0.652 0.034 25.648 325.363 0.097 10.807 0.462 0.084 14.797 0.195 120.658 GAL 87 9 A 1 0.051 6.134 0.406 0.225 27.065 421.723 0.139 10.313 0.500 0.066 16.268 0.390 120.061 GAL 87 9 A 1 0.040 6.420 0.452 0.003 19.825 664.183 0.178 15.961 0.830 0.108 20.859 0.213 128.697 GAL 87 9 A 1 0.057 3.323 0.085 -0.017 28.667 192.229 0.090 2.497 0.391 0.080 11.510 1.713 155.153 GAL 87 9 8 1 0.199 5.484 2.186 0.065 18.930 443.794 0.212 9.703 0.324 0.839 17.707 0.822 113.762 GAL 87 9 8 1 0.695 5.482 1.006 0.018 45.187 352.345 0.389 16.181 2.065 0.331 19.171 0.595 126.083 GAL 87 9 8 1 0.132 5.219 0.985 0.048 20.210 616.907 0.499 20.678 4.709 0.231 21.478 1.080 119.263 GAL 87 9 8 1 0.465 8.544 1.135 0.034 39.020 275-.322 0.257 8.537 0.262 1.269 23.921 0.440 112.762 GAL 87 9 8 1 0.045 4.492 1.026 0.011 10.984 459.324 0.200 7.230 0.383 0.275 15.825 0.117 90.794 GAL 87 9 B 1 0.346 4.604 0.175 0.004 33.180 474.713 0.483 27.380 4.134 0.200 15.795 0.853 126.330 GAL 87 9 6 1 1.155 4.298 0.727 -0.003 76.025 364.265 0.550 4.517 0.737 0.186 21.485 0.470 125.708 GAL 87 9 B 1 0.123 5.018 0.404 -0.002 19.725 363.857 0.328 4.591 2.860 0.055 15.823 0.556 93.205 GAL 87 9 8 1 0.084 4.836 0.232 -0.010 18.884 471.749 0.558 9.037 2.335 0.130 19.966 0.880 119.524 GAL 87 9 8 1 0.300 4.926 0.905 0.032 26.732 661.132 0.189 11.688 1.075 0.885 24.271 0.182 130.077 GAL 87 9 C 1 0.130 7.795 0.101 0.049 41.894 556.897 0.214 10.434 0.297 0.323 23.321 4.169 118.207 GAL 87 9 C 1 0.145 2.846 0.111 0.011 37.480 209.586 0.247 7.131 0.381 0.149 20.941 2.474 120.833 GAL 87 9 C 1 0.627 4.292 0.207 0.036 154.167 724.865 0.443 9.101 0.832 0.188 18.970 1.373 260.053 GAL 87 9 C 1 0.492 5.922 0.162 0.003 106.787 185.197 0.325 3.136 0.276 0.187 12.117 1.259 159.309 GAL 87 9 C 1 0.134 9.099 0.056 -0.028 30.096 239.031 0.367 5.089 0.267 0.260 12.505 1.853 100.453 GAL 87 9 C 1 0.568 3.661 0.102 -0.007 111.925 176.018 0.438 6.474 0.138 0.218 17.173 2.467 202.008 GAL 87 9 C 1 2.140 27.457 0.207 -0.009 161-219 1521.858 0.853 8.184 0.463 0.492 24.390 5.284 195.782 GAL 87 9 C 1 0.076 6.012 0.373 0.025 82.993 261.474 0.482 5.542 0.270 0.300 25.272 3.934 148.724 Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn GAL 87 9 C 1 0.502 7.988 0.096 0.033 64.073 261.197 0.175 5.801 0.301 0.238 21.616 2.085 132.457 GAL 87 9 C 1 0.554 13.123 0.113 0.005 76.576 618.536 0.333 6.242 0.358 0.281 31.351 4.110 150.037 GAL 87 9 C 1 1.147 2.520 0.189 0.006 462.907 217.931 0.405 4.987 0.135 0.440 11.937 1.395 402.591 GAL 87 9 C 1 0.071 5.373 0.310 -0.013 33.173 441.855 0.375 6.368 0.373 0.234 30.877 3.785 148.767 GAL 87 9 C 1 0.016 2.609 0.059 0.017 11.198 925.140 0.164 7.214 0.615 0.190 13.868 0.537 87.901 GAL 87 9 C 1 0.785 2.698 0.324 0.013 136.913 294.1T3 0.277 3.183 0.114 0.153 7.422 0.266 293.973 GAL 87 9 C 1 0.217 3.003 0.556 0.019 36.361 446.240 . 7.926 0.615 0.285 19.686 2.011 191.979 GAL 87 9 C 1 0.067 6.405 0.099 0.285 28.993 942.552 0.228 15.683 0.435 0.255 20.525 2.516 146.436 GAL 87 9 C 1 0.150 3.549 0.183 0.004 45.114 304.208 0.294 3.641 0.245 0.137 15.791 0.891 110.932 GAL 87 9 C 1 0.024 2.561 0.093 -0-010 15.610 208.974 0.093 6.020 0.858 -0.004 24.159 4.007 92.117 GAL 87 9 C 1 0.834 2.761 0.200 0.017 287.496 174.774 0.278 8.806 0.319 0.209 11.463 1.744 341.398 GAL 87 9 C 1 0.021 3.932 0.192 0.051 19.336 226.574 0.095 4.858 0.630 0.168 29.361 5.769 112.858 GAL 87 9 0 A 1.674 6.678 0.166 0.025 270.943 29.725 0.214 9.663 0.191 0.062 10.571 0.609 445.064 GAL 87 9 0 A 0.080 3.383 0.286 0.006 32.496 419.291 0.755 9.327 0.488 0.206 18.818 0.743 156.094 GAL 87 9 D A 0.018 5.258 0.785 0.106 22.688 797.061 0.214 25.897 0.709 0.206 19.315 0.659 154.206 GAL 87 9 D A 0.349 6.489 0.069 0.028 51.997 177.415 0.187 3.954 0.308 0.128 17.043 0.231 132.710 GAL 87 9 D A 0.121 1.514 0.084 0.001 52.347 169.646 0.250 6.594 0.076 0.103 10.829 0.449 180.813 GAL 87 9 D A 0.055 3.368 0.046 -0.007 26.327 466.868 0.490 10.371 0.529 0.180 24.865 0.695 158.857 GAL 87 9 D A 0.074 3.831 0.270 -0.000 32.025 545.561 0.393 5.925 0.242 0.232 18.036 1.049 144.851 GAL 87 9 D A 0.019 3.498 0.269 -0.008 21.773 455.384 0.263 6.164 0.435 0.191 22.803 1.683 125.855 GAL 87 9 D A 0.080 3.003 0.182 0.010 37.636 539.029 0.441 7.184 0.465 0.299 18.203 0.722 179.747 GAL 87 9 D A 0.042 2.314 0.145 -0.003 28.390 367.179 0.321 4.282 0.247 0.064 17.035 0.730 118.893 GAL 87 9 D A 0.486 2.363 0.148 -0.005 85.341 331.405 0.271 11.703 0.187 0.110 10.572 0.359 353.452 GAL 87 9 D A 0.967 7.896 0.049 -0.004 91.768 201.195 0.141 6.293 0.105 0.159 12.249 1.294 267.570 GAL 87 9 D A 0.079 4.529 0.861 -0.023 16.907 999.710 0.149 9.626 1.470 0.245 28.381 0.303 132.083 GAL 87 9 D A 0.071 3.2T3 0.102 -0.006 23.493 178.865 0.170 5.641 0.471 0.038 17.890 0.540 120.101 'GAL 87 9 D A 0.029 4.713 04442 -OzO16 29-772 587.947 0.511 7.461 0.430 0.205 30.193 1.168 149.546 GAL 87 9 D A 0.060 3.860 0.294 -0.009 23.428 833.184 0.289 7.919 0.286 0.218 36.085 0.774 150.454 GAL 87 9 D A 0.720 2.426 0.516 0.001 181.930 360.209 0.598 5.880 0.602 0.134 7.586 0.061 400.016 GAL 87 9 D A 1.015 7.051 0.377 0.053 135.174 1010.002 0.213 10.170 0.272 0.149 17.274 0.633 215.659 GAL 87 9 D A 0.046 3.602 0.163 0.032 14.330 560.006 0.179 4.558 0.212 0.120 17.894 1.532 98.291 GAL 87 9 D A 0.092 3.042 0.190 0.015 38.212 534.355 0.256 6.412 0.319 0.069 16.328 1.239 143.721 GAL 87 9 E 1 0.383 3.897 0.517 0.019 58.145 460.735 0.104 7.896 0.241 0.074 28.426 0.345 107.935 GAL 87 9 E 1 0.260 5.681 0.925 0.010 42.245 560.551 0.174128.476 1.242 0.019 18.310 0.194 134.810 GAL 87 9 E 1 0.133 4.032 0.072 0.050 19.018 481.687 0.138 6.498 0.449 0.105 20.330 0.198 111.094 GAL 87 9 E 1 0.464 9.926 1.308 -0.022 62.306 694.058 0.281 10.656 0.447 0.460 20.713 0.372 160.992 GAL 87 9 E 1 0.567 5.642 0.500 -0.006 43.716 560.536 0.126 31.655 0.459 0.063 18.371 -0.049 97.903 GAL 87 9 E 1 0.466 5.806 1.019 1.351 85.543 532.861 0.179 9.341 1.774 0.155 16.128 0.606 160.516 GAL 87 9 E 1 0.087 3.844 0.633 0.001 22.406 536.503 0.148 6.629 0.667 0.079 20.382 0.397 114.849 GAL 87 9 E 1 0.190 3.743 0.330 0.011 20.905 437.419 0.061 69.039 0.584 0.017 15.119 0.308 101.145 GAL 87 9 E 1 0.056 3.584 0.417 0.009 30.102 686.308 0.099 8.715 0.497 0.007 24.163 0.878 116.845 GAL 87 9 E 1 0.097 5.379 0.734 -0.000 22.841 636.160 0.212 7.454 0.418 0.109 18.960 0.368 134.232 GAL 87 10 F 1 0.012 2.891 0.111 0.002 8.734 147.748 0.440 5.185 0.250 0.241 15.830 4.686 100.997 GAL 87 10 F 1 0.008 1.921 0.160 0.005 11.074 111.388 0.231 4.707 0.169 0.834 12.520 2.928 78.189 GAL 87 10 F 1 -0.004 3.122 0.220 0.297 11.364 170.402 0.453 5.691 0.643 0.133 22.160 3.919 87.243 GAL 87 10 F 1 0.004 2.657 0.026 -0.009 8.159 85.809 0.127 2.693 0.168 0.159 11.632 2.857 58.178 GAL 87 10 F 1 0.050 2.702 0.271 0.023 17.61n 170.592 0.554 5.169 0.577 0.261 14.490 3.094 139.382 Table A-10 Contd. LOC YR MTN SITE SURVEY Ag As Cd Cr cu Fe Hg Mn Ni Pb Se Sn Zn GAL 87 10 F 1 0.003 1.815 0.047 0.021 8.036 204.569 0.109 4.157 0.259 0.194 13.362 0.766 60.697 GAL 87 10 F 1 0.007 2.024 0.070 0.003 11-124 105.832 0.336 3.332 0.133 0.516 9.791 1.500 111.373 GAL 87 10 F 1 0.131 4.545 0.097 -0.007 52.812 159-186 0.235 3.820 0.246 0.485 17.550 2.638 103.786 GAL 87 10 F 1 0.007 3.304 0.051 -0.007 8.136 123.002 0.130 3.478 0.342 0.156 15.093 2.112 65.786 GAL 87 10 F 1 0.039 2.868 0.211 0.016 33.909 236.410 0.797 4.078 0.293 0.522 12.426 3.314 167.318 GAL 87 10 F 1 0.035 3.248 0.104 -0,030 10.460 172.731 0.193 3.801 0.400 0.097 16.824 3.330 67.224 GAL 87 10 F 1 0.010 1.760 0.075 0.010 11.117 191.039 0.296 4.966 0.114 0.437 10.300 1.509 89.982 GAL 87 10 F 1 0.071 2.572 0.302 0.046 21.439 271.510 0.571 8.779 1.083 0.135 20.983 3.717 154.980 GAL 87 10 F 1 0.017 3.817 0.069 -0.020 11.475 137.116 0.339 5.212 0.393 0.217 13.460 4.617 85.343 GAL 87 10 F 1 0.016 2.053 0.039 -0-011 12.417 75.776 0.265 3.646 0.124 0.411 8.135 2.205 78.035 GAL 87 10 F 1 0.024 2.681 0.197 0.026 11.112 131.592 0.347 3.637 0.582 0.283 11.420 2.075 89.927 GAL 87 10 F 1 0.012 4.139 0.184 -0.004 16-973 190.409 0.375 4.473 0.339 0.180 16.719 3.172 82.942 GAL 87 10 F 1 0.014 2.232 0.067 0.004 38.894 118.867 0.272 3.060 0.180 0.246 12.861 1.791 72.060 GAL 87 10 F 1 0.012 3.159 0.383 0.066 15.612 202.675 0.758 3.010 0.702 0.450 18.639 5.228 107.873 GAL 87 10 F 1 0.010 3.378 0.054 -0.004 17.790 144.825 0.285 4.117 0.278 0.298 18.570 2.938 94.282 HER 84 9 A A 0.009 5.322 1.155 0.325 7.733 296.836 0.085 6.098 0.205 0.144 10.929 0.494 66.379 HER 84 9 A A 0.185 7.266 1.966 0.313 24.467 352.580 0.738 8.931 0.327 0.160 20.972 2.436 102.058 HER 84 9 A A 0.118 6.090 2.395 0.493 21.045 430-013 0.276 7.394 0.282 -0.020 16.687 0.369 19.148 HER 84 9 A A 1.324 10.41B I .21DID 0.639 109.800 23OA36 0.286 14.454 0.066 0.030 20.013 0.290 14B.696 HER 84 9 A A 0.077 32.318 1.479 0.064 15.310 508.961 0.100 14.117 0.529 0.151 26.684 0.944 159.521 HER 84 9 A A 0.141 7.341 0.804 0.746 17.389 546.641 0.128 19.785 1.027 0.144 21.152 0.510 .138.057 HER 84 9 A A 0.041 4.944 1.509 0.392 14.864 483.547 0.029 18.006 0.654 0.098 26.937 0.007 75.637 HER 84 9 A A 0.678 9.397 1.046 0.134 72.659 500.845 0.303 12.937 0.425 0.066 22.503 0.172 150.804 HER B4 9 A A 0.052 3.888 4.376 0.622 13.047 469.631 0.829 18.054 1.067 0.153 22.355 93.896 HER 84 9 A A 0.054 3.550 2.405 0.155 11-325 448-095 0.427 4.436 0.194 0.031 21.943 0.216 94.409 HER 85 9 A A 0.113 3.667 1.229 0.027 45.967 445.463 0.258 6.033 0.266 0.016 8.925 0.224 155.578 HER 85 9 A A 0.023 3.341 0.045 0.010 17.941 568.104 0.301 13.467 0.176 0.022 10.888 0.295 92.031 HER 85 9 A A 0.010 2.807 0.018 0.072 8.400 511.599 0.335 9.630 0.206 -0.008 9.737 0.159 64.588 HER 85 9 A A 0.088 2.285 0.804 0.042 31-204 1031-738 0.185 7.623 0.178 0.034 6.348 0.122 101.151 HER 85 9 A A 0.002 3.730 0.094 0.036 11.625 760.473 -0.041 9.860 0.208 0.012 9.851 0.192 111.528 HER 85 9 A A 0.035 3.768 0.047 0.417 13-916 550.860 0.318 10.588 0.405 0.025 10.323 0.315 101.008 HER 85 9 A A 0.043 2.581 0.944 0.015 18.394 428.597 0.369 5.801 0.233 0.050 9.015 0.041 106.713 HER 85 9 A A 0.272 4.466 1.450 0.006 50.912 413.827 0.274 5.120 0.183 0.070 8.690 0.130 86.080 HER 85 9 A A O@032 3.234 0.097 0.458 19@979 518.372 0.405 9.990 0.394 0.092 12.907 0.233 112.615 HER 85 9 A A 0.016 2.790 0.042 -o.004 16.176 623.454 0.467 6.078 0.231 0.016 10.948 0.434 93.052 HER 86 9 A A 0.139 9.440 1.080 0.016 43.088 654.313 1.228 5.944 0.617 0.068 18.719 0.270 111.352 HER 86 9 A A 0.011 3.345 0.046 0.006 13.277 504.851 0.150 4.737 0.238 0.077 9.517 0.900 93.137 HER 86 9 A A 0.231 6.366 0.725 -0.002 50.045 436.777 0.543 2.853 0.347 0.047 14.721 0.339 119.882 HER 86 9 A A 0.047 5.813 0.619 0.001 22.269 361.594 0.454 5.156 0.451 0.031 11.438 0.252 106.598 HER 86 9 A A 0.246 7.132 1.883 0.037 42.422 407.701 0.213 7.293 0.437 0.011 16.501 0.233 99.866 HER 86 9 A A 0.061 5.134 0.047 -0.011 30.848 530.083 0.159 8.567 0.113 0.011 10.923 0.185 120.783 HER 86 9 A A 0.037 4.964 0.039 0.014 24.134 607.502 0.133 7.309 0.339 0.012 10.122 0.295 102.215 HER 86 9 A A 0.030 4.984 0.042 0.002 20.009 538.321 0.161 4.169 0.219 0.031 9.068 0.242 77.021 HER 86 9 A A 0.074 3.992 0.023 -0.016 34.991 809.361 0.220 5.013 0.289 -0.018 10.615 0.171 104.035 HER 66 9 A A 0.013 3.630 0.042 -0.007 13.549 663.405 0.089 4.680 0.252 0.008 10.954 0.217 98.280 LLM a4 10 A A 0.032 9.489 0.595 0.034 14.471 454.633 0.158 8.260 0.478 0.108 29.Oa9 1.684 95.303 LLM 84 10 A A 0.022 7.417 0.251 0.001 20.622 229.837 0.161 2.399 0.100 0.032 12.359 0.779 120.885 Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr . Cu Fe Hg Mn Ni Pb Se Sn Zn LLM 84 10 A A 0.038 9.155 0.478 0.013 16.840 323.207 0.125 3.592 0.243 0.057 12.284 0.371 101.271 LLM 84 10 A A 0.045 8.971 0.154 0.120 22.529 231.886 0.105 2.624 0.118 0.100 8.801 0.737 106.118 LLM 84 10 A A 0.015 6.858 0.119 -0.001 11.629 277.610 0.093 3.649 0.109 0.048 11.792 0.512 90.653 LLM 84 10 A A 0.075 7.982 0.185 0.021 31.216 353.005 0.147 4.586 0.362 0.132 13.690 0.460 132.099 LLM 84 10 A A 0.076 5.677 0.396 0.109 24.123 373.031 0.124 4.568 0.307 0.084 12.780 0.395 109.010 LLM 84 10 A A 0.021 6.115 0.189 0.008 8.613 238.188 0.114 3.244 0.299 0.066 10.832 74.702 LLM 84 10 A A 0.027 9.774 0.145 0.010 12.484 417.667 0.152 3.631 0.450 0.053 18.582 0.485 101.045 LLM 84 10 A A 0.063 9.681 0.473 0.020 24.342 420.245 0.217 4.432 0.756 0.`112 25.702 0.243 123.089 LLM 85 9 A A 0.287 14.690 1.993 0.002 42.858 441.835 0.209 2.551 0.344 0.067 11.765 0.742 89.460 LLM 85 9 A A 0.048 10.072 0.935 -0.006 29.447 750.483 0.547 3.026 0.714 0.127 28.499 1.468 126.243 LLM 85 9 A A 0.071 9.885 0.592 0.029 28.949 1292.530 0.299 2.670 0.662 0.085 29.761 0.692 109.707 LLM 85 9 A A 0.073 11.572 0.601 0.030 28.279 404.323 0.175 3.847 2.585 0.062 10.579 0.493 88.891 LLM 85 9 A A 0.463 13.654 1.333 0.037 74.219 987.376 0.560 4.488 1.835 0.105 19.275 0.967 152.158 LLM 85 9 A A 0.303 10.276 0.933 0.008 116.164 491.409 0-.441 2.862 1.570 0.080 20.966 0.841 213.882 LLM 85 9 A A 0.198 11.603 1.136 0.066 63.951 547.496 0.318 3.903 1.481 0.096 15.639 0.700 159.402 LLM 85 9 A A 0.489 7.838 1.009 0.035 98.999 497.525 0.277 1.582 0.335 0.065 7.215 0.525 268.295 LLM 85 9 A A 0.128 9.585 0.535 0.017 49.377 576.983 0.309 2.255 1.202 0.048 20.297 0.510 130.390 LLM 85 9 A A 0.016 11.387 0.659 0.031 16.482 555.737 0.174 2.791 0.465 0.150 16.355 0.997 84.345 LLM 86 9 A A 0.023 8.582 0.647 -0.072 23.440 838.910 0.630 3.472 0.804 0.103 19.930 1.139 139.549 LLM 86 9 A A 0.229 11.806 0.819 -0.055 59.575 782.679 0.446 3.902 0.545 0.147 21.446 0.869 161.852 LLM 86 9 A A 0.064 9.565 0.458 -0.057 14.496 514.720 0.278 1.401 0.547 0.076 16.111 0.829 98.656 LLM 86 9 A A 0.039 13.546 0.726 -0.111 26.583 596.284 0.624 3.843 0.348 0.097 19.347 0.689 131.618 LLM 86 9 A A 0.013 8.888 0.279 -0.057 13.571 471.932 0.318 3.001 0.506 0.113 14.470 0.722 97.712 LLM 86 9 A A 0.038 12.581 0.403 -0.001 30.041 675.051 0.417 7J85 0.871 0.158 18.958 1.124 152.570 LLM 86 9 A A 0.049 7.923 0.582 -0.016 22.904 526.777 0.458 2.824 0.612 0.058 17.829 0.795 136.502 LLM 86 9 A A 0.049 8.984 0.811 -0.071 23.258 677.010 0.487 2.882 0.809 0.101 20.081 1.160 128.601 LLM 86 9 A A 0.045 11.446 0.677 -0.082 30.477 903.393 0.514 4.041 0.821 0.118 22.061 1.018 142.023 LLM 86 9 A A 0.193 11.673 0.747 -0.082 56.364 933.977 0.712 4.597 0.608 0.177 11.419 0.550 171.478 LOT 84 10 A A 0.512 6.633 0.784 0.008 49.936 413.991 0.489 1.685 0.200 0.125 9.067 0.396 106.680 LOT 84 10 A A 0.102 6.803 0.493 0.073 19.002 300.752 0.539 2.712 0.196 0.141 7.046 0.669 97.310 LOT 84 10 A A 0.208 6.042 0.609 0.023 23.582 358.073 0.322 1.996 0.202 0.105 7.842 0.923 86.569 LOT 84 10 A A 0.113 6.448 0.396 0.022 19.088 216.067 0.519 2.254 0.271 0.054 6.941 0.651 88.647 LOT 84 10 A A 0.184 6.666 0.273 0.006 24.271 282.665 0.365 2.322 0.178 0.090 8.031 0.109 93.077 LOT 84 10 A A 0.092 7.894 0.544 0.067 13.560 400.487 0.466 2.682 0.267 0.106 8.942 0.103 86.060 LOT 84 10 A A 0.218 5.907 0.418 0.016 23.901 444.583 0.322 3.065 0.301 0.073 9.440 104.055 LOT 84 10 A A 0.159 6.341 0.814 0.036 27.606 459.967 0.364 3.090 0.387 0.039 9.259 119.260 LOT 84 10 A A 0.145 6.800 0.5T7 0.013 21.058 287.715 0.486 2.692 0.169 0.103 8.313 96.412 LOT 84 10 A A 0.053 6.232 0.472 0.016 10.335 318.472 0.297 2.478 0.154 0.081 8.978 0.628 66.178 LOT 85 10 A A 0.102 10.992 0.377 0.020 24.202 402.913 0.828 2.404 0.155 0.050 9.084 0.170 112.948 LOT 85 10 A A 0.194 11.685 0.633 0.007 39.234 427.553 0.581 2.598 0.156 0.056 10.735 0.139 140.860 LOT 85 10 A A 0.167 6.480 0.413 0.014 31.033 379.262 0.696 1.810 0.177 0.050 6.620 0.039 104.371 LOT 85 10 A A 0.106 10.429 0.537 0.009 24.750 415.949 1.024 2.813 0.232 0.099 8.172 0.168 114.437 LOT 85 10 A A 0.076 3.424 0.542 0.010 12.021 302.690 0.268 2.126 0.065 0.076 4.183 0.082 86.820 LOT 85 10 A A 0.093 14.081 0.441 0.095 24.394 386.157 0.718 3.392 0.563 0.061 8.882 0.100 121.628 LOT 85 10 A A 0.074 12.029 0.693 0.008 11.641 333.003 0.792 2.415 0.231 0.044 7.011 0.186 78.201 LOT 85 10 A A 0.126 10.166 0.407 0.015 14.394 336.606 0.448 1.6T7 0.085 0.063 6.294 0.118 100.550 LOT 85 10 A A 0.291 10.336 0.899 0.051 37.818 432.614 0.682 2.626 0.089 0.064 8.162 0.139 103.484 Table A-10 Contd. LOC YR MTN SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn LOT 85 10 A A 0.060 9.604 0.815 0.029 12.778 655-468 0.724 2.593 0.243 0.051 7.848 0.123 134.634 LOT 86 10 A A 0.074 6.250 0.215 -0.047 13.813 359.778 0.182 2.328 -0.023 0.009 5.786 0.153 63.747 LOT 86 10 A A 0.043 4.686 0.567 -0.059 14.061 786.860 0.450 3.008 0.147 0.015 5.614 0.216 93.119 LOT 86 10 A A 0.041 5.245 0.3T7 -0.048 11.973 592.829 0.513 2.646 0.021 0.033 6.451 0.106 92.134 MOB 84 9 A A 0.079 5.996 0.169 0.112 18.645 347.813 O.1a6 14.706 0.929 0.144 20.859 1.435 139.569 MOB 84 9 A A 0.033 3.818 0.152 0.006 6.382 320.481 0.240 9.152 0.653 0.063 19.610 1.026 121.127 MOB 84 9 A A 0.053 5.339 0.331 0.115 10.698 680.461 0.317 16.991 0.763 0.084 17.278 0.495 114.505 MOB 84 9 A A 0.111 7.883 0.166 0.133 24.347 322.564 0.191 8.353 0.707 0.067 19.230 0.309 115.661 MOB 84 9 A A 0.080 5.132 0.085 -0.002 20.478 371.531 0.162 5.792 0.563 0.009 21.149 0.273 116.923 MOB 84 9 A A 0.234 5.449 0.170 0.095 17.775 286.696 0.413 8.820 0.490 -0.018 16.929 0.265 135.127 MOB 94 9 A A 0.187 4.063 0.109 0.100 19.346 296.755 0.170 6.494 1.061 1.085 IZ.898 0.255 155.847 MOB 84 9 A A 0.081 5.602 0.047 0.105 14.230 495.207 0.275 24.747 0.885 0.125 19.524 123.267 MOB 84 9 A A 0.091 5.517 0.179 0.150 10.531 470.112 0.209 12.042 0.970 0.050 20.770 103.125 MOB 84 9 A A 0.118 6.032 0.115 0.075 18.780 339.390 0.180 10.050 0.337 -0.005 18.922 0.076 108.278 MOB 85 8 A A 0.053 4.357 0.059 0.077 9.522 473.831 0.277 6.300 -0.023 11.932 0.572 83.616 MOB 85 8 A A 0.254 6.767 0.204 0.108 31.715 484.197 0.586 7.017 0.354 0.053 21.660 0.618 125.916 MOB 85 8 A A 0.102 4.574 0.078 0.137 12.295 365.675 0.208 5.395 0.348 0.007 20.077 0.294 95.877 MOB 85 8 A A 0.063 5.763 0.055 0.201 13.182 376.981 0.286 4.970 0.366 -0.012 15.263 0.199 94.289 MOB 85 8 A A 0.135 7.698 0.218 0.272 25.423 481.954 0.626 4.373 0.217 0.033 21.553 0.539 120.473 MOB 85 8 A A 0.365 5.664 0.117 0.287 62.048 450.426 0.839 5.504 0.403 0.028 17.896 0.261 124.878 MOB 85 8 A A 0.245 5.478 0.076 0.228 42.239 340.326 0.581 6.658 0.222 0.029 19.412 0.192 112.744 MOB 85 8 A A 0.073 10.382 0.146 0.026 20.465 428.198 0.364 5.456 0.209 0.152 11.215 0.402 116.325 MOB 85 8 A A 0.021 5.151 0.090 0.410 11.697 306.107 0.408 6.963 0.188 0.013 12.355 0.344 85.968 MOB 85 8 A A 0.092 7.341 0.189 0.079 21.464 516.950 0.896 7.729 0.220 0.082 17.250 0.330 110.260 MOB 86 9 A A 0.135 4.933 0.101 0.011 14.122 313.462 0.467 4.607 0.220 0.005 15.351 0.519 94.207 MOB 86 9 A A 0.068 5.888 0.151 0.027 14.515 571.986 0.333 7.257 0.378 -0.026 20.433 0.464 104.993 MOB 86 9 A A 0.036 5.007 0.039 -0.006 8.372 325.926 0.140 6.275 0.162 0.030 15.504 0.363 85.644 MOB 86 9 A A 0.041 8.020 0.092 -0.008 9.774 450.110 0.620 7.633 0.324 0.039 22.193 0.566 92.723 MOB 86 9 A A 0.125 7.144 0.110 0.007 13.947 336.724 0.542 3.151 0.177 -0.003 17.372 0.279 101.823 MOB 86 9 A A 0.327 5.717 0.078 -0.004 2T.168 348.728 0.444 5.074 0.214 -0.021 16.402 0.327 90.144 MOB 86 9 A A 0.281 5.252 0.043 0.001 26.478 260.337 0.770 5.190 0.224 -0.022 14.368 0.234 108.176 MOB 86 9 A A 0.057 7.310 0.107 -0.005 16.406 418.134 0.342 7.006 0.432 0.004 14.469 0.293 101.482 MOB 86 9 A A 0.623 12.795 0.214 0.020 76.217 350.696 0.182 10.074 0.325 0.047 10.961 0.856 115.423 MOB 86 9 A A 0.033 6.645 0.117 -0.014 10.554 549.613 0.274 8.866 0.410 -0.002 17.551 0.188 114.052 MRD 84 9 A A 0.015 4.485 1.606 17.667 295.477 0.300 39.244 1.600 0.138 24.833 2.263 112.243 MRO 84 9 A A 0.011 2.802 0.481 0.009 9.319 390.847 0.111 24.885 1.515 0.156 20.457 1.522 83.094 MRD 84 9 A A 0.054 4.603 0.414 0.037 18.707 362.T30 0.134 14.039 0.408 0.013 24.516 1.063 106.505 MRD 84 9 A A 0.036 5.119 0.420 0.048 10.294 308.263 0.143 15.717 1.145 0.089 14.935 0.517 72.345 MRD 84 9 A A 0.041 3.187 0.681 0.053 22.143 368.652 0.118 20.101 0.838 0.136 25.374 1.174 116.801 MRD 84 9 A A 0.006 3.694 0.684 -0.012 16.079 464.926 0.164 19-097 1.274 0.123 32.307 1.164 98.955 MRD 84 9 A A 0.028 3.487 1.036 0.064 14.980 253.097 0.114 40.680 1.803 0.062 24.495 0.925 96.048 MRD 84 9 A A 0.029 3.486 0.256 0.037 25.291 525.940 0.029 26.259 0.925 0.061 22.043 0.693 111.660 MRD 84 9 A A 0.025 2.012 0.679 0.010 12.996 445.910 0.131 69.872 0.871 0.150 26.180 . 97.387 MRD 64 9 A A 0.008 3.447 0.747 0.098 11.975 421.964 0.092 19.951 1.100 0.104 23-214 0.977 86.725 MRD 85 9 A A 0.008 2.399 0.786 0.044 11.282 615.461 0.284 15.890 0.908 0.033 21.513 0.684 101.116 MRD 85 9 A A 0.126 3.998 0.329 0.028 22.313 663.246 0.144 13.951 0.613 0.049 16.607 0.394 104.379 MRD 85 9 A A 0.030 3.180 0.627 0.242 19.453 851.850 0.235 5.965 1.024 0.134 22.073 0.763 121.847 Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn MRD 85 9 A A 0.017 2.294 0.286 0.157 8.531 778.363 0.056 4.867 0.733 0.077 17.944 0.279 84.101 MRD 85 9 A A 0.002 1.723 1.069 0.056 17.560 637.028 0.674 9.584 0.429 0.124 14.312 0.624 110.223 MRD 85 9 A A -0.010 2.742 1.067 0.039 12.487 529.520 0.227 25.117 0.872 0.109 21.835 0.507 106.049 MRD 85 9 A A 0.119 6.358 0.742 0.035 31.693 841.718 0.305 9.276 0.592 0.116 19.842 0.330 118.872 MRD 85 9 A A 0.023 2.813 0.386 0.067 10.797 324.017 0.056 6.141 0.596 0.070 17.971 0.750 71.847 MRD 85 9 A A 0.037 2.777 0.573 0.018 18.829 466,448 0.124 14.998 0.946 0.039 21.202 0.590 104.843 MRD 85 9 A A 0.085 4.564 0.260 -0.006 29-053 592.087 0.167 22.026 0.870 0.082 14.269 0.476 116.404 MRD 86 9 A A -0.009 2.T36 0.179 -0.007 9.843 366.510 0.026 6.209 0.502 0.012 19.440 0.471 87.732 MRD 86 9 A A 0.026 2.117 0.205 0.008 7.964 373.804 0.048 4.266 0.407 0.030 16.907 0.400 66.134 MRD 86 9 A A 0.034 2.438 0.669 -0.017 12.768 557.922 0.360 6.453 0.147 0.049 20.613 1.278 90.759 MRD 86 9 A A 0.019 4.345 0.578 -0.011 10.882 109.520 0.239 9.022 0.341 0.038 14.611 0.862 77.012 MRD 96 9 A A 0.004 2.312 0.231 -0.010 8.486 283.300 0.152 8.678 0.462 0.066 16.693 0.572 65.344 MRD 86 9 A A 0.020 2.631 0.211 0.008 7.915 311.166 0.027 6.1T3 0.494 0.015 15.949 0.377 68.556 MRD 86 9 A A 0.054 4.302 0.837 -0.003 23.863 283.354 0.086 8.602 0.862 0.087 24.187 0.483 109.901 MRO 86 9 A A 0.167 8.714 0.743 0.056 30.167 232.810 0.077 12.276 0.625 0.127 17.673 0.979 120.240 MRD 86 9 A A 0.047 2.011 0.255 -0.004 14.829 338.297 0.084 5.676 0.563 0.002 16.751 0.300 88.15T MRD 86 9 A A 0.056 4.640 0.420 -0.028 19.371 226.086 0.046 12.202 0.837 0.076 27.492 0.444 107.761 MRD 87 10 A A 0.020 2.510 0.409 0.006 12.793 283.211 0.049 6.862 0.441 0.065 16.822 0.303 144.762 MRD 87 10 A A 0.053 2.884 0.612 -0.000 13.782 800.531 0.041 5.663 0.680 0.164 29.795 0.534 125.083 MRD 87 10 A A 0.036 2.398 0.200 0.006 12.339 293.684 0.161 6.301 0.649 0.071 14.181 0.224 126.302 MRD 87 10 A A 0.007 4.381 0.358 0.036 15.361 334.549 0.063 17.245 0.862 0.096 26.725 0.685 117.175 MRD 87 10 A A 0.013 1.915 0.181 -0.001 8.079 610.537 0.025 3.526 0.569 0.071 12.560 0.231 87.241 MRD 87 10 A A 0.063 3.052 0.450 -0.007 16.065 461.408 0.036 11.440 0.345 0.062 16.675 0.367 77.677 MRO 87 10 A A 0.136 3.463 0.364 -0.004 24.999 370.708 0.102 14.862 0.508 0.128 22.322 0.492 220.919 MRD 87 10 A A 0.013 2.266 0.181 -0.004 7.993 434.932 0.027 9.527 0.426 0.082 27.462 0.329 78.263 MRD 87 1U A A 0.024 3.0306 0.7.2 -0.005 17.016 596a723 0.119 13.787 0.381 0.088 19.169 0.936 96.722 MRD 87 10 A A 0.005 2.814 0.268 -0.009 7.432 737.419 0.041 3.658 0.447 0.104 16.345 0.282 93.730 PAM 84 10 A A 0.070 4.083 1.426 0.223 11.418 498.580 0.115 6.671 0.791 0.118 13.300 0.400 103.242 PAM 84 10 A A 0.054 4.362 0.045 -0.029 11.617 607.016 0.057 8.564 0.020 0.067 13.596 2.509 108.163 PAM 84 10 A A 0.155 5.619 0.081 0.084 10.963 726.172 0.084 4.670 0.290 0.142 17.279 0.187 105.628 PAM 84 10 A A 0.078 3.479 0.061 0.051 11.291 748.498 0.030 6.756 0.373 0.093 14.523 0.141 96.993 PAM 84 10 A A 0.020 3.358 0.090 0.023 9.354 499.003 0.039 6.630 0.235 0.085 14.008 0.165 88.747 PAM 84 10 A A 0.055 4.194 0.260 0.190 11.302 570.114 0.023 15.703 0.609 0.068 13.967 0.187 109.223 PAM 84 10 A A 0.022 3.363 0.143 0.020 8.070 362.773 0.085 6.075 0.065 0.026 11.690 0.112 90.600 PAM 84 10 A A 0.090 4.1T6 0.431 0.100 9.192 1126.348 0.123 7.016 0.694 0.125 13.117 0.040 105.767 PAM 84 10 A A 0.231 5.874 0.125 0.171 17.637 923.983 0.119 7.893 1.120 0.199 21.153 125.120 PAM 84 10 A A 0.292 7.671 0.122 0.001 12.242 323.223 0.069 3.478 0.405 0.052 21.725 106.990 PAM 85 10 A A 0.056 3.479 0.036 0.048 11.005 552.025 0.077 9.869 . -0.054 20.294 0.497 99.075 PAM 85 10 A A 0.094 4.515 0.147 0.084 10.857 317.623 0.074 5.964 0.276 0.056 19.143 0.113 95.605 PAM 85 10 A A 0.103 5.220 0.098 0.019 10.211 232.879 0.071 5.023 0.394 0.011 15.570 0.180 88.435 PAM 85 10 A A 0.034 3.268 0.034 0.106 8.087 550.033 0.032 5.165 0.447 0.074 13.968 0.254 93.078 PAM 85 10 A A 0.071 2.365 0.017 0.150 7.059 482.667 0.042 7.462 0.243 0.034 20.868 0.313 74.733 PAM 85 10 A A 0.114 5.255 0.072 0.360 13.254 402.551 0.103 6.138 0.660 0.148 12.477 0.243 82.219 PAM 85 10 A A 0.119 3.173 0.025 0.042 10.027 477.743 0.076 6.062 0.205 0.063 15.759 0.114 94.372 PAM 85 10 A A 0.028 3.702 0.029 0.115 7.633 426.110 0.012 6.330 0.403 0.067 16.398 0.033 84.059 PAM 85 10 A A 0.219 4.327 0.047 0.039 15.556 427.026 0.035 5.017 0.192 0.056 13.561 0.211 100.318 PAM 85 10 A A 0.121 3.261 0.050 0.117 11.671 379.612 0.042 8.389 0.420 0.042 18.041 0.272 101.835 Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn PAM 86 10 A A 0.063 3.746 0.058 -0.055 4.969 344.345 0.035 3.843 0.227 0.040 20.670 0.077 77.985 PAM 86 10 A A 0.405 6.353 0.190 -0.028 19.396 300.936 0.061 6.474 0.040 0.073 14.084 0.332 90.403 PAM 86 10 A A 0.447 4.585 0.120 -0.066 23.7T7 532.035 0.099 3.978 0.165 0.056 24.162 0.277 96.894 PAM 86 10 A A 0.042 3.185 0.078 -0.016 5.877 388.971 0.037 4.587 0.504 0.034 24.708 0.210 57.858 PAM 86 10 A A 0.030 3.156 0.042 -0.045 8.936 334.645 0.022 5.052 0.137 0.001 15.616 0.114 80.571 PAM 86 10 A A 0.076 4.2T5 0.086 -0.041 7.372 477.039 0.116 4.744 0.261 0.029 35.990 0.125 93.931 PAM 86 10 A A 0.043 3.611 0.039 -0.026 7.772 347.480 0.035 4.236 0.308 0.039 17.557 0.254 72.732 PAM 86 10 A A 0.049 4.854 0.086 -0.060 8.192 479.699 0.053 4.281 0.087 0.070 25.450 0.058 85.268 PAM 86 10 A A 0.100 6.981 0.062 -0.057 10.362 444.622 0.095 7.528 0.427 0.053 23.515 0.083 94.727 PAM 86 10 A A 0.219 6.322 0.106 -0.063 12.886 356.288 0.036 3.502 -0.127 0.025 13.506 0.119 93.906 PAS 87 9 A A 0.303 3.937 1.175 0.056 34.287 456.407 0.165 5.189 0.345 0.071 10.131 0.168 185.228 PAS 87 9 A A 0.229 4.052 1.274 0.008 36.545 285.802 0.150 4.642 0.282 0.071 11.415 0.188 123.123 PAS 87 9 A A 0.066 3.603 0.100 0.009 12.749 339.737 0.104 4.265 0.252 0.061 8.350 0.118 76.279 PAS 87 9 A A 0.153 3.274 0.049 0.015 30.306 311.171 0.236 4.612 0.215 0.042 8.036 0.152 176.150 PAS 87 9 A A 0.182 3.261 0.212 0.014 56.347 562.255 0.349 5.403 0.259 0.037 10.938 0.376 173.414 PAS 87 9 A A 0.030 7.165 0.615 0.010 29.170 599.665 0.339 3.957 0.281 0.039 12.996 0.428 97.396 PAS 87 9 A A 0.063 2.940 0.174 -0.004 9.888 290.139 0.206 4.435 0.295 0.028 9.172 0.227 143.840 PAS 87 9 A A 0.117 5.870 0.683 0.003 27.833 298.828 0.628 7.204 0.281 0.021 11.477 0.454 98.580 PAS 87 9 A A 0.211 6.342 1.854 -0.005 29.036 431.212 0.340 5.679 0.249 0.050 15.629 0.361 128.787 PAS 87 9 A A 0.141 6.509 0.318 -0.005 36.525 407.366 0.635 3.484 0.164 0.115 12.881 0.780 122.261 PEN 85 8 A A 0.166 4.918 0.127 0.605 15.279 1213.893 1.092 5.440 0.359 -0.021 25.097 0.587 125.839 PEN 85 8 A A 0.068 4.255 0.095 0.324 8.126 2407.064 0.618 6.379 0.990 0.025 25.127 0.275 92.465 PEN 85 8 A A 0.096 5.939 0.138 0.645 10.003 973.114 0.426 5.294 0.603 0.034 18.924 0.132 104.574 PEN 85 8 A A 0.223 5.464 0.145 0.365 25.135 970.037 0.456 3.841 0.561 0.077 28.915 0.057 123.604 PEN 85 8 A A 0.046 3.143 0.085 0.059 6.846 685.306 0.408 2.515 0.541 -0.002 14.T35 0.182 69.795 PEN 85 8 A A 0.049 4.726 0.151 0.130 10.980 1358.456 0.681 3.667 0.968 0.004 29.448 0.291 98.674 PEN 85 8 A A 0.052 3.979 0.127 2.509 12.102 1341.370 0.705 5.042 0.828 0.122 20.776 0.149 96.3114 PEN 85 8 A A 0.032 3.446 0.080 0.241 8.490 1120.806 0.611 5.794 O.T37 0.036 20.547 0.444 86.678 PEN 85 8 A A 0.109 3.828 0.074 0.356 8.176 1249.507 0.426 3.761 0.298 0.036 15.960 0.066 83.201 PER 85 8 A A 0.067 3.324 0.156 O.OTI B.T75 3209.641 0.643 5.704 1.367 -0.023 24.013 0.415 91.131 PEN 86 8 A A 0.133 7.656 0.517 0.010 12.759 717.150 0.174 5.015 0.584 0.154 111.729 0.497 98.155 PEN 116 8 A A 1.129 11.200 0.370 -0.003 63.421 1250.844 0.204 3.059 0.423 0.119 52.223 0.360 134.723 PEN 86 8 A A 0.648 10.508 0.597 -0.004 64.053 629.815 0.122 4.854 0.272 0.119 46.425 0.379 140.947 PER 86 8 A A 0.024 8.412 0.677 -0.007 22.458 660.995 0.678 4.183 0.376 0.040 55.134 0.458 126.309 PEN 86 8 A A 0.227 10.371 0.300 0.028 37.175 824.637 0.275 4.889 0.483 -0.009 79.809 0.360 124.631 PEN 86 8 A A 0.390 9.048 0.250 0.021 40.288 1300.020 0.349 4.384 0.491 0.051 58.556 0.506 130.052 PEN 86 8 A A 0.162 8.593 0.415 -0.019 37.974 542.897 0.234 4.628 0.463 0.080 83.992 0.259 112.995 PEN 86 8 A A 0.144 8.839 0.242 -0.012 36.199 577.913 O@646 3.960 0.355 0.056 36.089 0.369 134.551 PEN 86 8 A A 0.236 9.450 0.384 0.021 37.822 990.541 0.323 4.399 0.374 0.088 39.635 0.476 128.945 PEN 86 8 A A 0.106 10.415 0.251 0.024 25.769 508.952 0.175 4.550 0.285 0.122 33.520 0.210 117.845 PEN 87 9 A A 0.196 7.879 0.195 0.132 20.624 1059.198 0.654 5.361 0.661 0.065 30.891 0.368 113.239 PEN 87 9 A A 0.233 9.180 0.123 0.034 32.481 1057.514 0.927 4.288 0.259 0.112 24.769 0.433 123.969 PEN 87 9 A A 0.074 10.759 0.203 0.041 21.088 652.664 0.533 6.720 0.401 0.089 16.806 0.268 140.949 PEN 87 9 A A 0.569 11.876 0.244 -0.016 28.312 850.682 0.417 12.275 0.521 0.187 42.388 0.374 129.090 PEN 87 9 A A 0.011 4.342 0.112 0.041 19.486 1492.745 0.950 6.193 0.460 0.124 16.365 0.253 120.059 PEN 87 9 A A 0.106 7.094 0.224 0.001 12.987 508.976 0.332 4.604 0.324 0.038 22.671 0.358 93.520 PEN 87 9 A A 0.340 7.516 0.369 0.003 34.517 1043.901 0.815 3.372 0.190 0.128 25.392 0.268 114.815 Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn PEN 87 9 A A 0.000 3.435 0.087 -0.005 15.282 1189.622 0.606 3.975 0.426 0.005 13.999 0.237 81.972 PEN 87 9 A A 0.146 8.020 0.154 0.004 21.925 1124.670 0.666 10.786 0.438 0.169 24-544 0.306 77.277 PEN 87 9 A A 0.029 3.773 0.200 0.146 29.050 3299.688 1.197 5.234 0.770 0.074 21.598 0.301 152.289 ROU 84 9 A A 0.057 6.812 0.311 0.034 13.385 398.129 0.192 16.542 0.250 0.007 11.170 0.779 86.183 ROU 84 9 A A 0.109 7.050 0.362 0.007 17.799 539.283 0.235 35.006 0.274 0.101 15.472 0.341 115.041 ROU 84 9 A A , 0.025 4.084 0.233 0.061 10.462 502.437 0.214 15.218 0.250 0.091 15.868 0.883 79.336 ROU 84 9 A A 0.347 8.997 0.395 0.019 26.886 701.500 0.404 12.296 0.284 0.007 15.485 0.301 107.745 ROU 84 9 A A 0.341 10.121 0.276 0.035 31.468 461.428 0.311 16.950 0.359 0.068 16.641 0.285 111.149 R()U 84 9 A A 0.158 11.855 0.403 0.163 19.073 653.102 0.371 15.948 0.363 0.229 9.220 0.161 100.217 ROU 84 9 A A 0.195 9.322 0.354 0.036 23.376 470.230 0.371 22.899 0.363 0.191 12.528 125.520 ROU 84 9 A A 0.090 5.919 0.261 0.033 13.563 411.452 0.294 10.848 0.174 0.088 10.532 89.053 ROU 84 9 A A 0.084 7.678 0.237 -0.010 14.761 680.993 0.210 15.141 0.435 0.067 13.156 0.146 100.031 R()U 84 9 A A 0.193 9.T64 0.334 -0.012 20.433 428.443 0.294 15.659 0.263 0.064 10.093 0.280 96.527 Rou 85 9 A A 0.122 3.576 0.312 0.028 40.554 260.192 0.268 3.550 0.132 0.029 8.755 0.514 168.915 ROU 85 9 A A 0.527 5.363 0.200 0.034 68.410 356.458 0.224 4.714 0.174 0.043 9.465 0.253 148.697 ROU 85 9 A A 0.067 2.182 0.195 0.022 16.662 386.636 0.212 5.385 0.238 0.029 6.483 0.210 148.509 ROU 85 9 A A 0.036 2.569 0.379 0.025 30.777 436.625 0.312 2.121 0.106 0.015 7.584 0.289 101.047 ROU 85 9 A A 0.061 4.052 0.185 0.014 16-571 997.827 0.508 4.127 0.260 0.037 11.058 0.332 85.916 ROU 85 9 A A 0.101 2.977 0.204 0.009 39.823 179.213 0.303 2.842 0.093 0.065 5.355 0.335 160.126 ROU 85 9 A A 0.114 2.644 0.109 0.034 28.934 623.374 0.062 2.464 0.227 0.052 38.093 0.162 94.316 ROU 85 9 A A 0.216 3.646 0.902 0.035 22.311 561.171 0.343 3.081 0.216 0.049 13.868 0.180 89.892 ROU 85 9 A A 0.077 6.432 0.309 0.033 26.436 833.422 0.339 3.082 0.307 0.058 15.165 0.486 117.606 ROU 85 9 A A 0.235 3.933 0.350 0.027 51.891 317.709 0.125 3.468 0.162 0.069 10.620 0.188 84.429 SAO 84 9 A A 0.040 6.035 0.433 0.071 18.537 312.101 0.126 13.921 0.832 0.070 21.755 1.278 131.974 SAO 84 9 A A 0.057 3.158 0.239 0.088 16.650 388.823 0.066 8.595 0.601 0.066 17.293 0.289 112.576 SAO 84 9 A A 0.119 3.056 0.242 0.054 20.032 333.606 0.082 4.057 0.268 0.040 11.491 1.230 88.841 SAO B4 9 A A 0.071 4.278 0.274 0.039 14.504 137.806 0.107 8.652 0.434 0.029 17.859 0.257 130.979 SAS 84 9 A A 0.066 3.220 0.235 0.081 12.144 345.217 0.047 7.716 0.349 0.011 21.362 0.170 118.832 SAO 84 9 A A 0.044 3.182 0.204 0.014 10.843 366.823 0.084 6.171 0.124 -0.004 20.388 0.002 108.920 SAO 84 9 A A 0.026 2.431 0.129 0.010 6.770 300.362 0.059 7.006 0.516 0.256 19.197 0.058 89.357 SAO 84 9 A A 0.355 4.766 0.180 0.041 71.539 307.420 0.109 4.096 0.223 0.028 17.897 0.152 155.620 SAO 84 9 A A 0.031 2.763 0.328 0.091 15.042 261.260 -0.002 14.392 0.916 0.027 17.759 0.326 125.973 SAO 84 9 A A 0.027 3.014 0.127 0.069 10.212 367.799 0.043 3.709 0.335 0.090 18.879 0.232 95.519 SAO 85 9 A A 0.052 2.864 0.086 0.014 18.000 264.390 0.240 12.181 0.035 0.026 12.941 0.285 134.954 SAO 85 9 A A 0.011 3.215 0.377 0.389 12.100 235.174 0.062 8.256 0.621 0.086 13.163 0.234 94.901 SAO 85 9 A A 0.051 3.418 0.136 0.057 19.309 218.213 0.399 4.602 0.127 -0.014 13.560 0.255 102.971 SAO 85 9 A A 0.135 2.876 0.108 0.246 26.464 263.140 0.194 3.203 0.305 0.051 16.603 0.246 126.758 SAS 85 9 A A 0.076 5.457 0.138 0.362 24.248 391.842 0.152 6.058 0.338 0.092 15.252 0.083 110.687 SAO 85 9 A A 0.033 4.124 0.168 0.192 16.584 383.038 0.227 4.505 0.501 -0.006 24.648 0.155 92.483 SAO 85 9 A A 0.049 2.400 0.251 0.753 19.384 454.963 0.093 4.944 0.496 -0.005 16.426 -0.021 100.920 SAO 85 9 A A 0.040 3.696 0.113 0.061 20.425 280.039 0.335 3.099 0.272 0.037 12.693 0.075 91.276 SAO 85 9 A A 0.051 3.087 0.685 0.238 23.556 219.028 0.144 8.011 0.643 0.100 11.176 0.252 111.337 SAS 85 9 A A 0.202 4.857 0.180 0.218 43.500 292.467 0.342 3.336 0.106 0.054 13.003 0.084 180.714 SAO 86 9 A A 0.037 5.403 0.182 -0.007 16.536 300.538 0.120 3.254 0.496 -0.005 21.235 0.487 92.629 SAO 86 9 A A 0.089 7.941 1.039 0.088 21.223 446.083 0.122 5.871 0.913 0.053 26.548 0.201 133.682 SAO 86 9 A A 0.061 4.201 0.495 -0-008 22.542 439.091 0.309 5.234 0.390 0.050 23.986 0.297 124.312 SAO 86 9 A A 0.075 6.059 1.049 0.040 19.602 357.243 0.237 6.580 0.530 0.036 28.436 0.889 108.584 F- ML Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn SAS a6 9 A A 0.038 4.484 0.150 -0.029 14.271 376.802 0.155 4.691 0.495 -0.012 24.473 0.395 101.295 SAS 86 9 A A 0.189 4.583 0.212 0.017 26.407 334.164 0.134 3.383 0.359 0.042 19-541 0.194 120.386 SAS 86 9 A A 0.013 3.466 0.285 0.024 9.040 201.033 0.114 5.016 0.507 0.071 21.913 0.111 90.717 SAS 86 9 A A 0.090 8.689 0387 0.060 17.495 445.540 0.126 5.299 0.5T3 0.023 31.015 0.080 126.447 SAS 86 9 A A 0.072 4.509 0.165 -0.007 18.415 403.295 0.156 3.059 0.353 0.025 21.278 0.376 127.995 SAS a6 9 A A 0.018 4.014 0.232 0.076 13.638 337.911 0.143 6.679 0.482 0.020 23.187 O.Oa8 101.783 SAP 84 10 A A 0.012 6.672 0.141 o.loo 10.859 349.567 0.090 8.582 0.443 0.140 9.948 . 91.388 SAP 84 10 A A 0.028 8.261 0.101 0.022 11.074 318.683 0.163 8.764 -0.017 0.034 10.020 0.262 93.831 SAP 84 10 A A 0.055 6.541 0.071 0.016 7.981 423.559 0.096 7.984 0.166 0.076 11.174 0.075 87.106 SAP 84 10 A A 0.020 5.289 0.047 0.001 8.645 395.680 0.065 4.209 0.199 0.002 10.511 0.306 92.892 SAP a4 . 10 A A 0.020 8.121 0.151 0.021 8.234 375.583 0.107 8.780 0.161 0.033 9.918 0.195 93.455 SAP 84 10 A A 0.014 6.134 0.077 0.120 11.255 327.547 0.091 8.369 0.240 0.026 11.773 0.188 102.663 SAP 84 10 A A 0.016 7.243 0.062 0.009 10.592 519.541 0.069 7.660 0.167 0.062 11.422 0.188 87.081 SAP 84 10 A A 0.032 6.603 0.181 8.004 400.291 0.087 10.832 . 0.118 13.830 0.160 83.674 SAP a4 10 A A 0.021 5.201 0.364 0.095 10.036 343.495 0.073 9.479 0.277 0.065 9.174 101.794 SAP 84 10 A A 0.017 4.262 0.053 0.073 8.506 547.486 0.061 8.337 0.223 0.022 11.883 89.839 SAP 85 8 D A 0.178 10.992 0.151 0.026 29.526 469.660 0.281 7.811 0.026 0.058 22.621 0.526 126.938 SAP 85 8 D A 0.348 10.052 0.136 0.044 53.918 298.678 0.210 8.509 0.063 0.066 20.095 0.213 151.979 SAP 85 8 D A 0.144 8.524 0.152 0.362 34.962 435.628 0.345 7.T38 0.158 0.051 17.379 0.183 134.739 SAP 85 8 D A 0.425 11.489 0.206 0.027 98.257 508.981 0.335 5.462 0.062 0.050 20.078 0.235 173.596 SAP 85 8 D A 0.204 11.312 0.257 0.042 42.782 320.944 0.201 5.434 0.159 0.031 17.491 0.229 120.390 SAP 85 8 D A 0.202 11.929 0.208 0.024 46.918 405.450 0.295 3.440 0.128 0.002 17.328 0.395 136.649 SAP 85 8 D A 0.228 9.210 0.209 0.256 35.541 320.384 0.279 6.791 0.108 0.060 11.204 0.070 127.132 SAP 85 8 D A 0.277 12 '. 251 0.328 0.013 55.627 487.560 0.297 7.533 0.120 0.032 22.761 0.302 198.991 SAP 85 8 D A 0.126 10.453 0.343 0.015 31.243 578.714 0.447 6.727 0.408 0.031 20.885 0.191 146.277 SAP 85 8 D A 0.816 7.953 0.176 0.054 107.944 227.915 0.172 7.876 0.186 0.055 9.873 0.201 204.989 SAP 86 8 D A 0.393 10.785 0.342 -0.046 45.616 568.903 0.239 4.586 0.061 0.020 16.452 0.193 119.604 SAP 86 8 D A 0.547 6.719 0.237 -0.045 57.103 491.943 0.325 3.753 0.029 0.009 16.374 0.304 150.061 SAP 86 8 D A 0.668 6.425 0.104 -0.075 50.742 628.299 0.250 2.764 0.109 0.003 17.970 0.3a8 120.017 SAP a6 8 D A 0.112 6.282 0.219 -0.086 20.267 518.543 0.103 5.443 -0.003 0.063 18.470 0.197 95.231 SAP 86 8 D A 0.135 8.284 0.355 -0.037 22.971 667.441 0.250 3.278 0.100 0.025 23.248 0.136 112.315 SAP 86 8 D A 0.444 7.649 0.276 -0.044 44.366 620.613 0.172 4.451 0.001 0.035 23.360 0.112 133.113 SAP 86 8 D A 0.547 6.905 0.206 -0.066 50.810 425.496 0.165 4.3T3 1.416 0.047 20.112 0.210 111.486 SAP 86 8 D A 0.317 7.320 0.417 -0.057 40.334 559.756 0.110 3.387 -0.019 0.015 16.380 0.154 108.315 SAP B6 B D A 0.357 7.119 0.186 -0.030 41.12B 327.148 0.131 5.371 M09 0.012 18.702 0.155 116.089 SAP a6 8 D A 0.205 4.260 0.121 -0.052 23.749 425.122 0.145 2.114 -0.018 0.035 20.118 0.104 75.567 SAP 87 7 A 1 0.606 7.499 0.177 -0.004 39.643 504.193 0.166 2.791 0.110 0.032 17.467 0.079 91.260 SAP 87 7 A 1 0.066 9.120 0.180 O.Oa6 16.928 359.133 0.184 9.000 0.248 0.076 20.238 0.046 83.812 SAP 87 7 A 1 0.371 8.328 0.182 0.008 30.277 408.441 0.154 4.740 0.135 0.024 14.231 0.042 105.148 SAP 87 7 A 1 0.040 10.365 0.233 -0.005 16.30a 746.096 0.339 4.500 0.194 0.020 27.645 0.398 119.612 SAP 87 7 A 1 0.270 6.368 0.188 -0.009 26.433 339.452 0.153 5.270 0.059 0.067 15.363 0.141 96.254 SAP 87 7 A 1 0.081 6.774 0.076 -0.008 16.863 309.519 0.173 4.377 0.046 0.049 14.368 0.187 81.163 SAP 87 7 A 1 0.159 15.254 0.443 -0.000 29.942 372.757 0.301 7.504 0.071 0.149 22.750 0.169 129.255 SAP 87 7 A 1 0.264 10.089 0.134 0.008 41.819 477.349 0.236 6.697 0.037 0.074 17.039 0.384 120.961 SAP 87 -7 A I O.OT3 6.004 0.067 0.012 11.071 196.a46 0.066 6.072 0.142 0.042 13.664 0.249 68.294 SAP 87 7 A 1 0.199 6.460 0.087 0.025 17.956 181.197 0.282 8.203 0.148 0.028 20.706 0.306 117.760 SAP 87 7 A 1 0.066 5.308 0.116 0.007 9.861 234.884 0.081 8.642 0.120 O.Oa6 12.021 0.084 76.283 Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn SAP 87 7 A 1 0.098 5.308 0.155 0.016 9.845 191.478 0.130 5.283 0.123 0.067 14.490 0.175 86.447 SAP 87 7 A 1 0.323 8.638 0.230 0.036 31.969 606.249 0.213 10.135 0.206 0.116 19.567 0.255 132.788 SAP 87 7 A 1 0.108 8.145 0.062 0.168 11.875 315.673 0.150 8.441 0.382 0.138 20.193 0.308 108.693 SAP 87 7 A 1 0.031 6.725 0.110 0.006 13.493 468.605 0.369 7.873 0.055 0.036 19.588 0.280 112.016 SAP 87 7 A 1 0.116 9.466 0.346 0.102 33.591 492.555 0.463 5.139 0.037 0.112 17.972 0.143 133.139 SAP 87 7 A 1 0.094 6.042 0.150 0.008 14.842 508.160 0.161 4.266 0.122 0.070 17.852 0.082 100.184 SAP 87 7 A I O.1b9 7.562 0.137 0.012 15.985 300.381 0.298 8.184 0.175 0.093 22.904 0.179 115.662 SAP 87 7 A 1 0.121 6.634 0.062 -0.018 12.593 320.541 0.232 8.155 0.050 0.050 19.833 0.132 92.524 SAP 87 7 A 1 0.593 8.385 0.129 -0.014 40.356 629.404 0.232 3.903 0.094 0.149 20.132 0.241 122.055 SAP 87 8 A 1 0.046 6.929 0.096 0.004 18.035 542.909 0.160 4.020 0.242 0.062 28.091 2.435 104.077 SAP 87 8 A 1 0.078 9.638 0.137 0.096 17.899 448.694 0.205 5.838 0.174 0.090 19.057 1.763 110.457 SAP 87 8 A 1 0.103 7.721 0.112 0.055 24.210 412.503 0.169 3.639 0.224 0.053 19.T57 0.912 104.823 SAP 87 8 A 1 0.100 9.151 0.058 -0.011 32.487 426.679 0.153 3.939 0.041 0.032 20.856 1.509 117.650 SAP 87 8 A 1 0.042 8.732 0.060 0.033 19.105 304.394 0.156 4.508 0.132 0.022 18.070 1.276 127.896 SAP 87 8 A 1 0.090 6.523 0.155 0.003 24.873 207.705 0.219 5.354 0.154 0.055 21.297 2.379 117.362 SAP 87 8 A 1 0.044 6.603 0.046 0.023 14.934 331.510 0.121 6.357 0.015 0.059 20.618 0.339 95.980 SAP 87 8 A 1 0.130 6.890 0.073 -0.002 31.667 341.562 0.123 4.T32 0.046 0.052 15.541 1.852 108.268 SAP 87 8 A 1 0.032 5.918 0.060 -0.007 11.713 327.411 0.116 3.252 0.055 0.037 17.359 1.995 84.513 SAP 87 8 A 1 0.452 10.938 0.243 0.009 69.001 314.946 0.253 5.120 0.195 0.050 18.716 1. 4 77 152.198 SAP 87 8 A 1 0.255 6.684 0.211 -0.003 24.566 292.325 0.118 3.926 0.127 0.070 15.564 1.320 93.144 SAP 87 8 A 1 0.034 6.704 0.053 0.039 17.022 413.730 0.123 5.048 0.147 0.072 20.616 0.616 112.101 SAP 87 8 A 1 0.114 8.621 0.081 0.046 23.764 365.122 0.149 11.434 0.091 0.093 16.572 0.906 149.387 SAP 87 8 A 1 0.062 6.603 0.085 0.015 19.742 502.028 0.108 5.012 0.112 0.026 19.351 0.680 118.078 SAP 87 8 A 1 0.348 9.102 0.077 0.028 50.414 488.096 0.204 5.990 0.164 0.047 19.515 0.987 127.402 SAP 87 8 A 1 0.054 7.826 0.111 0.074 19.865 264.702 0.232 4.681 0.175 0.073 20.469 1.446 123.772 SAP 87 8 A 1 0.201 5.935 0.104 0.006 44.605 262.129 0.277 4.367 0.021 0.032 12.637 1.997 138.297 SAP 87 8 A 1 0.055 7.730 0.131 0.004 25a473 392379 0-222 3.711 0.113 0.028 14.645 1.511 119.717 SAP 87 8 A 1 0.108 6.632 0.074 0.005 19.872 200.507 0.161 2.825 0.097 0.084 12.347 3.063 86.727 SAP 87 8 A 1 0.160 6.836 0.326 0.015 26.857 268.049 0.182 5.470 0.077 0.109 17.134 0.943 112.143 SAP 87 8 8 1 0.120 7.374 0.128 -0.005 27.414 549.535 0.119 5.588 0.174 0.071 17.008 0.235 97.922 SAP 87 8 B 1 0.083 6.569 0.146 -0.011 45.512 415.503 0.139 6.890 0.091 0.091 20.021 0.371 131.965 SAP 87 8 B 1 0.092 8.522 0.137 0.026 27.948 430.539 0.114 4.418 0.058 0.079 18.243 0.409 113.915 SAP 87 8 B 1 0.403 9.351 0.227 0.032 74.300 559.178 0.148 5.018 0.155 0.097 22.360 0.456 152.460 SAP 87 8 B 1 0.122 4.578 0.068 0.017 35.423 607.368 0.104 7.745 0.239 0.053 28.489 0.483 106.432 SAP 87 8 B 1 0.161 9.397 0.288 0.085 39.834 571.135 0.129 5.749 0.344 0.036 23.764 0.464 139.522 SAP 87 8 B 1 0.292 5.475 0.176 0.002 55.568 573.631 0.090 5.018 0.159 0.005 17.779 0.303 112.020 SAP 87 8 8 1 0.056 8.096 0.172 -0.003 16.558 363.045 0.119 2.066 0.104 0.055 13.820 0.110 97.665 SAP 87 8 8 1 0.086 6.533 0.186 0.012 23.346 355.527 0.220 8.7T3 0.133 0.038 18.683 0.242 113.315 SAP 87 8 8 1 0.062 11.624 0.158 0.036 17.172 269.868 0.101 9.016 0.209 0.064 15.718 0.087 87.261 SAP 87 8 C 1 0.050 5.783 0.074 0.019 17.032 642.856 0.161 5.2T3 0.172 0.060 17.542 0.379 101.614 SAP 87 8 C 1 0.256 6.137 0.114 0.005 37.477 521.446 0.110 5.877 0.146 0.037 12.670 0.419 101.829 SAP 87 8 C 1 0.319 7.495 0.073 0.015 50.811 549.479 0.136 3.664 0.085 0.032 14.950 0.338 136.550 SAP 87 8 C 1 0.348 8.727 0.162 0.005 50.136 438.139 0.113 4.914 0.105 0.059 19.526 0.414 128.231 SAP 87 8 C 1 0.066 7.284 0.045 0.009 18.956 396.937 0.094 3.372 0.212 0.046 17* 478 0.107 87.357 SAP 87 8 C 1 0.874 9.580 0.149 0.042 86.210 697.522 0.225 4.891 0.141 0.051 20.353 0.244 125.840 SAP 87 8 C 1 0.449 7.689 0.102 0.009 65.481 636.242 0.192 4.162 0.281 0.073 17.756 0.303 144.791 SAP 87 8 C 1 0.141 9.320 0.058 -0.001 21.851 417.094 0.093 3.441 0.120 0.042 17.386 0.165 87.657 Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn SAP 87 8 C 1 0.182 9.085 0.052 0.034 43.763 406.185 0.183 2.623 0.174 0.036 13.182 0.211 120.463 SAP 87 8 C 1 0.258 8.490 0.121 0.012 48.027 772.228 0.146 4.277 0.119 0.022 21.761 0.374 132.916 SAP 87 8 D A O.Oa4 7.128 0.109 -0.000 19.822 497.838 0.089 9.977 0.193 0.094 20.872 0.270 88.392 SAP 87 8 D A 0.130 7.087 0.128 -0.009 34.887 197.602 0.236 5.349 @0.027 -0.003 13.928 0.390 123.687 SAP 87 8 D A 0.127 7.165 0.151 -0.002 31.899 211.845 0.127 3.244 0.018 0.033 12.023 0.242 114.130 SAP 87 8 D A 0.097 6.400 0.168 -0.001 28.723 275.306 0.292 11.999 0.157 0.018 19.212 0.268 136.561 SAP 87 8 D A 0.180 7.497 0.160 0.002 49.174 395.475 0.382 3.829 0.090 0.061 20.736 0.283 146.144 SAP 87 8 D A 0.044 5.563 0.221 0.003 18.582 351.3a8 0.420 3.289 0.055 0.056 21.754 0.267 141.940 SAP 87 8 D A 0.728 6.368 0.292 -0.012 145.498 244.336 0.342 3.016 0.020 -0.012 20.534 0.100 179.750 SAP 87 8 D A 0.310 7.517 0.192 0.004 54.169 429.027 0.417 13.059 0.028 0.050 21.695 0.266 140.405 SAP 87 8 D A 0.061 8.123 0.172 0.002 21.174 575.390 0.462 5.880 0.166 0.043 33.897 0.243 124.08 SAP 87 8 D A 0.030 5.326 0.128 0.004 17.228 418.784 0.298 6.834 0.104 -0.004 13.392 0.213 105.254 SAP 87 8 E 1 0.114 6.550 0.088 -0.014 31.497 496.052 0.210 3.074 0.079 0.035 18.733 0.092 113.165 SAP 87 8 E 1 0.046 5.094 0.032 0.032 22.275 549.317 0.153 2.182 0.194 0.059 22.889 0.386 95.a88 SAP 87 8 E 1 0.051 10.652 0.137 0.040 20.498 350.725 0.143 3.854 0.024 0.047 18.564 0.142 109.538 SAP 87 8 E 1 0.026 9.231 0.065 -0.017 11.349 518.726 0.091 5.587 0.064 0.043 25.124 0.115 83.688 SAP 87 8 E 1 0.054 6.626 0.033 0.009 16.745 697.708 0.152 4.227 0.421 0.076 45.112 0.176 110.144 SAP 87 8 E 1 0.148 7.525 0.083 -0.006 38.124 482.448 0.204 4.671 0.241 0.055 23.932 0.036 127.121 SAP 87 8 E 1 0.154 5.849 0.073 -0.003 38.344 400.795 0.200 2.765 0.174 0.100 24.368 0.302 122.356 SAP 87 10 D A 0.094 3.823 0.104 -0.001 9.545 245.795 0.194 3.491 0.024 0.024 13.351 0.064 83.217 SAP 87 10 D A 0.097 5.696 0.456 0.002 13.452 519.642 0.358 5.381 0.115 0.082 17.764 0.396 94.663 SAP 87 10 D A 0.025 10.900 0.194 -0.009 10.346 395.813 0.445 3.415 0.023 0.038 27.141 0.296 95.547 SAP 87 10 D A 0.086 6.107 0.147 0.005 9.287 107.029 0.126 2.571 0.047 -0.021 15.463 0.195 76.797 SAP 87 10 D A 0.086 6.066 0.330 0.105 16.705 447.048 0.319 3.586 0.152 0.022 29.895 0.202 94.487 SAP 87 10 D A 0.052 5.915 0.271 0.037 10.072 338.227 0.099 5.148 0.089 0.059 16.694 0.198 75.976 SAP 87 10 D A 0.096 4.194 0.136 0.007 21.148 138.249 0.257 3.369 0.006 0.026 9.118 0.155 121.545 SAP 87 10 D A 0.159 6.897 0.174 0.010 26.161 549.845 0.380 2.951 0.184 0.044 51.717 0.263 113.557 SAP 87 10 D A 1.009 17.257 0.179 0.011 47.111 552.627 0.255 4.482 0.112 0.056 25.895 0.273 119.654 SAP 87 10 D A 0.070 7.423 0.066 -0.007 11.837 264.561 0.114 3.796 0.021 0.011 22.807 0.172 84.915 SJR M 10 8 A 0.012 1.315 0.194 0.013 8.147 330.360 0.074 2.789 0.042 0.382 7.438 1.058 68.193 SJR 84 10 8 A 0.015 2.123 0.073 0.011 5.977 121.857 0.179 2.133 0.013 0.095 1.701 0.131 46.851 SJR 84 10 8 A 0.084 3.765 0.100 0.060 18.428 504.803 0.104 8.486 0.422 0.379 14.637 . 116.580 SJR 84 10 8 A 0.033 1.271 0.181 0.033 11.216 350.594 0.139 2.384 0.059 0.115 8.547 0.121 69.635 SJR 84 10 8 A 0.012 1.241 0.151 0.010 6.846 190.271 0.096 2.946 0.033 0.223 5.753 0.150 56.593 SJR M 10 B A 0.020 1.905 0.263 -0.001 11.964 356.170 0.182 3.967 0.053 0.250 6.143 0.191 86.934 SJR 84 10 6 A 0.016 1.354 0.180 0.028 9.179 293.960 0.087 3.218 0.098 0.204 8.678 0.068 64.039 SJR 84 10 8 A 0.013 0.994 0.138 0.028 5.640 237.978 0.061 2.926 0.074 0.225 4.825 0.210 56.344 SJR 84 10 8 A 0.023 2.196 0.145 0.046 11.956 220.571 0.230 3.463 0.149 0.224 5.969 . 87.035 SJR 84 10 8 A 0.019 0.884 0.127 0.017 8.841 248.659 0.074 1.727 0.033 0.191 9.572 0.154 71.508 SJR 85 8 9 A 0.260 0.053 0.016 0.087 23.043 141.216 0.025 1.030 0.006 2.613 0.129 63.487 SJR 85 8 8 A 0.050 0.078 0.018 0.063 9.879 193.058 0.026 0.887 0.012 1.345 0.095 56.005 SJR 85 8 a A 0.136 0.141 0.075 0.114 21.978 580.644 0.160 2.299 0.086 0.024 8.151 0.451 105.105 SJR 85 8 B A 0.181 0.326 0.051 0.342 15.407 354.860 0.102 2.531 0.055 0.085 5.202 0.101 59.172 SJR 85 8 B A 0.131 0.537 0.084 -0.002 26.390 386.995 0.056 3.028 0.229 0.102 5.704 0.225 83.203 SJR 85 8 a A 0.010 0.493 0.061 1.051 10.520 447.409 0.113 2.628 0.425 0.031 4.851 0.103 65.560 SJR 85 8 8 A 0.167 0.758 0.039 0.583 50.842 573.746 0.226 3.967 0.147 0.073 9.035 0.115 140.186 SJR 85 8 8 A 0.069 0.904 0.068 1.805 17.291 537.338 0.125 2.163 0.063 0.122 9.755 0.009 76.132 Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn SJR 85 8 B A 0.144 0.128 0.022 0.014 24.405 88.807 0.023 0.856 0.003 0.023 1.521 0.002 51.237 SJR 85 8 8 A 0.043 0.165 0.083 0.099 17.791 714.976 0.093 4.069 -0.052 -0.006 9.053 0.173 90.439 SJR 86 8 E A 0.020 0.416 0.079 -0.003 8.660 289.938 0.013 3.457 0.019 0.110 5..919 0.127 62.782 SJR 86 8 E A 0.077 0.212 0.055 0.296 9.215 158.704 0.064 1.800 0.078 0.030 2.995 0.128 48.315 SJR 86 8 E A 1.170 5.383 0.291 -0.003 54.531 549.809 . 5.842 0.180 0.239 15.021 1.473 112.282 SJR 86 8 E A 0.170 0.661 0.035 -0.005 11.226 441.301 0.117 3.876 0.056 0.081 13.449 0.227 77.912 SJR 86 8 E A 0.051 0.469 0.066 -0.000 9.395 586.901 0.083 5.723 0.032 0.091 13.912 0.169 71.822 SJR 86 8 E A 0.089 0.260 0.034 0.014 14.580 494.930 0.065 4.495 0.085 0.124 17.314 0.146 90.363 SJR 86 8 E A 0.277 0.117 0.037 -0.010 25.295 110.760 0.012 1.634 -0.012 0.039 1.635 0.060 47.155 SJR 86 8 E A 0.060 0.207 0.023 -0.016 13.308 295.281 0.043 1.417 0.042 0.037 4.943 0.064 71.831 SJR 86 8 E A 0.008 0.479 0.050 0.025 11.006 564.252 0.057 4.447 0.018 0.107 8.335 0.215 78.167 SJR 86 8 E A 0.005 0.068 0.006 -0.000 1.063 38.854 0.006 0.286 -0.004 0.012 0.660 0.012 6.539 SJR 87 8 A 1 0.268 2.268 0.149 0.016 44.302 618.989 0.105 5.338 0.111 0.494 8.656 1.558 113.370 SJR 87 8 A 1 0.334 2.825 0.162 0.020 50.908 511.625 0.147 6.842 0.062 0.550 8.301 1.316 117.207 SJR 87 8 A 1 0.032 2.334 0.112 -0.005 11.882 227.165 0.128 4.090 0.000 0.273 7.312 1.239 78.933 SJR 87 8 A 1 0.114 2.557 0.157 -0.009 26.210 271.503 0.093 5.463 0.057 0.297 9.565 1.345 98.367 SJR 87 8 A 1 0.378 2.847 0.125 -0.012 58.821 368.233 0.097 4.517 0.055 0.279 8.712 1.336 130.582 SJR 87 8 A 1 0.030 2.193 0.207 -0.009 12.997 327.875 0.095 5.904 0.024 0.314 5.571 1.339 79.325 SJR 87 8 A 1 0.128 2.799 0.123 0.003 23.706 268.721 0.137 3.130 0.057 0.173 6.958 11.129 86.432 SJR 87 8 A 1 0.118 2.534 0.142 0.030 25.508 285.902 0.241 7.178 0.027 0.401 7.988 1.303 111.502 SJR 87 8 A 1 0.104 0.133 0.028 -0.003 23.457 436.635 0.046 2.443 0.007 0.077 5.446 0.124 53.081 SJR 87 8 A 1 0.112 0.208 0.030 -0.008 18.676 392.395 0.035 3.457 0.017 0.033 3.626 0.362 71.263 SJR 87 8 B A 0.022 1.672 0.050 0.001 10.149 456.670 0.056 6.404 0.148 0.219 8.042 1.315 64.835 SJR 87 8 0 A 0.064 3.037 0.102 0.050 27.908 384.989 0.201 6.249 0.239 0.114 4.718 0.495 96.205 SJR 87 8 B A 0.097 3.631 0.138 0.016 17.513 922.619 0.096 7.688 0.242 0.321 22.907 4.056 98.047 SJR 87 8 8 A 0.083 0.700 0.045 -0.001 17.335 146.226 0.015 3.404 0.080 0.168 1.983 0.118 50.013 S.jR 87 8 B A 0.044 2.447 OaO78 -0-008 15.919 293.964 0.071 7.707 0.241 0.246 12.540 2.351 93.659 SJR 87 8 8 A 0.050 0.299 0.050 0.030 14.853 231.186 0.064 5.635 -0.004 0.119 3.140 0.495 81.881 SJR 87 8 8 A 0.019 1.288 0.105 -0.010 12.424 338.705 0.077 7.992 0.041 0.246 5.951 0.549 70.713 SJR 87 8 8 A 0.415 1.462 0.151 0.011 49.504 376.807 0.151 7.603 0.127 0.276 6.478 0.485 111.007 SJR 87 8 B A 0.023 0.261 0.037 0.011 7.126 314.893 0.021 2.538 0.112 0.198 5.942 0.165 48.006 SJR 87 8 8 A 0.503 4.423 0.126 0.001 69.346 571.171 0.124 9.946 0.131 0.229 13.582 2.306 152.596 SJR 87 8 C 1 0.019 2.251 0.187 -0.002 14.076 602.2T3 0.117 6.885 0.245 0.370 9.316 3.209 97.815 SJR 87 8 C 1 0.046 0.343 0.026 -0.001 10.185 395.897 0.022 2.665 0.024 0.166 3.592 0.322 63.563 SJR 87 8 C 1 0.006 1.195 0.268 0.028 15.635 661.825 0.503 6.592 0.225 1.288 8.668 20.276 99.653 SJR 87 8 C 1 0.015 1.784 0.125 0.038 13.813 499.967 0.139 7.769 0.353 0.469 12.009 3.605 100.976 SJR 87 8 C 1 0.014 1.619 0.176 0.177 14.975 681.403 0.215 8.636 0.426 0.843 10.471 5.862 94.887 SJR 87 8 C 1 0.030 2.214 0.159 0.012 17.529 766.591 0.098 7.109 0.426 1.055 11.152 3.618 98.497 SJR 87 8 C 1 0.030 1.839 0.063 0.008 15.152 521.597 0.175 3.066 0.249 0.968 7.252 1.847 90.177 SJR 87 8 C 1 0.039 1.778 0.106 0.016 14.361 614.158 0.144 5.203 0.253 0.394 10.237 3.220 93.470 SJR 87 8 C 1 0.102 0.273 0.036 -0.011 16.984 446.579 0.034 2.121 -0.012 0.184 5.393 0.347 69.516 SJR 87 8 C 1 0.020 1.179 0.111 -0.001 10.673 355.167 0.100 6.557 0.211 0.374 11.124 2.664 85.332 SJR 87 8 D 1 0.030 1.991 0.094 -0.010 16.034 298.444 0.047 4.287 -0.019 0.138 8.330 0.728 59.152 SJR 87 8 D 1 0.012 3.185 0.121 0.076 12.837 684.298 0.134 6.320 -0.024 0.163 10.562 0.525 76.067 SJR 87 8 D 1 0.010 2.T33 0.114 -0.006 13.238 764.341 0.106 3.907 0.098 0.186 17.199 1.810 89.961 SJR 87 8 D 1 0.072 0.705 0.057 -0.008 25.248 221.790 0.088 1.505 -0.018 0.102 3.529 0.534 70.653 SJR 87 8 D 1 0.111 5.700 0.170 0.006 43.272 267.147 0.135 7.354 0.154 0.227 19.800 1.408 136.269 jo) Table A-10 Contd. LOC YR MTH SITE SURVEY Ag As Cd Cr Cu Fe Hg Mn Ni Pb Se Sn Zn SJR 87 8 D 1 0.018 0.597 0.055 -0.004 8.218 269.841 0.025 2.538 -0.049 0.116 2.672 0.435 40.869 SJR 87 8 D 1 0.054 4.244 0.136 -0.015 30.056 240.840 0.093 5.334 -0.011 0.204 17.837 1.032 107.772 SJR 87 8 D 1 0.019 3.672 0.126 -0.002 13.839 817.394 0.157 5.890 0.230 0.176 15.783 1.537 111.576 SJR 87 8 D 1 0.025 3.157 0.242 -0.005 14.T37 583.714 0.186 6.223 0.007 0.6,85 17.229 3.252 105.123 SJR 87 8 D 1 0.042 1.698 0.122 -0.009 13.512 543.424 0.093 8.965 0.013 0.206 14.168 1.736 105.381 SJR 87 8 E 1 0.086 2.262 0.150 -0.005 25.871 207.329 0.132 5.728 -0.018 0.328 7.957 1.500 80.321 SJR 87 8 E 1 0.126 0.149 0.033 -0.003 32.868 361.784 0.039 1.019 -0.074 0.049 3.849 0.079 74.666 SJR 87 8 E 1 0.189 0.332 0.021 -0.011 20.107 168.029 0.004 1.516 -0.069 0.045 2.471 0.189 49.481 SJR 87 8 E 1 0.066 1.073 0.119 -0.002 12.583 657.422 0.079 7.647 0.060 0.391 11.817 0.724 105.977 SJR 87 8 E 1 0.058 0.259 0.057 0.005 17.622 731.092 0.142 3.158 -0.019 0.130 6.687 0.098 71.116 SJR 87 8 E 1 -0.039 0.612 0.041 0.014 9.019 175.533 0.035 2.060 0.069 0.133 2.108 0.188 52.042 SJR 87 8 E 1 0.050 0.497 0.022 -0.006 13.210 362.480 0.021 1.332 -0.007 0.037 3.752 0.079 51.707 SJR 87 8 E 1 0.089 2.094 0.132 0.003 24.040 433.660 0.212 5.915 0.042 0.521 8.325 1.406 123.139 SJR 87 8 E 1 0.069 2.070 0.179 0.013 16.779 547.240 0.127 7.094 0.192 0.255 14.391 1.680 103.978 SJR 87 8 E 1 0.139 3.318 0.172 0.021 20.235 638.424 0.180 4.105 0.099 0.326 11.233 0.513 108.538 DATE DUE 12 GAYLORD Na 2333 4 3 6668 00004 9496