[From the U.S. Government Printing Office, www.gpo.gov]
NOAA Technical Memorandum NOS MEMD 3 FAGATELE BAY NATIONAL MARINE SANCTUARY BIOLOGICAL RESOURCE ASSESSMENT OF THE FAGATELE SAY NATIONAL MARINE SANCTUARY Washington,D.C. August 1987. U.S. DEPARTMENT OF National Oceanic and Marine and Estuarine COMMERCE Atmosoheric Admininistration Management Division NOAA Technical Memorandum NOS MEMD 3 BIOLOGICAL RESOURCE ASSESSMENT OF THE FAGATELE BAY NATIONAL MARINE SANCTUARY Charles E. Birkeland*, Richard H. Randall*, Richard C. Wass", Barry Smith*, and Susanne Wilkens* University of Guam Marine Laboratory, UOG Station, Mangilao, Guam 96923 U.S. Fish and Wildlife Service, 300 Ala Moana Blvd., Honolulu, H2waii 96850 Washington,D.C. August1987 UNITED STATES National Oceanic and National Ocean Service DEPARTMENT OF COMMERCE Atmospheric Administration National Marine Sanctuary Program Marine and Estuarine Management Division Office of Ocean and Coastal Resource Management National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce NOTICE This report has been approved by the National Ocean Service of the National Oceanic and Atmospheric Administration (NOAA) and approved for publication. Such approval does not signify that the contents of this report necessarily represent the official position of NOAA or of the Government of the United States, nor does mention of trade names or commercial products constitute endorsement or recommendation for their use. NOAA TECHNICAL MEMORANDA National Ocean Service Series Marine and Estuarine Management Division The National Ocean Service, through its Office of Ocean and Coastal Resource Management, conducts natural resource management related research in its National Marine Sanctuaries and National Estuarine Reserve Research System to provide data and information for natural resource managers and researchers. The National Ocean Service also conducts research on and monitoring of site-specific marine and estuarine resources to assess the impacts of human activities in its Sanctuaries and Research Reserves and provides the leadership and expertise at the Federal level required to identify compatible and potentially conflicting multiple uses of marine and estuarine resources while enhancing resource management decisionmaking policies. The NOAA Technical Memoranda NOS MEME) subseries; facilitates rapid distribution of material that may be preliminary in nature and may be published in other referreed journals at a later date. MEMO 1 M.M. Littler, D.S. Littler and B.E. Lapointe. 1986. Baseline Studies of Herbivory and Eutrophication on Dominant Reef Communities of Looe Key National Marine Sanctuary. MEMD 2 M.M. Croom and N. Stone, Eds. 1987. Current Research Topics in the Marine Environment. MEMO 3 C.E. Birkeland, R.H. Randall, R.C. Wass, B. Smith and S. Wilkens. 1987. Biological Resource Assessment of the Fagatele Bay National Marine Sanctuary REPORT TO NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION U.S. DEPARTMENT OF COMMERCE NOAA TECHNICAL MEMORANDA SERIES NOS/MEMD Biological Resource Assessment of the Fagatele Bay National Marine Sanctuary Charles E. Birkeland, Richard H. Randall, Richard C. Wass, Barry Smith, and Susanne Wilkins August 1987 U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE OFFICE OF OCEAN AND COASTAL RESOURCE MANAGEMENT MARINE AND ESTUARINE MANAGEMENT DIVISION WASHINGTON, D.C. REPORT TO NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION U.S. DEPARTMENT OF COMMERCE NOAA TECHNICAL MEMORANDA SERIES NOS/MEMD Biological Resource Assessment of the Fagatele Say National Marine Sanctuary Charles E. Birkeland*, Richard H. Randall*, Richard C. Wass", Barry Smith*, and Susanne Wilkins* University of Guam Marine Laboratory, UOG Station, Mangilao, Guam 96923 U.S. Fish and Wildlife Service, 300 Ala Moana Blvd., Honolulu, Hawaii 96850 This work is the result of research sponsored by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Office of Ocean and Coastal Resource Management, Marine and Estuarine Management Division Under Contract 40AANC502436 Abstract A quantitative assessment of the biological resources of Fagatele Bay National Marine Sanctuary, American Samoa, was undertaken in order to provide a baseline against which changes in time could be examined rigorously. Six permanent transects were established, each running from the reef margin to a depth of 12 m. Data were taken on 30-m transects running out from the permanent transects along isobaths on the reef platform and at depths of 3, 5, 9, and 12 m. Algae, corals, macroinvertebrates and fishes were all surveyed. Algae occupied about 78% of the substrate and hermatypic corals occupied about 12.6% in April 1985. Although corals were still showing the effects of the predation by Acanthaster planci in 1979 and occupied a small proportion of the substrate, 116 species were still present in Fagatele Bay. There are nearly twice the number of hermatypic coral species in Fagatele Bay as there are in the entire Atlantic, from Africa to Mexico. An average of 7.8 colonies per M 2 were f ound. The Acanthaster planci population greatly reduced the substrate surface cover by corals in 1979, but most species survived at least as tiny living remnants. Recruitment is occurring and corals are common, although small. As these new recruits grow, the coral community is expected to recover to its former (before the A. planci outbreak) abundance in a few more years. Of a total of 96 species of gastropods collected at 11 sites around Tutuila, 75 species, or 78% of the total were found in Fagatele Bay. A total of 215 species of fish was observed in Fagatele Bay in April 1985. Of particular note was that not a single holothuroid was observed in Fagatele Bay during our study. A second objective of this study was to determine the rate of recovery of coral co unities around Tutuila following the outbreak of Acanthaster planci in 1978-1979. Twelve sites around Tutuila were surveyed both along the reef margin as well as at 6 m depth. It was found that corals had increased in abundance at all sites except for the shallow portions of reefs between Sita Bay and Fagasa Bay and at the deeper portions of reefs near the Rainmaker Hotel and at Fatu Rock. TABLE OF CONTENTS Page Introduction ............................................................ 1 Relation of this project to previous studies ..................... 8 Methods ................................................................. 10 Location of transects ............................................ 10 Algae (and substrate coverage) ................................... 12 Corals ........................................................... 15 Macroinvertebrates ............................................... 22 Fishes ........................................................... 23 Physiographic Description of the Marine Habitats of Fagatele Bay .......................................................... 26 Overall setting .................................................. 26 Description of the coral reef in Fagatele Bay .................... 27 Reef-flat platform zone ..................................... 31 Reef margin zone ............................................ 33 Forereef slope zone ......................................... 34 Quantitative Survey of Biological Resources at Fagatele Bay ............. 38 Glossary .................................................... 38 Algae and substrate cover ................................... 39 Corals ...................................................... 48 Macroinvertebrates .......................................... 49 Fishes ...................................................... 54 Changes in Coral Communities Following the Outbreak of Acanthaster planci 1978-1979 ..................................................... 177 iii Influence of Acanthaster - Induced Coral Kills on Fish Communities at Fagatele Bay and at Cape Larsen ...................................... 193 Acknowledgements ......................................................... 210 References Cited ......................................................... 212 Appendix 1. List of coral species recorded from transects 1-6 at Fagatele Bay ...................................... 216 Appendix 2. List of coral species recorded at locations outside Fagatele Bay in 1979, 1982 and 1985 ................................ 221 iv LIST OF FIGURES Figure Page 1. Aerial views of Fagatele Bay National Marine Sanctuary ............... 2 2. Map of locations of study sites around Tutuila Island ................ 3 3. Locations of the permanent Transects 1-6 in Fagatele Bay National Marine Sanctuary and the 30-m survey transects ..................... 4 4. Diagrammatic view of the coastline in Fagatele Bay National Marine Sanctuary for the purpose of facilitating the location of the permanent transect markers ......................................... 13 5. An illustration of the point-quarter sampling technique as described and explained in the text ................................ 17 6. Areal sizes of coral colonies should be estimated by as efficient an approximation as possible ....................................... 21 7. Measurements-should be to the nearest colony center rather than to the nearest colony edge ............................................ 21 8. Vertical profiles drawn from depth measurements taken along the reef surface at Transects 1 and 2 to a depth of 12.2 meters, showing general bottom topography, physiographic zones discriminated, water depth, relative abundances of bioclastic rubble and corals, locations of transect marker stakes, and the 1.0, 3.0, 4.6, 9.1, and 12.2 meter depth isobaths where quantitative measurements of marine invertebrates, fishes and algae were taken ................................................... 28 9. Vertical profiles drawn from depth measurements taken along the reef surface at Transects 3 and 4 to a depth of 12.2 meters, showing general bottom topography, physiographic zones dis- criminated, water depth, relative abundances of bioclastic rubble and corals, location of transect marker stakes, and the 1.0, 3.0, 4.6, 9.1, and 12.2 meter depth isobaths where quantitative measurements of marine invertebrates, fishes and algae were taken ................................................. 29 10. Vertical profiles drawn from depth measurements taken along the reef surface at Transects 5 and 6 to a depth of 12.2 meters, showing general bottom topography, physiographic zones discriminated, water depth, relative abundance of bioclastic rubble and corals, locations of transect marker stakes, and the 1.0, 3.0, 4.6, 9.1, and 12.2 meter depth isobaths where quantitative measurements of marine invertebrates, fishes, and algae were taken .................................................. 30 v LIST OF TABLES Table Page 1. An example of an efficient format for recording field data from the point-quarter method ..................................... 18 2. Frequency and percent cover of algae: a. Fagatele Bay, Transects 1-3 ..................................... 42 b. Fagatele Bay, Transects 4-6 ..................................... 44 c. Mean percent cover and standard deviation at different depths in Fagatele Bay ........................................ 45 d. Along 12 transects in 6 different bays of American Samoa ......... 46 3. Summary statistics for each species of coral for which data were obtained along permanent transects in Fagatele Bay National Marine Sanctuary: a-c. Transect 1: 5-6,9 and 12 m depth ............. o .............. 57-59 d-h. Transect 2: 1, 3, 5, 9, and 12 m depth ...................... 60-66 i-m. Transect 3: 1, 3, 5, 9, and 12 m depth ...................... 67-71 n-r. Transect 4: 1, 3, 5, 9, and 12 m depth ...................... 72-76 s-v. Transect 5: 3, 5, 9, and 12 m depth .............. o .......... 77-81 w-y. Transect 6: 5-6, 91' and 12 m depth .......................... 82-84 4-15. Summary statistics for each species of coral for which data were obtained at 12 study sites other than Fagatele Bay round Tutuila. Each table is in 4 parts: a) shallow transect 1982, b) shallow transect 1985, c) 6 m depth transect 1982 and d) 6 m depth transect 1985 4. Inside Masefau Bay ........o ................................... 85-89 5. Outside Masefau Bay (Asaga Strait) ............................ 90-95 6. Aoa Bay ....................................................... 96-101 7. Onenoa Bay .......................................... o...... 0.. 102-107 8. Aunuu Island ....................... o............ o ............. 108-111 9. Matuli Point ................................................ o. 112-115 vi Page 10. Fagasa Bay .................................................... 116-121 11. Cape Larsen ................................................... 122-129 12. Fagafue Bay ................................................... 130-136 13. Massacre Bay .................................................. 137-140 14. Rainmaker Hotel ............................................... 141-145 15. Fatu Rock ..................................................... 146-149 16. Percent cover of substrate by hermatypic corals in Fagatele Bay, April 1985 ....................................................... 150 17. Abundance of hermatypic corals (colonies per m 2) in Fagatele Bay National Marine Sanctuary, April 1985 ............................ 151 18. Mean hermatypic coral colony diameter (cm) in Fagatele Bay National Marine Sanctuary, April 1985 ............................ 152 19. Indices of community structure for hermatypic corals at Fagatele Bay National Marine Sanctuary, April 1985 ........................ 153 20. Densities of macroinvertebrates occurring along transects in Fagatele Bay ..................................................... 155 21. Preliminary list of macroinvertebrates other than scleractinian corals observed adjacent to, but outside, the transects of Fagatele Bay, American Samoa ..................................... 158 22. Preliminary list of gastropods collected from 11 sites around Tutuila, American Samoa .......................................... 162 23. Fishes enumerated or observed during the general survey inshore fishes at Fagatele Bay conducted 5-12 April 1985 ................. 168 24. Abundance (number/m 2) of hermatypic coral colonies at 12 sites around Tutuila island in April 1982 and in April 1985 at two depths at each site ............................................. 179 25. Results of a factorial anova of the dat2 in Table 24 concerning the relation of coral abundance (number/m ) of coral colonies to location around Tutuila, wave exposure, depth and year ........... 180 26. Percent cover by hermatypic coral colonies at 12 sites around Tutuila Island in April 1982 and in April 1985 at two depths at each site ..................................................... 183 vii Page 27. Results of a factorial anova of the data in Table 26 concerning the relation of percent coral cover to location around Tutuila, wave exposure, depth and year ..................................... 185 28. Mean diameter of hermatypic coral colonies at 12 sites around Tutuila Island in April 1982 and in April 1985 at two depths at each site ..................................................... 186 29. Results of a factorial anova of the data in Table 28 concerning the relation of mean diameter (cm) of hermatypic corals to location around Tutuila, wave exposure, depth and year ........... 188 30. Indices of community structure for hermatypic corals at 12 sites around Tutuila ............................................. 189 31. Fishes enumerated or observed during repetitive transects conducted at Cape Larsen before and after an extensive coral kill by Acanthaster planci late in 1978 .................... 194 32. Fishes enumerated or observed during repetitive transects conducted at Fagatele Bay and impacted by an extensive coral kill by Acanthaster planci late in 1978 .................... 201 viii INTRODUCTION Fagatele Bay, on the southwest sector of Tutuila, American Samoa (Figs. 1,2), is an ecologically rich and pristine pocket of coastline formed by the crater of an extinct volcano which has one wall open to the sea. The portion of the crater submerged in seawater is dominated by a coral reef ecosystem with a terraced structure typical of islands of volcanic origin. Beaches of predominantly calcareous sand extend offshore for 5 to 10 meters where they merge with the reef platform of limestone and encrusting coralline algae. The reef platform, at a depth of about 0.6 m, extends about 60 meters offshore to the reef front. The reef front drops abruptly to 2 or 3 m depth, then gradually slopes offshore to about 5 to 7 m depth (Fig. 3). The reef front slope contains large photogenic coral mounds and pinnacles up to 5 m tall. The topographic relief of the reef front slope is a major aspect of the scenic beauty of the bay for snorkelers. Fagatele Bay encompasses 163 acres (0.65 km2). A vertical wall formed by Matautuloa Ridge extends between Fagatele Crater and Steps Point, southeast of Fagatele Bay. This area outside the crater is more difficult for snorkeling and less rich in corals, but the large populations of planktivorous and pelagic fishes are spectacular. The vertical cliffs of Fagatele Crater and Matautuloa Ridge have generally discouraged access to the area, so both the terrestrial and marine faunas have been relatively protected up until the present. A thick stand of undisturbed vegetation grows on the walls of the crater around the bay. A variety of seabirds nest and forage for food in the bay. The endemic flying fox or fruit bat (Pteropus samoensis) roosts in abundance on the northern rim _=77 0 - M 7Z .. gc"'z z 40@ 1@6 At Fig. 1. Aerial views of Fagatele Bay National Marine Sanctuary: a) of the north, b) of the south. Note that the three sections of the reef p.latform separated by dashed lines in Fig. 3 are clearly visible in the upper photograph. Li 2 3 Pago Pago 8 0 14 TUTUILA 12 N 3 Fagatele Bay 1 2 3 4 km Fig. 2. Map of locations of study sites around Tutuila Island: 1- inside Masefau Bay, Masefau Bay (Asaga Strait), 3- Aoa Bay, 4- Onenoa Bay, 5- Aunuu Island, 6- Matu 7- Fagasa Bay, 8- Cape Larsen, 9- Fagafue Bay, 10- Massacre Bay, 11- Rainmaker 12- Fatu Rock, 13- Fagatele Bay, 14- Sita Bay, 15- Auasi. N FAGATELE CRATER 170: 40:W, 14 22S SEUMALO RIDGE Reef Plot 40 10 ft. T, P.I.t -r-101k T- A MATAUTULOA RIDGE 100 In 0dooression. in Ike nat P-IneftOkI UaI.-t *Ike,. r"ky Sha,o @d b.-h Undo-st., MOU"s I I T@ Fig 3. Locations of the permanent Transects 1-6 (T -T 6' solid lines) in Fagatele Bay National Marine Sanctuary and 1he 30-m survey transects (dotted lines). The boundaries of A- the intertidal reef platform veneered with loose rubble, B- the subtidal reef platform with abundant corals, and C- the intertidal volcanic bench are indicated by dashed lines. 4 of the bay. Endangered species of sea turtles (5 species) have been seen in or near Fagatele Bay. The biological, geological, physical oceanographic, climatic, and human sociological, economic and legal aspects of Fagatele Bay have all been reviewed in the Final Environmental Impact Statement and Management Plan for the Proposed Fagatele Bay National Marine Sanctuary (FEIS/MP 1984). These reviews will not be repeated here. Likewise, the history of events leading up to the designation of Fagatele Bay as a National Marine Sanctuary on 29 April 1985, the Management Plan for the Sanctuary, and the benefits and consequences of the designation of Fagatele Bay as a National Marine Sanctuary are presented in FEIS/Mp (1984). The FEIS/MP (1984) was prepared by the Sanctuary Programs Division, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce, in cooperation with the Development Planning Office, Government of American Samoa. The FEIS/MP (1984) identified the need for a thorough scientific documentation and mapping of the biological resources and habitats of Fagatele Bay as the most important step in the process yet to be undertaken and accomplished. This responsibility was assigned to the University of Guam Marine Laboratory, working with the cooperation of the Office of Marine Resources, Government of American Samoa. The funding of this project was by NOAA (1/3) and by the Government of American Samoa (2/3). The scientific documentation of biological resources is one of the aspects of the Resource Studies Plan as outlined in the FEIS/MP (1984) and is particularly germane to two of the main goals of the management plan (FEIS/MP 1984:4-5): 5 Goal 2: Expand public awareness and understanding of marine environments found in the warm waters of the Pacific Ocean, and thereby foster a marine conservation ethic; Goal 3: Expand scientific understanding of marine ecosystems found in the warm waters of the Pacific Ocean, especially coral reefs that have been infested by the crown-of- thorns starfish, and apply scientific knowledge to the development of improved resource management techniques." A particular value of marine sanctuaries is in their status as surveyed and monitored regions of controlled utilization. Most ecological studies in tropical regions have been done on expeditions on which there was a tacit assumption that conditions would be the same as during the study both before and after the expedition. This has automatically led to a conclusion that tropical ecosystems are more stable than comparable ecosystems in temperate regions (which biologists study over longer periods and to which they return and observe changes having occurred). This conclusion appears to be false (Birkeland 1983). As the first U.S. National Marine Sanctuary in a truly tropical region, and as a naturally protected, relatively pristine area, dominated subtidally by a rich coral reef habitat, Fagatele Bay provides an excellent opportunity to monitor natural temporal variability in. a diverse tropical marine ecosystem. In particular, since Fagatele Bay was greatly affected by an Acanthaster planci (crown-of-thorns starfish) outbreak in 1979, the situation provides the opportunity to monitor the recovery of the system following the depredation by A. planci. 6 Adding to these opportune circumstances is the fact that Birkeland and Randall had previously acquired quantitative assessments of the coral communities at a dozen sites around Tutuila. Likewise, Wass had acquired quantitative assessments of fish populations at several sites around Tutuila. Therefore, the main objectives of this project were in two parts. The first, and most important, objective was to conduct a thorough scientific documentation and mapping of the biological resources and habitats of Fagatele Bay in order to set the baseline for future studies against which changes through time could be compared. A secondary set of objectives was to resurvey a dozen areas previously surveyed around Tutuila in order to assess quantitatively the rate of recovery of coral reef communities following devastation by outbreaks of A. _planci. Specifically, the objectives of this study given in a Statement of work were: 1. to complete a quantitative survey of coral, fish, algae, and invertebrates in Fagatele Bay and to develop a species list for each phyletic category; 2. to establish permanent reference markers for transects; 3. to map the entire bay in terms of habitat, predominant c6ral species, and topological physical environmental features; 4. to obtain, preserve, label, and organize a reference collection of voucher specimens; and 5. to repeat surveys of corals and fishes along selected transects outside Fagatele Bay which were surveyed previously to document changes in coral and fish populations following the outbreak of Acanthaster planci in 1977-78. 7 Relation of this Project to Previous Studies Tutuila has been the site for important studies of fishes (Jordan and Seals 1906), scleractinian corals (Mayor 1920, 1924), alcyonaceans (Cary 1931), and algae (Dahl 1972). Although numerous surveys have been made of the marine habitats of Tutuila (USACHED 1980; Randall and Devaney 1974; Helfrich 1975; Dahl 1971), only two have specifically dealt with Fagatele Bay (Wass 1978a; USACHED 1980:197-200). The project that we report on here is the first quantitative survey of the marine fauna and flora of Fagatele Bay. Tutuila has been surveyed several times for crown-of-thorns starfish Acanthaster planci populations. A. planci is generally scarce around Tutuila (Weber and Woodhead 1970; Vine 1970; Devaney and Randall 1973), but major outbreaks have occurred at about 1938 (Birkeland 1981; Flanigan and Lamberts 1981) and in late 1978 (Wass 1978b; Birkeland and Randall 1979; Birkeland 1982). Three of us (Birkeland, Randall, and Wass) spent a day in April 1979 investigating Fagatele Bay during which time a large population of A. planci was in the process of eating most of the corals in the bay. Birkeland and Randall returned to Tutuila in 1982 and obtained quantitative data on the abundances and size distributions of corals at 12 sites around Tutuila. Dick Wass, during his tenure at the Division of Marine Resources of the Government of American Samoa, also obtained data on the abundances of fishes from about 60 transects around Tutuila. In the FEIS/MP (1984:C-7), it was stated that the coral cover in Fagatele Bay was estimated to be nearly 100% before the crown-of-thorns starfish infestation, but coral cover was reduced to about 10% after the infestation. We believe that our quantitative assessments of the coral and fish communities in Fagatele Bay and at other sites around Tutuila for which quantitative data are available from a previous visit will be of 8 particular value in providing a sound basis for estimating rates of recovery of coral and fish populations. As discussed on page C-7 of the FEIS/MP (1984), this quantitative information was lacking but would be most important for gaining an understanding of the ecosystem, how quickly and how completely it is able to recover from devastation by factors such as A. planci populations, and whether it will be again as highly productive a habitat as it was before. 9 METHODS The third specific goal enumerated in the Statement of Work for this project was for us to provide a detailed description of survey techniques that can be used to monitor changes in species abundance and composition with time. Indeed, the baseline survey itself is to provide the initial data set to which future replicates can be statistically compared. Because it is important that the same methods are used, we are providing a description and discussion of methods in more detail than is usually given. Location of Transects In order to provide the means by which our surveys could be related to maps of Fagatele Bay and in order to enable the Sanctuary Manager or others to repeat our surveys so that changes could be monitored through time, our studies were conducted in Fagatele Bay in terms of orientation to permanent transect markers. These permanent markers are large, galvanized, 3/4-inch (1.9 cm) diameter spikes. They were driven into the substrate with a 10-pound (4.5 kg) sledge hammer. Six permanent transects were established (Fig. 3), with Transects 1-5 each marked with three permanent markers, one at the beginning of the transect at the seaward edge of the reef flat or on an offshore mound where the reef front begins, a second at roughly the halfway mark at 20 ft (6.1 m) and the third at the end of the transect at 40 ft (12.2 m). Transect 6 had only two markers, one at 25 ft (7.6 m) and the other at 40 ft (12.2 m). Depth profiles were taken along each of the 6 permanent transects with distance measured along a tape and depth measured with a depth guage. The general descriptions of the reef along the permanent transects are given in the Physiographic Description of the Marine Habitats section of this report 10 (pages 24-34). Lines of any material are either large enough to uproot the permanent markers or else they are small enough to deteriorate or be broken. If left permanently in place, lines could damage or otherwise affect the benthic community below. Therefore, only the markers, not the lines, can be permanently in place. A line should be strung between the permanent markers along a transect for orientation whenever a new survey will be undertaken. The permanent transects run roughly perpendicular to the shoreline across depth zones. The information from these transects was used in measuring the depth gradient across the reef and relating the scale of our maps to the patterns from aerial photographs of the bay. Actual quantitative sampling was done along 30-m replicate transects within each zone, generally perpendicular to the transect lines and roughly parallel to shore (Fig. 3). This is a stratified random sampling program. Replicate transects within zones are necessary for statistical analysis and for the calculation of confidence limits on abundance estimates. To cross several zones along a depth gradient within a sample adds a tremendous variance within each sample and prohibits a comparison between zones. Transect lines running across zones are attractive and perhaps provide clearer information for descriptive purposes, but the resulting data are difficult to analyze statistically because several zones would be represented by a single statistic. To make quantitative statements about the results of a survey across zones of a coral reef system, it is best to take replicate transects and replicate counts within transects as stratified random samples within zones or depth contours. This allows discrete estimates of variance between zones with comparable replicate transects of equal length. A stratified random sampling program is used when the total area or population being studied is divided into several well defined, relatively homogeneous subareas or subpopulations, each of which is sampled randomly. When an entire study area is sampled randomly, nearly all of the samples might fall within one of the subareas and the other subareas would be inadequately represented. Because of this, the more efficient methods of stratified random sampling are always preferable to simple random sampling (Hasel 1938; Osborn 1942; Madow 1946; Yates 1946, 1948, 1953; Finney 1948a,b; Bordeau 1953; Milne 1959; Cochran 1963; Greig-Smith 1964; Elliott 1971). In order to facilitate locating the transect markers (Fig. 3), buoys were attached to the initial and final permanent markers on each transect, were lined up, visually from a small boat, and the point on the shoreline which was intersected by the line between the two buoys was noted and illustrated in Fig. 4. A hand-bearing compass was used to take a reading from a small boat across the two buoys to the point on the shoreline for transects 1-5. The compass reading is given in the caption for Figure 4. Transects at locations outside Fagatele Bay and two 100-m fish transects in Fagatele Bay which were surveyed on previous years were laid along the bottom and located at the sites of previous surveys by memory of the previous investigators. We expect that only those transects within the Fagatele Bay Marine Sanctuary will be monitored by others. However, if one wishes to replicate the transects at the other sites around Tutuila, he may write to Birkeland or Randall (for corals) or Wass (for fishes) for detailed instructions. Algae (and substrate coverage) Marine plants and substrate coverage were quantified by a point-quadrat method along the 30-m transects roughly parallel to the shoreline at a series 12 Fagatele Point from the west Fagatele Point 5 W -OWEN, Center of Bay 3 2 beach deposits 4and. rubble) forest vegetation grassy meadow Irregular rocky Shore rock wall Mataujulos Ridge white streaked wall Fig. 4 Diagrammatic view of the coastline i n Fagatele Bay National Marine Sanctuary. ----------I----------- indicate the point on the coast at which a line passing through floats over the and 40-ft (12-m) markers on the permanent transects would intersect the shore. through the floats intersecting the indicated point on the shore for Transect 0600 on a hand-bearing compass. Transect 2 is at 0800, Transect 3 is at 0581v is at 0300, and Transect 5 is at 3400. Transect 6 is oriented in reference to ridge (cf. Fig. 3). of depths (Fig.3). Nondiscrete patches of surface occupied by algal turf, crustose coralline algae, filmy encrusting sponges, etc., are difficult to measure by dimensions and so these subjects are surveyed more appropriately by the point-quadrat method. This method consists of tallying organisms under the points of intersection of strings tied across a 1/16-m 2 (25 x 25 cm) quadrat. Four strings tied from each side of the quadrat gives 16 inter- secting points for each quadrat. Whatever algal species occurred under each point was recorded. In the rare case in which the point falls on two layers of algae, the base alga is scored as occupying the substrate and the overlying alga is recorded as present. In the frequent case in which the identification to species is impossible in the field, the specimen was collected and placed in its own separate plastic bag with a label indicating which datum it represented. Identification was made later with a microscope. This frequent collection for identification was time consuming and cut down on the number of data we had time to collect. If no alga was f ound under the point, then whatever was present, e. g. , sand, dead coral, rubble, or live coral, was recorded. The quadrat was tossed randomly at 5-m intervals along the length of the transect. Therefore, data were collected from 6 quadrats, or at 96 points, along each transect. ("Haphazard" is actually the proper word to use here. "Random" in biometrics refers to a more rigorous placement by use of numbers obtained from a random-number table. We are using "random" in in this report in the vernacular sense of tossing without consciously aiming it. To lay out a grid-work in the bay to operate f rom, a random number table and f or each of us to work at independent locations around the bay simultaneously was unfeasible logistically in consideration of constraints by time and water turbulence.) 14 Each of these transects originated at points along the permanent transect lines at depths of either 10, 15, 30, or 40 feet (3.0, 4.6, 9.1 or 12.2 m). Permanent Transects 2, 3, and 4 accommodated 4 perpendicular transects at 10, 15, 30, and 40 feet. Permanent Transects 1 and 5 accommodated transects at depths of 15, 30, and 40 feet, while Transect 6 had only transects at depths of 20 and 40 ft. Percent cover for each transect was calculated by taking the number of points occuppied by a particular category divided by the total number of points per transect. Frequency of occurrence was calculated by taking the number of quadrat tosses in which a benthic constituent occurred, divided by the number of tosses per transect. Both cover and frequency values were converted to percent by multiplying by 100. Other algal species also seen along the transects were recorded as observed. In addition, twelve 30-m transects were surveyed at a depth of 20 feet (6.1 m) at the sites around Tutuila which were surveyed in previous years for coral cover. The same methods were applied as described above. Corals For sessile benthic organisms that are found as discrete colonies or individuals, the point-quarter technique has been found to be most efficient. This method was presented by Cottam et al. (1953) and Cox (1972) and its use in coral reef research has been reviewed by Loya (1978). The basic concept of the point-quarter method is that the average abundance of coral species or other species of sessile organisms can be measured by the average distances from random points to the center of colonies or individuals. The shorter the average distance from a random point to the nearest colony, the more colonies there must be per unit area. When the 15 average distance is squared, an average square area occupied by one individual or colony is obtained. If the average occupied area is divided into the unit area, the abundance or density or number of individuals per unit area will be obtained. The average surface coverage for each species can then be obtained by multiplying the average surface area of colonies of each species times their average abundances. The random points from which measurements are made can be obtained by laying a transect, by randomly tossing an object with right angles in its structure, or by a combination of both by tossing an object at points along a transect. Four measurements must be made from each random point, one and only one in each quadrant. The four quadrants can be visualized as marked by the transect line and an imaginary line running perpendicular to the transect line through the point (Fig. 5a), one line running along the handle of the hammer and another perpendicular to the handle through the head with the imaginary point from which measurements are made being the intersection of the handle with the head (Fig. 5b), or imaginary lines at right angles to each other as determined by any other object being tossed at random, e.g. , a dive knife (Fig. 50. The first measurement to be made in each quadrant is the distance from the sample point to the center of the nearest colony or to the center the nearest item being sampled (Fig. 5). The next two measurements are the length (or longest dimension) and the width (or longest dimension at right angles to the width). Data should be recorded in the field in an organized manner for ease in later computations (Table 1). The area of each colony is estimated by multiplying the length times the width and taking the square root (the geometric mean diameter). The mean 16 Fig. 5. An illustration of the point-quarter sampling technique as described and explained in the text - --------------- indicates imaginary lines determining the 4 quadrants;- - - - - - - - indicates direction of measurements for distances between the random point and the center of the nearest coral colony in each quadrant; >_ -Cindicates length or width measurements of the coral colony. 02LII 497 %% %% %% %% 17 Table 1. An example of an efficient format for recording field data from the point-quarter method. The areas would be calculated later, but a column is included on the same paper for efficiency. The means of each four distances and areas taken from the same point could be calculated separately for an additional level in nested analysis of variance. Date: Location: Zone: Distance -(Length x Width) Species Area - (4 measurements x - from first x - point) X x - (4 measurements x - from second x - point) x x X etc etc 18 diameter is then divided by 2 to obtain the radius which is squared and multiplied by 7 to obtain an estimate of the area, i.e., 7 1 x w = A. 0 Z =Ar) If the colony is not roughly circular but instead is somewhat rectangular, triangular, "L"-shaped, or of some other configuration, the area may be estimated however the observer believes is best without spending too much time (Fig. 6), i.e., when the error in precision of area-estimation is more than compensated by the number of data that there is time to collect. If one spends too much time increasing the precision of measurements of an individual coral, the accuracy of conclusions are lost in the fewer measurements taken when the variance between the size of colonies is large compared to the error variance of each measurement. It is important to remember to measure to the nearest colony center. The borders of some colonies may be nearer than the centers of other colonies, but you should be measure to the nearest center (Fig. 7). The formulas for computations are: density (abundance) unit area of all species (mean distance) 2 relative density number of a particular species measured (abundance) of a total number of individuals measured particular species density (abundance) (density of x (relative density) of a particular all species) species percent cover of all (average areal size x (density of species of all species) all species) percent cover of a (average areal size x (density of a particular species of a particular particular species) species) relative percent cover percent cover of a particular species of a particular percent cover of all species species importance value relative frequency + relative density + relative percent cover 19 (The "importance value" is a compound index and therefore has little statistical validity or strength and the terminology tempts us into subjective conclusions or interpretations. However, the original presentations of this method [Cottam et al. 1953; Cottam and Curtis 1956; Cox 19721 provide formulas for calculating indices of "important value", and the descriptions of the reef communities are traditionally organized around this index. A compound index makes just as good a format for description as does taxonomic order or any of the three components of the "importance value" alone, so we will maintain the tradition here.) An advantage of the point-quarter method over the transect methods is that it provides data on size distributions of each species in terms of area. Size distribution data provide insight into the nature of the population dynamics of each species. Also, if colonies are widely spaced, the point-quarter method allows one to precisely measure the distance to the nearest colony in each quadrant, no matter how far. The transect method might only allow one to accumulate zeroes. If only zeroes are accumulated with transects, we might have no idea of the order of magnitude of the scarcity of a species. If the subject being sampled is not found in a quadrant, there are methods for taking zero-quadrants into account (Warde and Petranka 1981), but it is better to attempt to find a coral in each quadrant no matter how far you have to search. 20 Fig. 6. Areal sizes of coral colonies should be estimated by as efficient an approximation as possible. The great range in sizes of coral colonies determines that the number of colonies measured is more important than the precision of the measurements. A-LYW w -7 A - Cuw) w L T L A - I,+ if Fig. 7. Measurements should be to the nearest colony center rather than to the nearest colony edge. % '014000P % OP le Jv %%%%%% .0- %%% OP OP dip L 21 (The "importance value" is a compound index and therefore has little statistical validity or strength and the terminology tempts us into subjective conclusions or interpretations. However, the original presentations of this method [Cottam et al. 1953; Cottam and Curtis 1956; Cox 19721 provide formulas for calculating indices of "important value", and the descriptions of the reef communities are traditionally organized around this index. A compound index makes just as good a format for description as does taxonomic order or any of the three components of the "importance value" alone, so we will maintain the tradition here.) An advantage of the point-quarter method over the transect methods is that it provides data on size distributions of each species in terms of area. Size distribution data provide insight into the nature of the population dynamics of each species. Also, if colonies are widely spaced, the point-quarter method allows one to precisely measure the distance to the nearest colony in each quadrant, no matter how far. The transect method might only allow one to accumulate zeroes. If only zeroes are accumulated with transects, we might have no idea of the order of magnitude of the scarcity of a species. If the subject being sampled is not found in a quadrant, there are methods for taking zero-quadrants into account (Warde and Petranka 1981), but it is better to attempt to find a coral in each quadrant no matter how far you have to search. Macroinvertebrates Macro invertebrates other than corals were censused by either of two methods. The line transect method was used in all but two cases. A 30-m transect line was placed along 10-, 15-, 30-, and 40-ft isobaths and approximately parallel to shore. Macroinvertebrates occurring within I m on 22 both sides of the transect line were identified and recorded along 5-m intervals of the line. Therefore, each transect consisted of 6 quadrats, each 2 covering an area of 10 m The small, infaunal echinoid Echinostrephus sp. was too numerous to count by the line transect method in the shallow areas of Transects 1 and 6. In these areas, Echinostrephus was sampled with a 1/16-m 2 quadrat. The quadrat was thrown randomly twice at 5-m intervals and within 1 m of the transect line, yielding 14 samples from which population densities were estimated. Areas adjacent to transects were examined for macroinvertebrates not quantified by the transects. A record of these species was maintained to compile a faunal list for the bay. Fishes Two transect lengths and layouts were used. The Fagatele Bay fish transects were conducted in conjunction with transects and inventories of corals, macroinve rteb rates and algae. All of the studies were designed for future repetition and were oriented along six transects laid approximately perpendicular to the shoreline and crossing all major inshore habitats. The transects were conducted along a 30-m length of line tied to the permanent stakes and laid in a straight line more or less parallel to the depth contour in the leftward direction when facing deeper water. A different layout was used for an additional fish transect at Fagatele Bay and for transects at Cape Larsen and Sita Bay. These three transects were made along a 100-m length of weighted line placed in the exact same location as transects conducted during previous years in order to measure population changes over time. 23 The Fagatele Bay transect began 15 m west of the basalt-rock point on the east side of the bay and proceeded west along the 40-ft depth contour at the upper edge of the reef slope. The Cape Larsen transect began at the eastern edge of a deep crack that bisects the reef 200-300 m west of Fatuelo Point on the west side of Fagasa Bay. The transect began at 25 ft where the reef slope abruptly steepens and proceeded in an eastward direction at this depth. The Sita Bay transect began on the west edge of an indentation of the reef flat located about 40 m west of the ava (local term for channel or groove in the reef) leading into the beach. The transect began at 15 ft and proceeded to the west at a depth of 15-20 ft along the upper edge of the steeply sloping reef front. The fish transects were censused by a single observer equipped with scuba. All fishes observed within one meter on either side of the transect line and two meters above it were identified to species and counted. Holes and cracks in the reef within the transect corridor were inspected for nocturnal and secretive fishes and the substrate was closely examined for cryptic species. It is likely, however, that many species and individuals were undetected, thereby resulting in an underestimate of their abundance. Being wary of divers, larger and more transient fishes tend to depart the transect corridor at the approach of the observer so they, too, are probably under-censused by this procedure. Even clearly visible fishes that have no tendency to hide or flee the approach of a diver are subject to inaccurate counts because of their diversity and large numbers and because of their constant motion in and out of the transect corridor. In spite of these shortcomings, the visual census technique is accepted as a valuable tool for studying reef fish populations and is widely used in areas where the underwater visibility is good. It is of greatest value for making relative 24 comparisons between fish communities at different times and locations rather than as a quantitative method for assessing the precise composition of a particular community. All of the fish censuses covered by this report were conducted by the same individual (R. C. Wass), thereby reducing variability due to observer bias. Jones and Thompson developed (1978) a similar technique which allows one to characterize the fish community in terms of species presence and gives an indication of abundance. Its advantages are that it requires little time and no special equipment except for a diving watch and an underwater slate. The census procedure used in the present study goes beyond Jones and Thompson's technique to yield a numerical population estimate for each species on a per-unit-area basis. Our 15-20 minute search for additional species following the census picks up the rare, crytic and secretive fishes that would also be found with the technique of Jones and Thompson. About ten minutes were required to enumerate the f ishes on the 30-meter transects and about thirty minutes were required for the 100-meter transects. Data were recorded on a tape recorder in an underwater housing through a microphone in the mouthpiece of a regulator. Ten to thirty minutes af ter the transects were censused, the observer returned to the area with an underwater slate and spent 15-20 minutes seeking out and listing species not recorded during the census. The search was conducted within 20 m of the transect line and within the same depth range. Although no quantitative information resulted from this species search, it facilitated a more complete description of the fish community by providing information on the presence of wary, uncommon, cryptic and secretive species not observed during the census. All observations were made between 9:00 A.M. and 3:00 P.M. when diurnal fishes are most active and nocturnal fishes are inactive. 25 PHYSIOGRAPHIC DESCRIPTION of the MARINE HABITATS at FAGATELE BAY Overall Setting Fagatele Bay was formed sometime during the Holocene when the ocearL breached the seaward side of the volcanic tuff cone and flooded Fagatele Crater (Fig. 1). Exposed rocks within the crater consist of lithic-vitric tuffs derived from Fagatele Crater and from the nearby Vailoatai and Fogamaa Craters as well. Seumalo Ridge rises 122 meters in elevation along the northern and western sides of the crater and Matautuloa Ridge rises to over 61 meters in elevation along its eastern side. Slopes leading down to the bay from these ridge crests are quite steep and locally form vertical to overhanging cliffs. Sea cliffs are particularly well developed along wave-exposed stretches of shoreline northwest of Fagatele Point and north of Step Point. Although overall bottom topography within Fagatele Bay undoubtedly resembles to some extent that of the orginal crater, shallower regions have been extensively modified by reef deposits. Reef deposits are most extensively found along the northeastern sector of the bay where a contiguous fringing reef-flat platform up to 200 meters wide and generally less than a meter deep is developed (Fig.3). Except where volcanic basement rocks form local outcrops and submarine cliffs, deeper reef deposits form a complex topography that is extensively distributed on most slopes within the bay. Channel and buttress topography is well developed on shallow slopes adjacent to reef-flat platforms and an undulate topography of elongate ridges and troughs with scattered smaller relief features consisting of knobs, mounds, and pinnacles of various sizes characterize the deeper slopes. At some locations overall slopes are interrupted by prominent submarine terraces. 26 Although regions where volcanic rocks outcrop may lack in situ reef deposit, such localities may be patchily veneered by a considerable number of rpef-building corals and calcareous algal species. Deep slopes in the central part of the bay were not directly observed, but based upon a general downslope increase in sedimentation on shallower slopes, it is most likely a depositional zone where significant amounts of bioclastic sediments are accumulating. Description of the Coral Reef in Fagatele Bay. The reefs of Fagatele Bay can be divided into two principal geomorphic regions consisting of a relatively shallow reef platform that extends outward from the shoreline, and the forereef slope that dips downward from the outer edge of the reef -platform, or from the shoreline where such shallow platforms are absent. Both the shallow reef platform and the forereef slope can be subdivided into a number of conspicuous physiographic zones. Such zones also define the boundaries for some biozonation patterns as well in that certain reef-dwelling species are restricted in their distribution to specific physiographic habitats. In addition to strictly reef zones, Fagatele Bay has significant areas of nonreef habitats as well, particularly were submarine cliffs and outcrops of volcanic basement rock occur. Vertical profiles drawn from depth measurements taken along the bottom at Transects 1-6 to a depth of 12.2 meters are shown in Figures 8-10. For each transect location these profiles show the general bottom topography, the physiographic zones discrimi- nated, water depth, relative abundance of sediments (mostly bioclastic rubble) and corals, locations of transect marker stakes, and isobaths where quanti- tative measurements of marine invertebrates, fishes, and algae were taken. 27 Figure 8. Vertical profiles drawn from depth measurements taken along the reef surface at and 2 to a depth of 12.2 meters, showing general bottom topography, physiog discriminated, water depth, relative abundances of bioclastic rubble and coral of transect marker stakes, and the 1.0, 3.0, 4.6, 9.1, and 12.2 meter depth is quantitative measurements of marine invertebrates, fishes, and algae were ta carets indicate outcrops of volcanic basement rock. Vertical exaggeration X 3. Transect I 4-6m 9.Im 12.2m Continuation of Trancect 2 4 P-2 itake st ke 6 Depth In Submarine Terrace Meters LO Outer R.e 00 Slope Submarine Cliff 0 50 100 250 Meters From Shore From Shore Corals Rubble ransect 4, 1.0m Stake 3.Om 4.6m .2 Reef Flat Platform Reef Margin Reef Front Slope Submarine 6 Depth in T 2 Meters 10 0 50 1;0 lio Meters From Shore Figure 9. Vertical profiles drawn from depth measurements taken along the reef surface and 4 to a depth of 12.2 meters, showing general bottom topography, physi discriminated, water depth, relative abundances of bioclastic rubble and coral transect marker stakes, and the 1.0, 3.0, 4.6, 9.1, and 12.2 meter depth quantitative measurement of marine invertebrates, fishes, and algae were carets indicate outerops of volcanic basement rock. Vertical exaggeration X 3 Transact 3 3-Om 4.6m Stake 2 Reef Flat Platform Patch Reef Reef Front Slope Stake 6 Depth in Meters Submarine Terrace 10 0 50 100 150 Meters From Shore Transect 4 41 I.Om 3.Om 4.6m 9.1m '4.." 4 A 4 take 2Wave-Cut Volcanic Reef Flat Platform Bench Reef Fron Slope Stake Depth Submarine Terrace in Meters Outer 10 Reef Slope ta C 0 50 16 15'0 Meters From Shore Figure 10. Vertical profiles drawn from depth measurements taken along the reef Transects 5 and 6 to a depth of 12.2 meters, showing general bottom physiographic zones discriminated, water depth, relative abundances of bioc and corals, locations of transect marker stakes, and the 1.0, 3.0, 4.6, 9 meter depth isobaths where quantitative me iasurements of marine invertebr and algae were taken. Random carets indicate outerops of volcanic ba Vertical exaggeration X 3.57. Transect 5 9.1m 12-2m 3.Om 4.6m :Stake 2 V 7 V Stake 6 Depth inner Reef In Slope meters 10 Submarine Terrace Outer iStake Reef Slope 180 50 Meters From Shore Transect 6 11 5.Om 9.1m 12.2m 2 Corals Stake' 6 Rubble Depth Ridge In Meters 2 6 5 om 9 m Stake' 12 2 D Rid 'ce y v L 'Pth ge rrd In Met rs 10 V Subm, Submarine Terrac Stake Outer Sjol2e. Meters From Sh@. re 50 I Reef-Flat Platform Zone Shallow fringing reef-flat platform development is restricted to the northeastern sector of Fagatele Bay (Fig. 3). When measured along its shoreward margin, the reef-flat platform is approximately 1100 meters long and entends outward from the shoreline a maximum of 200 meters. The presence of a number of large r@entry channels, tens of meters wide and long, and more numerous but smaller surge channels, generally less than two meters wide and ten meters long, give the outer edge of the reef-flat platform, or reef margin, a very irregular and frayed appearance. It is difficult to assess whether restriction of reef-flat platform development to the northeastern bay sector has been the result of it being a more protected region, which would promote growth of fast-growing branching species of Acropora. Porites, and Pavona upward to mean sea level, or that a shallow terrace was present in that part of the ba)r when it was initially flooded. It is suspected that both factors have had some influence in reef-flat platform development, as volcanic basement rocks outcrop along the inner reef-flat platform at location C and fast-growing branching species are found at location B (Fig. 4). The reef-flat platform can be divided into three distinct habitats (A,B and C) as shown in Figure 4. These divisions are based both upon physiographic as well as community structural aspects of corals. In respect to physiography, much of the surface of platforms A and C are elevated relative to platform B and thus are partially exposed during low spring tides. Corals and other reef organisms which tolerate little to no exposure to air are thus absent on surfaces of these two platforms. The elevated nature of platform A is for the most part caused by the accumulation of boulder rubble. This rubble is composed mostly of fragmented corals that normally inhabit the region adjacent the upper forereef slope zone and thus must hav(% been 31 transport onto the platform surface by storm surge and waves. The intertidal veneer of boulder rubble on platform A forms a distinct boundary between it and the adjacent surface of platform B, as indicated by a dotted line on Figure 3. Storm waves have also been responsible for building up a significant veneer of beach deposits along the western part of platform A. Composition of these beach deposits is mostly reef-derived bioclastics of a wide textural range intermixed with some volcanoclastics derived from the adjacent volcanic ridge slope. The inner part of platform C is an intertidal wave-truncated volcanic bench about 15 to 25 centimeters higher in elevation than the adjacent surface cf platform B. The abrupt difference in elevation between platforms C and B forms a distinct topographic boundary, as indicated by a dotted line on Figure 3, as well as a community structural boundary in that corals abundantly occupy the slightly subtidal surface of B and are completely absent on the intertidal surface of C. In a seaward direction the volcanic bench grades into a slightly lower reef platform that is abundantly veneered with boulder rubble similar to that described on platform A. Although the outer part of the boulder zone is slightly subtidal, corals are widely scattered and, for the most part, restricted to elongate depressions that grade into reef margin channels at the seaward edge of the platform. A few small patches of rubbly beach deposits veneer the surface of several small shoreline indentations. Platform B is considerably larger in area than is either platform A or C, mostly subtidal, and quite variable in topographic structure. The southern third of the platform has a somewhat flattened topography with a number of shallow holes and depressions, generally less than 50 centimeters deep, scattered about. Corals are widely scattered on shallow flattened 32 portions of the platform, with most being restricted to deeper holes and depressions. Reentry channels, large holes, and irregularly-shaped depressions to 2 meters in depth give the central part of platform B a very irregular topography. Between these topographic depression, through, abundant finely branched and compact foliaceous species of corals have grown upward to near mean low tide level which gives the surface a truncated appearance. Some of the larger and deeper holes and channels are abundantly occupied by a diverse community of corals as well as considerable amounts of bioclastic sand and coral rubble. Much of this rubble has been derived from the collapse and fragmentation of in situ arborescent coral species that were presumably killed by earlier Acanthaster planci predation. On the northern part of platform B (adjacent to C), topographic depressions and holes are much less abundant and, where present, are shallower in depth. The platform at most places is abundantly covered by compact stubbily-branched and foliaceous coral species which grow upward to near mean low tide level, giving the surface a neat clipped appearance. At places these corals completely cover the reef surface. Bioclastic sand and rubble veneers the floors of most holes and depressions, particularly near the shoreline where a narrow rubble-strewn shallow moat occurs. Some small patches of rubbly beach deposits have accumulated where shoreline indentations occur. Reef Margin Zone The reef margin consists of the shallow wave-washed outer edge of the reef-flat platform. Topographically, it is also a distinct region that is indented at somewhat regular to irregular intervals by channels that penetrate up to 10 or more meters into the outer reef-flat platform. Channel orientation is roughly normal to the outer reef-flat platform edge. At their 33 seaward end, channel depth ranges 2 to 3 meters and channel width ranges from 1 to 3 meters. In cross section, channel walls are steeply sloping, vertical, or overhanging and channel floors are flat or U-shaped and generally veneered with bioclastic rubble and sand. Because of the abrupt shoaling nature of the outer reef-flat platform, water in the reef margin is seldom calm, as even small waves generally break and produce surf. Water movement is generally oscillating because as a wave trough approaches, water rushes seaward and then abruptly reverses direction and rushes landward as the wave crest advances. Collapse of the wave at the reef margin itself translates the wave into a surge of rolling surf that moves shoreward across the platform. These strong currents and wave action keep platform areas between the reef margin channels swept free of most fine sediment, but larger-sized cobbles and boulders and sand tend to accumulate on the channel floors. Based upon the presence of abundant bioclastic rubble transported onto the reef-flat platform, wave assult must be greatest in the reef margin zones adjacent to platforms A and C. Species abundance and coverage of corals is relatively high on the reef margin because of reduced Acanthaster planci predation in wave-assaulted zones. Although some stoutly-branched species of corals are restricted to this zone, so are some of the most fragile species as well. Forereef Slope Zone Seaward of the reef margin, the reef surface abruptly dips downward, forming the forereef slope zone. Where reef platform development is absent, such as along the southeastern and northwestern regions of Fagatele Bay (Transects 1 and 6), the forereef slope dips downward directly from the subtidal shoreline. Along the portion of the bay with reef-flat development 34 (Transects 2, 3, and 4), the forereef slope can be divided into three physio- graphic zones. The uppermost or shallowest of the zones on the forereef slope is the reef front slope which consists of the steeply dipping seaward face of the shallow reef-flat platform. Channels from the reef margin extend through this zone forming a channel and buttress topography. The depth to which this channel and buttress topography can be maintained or developed, mainly by erosion by abrasion of loose sediments along channel floors and by reef accretion on intervening buttress surfaces, determines the lower boundary of this zone, which here ranges f rom about 3 to 6 meters. Although the reef front slope lies just seaward of the normal breaking surf zone, it is still located in a region of strong oscillating currents. For this reason, predation by Acanthaster planci was less intense and species abundance and coverage of corals is higher here than on deeper forereef zones. In place of shallow reef front slope channel and buttress morphology at Transects 1 and 5, a somewhat irregular surface topography, here called the inner reef slope zone, is developed at these locations (Figs. 1 and 3). Although in situ reef deposits appear to occupy most major reef slope surfaces, at is suspected that they form only a thin or patchy veneer, and that the greater surface irregularity here is mainly a reflection of uneven underlying volcanic basement rocks. At most locations (except at Transect 6) between 3 and 9 meters depth, the degree of forereef slope decreases forming a submarine terrace zone. Width of the submarine terrace ranges from less than 40 meters at Transect 5 to about 120 meters at Transect 3. Elongate ridges and valleys and scattered pinnacles, knobs, and mounds gives the submarine terrace an irregular surface topography. At Transect 3 a prominent patch reef about 6 meters in diameter 35 breaks the surface during low tides. Bioclastic rubble and sand veneers the submarine terrace surface in many places, particularly in valleys, troughs, and other topographic depressions. When driving rim stakes into the reef surfaces for transect markers, this rubble accumulation was found to be in excess of a meter in thickness at places. Possibly recent Acanthaster planci predation on corals has accelerated the accumulation rate of rubble. Much of the rubble consists of fragmented branching corals and scattered pieces of tabulate Acropora species, particularly Acropora nobilis and A. hyacinthus. Although a considerable amount of coral rubble is present on the submarine terrace, it is rapidly being consolidated into a wave-resistant deposit by encrusting calcareous algae, and to a lesser extent by incrusting species of corals. Consolidation of loose rubble is important if recolonization by large tabulate corals is to be successful. Tabulate corals, such as Acropora hyacinthus., which was an important species on the forereef slope before Acanthaster planci predation, are presently recruiting to rubble deposits. For these recruits to be successful, rubble must be wave-stable, because as drag resistance from wave current increases with colony enlargement a point is reached where the loose piece of rubble to which it is attached becomes unstable under normal wave assault and the colony topples. A noticeable increase in the angle of downward dip occurs on the forereef slope at a depth of 6 to 9 meters along Transects 1,2,3,4, and 5, which marks the beginning of the outer reef slope zone. Outer reef slope topography is somewhat similar to that described on the more gently sloping submarine terrace zone, but with smaller and fewer local prominences such as mounds, knobs, and pinnacles. Bioclastic sediments are more abundant than on the upper forereef slope zones, particularly the sand-sized fraction which tends to accumulate in local flattened portions of the slope, topographic 36 depressions, and troughs. Although no direct observations of slopes deeper than 20 meters was made systematically, a number of large sandy patches were observed at about 30 meters depth while making a towed snorkel reconnaissance around Fagatele Bay. A submarine cliff interrupts the outer reef slope at about 12 meters depth at Transect 1. Such cliffs also are found extensively between Step Point and the reef platform along the east side of the bay and between Fagatele Point and the reef platform C along the northwestern side of the bay (Figs. 1 and 3). Although rock samples were not collected from these submarine cliffs, their vertical faces are presumed to be composed of volcanic tuffs, similar to those exposed along ad.jacent shorelines. Outer reef (or volcanic nonreef slopes) deeper than 30 meters were not directly observed, but it is suspected that this deep central part of the bay is primarily a depositional basin where bioclastic sediments of reef origin and volcanoclastic sediments of materials eroded from subtidal and subaerial slopes are accumulating. Extensive in situ reef deposits were not observed at Transect 6. Here volcanic basement rocks form a complex topography of steep slopes, irregularly shaped ridges, and large blocks that are patchily veneered by corals, calcareous algae, and other reef-dwelling organisms. Although heavy wave assult keeps most surfaces swept free of sediments, some flattened terraces, troughs, and topographic depressions are veneered by a mixture of bioclastic and volcanoclastic sediments of a wide size range. 37 QUANTITATIVE SURVEY OF BIOLOGICAL RESOURCES at FAGATELE BAY 5-19 April 1985 A preliminary survey of Pagatele Bay National Marine Sanctuary revealed that the coral community and benthic habitat were in a patchily arrayed lateral pattern superimposed over a vague pattern of vertical gradient. To quantify these sources of variance as efficiently as possible, we set our 6 permanent transects evenly around the perimeter of the Sanctuary, with each permanent transect covering the vertical gradient to a depth of 40 ft (12 m). Replicate quantitative samples were taken along isobaths, starting at the permanent transects. The results of our quantitative surveys are given below in taxonomic order. Glossary The following symbols are used in this report. S = standard deviation anova = analysis of variance S-- = standard error of the mean = p<.05 Y W = range of data = P<.Ol W = Shannon-Wiener diversity index = P<.001 = -E P i log Pt (where P n,) ns = not significant N = evenness index H T max D Simpson's index of dominance Z ni (ni-1) N (N-1) 38 Algae and Substrate Cover Results of the quantitative survey of algae in Fagatele Bay are presented in Tables 2a and 2b. A total of 39 species of marine plants were encountered along 20 transects at various depths. The overall percent cover for the marine plant community along all transects in Fagatele Bay was 78 (s = 18). Crustose and articulate coralline algae made up 57.1% of the overall coverage. In fact, incrusting coralline algae were characteristic of the entire bay. Both the overall algal coverage and the coverage of the crustose and articulate coralline algae decreased with depth (Table 2c). Halimeda was common in the interstices of the substrate. The thin, black, tightly adherent crusts of Ralfsia were conspicuous and reached a 15.6% coverage at 40 ft (12 m) on Transect 4. Cheilosporum maximum was one of the more conspicuous articulate coralline algae and was found on most transects, frequently in somewhat protected areas. During the second part of the study at other sites around Tutuila a total of 54 algal species were encountered along 12 transects at a depth of 6 m (Table 2d). The overall percent cover was 55.8 (s = 30.4). Crustose and articulate coralline algae comprised 4-3.4% (s = 20.1) of the cover. Little information has been published on the marine algae of American Samoa. The paper by Setchell (1924) is perhaps the most substantial, yet it was apparently based upon fragmentary collections and is incomplete (Dahl 1971). In addition, most of Setchell's work was done in relatively shallow water on the reef flat. Dahl, in his 1971 paper, presents a general discussion about algal assemblages frequently found associated with turfs in American Samoa. Fagatele Bay was greatly affected by Acanthaster planci in 1979 (U.S. Army Corps of Engineers 1980). The coral community in most areas was 39 devastated, providing surface for the recruitment of successional plant assemblages. Studies on the algal recolonization of coral communities after destruction by A. planci generally address only the time periods directly after the destruction (Briggs and Eminson 1977). Nishihira and Yamazato (1974) mention that the type of community after the destruction of the corals by the A. planci depends upon the type of the original and surrounding community as well as on the geophysical position of the community concerned. The marine plant community of Fagatele Bay may be categorized and described in terms of their secondary roles as functional groups in the marine escoystem of the bay, assuming primary production to be the primary role (Tsuda 1973). One group, the fleshly macroalgae and marine plants, was greatly reduced. Members of this group, such as Halo phila sp. and Sargassum sp., were observed in shallow water during the second part of this study. Qnly two members of this group, Laurencia and Tolypiocladia, were found in Fagatele Bay, but they were sparsely distributed, low growing, and were associated mostly with algal turf. Algal turf was generally low and was usually found in semiprotected areas. Gelidium. pussilum, Hypnea pannosa, Microcoleus lyngbyaceus, .Sphacelaria Cribuloides, and Dictyosphaeria versluysii represent the predominant turf community observed along most transects. Ralfsia pangoensis was common. Its cover reached up to 16% along Transect 4 at 40 ft. The generally low abundance of filamentous algae in exposed areas and the reduced occurrence of algal mats may be an indication of grazing by herbivorous fishes, or it may be a successional stage which follows the devastation of the coral community 6 years ago. Incrusting coralline algae were the most abundant algal component along all transects in Fagatele Bay. Most transects were exposed to strong surge or 40 high wave energy. Porolithon associations formed a pavement giving the substrate a clean scrubbed appearance. A typical sun-loving plant, Porolithon occupies only the upper surface of the rosettes of Acropora or other corals. Peyssonelia, a thoroughly calcified species, covers wave-worn fragments of coral and other substrates. Halimeda was one of the more abundant of the carbonate-producing algae. The thalli of Halimeda frequently were so closely crowded together that the light fell only on their tips. Chilosporum maximum, Amphiroa foliacea, Jania, and Amphiroa sp. follow in order of importance for carbonate production. This baseline study does not take into account the importance of precipitation and tidal fluctuations in influencing the seasonal occurrence of certain species of marine plants. Information on the algal communities of American Samoa is sparse and frequently too general (Setchell 1924; Dahl 1971; U.S. Army Corps of Engineers 1980) to make any comparisons about the algal community and residual or second-order impact from the A. planci infestation and changes in the algal community since this event. The plant assemblages of the areas surveyed during the second part of the study were similar to those in Fagatele Bay. Incrusting coralline algal associations were characterisic for all areas. Of particular interest was the layer of Peyssonelia over large areas of rubble at locations 4,5, and 7 (Table 2d, Fig. 2). The area of transect 11 (at Rainmaker Hotel) showed the lowest number of algal species (4). The hitman population around Pago Pago, including the industrial complexes within the harbor, contribute to the pollution in the bay and possibly to the decline in species diversity of algae near the Rainmaker Hotel. 41 Table 2a. Frequency and percent cover of the benthic flora in Fagatele Bay, American Sawa (Transects 1,2,3). Plain numbers indicate percent coverage, numbers in parenthesis indicate frequency of occurrence converted to percent (see Methods in the text). Algal species occurring epiphytically an other algae or occurring in the vlcvuty of the transect are marked @ddi an X. TRANSECTS 2 3 SPE= 15 30 40 10 15 30 40 10 15 30' 40 C@anophyta (blue-green) Vdcrocoleus lyngbyaceus x 1.0(17) (Kutz.) Crouan Schizody-ix calcicola x 1.0(17) (Ag.) Gownt Schizodu-ix maxicana x Gamnt Chlorophyta (green) Chlorodesmis fastigiata 3.1(33) 1.0(17) (C. Ag.) Dictyos#w-ria versluysii 1.0(17) 2.1(33) W. v. Bosse Fnterarorpha clathrata x (Roth) J.Ag. HaLiMEda discoidea 2.1(17) 3.1(33) 1.0(17) Decaisne Halimeda opuntia 4.2(17) 4.2(33) 8.3(33) 8.3(67) 6.25(17) 10.4(50) (L.) Lam. Rhizocloniun samoense x Valania. fastixiata x 1.0(17) Har. Valonia ventricosa 1.0(17) J.Ag. PI 3phyta (brown) Dictyopterts repens 2.1(17) 3.1(50) 1.0(17) 1.0(17) (Ckm.) Boerg. Dictyota friabilis 1.0(17) 3.1(17) 1.0(17) 6.2(50) 1.0(17) 2.1(33) 5.2(50) 2.1(17) 1.007) Setch. Ralfsia pangoensis 3.1(33) 2.1(17) 8.3(50) 10.4(77) 8.3(83)) 12.5(83) 4.2(50) 8.2(50) 1.0(17) 4.2(33) Setch. Sphacelaria tribuloides 2.1(33) 2.1(17) 2.1(33) 3.1(17) Vlenegh. Mmdo#qta (red) Ceramum mazatlenese 1.0(17) 1.0(17) Dawson Ceramiun sp. 1.0(17) 2.1(33) 2.1(33) 2.1(33) Mmmia czoDressa, 1.0(17) Harv. J.Ag. GelidieUa sp. 2.1(33) 6.2(33) 2.1(17) 6.2(33) 3.1(17) 6.2(67) 9.4(50) 10.4(67) Gelidium pissilun 2.1(17) 2.1(33) 3.1(17) 2.1(33) 1.0(17) 3.1(33) 2.1(33) 1.0(17) 2.1(17) (Stacldi.) 1,%Joli 1krposiOxxua tene]-la 1.0(17) 2.1(33) 2.1(33) 1.0(17) 1.0(17) (C. Ag.) Naegele Hypoglossun attenuatun 2.1(33) Gardner LqLavncia obtusa x (Huds.) Lam. Lophosiphaiia vill- 2.1(17) (J.Ag.) Setchelffiardner Pblysio-lia 900ma- 1.0(17) 5.2(50) 1.0(17) Harv. Tolipiwladia alawrulata 1.0(17) 3.1(33) (Ag.) Schmitz austose and articillate caralline algae AgAirca sp. 1.0(17) 1.0(17) Aqkdx,oa foliacea 4.2(33) 1.0(17) 2.1(33) 3.1(17) La=. Amphiroa fragilissima 3.1(17) 1.0(17) Lam. Cheilosporm mn@imum 1.0(17) 2.1(17) 3.1(17) Yendo Cheilospanxa matifidm x (Kuetz) MEu 42 Table 2a contimed ...... TRANSECTS 2 3 SP= 15 30 40 10 is 3D 40 10 15 30 40 Jania capillaces 1.0(17) 1.0(17) 1.0(17) 1.0(17) Harwy Lithoporella, sp. 2.1(17) 5.2(40) 2.1(33) 6.2(33) Mesophyllum ummorphun 1.0(17) 5.2(50) 2.1(33) 2.1(17) 6.2(33) 3.1(33) 2.1(33) 2.1(17) (Foslie) Adey Neoganiolitbon sp. 2.1(33) Pey-nelia sp. 8.3(50) 14.6(50) 5.2(50) 5.2(50) 7.3(50) 8.3(50) 7.3(67) 5.2(33) 16.7(83) 8.3(50) 6.2(50) Pbrolidm sp. 36.2(83) 30.2(83) 33.3(100) 52.1(100) 56.1(100) 15.6(67) 19.8(67) 47.9(100) 14.6(50) 28.1(83) 26.0(50) Species 1 6.2(67) 2.1(17) 4.2(33) 2.1(17) 10.4(50) 2.1(17) 5.2(33) 13.5(50) 3.1(17) Dead coral 2.1(17) 10.4(33) 7.3(50) Coral rock 11.5(17) 2.1(17) Ldve coral 8.3(50) 19.8(67) 25.0(83) 2.1(17) 2.1(33) 24.0(76) 2.1(33) 26.0(83) 17.7(67) 12.5(67) 9.4(50) Rubble 2.1(17) Sand 6.2(33) 4.2(17) 7.3(33) Ar*rmm 2.1(33) Sea urdun 1.0(17) Sponge 1.0(17) 2.1(17) 6.2(50) 3.1(17) 9.4(17) Tuaicates 1.0(17) 1.0(17) Soft coral 7.4(33) 4.2(17) 4.2(17) Scuzz 1.0(17) 1.0(17) 2.1(17) 1.0(17) Nwber of plant genera/transect 14 9 9 13 12 13 18 11 15 10 15 Nunber of plant species/transect 15 9 9 14 12 15 19 11 18 10 15 Overall pmment plant coverage 70.8 73.9 60.2 95.7 94.6 67.4 85.0 67.6 81.1 73.7 78.8 Parent coverage of crustose 46.8 55.3 45.83 61.5 70.8 41.5 48.9 63.5 53.1 53.0 45.6 and articulate coralline algae Total nuther of plant genera '32 Total minber of plant species 39 43 Table 2b. Frequency and percent cover of t1v benthic flora in Fagatele Bay, American Samm (Transects 4,5,6). Plain nimbers indicate percent coverage, minbers in parenthe@ indicate frequency of occurrence converted to percent (see Meoods in the text). k1gal Speci- --ing epiptlYtiCally on odw algae or occurring in the vicinity of the transect are aurked with an X. TRANSECTS 4 5 6 S= 10 15 3D 40 15 30 40 25 40 CyanooWrz (blue-green) Microcnleus lynabyaceus 1.0(17) (Kutz.) Cmm Schizothrix cakicala 2.1(33) 1.0(17) (Ag.) Gm-t Sdiizodu-ix me)dcana x Gamont aunrophyta (green) Chlorodesmis fastigiata x (C. Ag.) Dictyosphaeria versluysii 3.1(33) 1.0(17) 2.1(33) W. V. Bosse 11alimeda discoidea 1.0(17) 3.1(17) Decaisne HaLimada opLmtia 5.2(33) 4.2(17) 10.4(50) 6.2(50) 4.2(33) 7.3(33) 15.6(67) (L.) Lau. Valonia ventricosa x J.Ag. a-Dowta (brown) Dictyopteris repens 1.0(17) (Gam.) B-g. Dictyota friabilis 4.2(17) 2.1(17) 1.0(17) 2.1(33) 1.0(17) Ralfsia pangoensis 5.2(50) 8.3(67) 13.5(67) 15.6(83) 7.3(33) 4.2(33) 8.3(90) 3.1(17) Setch. Sowmlaria tribiLloides 1.0(17) Menegh. MxdooqU (red) Caramium Sp. 1.0(17) Celidiella sp. 2.1(17) 5.2(33) 1.0(17) 1.0(17) 1.0(17) Gelidiun pussilun 2.1(33) 22.1(17) 1.0(17) (Stackh.) LaJolis Herposiomia tenel-la 1.0(17) 1.0(17) 2.1(17) 1.0(17) (C. Ag.) Naegele I lypoglossin attemiatum 1.0(17) Gardner Unidentified red 1.0(17) 1.0(17) Qrustose and ardculate coralline algae AgAiroa sp. 1.0(17) 4.2(50) 1.0(17) foliacea 1.0(17) 3.1(50) 1.0(17) 3,103) Lam. fraRiussima 1.0(17) Lam GeLosporm mmium 4.2(33) 4.2(33) 12.5(67) 5.2(33) 5.2(50) 10.4(83) 7,300) 1.0(17) Yendo Jania cap:Lllacea 1.0(17) Harvey Lithoparella sp. 4.2(50) 1.0(17) 15.2(33) 23.1(50) 1,0(17) fftho m1uppense 1.0(17) FosLie MES00hyuun embeseme 2.1(17) 1.0(17) 1.0(17) 1.0(17) 4.1(33) (Foalie) Lemine Masophyllim mesamrphun 4.2(33) 10.4(5D) 2.1(33) 4.2(50) 2.1(17) (Foslie) Adey Neogmialid= sp. 5.2(17) Pleyssonelia sp. 3.1(50) 8.3(67) 10.4(50) 16.7(83) 15.6(83) 4.2(5D) 11.5(100) 13.5(67) 4.1(17) Pbrolithon sp. 45.8(83) 25.0(33) 11.5(50) 30.2(100) 43.8(100) 36.5(83) 35.4(67) 37.5(83) S Speri 6.2(33) 25.0(33) 8.303) 3.1(33) 7.3(33) 10.4(67) 8.303) Dead coral 4.1(17) 1.0(17) 2.1(17) Coral rock 4.2(17) Live coral 5.2(50) 3.107) 11.4(33) 19.8(83) 11.5(33) %ibble 3.1(17) 39.6(100) 44 Table 2b continued ...... TRANSECTS 4 5 6 Sp9m 10 15 30 40 is 30 40 25 40 Sand 2.1(17) 42.7(67) Sea urchin 2.1(17) Soft coral 4.2(17) 1.0(17) 7.3(33) Scuzz 2.1(17) Chitan 1.0(17) Nunber of plant genera/trwisect 12 14 11 17 7 12 13 7 5 NLuber of plant species/transect 17 14 13 17 7 12 i5 7 5 NeraU percent plant coverage 92.5 %.9 88.2 99.0 84.4 78.0 %.6 69.7 17.5 Percent coverage of crustose 67.6 77.0 60.3 64.5 71.9 66.6 72.8 58.3 13.6 and articulate coralLine algae Total muber of plant genera 27 Total mEiber of plant species 33 Table 2c. mean percent cover and standard diviation at different depths in Fagatele Bay. overaU 10 ft 15 ft 30 ft 40 ft rp-2D rP3 n-5 n-6 n-6 all. algae 78.0 �18.2 85.3 �12.6 85.6� 9.6 75.2 �6.7 72.8� 27.8 crustose and articulate 57.1 �14.1 65.6 � 2.9 63.9 �11.8 56.3 �7.7 48.5� 18.6 coraLline algae 45 Table 2d. Frequency and percent cover of the benthic flora along 12 transects in 6 different bays of knerican Smm. Plain nmbeers indicate percent coverage, mubers in parenthesis indic-it- frequency of occanvrr-e converted to percent (see Medx4s in the text). Algal species occLuTing epiphytically on other a4w or occurring in the %riunity of do transect are aarked with an X. TRANSECTS Spem 1 2 3 4 5 6 7 8 9 10 11 12 CYMVOIM (blu"Vem) Microcoleus lyngbyaceus 1.0(17) 1.0(17) 1.0(17) UY1.7) 1.0(17) (Kutz.) Cromn SchizDthrix calcicola 1.0(17) 1.0(17) 1.0(17) (Ag.) Goinont Schizothrix 1.0(17) 1.0(17) 1.0(17) Gavant auoroovta (green) ampsis permta 1.0(17) 1.0(17) 2.1(17) Lam. Gmaerpa peltata 1.0(17) (Forsk.) J.Ag. Chlorodegds fastigiata 3.1(33) 1.0(17) 2.1(33) 6.3(17) (C. Ag.) Dir-tyosOw-ria versl 1.0(17) 1.0(17) 1.0(17) W. V. Bosse Fhteranorlin clathrata 1.0(17) (Roth) J.Ag. HaLbmda discoideEt 1.0(17) 1.0(17) Decaisne Halimeda optmtia 4.2(33) 3.1(33) 4.2(33) 4.2(17) 3.103) 2.1(17) 2.1(33) 5.2(.33) 1.0(17) (L.) Lam. Neameris annulata 1.0(17) 1.0(17) Dickie Valonia ventricoss 1.0(17) J.Ag. Tydamnia expeditianis 2.1(17) 1.0(17) W. V. Bosse Rme*UU (brown) Dictyopteris repens x 1.0(17) 2.1(33) (Clam.) Boerg. Dictyota friabilis 7.3(33) 1.0(17) 3.1(17) 3.1(33) 2.1(33) 4.2(33) 4.2(33) 4.2(33) 1.0(17) Setch. Ralfsia mwensis 11.5(50) 4.2(17) 6.2(67) 4.2(50) 1.0(17) 1.0(17) 2.1(33) 1.0(17) Setch. Somelaria furcigera 1.0(17) Kutz. Rhodophyta (red) Actinatrichia fragUis 1.0(17) 1.0(17) 1.0(17) Boerg. taxiforuas x (Delil ) Collinaghervey Ceramitm muntlenese 1.0(17) Dswsm Opyla camressa Harv. J. Ag. Desmia hornemnni 1.0(17) 2.1(33) Lyngb. Galaxatwa filammtoea 1.0(17) 1.0(17) Dawson Galaxa= marzinsta 1.0(17) 2.1(17) Lam Gibsuithia 1.0(17) Doty Gelidiella sp. 1.0(17) 2.1(17) 4.2(33) 5.2(33) 9.4(50) 5.203) 5.2(17) Celi@dopsis intricata 1.0(17) (Ag.) Vidmrs Celidim pussilun 1.0(17) 2.1(33) 6.2(33) 4.2(67) 3.1(50) (Stackh.) Wall Haloplexx &pwmyi x 1.0(17) 2.1(17) 2.1(33) Hennitram fragilis 2.1(17) %r-Y phonia teneUa 1.0(17) 2.1(17) 2.1(33) (W. v. Bosse & Foslie) Foelie tkmm =mom x x 46 Table 2d continued ...... TRANSECTS 1 2 3 4 5 6 7 8 9 10 11 12 J.Ag. HypoglossLm attenuatun 1.0(17) 1.0(17) 1.0(17) Cerdner Laurencia papillosa 1.0( 17) (Forsk.) Grev. Liagora sp. 1.0(17) Polysiphonia sp. 1.0(17) 1.0(17) Polysiphonia scopulorun 1.0(17 flarv. Rhodymenia sp. 1.0(17) ToLipiodadia glawxulata 2.1(17) 1.0(17) (Ag.) Sdmdtz Unidentified red x 1.0(17) Crustose and articulate coralline algae Ngkiroa sp. 1.0(17) 1.0(17) 2.1(17) 2.1(17) 1.0(17) N#droa foliacea. 3.1(17) 2.1(17) 3.1(17) 2.1(33) Lam irm fragilissima 4.2(33) 1.0(17) 1.0(17)1 Lam. GeLlosponn maximm 3.1(33) 4.2(33) 2.1(33) 1.0(17) Yeno Hydrolithon sp. 1.0(17) 1.0(17) Jania capillacea 1.0(17) 1.0(17) Harvey Lithophyllm raoluccense 1.0(17) Foslie 1.1dioporella sp. 3.1(33) 4.2(50) 4.2(17) 5.2(33) 1.0(17) 2.1(33) Megophyllun erubegem 2.1(17) (Foslie) Lamine M29DPhyLlm mesomorphm 3.1(33) 2.1(17) 2.1(33) 1.0(17) 1.0(17) 1.0(17) 4.2(67) 2.1(33) (Foslie) Adey Neogoniolidm sp. 1.0(17) 1.0(17) Peysgmelia sp. 2.1(33) 6.2(50) 11.5(83) 9.4(83) 12.5(50) 10.4(33) 14.7(67) 9.4(67) 7.3(33) 5.2(50) 4.2(33) Porolithon sp. 6.2(17) 26.0(67) 39.6(100) 19.8(67) 38.5(83) 31.3(67) 20.8(83) 33.3(83) Species 1 15.603) 2.1(33) 11.503) 6.2(33) 4.2(33) 15.6(33) 7.3(17) 2.1(33) Bivalve 1.0(17) Dead coral 13.5(67) 4.2(33) 5.2(17) 5.2(17) 2.1(17) 6.2(33) 9.4(67) 5.2(17) 10.4(33) Coral rack 5.2(33) 2.1(17) 2.1(17) 4.2(17) Live coral 30.2(67) 28.1(100) 2.1(17) 21.9(67) 8.3(50) 18.8(100) 3.1(33) 18.8(67) 17.7(67) 32.3(83) 20.8(50) 49.0(100) Rubble 15.6(33) 6.2(50) 25.0(50) Sand 5.2(33) 1.0(170 14.6(50) Sea urcidn 2.1(17) Sut 15.6(33) Soft coral 23.0(67) 4.2(33) 6.2(17) 4.2(17) 3.1(33) Sp7w 1.0(17) 1.0(17) 1.0( 17) 7.3(50) Wober of plant genera/tzwmact 10 16 13 12 12 11 19 20 13 24 4 10 Mmiber of plant species/mwvaect 12 18 13 13 13 11 19 20 14 24 4 to Overall percent plant c-erar 27.9 62.0 92.9 48.8 83.4 70.6 89.1 69.5 83.1 59.1 5.1 43.6 Percent cova-age of crustose 17.6 36.3 68.8 36.5 70.7 56.2 60.5 39.5 62.4 32.1 2.1 38.5 and articulate coralline algae Total minber of plant genera 47 Total mxi)er of plant species 53 I- Inside Masefau, 2- Outside Masefau, 3- Ace, 4- Qwffm, 5- k='u, 6- Matull. Point, 7- Fagasa, 8- Cape Larson, 9- Fagafue, to- Massacre Bay, 11- Rainmaker, 12- Fatu Rock 47 Corals The primary purpose of this report is to provide a quantitative biological resource assessment of Fagatele Bay National Marine Sanctuary so that changes in time can be quantitatively documented in comparison with this baseline information. Towards this objective, we have presented summary statistics for each reef-building (hermatypic) coral species at each depth along each permanent transect for Fagatele Bay in Tables 3a-y. Likewise, we have provided summary statistics fo.r each hermatypic coral species at the reef margin and at 6 m depth for April 1982 and for April 1985 at 12 additional locations around Tutuila Island (Tables 4-15). In Fagatele Bay, the percent substrate coverage by hermatypic corals (Table 16) tended to be greatest in areas with strong wave action, e.g., coverage by corals generally decreased along a gradient from transects in shallow areas to transects in deeper waters and the outer Transects 1 and 6 had greater coverage by corals than did the central transects at comparable depths. Although these trends can be seen in Table 16, statistical demonstration of these trends can not be given because of a large interaction term brought about by the presence of a large clump of Echinopora hirsutissima at 9 m near Transect 2. We believe this general trend is probably a result of protection of corals from Acanthaster planci bV water surge and wave action. A. planci does not maintain its position on the substrate in areas of strong surge. Echinopora hirsutissima is not a favored prey of A. planci and this may be why such a large patch was present at 9 m depth. We looked for patterns in the distribution of favored prey (Acroporidae) and disfavored prey (e.g., Poritidae, Hussidae, Milleporidae), in Table 3, but in all cases there were strong interaction terms which prevented generalizations. The abundance of 48 hermatypic corals in Fagatele Bay was patchy and no clear patterns could be observed (Table 17). This may result from aggregated and irregular recruitment. Likewise, because of interactions, there were no clear patterns in the distributions of mean colony sizes (Table 18), coral community diversity values, degrees of evenness of representation of coral species, or degree to which the coral communities were dominated by a few species (Table 19). Nevertheless, with the summary statistics obtained in this study, a comparison can be made with statistics from future studies to see if a significant change has occurred. Data from the survey indicate that the coral community in Fagatele Bay is a diverse and complex system. Frequent interactions obscure general patterns. The present distribution of corals in the community may result in part from differential predation pressure from Acanthaster planci in 1979 as well as from aggregated and irregular patterns of coral recruitment. The purpose of this survey is to provide a basis for a quantitative comparison of future changes and to allow statistical analysis of these changes in community structure. For convenience, a complete list of all species of scleractinian corals observed on each transect at each depth in Fagatele Bay is given in Appendix 1. A complete list of species observed at 12 locations around Tutuila outside Fagatele Bay in 1979, 1982 and 1985 is given in Appendix 2. Macroinvertebrates The densities of macroinvertebrates along 19 transects in Fagatele Bay are presented in Table 20. A qualitative assessment of macroinvertebrates observed on the reef outside the areas censused on the transects is presented in Table 21. 49 Echinoderms were the predominant benthic invertebrates, occurring on all transects. Observed on 95% of the transects, Echitiometra mathaei was the most common of the five species of urchins encountered. E. mathaei reached its greatest abundance in the more sheltered reef of Transects 2 and 3, where it inhabited the interstices of dead branching corals. In the more wave-assaulted zones of Transects 1 and 6, it occupied a system of grooves in the reef pavement. Conversely, the burrowing urchin Echinostrephus sp. was more abundant in the higher energy environments where reef pavement was covered by a thin sand and algal turf. This occurred at a mean density of 236.6/m 2 along the 15-ft (5 m) isobath of Transect 1. At the 30-ft (9 m) isobath of Transect 1 and the 25-ft (7.6 m) isobath of Transect 6, it attained mean densities of 109.7/m 2 and 102.9/m 2, respectively. Other species of echinoids were neither as common nor as abundant as E. mathaei or Echinostrephus sp. Echinothrix diadema was found in the two sLiallower zones of Transects 2, 4, and 6. Less common were Eucidaris metularia and Diadema sp., which occupied the deeper isobaths. The small coral reef asteroid Linckia multifora was the only starfish occurring on transects. This species was most commonly observed on the deeper isobaths where it was sheltered from wave surge. Only two individual Acanthaster Planci were observed in Fagatele Bay during our studies in April 1985. The soft coral Sinularia sp. also formed a conspicuous component of the macroinvertebrate fauna. Present on 14 transects, colonies of Sinularia sp. were more abundant in shallow areas of moderate to high wave and current activity. A single colony of Sarcophyton sp. was encountered on the transect at the 40-ft isobath of Transect 1. 50 The highest diversity among the macrobenthos was exhibited by the gastropod assemblage. Fourteen species of neogastropods occurred on the transects, representing about 78% of all species of snails. Only two species each of archeogas tro pods and mesogastropods were found on the transects. The predominance of neogastropods was also reflected in population densities; 71% of the gastropod fauna consisted of neogastropods, while archeo gastropods and mesogastropods made up 11% and 3% of the fauna, respectively. The most common and most abundant of the nVogastropods was the muricid Norula uva, followed by the fasciolariid Peristernia fastigium. A single species of opisthobranch gastropod was observed on the transects. However, this species, the nudibranch Phyllidia sp., constituted about 14% of all gastropods present. Thus, its abundance was aimost equal to that of the archeogastropods and mesogastropods combined. Although a number of dead bivalves was observed in Fagetele Bay (Table 21), the giant ciam Tridacna maxima was the only live sp ecies encountered on transects. This probably represents a conservative estimate of relative abundance of bivalves because there was not sufficient time to examine habitats of the cryptic or the infaunal species, such as Arca avellana and Scutarcopagia scobinata. The principal crustaceans inhabiting the transected areas of the reef were hermit crabs of the family Diogenidae. These crustaceans were collected and preserved for later identification by Roy K. Kropp of the University of Maryland. A medium-sized parthenopid crab, Daldorfia cf. horrida, was observed adjacent to the 10-ft (3 m) isobath on Transect 3. A preliminary list of gastropods collected or observed at 11 sites around Tutuila is given in Table 22. Further study is being given to crustaceans, asteroids, and ophiuroids to provide accurate identification of these taxa. 51 Macruinvertebrate specimens collected during this survey are being compiled into a reference collection to be deposited at the Fagatele Bay National Marine Sanctuary headquarters in American Samoa. Where available, duplicate specimens will be deposited at the University of Guam Marine Laboratory. As noted by Eldredge (1979), few marine faunistic surveys have been conducted in American Samoa. Previous studies of Fagatele Bay have encompassed fish surveys (Wass 1978) and general reef mapping (U.S. Army Corps of Engineers 1980). Unfortunately, few details of the composition of the macroinvertebrate community have been provided. Data from the present study indicate that the macro invertebrate fauna of Fagatele Bay is representative of the Indo-West Pacific region. We collected two of the 13 species of asteroids known from Samoa (Marsh 1974) at Fagatele Bay, and three additional species were found outside the sanctuary. Although no ophiuroids, or brittlestars, occurred on transects in Fagatele Bay, the as yet unidentified specimens we collected during frequent encounters in other localities will add to*the few reported from Samoa by Devaney (1974). The high diversity of gastropods in the sanctuary is evident from a comparison of Tables 21 and 22. Of a total of 142 species of gastropods collected at 11 sites around Tutuila, 61 species, or 43% of the total, were also observed or collected in Fagatele Bay. An additional 36 species were encountered in Fagatele Bay but not elsewhere around the island. When consideration is given to the fact that all sampling in Fagatele Bay was conducted on hard substrates, the relative diversity of gastropods in the sanctuary is even greater. Patterns of succession among corals (Colgan 1981; Pearson 1981) and algae (Biggs and Eminson 1977) have been studied in some detail on reefs devastated by Acanthaster planci, and some changes have been noted in fish communities 52 (Endean 1973). However, the effects of A. planci infestations on the population structure of benthic macroinvertebrate communities have been esstentially overlooked. Endean (1973) presumed that small organisms associated with corals attacked by the A. planci were killed by the digestive enzymes released by the starfish. Some areas of the Australian Great Barrier Reef were characterized by a marked spread of alcyonaceans following a lapse of about two years after an infestation (Endean and Stablum. 1973; Endean 1976). Birkeland (1981) related a report of increased abundance of herbivorous sea urchins following an outbreak of A. planci in Palau before World War II. He further noted the scarcity of urchins at the time of his survey. It is likely that successional changes among macroinvertebrates in Fagatele Bay hav e taken place already. A previous study of the area reported extensive patches of a whitish sponge in depressions at depths between 15 and 30 feet (U.S. Army Corps of Engineer 1980). Although a few isolated colonies of a whitish sponge were observed during the present study, none was encountered in the area surveyed on transects. One group of macro invertebrates was conspicuous by its absence in Fagatele Bay. The Holothuroidea, or sea cucumbers, comprise a major constituent of the benthic fauna in many Pacific areas (Birkeland 1978; Intes and Menou 1979; Grosenbaugh 1981). However, no holothurians occurred in the 1140-m 2 area surveyed on transects in Fagatele Bay, nor were any sighted on the reef adjacent to transects. Inventories of reef faunas in other areas of Tutuila have recorded a number of holothurian species (Helfrich 1975; U.S. Army Corps of Engineers 1980). Included among the holothurians reported from nearby Pala Lagoon was Actinopyga, a genus that frequently inhabits the reef front. Although 53 Fagatele Bay would appear to provide suitable habitat for Actinopyga, none was found. Reasons for the absence of holothurians in general, and this genus in particular, at Fagatele Bay are not known. Without a point of reference, it is difficult to assess accurately any changes that may be occurring within the macro invertebrate community as a result of devastation of the reef. However, with' the present study as a baseline, the Fagatele Bay marine sanctuary offers an important opportunity to investigate hypotheses regarding changes in the macro invertebrate community during the late stages of recovery of the reef. The two predominant invertebrate taxa that we found could have been inferred on the basis of reports from other areas. It will contribute further to our understanding of biological disturbances on coral reefs if macroinvertebratec such as the soft coral Sinularia sp. and the urchin Echinometra mathaei are monitored to measure any changes in their relative densities as the reef undergoes further recovery. Fishes Fishes observed and counted on-transect and during subsequent 15-20 minute searches are listed in Table 23 for the twelve 30-meter transects conducted within Fagatele Bay. Table 23 also lists additional species observed within the bay during a general reconnaissance dive to 60 ft (18 m). A total of 215 species was observed in the bay. Averages of 25 species and 221 individuals were observed per transect (60 m'). When the off-transect fish (those additional species observed within 20 m of the transect line) are included, the average number of species for each area was 62. Greatest diversity occurred at Transect 1-D conducted in the outer portion of the bay near Steps Point at a depth of 40 f t (12 m) . A total of 105 on-and off-transect species were observed at this location. 54 Predominant species were the bristle-tooth surgeonfish Ctenochaetus striatus (56% of the on-transect individuals), the damselfish Plectroglyphidodon lacrymatus (7%), the surgeonfish Acanthurus nigrofuscus (4%), the wrasse Thalassoma quinquevittatum (3%), the lined surgeonfish Acanthurus lineatus (2%), the damselfish Chromis vanderbilti (1%), the damselfish Pomacentrus brachialis (U), and the surgeonfish Acanthurus glaucoparieus (1%). The overwhelming predominance of Ctenochaetus striatus is somewhat deceiving. The vast majority of individuals censused were juveniles (about 3 inches !7-8 cml long) belonging to an exceptionally large year class which had recently settled out of the plankton. Many individuals had shrunken sides and frayed fins. Their unhealthy condition likely resulted in a wholesale dieoff shortly after the survey was conducted. C. striatus was also found by the author to be the most common and abundant species in a very extensive survey of the nearshore waters of Tutuila consisting of sixty-three (63) 100-meter transects conducted over a period of 3 years. However, the species comprised only about 11% of the on-transect fishes in that survey. A figure of that magnitude is probably realistic for Fagatele Bay in the long term. A comparison of the 12 transects by depth reveals an increase in species diversity with depth. Average numbers of on-and off-transect species were: shallow-49, medium-63, and deep-70. Ctenochaetus striatus was clearly the predominant species at all three depths. However, Acanthurus lineatus, Stegastes fasciolatus and Thalassoma quinquevittatum were of second-order predominance in the shallow depths while Plectroglyphidodon lacrymatus was the second most numerous species at 40 ft (12 m). Acanthurus nigrofuscus was very common at all depths. 55 Comparison of the four transects conducted along the exposed outer portion of the bay with the eight transects conducted in the more sheltered inner portions of the bay indicates that species diversity is greater in the exposed portion (average 70 on-and off-transect species) than in the sheltered portion (average 58 species). However, fewer individuals were censused in the exposed portion (average = 177) than in the sheltered portion (average = 242). Though clearly the most numerous species in both areas, Ctenochaetus striatus was significantly less prevalent in the exposed areas, (where it comprised 33% of the individuals) than in sheltered areas (64% of the individuals). Thalassoma quinguevittatum was the second-most prevalent species in exposed areas (9%) and Chromis vanderbilti was fourth (5%). In sheltered areas, Plectroglyphidodon lacrymatus (9%) followed C. striatus in predominance. Acanthurus nigrofuscus and Stegastes fasciolatus were common and equally numerous in both areas. 56 Table 3a Fagatele Bay: Transect I I size Distribution Frequency Relative Density Relative Percent 5-6 m (16-20 ft) Di..eler- in c-) Frequency (Per mL) Density Cover N Y. S w 33.33 1.41 Pocillopora verrucosa 20 7.8 4.2 0*67 20.81 Acropora (A.) palmera 0.07 2.17 0.11 1.67 6.82 87.0 Millepora platyphylla 8 11.9 15.1 2.4-48.3 0.40 12.42 0.91 13.33 2.46 8.33 0.91 Acropora (A.) digitifera 5 13.4 5.5 7.0-20.5 0.33 10.25 0.57 .26 Pocillopora elegans 16.8 9.7 ;8.5-30.7 0.27 8.39 0.46 6.67 1 4 - ------------- 6.67 1.01 Pocillopora eydouxi 4 14.4 1 10.1 @9.0-29.5 0.27 8.39 0.46 - 1.67 1.73 Acropora (A.) gemmifera 1 43.8 0.07 2.17 0.11 5.00 0.10 Montastrea curta 3 5.8 2.5 3.5-8.5 0.20 6.21 0.34 (-n 5.00 0.09 -j Acropora (A.) azurea 3 5.4 1.7 3.5-6.9 0.20 6.21 0.34 -- 4.04 0.23 3.33 0.63 Favia stelligera 2P 18.5 4.7 15.2-21.8 0.13 3.33 0.08 Acropora (A.) SPA 2 6.7 1.9 5.3-8.0 0.13 4.04 0.23 0.07 2 6.2 1.2 5.3-T.0 .13 4.04 0.23 3.33 Favites complanata 0.07 17 1.67 0.31 Acropora (A.) robusta 1 18.5 1 2.17 0.11 1.67 0.11 Hydnophora microconos 1 13.7 0.07 1.67 ------------- - -1- 0.03 1 6.0 0.07 2.17 0.11 Acropora (A.) valida 0.01 1.67 0.07 2.17 0.11 Acropora (A.) hyacinthus 1 4.0 O"ll ,@,@20 6 21 0.34 .21 0. 34 1 0. 20 6 - -- - -- - ---- 1 1.67 Acropor.a (A.) ocellata 1 3.2 0.07 2.17 0.11 0.01 Totals 60 11.9 13.3 2.4-87.0 6.83 17.10 Table 3b S-ize Distribution Frequency Relative Densi% Relative Percent Fagatele Bay: Transect I (Colony Diameters in cm) Frequency (Per m Density Cover 9 m (30 ft) N Y. i S w Millepora 2 28.84' 35.89 3.46-54.22 0.1 3.2 0.50 5.0 1 5.80 Forites (P.) sp.2 8 4.38 1.712 12.45-7.21 0.5 16.1 2.00 20.0 1 0.34 Pocillopora, eydouxt 4 10. 35 4.18 ;7.48-16.49 0.4 12.9 1.00 10.0 0.94 Pocillopora meandrina, 5 10.98 3.17 8-16 0.2 6.5 1.25 12.5 1.26 Galaxea fascicularis 1.06 4-7.94 0.4 12.9 1.25 12.5 0.41 5 6.72 Acropora (A.) hyacinthus 2 8.49 0 8.49-8.49 0.2 6.5 0.50 5.0 0.28 Montastrea curta 2 6 97 4.65 3.68-10.25 0.2 6.5 0.50 5.0 0.23 Coscinaraea sp.1 2 4.5 0.71 4-5 0.2 6.5 0.50 5.0 0.08 Coscinaraea. columna 2 6.84 1.29 5.92-7.75 0.1 3.2 0.50 5.0 0.19 I_n 00 Pocillopora eleRans 0.1 3.2 0.25 2.5 0.33 1 12.96 Leptoria phrysta 1 1 10 1 0.1 3.2 0.25 2.5 0.2 Montipora, 0.1 0.13 3.2 0.25 2.5 Montastrea annuligera. 1 7 75 0.1 3.2 0.25 2.5 0.12 Porites (P.) lutea 0.1 3.2 0.25 2.5 0.06 0.1 Leptastrea. purpurea 5.24 3.2 0.25 2.5 0.05 Favia matthaii 4.58 0.1 3.2 0.25 2.5 0.04 0.1 3.2 0.25 2.5 0.02 Stylaster gracilis 1 3.46 -10.0 10.48 Totals 40 8.3 8.15 2.45-54-22 Table 3c, Fagatele Bav,. Transect I sjz@ DISLribution Frequency Relative Density Relative Percent 12 m (40 ft) (Col uny Diameters in C..) Frequency (Per m,6) Density Cover N S w 2.15 Pocillopora fyAouxi 4 16.05 3.76 111.83 20 98 0.4 10.8 1,02 9.8 -1 Montipora 4 17.01 :11.!)6:24'981 0.2 5.4 1.02 9.8 1 2.52 Pocillopora elegans 5 10.21 3.14 5.48-13.4 0.4 10.8 1.27 12.2 1.12 C-sc' Irae' 8P' 1 5 8.15 4.44 4.0-15.72 0.5 13.5 1.27 12.2 0 82 Acropora (A.) hyacinthus 3 8. 34 2.18 6.71-10.82 0.3 8.1 0.76 7.3 0.43 Porites (P.) lutes 3 7.6 3.65 4.24-7.07 0.3 8.1 0.76 7.3 0.4 Montastrea curta 3 7.2 2.06 5.48-9.49 0.3 8.1 0.76 7.3 0.33 Porites (P.) sp. 2 3 9.33 4.63 4.9-8.94 0.2 5.4 0.76 7.3 o.6 Acropora (I.) crateriformis 2 12.44 3.44 10-14.87 0.2 5.4 0.51 4.9 0.64 Astreopora 4 2 ;10.21 4.54 7-13.42 0.2 5. 0.51 4.9 0.46 Favia favus 2 7.01 3.59 4.47-9.541 0.2 5.4 0.51 4.9 0.22 Pocillopora meandrina 1 18 0.1 2.7 0.25 2.4 0.64 Favia rotumana 1 10.82 0.1 2.7 0.25 2.4 0.23 Favia matthaff .1 2.7 0.25 2.4 0.06 5.48 0.1 2.7 0.25 2.4 0.06 Coscinaraea columns Pocillopora 2.7 L0.25 2.4 0.00 Totals 41 10.28 1 5.04 ;1.1-24.98 10.4 ;10.68 Table 3d Fagatele Bay: Transect 2 Size Wstribucion Frequency Relative Density Relative Percent I m (3 ft) (culony Diameters in cW)- Frequency (P er m4) Density Cover N S w 6.3 1.0-27.7 0.53 24.42 2.99 41.67 2.11 Porites (S.) rue 25 7.2 Porites (P.) op. 2 9 1 0 1 4- 4.9 0.27 12.44 1.08 1 15.00 0 3.1 .09 Porites (P.) annae 3 11.5 5.6 5.5-16.6 0.07 3.23 0.36 5.00 0.43 Porites (P.) lutes 3 8.7 10.5 2.4-20.8 0.07 3.23 0.36 5.00 0.42 Stylocoenfella armata 4 2.2 0.4 @1.4- 2.4 0.20 9.22 0.48 6.67 0.02 Leptastrea purpurea 3 2 .!9@ 0.9 2.4- 3.9 0.20 9.22 0.36 5.00 0.08 Pocillopora verrucosa 2 7.1 0.3 6.9- 7.3 0.13 5.99 0.24 1 3.33 0.10 Acropora (A.) digitifera 1 16.4 - - 0.07 3.23 0.12 1-67 n-7% 0.07 3.23 0.12 1.67 0.21 Montipora tuberculosa 1 15.07 - Acropora (A.) Remmifera 1 13.7 7 0.07 3.23 0.12 1.6 OAR Fungia (P.) scutaria 2 3.0 2.0- 4.0 0.07 3.23 0.24 3.33 0.02 Lobophyllia hemprichii 6.9 0.07 3.23 0.12 1.67 0.05 Leptoria phrygia 6.5 0.07 3.23 0.12 1.67 0.04 Psammocora contigua 5.5 0.07 3.23 0.12 1.67 0.03 Leptastrea purpurea 3.5 0.07 3.23 0.12 1.67 0.01 Cyphastrea op. I I 1 2.0 0.07 3.23 0.12 1.67 0.004 Pocillopora danae 1 1.0 0-07 3.23 0.12 I-fi7 mol Totals 60 6.4 5.7 1 1.0-27.7 7.19 4.045 Table 3e Fagatele Bay: TranseCt 2 Siz- Distribution Frequency Relative Density Relative Percent 3 m QO ft) (T,-,0,y-,j-,7ameterS in cm) Frequency (Per mZ) Density Cover V S w N Acropora (I.) crateriformis 9.7 S.S :2.4-20.S 0.47 14.79 0.30 15-00 0.29 9 J Galaxea fascicularis 11 6.1 2.0 2.4-8.S 0.47 14.78 0.37 1 18.33 0 12 3 14.3 10.2 6.9-2S.9 5.00 0.22 Millepora tuberosa 0.20 6.29 0.10 Porites (P.) sp. 2 7 5.8 3.3 !2.0-1l.S 0.33 10.38 0.2S 11.67 0.08 Pocillopora setchelli 7 4.1 4 4 1.0-13.3 0.33 10.38 0.2S 11.67 0.06 Pocillopora verrucosa 6 1 6.4 1.3 4.9-7.0 0.27 8.SO 0.20 10.00 0.07 Stylocoeniella armata 4 2.6. 1 0.9 1.4-3.5 0.20 6.29 0.14 6.67 0.01 Montastrea curta 1 13.3 - 0.07 2.20 0.03 1.67 OAS 0.04 Favities complana 1 12.3 0.07 2.20 0.03 1.67 ON Acropora (A.) Itemmifera 1 1 10.4 0.07 2.20 0.03 1.67 0.03 10.S 0.07 2.20 0.03 1.67 0.03 Lobophyllia hemprichil 8.0 ----1-0.07 2.20 0.03 1.67 Acropora (A.) nobilis 0.02 Goniopora somaliensis 9. 5 0.07 2.20 0.03 1.67 0.02 1 8.4 0.07 2.20 0.03 1.67 0.02 Porites (S.) rus 1 9.2 0.07 2.20 0.03 1 67 0.02 Stylophora mardax I S.6 0.07 2.20 0,03 1.67 0.01 Acropora (A.) cerealis Goniastrea retiformis 0.07 2.20 0.03 1.67 0.01 6.5 o.07 .2o 0.03 1.67 0.01 Pocillopora eydouxi @@nra (A.) azurea 3./J 0.07 2.20 3 1.67 0.002 Table 3e siz@ Distrib%ition Frequency Relative Density Relative Percent -@Culony Djamoters in cm) Frequency (Per m2) Density Cover Fagatele Day: Transect 2 3 m (10 ft) N Y. S w !!@�ra@ e1schnerl 1 2.4 0.07 2.20 0.03 1.67 0.002 2.00 Totals 60 7.0 4.5 Il-0-25.9 1.114 0 ON I S L r I b,,c Ion Frequency Relative Density Relative Percent Table 3f Prequency (Per m2) Density Cover F)Jdl.,,Eers in cm) Fagatele Bay - Transect 2 5 m (16 ft) N w Stylocoeniella armata 10 1.8 0.9 1.0-3.9 0.47 14.87 0.42 16.67 0.01 Acropora @A.) azurea 7 5.1 1.7 3.0-7.;5 0.47 12.66 0.29 11.67 0.06 Gonlastrea retiformis 4 11.0 4.2 7.0-16.0 0.20 6.33 0.17 6.67 0.18 Pocillopora verrucosa 6 4.5 2.3 1.0-8.0 0.33 10.44 0.25 10.00 0.05 Galaxea fascicularis 5 6.0 2.6 3.0-8.9 0.27 8.54 0.21 8.33 0.07 Acropor (I.) crateriformis 3 9.9 1.1 18.8-11.0 0.20 .6.33 0.13 5.00 0.10 Fa-vites S2MLanata 1 3 10.6 6.1 14,0-16.0- 0.07 2.22 0.13 1 %.00 0.14 Porites (P.) op. 2 6 3.9 1.8 1.4-5.5 0.20 6.33 0.25- jo.oo 0.03 Montipora EtEmt@!-r@ 1 22.4 - 0.07 2.22 0.04 1.67 0.17 Acropora (A.) digitifeKa 2 13.4 0.8 12.8-14.0 0.13 .4.11 0.08 3.33 0.12 Acropora tenuis 2 6.3 2.3 4.6-7.9 0.13 4.11 0.08 3.33 0.03 Pavona a p. 1 1 13.0 - 0.07 2.22 0.04 1.67 0.06 Pocillopora eydouxt 1 14.1 - 0.07 2.22 0.04 1.67 0.06 Coscinaraea sp. 1 2 3.9 0.0 3.9-3A 0.13 4.11 0.08 3.33 0.01 Pocillopora elegans 1 2 4.8 1.3 3'.9-5.7 0.07 2.22 0.08 3.33 0.02 Montipora op. 1 1 10.0 - 0.07 2.22 0.04 1.67 0.03 Acropora (A.) hya inthu. 1 7.0 0.07- 2.22 0.04 1.67 0.02 Acropora (A.) gemmifera 1 5.0 0.07 2.22 0.04 1.67 0.01 0.07 Leptoria phrygia -1 6.0 2.22 0.04 1.67 0.01 Tabl; 3f Fagatele Bay - Transect Sizc DISLribticion Frequency Re)arlve Densit Relative Percent (Colony DialIWEarbi in cm) Fre(jUency (Per fn@) Density Cover 5 m (16 ft) Y. S w Pocillopora setchelli 1 6.5 0.07 2.22 0.04 1.67 0.01 Totals 60 6.3 4.5 1.0-22.4 2.49 1.19 I Table 3g Sizd Distribution Frequency Relative Density Relative Percent Fagatele Bay: Transect 2 'Y J)Sam@ters in eml Frequeac)( (Per m2) Density. Cover 9 m 430 ft) I S w N Y- I Echinopora hirsutissima 7 63.61: 101.02 1.73-214.21 0.13 10 0.58 17.5 58.28 Porites (P.) sp. 2 9 3.6 1.64 11.5 6 0.5 16.7 o.75 22.5 0.09 0.11 Pavona varians 3 6.53 4.81 3 12 0.3 10 0.25 7.5 Acropora (A.) hyacinthus 3 3.91 i 2.61 ;1.55-6.71 0.2 6.7 0.25 7.5 0 04 Acropora nobilis 1 81.91 0.1 3.3 0.08 2.5 4.22 Porites (Sy araea) rus 2 4.94 1.51 '3.87- 6 0.2 0.17 5.0 0.03 Porites (P 0.00 lutes 2 1.77 0.33 1.54- 2 0.2 6.7 0.17 5.0 A-) squarrosa 0.48 Acropora 2 17.45 1.0.82 !9.8-25.1 0.1 3.3 0.17 5.0 Echinophyllia aspera 1 25.92 0.1 3.3 0.08 2.5 0.42 k.S Pavona sp. 0.1 3.3 0.08 2.5 0.3 1 21.79 pociliopora elegans 3.3 0.08 2.5 0.15 1 15.49 0.1 1 10 0.1 3.3 0.08 2.5 o.o6 Pocillopora eydouxi 0.05 1 8.49 1 0.1 3.3 0.08 2.5 Pocillopora meandrina 0.04 Acropora (A.) digitifera 1 8 0.1 3.3 0.08 2.6 Montastrea annuligera I a 0.1 3.3 0.08 2 5 0.04 pocillopora verrucosa 1 8 0.1 3.3 1 0.08 2.5 0.04 pocillopora 1 4.47 0.1 3*3 0.08 2.5 0.01 Hydnophora microconos 1 3.461 0.1 3.3 0.08 2.5 0.01 Pavona sp. 3 1 2.32 0.1 3.3 0. 8 2.5 1 0.00 Totals 40 18.88 46.67 1.5-214.21 3 3.03 64. 37 Table 3h Frequency ReiaLiVe Denti i t Relative Percen Fagatele Bay - Transect 2 (U;@.Iooy 'Mmuerers in C111) Frutissency (Per m Density Cover 12 m (40 ft S w Pavona varians 15 5.32 2.77 2-12 0.8 26.7 1.04 40.5 0.29 Stylophora mordax 2 9.8 0.43 9.49-10.1 0.2 6.7 0.14 5.4 0.21 Montastrea curta 2 8.45 3.01 6.32-10.58 0.2 6.7 0.14 5.4 0.08 Pocillopora eydouxi 1 13.75 0.1 3.3 0.07 2.7 0.10 Acropora (A.) digitifera 2 5.7 1.74 4.47-6.93 0.2 6.7 0.14 5.4 0.04 Leptastrea purpure 2 5.55 2.65 3.67-7.42 0.2 6.7 0.14 5.4 0.04 Leptoria phrygia 2 4.71 3.92 1.94-7.48 0.2 6.7 0.14 5.4 0.03 Pocillopora setchelli 2 4.6 1.24 3.72-5.48 0.2 6.7 0.14 5.4 0.02 Goniastrea retiformis 2 2.44 1.45 1.41-3.46 0.2 6.6 0.14 5.4 0.01 0% Stylocoeniella armata 1 3.15 0.2 6.6 0.14 5.4 0.01 Acropora (A.) nobilis 1 5.29 0.1 3.3 0.07 2.7 0.02 Euphyllia glabrescens 1 4 0.1 3.3 0.07 2.7 0.01 Porites (P.) lute 1 3.46 0.1 3.3 0.07 2.7 0.01 Galaxea fascicularis 2 3.06 0.13 2.96-3.4@ 0.1 3.3 0.07 2.7 0.01 orites (S.) rus 1 2 0.1 3.3 0.07 2.7 0.00 Totals 7 3 1.41-13.75 -2.5181 1 0.88 kN Y Table 31 Fagatele Bay: Transect 3 1) i s t ribu tion Frequency Relative Densi% Relative Percent 1 m 0 ft) (Colony Diameters in cm) Frequency (Per m Density Cover N w Pavona divaricata 16 31.5' 34.0 -2.4-96.9 0.40 18.10 2.44 26.67 1 38.49 Porites (P.) ap. 2 20 4.1 2.5 !2.0-12.4 0.47 21.27 3.05 33.33 0.55 Porites (P.) cylindrica 5 15.7 11.6 2.4-30.3 0.33 14.93 0.76 8.33 2.13 Porites (S.) rus 5 14.7 11.8 3.0-33.6 0.27 12.22 0.76 8.33 1.96 Stylocoeniella armata 4 2.4 1 1 1 0-3.5 0.13 5.88 0.61 6.67 0.12 Pocillopora verrucosa 2 10.7 4.0 7.9-13.5 0.13 5.88 0.30 3.33 0.29 0.10 2.4-8.9 0.13 5 Porites (P.) lutea 2 5.7 4.6 .88 .30 3.33 Montastrea curta 2 12.6 11.9 4.2-21.0 0.07 3.17 0.30 3.33 0.55 Pocillopora eydouxi 1 21.8 0.07 3.17 0.15 1.67 0.57 Millepora platyphylla 1 16.0 1--T 0 7 3.17 0.15 1.67 0.31 Psammocora contiltua 1 8.5 1 0.07 1.67 0.10 3.17 0.15 Leptastrea purpurea 1 3.5 0.07 3.17 0.15 1.67 0.01 45.18 Totals 60 14.4@ 21.4 J.0 96.91 9.12 Table 3j Siz. Mstribution Frequency Relative Density Relative Percent Fagatele Bay: Transect 3 i 3 m (10 ft) in @-) Frequency (Per m2) Density Cover I' N V S w Porites (P.) sp. 2 39 6.9 3.6 1.0-17.0 0.93 65.00 i _I 43.26 15.15 7.25 Favites complanata 2 37.5 33.2 ;14.0-60.9 0.07 3.26 0.76 3.33 11.89 Stylocoeniella armata 9 2.6 1.1 1.0-3.5 0.47 21.86 3.50- 15.00 0.22 Pocillopora setchelli 5 7.8 3.7 3.0-11.0 0.33 15.35 1.94 8.33 1.09 Pavona divaricata 1 32.4 0.07 3.26 0.39 1.67 3.22 Acropora digitifera 1 14.8 0.07 3.26 0.39 1.67 0.67 caliculata 1 13.5 0.07 1 3.26 f 0.39 1.67 0.56 Psammocora sp. 1 1 12.0 0.07 3.26 0.39 1.67 0.44 CrI Galaxea fascicularis 1 9.5 0.07 3.26 0.39 1.67 0.28 00 601 8.2 8.6 1.0-60.9 23.30 25.62 Table 3k i DISLribUtion Frequency Relative Density Relative Percent Fagatele Bay: Transect 3 1 @iz. -- (Per m2) Density Cover 5 m (16 ft) I (Cul,ony Diameters in cm) Frequency N I S w Porite-a (P.) sp.2 24 5. 3' 1.5 2.2-8.8 0.87 37.02 1181 40.00 3.34 0.80 34.04 13.81 40.00 1 0.84 Stylocoeniella, armata 24 2.6 1.1 @8.8-25.7 0.07 2.98 1.15 3.33 3.33 Porites (P.) lutes 2 17.3 12.0 2 12.9 9.8 :5.9-19.8 0.07 2.98 1.15 3.33 1.93 Acropora (A.) nobilis xtropora, (k.) hyar-inthus 2 9.9 Q.13 5.53 1.15 3.33 0.89 Pocillopora verrucosa 2 6.0 1 3 5 3.5-8.5 0.13 5.53 1.15 3.33 0.38 2.98 0.59 1.67 0.45 Stylophora, mordax 9.9 Q.07 - 0.29 0.07 2.98 0.58 1.67 Acropora (A.) pagoenis 8.0 - 2.98 0.58 1.67 0.22 Psammocora SPA 7.0 0.07 - 0.08 Fungia (P-) scutaria, 4.0 0.07 2.98 0.58 1.67 -- - --- 34.54 11.75 Totals 60 5.2 4.1 11.0-25.7 Table 31 Fagatele Bay: Transact 3 siz@ Distribution Frequency Rel tive Dens Relative Percent - - i)-j - - C, r 9 m (30 ft) ((i@') ... Yamters in cm) Frequency (Perim% Density C ve N S w Pavona varians 11 6.43' 2.63 3-10 0.6 25 2.77 29.7 1 1.04 Porites (P.) lutes 13 4.23 1.76 A.22-6 0.8 33.3 3.27 35.1 0.53 Porit es (P.) sp. 2 7 3.81 1.11 !2.45-6 0.5 20.8 1.76 18.9 0.21 Montipora 2 8.22 3.87 !5.48-10.95 0.2 8.3 0.50 5.4 0.29 Galaxea fascicularts 3 5.2 1.54 3.97-6.93 0.2 8.3 0.75 8.1 0.17 Acropora (A.) digitifera 1 5.48 0.1 4.2 0.25 2.7 0.06 Ij 5.13 1 2.32 1.22-10.95 Totals 37 9.3 2.3 Table 3m Densit@) Relative Percent Fagatele Bay: Transect 3 S-i Z@ W S L ributtun Frequency Relative Cover 12 m (40 ft) ((:U1011Y Diameters in cm) Frequency (Per m Density - - - - -------------- N S w Pocillopora elegans -12.49 0.3 9.1 0.64 35 1 0.32 4 7.24 1 3.73 14 Pavona varians 14 4.83 2.71 :2.24 30.3 0.64 1 35 0.15 Porites (P.) sp. 2 7 3.58 1.65 0.5 15.2 0.32 17.5 0.04 0.05 Pavona sp. 3 4 5.89 1.12 0.4 12.1 0.18 10 lutes 12.1 0.18 Porites 10 0.03 4 3.91 2.46 1.94-7.48- 0.4 Pocillopora meandrina 1 14.49 0.1 3_ 0.05 2.5 0.08 Galaxea fascicularis 2 6.38 1.94 5 7.75 0.2 6.1 0.09 5. 0.03 ------------ Pocillopora 0.1 3 0.05 2.5 0.05 Caulastrea 6.71 0.1 3 0.05 2.5 0.02 2.5 0.01 Acropo (A.) hyacinthus 4.24 1 3 0.05 Millepora 2.83 1 0 1 3 0.05 0,00 40 5.32 3.02 1.4)4-14.49 2.3 0.78 Totals Table 3n Size-Distribiition Frequency Relative Density Relative Percent Fagatele Bay: Transect 4 T@-Olouy liiamv@ers -in Cut) Frequency (Per m Density Cover I m (3 ft) w Pocillopora verrucosa I 0.56 23.05 1.93 21.88 1.22 8.0 4.4 1-3 0-15 Q Acropore (L) craterifformiis 13.58 0.83 9.38 1 1.22 3 ;13.5 2 5 11.5-16.3 0.3 Galaxea fascicularis 5 7.6 2.7 4.2-10.2 0.33 13.58 1.38 15.63 0.69 Pocillopora setcheiii 4 1 8.9 4.7 2.0-12.5 0.22 9.05 1.10 12.50 0.82 Acropora (A.) azurea 4.53 0.55 6.25 0.99 2 ;15.0 2.8 .13.0-17.0 0.11 4.53 0.28 3.13 1 0.91 Montipora verrillt 1 20.4 0.11 1 Gonla3t rea retiformis 4.53 0.55 6.25 0.25 2 t 7.3 3.2 5.0-9.5 0.11 Acropora (A.) ocellata 2 7.4 1.5 6.3-8.4 0.11 4.53 0.55 6.25 0.24 Montastrea curta 2 4.1 1 0.1 4.0-4.2 0.11 4.53 0.55 6.25 0.07 Acropora (A.) dixitifera 1 6.9 0,1 4.53 0.28 3.13 0.10 Porites (P.) sp. 2 0 28 3.13 0.04 1 4.5 0.11 4.53 Acropora (A.) gewifera 4.53 0.28 3.13 0.03 1 3.9 0.11 Acropora (A.) robusta 4.53 0.28 3.13 0.02 1 3.0 0.11 Totals 32 1 8.6 4.6 2.0-20.4 8.84 6.60 Table 3o Pagatele Bay: Transect 4 mstribution Frequency Relative Density Relative Percent Frequency (Per m Density Cover 3 m (10 ft) (:o]oily Waitiecers to cm) N Y. S w Acropora (A.) 18 7.0 3.4 3.0-14.5 0.73 22.81 0.96 30.00 1-0-43 Galaxea fascicularis 12 7.3 2.8 '3.9-13.3 0-67 20.94 0.64 20.00 0.30 Pocillopora varrucosa S 11.8 8.2 'S.7-25.1 0.33 10.31 0.27 8.33 0.40 PoCiljOpor------ 7 6.8 3.9 ;2.4-14-0 0.33 10.31 0.37 11.67 a setchelli 0.17 Pocillopora elegans 3 10.1 8.3 -3.5-19.4 0.20 6.2S 0.16 5.00 0.17 Montipora elschneri 2 14.S 7.8 8.9-20.0 0.13 4.06 0.11 3.33 0.20 Montipora verrilli 2 11.2 1.8 @9.9-12. 4 0.13 1 4.06 0.11 3.33 0.11 Porites (P.) sp. 2 2 8.7 2.5 0.13 4.06 0.11 3.33 0.07 w montipora SPA 2 11.1 2.3 9.4-12.7 0.07 2.19 0.11 3.33 .10 Acropora (A.) sp. 1 2 6.4 6.2 -2.0-10.8 0.13 4.06 0.11 3. 3 0.05 Pocillopora eydouxi I i 13.S 0.08 0.07 2.19 OAS 1.67 Acropora (.A.) digitifera 1 9.9 0.07 2.19 O.OS 1.67 0.04 Acropora (A.) gemptifera 1 10.0 0.07 2.19 ID.OS 1.67 0.04 Goniastrea retiformis 1 1 7.5 0.07 2.19 OAS 1.67 0.02 Favites complanata I S.9 0.07 2.19 OAS 1.67 0.01 2.19 Totals 60 8.4 4.S 2.0-2S.1 1 3. Table 3p Fagatele Boy: Transact 4 mstriburion Frequency Relative Density Relative Percent -7-- Frequency (Per m2) Cover S m (16 ft) in m) Density Pocillg2ra verrucosa 19 110.0 4.8 3.0-22.6 0.73 25.52 0.45 31.67 0.41 Acropora hyacinthus 16 5.8 3.4 1.4-14.0 0.73 25.52 D.38 126.67 0.13 Pocillopora elegans 7 8.6 5.8 2.a-19.4 0.40 13.98 0.17 11.67 0.13 Acropora digitifera 6 8.7 3.4 5.0-13.7 0.33 11.54 0.14 10.00 0.10 0.06 Pocillopora eydouxi. 2 12.4 5.0 a.a-15.9 0.13 4.55 0.05 3.33 Galaxea fascicularis 3 6.1 2.1 4.9-8.5 0.20 0.07 5.00 0-07 Porites (P.) sp. 2 4 3.1 1 2.6 1.0-6.6 0.13 4.55 0.10 6.67 0.01 Acropora gemmifera 1 3.0 k O.Q7 2.45 ID.02 1.67 0.01 Acropora (A.) sp.1 5.9 0.07 2.45 0.02 1.67 o.01 Coniastrea retiformis 0.07 2.45 0.02 1.67 0.01 1 8.9 -4 0.89 Totals 60 7.7 4.6 1.0-22.6 1.42 0 Table 3q Percent siz@ oistribucion Frequency Relative Density Relative (- Frequency (Per m2) Density Cover Fagatele Bay: Transact 4 Co ,y 1). ameters in-cmF 9 m (30 ft) N V S w Porites (P.) sp. 2 34.8 1.67 52 8 1 0.31 19 3.91 1 2.95 0.49-11.221 0.8 - - Poculopora meandrina 6 10.61 ; 3.71 3.32-13.96-1 0.6 26.1 0.53 0.62 Herulina ampliata I 34.S 1 0.1 4.3 0.09 1 2.8 0.84 Pocillopora verrucosa 2 14.33 12.26 @S.66-23 0.2 .8.7 0.18 S.6 _@_O. 4 0.06 ACTOPOTR 3 S.43 0.51 @4.9-5.92 0.2 9.7 0.26 S.3 8.7 Pocillopora elegans 2 8.04 0.47 7.71-8.37 0.2 0.18 S.6. 0.09 Montipora 2 8.22 1 2.24 6.63-9.8 0.1 4.3 0.18 S.6 0.1 4.3 Galaxea fascicularis 1 6.93 0.1 2.8 0.03 Totals 36 7.13 1 6.S8 0.49-34.S 3.18 2AS f-7 -26 8 .18 Table 3r Siz, Frequency Relative Density Relative Percen Fagetele Bay: Transact 4 Frequency (Per m2) Density Cover 12 m (40 ft) ((:ujujjy wamvters in em) N S Porites (P.) sp. 2 --@_Lo 4,46- 1.114 so 0.21 ;__Jjg _Q-R4-7-94 1 Acropora (A.) hyacinthus 7 n-2A 12.5 0.17 5 7.58 4.77 .2 - 13.49 0-3 Pocillopora meandrina 1 16.97 0.1 3.6 0.06 2.5 o.14 Millepore. 2 8.48 2.5 '6.71-10.25 0.2 7.1 0.11 5 -1 0.06 Montipora 1 :14.97 0.1 3i6 0.06 2.5 0.11 Pocillopore eydouxi 1 14.49 0.1 3.6 0.06 2.5 0.1 Pocillopora verrucosa 2 5.73 1.07 4.97-6.48 0.2 1 7.1 0.11 5 0,03 Pavona sp. 3 2 4.74 1.96 3.35-6.12 0.2 7.1 0.11 5 0.02 Coscinaraea coltmme 1 10.95 j 0.1 3.6 0.06 2.5 0.06 stylocoeni@lla armata 2 0.97 0.36 0.71-1.22 0.2 7.1 0.11 5 0.00 Stylophora. mordax 1 1 10.49 1 0.1 3.6 0.06 2.5 0.05 Galaxea fascicularis 1 3.87 0.1 3.6 06 2.5 0.01 Porites (P.) lutea 3.46 0.1 3.6 0.06 2.5 0.01 Totals 401 6.05 4.03 0.71-16.971 2.254 0.97 Table 3s Pagatele Bay: Transact 5 i t. W s@Lr i bution Frequency Relative Density Relative Percent Frequency (Per m Density Cover 3 0 (10 ft) (Coluny Djamei@-,. -,- N S w Millepora platyphylla 17 26.2 15.9 6.6-64.9 0.53-1 21*82 -4- 28,33 31*7S *36 Galaxea fascicularis is 4.7 1.3 2.4-9.1 0.47 19.34 3.95 25.00 0.74 Goniastrea ratiformis 10 8.8 4.8 @.8-18.S 0.33 U.Se 2.S7 16.67 1.79 Pocillopora varrucosa 4 14.2 6.4 6.0-2l.S 0.27 11.11 1.03 6.67 1.87 Pocillopora sotdialit 4 10.6 4.7 6.5-16.4 0.27 11.11 1.03 6.67 1.04 Loobophyllin corymbosa 1 40.0 0.07 2.89 0.26 __L67 4.00 Pocillopora elegans 1 31.4 0.07 2.88 0.26 1.67 1.99 Acropora azurea 2 12.6 10.3 S.3-16.9 0.07 2.88 O.SI 3.33 0.63 Echinopora hirsutissima I 25.S 0.07 2.88 0.26 1.67 1.31 Acropora (A.) ocallats 2 9.1 S.3 ;'S.3-12.9 0.07 2.88 O.SI 3.33 0.39 Acropora Q.) crateriformis 1 16.0 0.07 2.88 0.26 1.67 O.S2 Montipora caliculata 1 8.8 0.07 2.88 0.26 1.67 0.16 astrea echinata------ 0.07 2.88 Acanth S.3 .26 1.67 0.06 Totals 60 1 14.4 1 13.0 2.4-64.9 IS.42 46.2S Table 3t FagatOIS Bay: Transect 5 Siz. bist ribtittoll Frequency Relative Density Relative Percent - -,- - - - -- ICover 5 u (16 ft) ill C111) Frequency (Per m Density N S 14 Acropora (A.) gemifera 12 20.4 14.3 3.S-47.2 0.33 12.64 0.74 20.00 1 A-S4 Acropora (I.) crateriformis 10 10.1 4.3 S.S-19.3 0.47 18.01 0.62 16.67 0.58 Acropora (A.) robusta 1 77.4 0.07 2.68 0.06 1.67 2.93 Millepora platyphylla 4 26.0 13.1 117.4-45.4 0.13 4.98 0.25 6.67 I.S7 Acropore (A.) digitifera 5 18.9 8.7 7.3-3l.S 0.13 4.98 0.31 8.33 1.02 Acropora (A.) hyacinthus 3 16.3 10.7 8.8-28.6 0.13 4.98 0.19 5.00 O.So 3 14.0 4.4 -18.9 4.98 0.19 5.00 .0.31 Acropora (A.) sp. 1 0.13 0.4 Galaxea fascicularis 4 3.8 0.4 3.S-4.2 0.13 4.98 0.25 6.67 0.03 -j lAbophyllia corymbosa 1 42.8 0.07 2.68 0.06 1.67 0.89 00 Pocillopora setchelli 3 6.3 1.4 5.5-7.9 0.13 4.98 0.19 5.00 0.06 Lobaphyllia hemprichil 1 37.3 0.07 2.68 0.06 1.67 0.68 Pocillopora varrucosa 2 5.0 2.8 3.0-7.0 0. 13 4.98 0.12 3.33 0.03 Porites (P.) sp. 2 2 4.5 3 S 2.0-7.0 0.13 4.98 0.12 3.33 0.03 Pocillopora elegans 1 30.0 1 0.07 2.68 0.06 1.67 0.44 Elchiuol@ff-j hirsutissimim --2--' 7.8 I.S 6.7-8.8 2.68 0.12 3.33 0.06 Millepora tuberose 1 13.3 2.68 0.06 1.67 0.09 Goniastrea retiformis 1 9.4 0.07 2.68 0.06 1.67 0.04 Acropora (A.) smithi 1 7.5 0.07 2.68 0. LO6 1.67 0.03 1 7.5 Psamocora sp.1 0.07 2.68 0.06 1.67 0.03 Table 3t i Percent size Frequency Relative Density Relative Pagatele Bay: Transect 5 Frequency (Per m2) Density Cover 5 p (16 ft) (Culolly Di Lillie te fs in cm) N w Acroporm. (A.) azurea 1 6.0 0.07 2.68 0.06- 1.67 1 A02 Acropora (A.) ocellats 1. 3.9 0.07 2.68 0.06 1.67 0.01 Totals 60 15.7 14.1 2.0-77.4 3.70 12.89 Table 3u Fagatele Bay: Transect 5 Ill I btition I Frequency Rel"Ove Density Relative Percent Frequne (Pe 9 m (30 ft) 1)1,1111ct@rs ill CIO y r m2) Density Cover N Y. S w AcropQra-IA.) nnhilig 13 20.2 12.31 :4.97-37.5 0.5 23.8 2.40 36.1 Porites (P.) sp.2 14 4.07 2.19 :1.5-9.49 0.7 .3 2.59 38.9 0.43 Acropora (A.) hyacinthus 3 7.39 4.04 ;4.47-12 0.3 14.3 0.55 8.3 -i--O..28 Acropora (I.) crateriformis 1 12.69 0.1 4.8 0.19-1 2.8 0.24 Montipora 9.95 0.1 4.8 0.19 2.8 0.15 7.75 0.1 4.8 0.19 2.8 0.09 Hydnophora rigid Acropora (A.) digitifera 1 7.48 0.1 4.8 0.19 2.8 0.08 OD Pocillopora meandrina 5 0.1 4.8 0.19 2.8 0.04 C:) Pocillopora 4.9 0 1 4e8 0.19 2.8 0.04 10.82 10.45 1.5-37.5 6.68 11.68 36 Table 3v Size I)Istribiltion Frequency Relative Densit@) Relative Percent Fagatele Bay: Transect 5 1 ---- y (Per m Density Cove r 12 m (40 ft) (CLAOIly Di,@.,@etjrs in c..) Frequanc N Y. S w Porites (P.) sp. 2 16 5. 34 3.49 !1.41-14.83 0.9 34.6 0.43 Montipora 6 [email protected]@-I-..31-10.61 0.3 11.5 0.52 16.2 0.37 Pavona varians 2 8.72 0.32 ;8.49-8.94 0.2 7.7 0.17 5.4 0.1 Pavona .sp. 2 7.19 1 68 1.2 7.7 5.4 0.07 Pocillopora verrucosa 1 11.49 0.1 3.8 0.09 2.7 0.09 Pocillopora meandrina 2 5.8 2.2 4.24-7.35 0.1 3.8 0 17 5.4 0.05 3.8 2.7 0.06 Acropora (A.) nobilis 1 9.49 j 0.1 0 - @09. 3.8 0.09 2.7 0.04 Coscinaraea SP- 1 7.48 0.1 -1 7 3.8 0.09 2.7 0.02 Montastrea curta 1 5.74 1 0.1 3.8 0.09 2.7 0.02 co Pocil lopora 1 4.97 3.8 0.09 1 2.7 0.02 Pocillop elegans 1 4.9 0.1 Acrop Ora 4.9 0.1 3.8 0.09 2.7 0.02 Pavona duerdeni 4 0.1 3.8 0.09 1 2.7 0.01 2.7 0.01 Stylocoeoiella armata 2.83 0.1 3.8 0.09 Totals 37 6.52 3.08 @1.41-14.83 3.21 1.3 Table 3w Siz. UJ S-Lriblillon Frequency Rela Live Dens icy Relative Percent (Colony Di, @,,wcers @incm) Frequency (Per mz) Density Cover Fagatele Bay: Transect. 6 5-6 m (16-20 ft) @Lj@ Rj@ @hl I a 12 12.6 9.8 4.0-31- 1 17- SS IA -OR 20-00 7.89 Acropora (A.) azurea 14 9.0 5.8 [email protected] 0.67 22.19 4.76 23.33 4.23 Pocillopora setchelli 10 7.8 3.6 3.9-15.3 0.47 15.56 3.40 16.67 1.95 Galaxea fascicularis 11 3.9 1.4 2.4-7.3 0.47 15.56 3.74 18.33 0.51 elegans 2 22.1 2.4 20.4-23.8 0.13 4.30 0.68 3.33 2.50 Favia stelligera 1 19.8 0.07 2.32 0.34 1.67 1.05 Pocillopora verrucosa 2 6.7 1.1 5.9-7.5 0.13 4.30 0.68 3.33 0.24 Porites (P.) sp.2 2 4.4 0.7 3.9-4.9 0.13 4.30 0.68 3.33 0.10 Hydnophora microconos 1 13.7 0.07 2.32 0.34 1.67 0.50 00 Hillepora dichotoma 1 13.0 0.07 2,32 0.34 1.67 0.45 Montipora caliculata 1 13.0 0.07 2.32 0.34 1.67 0.45 Goniastrea retiformis 1 7.9 0.07 2.32 0.34 1.67 0.17 Montipora ehrenbergii 1 7.0 0.07 2.32 0.34 1.67 0.13 Acropora (A.) sp.1 1 3.5 0.07 2.32 0.34 1.67 0.03 Totals 60 9.1 6.8 2.4-33.3 20.40 20A Table 3x siz@ mt;Lrib@iEion Vrequency Relative Denstcy Relative Percent Fagatele Bay: Transect 6 j-, @olony D@,-J,11,!Eers in cm) FreqUancy (Per m2) Densicy Cover 9 m (30 ft) N T s w ASLr @�ra (A.) hX@!c @nthus 8 10.06 7.86 3.5-28.98_ n.6 18.2 1.16 L-20-5 1-41 Montipora 7 7.39 3.6 1.22-12 0.4 12.1 1.01 17.9 0.52 Pocillopora elegans 3 9.44 3.12 7-12.96 0.3 9.1 0.43 7.7 0.32 Acropora (I.) craferfforiffs 2 13.1 2.65 111.22-14.97 0.2 6.1 0.29 5.1 0.4 2 11.75 3.43 11.49-12 0*2 6.1 0.29 5.1 0.31 3 2.29 0.51 1.73-2.74 0.3 .9.1 0.43 7.7 0.02 Acropora (A.) digitifera 1 18.44 OJ 3 0.15 2.6 0.4 Favia favus 2 4.11 1.94 2.74-5.48 0.2 6.1 0.29 5.1 0.04 Hontastrea 1 14.7 0.1 3 0.15 2.6 0.25 00 Millepora tuberosa 2 5.47 2.26 3.87-7.07 0.1 3 0.29 5.1 0.07 Porites (P.) lichen 1 12.19 0.1 3 0.15 2.6 0.17 Acropora 1 10.95 0.1 3 0.15 2 .6 0.14 Pavona sp.3 1 9.75 0.1 3 0.15 2.6 0.11 Galaxea fascicularis 1 8.77 0.1 3 0.15 2.6 0.09 Cyphastrea 1 8.12 0.1 3 0.15 2.6 0.0 8 Coscinaraea columna 1 7.55 0.1 3 0.15 2.6 0.07 Acropora (A.) humilis 1 6.93 0.1 3 0.15 2.6 1 0.06 Astreopora 1 5.83 OA 3 0.15 2.6 0.04 Total 39 8.7 5.08- 1.22-28.98 5.69 4.5 Table 3y Ow lb Size DI S Lribution Frequency Relativv Densit Relative Percen Fagatele Bay: Transect 6 (Colony Diameters in cm) FreqUency (Per m@) Densicy Cover 12 m (40 ft) N T s w I taS1112REEa �Xqouxi 10 12.38'' 4.02 6.93-17.89 0.7 25 1.87 27 2.46 Montipora 3 17.94 4.24 8.66-22.8 0.2 7.1 0.56 8.1 1.61 Acropora (I.) crateriformi2. 2 19.66 0.98 18.97-20.3! 0.2 7.1 0.37 5.4 1.12 Locjjjqpora @21egans 2 15.25 3.9 12.49-18 1 0.2 1 7.1 0.37 5.4 0.7 Acropora 4 5.03 2.02 4 -8.06 0.2 7.1 0.75 10.8 0.17 Acropora (A.) hyacinthus 3 9.09 1.04 7.94-9.95 6.2 7.1 0.56 8.1 0.37 Porites (P.),lutea 2 9.38 9.8 2.45-16.31 0.2 7.1 0.37 5.4 0.4 Porites (P.) sp.2 2 7.83 1.9 6.48-9.17 0.2 7.1 0.37 5.4 0.18 Montastrea curta 2 11.39 2.09 9.9-12.65 0.1 3.6 0.37 5.4 0.38 00 Pocillopora setchelli 1 19.49 0.1 31.6 0.19 2.7 0.57 4- Pocillopor verrucosa 2 6.87 5.13 3.24-10.49 0.1 3.6 0.37 5.4 0.18 Pocillopora 2 2.45 0 2.45-2.45 0.1 3.6 0.37 5.4 0.02 Acropora (A.) dIgItIfera 1 9.8 0.1 3.b 0.19 2.7 0.14 Montipora foveolata 1 7.48 0.1 3.6 0.19 2.7 0.08 IMLoria pAg&ia 1 5.5 0.1 3.6 0.19 2.7 0.0 5 Total$ 38 10.96 5 89 2.45-22.8 7.09 8.43 ------------- J6- -- Table 4a msLrib%scion 1'requency Relative Dens i ty Relative Percent (Per m2) Density Cover ((@@-)-ony i. Frequency Inside Masefau Bay m (6-10 ft) 1982 V S w ASK2pora (A.) aobilis 22 19.1 29.6 2.4-132.7 0.53 21.37 ix6 36.67 7.83 Porites (S.) rus 5 24.7 24.5 2.4-52.4 0.33 13.31 0.24 8.33 2.07 Porites (P.) ap.2 7 5.5 2.0 3.0-8.9 0.33 13.31 0.34 11.67 0.09 Parites (P.) cylindrica 4 13.8 19.1 3.0-42.4 0.13 5.24 0.19 6.67- 0.71 !!@@ dichotoma 4 2.5 0.5 2.0-3.2 0.20 8.06 0.19 6.67 0.01 AElffora (A.) irregularis 3 23.7 8.5 18.7-33.5 0.13 5.24 0.14 5.00 o.36 Acropora (A.) hyacinchus 3 21.9 8.5 15.9-31.6 0.0 .7 2.82 0.14 5.00 0.60 Alveopora viridis 3 3.2 0.3 3.0-3.5 0.13 5.24 0.14 5.00 0.01 Arropora (A.) gemmif 1 39.1 0.07 2.82 0.05 1.67 0.58 00 - 0.02 Ln Montipora ehrenbergii 1 7.0 0.07 2.82 0.05 1.67 -- 0.07 2.82 0.05 1.67 0.01 !SLn @tora verrilli 1 4.6 Pocillopora elegans 1 3.9 o.o7 2.82 0.05 1.67 0.006 Acropora, (A.) azurea 1 3.0 0.07 2.82 0.05 1.67 0.003 Favia rotumana 1 3.0 0.07 2.82 0.05 1.67 0.003 pocillopora verrucosa 1 2.0 0.07 2.82 0.05 1.67 0.002 --- o.061 Favia sp. (juvenile) 1 1.0 0.07 2.82 0.05 1.67 Leptastrea purpurea 1 1.0 0.07 2.82 0.05 1.67 0.001 12.306 Totals 60 13.2 19.7 1.0-132.7 2.89 Table 4b Siz. WSLI-lbk1lion Frequency Relacive Denbi i ty Relacive Percenc (Colotly iTf.utwcers in cat) Frequency (Per m2) DenSiEy Cover Inside Masefau Bay 2-3 m (6-10 ft) 1985 V S w Pocillopora verrucosa 11 5.5 2.5 2.0-9.0 0.40 14.76 0.64 18.33 0.18 Porites (P.)@S@dric@a 6 11.0 11.1 4.0-33.0 0.27 9.96 0.35 10.00 0.61 Hillepora tuberosa 4 17.9 /9.2 8.5-28.6 0.20 7.38 0.23 6.67 0.70 Acropora Q.) crateriformis 5 10.9 7.8 4.0-24.2 0.27 9.96 0.29 8.33 0.38 Porites (P.) sp.2 7 4.3 0.7 3.2-5.0 0.27 9.96 0.41 11.67 0.06 M111gora Rj!!. @hlla 4 11.1 8.0 4.6-22.0 0.20 7.38 0.23 6.67 0.31 Montipara verrilit 2 24.2 2.5 22.4-26.0 0.07 2.58 0.12 3.33 0.54 Porites (S.) rus 5 4.0 3.3 2.0-9.9 0.13 4.80 0.29 8.33 0.06 Alveopora viridis 4 3.5 2.1 2.0-6.5 0.13 4.80 0.23 6.67 0.03 00 ON Montipora hoffmeisteri 1 24.2 0.07 2.58 0.06 1.67 0.27 Montipora 21schneri 1 20.0 0.*07 2.58 0.06 1.67 0.18 Acropora (A.) nobilis 2 8.5 6.0 4.2-12.7 0.07 2.58 0.12 3.33 0.08 Montipora ehrenbergii 1 17.3 0.07 2.58 0.06 1.67 0.14 Pavona sp.3 1 11.5 0.07 2.58 0.06 1.67 0.06 ASEpyora (A.) azurea 1 7.3 .0.07 2.58 0.06 1.67 0.0 2 Acropora (A.) hyacinthus 1 6.5 0.07 2.58 0.06 1.67 0.02 Montipora sp.1 1 6.9 0.07 2.58 0.06 1.67 0.02 Ilepora dichotoma 0-.07 2.58 0.06 1.67 0.01 Table 4b SjzV DISLrIbkItIOn Frequency Relative Dens icy Relative Percenc Cy (Per m2) Density Cover (cal.ony Djauwcer4 in cm) Fre(jUan Instle Mas 3 m TI"'10,H) 1985 N Y. w Pocillopora danae 1 2.0 0.07 2.58 0.06 .1.67 0.01 Pocillopora jitgans 1 2.5 0.07 2.58 0.06 1.67 0.01 Totals 60 8.9 7.6 2.0-33.0 3.51 3-69 00 -4 Table 4c siz@ mscrlWicion Frequency Relative Dens i % Relative Percent (Colony Djamecers in cm) Frequency (Per m Density Cover Inside Hasefau Bay 6 m (20 ft) 1982 F S w Porites (S.) rus 42 21.05' 28.29 3.35-151.11 0.70 45.16 3.01 50.60 29.77 Porites (P.) cylindrica 34 9.15 8.53 1.87-36.5 0.6 38.71 2.43 40.96 2.95 .Porites (S.) Sonticulosa 3 5.73 2.7 3.46-8.72 0.05 3.23 0.21 3.61 0.06 Montipora verrilli 1 9 0.05 3.23 0.07 1.20 0.04 Galaxea fascicularis 1 5.7 0.05 3.23 0.07 1.20 0.02 Porites (P.) lichen 1 4 0.05 3.23 0.07 1.20 0.01 1 2.74 0.05 3.23 0.07 1.20 0 Totals 5.93 00 00 Table 4d Size 01t;LlAbiltion Frequency Relative Dens i t Relative Percent @-C"-10.y wam'cers in cot) Frequancy (Per m Density Cover Inside Masefau Bay 6 m (20 ft) 1985 N Y. S W Porites (S.) rus 23 40.3 74.92 2.45-339.41 0.56 30.77 3.07 37.7 47.96 Porites, (P.) sp.2 26 5.72 8.19 0.69-10.56 0.63 34.62 3.47 42.62 0.64 Porites (P.) cylindrica 6 10.17- 0.31 17.03 0.8 9.84 --Tg-.7T- 114.8! 121-17 335.41 (159:76)- Montipora 3 13.52 5.3 9.17-19.42 0.13 7.14 0.4 4.92 0.63 Alveopora superficialis 2 4.58 1 3.87-5.29 0.13 7.14 0.27 3.28 0.05 Pavona sp.3 1 6.71 0.06 3.3 0.13 1.64 0.05 29.2 66.17 8.14 66.08 Two of the six colonies of P. cylindrica were very extensive and by contacting them, our findings were swamped by the two data. Tt oo the calculation of values i7n @a-rentheaes and excluded In the other calculations. Table 5a 1982 Siz. DI ,LIAbk.t ion FreqUenLy Rel"Livu DentiiEy Relative Percent @C,)Iuny Djamviers in C110 FreClUency (Per -2) Density Cover Outside Hasefau Bay (Asaga Strait) 2.5-L3.5 m (8-12 ft) 1982 N S w -- Galaxea fascicularis 28 5.9 2.0 1.0-9.9 0.87 32.22 14.30 46.67 4.40 Pocillo2ora eydoux 3 28.9 10.0 19.4-39.5 0.20 7.41 1.53 5.00 10.87 ASK2pora (A.) @mithi 1 59.0 0.07 2.59 0.51 1.67 13.98 Pocillopora verrucosa 4 13.7 8.6 6.9-25.0 0.27 10.00 2.04 6.67 3.93 Montipora verrilli 5 8.8 7.0 3.0-20.4 0.27 10.00 2.55 8.33 2.33 Acropora Q.) crateriformis 3 8.0 3.5 5.9-12.0 0.20 7.41 1.53 5.00 0.86 jorites, (P.) sp.2 5 2.9 1.8 1.0-4.5 0.13 4.81 2.55 8.33 0.22 Lorites (P.) lichen 3 4.8 0.9 3.9-5.7 0.13 4.81 1.53 5 AO -,0.28 ans 1 22.4 0.07 2.59 0.51 1.67 2.03 0 A@L@�ra (A.) irregularis 1 19.9 0.07 2.59 0.51 1.67 1.59 Leptoria phrygia 1 14.8 0.07 2.59 0.51 1.67 0.88 Favites complanata 1 7.9 0.07 2.59 0.51 1.67 0.25 Favia rotumana 1 5.9 0.07 2.59 0.51 1.67 0.14 AS@T@Gra (A.) azurea 1 5.0 0.07 2.59 0.51 1.67 0.10 ASK@!pora (A.) sp.1 1 3.9 0.07 2.59 0.51 1.67 0.06 Hydnophora microconos 1 2.0- 0.07 2.59 0.51 1.67 0.02 Totals 60 9.1 9.6 1.0-50.'01 30.62 41.94 Table 5b -ibkicion Frequency Relative Densit Relative Percen SjZ@ DISLi m Density Cover Outside Masefau Bay (Colony Diameters in cm) Frequency (Per (Asaga Strait) 2.5-3.5 m (8-12 ft) 1985 Galaxea fascicularis 21 6.2 2.2 3.5-9.9 0.80 24.24 11.85 35.00 4.07 Hontipora verrilli 6 9.1 5.9 5.3-20.4 0.33 10.00 3.39 10.00 2.97 Pocillopora eydouxi 1 35.5 - 0.07 2.12 0.57 1.67 5.59 Kontastrea curta 5 5.9 3.6 2.8-9.9 0.33 10.00 2.82 8.33 1.01 Gonlastrea retiformis 4 10.8 3.4 6.9-15.0 0.20 6.06 2.26 6.67 2.23 Alveopora virldis 5 1.9 1.3 1.0-4.0 0.33 10.00 2.82 8.33 0.11 Pocillopora elegans 2 17.8 6.8 13.0-22.6 0.13 3.94 1.13 3.33 3.02 Montipora colei 1 25.7 - 0.07 2.12 0.57 1.67 2.93 Porites Q.) op. 2 3 4.9 1.1 3.9-6.0 0.20 6.06 1.69 5.00 0.33 Montip6ra ehrenbergii 1 18.5 - -0.07 2.12 0.57 1.67 1.52 Cyphastrea serailia 1 15.0 0.07 2.12 0.57 1.67 0.99 Acropora (A.) azurea 1 13.9 O@07 2.12 0.57 1.67 0.85 Leptoria phrygia 1 13.3 0.07 2.12 0.57 1.67 0.78 Hydnophora microconos 1 12.5 - - 0.07 2.12 0.57 1.67 0.69 Acropora (A.) digitifera 1 12.4 - - 0.07 2.12 0.57 1.67 0.68 javites complanata 1 6.5 - - 0.07 2.12 0.57 1.67 0.19 Psammocora op. 1 1 6.5 - - 0.07 2.12 0.57 1.67 0.19 Pocillopora verrucoaa 1 5.9 0.;07 2.12 0.57 1.67 0.16 Pavon op. 3 1 4.5 0.07 2.12 0.57 1.67 0.09 @ J.5 5 5 .9 Table 5b Size WsLribtltion Frequency Relative Dens i ty Relative Percen Outside Hasefau Bay (Culony Djaiiwcers in Frequency (Per m2) Density Cover (Asaga Strait) 2.5-3.5 m (8m-12 ft) 1985 'N T. S w Montipora elochneri 1 2.4 0.07 2.12 0.57 1.67 0.03 Stylocoeniella armata 1 1.4 0.07 2.12 0.57 1.67 0.QI Totals T 60 8.2 6.3 1.0-35.5 33.94 28.44 Table 5 c Siz. DISLrib,ition Frequency Relative! Density Relative Percen outside Masefau, Bay-6m (26 ft) ancy (Per Inz) Density Cover .j..y Ij7-@-- in cm) Frequ 1982 Y-. S w Coscinaraea 5 17.39 27.85 3,16-66.99 0.29 8.55 0.24 8.93 1.74 Porites (P.) sp. 2 7 1.76 0.83 1.-3.16 0.36 10.62 0.34 12.5 0-01 Porites (S.),monticulosa 6 3.25 0.87 2.65-4.9 0.36 10.62 0.29 10.71 Pocillopora eydo"i 1 29.73 0.07 2.06 0.05 1.7-9 0.35 Montipora verrilli 5 3.81 1.43 2.83-5.74 0.21 6.19 0.16 8.93 0.03- Pocillopora 3 3.65 0.53 3.24-4.24 0.21 @.lq 0.15 5.36 0.02 Pocillopora verrucosa 1 23.37 0.07 2.06 0.05 1.79 0.21 Alveopora 3 3.39 0.13 13.24-3,46 0-21 6.19 0.15 5-16 0 01 ko Montastrea curta 3 3.28 0.9 12.45-4.24 0.14 4.13 0.15 5.36 0.01 Acropora (A.) danai 3 3.14 1.8 1.34-5 0.14 4.13 0.15 5.36 0.01 Platygyra daedalea 2 4.58 2.01 3.16-6 0,14 4.13 0.1 3.57 0.02 Pavia 2 2.85 0.86 2.24-3.46 0.14 4.13 0.1 3.57 0.01 4.13 0.1 3.57 0.01 Astreopora 2,71 0.36 2.45-2.96 0. 14 Pavona varians 1 7.94 0.07 2.06 0.05 1.79 0.02 Porites (green stomodeum) 1 7.48 0.07 2.06 0.05 1.79 0.02 AE,ropora (A.) hyacinthus 1 7 0.07 2.06 0.05 1.79 0.02 Acropora (I.).Erateriformis 1 6.71 0.07 2.06 0.05 1.79 0.02 Porites (S.) rus 6.32 0.07 2.06 0.05 1.79 0.02 Montipora e1schneri 4.9 0.07 2.06 0.05 1.79 0.01 Table 5c Siz. OISLI"ib%111011 Frequency Relative! Density Relative Percent Frecluenc: (Per M2) Density Cover amecer4 in CIO outside Hasefau, Bay-6m (20ft Jny Di y 1982 N Y. S w Acropora 1 4.24" 0.07 2.06 0.05 1.79 0.01 Favia matthaii* 1 3.71 0.07 2.06 0.05 1.79 0.01 Galaxea fascicularis 1 3.46 0.07 2.06 0.05 1.79 0 Leptastrea immersa 1 3.24 0.07 2.06 0.05 1.79 0 Porites (blue) 1 2.83 0.07 2.06 0 05 1.79 0 Porites (P.) lichen 1 1.74 0.07 2.06 0.05 1.79 0 Pocilloppra damicornis 1 1.94 0.07 2.06 0-05 I-7Q 0 Totals 56 5.61 9.57 1-66.99 2.68 2.59 Table 5d Size W s c ri bti c Ion Frequency Re la t i ve Den5 i ty Relative Percent Outside Hasefau Bay-6m (26 ft) (Colony Diamucers in cmF FreqUancy (Per m2) Density Cover 1985 N 7 S w Porites (P.) op. 2 18 5.73*- 2.87 2-13.49 0.53 18.34 1.61 30.51 0.51 Ho tipora 8 12.09 4.99 6-21 0.4 13.84 0.72 13.56 0.95 Pocillopora elegans 4 14.75 10.06 6-27.55 0.27 9.34 0.36 6.78 0.83.. Pocillopora eydouxi 5 7.68 3.3 5.24-13.49 0.33 11.42 0.45 8.47 0.24 Acropora (A.) digitifera 5 8.73 2.61 7,13 0.27 9.34 0.45 8.47 0.29 Alveopora (A.) superficialis 6 2.86 1.35 1.5-4.9 0.27 9.34 0.54 10.17 0.04 Acropora (A.) hyacinthus 2 4.47 0 4.47-4.47 0.*13 4.5 0.18 3.39 0.03 Pavona varians 1 14.49 0. 07 2.0 0.09 1.69 0.15 Galaxea fascicularis 2 7.01 3.59 4.47-9.54 0.07 2.42 0.18 3.39 0.08 Montastrea curta 2 8.44 7.04 3.46-13.42 0.13 4.5 0.18 3.39 0 Leptastrea purpurea 1 13.27 0.07 2.42 0.09 1.69 0.12 Pocillopora danae 1 5.24 0.07 2.42 0.09 1.69 0.02 Leptoria phrygia 1 3.87 0.07 2.42 0.09 1.69 0.01 Acropora (A.) squarrosa 3.74 0.07 2.42 0.09 1.69 0.01 Coscinaraea op. 1 1, 3 0.07 2.42 0.09 1.69 0.01 Acropora 1 3 0.07 2.42 0.09 1.69 0.01 Totals 59 7.53 5.1 1.5-27.55, 5.3 3.3 Table 6a Sizc MSLribiotion Frequency Relative Density Relative Percent Aoa Bay 1.5-2.5 m (5-8 ft) (Colony Diameters in ciiT Frequency (Per m Density Cover 1982 N S w Porites (P.) sp.2 16 3.4 1.2 1.0-8.5 0.67 21.20 0.80 26.67 0.08 Millepora platyphylla 1 57.6 0.07 2.22 0.05 1.67 1.30 Pocillopora eydouxi 5 20.2 9.2 6.0-28.1 0.20 6.33 0.25 8.33 0.94 Acropora (A.) hyacinthus 10 4.8 2.0 2.0-8.5 0.53 16.67 0.50 16.67 0.10 .Pocillopora verrucosa 4 11.8 9.0 5.0-19.8 0.20 6.33 0.20 :6.67 0.31 .Montipora verrilli 5 5.7 3.8 3.0-12.0 0.27 8.54 0.25 8.33 0.09 Montastrea curta 4 6.4 3.0 3.0-9.5 0.20 6.33 0.20 6.67 0.07 .Pocillopora op. (Juvenile) 3 2.6 0.8 2.0-3.5 0.20 6.33 0.15 5.00 0.01 Acropora (A.) vasiformis 2 4.4 1.9 3.0-5.7 0.13 4.11 0.10 3.33 0.02 Acropora (A.) nobilis 2 3.7 2.3 3.0-5.3 0.13 4,.Il 0.10 3.33 0.01 Pocillopora j!&ijlata 1 16.0 0.07 2.22 0.05 1.67 0.10 Galaxea fascicularis 1 11.0 0.07 2.22 0.05 1.67 0.05 Astreopora amyr ophthalma 1 4.0 0.07 2.22 0.05 1.67 0.01 Coacinaraea columna 1 5.9 0.07 2.22 0.05 1.67 0.01 Porites (P.) lichen 1' 3.9 0.07 2.22 0.05 1.67 0.01 Acropora (A.) SPA 3.0 0.07 2.22 0.05 1.67 0.004 Pavona op.3 3.0 0.07 2.22 0.05 1.67 0.004 1.67 0.002 purpurea 1 2.0 .0.07 2.22 0.05 1:@ @otrea i -- - I To 60 1 7.2 9.0 1.0-5 7.6 3.00 3.120 tals Table 6b Siz. i)i,;Lrib.itIon Frequency Re In C i ve Densi ty Relative Percent @2) Density Cover Aoa Bay 1.5-2.5 m (5-8 ft) (Culony Diimuters in cm) Frecitiancy (Per i 1985 1@ N Y. S w Lorites (P.) sp.2 16 5.4 2.7 1.4-10.5 0.60 18.69 4.97 26.67 1.39 Acropora (A.) hyacinthus 10 7.0 3.4 2.0-12.5 0.53 16.51 3.11 16.67 1.45 PocIllopora verrucosa 8 6.0 4.3 2.0-10.5 0.47 14.64 2.48 13.33 1.01 Montipora verrilli 6 6.0 3.8 1.4-12.0 0.33 10.28 1.86 10.00 0.71 Maati @�ra 2hKLn@ 2 21.0 0.6 20.5-21.4 0.13 4.05 0.62 3.33 2.13 Montastrea curta 5 6.9 1.1 5.3-8.1 0.27 8.41 1.55 8.33 0.59 Montipora eischneri 1 26.8 0.07 2.18 0.31 1.67 1.76 Pocillopora elegans 2 14.1 9.7 7.2-20.9 0.13 4.05 0.62 3.33 1.19 Acropora (A.) digitifera 2 6.7 3.8 4.0-9.4 0.13 4.'05 0.62 3.33 0.25 Favla hellanthoides 1 15.0 0.07 2-.18 0.31 1.67 0.55 ASK@@ @�ra (A.) sp.1 2 3.3 0.4 3.0-3.5 0.13 4.05 0.62 3.33 0.05 Goniastrea retiformis 1 7.3 0.07 2.18 0.31 1.67 0.13 Favites flexuosa 1 6.3 0.07 2.18 0.31 1.67 0.10 Acropor (A.) samoensis 1 5.9 0.07 2.18 0.31 1.67 0.09 Acropora (A.) Remmifera 1 6.0 0.07 2.18 0.31 1.67 0.09 Soscinaraea sp.1 1 3.5 0.07 2.18 0.31 1.67 0.03 Totals 60 7.3 5.2 1.4-26.*8 18.62 11.52 Table 6c Siz, o1st rib'ItIon ['re(Itiency lie I it L I Ve Dens I ty He la tive Percent Aoa Bay - 6m (20 ft) ni.wwters in cm) Fre(Itieticy (Per Z) Density Cover 1982 N Y. S w Pocillopora 3 16.77 21.71 4-41.83 0.2 5.74 0.06 5 0.28 Porites (S.) monticulosa 11 4.44 2.10 2-2.45 0.46 13.22 0.2 18.33 0.09 Porites (S.) rus 1 43.99 0.07 2.01 0.02 1.67 0.3 Pocillopora elegans 7 4.5 0.95 3.46-6.24 0.4 11.49 0.13 11.67 0.02 Pavona varians 5 4.48 1.91 2.74-7.07 0.27 7.76 0.09 8.33 0.02 Montipora elachneri 5 3.43 1.81 1.73-5.74 1 0.27 7.76 0.09 8.33 0.01 Leptastrea purpurea 4 1.56 0.62 1.1-2.45 0.27 7.76 0.07 6.67 0 Montastrea curta 3 3.23 1.11 2.45-4.5 0.2 5.74 0.06 5 0.01 Galaxea faacicularia 2 5.68 2.37 4-7.35 0.13 3.74 0.04 3.33 0.01 00 Montipora cf. granulosa 2 4.89 2.02 3.46-6.32 0.13 3.74 0.04 3.33 0.01 Acropora (A.) hyacinthus 2 4.32 0.82 3.74-4.9 0.13 3.74 0.04 3.33 0.01 Echinophyllia aspera 2 1 3.61 2.65 1 1.73-5.48 0.13 3.74 0.04 3.33 0.01 Favites 2 3.06 1.15 2.25-3.87 0.13 3.74 0.04 3.33 0 Porites (P.) lutea 2 2.56 0.62 2.12-3 0.13 3.74 0.04 3.33 0 Porites (P.) (green) 2 2.2 0.36 1.94-2.45 0.07 2.01 0.04 3.33 0 A@@ora (A.) danai -1 1 9.49 0.07 2.01 0.02 1.67 0.01 Porites (P.) ap. 2 1 4.47 0.07 2.01 0.02 1.67 0 Astreopora 1 3.46 0.07 2.01 0.02 1.67 0 Favia 1 2.65 0.07 2.01 0.02 1.67 0 Table 6c Frvquency RelilLiVe Denti i ty Relative Percen Freq tien c Cove r Aoa Bay - 6m (20 ft) (clony I amuterq in cm) Y (Per 192) Density 1982 N Y S w Porites (P.) lichen 1 2.45 0.07 2.01 0.02 1.67 0 Leptastrea immersa 1 1.94 0.07 2.01 0.02 1.67 0 Lobophyllia 1 1.94 0.07 2.01 0.02 1.67 0 Totals 60 5.15 1 7.31 11.1-41.83 1.14 0.78 Table 6d -1-)I t;@I- rilm( Wil- RelaLive Dens i ty Rela tive Percen (culony mamvEers in cm) Vreqkwncy (Per m2) Density Cover Aoa Bay - 6 to (20 ft) 1985 Y. S w N .1 . - Porites (P.) op. 2 12 6.11 2.38 3.16-9.95 0.53 15.14 0.73 20 0.24 Pavona op. 3 10 6.87 2.67 2-10.82 0.53 15.14 0.61 16.67 0.26 Montipora 4 12.37 5.4 7.75-18 0.27 7.71 0.24 6.67 0.33 Pocillopora 5 3.85 1.12 2.24-5.29 0.33 9.43 0.31 BA3 0.04 Acropora (A.) hyacInthus 3 7.58 3.11 4.24-10.39 0.2 5.71 0.18 5 0.09 Montastrea curta 3 7.15 3.52 3.16-9.8 0.2 5.71 0.18 5 0.08 Millepora platyphylla 2 11.73 4.58 8.49-14.97 0.07 2 0.12 3.33 0.14 Pavona op. 1 1 18 0.07 2 0.06 1.67 0.15 Acropora 3 3.14 0.65 2.45-3.74 0.2 5.71 0.18 5 0.01 Galaxea fascicularis 2 7.55 3.19 5. 29-9.8 0.13 .3.71 0.12 3.33 0.06 Porites (P.).lutea 2 3.53 0.3 3.32-3.74 0.13 3.71 0.12 3.33 0.01 Favia favus 2 6 0 6-6 0.07 2 0.12 3.33 0.03 Coscinaraea columna 1 10.58 0.07 2 0.06 1.67 0.05 Coscinaraea op. I 1 10 0.07 2 0.06 1.67 0.05 Pocillopora elegans 1 9.95 0.07 2 0.06 1.67 0.05 Leptastre purpurea 1 9 0.07 2 0.06 1.67 0.04 AS12pora (A.) cerealia 1 8.37 0.07 2 0.06 1.67 0.03 Goniastrea retiformis 1 8.37 0.07 2 0.06 1.67 0.03 Leptastrea immersa 1 7.75! 0.07 2 0.06 1.67 0.03 Table 6d FrequeoQy ReIaLive Dens i ty Rela tive Percent Freiltiency m2) Density Cover Aoa Bay - 6 m (20 ft) I)T,mwters in cm) (Per 1985 N w Hydnophora microconos 1 7.75 0.07 2 0.06 1.67 0.03 Leptorta phrygta 1 6 0.07 2 0.06 1.67 0.03 Pocillopora meandrina 1 7 0.07 2 0.06 1.67 0.02 2 0.07 2 0.06 1.67 0 Totals 60 7.11 3.62 -18 3.63 1.8 0 TatL.le 7a S i Z, bI t; 1 1, 1131.1 j Oil Fre(Itlency Re Ilk L i ve Denb I L@) Relative Perce Ongnoa Bay 1-2.5 m (3-8 ft) (CUIOny DiJIIICECr-@' in cm) Preipsency (Per m Density Cover 1 1982 1 - - ---- - - ,@cropora (A.) hyacinthus 17 6.7 2.1 3.9-10.0 0.67 20.36 1.68 29.33 0.6 Porites (P.) sp.2 - 8 5.7 1.2 3.5-7.5 0.33 10.03 0.79 1.3.33 0.2 Pocillopora elegans 3 10.9 10.6 4.0-23.1 0.20 6.08 0.30 5.00 0.4 ASK2pora (A.) ]Lasiformis 4 7.2 1.9 5.9-10.0 0.27 8.21- 0.40 6.67 0.1 ASK2pora (A.) !Iumilis 3 9.4 5.3 5.9-15.5 0.13 3.95 0.30 5.00 0.2 Montastrea curta 4 4.5 2.1 2.4-6.5 0.27 8.21 0.40 6.67 0.0 Acropora (A.) sp.2 3 8.4 2.4 6.3-11.0 0.20 6.08 0.30 5.00 0.1 xcropora (I.) crateriformis 3 6.4 2.3 4.0-8.5 0.20 6.08 0.30 5.00 0.1 1.67 0.2 nEqpora elschneri 1 16.7 0.07 2.13 0.10 AEE2pora (A.) AjjLtjifera 2 8.7 2.4 7.0-10.4 0.13 3.95 0.20 3.33 0.1 Porites (P.) lichen 2 6.2 0.4 5.9-6.5 0.13 3.95 0.20 1 3.33 0. Pocilloporg verrucosa 2 4.5 0.0 4.5-4.5 0.13 3.95 0.20 3.33 0. Acropora (A.) gemmifera 1 8.4 0.07 2.13 0.10 1.67 0. venos-a 1 8.1 0.07 2.13 0.10 1.67 0. @iora@ sp.1 11 7.5 0.07 2.13 0.10 1.67 0. ASIUora (A.) azurea -1 6.7 0.07 2.13 0.10 1.67 0. !!22L!Lora cf. aranulosa 1 6.0 0.07 . 2.13 1 0.10 1.67 0. 0.07 2.13 0.10 1.67 0. Galaxea fascicularia -1 3.9 Table 7a Siz. Mstrib'.0011 Re I a L j Ve Dens i ty Relative Percent (Per m2) Density Cover Onenoa Bay 1-2.5 m (3-8 ft) (C@I---I-y Di.wwters in cm) FruqLioncy 1982 1 . - N S w Leptastrea purpurea 1 2.4 0.07 2.13 0.10 1.67 0.00 Pocillopora ap.(Juvenile) 1 2.0 0.07 2.13 0.10 1.67 0.00 60 6.9 3.4 2 23.1 Totals .0- 5.97 2.67 Table 7b Siz, 1) i.,; i r I b,it J on Vrvqtiency Re I it L i Ve Dens i ty Relat ive Percen in cm) Fret1twncy (Per ,,2) DenSiEy Cover Onenon Bay 1-2.5 m (3-8 ft) 1985 N Y S w ASKUora (A-) hX@@nths 15 11.6 5.1 1.4-18.5 0.73 22.67 2.26 25.00 2.84 Montipora verrilli 8 12.3 5.2 4.5-20.8 0.33 10.25 1.20 13.33 1.66 Acropora (A.) digitifera 5 15.9 3.2 12.0-20.0 0.33 10.25 0.75 8.33 1.55 Acropora (A.) sp-I 6 9.5 5.8 2.4-16.7 0.20 '6.21 0.90 10.00 0.84 Pocillopora verrucosa 6 5.7 3.5 2.0-10.4 0.33 10.25 0.90 10.00 0.30 Pocillopora eydouxt 3 15.5 5.8 11.5-22.2 0.20 6.21 0.45 5.00 0.86 Montastrea curta 5 4.1 1.9 2.4-7.3 0.27 8.39 0.75 8.33 0.12 A@.@�ra (A.) surculosa 1 30.8 0.07 2.17 0.15 1.67 1.12 t!i-@ kl@ @hlja 1 30.2 0.07 2.17 0.15 1.67 1.08 41 E@j@@ 20.1 0.07 2.17 0.15 1.67 0.48 Porites (P.) sp.2 2 3.4 0.8 2. 8-4.0 0.13 4.04 0.30 3.33 0.03 Acropor (A.) gemmifers. 1 12.0 0.07 2.17 0.15 1.67 0.17 Leptoria. phrygia 1 11.8 0.07 2.17 0.15 1.67 0.17 IM@astrea ZHUurea 1 8.5 0.07 2.17 0.15 1.67 0.09 AS.@�ra @A.) robusta 1 8.0 0.07 2.17 0.15 1.67 0.08 Favites halicora 1 7.7 0.07 2.17 0.15 1.67 0.07 @iora@ elachneri 1 5.9 0.07 2.17 0.15 1.67 0.04 Pocillopora setchelli 1 5.9 0.07 2.17 0.15 1.67 0.04 Totals 60 11.0 6.6 1.4-30.8 9.01 11.54 Table 7c siz@ is I I. I Im t I of) Freqtiency Re i a I i ve benti i ty Relative Percen Onenoa Bay - 6 m (20 ft) (Cul oily 1) i-.1muters, in CIO I@ruqiidilcy (Per m2) Densily Cover 1982 N Y.. s w Pavona lilaceae 1 89.16 0.07 2.06 0.04 1.67 2*5 Montipora e1schneri 16 3.59 1.52 1.41-7.75 0.74 21.82 0.59 26.67 0.07 Porites (S.) rus 8 5.66 3.74 0.27 7.96 0.29 13.33 0.1 0.01 1.93 0.47 1.22-2.45 0.34 10.02 0.18 8.33 AEK2P-O_ra (I.) Eraterifo-is 5 L purpurea 5- 2 1.16 10.5-3 0.33 9.73 0.18 8.33 0.01 j!j @strea Pocillopora 3 2.58 1.01 5.9 0.11 5 0.01 1.5-3.5 0.2 Pocillopor eydouxi 1 25.69 0.07 2.06 0.04 1.67 0.21 Pavona 2 2.94 1.32 0.13 3.83 0.07 3.33 0.01 Alveopora 2 1.97 1.69 0.77-3.16 0.13 3.83 0.07 3.33 -0 3.83 0.07 3.33 0 Porites (P.) lutea 2 1.83 0.88 1.2-2.45 0.13 Favi stelligera 1 14.49 0.07 2.06 0.04 1 1.67 0.07 tmLiko -ra 2 4.45 0.64 4-4.9 0.07 2.06 0.07 3.33 0.01 Pavona varians 1 12_ 0.07 2'.06 0.04 1.67 0.05 coseinaraea 1 7.07 0.07 2.o6 0.04 1.67 0.02 Acropora (A.) hyacinthus 1 7 0.07 2.06 0.04 1.67 0.02 pocillopora elegans I 6@148 0.07 2.06 0.04 1.67 0.01 -- - 0.01 Acropora (A.) cf. reticulata 1 5.48 0.07 2'.06 0.04 1.67 @iora (glabrous blue) 1 4.69 0.07 2.06 0.04 p 1.67 0.01 Table 7c -S i Z@ 1).1 S-t- 1, 1 b.1c I on Frequency Re) atj ve Dens i ty Relative Percen (colony Diamuters in cm) Fre(Itiency (Per m2) Density Cover Onenoa Bay - 6 m (20 ft) 1982 N Y. S w Porites (P.) lichen 1 4.24 0.07 2.06 0.04 1.67 0.01 Porites (S.) monticulosa 1 6 0.07 2.06 0.04 1.67 0 ASjopora (A.) 1 3.87 0.07 2.06 0.04 1.67 0 Favites 1 3.16 0.07 2.06 0.04 1.67 0 Montastrea 1 2 0.07 2.06 0.04 1.67 0 Fungia 1 1.94 0.07 2.06 0.04 1.67 0 Totals 6 11.65 0.77-89.16 2.23 3.13 0 �5.7 S i Z, DI r I b,. t J On Freqtiency Re I it L i Ve Dens i ty Relative Perce Table 7d (cu I Ily Diameters in cm) Fre(Iijeney (Per m2) Density Cove r Onenoa Bay .- 6 , (20 ft) 1985 N Y. S w Montipora 10 16.64 7.76 4.47-29.93 0.53 16.16 1.34 17.24 3.4 Acropora (A.) hyacinthus 5 15.65 6.66 10.49-26.8' 0.27 8.23 0.67 8.62 1.4 Pocillopora 8 3.7 1.11 2.12-5.29 0.4 12.2 1.07 13.79 0.1 Acropora (A.) -- digitifera 4 15.53 4.93 12.96 22.91 0.27 8.23 0.54 6.9 1.1 Acropora (A.) 8 5.22 2.28 3.16-10.49 0.33 10.06 1.07 13.79 0.2 Porites (P.) sp.2 6 5.56 3.62 1.41-10.2 0.33 1.0.06 0.81 10.34 0.3 Acropora (A.) humilis 2 21-45 3.5 18.97 h@92 0.13 3.96 0.27 3.45 0.9 Acropora (A.) irregularis 2 17.32 16.88 17.75 0.13 3.96 0.27 3.45 0.6 Coscinaraea sp.l. 2 7.62 2.65 5.74-9.49 0.13 @3.96 0.27 3.45 0.1 montastrea curta 2 7.49 2.84 5.48-9.49 0.13 .3.96 0.27 3.45 0.1 Pavona sp-3 1 12.41 0.07 2.13 0.13 1.72 0.1 pocillopora elegans 1 10-49 0.07 2.13 0.13 1.72 0.1 Acropora squarrosa 1 7.75 0.07 2.13 0.13 1.72 0.0 Galaxea fascicularis 1 8.69 0.07 2.13 0.13 1.72 0.0 coscinaraea columna 1 5.92 0.07 2.13 0.13 1.72 0.0 pocillopora meandrina 1 5.61 0.07 2.13 0.13 1.72 0.( .-L] Pavona varians 1 4.9 3 J62 0.07 2.13 0.13 1.72 0. 3. 5 0. 62 1 0.07 2.13 0.13 1.72 0. pocilloE!ora eydouxi. 1 4.9 Acropora (I.) crateriformid 1 4.74 0.07 2.13 0.13 1.72 0. 8 0.08 9. Total, 5 1 7 1.41-29.9 3,4 7.75 Table 8a S i Z I S.t 1-ib-IL1011 Fre(piency RelilLive Dens I ty Relative Percen Aunuu Island 2-3 m (6-10 ft) (C@jony Diamucers In cm) Frequmey (Per m2) Density Cover 1982 - F- N Y. S w Pocillopora eydouxi 10 28.1 13.9 9.9-52.0 0.53 16.46 0.06 16.67 0.48 Pocillopora elegans 12 12.4 6.4 3.9-23.7 0.67 20.81 0.08 20.00 0.12 Acropora (A.) nobill. 9 15.1 27.1 3.5-86.9 0.27 8.39 0.06 15.00 0.40 ASKqkora (A.) Rl!!arrosa 1 98.2 0.07 2.17 0.01 1.67 0.49 Pocillopora verrucosa 7 15.0 7.8 6.3-26.1 0.47 14.60 0.04 11.67 0.10 Pocillopora sp. (Juvenile) 6 2.8 0.4 2.0-3.0 0.33 10.25 0.04 10.00 0.002 Leptoria phrygia 3 11.4 8.0 5.3-20.4 0.20 6.21 0.02 5.00 0.03 Porites (P.) lichen 3 8.8 2.1 6.5-10.5 0.13 4.04 0.02 5.00 0.01 ASE2pora (A.) sp.1 3 5.5 0.9 5.0-6.5 0.13 4.04 0.02 5.00 0.01 F- 0 OD A@jr@�ra (A.) 1LEtgE!@r@ 1 7.5 0.07 .2.17 0.01 1.67 0.003 Montipora socialls 1 8.1 0.07 2.17 0.01 1.67 0.003 Acropora (A.) hyacinthus 1 5.0 0.07 2.17 0.01 1.67 0.001 Acropora (A.) sp. (Juvenile) 1 2.0 0.07 2.17 0.01 1.67 0.001 fjL@ia (F.) �!! @ites 1 3.0 0.07 2.17 0.01 1.67 0.001 Montastrea curta 1 4.9 0.07 2.17 0.01 1.67 .001 Totals 60 14.9 18.0 2.0-98.2 .41 1.652 @ No IC 12 Table 6b oil Re I it L 1 Ve Denbi i Ly Relative Percen Frutp,ency (Per m DenSity Cover Aunuu Island - 2-3 m (6-10 ft w.1mucer,, in cill) 1985 N y 5 w -- 1.4-14.5 0;-60 21.82 0.84 33.33 0.19 Porites Q.) sp.2 20 4.4' 3.0 - - - 0.47 17.09 0.42 16.67 0.38 Acropora (A.) hyacinthus 10 10.0 4.1 3.5-15.4 - 3.5- 13.0 0.40 14.55 0.42 16.67 0.17 Pocillopora verrucosa 10 6.4 3.5 - - 0.11 -- - 12.00 0.25 10.00 Pocillop elegans, 6 6.5 3.8 3.0-12.4 0.33 Acropora (A.) sp-l 4 10.3 3.7 5.0-13.0 0.27 9.82 0.17 6.67 0.15 0.07 2.55 0.04 1.67 0.23 javia stelligera 1 26.3 -T I- - . - - 13 5.00 0.10 Montastrea curta 3 9.6 3.5 5.5-11.7 0.20 7.27 0. - - 4.73 0.08 3.33 0.12 Acropora (A.) Aj&j_tifera 2 1 13.0 4.3 9.9-16.0 0.13 1 J .14-5 0.07 2.55 0.04 1.67 0.07 pocillopora eydo 67 0.02 1 7.5 0.07 0.04 1. %@O Favites complanat (A.) samoensis 1 6.5 0.07 2.55 0.04 1.67 0.01 2.55 7 0.01 danae 1 3.0 0.07 0.04 1.6 1 1 Totals @60 7.4 4.8 1.4-26.3 2.51 1 1.56 Table 8c sjz@ -Diz;1 1*16%itJon Fre(piency ReJaLive Dens i ty Relative Percen Aunuu Island - 6 m (20 ft) ((:u1ojjy '67jamuter., in cm) Fretlitancy (Per m2) Density Cover 1982 N S w Pocillopora elegans 10 3.28 1.26 2-5.92 1 31.45 0.23 41.67 0.02 Favia stelligers. 2 4.9 3.46 2.45-7.35 0.33 10.38 0.04 8.33 0.01 Montastrea curta 2 4.37 2.31 2.74-6 0.33 10.38 0.04 8.33 0.01 Porites (P.) lutes 2 4.27 1.8 2.96-5.5 0.33 10.38 0.04 8.33 0.01 Galaxea fascicularis 1 7.48 0 .17 5.35 0.02 4.17 0.01 Leptoria phrygia 2 2.98 0.68 2.5-3.46 0.17 5.35 0.04 8.33 0 Coscinaraea columns 1 4.47 0.17 5.35 0.02 4.17 0 Coscinaraea sp-l 1 3.54 0.17 5.35 0.02 4.17 0 Acropora (A.) nobilis 1 3 0.17 5.35 0.02 4.17 0 Leptastrea purpurea 1 1.87 0.17 5.35 0.02 4.17 0 (D Favia matthaii. 1 1.5 0.17 5.35 0.02 4.17 0 Totals 24 3.65 1.69 1.5-7.48 0.51 0.06 Frequency He I ilL i VU Dens i ty Relative Percen Table 8d siz@ I)l ,;t I'l L)-,t 101) Cover (Per m2) T)Unsity oily DI .1,11c t C, FreqliellcY Aunu'u Bay - 6 m (20 ft) -- 1985 V S w Porites (P.) sp-2 8 5.84 3.8 1.87-10 0.53 16.11 0.61 13.79 0.22 Acropora (A.) sprculosa 9 5.99 2.85 2.24-9.49 0.3 9.12 w 0.69 15.52 0.23 10 2.53- 1.02 1.15-4.24 0.53 16.11 0.76 17.24 0.04 Pocillopora Acropora (A.) hyacinthus 6 8.06 2.78 4.47-12 0.33 10.03 0'.46 10.34 0.26 -- 0.18 jaSjjj2kaEa fl4ouxi 5 7.15 3.62 2.45-11 o.33 10.03 0.38 8.62 sp.1 4 9.03 2.05 7.42-12 0.27 8.21 0.3 6.9 0.2 Pocillop ver-rucosa 2 12.39 3.66 9.-8-14.97 0.13 -3.95 0.15 3.45 0.19 Pavona sp.3 3 7.02 3.43 4.64-10-95 0.13 3.95 0.23 5.17 0.1 pocillopora meandrina, 1 17.49 0.07 2.13 0.08 1.72 0.19 5.29-5.92 0.13 0.15 3.45 0.04 F1 coscinaraea sp.l. 2 5.61 0.45 Kavia 1 12.49 OA7 2.13 0.08 1.72 0.1 2 3.57 0.15 3.46-3.67 0.13 3.95 0.15 3.45 0.02 Montastrea curta 1 0.15 3.45 0 naLikora elschrkeri 2 1.77 0.5 1.41-2.12 0.13 3.95 0.03 pocillopora elegans 1 6.93 0.07 2.13 0.08 1.72 0.02 Lavona sp-I 1 5.29 -- - 0.07 2.13 0.08 1.72 Porites (_P.) stephensoni 1 3.74 o.07 2.13 0.08 1.72 0.01 - 1-17.49 4.43 1.83 Totals 58 6.2 3.78 Table 9a Hatuli Point - 1.5-3 m S) Z@ -1) 1 @;-t I. i b., E j on Frequency Re I il L i Ve Dens i Ly Relative Perce (5-10 ft) l)-imiwcers, tn cm) Pre(Itioney (Per m2) Density Cover 1982 t4 Y. S w AEK2pora (A.) nobilis 17 11.1 5.3 3.9-23.2 0.47 17.94 3.04 28.33 3.6 Acropora (A.) hyacinthus 1 95.4 0.07 2.67 0.18 1.67 12.8 Acropora (A.) azurea 11 10.3 4.9 5.0-21.8 0.40 15.27 1.97 18.33 1.9 Galaxea fascicularis 7 6.4 2.5 3.5-9.9 0.40 15.27 1.25 11.67 0.4 Leptoria phrygia 4 16.0 7.5 5.9-24.0 0.20 7.63 0.72 6.67 1.6 f2Ejjj2EaKa @etchellf 3 9.3 5.2 1 4.9-15.0 0.20 7.63 0.54 5.00 0.4 Porites (P.) lichen 3 4.3 0.5 3.9-4.9 0.20 7.63 0.54 5.00 0.0 Acropora (I.) crateriformis 3 8.7 0.6 8.1-9.2 0.13 4.96 0.54 5.00 0.3 F1 Acropora (A.) ocellata 3 5.7 2.9 3.0-8.8 0.13 4.96 0.54 5.00 0.1 F1 Acropora (A.) gemmifera 1 28.5 0.07 2.67 0.18 1.67 1.1 Favites halicora 3 8.2 3.1 4.9-11.0 0.07 2.67 0.54 5.00 0.3 Favia rotumana 1 18.8 0.07 2.67 0.18 1.67 0.5 Pocillopora elegans 1 11.0 0.07 2.67 0.18 1.67 0.1 Leptastrea purpurea 1 5.0 0.07 2.67 0.18 1.67 0.0 Goniastrea retiformis 1 1.0 0.07 2.67 0.18 1.67 0.0 Totals 60 11.8 12.9 1.0-95.4 10.76 23.6 Table 9b Ikelat iy@ Ben-S i LY Relative Percent Frequency (Per m2) Density Cover Matuli Point - 1,5-3 m I E e (5-10 ft) 1985 N j Y S w Galaxea fascicularis 20 5.2 1.7 2.4 10.4 0.67 25.77 4.56 33.33 Porites (P.) sp.2 16 3.5 2.4 1.4-11.5 0.53 20.38 3.64 26.67 0.50 Acropora Q.) crateriformis 5 15.2 4.9 7.9-20.0 0.33 12.69 1.14 8.33 2.24 ASK2pora (A.) robusta 1 44.7 0.07 2.69 0.23- 1.67 3.59 A@@�ra (A.) nobilis 7 7.9 4.3 3.7-16.0 0.33 12.69 1.59 11.67 0.99 Leptoria phrygia 2 19.5 10.0 12.4-26.5 0.13 5.00 0.46 3.33 1.53 Acropora (A.) azurea 4 8.7 3.4 3.9-12.0 0.20 7.69 0.91 6.67 0.60 Acropora (A.) digitifera 2 14.5 1.3 13.5-15.4 0.13 5.00 0.46 3.33 0.75 Pocillopor verrucosa 1 13.0 0.07 2.69 0.23 1.67 0.30 I Favia pallida 1 7.5 0.07 .2.69 0.23 1.67 0.10 Pocillopora elegana I -5.0 0.07 2.69 0.23 1.67 0.04 Tota I-T- 60 7.7 7.1 1.4-44.7 13.68 11.72 @ 5 3-0 75 Table 9c Z@ ---W I-1, 1 Im t J oil Fre(Ittency Ile I il L I VL Dens I ty Relative Percent Matuli Point - 6 m (20 ft) (ciony m.mwter., in cm) Vreq@wncy (Per m2) Density Cover 1982 N 7- S w Acropora (A.) danai 3 69.75' 45.44 19'9108.86 0.08 3.01 0.14 5.66 6.86 Porites (S.),monticulosa 17 4.74 2.43 1.22-10.39 0.69 25.94 0.81 32.08 0.18 Acropora (A.) nobilis 8 8.98 4.74 3.46-17.32 0.31 11.65 0.38 15.09 0.49 Porites (P.).lutea 4 3.68 0.65 2.74-4.24 0.27 10.15 0.19 7.55 0.02 Stylophora mordax 3 4.97 1.47 3.54-6.48 0.23 8.65 0.14 5.66 0.03 Acropora (I.) crateriformis 4 6.38 1.33 4.58-7.71 0.15 5.64 0.19 7.55 0.06 Porites (P.) lichen 3 5.73 1.99 4 - 7.91 0.15 5.64 0.14 5.66 0.04 Pocillopora elegans 2 11.22 11.62 3 - 19.44 0.15 5.64 0.1 3.77 0.15 Leptoria phrygia 2 2.81 0.5 2.45-3.16 0.15 5.64 0.1 3.77 0.01 Pavona maldivensis 2 2.8 0.93 2.14-3.46 0.08 3.01 0.1 3.77 0.01 orites sp.2 (explanate) 1 7.94 0.08 3.01 0.05 1.89 0.02 Lobophyllia costata 1 4.47 0.08 3.01 0.05 1.89 0.01 fgpSia (P.) scutaria 1 3.97 0.08 3.01 0.05 1.89 0.01 Pavona varians 1 3.24 0.08 3.01 0.05 1.89 0 Alveopora 1 2.45 0.08 3.01 0.05 1.89 0 Totals 53 9.24 17.77 1*22108. 86 2.54 7.89 3 6 7 9"5' 8 4 3 8 44 6 d3 Table 9d Ws( [email protected] Frequency ReLIOVU Dens i ty Rela t ive Percen in cm) Fre(Itioncy (Per @2) Density Cover Matuli Point - 6 m (20 ft) (C. 1985 Porites (P.) sp.2 43 4.41 1.98 1.14-8.12 1 49.5 8.25 70.49 1.51 Acropora (A.) irregularis 1 138.24 0.07 3.47 0.19 1.64 28.52 7.32 Acropora (A.) squarrosa 8 60.88 76.85 4 0.33 16.34 1.53 13.21 (106.64) Acropora (A.) nobilis 3 96.64 137.55 6.15-255 0.2 9.9 0.58 4.92 1.65 AS!@o 1 32.4 0.07 3.47 0.19 1.64 1.57 pora (A.) hy� @nthus - - Acropora (A.) cerealis 1 14.39 0.07 3.47 0.19 1.64 0.31 Acropora (I.) crateriformis 1 13.27 0.07 3.47 0.19 1.64 0.26 Coacinaraea columns 1 12.69 0.07 3.47 0.19 1.64 0.24 Pocillopora setchelli 1 6.24 0.07 3.47 0.19 1.64 0.06 F, 0.07 3.47 0.19 1.64 0.05 L.n Stylophora mordax 1 6 Totals 61 19.51 47.51 1.14-255 11.69 41.49 Two of the eight colonies of Acropora (A.) squarrosa were very extensive and by contactifig them our findings were swamped by the are included in the calculations of values in parentheses and excluded form the other calculations. Table 10 a I 1;-t- 1, i I),, c I oil 1're(Ittency Re I a t i ve Dens i Ly RelatIve Perce Fagasa Bay - 2-3 m (6-10 ft) (Culony MamuLers in cm) I-re(Itioncy (Per m2) Densicy Cover 1982 Porites (P.) sp.2 14 5.2 3.6 1.0-13.4 0.47 14-83 1.87 23.33 0.58 Goniastrea retiformis 2 48.1 16.1 36.7-59.4 0.13 4.io 0.27 3.33 5.10 Montipora verrilli 10 6.9 2.6 1.7-10.5 0.47 14.83 1.33 16.67 0.56 Montipora venosa 8 9.8 4.3 3.0-15.5 0.40 12-62 1.07 13.33 0.72 Pavona sp.1 1 55.3 0.07 2.21 0.13 i.67 3.20 Porites murrayensis 1 50.0 0.07 2.21 0.13 1.67 2.62 Pocillopora eydouxi 2 13.8 12.0 5.3-22.2 0.13 4.10 0.27 3.33 0.55 Pavona varians 1 31.5 0.07 2.21 0.13 1.67 1.04 Favites complanata 2 10.2 4.6 6.9-13.4 0.13 4.10 0.27 3.33 0.24 Montastrea curta 2 8.6 7.8 3.0-14.1 0.13 4.10 0.27 3.33 Favia stelligera 1 27.7 0.07 2.21 0.13 1.67 0.81 Acropora (A.) azurea 2 3.5 0.7 3.0-4.0 0.13 4.10 0.27 3.33 0.03 Coscinaraea sp.1 2 3.0 2.8 1.0-4.9 0.13 4.10 0.27 3.33 0.03 favia RR. @ida 1 20.5 0.07 2.21 0.13 1.67 0.44 Galaxea fascicularis 2 7.2 1.8 5.9-8.5 0.07 2.21 0.27 3.33 0.11 Eavona sp.3 1 14.5 0.07 2.21 0.13 1.67 0.22 Hydnophora microconos 1 9.8 0.07 2.21 0.13 1.67 0.10 Acropora (A.) hyacinthus 1 7.0 0.07 2.21 0.13 1.67 0.05 Table 10a t 1, i Im C I oil Frvqti@ncy Ile I il L I VL Dens I ty Itela c ive Percent Fagasa Bay - 2-3 m (6-10 ft) (c. f@;-.ly 1)-i,, i-mc i: 'er -,t -nc m F Fre(Itien cY (Per m2) Density Cover 1982 N V - S w Astreopora myri phthalma 1 7.0 0.07 2.21 0.13 1.67 0.05 ASE2Eora (A.) Hardii 1 5.5 0.07 2.21 0.13 1.67 0.03 Leptastrea purpurea 1 5.5 0.07 2.21 0.13 1.67 0.03 Astreopora gracilis 1 4.0 0.07 2.21 0.13 1.67 0.02 Pocillopora sp. (juvenile) 1 4.0 0.07 2.21 0.13 1.67 0.02 Alveopora superficialis 1 2.0 0.07 2 .21 0.13 1.67 0.004 Totals 60 10.9 12.1 1.0-59.4 7.98 16.774 0 91 Table 10b Siz, W@;trib'.L1011 Fre,itiency KeUlLive Dens i ty Relative Percent Fagasa Bay - 2-3 m (6-10 ft) oiiy I imeters In cm) Fre(Itioncy (Per m2) Density Cover 1985 -- N Y S w Porites (P.) sp.2 30 5.0 2.9 1.0-11.0 0.80 33.20 2.16 50.00 0.55 Pocillopora verrucosa 7 10.2 7.5 2.4-24.9 0.27 11.20 0.50 11.67 0.62 Montipora verrilli 6 8.0 2.4 6.0-11.2 0.20 8.30 0.43 10.00 0.24 Acropora (A.) hyacinthus 4 3.2 0.9 2.0-4.0 0.27 11.20 0.29 6.67 0.03 Leptoria phrygi 2 7.2 5.2 3.5-10.8 0.13 5.39 0.14 3.33 0.07 Eavona sp.1 2 7.4 2.6 5.5-9.2 0.13 5.39 0.14 3.33 0.06 Astreopora myriophthalma 1 14.5 0.07 2.90 0.07 1.67 0.12 Montastrea curta 1 14.5 0.07 2.90 0.07 1.67 0.12 Acropora (A.) sp.1 2 3.8 0.4 3.5-4.0 0.13 5.39 0.14 3.33 0.02 Acropora (A.) digitifera 2 3.5 0.6 3.0-3.9 0.13 5.39 0.14 3.33 0.01 OD favites So @anata@ 1 8.8 0.07 2.90 0.07 1.67 0.04 t2nlikara elachneri 1 7.9 0.07 2.90 0.07 1.67 0.04 Montipora ap.1 1 5.0 0.07 2.90 0.07 1.67 0.01 Totals 60 6.3 4.3 1.0-24.9 4.29 1.93 hi .9 Table 10c @.t rib..t loll Fretitiency lie la L i ve Dens I ty Rela tive Percen joency (Per M2) DensiEy Cove r Fagasa Bay - 6 m (20 ft) (Cololly j)I.ol1QteL'S in C110 1982 1 ,,l I S W Pocillopora eydouxi 2-1 36.01' 41.12 6.93-65.08 0.1 3.17 0.08 2.44 1.35 - 20.73 0.38 Pavona varians 17 7.5 4.50 2.96-18 0.6 19.05 0.64 Coscinaraea 14 4.54_ 1.46 2.74-7.71 0.5 15.87 0.53 17.07 0.09 Porites (P.) sp.2 9 3.82 2.53 0.9-9.38 0.2 6.35 0.34 10.98 0.06 Porites -- (P.) lutea 6 8.77 3.73 3.87-12.41 0.15 4.76 0.23 7.32 0.16 Montipora e1schneri 4 8.16 1.95 6.42-10.95 0.2 6.35 0.15 4.88 0.08 Favia 4 5.53 2.02 2.74-7.42 0.2 6.35 0.15 4.88 0.04 Porites (S.) pSInticulosa 3 3.15 0.95 2.45-4.24 0.15 4.76 0.11 3.66 0.01 Alveopora 3 1.99 0.26 1.73-2.24 0.15 4.76 0.11 3.66 0 apLastrea 3 4.27 2.49 1.41-5.92 0.1 3.17 0.11 3.66 0.02 Stylocoeniella armata 2 6.71 4.59 3.46-9.95 0.1 3.17 0.08 2.44 0.03 Coscirtaraea sp-I (smoother) 1 16.25 0.05 1.59 0.04 1.22 0.08 Porites (S.) rus 2 2.49 2.81 0.5-4.47 0.1 3.17 0.08 2.44 0.01 Psammocora sp.1 (Samoabrown) 1 14.73 0.05 1.59 0.04 1.22 0.07 @iora verrilli (brown) 2 6 2.12 4.5-7.5 0.05 1.59 0.08 2.44 0.02 8.37 0.05 1.59 0.04 1.22 0.02 7.75 0.05 1.59 0.04 1.22 0.02 Galaxea fascicularis 1 7 0.05 1.59 1.22 0.02 Favites flexuosa 1 5.661 0.05 1.59 0.04 1.22 0.01 E '02 0.95 0 269 Table 10c Siz, [email protected] I ih,10011 Frequency ReliiLivv Denti i Ly Rela tive Percent Fagasa Bay - 6 m (20 ft) w@--i-,zly" J)'i .11,-Ior-ers -In ciu)- Precitwocy (Per m2) DensiEy Cover 1982 N Y. s w Pavons sp.1 1 4.9 0.05 1.59 0.04 1.22 0.01 Leptastrea immersa 1 2.74 0.05 1.59 0.04 1.22 0 Porites (P.) 1 2.5 0.05 1.59 0.04 1.22 0 Favite complanata 1 2.45 0.05 1.59 0.04 1.22 0 Leptastrea purpurea 1 1.41 0.05 1.59 0.04 1.22 0 Totals 82 6.55 7.5 9-65.08 3.13 2.48 0 Table lod S i zv M"t ribtirlon Frequency ReLIOVU Dens i ty Rehir. ive Percen ) i -,@ t e rs, i (PC Fagasa Bay - 6 m (20 ft) - __ - -T Fr@(J'Iency r m2) DensiEy 6over 1985 S w Montipora 20 23.6' 21.82 2.24-98.58 0.73 24.41 1.87 33.33 14.8 Porites (P.) sp.2 11 5.32 2.24 1.73-9.8 0.53 17.73 1.03 18.33 0.2 Pocillopora elegans 6 16.28 10.82 3.46-33.36 0.4 13.38 0.56 10 1.5 f2SjjjRpq.La eydouxi 3 31.05 20.35 8.94-48.99 0.2 6.69 0.28 5 2.7 Pavona sp.3 6 8.65 5.31 3.16-17.32 0.27 9.03 0.56 10 0.4 Pavona varians 3 13.12 2.91 9.87-15.4S 0.13 4.35 0.28 5 0.3 Acropora 2 17.47 7.79 11*96 22.9f 0.13 4.35 0.19 3.33 0.5 Galaxea fascicularis 2 8.57 4.37 5.48-11.6( 0.13 4.35 0.19 3.33 0.1 @qoscinaraea sp.1 2 6.99 1.51 5.92-8.06 0.13 4.35 0.19 3.33 0.0 2 4.47 0 4.47-4.47 0.13 4.35 0.19 3.33 0.0 Pocillopora verrucosa 1 1 13.86 0.07 2.34 0.19 1.67 0.2 Favia favus 1 9.95 0.07 2.34 0.09 1.67 0.0 Leptastrea purpurea 1 3.54 0.07 2.34 0.09 1.67 0.0 Totals 60 15.25 15.89 1.73-98.58 5.6 21.3 tA Table Ila @SiL. Fre,ltiency RelilLive Dens I ty Relative Perce Cape Larsen - 2-3 m (6-10 ft) wuloiiy Di.imoters tn cm) Frequency (Per m2) Density Cover 1982 1 S w nRLIE@@ jerrilli 18 5.6 2.6 1.0-10.0 0.67 21.75 2.37 30.00 0.70 Pocillopora eydouxi 4 24.4 11.5 8.8-36.5 0.20 6.49 0.53 6.67 2.89 Leptoria phrygia 5 18.0 13.8 2.4-30.0 0.20 6.49 0.66 8.33 2.46 Favites flexuosa 2 26.5 16.0 15.2-37.8 0.13 4.22 0.26 3.33 1.71 Porites (P.) sp.2 6 3.3 1.9 1.0-5.2 0.33 10.71 0.79 10.00 0.09 AS12pora (I.) crateriformis 2 17.2 15.8 6.0-28.3 0.13 4.22 0.26 3.33 0.86 Montipora venos 3 9.3 9.3 3.0-19.9 0.20 6.49 0.40 5.00 0.44 Favia rotumana 1 29.5 0.07 2.27 0.13 1.67 0.90 Alveopora viridis 3 2.8 0.8 2.0-3.5 0.20 6.49 0.40 5.00 0.03 Coscinaraea sp.1 2 4.3 0.5 3.9-4.6 0.13 4.22 0.26 3.33 0.04 Montipor sp.1 2 3.3 1.8 2.0-4.6 0.13 4.22 0.26 3.33 0.03 Montastrea curta 2 3.2 1.1 2.4-4.0 0.13 4.22 0.26 3.33 0.02 Favites halicora 1 17.5 0.07 2.27 0.13 1.67 0.32 Acropora (A.) hyacinthus 2 3.5 0.6 3.0-3.9 0.07 2.27 0.26 3.33 0.03 Pocillopora sp. (Juvenile) 2 3.5 0.7 3.0-4.0 0.07 2.27 0.26 3.33 0.03 Galaxea fascicularis 1 7.1 0.07 2.27 0.13 1.67 0.05 Astreopora myriahthalma 1 4.2 0.07 2.27 0.13 1.67 0.02 Favites complanata 4.6 0.07 2.27 0.13 1.67 0.02 Table Ila 1)1.1( rib"tioll I-rvqtincy ReIaLiVL Dens i ty Ike I at ive Percent Cape Larsen - 2-3 m (6-10 ft) Frew.ency (Per M2) Density Cover 1982 -- S w Echinopora lamellosa 1 3.0 0.07 2.27 0.13 1.67 0.01 Goniastrea retiformis 1 2.0 0.07 2.27 0.13 1.67 0.004 Totals 60 8.9 9.7 1.0-36.5 7.88 10.654 Table Ilb S i I i fill L i oil Vre,pincy He NI t i ve Dens i ty Re la t J ve Percen Cape Larsen - 2-3 m (6-10 ft) (CUIOlly D1,1111CLerS ill Lill) Fre(piocy (Per in") Density Cover 1985 N Y.. S w Montipora Lerrilli 17 15.9 10.3 2.6-36.5 0.73 23-70 2.22 28.33 6.18 Porites (A.) sp.2 6 3.1 1.1 1.7-4.5 0.40 12.99 0.78 10.00 0.07 Acropora (A.) crateriformis 3 20.0 5.5 14.5-25.5 0.20 6.49 0.39 5.00 1.29 Millepora platyphylla 3 20.4 11.3 11.0-33.0 0.13 4.22 0.39 5.06 1.55 Galaxea fascicularis 3 8.2 4.1 4.9-12.8 0.20 6.49 0.39 5.00 0.24 Acropora (A.) digitifera 3 12.3 2.9 10.0-15.5 0.13 4.22 0.39 5.00 0.48 Montastrea curta 3 10.3 4.9 6.0-15.6 0.13 4.22 0.39 5.00 0.37 Pocillopora elegans 2 16. 9 15.3 16.0-27.7 0.07 2.27 0.26 3.33 0.82 Pocillopora verrucosa 2 13.3 8.1 7.5-19.0 0.13 4.22 0.26 3.33 0.43 Montipora socialis 1 28.5 0.07 2.27 0.13 1.67 0.83 Acropora (A.) gemmifera 1 28.3 0.07 2.27 0.13 1.67 0.82 Acropora (A.) azurea 2 10.3 2.1 8.8-11.7 0.13 4.22 0.26 3.33 0.22 Goniastrea retiformis 3 4.1 3.1 1.4-7.5 0.07 2.27 0.39 5.00 0.07 Pocillopora danae 2 3.3 0.4 3.0-3.5 0.13 4.22 0.26 3.33 0.02 Favia stelligera 2 6.8 5.3 3.0-10.5 0.07 2.27 0.26 3.33 0.12 Pavona venosa 2 6.0 3.0 3.9-8.1 0.07 2.27 0.26 3.33 0.08 Acropora (A.) hyacinthus 1 15.0 0.07 2.27 0.13 1.67 0.23 Astreopora aE!!@phthal- 1 13.1 0.07 2.27 0.13 1.67 0.18 Table llb Siz, Oj@itrib,,1:1011 Frequency He I it L i ve Dens I ty Relative Percent (Per ,2) Density Cover Cape Larsen - 2-3 w (6-10 ft) (colt,ily manwuer., in cm) Freclitency 1985 Y. S w 12.8 FaVites complanata I 1 1 0.07 2.27 0.13 1.67 0-17 Acropora (A.) ocellata 1 8.1 0.07 2.27 0.13 1.67 0.07 Acropora (A.) sp.1 1 2.4 0.07 2.27 0.13 1.67 0.01 Totals 60 12.3 9.1 1.7-36.5 7.81 14.25 Ln Table llc Cape Lars@n - 6m (20 ft) @S i -Z@ -01 t;-I 1, i Imi: I oil Freqiiency fie I it c i ve Dens i t Relative Percen 1982 c,@-I-o I I y.-i il-i@ E- -i -nc ut)- Freiltiency (Per m Density Cover N Y. S w Porites (P.) sp.2 11 3.71 1.99 1.22-6.48 0.67 18.16 1.39 18.33 0.19 Pavona varianS 7 11.36 6.49 3.24-19 0.33 8.94 0.88 11.67 1.14 Montipora verrilli 9 5.22 2.31 1 2.74-19 0.53 14.36 1.14 15.0 0.29 Porites (S.) monticulosa 7 4.46 3.52 0.5-10.2 0.47 12.74 0.88 11.67 0.21 Pocillopora eydouxi 1 44.45 0.07 1.9 0.13 1.67 1.72 Leptoria phrygia 2 21.43 19.91 7.35-35.5 0.13 3.52 0.25 3.33 1.29 Platygyr daedalea 1 37.51 0.07 1.9 0.13 1.67 1.44 Coscinaraea 6 5.2 2.54 2.13-8.83 0.33 8.94 0.76 10.0 0.19 Galaxea fascicularis 3 6.83 1.25 5.48-7.94 0.2 5.42 0.38 5.0 0.14 Porites (P.).lichen 2 8.99 0.71 8.49-9.49 0.13 3.52 0.25 3.33 0.16 Acropora (A.) humilis 1 16.88 0.07 1.9 0.13 1.67 0.29 ASE2LOra (A.) 2 2.58 0.82 2-3.16 0.13 3.52 0.25 3.33 0.01 Acropora Q.) 1 9.38 0.07 1.9 0.13 1.67 0.09 Psammocora ap.1 1 7.35 0.07 1.9 0.13 1.67 0.06 Montipora e1schneri. 1 6.48 0.07 1.9 0.13 1.67 0.04 Acropora (A.) hyacinthus 1 5 0.07 1.9 0.13 1.67 0.03 StylocoeniellA armata 1 4.9 0.07 1.9 0.13 1.67 0.02 Goniopora 1 4.69 0.07 1.9 0.13 1.67 0.02 Table Ilc Siz, 1) j b..r I of) Freq o c: n c y Re J it L J Vv Dens i ty Relative Percent Frecitiency (Per m2) Density Cover Cape Larsen - 6 m (20 ft) (C@;@'-. Y mometers in cm) 1982 N w Pavona maldivensis 1 3.67 0.07 1.9 0.13 1.67 0.01 Favia stelligera 1 3 0.07 1.9 0.13 1.67 0.01 Totals 60 7.66 8.34 0.5-44.45_ 7.57 7.35 Table Ild Siz, Frutiticricy ReIaLive Dens i ty Relative Percen ((.,-u-io@Iq Dimiwters in cm) Fre(joeiicy (Per m2) Density Cover Cape Larsen - 6 m (20 ft) 1985 N y S w Montipora socialis 26 15.01 7.53 2.24-35.07 0.93 30 5.27 43.33 11.5 Leptoria phrygia 4 21.03 25.99 3.35-59.59 0.2 6.45 0.81 6.67 6.0 Acropora (A.) hyacinthus 4 9.64 3.44 5.66-14 0.27 8.71 0.81 6.67 0.6 Porites (P.) sp.2 4 3.69 2.08 1.3-6.32 0.27 8.71 0.81 6.67 0.1 Astreopora 2 18 16.97 6-30 0.13 4.19 0.41 3.33 1.5 Cyphastrea serailia 3 10.1 5.4 5-15.75 0.2 6.45 0.61 5.0 0.5 Coacinaraea ap.1 3 5.48 1.54 4.24-7.21 0.13 4.19 0.61 5.0 0.1 Montastrea curta 2 5.97 2.52 0.13 4.19 0.41 3.33 0.1 Pocillopor @ydouxi 1 16.49 0.07 2.26 0.2 1.67 0.4 Porites 1 14.7 0.07 2.26 0.2 1.67 0.3 00 Montipora caliculata 1 13.42 0.07 2.26 0.2 1.67 0.2 Pavona varians 1 11.62 0,07 2.26 0.2 1.67 0.2 Acropora (A.) valida 1 9.54 0.07 2.26 0.2 1.67 0.1 Acropora (I.) crateriformis 1 9 0.07 2.26 0.2 1.67 0.1 Galaxea fascicularis 1 4.24 0.07 2.26 0.2 1.67 0.0 Favia favus 1 4.24 0.07 2.26 0.2 1.67 0.0 Coscinaraea columns 1 2.24 0.07 2.26 0.2 1.67 0.0 Alveopora viridis 1 1.4 0- 07 2.26 0.2 1.67 0 Table lid itwt tali it L i VL Dens i Ly Relattve Percent Cape Larsen - 6 m (20 ft) -In cm)- Freq-tocy (Per .2) DensiCy Cover N Y S w 1985 -1 Leptastrea purpurea 1 1.4 0,07 2.26 0.2 1.67 0 solitary favitd polyp 0.07 2.26 0.2 1.67 0 Totals 60 11.86 9.74 11-59.59 12.17 22.3 Table 12a Si Z. Dititi-IbI.E101) Freqtiency RelilLiVC Denti i ty Relat ive Perce .--- jj71- 2) Density Cover Fagafue Bay - 1.5-2 m (5-6 ft) (c. I (illy 111WEers, in cm) Freq,ieocy (Per m 1982 S w ASpopora (A.) hy@ @nthus 8 58.2 35.2 20.3-128.0 -0.40 12.86 1.07 13.33 37.60 Porites (P.) sp.2 13 8.3 5.5 3.0-19.4 0.47 15.11 1.74 21.67 1.34 Acropora (A.) gemmifera 7 36.7 17.2 7.0-61.6 1 0.27 8.68 0.94 11.67 11.6 Acropora (A.) Irregularls 5 35.4 14.2 24.0-59.0, 0.27 8.68 0.67 8.33 7.4 Leptoria phrygia 4 33.5 18.0 16.2-58.8 0.27 8.68 0.54 6.67 5.7 Pavona ap.1 3 33.2 17.2 20.4-52.8 0.13 4.18 0.40 5.00 4.1 A@ora (A.) danai 2 22.7 6.1 18.4-27.0 0.13 4.18 0.27 3.33 1.1 Montipora verrilli 2 20.2 6.8 15.4-25.0 0.13 4.18 0.27 3.33 0.9 H Acropora (A.) azurea 2 11.6 8.6 5.5-17.7 0.13 4.18 0.27 3.33 0.36 uj Favites flexuosa 1 46.6 0.07 2.25 0.13 1.67 2.2 Pavona varians 2 15.4 11.7 7.1-23.6 0.07 2.25 0.27 3.33 0.6 fs@@ hirsutissima 1 38.8 0.07 2.25 0.13 1.67 1.5 Millepora platyphylla 1 32.1 0.07 2.25 0.13 1.67 1.01. Diploastrea heliopora 1 30.5 0.07 2.25 0.13 1.67 0.9 Acropor (I.) crateriformia 1 28.7 0.07 2.25 0.13 1.67 0.8 Favia rotumana 1 23.4 0.07 2.25 0.13 1.67 0.5 Montastrea curta 1 20.5 0.07 2.25 0.13 1.67 0.4 Porites (S.) rus 1 21.2 0.07 2.25 0113 1.67 0.4 8 @6 Table 12a t r 113.1 c I On Freqtiency Re I it t I ve Dens i L Relative Percen Fagafue Bay - 1.5-2 m (5-6 ft) (Culony Diameters in cm) Fre(Itiency (Per m@) Density Cover 1982 N Y S w ASL4@ @�ra (A.) sp.1 1 19.0 0.07 2.25 0.13 1.67 0.38 Pavona sp.3 1 16.7 0.07 2.25 0.13 1.67 0.29 Acropora (A.) cytherea 1 15.5 0.07 2.25 0.13 1.67 0.25 Coscinaraea 1 3.9 0.07 2.25 0.13 1.0 0.02 Totals 60 28.0 .0-128.0 L 8.00 80.14 Table 12b Size 01.-;( r1bliclon Frecittency Re I il L i Ve Dens i ty Rela tive Perce Fagafue Bay - 1.5-2 m (5-6 ft) ((:,Iony Diameters In cm) Fre(Itiency (Per m2) Densicy Cover 1985 Acropora (A.) hyacinthus 18 39.0 22.1 3.9-81.6 0.53 18.47 3.72 30.00 57.88 Porites (P.) sp.2 13 4.5 2.7 1..0-9.9 0.53 18.47 2.68 21.67 0.58 Acropora nobilis 5 15.9 11.2 5.7-33.9 0.33 11.50 1.03 8.33 2.86 Acropora (A.) robusta 3 32.1 29.9 6.5-65.0 0.20 6.97 0.62 5.00 7.92 Acropora (A.) gemmifera 4 21.0 15.1 9.9-43.3 0.27 9.41 0.83 6.67 3.98 Hontipora verrilli 4 14.1 12.1 3.9-29.4 0.20 6.97 0.83 6.67 2.01 Mantipora els hnert 2 19.0 6.3 14.5-23.4 0.13 4.53 0.41 3.33 1.22 Hillepora platyphylla 1 51.2 0.07 2.44 0.21 1.67 4.26 Pocillopora verrucosa 2 13.2 8.1 7.5-18.9 0.13 4.53 0.41 3.33 0.67 Montipora ehrenbergii 2 10.7 3.3 8.4-13.0 0.13 .4.53 0.41 3.33 0.39 Porites (P.).rus 2 23.4 3.0 21.2-25.5 0.07 2.44 0.41 3.33 1.77 Acropor (I.) crateriformis 1 20.9 0.07 2.44 0.21 1.67 0.71 Acropora (A.) divaricata 1 20.4 0.07 2.44 0.21 1.67 0.68 Montipora caliculata 1 17.0 0.07 2.44 0.21 1.67 0.47 Acropora (A.) sp.1 1 8.0 0.07 2.44 0.21 1.67 0.10 -- j Totals 60 22.1 19.9 1.P-81.6 12.40 85.50 Table 12c Dist I-Ib"tJoll Frequency ReLtOVC Dens i ty Relative Percent Siz, (Per . 2) Density cover Fagafue Bay - 6 m (20 ft w,muters in cm) Frequency 1982 Y. S w Porites (P.) lutea 2 211. 78 37.64 181.2 238.4 0.1 2.86 0.27 5.0 136?61) Porites (P.) sp.2 - 7- 7.88 4.17 2 - 16 0.5 14.29 0.95 17.5 0.55 Montipora e1schneri 5 28.59 17.45 16.7339.ig 0.3 8.57 0.68 12.5 5.67 Pavona varians 2 78.03 27.06 58 '890.16 0.2 5.71 o.27 5.0 13.69 Porites (S.) rus 2 45.58 56.45 5.66-85.49 0.2 5.71 0.27 5.0 7.78 2 30.94 3.61 28.39 @3.49 0.2 5.71 0.27 5.0 2.04 -@-C@@ I - 0.33 !! @iora vervilli 2 11.51 7.05 6.52-16.49 0.2 5.71 0.27 5.0 - Astreopora - - --- 1 67.66 0.1 2.86 0.14 2.5 5.03 Favia matthaii. 1 45.69 0.1 2.86 0.14 2.5 2.3 1.11 0.1 .2.86 0.14 2.5 U.) Acropora 31.81 Favites abdita 1 28.37 0.1 2.86 0.14 2.5 0.89 =6 Leptoria phrygia 1 24.49 0.1 2.86 5 7T4 2.5 n!!.@ra plai 1 23.66 0.1 2.86 0.14 2.5 0.62 - Pocillopora verrucosa. 1 22.36 0.1 2.86 0.14 2.5 0.55 Acropora (A.) danai 1 21.49 0.1 2.86 0.14 2.5 0.51 Pavona sp.2 18.44 0.1 2.86 o.14 1 2.5 0.37 15.3 0.1 2.86 0.14 2.5 0.26 Pavona I --- - 0.69- Pavona maldivensis 9 0.1 2.86 0.14 2.5 Table 12c I(elilLiVe Dens I ty Rela tive Percrt Cove 1;7 Freq,ionc (Per m2) Density Fagafue Bay - 6 m (20 ft) illy ,.1111,!Lers In Lill) y 1982 Y.. S W Coscinaraea columna 1 7.94 0.1 2.86 0.14 2.5 0.07 Hontipora 1 7.94 0.1 2.86 0.14 2.5 0.07 Favites russelli 0.1 2.86 -0-. IT- 2.5 T.Tr- Acropora 1 5.7 0.1 2.86 0.14 2.5 0.04 Pocillopo 1 5.66 0.1 2.86 0.14 2.5 0.04 Psammocora 1 3.46 0.1 2.66 0.14 2.5 0.01 Porites 1 1 1.94 0.1 2 .86 0.14 2.5 0 Totals 40 32.45 47.72 11'" 238.39 5.41 115.44 41 Only two Porites lutes were encounterid in our satnples, but they were both extraordinarily large. By contacting them, our findin two data. Both data are included in the calculation of the value in parentheses and one is excluded from other calculations. Ev ment included in the calculaftons, the percent cover was estimated at over 100% because the random point landed on the colonies a was small and the area large. Furthermore, large colonies drape over the substrate and so when their diameters are measured a ve times incorporated into the measurement. In cases where large cqlonies are prevalent, it is thus possible to have more than one coral cover per square meter of reef area. Table 12d Siz, -01st k ib,ltjon Frequency ReIaLive Density Relative Percen Fagafue Bay - 6 m (20 ft) (CuTotly-Di,-imucers In cm) Prutpiency (Per m2) Density Cover 1985 1 1 (P.) sp.2 17 7.34 4.85 3.74-22.85 0.67 25.97 4.07 29.31 2.43 Porites (S.) rus 2 96.36 68.53 47* 9114.82 0.07 2.71 0.48 3.45 43. 86 Montipora 11 21.76 10.9 5.48-45.03 0.33 12.79 2.63 18.97 12.01 Pavon sp.1 5 33.48 26.45 8.66-69.41 0.2 7.75 1.2 8.62 15.84 Pavona varians 3 9.73 6.63 3-16.25 0.2 7.75 0.72 5.17 0.7 Acropora (A.) irregularis 2 29.51 20.52 15-44.02 0.07 2.71 0.48 3.45 4.08 Acropora (A.) Aivaricata 2 24.37 15.48 13.42-35.31 0.07 2.71 0.48 3.45 2.69 Pavona sp.3 2 6.37 5.13 2.74-10 0.13 5.04 0.48 3.45 0.2 Acropora (A.) samoensis 2 20.57 1.37 19.6-21.54 0.07 2.71 0.48 3.45 1.6 F@ uj Acropora (A.) nobilis 1 41.64 0.07 2.71 0.24 1.72 3.27 Ln Montastrea curta 1 40.99 0.07 2.71 0.24 1.72 3.17 Cyphastrea 1 38.99 0.07 2.71 0.24 1.72 2.87 Favia matthaii 1 34.29 0.07 2.71 0.24 1.72 2.22 Acropora 2 2.48 0.68 12-2.96 0.07 2.71 0.48 3.45 0.02 Acanthastrea echinata 1 28.39 0.07 2.71 0.24 1.72 1.52 Pocillopora verrucosa 1 24.68 0.07 2.71 0.24 1.72 1.15 Acropora (A.) azurea 1 16.97 0.07 2.71 0.24 1.72 0.54 Favia favus 1 7.07 0.07 2. 71 0.24 1.72 0.09 Table 12d I --; I r 16" t i oil Freilisiney lie I a C i ve Dens i ty Itela tive Percent D-ii-Illiete @siCn cm) Frequency (Per Fagafue Bay - 6 m (20 ft) c -ul i: i l7ly 1112) Density Cover 1985 Leptoria phrygia 1 7.0 0.07 2.71 0.24 1.72 0.09 Coscinaraea sp.1 1 6.32 0.07 2.71 0.24 1.72 0.08 Totals 58 20.11 22.47 2-144.82 13.88 Large colonies drape over the substrate and so when their diameters are measured a vertical distance is sometimes incorporated in cases where large colonies are prevalent, It is thus possible to have more than a square meter of living coral per square meter o LO CY, Table 13a Size mst rib-@tfon Frequency ReNIOVL Dens i ty Rela t ive Percen Massacre Bay 1.5-2 m in cm) Vre(wencY (Per m2) DensiEy Cover (5-6 ft) 1982 N Y. S w Acropora Q.) hyacinthus 17 29.2' 12.0 12.0-48. 8 0.53 22.08 3.37 28.33 26.13 Acropora (A.) nobilis 121 20.8 28.0 2.4-104.3 0.40 16.67 2.38 20.00 21.53 Porites (P.) sp.2 17 3.8 2.3 1.0-8.1 0.53 22.08 3.37 28.33 0.52 !Li @eora kjSLUhLIla 1 61.3 - 0.07 2.92 0.20 1.67 5.86 A@@�ra (A.) nasuta 2 27.1 9.3 20.5-33.7 0.13 5.42 o.40 3.33 2.42 Montipora verrilli 2 17.3 18.7 4.0-30.5 0.13 5.42 o.40 3.33 1.47 Montipora SPA 2 10.0 0.6 9.5-10.4 0.13 5.42 0.40 3.33 0.31 Pocillopors op. (juvenile) 2 3.0 2.8 1.0-5.0 0.13 5.42 0.40 3.33 0.04 Acropora (A.) gemmifera 29.2 0.07 2.92 0.20 1.67 1.33 9.8 0.07 2.92 0.20 1.67 0.15 LO Acropora (A.) azurea Acropora (A.) robusta 9.5 0.07 2.92 0.20 1.67 0.14 Pocillopora elegans 7.0 0.07 2.92 0.20 1.67 0.08 Alvdopora viridis 2.0 0.07 2.92 0.20 1.67 0.01 Totals 60 17.4 18.6 1.0-104.3 92 59.99 Table 13b M st rllj,@t loll FrA?qtiency Ile I ii L i ve Oenstty Re la t ive Percent (u.]ony 67";-mic-ters tn cm) Fre(Itiency (Per m2) Density Cover massacre Day - 1-5-2 im (5-6 ft) 1985 N S w f@iorites (P.) sp.2 23 5.1 3.6 1.0-17.0 0.87 32.34 11.06 38.33 3.36 Acropora (A.) Revanifera 5 39.3 10.1 26.5-51.8 0.27 10.04 2.40 8.33 30.72 Acropor (A.) hyacinthus 7 27.8 16.6 5.3-48.0 0.20 7.43 3.37 11.67 26.76 Acropora (A.) sp-1 5 21.5 9.5 6.5-32.9 0.20 7.43 2.40 8.33 10.06 Acropora (A.) digitifera 4 19.0 1.0 17.7-19.8 0.27 10.04 1.92 6.67 5.49 Montipbra verrilli 5 8.9 5.0 3.5-16.0 0.27 10.04 2.40 8.33 1.86 Millepora platyphylla 4 14.5 8.2 5.3-22.0 0.13 4.83 1.92 6.67 3.95 Leptoria phrygia 3 9.6 4.5 4.5-12.8 0.20 7.43 1.44 5.00 1.20 Acropora (A.) nobilis 1 32.4 0.07 2.60 0.48 1.67 3.97 w 00 Montipor,@ berryi 1 17.1 0.07 ..2.60 0.48 1.67 1.11 Pocillopora verrucosa 1 7.0 0.07 2.60 0.48 1.67 0.19 Pocillopora danae 1 2.4 0.07 2.60 0.48 1.67 0.02 Totals 60 14.7 13.3 1.0-51.8 28.83 88.69 Table 13c foil Fri@qtiency ReIaLive Dens I ty Rel at ive Percen (Per M2) Density Cove r Hassacre Bay - 6 m (20 ft) (Coio-"Y [email protected] in cm) Frequency 1982 Montipora e1schneri 6 20.86' 11.72 7.75-39.6 0.71 21.71 1.27 21.43 5.48 Porites (S.) rus 6 17.51 14.05 5.29-43.15 0.43 13.15 1.27 21.43 4.7 Porites (P.) cylindrica 1 106.76 0.14 4.28 0.21 3.57 18.8 Montipora (pink polyp) 3 45.59 9.90 37.2@g .53 0.28 8.56 0.64 1 10.71 10.78 Millepora 1 99.12 0.14 4.28 0.21 3.57 16.2 Coscinaraea 2 18.85 2.33 17.2-20.49 0. 29 8.87 0.42 7.14 1.18 Acropora 2 8.83 4.48 5.66-12 0.29 8.87 0.42 7.14 0.29 forites (S.) nticulosa 2 5.9 0.59 IS.48-6.32 0.29 8.87 0.42 7.14 0.12 @@o aa 1 30.98 0.14 4.28 0.21 3.57- l.S8 W 0.21 3.57 0.69 �Srpora (branch) I 20.Sl 0.14 4.28 Porites (encrusting) 1 16.97 0.14 4.28 0.21 3.57 0.48 Acropora (!@.) danat 1 12.65 0.14 4.28 0.21 3.S7 0. Porites (brown leaf) 1 6.71 0.14 4.28 0.21 '3.57 0.07 2S S.93 60.6 Totals 2S.6_ 29 106.76 L Toole 13d 1) ii r i b,. t I on Re I i) L i VO DenNi ty Relative Percen j7 - - (Per m2) Density Cove r massacre Bay - 6 m (20 ft) 'y I @.Iloeterli In COO 1985 N Y S W Porites Q.) rus is 35.3 83.98 1-353.54 0.47 16.32 5.56 30.Sl (343.6 12 ISM 9.24 3.46-33.91 O.S3 18.4 3.77 20.69 9.45 !mLip -ra Acropora (A.) hyacinthus -- 5 20.99 18.96 S.92-50.99 0.33 11.46 1.54 S.147 8.81 Cyphastrea 3 39.06 31.32 15.1-74.S. 0.2 6.94 0.93 5.08 15.92 fo-FINS sp.2 --S 4.93 1.77 1.94-6.32 0.27 9.38 I.S4 8.47 0.32 !Sr divaricata -10.83 ----4-.Si --073- 31S J& -ra 2 2 -fl-6 8 26.08 3.24-40.12 0.13 4.Sl 0.63 3.45 4.01 Astreopors 2 16.09 4.74 12.-FS-19.4 0.13 4.51 0.63 SAS 1.34 Leptastrea purpurea 2 6.33 0.84 S.74-6.93 0.14 4.86 0.62 3.44 0.2 4- 0 parites 2 J 1.36 0.08 1.3-1.41 0.13 4.51 0.63 3AS 0.0 Pavona. varians I 43.S9 0.07 2.43 0.31 1.72 3.4 Legtastrea transversa- 1 16.97 0.07 2.43 0.31 1.72 0.7 Galaxes fascicularis 1 1038 0.07 2.43 0.31 1.72 0.2 !S@ra (I.) craterifornis 1 9.49 0.07 2.43 0'.31 1.72 0.2 !avona SPA - --f-- 8 0.07 2.43 0.31 1.72 0.1 Alveopora superficialis 1 2.24 0.07 2.43 F.31 1.72 0.0 Totals 59 21.82 48.07 1-3S3.54 18.23 91.6 Two of the 18 colonies of Porites (S.) rus were very large. By contacting them our findings were swamped by the two data. rhe es and excluded from the other calculations. the calculation of values n parenChes Table 14a o1st I-11)'ItIon Freqtwncy RelilLiVC Dens i ty Rela t ive Percen - L-e rs -in c n0- Fre(Itiency (Per m2) Densicy Cover Rainmaker Hotel - 0.5-1.5 m (1-5 ft) 1982 S w Lo-rites (.P.) lutea 6 30.3 17.5 16.0-64.0 0.33 13.64 0.47 10.00 4.34 Porites (P.) cylindrica 26 S.9 5.4 2.0-28.9 0.67, 27.69 2.03 43.33 1.00 Pocillopora damicornis 5 4.3 2.5 12.0-8.5 0.33 13.64 0.39 8.33 0.07 Leptastrea purpurea 4 3.0 1.2 2.0-4.0 0.27 11.16, 0.31 6.67 0.02 Pocillopora danae 4 7.3 5.5 1.0-13.0 0.20 8.26 0.31 6.67 0.19 Pavona divaricata 4 8.4 5.0 5.0-15.6 0.13 5.37 0.31 6.67 0.22 Goniastrea retiformis 1 27.7 0.07 2.89 0.08 1 1.67 0.47 Goniopora columna 4 5.4 0.5 4.9-6.0 0.07 2.89 0.31 6.67 0.07 Porites (S.) rue 2 5.0 1.4 4.0-6.0 0.07 2.89 0.16 3.33 0.03 41 Platygyra daedalea 1 13.9 0.07 2.89 0.08 1.67 0.12 Pavona sp.3 1 9.9 0.07 2.89 0.08 1.67 0.06 Alveopora viridis 1 9.4 0.07 2.89 0.08 1.67 0.05 Psammocora contigua 1 4.5 0.07 2.89 0.08 1.67 0.01 Totals 60 8.8 10.2 1.0-64.0 4.69 6.65 Table 14b S i Vc IYI -;.I@ 1* 1 buc f oil Frequency Re I il L i Ve Dens i ty Relative Percen Raimaker..Hotel - 0.5-1.5 m (culony w,iiiieters in cut) Preqt.ency (Per m2) Densicy Cover (1-5 ft) I 1985 1 S w Millepora platyphylla 19 1 11.1 14.6 2.0-69.7 0.67 27-13 2.61 31-67 6.72 Pocillopora danae 11 5.2 3.1 2.0-11.4 0.53 21.46 1.51 18.33 0.43 Pavona divaricata 11 6.4 1.6 4.2-9.5 0.40 16.19 1.51 18.33 0.52 Pavona decussata 4 18.8 5.9 15.1-27.5 0.13 5.26 0.55 6.67 1.50 Psammocors contigua 3 17.1 9.8 5.9-23.4 0.13 5.26 0.41 5.00 1.16 Porites cylindrica 5* 7.9 4.7 3.5-15.0 0.20 8.10 0.69 8.33 0.43 Porites ap-l 3 6.6 6.4 2.4-14.0 0.13 5.26 0.41 5.00 0.23 Porites lutes 1 16.5 0.07 2.83 0.14 1.67 0.30 41 Pocillopora eydouxi 1 7.9 0.07 2.83 0.14 1.67 0.07 Leptastrea purpurea 1 2.4 0.07 2.83 0.14 1.67 0.01 Porites QI.) sp.2 1 3.5 0.07 2.83 0.14 1.67 U.ul Totals 60 9.3 9.6 2.0-69.7 8.25 11.3 Table 14c Siz, Dit;t rlb..Eloii Freqttency ReUlLiVe Dens i t Relative Percen cover Rainmaker Hotel - 6 m (20 ft) C. -.f@,-.,y 1 ;71 -1 -1111 -@t ec III) Fru(Itiency (Pe r m@ Density 1982 S w Acropora (A.) yongei 6 41.21'. 20.26 14.28-74 0.33 13.31 1.16 10 18.59 Porites (@.) rus 17 9.97 8.41 1.5-33.17 0.54 21.78 3.29 28.34 4.07 Porites cylindrica 17 8.59 4.91 3.5-21.45 0.6 24.19 3.29 28.33 2.49 Pocillopora damicornis 4 10.07 5.62 4-17.32 0.27 10.89 0.77 6.67 0.76 Alveopora viridis 6 7.51 2.58 4.47-11.96 0.13 5.24 1.16 10 0.56 Fungia 4 2.25 0.87 1.5-3 0.2 8.06 0.77 6.67 0.03 Pavona divaricata 2 5.91 0.13 5.81-6 0.13 5.24 0.38 3.33 0.1 Acrqpora (A.) azurea 1 24 0.07 2.82 0.19 1.67 0.86 Favites 1 10.95 0.07 2.82 0.19 1.67 0.18 Montipo 1 6.71 0.07 0.19 1.67 0.07 Pocillopora 1 2 0.07 2.82 0.19 1.67 0.01 Totals 60 11.88 12.99 1.5-74 11.58 27.72 Table 14d Size Dist [email protected] Freqttvncy Ile I il L I VU Dens I ty Ile la t i ve Percen (Per M2) Density Cover Rainmaker Hotel - 6 m (20 ft) wamucers in cm) y 1985 -Y Diploastrea heliopora 6 113.5 114.79 5.74- 0.2 7.07 0.09 9.84 16.87 -276,69 Pocillopora damicornis 14 10.28 3.21 2-21.91 0.47 16.61 0.2 22.95 0.22 Pavona divaricata 8 11.83 4.81 3.46-18.44 0.4 14.13 0.12 13.11 0.15 Millepora tuberosa 3 62.51 44.56 11.66g4 .75 0.13 4.59 0.04 4.92 1.64 Millepora platyphylla 4 17.95 2.81 15.49i,.98 0.2 7.07 0.06 6.56 0.15 Porites (P.) cylindrica 5 4.24 2.32 1.4-7.35 0.14 4.94 0.07 8.2 0.01 Acropora 3 5.28 3.07 3-8.77 0.2 7.07 0.04 4.92 0.01 Pavona ap.3 3 10.87 5.55 4.9-15.87 0.13 4.59 0.04 4.92 0.04 Porites (P.) M!j@@ 2 10.42 3.77 7.75-13.08 0.13 4.59 0.03 3.28 0.01 Coscinaraea sp.1 2 4.19 2.45 2.45-5.92 0.13 4-59 0.03 3.28 0 Porites (P.) lutea 2 11.22 1.8 9.95-12.49 0.07 2.47 0.03 3.28 0.01 Montipora 1 21.17 0.07 2.47 0.01 1.64 0.04 Fungia 1 13.13 0.07 2.47 0.01 1.64 0.01 Goniopora tenuidens 1 8.94 0.07 2.47 0.01 1.64 0.01 Pavona 1 7.21 0.07 2.47 0.01 1.64 0 several attached Fungia .1 3.87 0.07 2.47 0.01 1.64 0 Porites 1 3.1 0.07 2.47 1 0.01 1.64 0 Pavona varians 1 3.1 0.07 2.47 0.01 1.64 0 6 6 Table 14d siz@ DiSti-ibuEiOn Frequency Relative Density Relarive Percen Rairunaker Hotel - 6 m (20 ft I Td@jony -w,,,@vters in cm) Frequency (Per mZ) Density Cover 1985 N V. S w Leptastrea 1 3 0.07 2.47 0.01 1.64 0 14illepora cf. dichotoma 1 1.73 0.07 2.47 0.01 1.64 0 Totals 61 22.39 47.4 =173=- 0.84 19.1 41 Ln Table 15a Size Distribution Frequency Relative Density Relative Percen Fatu Rock - 2.5-4 m (8-13 ft) (Colony Diameters in cm) Frequency (Per m2) Density Cover t982 N Y S w Pocillopora setchelli 27 9.9 4.2 3.0-16.4 0.93 34.44 9.98 45.00 8.95 Pocillop ora verrucosa 10 12.0 4.6 3.0-17.7 0.47 17.41 3.70 16.67 4.73 Acropora (A.) azurea 7 6.6 4.1 13.0-13.9 0.40 14.81 2.59 11.67 1.16 Acropora (A.) ocell.ta 4 10-1 5.0 5.0-15.9 0.20 7.41 1.48 6.67 1.41 Millepora platyphylla 1 26.6 0.07 2.59 0.37 1.67 2.38 Montipora verrilli 2 7.1 2.0 5.7-8.5 0.07 2.59 0.74 3.33 0.30 Montipora ehrenbergii 1 14.5 0.07 2.59 0.37 1.67 0.61 Porites (P.) sp.2 2 6.5 1.1 5.7-7.3 0.07 2.59 0.74 3.33 0.25 41 Acropora (A.) hyacinthus 1 11.0 1 0.07 2.59 0.37 1.67 0.35 Favites halicora 1 9.4 1 0.07 2.59 0.37 1.67 0.26 Psammocora contigua 1 8.8 0.07 2.59 0.37 1.67 0.22 Acropora (A.) squarrosa 1 8.0 0.07 2.59 0.37 1.67 0.19 Pocillop ora sp.(Juventle) 1 3.0 0.07 2.59 0.37 1.67 0.03 Porites (P.) lichen 1 2.4 0.07 2.59 0.37 1.67 0.02 Totals 60 9.8 5.0 22.19 20.86 Table 15b Frequency Relative Density Relative Percen Size Distribution Frequency (Per m2) Density Cover Fatu Rock - 2.5-4 m (8-13 ft) (-Colony Diameters in cm) -498S N Y S w Pocillopora setchelli 23 12-.7 6.1 2.4-22;4 0.73 25.89 7.21 38.33 11.16 Pocillopora y4@rrtkcosa 10 11.6 13.6 3.0-49.5 0.47 16.67 3.14 16.67 7.39 Acropora -(A.) azurea 9.7 5.4 3.5-16.7 0.40 14.18 1.88 10.00 1.75 Porites (P.) sp.2 8 4.3 1.1 2.0-5.3 0.40 14.18 2.51 13.33 0.39 10.8 5.0-25.7 0.13 4.61 0.94 1.93 ASEoko j@@ (A.) robusta 3 13 6 5.00 Acropora - A.) digitifera 2 13.7 3.5 16.2-21.2 0.13 4.61 0.63 3.33 1.76 AcK2pora (A.) L4L-tfera. 1 22.0 0.07 2.48 0.31 1.67 1.20 Acropora (A.) samoensia 1 22.0 0.07 2.48 0.31 1.67 1.20 1.67 0.67 Montipora e1schneri 1 16.4 0.07 2.48 0.31 Acropora (A.) ocellata 1 13.7 0.07 2.48 0.31 1.67 0.46 Lobophyllia htRpLichii 1 13.3 0.07 2.48 0.31 1.67 0.43 7 0.14 Acropor (A.) sp.2 1 7.5 0.07 2.48 0.31 1.6 - Montipora verrilli 1 6.6 0.07 2.48 0.31 1.67 0.11 2.48 0.31 1.67 0.04 Acropora (A.) hyacinthu 1 4.0 0.07 28.63 Totals 11.4 8.0 2.0-49.5 18.79 Table 15c Fatu Rock - 6 m (20 ft) Size DISLI'iblltiOn Frequency Relative Density Relative Percen Frequency (Per m2) Density Cover Iny Wamvcer4 in cm) 1982 N Lorites (@.) 2onticul-sa 24 6.48 2.52 2.83-11-96 0.6 21.82 5.89 30 2.22 Porites (P.) ap.2 15 7.31 2.72 2.45-12-73 1 20 3.66 18.75 1.74 Porites (S.) rus 13 8.89 4.53 1.8-16.97 0.4 14.55 3.19 16.25 2.45 Acropora (A.) danai 6 13.70 10.79 4.58-34.99 0.2 7.27 1.47 7.5 3.2 Acropora (A.) nobilis 1 12.65 0.05 1.82 0.25 '1.25 3.39 Pocillo2ora 5 7.62 3.21 2.74-10-95 0.25 9.09 1.23 6.25 0.6 Montipora eischneri 4 10.25 3.02 7.14-13.86 0.'2 7.27 0.98 5 0.8 Pocillopora eydouxi 2 19.55 3.98 16.73 22.36 0.1 3.64 0.49 2.5 1.5 3.64 0.74 3.75 0.3 00 Acropora (A.) reticul.ata 3 6.43 3.93 3.87-10-95 0.1 - tontastrea curta 2 5.66 1.37 4.69-6.63 0.05 1.82 0.49 2.5 0.1 Montipora 1 13 0.05 1.82 0.25 1.25 0.3 Galaxea fascicularis 1 12 0.05 1.82 0.25 1.25 0.2 Acropora, (A.) hyacinthus 1 6.71 0.05 1.82 0.25 1.25 0.0 faviid 1 5.92 0.05 1.82 0.25 1.25 0.0 Pavona varians 1 5.29 0.05 1.82 0.25 1.25 0.0 Totals 80 8.34 4.82 1.8-34.99 j 19.66 L 17.3 Table 15d Freqkiency Reja0v'. DensLty Oer,:er, Co\,er Fatu Rock - 6 m (20 ft) K'Ulony Frequency (Per 2) Dens 15 1985 N S W Acropora (A.) hyacinthus 9 30-8*. 13-31 [email protected] 0.4 13.51 2.7 15.52 23.46 0.07 2.36 o.3 1.72 (104.62)* Acropora (A.) irregularis 1 210.71 Porites (P.) a .2 19 4.7@ @-46 1-9.54 0.73 24.66 5.7 32.76 1.29 - 6.9 18.26 Acropora (A.) squarros 4 39.15 23.23 17.15@1 .85 0.27 9.12 1.2 - 4 23.27 12.48 - - 6.76 1.2 6.9 6.2 Hontipora 6.93-36.52 0.2 Acropora (A.) gemmifer 4 22.01 2.68 19.6-25.3 0.27 -9.12 1.2 -6. 13 -67---9.54- 0.77 9. 1. 0.4 Pocillopora @anae 2.52 3. 12 - --- - 1.2 6.89 2.1 Porites (S-) rus 4 11.7 10.67 3.461q. 83 0.14 4.72 41 3.45 1.4 Pocillopora verrucosa 2 17.22 0.31 17-17.44 0.13 C39 0.6 Pocillopora eydouxi 2 14.01 11-81 5.66-22.3f 0.13 4.39 0.6 3.45 1.25 Acropora (A.) digitifera 1 20.451 0.07 2.36 0.3 1.72 0.98 - tilLepora plat phylla 1 19.21 0.07 2.36 0.3 1.72 0.87 0.07 2.36 0.3 1.72 0.46 Pocillopora meandrina 1 13.96 Pavona varians 1 7.75 0.07 2.36 0.3 1.72 0.14 Acropor (A.) cerealis 1 4.9 0.07 2.36 0.3 1.72 0.06 Totals 58 19.23 29-33 1-210.71 61.49 E1.2 0. 6 one large colony of Acropora (A.) irregularis was encountered with the random point landing near the center of the colony so that occuppled was much smaller than the estimate of the colony size. This throws off our estimates of surface cover by estimating ove fore we calculated the rest of the values In the table without including data from this one observation. Values Including this ob parentheses. Table 16. Percent cover of substrate by hermatypic corals in Fagatele Bay National Marine Sanctuary, April 1985. Depth Permanent Transect Number 1 2 3 4 5 6 Reef Flat Platform 4.0 45.2 6.6 3 m 1.1 25.6 2.2 46.2 5 m 17.1 1.2 11.8 0.9 12.9 20.2 9 m 10.5 64.4 2.3 2.4 11.7 4.5 12 m 10.7 0.9 0.8 1.0 1.3 8.4 150 Table 17. Abundance of hermatypic corals (colonies per m2 ) in Fagatele Bay National Marine Sanctuary, April 1985. Depth Permanent Transect Number 1 2 3 4 5 6 Reef Flat Platform 7.2 9.1 8.8 3 m 2.0 23.3 3.2 15.4 5 m 6.8 2.5 34.5 1.4 3.7 20.4 9 m 10.0 3.3 9.3 3.2 6.7 5.7 12 m 10.4 2.6 2.3 2.3 3.2 7.1 Table 18. Mean hermatypic coral colony diameter (cm) in Fagatele Bay National Marine Sanctuary, April 1985. Permanent Transect Number Depth 1 2 3 4 5 6 Reef Flat Platform 6.4 14.4 8.6 3 m 7.0 8.2 8.4 14.4 5 m 11.9 6.3 5.2 7.7 15.7 9.1 9 m 8.3 18.9 5.1 7.1 10.8 8.7 12 m 10.3 5.4 5.3 6.0 6.5 11.0 152 Table 19. Indices of community structure for hermatypic corals at Fagatele Bay National Marine Sanctuary, April 1985. Number of Shannon-Wiener Evenness Simpson's coral Diversity index Index Dominance species Index HT il D Transect 1 5-6 m 24 1.0077 .8190 .1407 9 M 19 1.1112 .9031 .0756 12 m 22 1.1411 .9477 .0573 Transect 2 1 M 24 .9208 .7483 .1994 3 m 42 1.1051 .8494 .0887 5 m 37 1.1710 .9001 .0689 9 M 19 1.1168 .8897 .0852 12 m 14 .9612 .8173 .1698 Transect 3 1 m 38 .8366 .7753 .1915 3 m. 39 .5325 .5581 .4452 5 m 26 .6338 .6338 .3141 9 M 13 .6524 .8384 .2372 12 m 14 .8574 .8233 .1679 Transect 4 1 m 15 1.0158 .9119 .0887 3 m 27 .9549 .8119 .1458 5 m 25 .8017 .8017 .1904 9 m 19 .6618 .7328 .3048 12 m 18 .8040 .7217 .2615 153 Number of Shannon-Wiener Evenness Simpson's coral Diversity Index Index Dominance species Index Ht 'j, D Transect 5 3 m 22 .8685 .7797 .1695 5 m 22 1.1555 .8739 .0819 9 m 12 .6686 .7006 .2730 12 m 13 .8725 .7613 .2072 Transect 6 5-6 m 19 .90.72 .7915 .1469 9 m 17 1.1190 .8914 .0796 12 m 14 1.0670 .9073 .0910 154 Table 20. Densities of macroinvertebrat I s occurring along transects in Fagatele Bay. Figures are means � sts-I of taxa. observed in five 10--m@ quadrats, except mhere noted. Transect I Transect 2 15 ft 30 ft 40 ft 10 ft 15 ft 30 ft Alcyamsoea Saroophyton sp. 0.17� 0.41 Sinularia sp. 9.33d:14.11 9.00-t 10.94 2.00t 2.53 2.67� 6.06 Outz"oda Troebus laciniaUm 0.17� 0.41 0.33� 0.92 0.17� 0.41 Qnwaea moneta 0.33�0.52 Drima morum 0.50t 0.84 DOM ricinus 0.17� 0.41 Drwella alata 0.17�0.41 Moruls wa 0.67� 0.82 0.67*0.82 1.5ft 1.22 Miais anaisora 0.17� 0.41 7hais tybeross 0.17� 0.41 Poristernia fastialun 0.33� 0.52 0.67� 1.63 0.17:t 0.41 Pasia cancollarloides 0.67� 1.03 Ln Oms flavidus 0.17� 0.41 0 = a rattus 0.1710.41 Como sponsalis 0.50� 0.55 0.17� 0.41 0.17� 0.41 Fhyllidia op. 0.33� 0.52 0.33� 0.82 BiVAITIA Tridacm mulma 0.17� 0.41 Omatnosa Diogenid spp. 0.17+0.41 1.17� 0.98 0.83� 0.75 1.674.25 0.67� 0.82 1.17� 0.98 Astecoidea Liwida multifors. 0.67� 0.82 %hisoidea Diadem sp. 0.33� 0.52 EWILinometra mathaoi 0.83� 0.75 1.33� 1.51 3.33-12.66 10.00t 9.38 13.67�11.11 Echimstraybus sp. 109.67,206.10 14.0041.70 0.83�0.75 2.83� 2.40 FWhinothrix diadem& 0.17�0.41 0.83� 0.75 Bucidaris wtularia 0.17� 0.41 2 2 *Saapled with "" quadrats on this transect. Mean standard deviation of fourteen 0.0625-mi samples = 14.7 Table 20. Continued. Transect 3 Transect 10 ft 15 ft 30 ft 40 ft 10 ft 15 ft Alapown Singlaria sp. 1. 33-t3.27 7.83*11.39 7.67�18.78 0.67:t 1.21 Gastmfods Trodws l4ciniatus 0.67� 0.82 Astraes, dmWbatom Cowithim soblutm Oaw.41 RM ricimm 0.33:t 0.52 ma-da 3n 0.33* 0.82 O.IW.41 1.33:t 1.97 OJU 0.41 Ppristernia fastigiM OJU 0.41 0.17�0.41 1. 67* 1. 97 0. 331 0. 52 YAM Ocramicum OJU 0.41 _QMj hAWWWiS OJU 0.41 -92mman 0.17� 0.41 Cams sponsalis P)wllidia op. OJU 0.41 O.IW.41 0.17-t 0.41 0.33� 0.52 Divalvis Tri4acm mazirma crutso" DiossuM syp. 2.50* 4.81 2.004.10 0.17t 0.41 0.33*0.82 1.00t 0.89 1.33-k 1.21 Utuaidea Liwkia mItiforg OAU 0.41 0.33:t 0.52 0.59".55 1 BOkixDj&& Rghimmefle matbagi 24.50W.19 15.3314.46 77.00t13.07 12.OOt7.01 6.33* 6.02 8.33*11.11 2 Echtwstr*Wmx sp. 0.50t 0.84 0.17-W.41 0.67-t 1.21 0.83tO.37 0.67� 1.21 EdLimatbrix 41&4=a 0.17:t 0.41 Buidaris metularia 0.17:t 0.41 Table 20. Continued. Transact 5 Transact 6 tdwatm 15 ft 30 ft 40 ft 25 ft Aloyamaosa Singlaria sp. 35.&3*37.90 32.50�24.02 10.17*11.25 2.17:b4.36 Gastropods Trochus, lacin-Utu 0.17� 0.41 Astraaa thodostow 0.17� 0.41 NuM19 UVA 0.6U 1.03 0.17� 0.41 Paristornim, f"tigium 0.17-t 0.41 19m, Mile$ 0.17:tO.41 GUMS SDO034i$ 0.17* 0.41 0.17� 0.41 Fbyllidia sp. 0-171 0.41 Ckustao" Diogenid am. 0.17� 0.41 0.83� 0.99 0.33* 0.52 1.33*1.21 Astmoldea Linckia, nultifors, 0.17� 0.41 OJU 0.41 z0himid" Fddwmtra math"i 1.00-t 0.89 3.&3� 2.64 4.17:t 4.07 0.33�0.52 FIchimstreahcus sp. 10.1744.90 3.33:t 4.37 0.5ft 1.22 Echigotbrix diadem 0.50d: 1.22 2 *SaWled with "&-u@ quadrats on this transact. M6an standard deviation of fourteen 0.0625-m samples 6A' Table 21. Preliminary list of macroinvertebrates other than scleractinian corals observed adjacent to, but outside the transects of Fagatele Bay, American Samoa. An asterisk (*) indicates a dead specimen observed or collected in the specified zone. Inter- Reef 10 15 30 40 tidal Flat ft ft ft ft Coelenterata Alcyonacea Sarcoph-yton sp. x x Sinularia sp. x x x x x Zooanthidea Pal-ythoa sp. x x x X- x Hollusca Gastropods, Haliotis sp. I Haliotis sp. 2 Trochus conus Gmelin x x Trochus laciniatus Reeve x x x x Trochus ochroleucus Gmelin x x Tectus pyramis (Born) x x Clanculus clanituloides Wood x x Turbo argyrostomus Linnaeus x Turbo cinereus Born Turbo crassus Wood x Turbo petholatus Linnaeus Turbo setosus Gmelin x Astraea rhodostgma Lamarck x x x Leptoth-yra sp. x Nerita plicata Linnaeus x Puperit-a bensoni (Recluz) x Littorin-a coccir2es (Gmelin) x Cerithium glygolus (Hambron & Jaquinot) x Cgrithium columns Soverby Ceriddrum echinatum (Lamarck) x Cerithium nesioticum Pilsbry Vanetta x C-gri-thium a. sp. Houbrick x Rhinoclayis articulats (Adams & Reeve) Lambis truncat-a sebse (Kiener) x S-abia coniscs (Schumacher) x x Cypraeg annulus Linnaeus x Cypraea arabica Linnaeus x Cyprag-a caputaermatis Linnaeus x x Cypx_g_g_g cgrIiyo_I_* Linnaeus x Cypne-ea isab-c-1-1-a Linnaeus Cyp_rgg_g jvnx Linnaeus 158 Table 21. Continued. Inter- Reef 10 15 30 40 tidal Flat ft ft ft ft Cypraea moneta Linnaeus x x C-nraea testudinaria Linnaeus Cymatium rubeculum (Linnaeus) x Charonia tritonis (Linnaeus) Bursa bubo (Linnaeus) x Bursa bufonia (Gmelin) Bursa.mammata (Roeding) x Bursa rhodostoma, (Sowerby) Chicoreus brunneus (Link) x x x Thais,aculeata (Deshayes) x Thais. arwiiaera (Link) x Thais tuberosa (Roeding) x x x Cr-onia margariticola (Broderip) x Drupa grossularia (Roeding) x x Drupa morum Roeding x Drupa ricinus (Linnaeus) x x x Drups, rubusid#eus Roeding Drupella elata (Blainville) x x Morula biconiEja (Blainville) x Morula dumosa.(Conrad) x Morul eranulata (Duclos) x x Morula nodicostata (Pease) x Morula spinosa (H. & A. Adams) x Morula scuamosa (Pease) x Morula jLya (Roeding) x x x x x Coralli6phila violacea (Kiener) Ouoyula monodonta (Blainville) x Mitrella albina (Kiener) Pyrene deshayesii (Crosse) x x F-Yrene turturina (Lamarck) Cantharus und9sus (Linnaeus) x Engina, alyeglgto (Kiener) x Engina inc-arngta (Deshayes) x Pleur2ploc-a filamen-tops (Roeding) x x Latirus Dglyzoaus barclayj (Reeve) x x Latiroglitys spmaragdula (Linnaeus) x x Pgristernis f-suizium (Reeve) x x x x Peris-ternia njosatula (Lamarck) x Yesum coramic@Lm, (Linnaeus) x Kii-tra coff-g-a Schubert & Wagner 14 it jr a (Dikaphits) multip-licA-ta (Pease) x 141-tra (Nebulalis contracts Swainson ft-tr-a (Nebularia Lamarck x Mitra (Xe-_b_MI-aji-a Quoy & Gaimard x Mitra (Strizatells) acum-inat-a Swainson Mitra (Strixat-ella) f&g-t-jxjAxm Reeve x Mitra (Strizat-ells) lit-tjergta Lamarck x 159 Table 21. Continued. Inter- Reef 10 15 30 40 tidal Flat ft ft ft ft Vexillum (Pusia) cgncellari2@i_des (Anton) x VgxIllum (Pusia) lautum (Reeve) x VeE_1jlum (Pusia) unifiagi-alis (Lamarck) Turridrupa cerithin. .(Anton) x Cougs chaldgus Roeding x ConuM coronatus Gmelin Conus distans Hwass x x Conup ebraeus Linnaeus x Couus flavidus Lamarck x Conus glans Hwass ConpA imperialis Linnaeus x x ConlLs lividus Hwass x x Conu� miles Linnaeus x x C o Laws miliaris Hwass x Conup rAttup Hwass x Cqnus sguluinolgritus Quoy & Gaimard x Conus sponaglis Hwass x x x x Conus striatus Linnaeus ,Cgnus tjoreb-na Born Con-us vgxillum Gmelin Si-phong-ris sp. x Bivalvia Area aygllana Lamarck x Isognomon Peru .(Linnaeus) x pectinid spp. SpoRdylus sp. x Chama sp. x CarAita Y-ariegata Bruguiere x Tj:@_d&gua' max-i-m-a (Roeding) x x Sclaarcopagia scobjust-a (Linnaeus) Tra2exium QbIgagum (Linnaeus) Cephalopoda Seviotguthis sp x Artbropoda Crustaces Do-Idorfis cf. -borride (Linnaeus) x D-a-rdanus wexis-toe (Herbst) x 160 Table 21. Continued. Inter- Reef 10 15 30 40 tidal Flat ft ft ft ft Echinodermata Asteroidea Ne-oferding 'cf. cumingi (Gray) x Linckia multifora (Lamarck) x x x x Echinoidea Diadema sp. x Erchinometra mathaei (de Blainville) x x x x x Echin-ostre-phus sp. x x x x Echinothrix diadema. (Linnaeus) x x Eucidaris metularia (Lamarck) x x 161 Table 22. Preliminary list of gastropods collected from 11 sites around Tutuila, American Column numbers correspond to locations numbered in Fig. 2. Habitats are define Pv = on pavement Rk - on or under rock Rb = under rubble Sn - in sand It - intertidal rocks - Dead specimen observed or collected 1- 3- 4 5- 6 7 8 9 10 mollusc& Gastropods Haliotidae H-sliotis op. 1 ftliptip op. 2 Fissurellidae Diodora op. Rk Patellidae PatClIp fIggggog Quoy & Gaimard Trochidae C-lanculujo atropgripurews (Gould) Rk Rk Rk Rk Cl.sticulup plitaggloidgy Wood Rk Rb Rk Rk M-oviles philippians Dunker Rk Pv T-equjo ipyramis (Born) Pv Trochuo copup Gmelin Pv Pv Trog-hug lacipistus Reeve Pv Pv Rk Trogbue OcbrqjgMcML Gmelin Pv Rk Rk Turbinidae Aotraea rbodostom-a Lamarck Pv Pv Pv Rk Tlxrbo argyrootoggs Linnaeus Pv Turbg greopup Wood Pv Turbo pytbolatUg Linnaeus Rk Table 22. Continued. 1 .3 4- 5 6 7- 8 9 1( Cyclostrematidae Liotijus 19fglov.8 (Gould) Rk Rk Neritidae NeritA grgUs Recluz It It Norit-a pgjLik (Sowerby) It Nerits pjjC,*tg Linnaeus It It Littorinidae Littoripat cocgbes (Gmelin) It Littori-as vadvIA-t-a Gray It Rissoidae Ripsolua Ambigy-a (Gould) Rk Planaxidae Piguggis ektiggtva (Born) it LO Modulidae N_Odu-lu-o it-ptup (Gmelin) Rk Cerithiidae Bittium Mbrum (Kiener) Rk Pv Cgrithium #jy-eo-ju-p (Hambron & Jaquinot) Corithium g-phip-stup (Lamarck) Pv Rk Coritbigg! nesioti n Pilabry & Vanetta -cw Rk Rk CerithimM VtpdMj-o-pup Bruguiere Rb Rhipogjayis fog-c-i-aig (Bruguiere) Sn Strombidae Lambig skorpigs (Linnaeus) Rb Strombus * - - i (Kira) Rk Strombus mutabli-9 Swainson Rb Hipponicidae Sabig con-ica (Schumacher) Pv Table 22. Continued. -1----'3 4 5 6- 7 1 8 9 1 10 Calyptraeidae Cbeiles cavestris (Linnaeus) Rk Cypraeidae Cypr".& miuluj Linnaeus PV PV Crpra-ei arabics Linnaeus Rk CmDrace spollys Linnaeus Rk Cyprac-a caputpapeatig Linnaeus Pv Cyprays carp-ey-j-& Linnaeus Rk Cyproop jigerom-la Linnaeus Rk Cylprout calpyLtijag Duclos Rk C-Y-Dra-c-a jer-p-p-a Linnaeus Rk Cypraps ipab-oll-a Linnaeus Rk Cypraea kiencli Hidalgo Rk Rk Rk CIRrae.8 labrolipealL Gaskoin Cypreep moriets Linnaeus PV c 41 -Y-Drsca nuclege Linnaeus Rk Cyproes StaphXIses Linnaeus Cxpra-pg &&lips Linnaeus Rk Cyprops tiarip Linnaeus Pv Eratoidae Triyia ediari Shaw Rk Casaidae -Ca-smaris cripaccup (Linnaeus) Cymatiidae CYM&tium Rommatum (Reeve) Rk -Gyrip-eum roseum (Reeve) Bursidae Burge Crueptata (Sowerby) Rk Rk Burva lamarcVi (Deshayes) Rk ARYDA rb2-dOftpAa (Sowerby) Rk Table 22. Continued. 3-1- 4- 5 1- 6 7- 1-- 8 -9-1-10 Muricidae Chimneys brunge-g-a (Link) Rk Rk Rk DropA groppularig (Roeding) Pv Pv Dryp,& ricipup (Linnaeus) Pv Pv Rk Drjtp,* rubusidggyp Roeding Rk Drupe-1-1-a glats (Blainville) Pv Rk Rk Drypyl-Is fKajup (Blainville) Pv N spylptritga br#jgeatup (Hinds) Rk M nville) Rk Rk Pv pruls bjjqp"jL (Blai Moro-Is d1twis (Conrad) Rk Rk Mormls gchjWg (Reeve) Rk Mory" ugdjc-optjt-*_ (Pease) Rk Moru-Is My& (Roeding) PV Rk Napop oprtp (Bruguiere) Rb Tbais armizerp (Link) Rk Tbaip tubc-r-o-sa (Roeding) Rk Rk L9 Coralliophilidae Cm-1-lioDbils erpog (Roeding) Rk Oprail-lipphilp yiqlapegs (Kiener) Pv Columbellidae Mitr-ellp g1bipa (Kiener) Mitrells margueso (Gaskoin) Rk Rk ftrgpe degbaygoij (Crosse) Pv Pv F-VIgue JlUg (Bruguiere) Rk Buccinidae Cautbarug Pg1pher (Reeve) Rk Captharus updogu-p (Linnaeus) Pv Rk Eligilis J_jg"t,& (Reeve) Rk 911figs mov-dirgria (Linnaeus) Pv Pipa-Diat igpea (Gmelin) Rk Pv Nassariidae NA-6-f-grius -a-1keggeng (Dunker) Rk Naffig,arjup distortuy (A. Adams) Rb Table 22. Continued. 1 -3-14 -5 1--6-- 71- - 8- 9 1 10 ftevariv-p idatis (Linnaeus) N-ap-pari-y-a Paup-crus (Gould) Rk Rk Fasciolariidae Latirogleps omarladula (Linnaeus) 1&tirup graticylarps (Linnaeus) Rk latirps Polysopus barclay-i (Reeve) Pv Peripterp-is fastizium (Reeve) Rk Periptervis naggatuls (Lamarck) Pv Pv Pv Rk Plpuroploc& filamentops (Roeding) Pv PV Olividae Pli-y-a spApIpts Gmelin Sn 01 jya pappiculgig Duclos Sn Vasidae Y&BUJI ceramicum (Linnaeus) PV Pv a, Mitridae Nitrjl isper-i-a-1-is Roeding Nobulari& coffes (Schubert & Wagner) Rk NBbulpria controgto Swainson Nobularia (Lamarck) Rk Rk Nebularis fr#za (Quoy & Gaimard) Rk Rk Pv Nebularia rubrilipas (Reeve) Rk NebulajjA turgid& (Reeve) Rk Costellariidae Coptellari modgetup (Reeve) Fuoia amabi-lis (Reeve) Rb Pv Pueia cajacellarioidgg (Anton) Pv Pupla -c-a-y-e-a (Reeve) Rk Pygis lsutg (Reeve) Pv Pyeip motlleri (Kuester) Rb IM&j& epayis (Souverbie) Rk PupjA up-ifascialis (Lamarck) Thals ig-culanda (Gould) Rk Table 22. Continued. 1 3 1 4 5 6 7 I-A -9-1-10 Turridae Turridrup-a cerithim (Anton) Rk Conidae Cq-y-y-@ Hwass Sn Cqpus gplippigyp Hwass Copup gltys Hwass Pv Copup fl#Xidup Lamarck Rk Pv Com actiorglij Linnaeus Sn Copus imperiglis Linnaeus Pv Pv Pv Cgp_uj JjyjdUj Hwass Pv Rk Pv Rk CQp_U_q M&gUjfjEUp Reeve Copu-9 jjjjp# Linnaeus Pv PV Pv Copup UUB##tg_j_# Linnaeus Copus rat-t-up Hwass Pv V,!ppup s&pgUjUOjgptU9 Quoy Gaimard Fv Pv Pv gppup ppouggli-o Hwass Pv Rk cy, Rk Cop-uj terebre Born C2U-u-p &ulipa Linnaeus Rb CpAu-q vitgligus Hwass Terebridae Uptyle g1bVIg (Menke) Sn HS p t stliltilit-tj (Linnaeus) Sn Torebra magglatj (Linnaeus) Sn Terebra pubulata (Linnaeus) Ellobiidae Mel-ampito flawy (Gmelin) Table 23. Fishes enumerated or observed during the general survey of inshore fishes at Fagatele Bay conducted 5-12 April 1985. The presence of a particular species is denoted by the number of individuals censused during the tran- sect or a "p" which indicated the species was observed within 10 m of the transect during a subsequent 20-minute search. Transect I-S originated at the shallow stake of Transect 1; Transect 1-M originated at the middle stake of Transect 1; Transect 1-D originated at the deep stake of Transect 1; etc. The column labled "Bay" lists additional species observed within the bay during a general reconnaissance dive to 60 ft (18 m). 1-S I-D 2-S 2-M 2-D 3-M 3-D 4-S 4-:M 4-D 6-M 6-D Bay Carcharhinus melanopterus P Triaenodon obesus P Aetobatis na rinari P Gymnothorax javanicus P Gymnothorax meleagris Flammeo sammara P Myripristis berndti Sargocentron caudimaculatum P Sargocentron diadema Sargocentron microstoma Sargocentron spiniferum P Sargocentron tiere P 2 P P Aulostomus chinensis P 1 P 1 P P P Fistularia commersonii P Anthias pascalus P Cephalopholis argus 3 P P Cephalopholis leopardus P Ce2halopholis urodelus 2 P P P 1 2 2 Epinephelus hexagonatus 1 1 Epinephel!!s tauvina P Gracila albomarzinata P 168 1-S 1-D 2-S 2-M 2-D 3-M 3-D 4-S 4-M 4-D 6-M 6-D BAY Plectropomus leopardus p Variola louti p p p p p Belonoperca chabanaudi p Cheilodipterus macrodon p Malacanthus latovittatus p Caranx melampyaus p Scomberoides 1@san p Trachinotus baillonii p Caesio xanthonotus p Pterocaesio kohleri p Pterocaesio tile p p PterocaesiQ sp. 4 Aphareus furcatus p F p 1 1 1 1 p p Lutjanus bohar p p p p Lutjanus fulyus p Lutjanus gibbus p Lutjanus kasmira p p Lutjanus monostigma p Macolor Rian p p p p p Plectorhynchus orientalis p Gnathodentex aureolineatus 3 p 1 Lethrinus harak p Monotaxis grandoculis 1 1 Mulloides flavolineatus p p Mulloides vanicolensis p p Parupeneus bifasciatus p p p p p p p 169 1-S 1-D 2-S 2-M 2-D 3-M 3-D 4-S 4-M 4-D 6-M 6-D BAY Parupeneus chryserydros p p P P 2 P P 1 p Parupeneus trifasciatus p 1 p p p p p p p Pempheris oualensis p Kyphosus cinerascens p p 1 p Chaetodon auri&a p Chaetodon bennetti p Chaetodon citrinellus p 1 p P 2 Chaetodon ephippium P 2 1 p p p p Chaetodon lunula p Chaetodon ornatissimus p p p p Chaetodon pelewensis p Chaetodon quadrimaculatus p 1 p Chaetodon rafflesii p p Chaetodon reticulatus P 3 2 3 1 1 4 1 1 p Chaetodon semeion p Chaetodon trifascialis 1 p Chaetodon trifasciatus p 1 p Chaetodon ulietensis p Chaetodon unimaculatus 1 p p p p Chaetodon vagwbundus p p p p p Forcipiger flavissimus 1 1 p p Forcipiger longirostris 2 p p Hemitaurichthys polylepis 1 p p p Heniechus chr_ysostomus p Heniochus monoceros p Centropyge bispinosus p 1 1 p p 170 1-S 1-D 2-S 2-M 2-D 3-M 3-D 4-S 4-M 4-D 6-M 6-D BAY Centropyge flavissimus P 2 P P 2 1 3 3 Centropyge loriculus p Holacanthus trimaculatus p Pomacanthus imperator p Pygoplites diacanthus. p 1 p p p Abudefduf septemfasciatus p p Abudefduf vaigiensis p Amphiprion chrVsopterus 1 1 p p Amphiprion melanopus 3 Chromis acares p p p 2 P Chromis agilis p Chromis amboinensis 3 Chromis atripectoralis p p p Chromis iomelas 9 2 1 1 9 Chromis margaritifer 6 p p 1 Chromis vanderbilti 19 18 Chromis xanthura 10 p 4 p p p Chromis sp. A p p Chrysiptera cyanea P 4 16 P 3 Chrysiptera leucopoma 13 11 2 2 Dascyllus trimaculatus 4 p p p p Plectroglyphidodon dickii 3 2 1 3 P Plectroglyphidodon johnstonianus p p p Plectroglyphidodon lacrymatus 2 5 29 32 60 23 10 Plectroglyphidodon leucozona 3 171 1-S 1-D 2-S 2-M 2-D 3-M 3-D 4-S 4--M 4-D 6-M 6-D BAY Plectrogly2hidodon phoenixensis 5 Pomacentrus brachi-alis 8 P 4 P 8 13 P Pomacentrus coelestis p Pomacentrus vaiuli 4 P P 3 4 5 P 2 Pomachromis richardsoni 14 Stegastes fasciolatus 3 8 4 30 29 3 Stegastes nigricans 8 Cirrhitus pinnulatus 1 1 Paracirrhites arcatus 3 p p p 4 1 Paracirrhites forsteri 1 p p 1 1 Paracirrhites hemistictus p Anampses caeruleopunctatus 1 p p 1 2 p p Anampses meleagrides p p p p Anampses twistii 2 1 1 P P P P P P Bodianus axillaris p Cheilinus chlorourus p p p p p Cheilinus digrammus 2 p 1 Cheilinus oxycephalus p 7 2 P 2 6 P P Cheilinus undulatus p Cheilinus unifasciatus P 1 1 P 2 1 1 2 2 p p Cirrhilabrus sp. p 3 Coris aygula p p 1 Coris gaimard p I Epibulus insidiator 1 p 1 p p p Gomphosu varius 5 1 2 P P 5 1 3 P 1 P 172 1-S 1-D 2-S 2-M 2-D 3-M 3-D 4-S 4-M 4-D 6-M 6-D BAY Halichoeres biocellatus p 2 Halichoeres hortulanus 1 1 p 1 p P 1 2 2 Halichoeres margaritaceus 2 Halichoeres marginatus p 1 p 1 Halichoeres melanurus p p 1 Hemigymnus fasciatus p P. 1 p p p 1 p Hemigymnus melapterus p p p p p Hologymnosus doliatus p p 1 Labroides bicolor p p p Labroides dimidiatus 1 3 P P 1 P P P P 2 Labroides rubrolabiatus 1 p p p 1 1 p Labropsis xanthonota p p p p 1 Macropharyngodon meleagris 1 p p Novaculichthys taeniourus 2 Pseudocheilinus hexataenia 1 P 2 1 2 1 p Pseudocheilinus octotaenia p p 1 Pseudodax moluccanus p Stethojulis bandanensis p p p p Thalassoma amblycephalum 28 Thalassoma fuscum p p Thalassoma hardwickei 2 3 1 1 1 2 1 Thalassoma lutescens 1 4 2 1 1 Thalassoma quinguevittatum 9 P 8 2 1 8 45 12 Bolbometopon muricatum p Calotomus sandwicensis p p 1 p p p Cetoscarus bicolor p 173 1-S 1-D 2-S 2-M 2-D 3-M 3-D 4-S 4-M 4-D 6-M 6-D BAY Scarus brevifilis p Scarus dimidiatus p Scarus frenatus p p p p p p p Scarus frontalis p Scarus gibbus p p p p p Scarus japanensis p p p p p p p p p p Scarus niger p p 1 p p p Scarus oviceps p p p p 1 p p 1 p Scarus psitticus p p 1 p p p p Scarus rubroviolaceus 1 p p p p Scarus schlegeli p Scarus sordidus 2 P 5 3 2 1 P 1 2 P 2 Scarus spinus 1 p p p p p p p p Scarus tricolor p 3 P P 1 1 1 p Scarus sp. (juveniles) 4 6 2 Parapercis cephalopunctata' 1 p 1 Aspidontus taeniatus 1 Cirripectes sebae 1 Cirripectes stiRmticus 1 1 Cirripectes variolosus p 1 Cirripectea sp. 1 1 1 p Meiacanthus atrodorsalis 1 p p Ptereleotris evides p p Valenciennea strigatus p Zanclus cornutus p p p p p p p p p p p Acanthurus achilles p 174 1-S 1-D 2-S 2-M 2-D 3-M 3-D 4-S 4-M 4-D 6-M 6-D BAY Acanthurus bleekeri p Acanthurus glaucopareius 7 P P P P 2 3 2 4 6 5 Acanthurus guttatus p 2 p Acanthurus lineatus 16 P 21 P 21 2 Acanthurus maculiceps p p Acanthurus nigricauda p Acanthurus nigrofuscus 5 18 10 11 6 2 1 19 13 3 P 18 Acanthurus nigroris p Acanthurus olivaceus p p Acanthurus pyroferus p Acanthurus thompsoni 4 p Acanthurus triostegus 3 3 P p Acanthurus xanthopterus p Ctenochaetus striatus 54 83 218 195 115 96 137 153 188 145 26 73 Ctenochaetus strigosus 15 p p 4 Naso lituratus p p P 6 7 P 1 1 2 1 1 Naso tuberosus p Naso unicornis p Zebrasoma scopas 2 P 4 5 2 1 9 Zebrasoma veliferum p p Siganus argenteus p p 1 p p p p p Siganus spinus P p 1 2 Gymnosarda unicolor p p p Balistapus undulatus P 3 p p p p p p p Balistoides conspicillum p Balistoides viridescens p Melichthys niger p 175 1-S 1-D 2-S 2-M 2-D 3-M 3-D 4-S 4-M 4-D 6-M 6-D 8AY Me-lichthys vidua P 2 P P P P P P P P P P Rhinecanthus rectangulus P P Sufflamen bursa P P P P P Amanses scopas P P 2 1 P P Cantherhines dumerili 1 P Cantherhines pardalis P 1 P 1 1 P P P 1 4 Oxymonacanthus longirostris P Pervagor melanocephalus P 1 P P Ostracion meleagris P P P Arothron nigropunctatus P Canthiaaster amboinensis 1 P P Canthigaster solandri 1 Total No. Species 46 105 49 65 60 54 57 51 65 66 67 61 31 On-Transect species 15 49 21 32 23 25 28 16 23 23 22 26 - On-Transect Individuals 117 235 295 304 192 191 217 274 259 205 180 179 - Shannon-Wiener .81 1.25 .53 .73 .69 .68 .72 .71 .56 .60 .97 .99 - Diversity Index Evenness .69 .74 .40 .48 .51 .49 .49 .59 .41 .44 .72 .70 - Simpson's Dominance Index .25 .14 .55 .42 .39 .34 .41 .34 .53 .51 .14 .20 - 176 CHANGES in CORAL COMMUNITIES FOLLOWING the OUTBREAK of Acanthaster planci 1978-1979 Two of us (Birkeland and Randall) visited Tutuila in April at 3-year intervals, in 1979, 1982 and 1985. In April 1979, coral communities in Masefau Bay, at northwest Aunuu Island, and at Matuli Point (Fig. 2), were being heavily preyed upon by Acanthaster planci which was present by the thousands. In Aoa Bay, Onenoa Bay, Fagasa Bay, and Cape Larsen (Fig. 2), the coral communities were obviously preyed upon heavily a short time previous to our visit. The coral community at Fatu Rock may have been preyed upon several months earlier in deeper water, but appeared to have been bypassed by A. planci in the shallow zone of turbulant water. The coral communities at' Fagafue Bay and Massacre Bay (Fig. 2) had not been preyed upon extensively. We returned in April 1982 and 1985 to assess the changes in community structure of hermatypic corals at these locations (Tables 4-15). The average abundances (number/m 2) of coral colonies at each site, depth and year are given in Table 24. The locations were selected a priori with the goal of obtaining data for a 3-factor analysis, the factors being wave-exposure, depth and time (Table 25). Six areas generally sheltered from wave action were paired with six other nearby areas exposed to open coast conditions, with inside Masefau Bay: outside Masefau Bay, Aoa Bay: Onenoa Bay, northwest Aunuu Island: Matuli Point, Fagasa Bay: Cape Larsen, Fagafue Bay: Massacre Bay, and Rainmaker Hotel: Fatu Rock being the protected: exposed pairs of sites. There was a significant difference (Table 25) in abundance of corals between years (Table 24). As would be expected, corals generally were more abundant six years after the outbreak of Acanthaster planci (1985) than they were three years after (1982). The exception were in shallow water (2-3 m) 177 Table 24. Abundance (number/m 2) of hermatypic coral colonies at 12 sites around Tutuila island in April 1982 and in April 1985 at two depths at each site. Location Depth Year Number of coral colonies/m 2 Inside Masefau Bay 2-3 m 1982 2.89 1985 3.51 6 m 1982 5.93 1985 8.14 Outside Masefau Bay 2-3 m 1982 30.62 1985 33.94 6 m 1982 2.68 1985 5.30 Aoa Bay 1.5-2.5 m 1982 3.00 1985 18.62 6 m 1982 1.14 1985 3.63 Onenoa Bay 1-2.5 m 1982 5.97 1985 9.01 6 m 1982 2.23 1985 7.75 Aunuu Island 2-3 m 1982 0.41 1985 2.51 6 m 1982 0.51 1985 4.43 Matuli Point 1.5-3 m 1982 10.76 1985 13.68 6 m 1982 2.54 1985 11.69 178 Location Depth Year Number of coral colonies/m 2 Fagasa Bay 2-3 m 1982 7.98 1985 4.29 6 m 1982 3.13 1985 5.60 Cape Larsen 2-3 m 1982 7.88 1985 7.81 6 m 1982 7.57 1985 12.17 Fagafue Bay .5-2 m 1982 8.00 1985 12.40 6 m 1982 5.41 1985 13.88 Massacre Bay 1.5-2 m 1982 11.92 1985 28.83 6 m 1982 5.93 1985 18.23 Rainmaker Hotel .5-1.5 m 1982 4.69 1985 8.25 6 m 1982 11.58 1985 0.84 Fatu Rock 2.5-4 m 1982 22.19 1985 18.79 6 m 1982 19.66 1985 17.41 179 Table 25. Results of a factorial anova of the data in Table 24 concerning the relation of coral abundance (number/M2 ) of coral colonies to location around Tutuila, wave exposure, depth and year. source of degrees of mean Fs variation freedom square location (A) 5 92.79 7.48* exposed or protected (B) 1 629.95 50.76*** A X B interaction 5 56.24 ns depth: 3 or 6 m (C) 1 210-30 16.95** A X C interaction 5 39.65 ns B X C interaction 1 119.73 9.65* A X B X C interaction 5 94.16 7.58* Year: 1982 or IM (D) 1 154.05 12.41* A X D interaction 5 45.64 ns B X D interaction 1 11.15 ns A X B X D interaction 5 8.74 ns C X D interaction 1 0.45 ns A X C X D interaction 5 11.61 ns B X C X D interaction 1 10.93 ns A X B X C X D interaction 5 12.41 (assumed to be the error term) 180 at Fagasa Bay and at Cape Larsen and in deeper water (6 m) at the Rainmaker Hotel and at Fatu Rock. We suggest the exceptions in shallow water possibly may be related to fishing with Clorox and the exceptions at Pago Pago may be related to urban and industrial pollution. When Birkeland visited Tutuila in July 1980, he observed several areas in shallow water between Sita Bay and Fagasa (Fig. 2) where numerous white swaths laid as bands straight across neighboring colonies. Acanthaster planci does not feed in such a pattern. This pattern could have been a result of a toxic chemical washing across the colonies in a surge of water. This area of damage to coral apparently from Clorox is also the region in which there was a slight decrease in abundance of corals during a period when corals were increasing in abundance in other areas. When we visited Tutuila in 1985, the oily brown plume of water from Pago Pago could be seen passing Fatu Rock. During our stay in Tutuila in 1979, Pago Pago Bay did not appear to be nearly so polluted as it was in 1985. The striking decrease in coral abundance at 6 m depth on the reef at the Rainmaker Hotel and the slight decrease in coral abundance at Fatu Rock may result from increased turbidity and perhaps even toxic effects of polluted harbor waters. The abundance of corals varied also with depth (3 or 6 m) and with whether the area was exposed to or protected from wave assault (Tables 24 and 25). Corals were generally more abundant in shallow water and this difference in abundance was greatest in areas exposed to heavy wave action (Table 24). The interaction between depth and exposure to wave action was also significant (Table 25). This may be attributed to occasional protection of reef communities in shallow water from predation by Acanthaster planci. A. planci seems to have difficulty maintaining its position in an area with strong wave action. Therefore, an aggregation of A. planci tends to have a greater effect 181 on coral communities at depths below the surf zone. This difference in effects of A. planci is probably greater on exposed coasts than in protected bays. Although the effects of depth and degree of wave exposure are both significant (Table 25), the interactions between these factors are also significant. Location at coastal sites around Tutuila is a significant factor for abundances of coral colonies per m.2 (Table 24 and 25), for percent cover of reef substrate by hermatypic corals (Tables 26 and 27), and for mean colony diameter (Table 28 and 29). This is not surprising because locations differ in past history, i.e., in whether coral communities were heavily preyed upon by A. planci within the last decade and probably also in abundance and success of coral recruitment. Although the abundance of coral colonies and substrate surface cover by hermatypic corals was greatly reduced, a few small living colonies or portions of colonies of each coral species apparently did remain tucked away in crevices or depressions. However, the diversity of the coral community often increased during recovery of the reef community (Table 30). This must be largely a result of an increase in evenness of representation by different species and a decrease in predominance of a few species (Table 30) rather than a result of an increase in the number of species. We are tempted to hypothesize that the 'increase in prevalence of Millepora at the reefs near the Rainmaker Hotel is a result of greater tolerance of Millepora to pollution. This matter should be followed by observing further changes in coral community structure in Pago Pago Bay. 182 Table 26. Percent cover by hermatypic coral colonies at 12 sites around Tutuila Island in April 1982 and in April 1985 at two depths at each site. Location Depth Year % cover by hermatypic corals Inside Masefau Bay 2-3 m 1982 12.31 1985 3.69 6 m 1982 32.85 1985 66.08 Outside Masefau Bay 2-3 m 1982 41.94 1985 28.44 6 m 1982 2.59 1985 3.30 Aoa Bay 1.5-2.5 m 1982 3.12 1985 11.52 6 m 1982 0.78 1985 1.80 Onenoa Bay 1-2.5 m 1982 2.68 1985 11.54 6 m 1982 3.13 1985 9.22 Aunuu Island 2-3 m 1982 1.65 1985 1.56 6 m 1982 0.06 1985 1.83 Matuli Point 1.5-3 m 1982 23.68 1985 11.72 6 m 1982 7.89 1985 41.49 183 Location Depth Year %cover by hermatypic corals Fagasa Bay 2-3 m 1982 16-77 1985 1.93 6 m 1982 2.48 1985 21.33 Cape Larsen 2-3 m 1982 10.65 1985 14.25 6 m 1982 7.35 1985 22.34 Fagafue Bay .5-2 m 1982 80.14 1985 85.50 6 m 1982 115.44 1985 98.43 Massacre Bay 1.5-2 m 1982 59.99 1985 88.69 6 m 1982 60.63 1985 91.68 Rairunaker Hotel .5-1.5 m 1982 6.65 1985 11.38 6 m 1982 27.72 1985 19.19 Fatu Rock 2.5-4 m 1982 17.34 1985 61.49 184 Table 27. Results of a factorial anova of the data in Table 26. Concerning the relation of percent coral cover to location around Tutuila, wave exposure, depth and year. source of degrees of mean Fs variation freedom square location (A) 5 6914.80 51.53*** exposed or protected (B) 1 46.63 ns A X B interaction 5 447.16 ns depth: 3 or 6 m (C) 1 391.88 ns A X C interaction 5 93.41 ns B X C interaction 1 576.78 ns A X B X C interaction 5 486.14 ns Year: 1982 or 1985 (D) 1 662.53 ns A X D interaction 5 27.93 ns B X D interaction 1 350.95 ns A X BX D interaction 5 185.89 na C X Dinteraction 1 417.19 ns A X CX D interaction 5 128.11 ns B X CX D interaction 1 110.20 ns A X BX C X D interaction 5 134.20 (assumed to be the error term) 185 Table 28. Mean diameter of hermatypic coral colonies at 12 sites around Tutuila Island in April 1982 and in April 1985 at two depths at each site. Location Depth Year Y coral colony diameter (cm) Inside Masefau Bay 2-3 m 1982 13.2 1985 8.9 6 m 1982 14.86 1985 30.6 Outside Masefau Bay 2-3 m 1982 9.1 1985 8.2 6 m 1982 5.6 1985 7.5 Aoa Bay 1.5-2.5 m 1982 7.2 1985 7.3 6 m 1982 5.2 1985 7.1 Onenoa Bay 1.2.5 m 1982 6.9 1985 11.0 6 m 1982 5.8 1985 10.1 Aunuu Island .2-3 m 1982 14.9 1985 7.4 6 m 1982 3.6 1985 6.2 Matuli Point 1.5-3 m 1982 11.8 1985 19.5 6 m 1982 9.2 1985 19.5 186 Location Depth Year Y coral colony diameter (cm) Fagasa Bay 2-3 m 1982 10.9 1985 6.3 6 m 1982 6.6 1985 15.2 Cape Larsen 2-3 m 1982 8.9 1985 12.3 6 m 1982 7.7 1985 11.9 Fagafue Bay .5-2 m 1982 28.0 1985 22.1 6 m 1982 32.4 1985 20.1 Massacre Bay 1.5-2 m 1982 17.4 1985 14.7 6 m 1982 26.0 1985 21.8 Rainmaker Hotel .5-1.5 m 1982 8.8 1985 9.3 6 m 1982 11.9 1985 22.4 Fatu Rock 2.5-4 m 1982 9.8 1985 11.4 6 m 1982 8.3 1985 19.2 187 Table 29. Results of a factorial anova of the data in Table 28 concerning the relation of mean diameter (cm) of hermatypic corals to location around Tutuila, wave exposure, depth and year. source of degrees of mean F s variation freedom square location (A) 5 228.98 22.37** exposed or protected (B) 1 31.14 ns A X B interaction 5 49.30 ns depth: 3 or 6 m (C) 1 63.62 ns A X C interaction 5 18.24 ns B X C interaction 1 1.49 ns A X B X C interaction 5 38.30 ns Year: 1982 or 1985 (D) 1 24.28 ns A X D interaction 5 34.68 ns B X D interaction 1 11.47 ns A X B X D interaction 5 8.11 ns C X D interaction * 1 116.38 11.34* A X C X D interaction 5 20.65 ns B X C X D interaction 1 10.77 ns A X B X C X D interaction 5 10.26 (assumed to be the error term) 188 Table 30. Indices of community structure for hermatypic corals at 12 sites around Tutuila. Diversity, evenness and dominance were calculated for two depths at each site for April 1982 and for April 1985. The numbers of coral species are given for 1982, 1985 and, for some sites, 1979 and are combined for both depths at each site. The total numbers of species for each site over all years and depths combined are given in parentheses. Location, Depth Number of Shannon-Wiener Evenness Simpson's and year Coral Diversity Index Dominance Species Index Index H1 if D' Inside Masefau Bay (101) 2-3 m 1979 69 1982 41 .9772 .7942 .1599 1985 47 1.1538 .8869 .0740 6 m 1982 .4531 .5361 .4187 1985 .5589 .7183 .3262 Outside Masefau Bay (66) 2-3 m 1982 51 .8746 .7263 .2333 1985 41 1.0470 .7919 .1441 6 m 1982 2.2999 .9187 .0461 1985 .9964 .8275 .1315 Aoa Bay (60) 1.5-2.5 m 1979 21 1982 41 1.0497 .8362 .1141 1985 37 .9938 .8253 .1254 6 m 1982 1.2141 .9044 .0650 1985 1.1856 .8706 .0791 189 Location, Depth Number of Shannon-Wiener Evenness Simpson's and year Coral Diversity Index Dominance Species Index Index H1 it D Onenoa Bay (67) 1-2.5 m 1979 23 1982 48 1.1033 .8480 .1079 1985 38 1.0577 .8426 .1056 6 m 1982 1.1562 .8377 .0989 1985 1.1181 .8744 .0823 Aunuu Island (85) 2-3 m 1979 71 1982 27 1.0045 .8541 .1085 1985 24 .8593 .7963 .1723 6 m 1982 .8632 .8289 .1775 1985 1.0699 .8885 .0889 Matuli Point (55) 1.5-3 m 1979 36 1982 40 .9806 .8338 .1316 1985 19 .8063 .7743 .1972 6 m 1982 .9873 .8395 .1364 1985 .4920 .4920 .5104 Fagasa Bay (85) 2-3 m 1979 51 1982 58 1.1534 .8357 .0966 1985 35 .7829 .7028 .2718 190 Location, Depth Number of Shannon-Wiener Evenness Simpson's and year Coral Diversity Index Dominance Species Index Index HP il 6 m 1982 1.1609 .8411 .0912 1985 .9101 .8170 .1610 Cape Larsen (61) 2-3 m 1979 21 1982 37 1.1074 .8512 .1113 1985 42 1.1484 .8685 .0989 6 m 1982 1.1151 .8571 .0870 1985 .9768 .7508 .1983 Fagafue Bay (86) .5-2 m 1979 49 1982 65 1.1554 .8607 .0847 1985 43 .9577 .8143 .1469 6 m 1982 1.2915 .9239 .0462 1985 1.0581 .8132 .1270 Massacre Bay (51) 1.5-2 m 1982 26 .8249 .7405 .1932 1985 38 .8787 .8142 .1802 6 m 1982 .9980 .8960 .0952 1985 .9746 .8094 .1444 191 Location, Depth Number of Shannon-Wiener Evenness Simpson's and year Coral Diversity Index Dominance Species Index Index H1 D Rainmaker Hotel (59) .5-1.5 m 1979 43 1982 42 .8583 .7706 .2119 1985 33 .8453 .8117 .1712 6 m 1982 .8350 .8018 .1780 1985 1.1305 .8690 .0885 Fatu Rock (61) 2.5-4 m 1979 39 1982 36 .8086 .7055 .2401 1985 29 .8574 .7481 .1949 6 m 1982 .9224 .7843 .1566 1985 .9681 .8231 .1446 192 INTERNATIONAL SPECIAL LIBRARIANS DAY APRIL 17,1997 INFLUENCE of Acanthaster-INDUCED CORAL KILLS on FISH COMMUNITIES AT FAGATELE BAY and at CAPE LARSEN During 1978 and 1979, a population explosion of Acanthaster planci killed a large proportion of the reef corals around Tutuila Island. An estimated 80-90% of the corals were killed on the reef fronts of Fagatele Bay and Cape Larsen during October 1978. Fish transects censused before and after the coral kills in these two areas facilitate analysis of the impact of this perturbation on the fish communities Fishes were censused three times at Cape Larsen prior to the coral kill and two times subsequently, including the census done in April 1985. The results of these transects are listed in Table 31. Fishes were censused once at Fagatele Bay just prior to the coral kill and again in April 1985. These results are listed in Table 32 along with the results of two censuses conducted at Sita Bay over the same time period. In contrast to the other two areas, the corals at Sita Bay were largely untouched by Acanthaster planci. Sita Bay, therefore, serves as a control. Differences between its two censuses are a measure of population changes resulting from factors other than an extensive coral kill, as well as a measure of data variability and the precision of the method. The latter two factors can also be examined through comparison of the first three columns of Table 31 depicting the results of Cape Larsen censuses conducted only four days apart (a period of time too short to result in any real population changes) and ten weeks apart. The unusually large numbers of Ctenochaetus striatus in April 1985* again confuse the analysis. In each of the three study areas, the total number of all fishes censused in 1985 exceeds the totals for each of the previous 193 TABLE 31. Fishes enumerated or observed during repetitive transects conducted at Cape Larsen before and after an extensive coral kill by Acanthaster planci late in 1978. The columns are headed by transect dates. 10-VI-77 14-VI-77 26-VIII-77 4-1-79 9-IV-85 Saurida gracilis Synodus sp. P I Flammeo sammara 1 P Myripristis berndti 4 8 2 4 2 Sargocentron diadema 2 Sargocentron lacteoguttum 1 Sargocentron microstoma. P P 4 Sargocentron tiere 1 2 3 P 5 Aul-ostomus chinensis 1 Pterois volitans P Caracanthus maculatus P Anthias pascalus Cephalopholis argus 3 4 3 4 P Cephalopholis-leopardus 1 P Cephalopholis urodelus 5 5 P 2 8 Epinephelus hexagonatus Epinephelus tauvina. 1 1 Variola louti P P P P P Cheilodipterus quinquelineatus P Caranx melampygus 1 1 Caesio xanthonotus 8 Pterocaesio tile P 194 10-VI-77 14-VI-77 26-VIII-77 4-1-79 9-IV-85 Aphareus furcatus p p p p p Lutjanus bohar p p p p p Lutjanus fulvus p p 1 p Lutjanus monostigma p p Macolor niger p p p p I Plectorhynchus orientalis p p Gnathodentex aureolineatus 12 8 p p p Monotaxis grandoculis p p p p Mulloides flavolineatus 13 11 2 1 4 Mulloides vanicolensis p Parupeneus bifasciatus p p p 1 2 Parupeneus chryserydros p p 2 p 6 Parupeneus trifasciatus p 1 p 2 Pempheris oualensis p 3 5 2 5 Ky_phosus cinerascens 1 p p p 2 Chaetodon ephippium p p p p Chaetodon lunula p p p Chaetodon melannotus p p Chaetodon ornatissimus 1 p p p p Chaetodon pelewensis p p p p p Chaetodon rafflesii p Chaetodon reticulatus 4 5 9 2 4 Chaetodon semeion p Chaetodon trifascialis 1 1 p p Chaetodon trifasciatus p p 1 p Chaetodon vagabundus p p 2 p 195 10-VI-77 14-VI-77 26-VIII-77 4-1-79 9-IV-85 Forcipiger flavissimus p p p Forcipiger longirostris p p Heniochus chrysostomus 2 Heniochus varius p p 2 2 Centropyge flavissimus 2 7 2 p 5 Centropyge loriculus p Pomacanthus imperator p Pygoplites diacanthus p p 2 p 2 Amphiprion.chrysopterus p p Chromis acares 35 47 24 16 3 Chromis agilis p Chromis iomelas I p 5 p p Chromis margaritifer 7 6 12 7 1 Chromis vanderbilti 1 p p C. weberi p p p 4 Chromis xanthura 20 14 p 24 Chrysiptera cyanea 9 9 17 9 5 Chrysiptera.leucopoma p Dascyllus reticulatus p NeoRomacentrus metallicus p 5 14 16 6 Plectroglyphidodon dickii 107 107 129 58 8 Plectroglyphidodon johnstonianus 8 6 8 7 1 Plectroglyphidodon lacrymatus 19 21 37 39 67 Pomacentrus brachialis 73 56 80 78 40 Pomacentrus vaiuli 3 6 5 1 9 Pomachromis richardsoni p Stegastes fasciolatus 5 6 5 6 12 196 10-VI-77 14-VI-77 26-VIII-77 4-1-79 9-IV-85 Neocirrhites armatus p Paracirrhites arcatus 12 16 19 7 3 Paracirrhites forsteri 1 2 1 1 1 Paracirrhites hemistictus p Anampses caeruleopunctatus p p p Anampses meleaarides p p p p Anampses twistii 2 1 5 p p Bodianus axillaris 2 2 1 p p Cheilinus oxycephalus 2 Cheilinus trilobatus p Cheilinus undulatus p Cheilinus unifasciatus p p 2 p 1 Coris aygula p Epibulus insidiator p 2 Gomphosus varius 10 2 16 16 9 Halichoeres hortulanus p p p p 2 Halichoeres margaritaceus 1 Halichoeres marginatus p 1 2 2 Hemigymnus fasciatus p p p p p Labrichthys unilineatus p p 2 1 Labroides bicolor 2 p p p Labroides dimidiatus 3 4 2 1 6 Labroides rubrolabiatus 2 2 5 2 8 Labropsis xanthonota p p Macropharyngodon meleagris p p p p 1 Novaculichthys taeniourus 197 10-VI-77 14-VI-77 26-VIII-77 4-1-79 9-IV-:85 Pseudocheilinus hexataenia 8 15 7 3 4 Pseudocheilinus octotaenia p Stethojulis bandanensis p Stethojulis trilineata 1 Thalassoma fuscum p Thalassoma hardwickei 5 2 1 8 5 Thalassoma quinguevittatum 2 2 4 3 4 Calotomus sandwicensis p Scarus brevifilis 1 p p Scarus frenatus p p 2 p p Scarus frontalis p Scarus gibbus 1 p p p p Scarus japenensis p 1 p I p Scarus niger 1 p 1 p 1 Scarus oviceps p p Scarus psitticus p 2 Scarus rubroviolaceus p p p p p Scarus sordidus p p p 1 5 Scarus spinus p Scarus tricolor p p 1 Parapercis cephalopunctata p Cirripectes stigmaticus 9 13 6 4 15 Meiacanthus atrodorsalis p p p 1 2 Ecsenius bicolor I Exallias brevis 1 Ptereleotris evides 4 p p p p 198 10-VI-77 14-VI-77 26-VIII-77 4-1-79 9-IV-85 Zanclus cornutus 1 p Acanthurus achilles 1 p Acanthurus glaucopareius 2 3 6 6 6 Acanthurus guttatus p p p p p Acanthurus lineatus p p 1 1 p Acanthurus maculiceps p p p Acanthurus nigricauda 3 Acanthurus nigrofuscus 5 5 4 10 45 Acanthurus olivaceus p p Acanthurus thompsoni p p 4 Acanthurus xanthopterus p Ctenochaetus striatus 37 47 45 27 326 Ctenochaetus str@gosus p 1 3 1 p Naso lituratus p p p 1 2 Naso tuberosus p Naso unicornis p Zebrasoma scopas 1 p Zebrasoma veliferum p p p p p Sip2anus argenteus p Balistapus undulatus p p p p p Melichthys vidua 2 2 p p 1 Amanses scopas 1 1 2 2 Cantherhines dumerili p p 2 p p Cantherhines pardalis 1 p p p 1 Oxymonacanthus longirostris p 1 Pervagor melanocephalus 2 Ostracion melea&ris p p p 1 1 199 10-VI-77 14-VI-77 26-VIII-77 4-1-79 9-IV-85 Arothron nigropunctatus P 1 Canthigaster solandri 2 5 1 Total No. of Species 101 93 104 105 104 On-Transect Species 52 43 54 52 56 On-Transect Individuals 465 466 522 393 668 Shannon-Wiener Diversity 1.2846 1.2596 1.2692 1.2939 1.0105 Index H Evenness Component of .7486 .7711 .7326 .7540 .5780 Diversity J Simpson's Dominance .0986 .0968 ;1058 .0883 .2590 Index 200 TABLE 32. Fishes enumerated or observed during repetitive transects conducted at Fagatele Bay and Sita Bay before and after Tutuila reefs were impacted by an extensive coral kill by Acanthaster planci late in 1978. The coral kill at Fagatele Bay was heavy while -corals at Sita Bay received little damage. FAGATELE BAY SITA BAY 25-IX-78 12-IV-85 17-VI-77 10-IV-85 Flammeo sammara 2 4 Myripristis berndti 10 1 Myripristis kuntee 3 Myripristis violaceus 1 1 Sargocentron tiere 2 Aulostomus chinensis P 3 Anthias pascalus P P Anyperodon leucogrammicus 1 Cephalopholis araus P P P P Cephalopholis urodelus P 3 5 4 Epinephelus tauvina 1 Gracila albomarginata P Malacanthus latovittatus P Scomberoides lysan P Caesio caerulaureus P Caesio xanthonotus P P Pterocaesio kohleri 9 P Pterocaesio tile 5 Pterocaesio sp. 8 Aphareus furcatus P 1 P 1 Lutjanus bohar P P P P Lutjan2s fulvus 2 P Lutianus gibbus P 201 FAGATELE BAY SITA BAY 25-IX-78 12-IV-85 17-VI-77 10-IV@85 Lutjanus monostigma 1 p Macolor niger p p p p Plectorhynchus orientalis p p Gnathodentex aureolineatus p 3 p Monotaxis grandoculis p p p p Mulloides flavolineatus 2 2 7 15 Mulloides vanicolensis p Parupeneus bifasciatus p 3 2 p Parupeneus chryserydros 1 1 2 8 Parupeneus trifasciatus p p 3 6 Pempheris oualensis p 6 6 Kyphosus cinerascens p p p p Chaetodon bennetti p Chaetodon ephippium p p p Chaetodon lunula p 1 Chaetodon melannotus 3 p Chaetodon ornatissimus 1 3 Chaetodon pelewensis 1 p p Chaetodon rafflesii p Chaetodon reticulatus 1 2 4 3 Chaetodon semeion p Chaetodon trifascialis 5 p 4 1 Chaetodon trifasciatus p 3 1 Chaetodon ulietensis p p Chaetodon unimaculatus 2 p Chaetodon vagabundus p p 202 FAGATELE BAY SITA BAY 25-IX-78 12-IV-85 17-VI-77 10-IV-85 Forcipiger flavissimus 1 p Forcipiger longirostris 1 Hemitaurichthys polylepis p 7 Heniochus chrysostomus p p Heniochus monoceros p Heniochus varius p p p Centropyge bispinosus 2 2 Centropyge flavissimus p 2 3 4 Centropyge loriculus p Pomacanthus imperator p Pygo2lites diacanthus 1 1 1 p Abudefduf viagiensis p p Chromis acares 72 p 55 p Chromis agilis 4 p Chromis atripectoralis 8 p p p Chromis iomelas 19 48 6 p Chromis margaritifer 2 5 Chromis vanderbilti p Chromis xanthura 13 1 22 4 Chromis sp. A. 4 p Chrysiptera cyanea 49 19 Dascyllus reticulatus 3 Dascyllus trimaculatus 1 2 Neopomacentrus metallicus 28 15 Plectroglyphidodon dickii 115 p 85 66 203 FAGATELE BAY SITA BAY 25-IX-78 12-IV-85 17-VI-77 10-IV-85 Plectrogly2hidodon johnstonianus 18 16 12 Plectrogly2hidodon lacrymatus 4 12 17 25 Pomacentrus brachialis, 12 5 79 23 Pomacentrus vaiuli 5 24 12 20 Stegastes fasciolatus 19 1 Paracirrhites arcatus 5 3 7 Paracirrhites forsteri 2 p 1 Paracirrhites hemistictus p p Anampses caeruleopunctatus p p Anampses meleagrides p p Anampses twistii p 2 Bodianus axillar is p 1 p p Cheilinus chlorourus 1 Cheilinus digrammus p p Cheilinus ox_ycephalus 1 2 3 Cheilinus trilobatus p Cheilinus unifasciatus p 2 1 2 Coris aygula p p Epibulus insidiator 1 p p 1 Gomphosus varius 8 4 7 11 Halichoeres biocellatus' p Halichoeres hortulanus p 2 1 1 Halichoeres marginatus 1 Halichoeres melanurus 2 Hemigymnus fasciatus p 1 p 2 204 FAGATELE BAY SITA BAY 25-IX-78 12-IV-85 17-VI-77 10-IV-85 Labrichthys unilineatus 3 p Labroides bicolor p p 1 p Labroides dimidiatus 2 1 6 3 Labroides rubrolabiatus p p 1 2 Labropsis xanthonota 2 p Macropharyngodon meleagris p 2 2 Pseudocheilinus evanidus p Pseudocheilinus hexataenia 1 5 5 Pseudocheilinus octotaenia p Pseudodax moluccanus p 1 Stethojulis bandanensis p p p Thalassoma hardwickei p 1 9 2 Thalassoma lutescens 3 5 Thalassoma quinguevittatum 2 2 Calotomus sandwicensis 1 p 1 Cetoscarus bicolor p p Scarus brevifilis p Scarus dimidiatus p Scarus frenatus p p Scarus gibbus p 2 1 p Scarus japanensis p p 3 4 Scarus niger 2 p Scarus oviceps p p Scarus psitticus p p p 205 FAGATELE BAY SITA BAY 25-IX-78 12-IV-85 17-111-77 10-IV-85 Scarus rubroviolaceus p p P p Scarus schlegeli p Scarus sordidus 4 5 1 2 Scarus spinus p p Scarus tricolor p 3 Scarus sp. 3 Cirripectes stigmaticus 1 16 4 Exallias brevis p Meiacanthus atrodorsalis 9 p Plagiotremus tapeinosoma 2 1 Ptereleotris evides p p p p Zanclus cornutus 1 p 1 Acanthurus bleekeri p p Acanthurus glaucopareius 3 8 6 9 Acanthurus guttatus p p Acanthurus lineatus p p p p Acanthurus nigricauda p Acanthurus nigrofuscus 2 23 3 24 Acanthurus nigroris p Acanthurus olivaceus p Acanthurus pyroferus p p Acanthurus thompsoni 2 Acanthurus triostegus p Acanthurus xanthopterus p p 206 FAGATELE BAY SITA BAY 25-IX-78 12-IV-85 17-VI-77 10-IV-85 Ctenochaetus striatus 10 280 49 321 Ctenochaetus strigosus 6 14 Naso lituratus 2 3 1 1 Zebrasoma scopas 2 18 4 4 Zebrasoma veliferum P Siganus argenteus P P Siganus punctatus P Gymnosarda unicolor P Balistapus undulatus P P P 2 Melichthys vidua 2 P 1 1 Sufflamen bursa P P Aluterus scriptus P Amanses scopas 4 P P 2 Cantherhines dumerili P P P Cantherhines pardalis P 1 P Oxymonacanthus longirostris P 2 Pervagor melanocephalus 6 Ostracion meleagris 1 P 1 1 Canthigaster solandri 1 5 Total Species 113 107 96 88 On-Transect Species 47 51 55 57 On-Transect Individuals 368 539 582 684 Shannon-Wiener Diversity Index 1.1675 .9748 1.3512 1.0677 Evenness .6982 .5708 .7764 .6080 Simpson's Dominance Index .1476 .2857 .0724 .2376 207 censuses. When the numbers of C. striatus are subtracted from each total, however, the 1985 totals are each less than the earlier totals for the same area. The number of transects conducted before and after the Acanthaste'r infestation are relatively few and the data are highly variable so only a few conclusions can be drawn with any degree of confidence. As with the corals, it appears that the total number of fish was little affected by the coral kill. The total number of species in the Cape Larsen censuses averaged 99 for the three censuses before the kill and 104 for the two censuses after the kill. At Fagatele Bay, the total dipped from 113 to 107, but the decrease at Sita Bay (the control) from 96 to 88 was even more drastic, so the Fagatele decrease cannot attributed to the coral kill. A few gross changes in species numbers are evident from the tables and are likely to be results of the Acanthaster population explosion and subsequent coral devastation. Clearly, the numbers of the damselfishes Plectroglyphidodon dickii, and probably Plectroglyphidodon johnstonianus, have been reduced. Both are known to associate with and feed on Acropora corals. There is some indication that a few of the surgeonfish species have increased, although the basis for this conclusion is clouded by the unusually large population of juvenile Ctenochaetus striatus. An increase in surgeonfish populations might be expected as most species of this family feed on benthic algae which grows on dead coral substrate. The damselfish Plectroglyphidodon lacrymatus seems also to have increased significantly after the coral kill. It, too, is known to feed primarily on benthic algae. Overall, the impact of the extensive coral kill on the fish communities of Tutuila Island appears to be surprisingly small. Species diversity and numbers of individuals remain high. Although there are no data relative to 208 fish biomass, in the subjective opinion of the author, that too is probably unchanged. Fishes targeted by Samoan fishermen appear as plentiful and as large as ever. 209 Acknowledgments Bill Thomas, Assistant Project Manager, Sanctuary Programs Division, NOAA, was the catalyst for this project. He contacted us to inform us of the program, designed the objectives in the Statement of Work, and arranged for the creation and funding of the program. This project would not have been accomplished if he were not involved. The cooperation of the Office of Marine Resources, Government of American Samoa, was superb. Despite demands on their boats and equipment for other projects, they were always able to accommodate us, and we were able to work in the field every day during our 2-week stay. Mr. Raymond Tulafono, Director of the Office of Marine Resources (OMR), gave us full support and provided use of their 28-ft catamaran MASIMASI for all our work at Fagatele Bay and use of their Zodiac, outboard motor, truck and trailer for work at other sites around the island. Their scuba air compressor provided us with 143 air fills during our 2 weeks of intensive field work. Mr. Raymond Buckley, Chief Fishery Biologist at OMR, was instrumental in interweaving our use in boats with their schedule of use so that all projects were accomplished and nobody was put on hold. Ray Buckley, David Itano and Fa'asega "Stu" Kuresa also gave us substantial field help in boat operation, laying out and retrieving fish transect lines, and taking depth contour readings. Dave and Stu even helped us with field work on weekends and on Good Friday. David Itano also made a particular effort to observe and practise our survey and sampling techniques in order to provide continuity to the monitoring of the transects after we have left. It is when we get such full cooperation from other institutions on projects like this that we feel marine science is a profession with a particular comraderie. 210 Ideia Sackryas diligently drafted the maps and figures for our report. This was not an easy job because the aerial photographs were not directly vertical. Therefore locations had to be determined and distances had to be checked by triangulation. We are also grateful to Marie Peredo and Diane Fuller for patiently typing this manuscript and the 149 pages of tabular material. Mei Tsu volunteered to log the data into the IBM PC for analysis and proofread much of the tabular material. 211 REFERENCES CITED Biggs, P., and D. F. Eminson. 1977. Studies on algal recolonization of coral predated by the crown of thorns starfish Acanthaster planci in the Sudanese Red Sea. Biol. Conserv. 11:41-47. Birkeland, C. 1978. Other macroinvertebrates. Pages 77-90. In R. H. Randall (ed.), Guam's reefs and beaches. Part II. Transect studies. Univ. Guam Mar. Lab. Tech. Rept. 48. 90 p. Birkeland, C. 1981. Acanthaster in the cultures of high islands. Atoll Res. Bull. 255:55-58. Birkeland, C. 1982. Terrestrial runoff as a cause of outbreaks of Acanthaster planci (Echinodermata: Asteroidea). Mar. Biol. 69:175-185. Birkeland, C. 1983. Large-scale fluctuations of tropical marine populations. Are they natural events? The Siren 22:13-17. Birkeland, C., and R. H. Randall. 1979. Report on the Acanthaster planci (alamea) studies on Tutuila, American Samoa. Report submitted @o the Division of Marine Resources, American Samoa. 50 p. Bourdeau, P. F. 1953. A test of random versus systematic ecological sampling. Ecology 34:499-512. Cary, L. R. 1931. Studies on the coral reefs of Tutuila, American Samoa with special reference to the alcyonaria. Pap. Dept. Mar. Biol. Carnegie Inst., Washington, D.C. 27:53-98. Cochran, W. G. 1963. Sampling techniques. J. Wiley and Sons, New York. 413 p. Colgan, M. W. 1981. Succession and recovery of a coral reef after predation by Acanthaster planci (L.). Proc. Fourth Internat. Coral Reef Symp. 2:333-338. Cottam, G., and J. T. Curtis. 1956. The use of distance measures in phytosociological sampling. Ecology 37:451-460. Cottam, G., J. T. Curtis, and B. W. Hale. 1953. Some sampling characteristics of a population of randomly dispersed individuals. Ecology 34:741-757. Cox, G. W. 1972. Laboratory manual of general ecology. Wm. C. Brown, Dubuque, Iowa. 195 p. Dahl, A. L. 1971. Ecological report on Tutuila, American Samoa. Smithsonian Institution, Washington, D.C. 13 p. Dahl, A. L. 1972. Ecology and community structure of some tropical reef algae in Samoa. Proc. Internat. Seaweed Symp. 7:36-39. 212 Devaney, D. M. 1974. Shallow-water asterozoans of southeastern Polynesia. II. Ophiuroidea. Micronesica 10(l):105-204. Devaney, D. M., and J. E. Randall. 1973. Investigations of Acanthaster planci in southeastern Polynesia during 1970-1971. Atoll Res. Bull. 169. 35 p. Eldredge, L. G. 1979. Noncommercial marine invertebrates of Hawaiian, Samoan, and Micronesian waters. Pages 7-1 to 7-50. In J. E. Byrne (ed.), Literature review and synthesis of information on Pacific island ecosystems. U.S. Fish & Wildlife Serv., Off. Biol. Serv., FWS/OBS-79/35. Elliott, J. M. 1971. Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association Scientific Publication No. 25. 148 p. Endean, R. 1973. Population explosions of Acanthaster planci and associated destruction of hermatypic corals in the Indo-West Pacific region. Pages 389-438. In 0. A. Jones alid R. Endean (eds.), Biology and geology of coral reefs. Volume II. Biology 1. Academic Press, New York. xxi + 480 p., Endean, R. 1976. Destruction and recovery of coral reef communities. Pages 215-254. In 0. A. Jones and R. Endean (eds.), Biology and geology of coral reefs. Volume III. Biology 2. Academic Press, New York. xxi + 435 p. Endean, R., and W. Stablum. 1973. The apparent extent of recovery of reefs of Australia's Great Barrier Reef devastated by the crown-of-thorns starfish. Atoll Res. Bull. 168:1-26. Final Environmental Impact Statement and Management Plan for the Proposed Fagatele Bay National Marine Sanctuary (FEIS/MP). 1984. Prepared by Sanctuary Programs Division of the National Oceanic and Atmospheric Administration and by Development Planning Office of the Government of American Samoa. 135 p. Finney, D. J. 1948a. Volume estimation of standing timber by sampling. Forestry 21:179-203. Finney, D. J. 1948b. Random and systematic sampling in timber surveys. Forestry 22:64-99. Flanigan, J. M., and A. E. Lamberts. 1981. Acanthaster as a recurring phenomenon in Samoan history. Atoll Res. Bull. 255:59-61. Grieg-Smith, P. 1964. Quantitative plant ecology. Butterworth & Co., London. 256 p. Grosenbaugh, D. A. 1981. Qualitative assessment of the asteroids, echinoids and holothurians in Yap Lagoon. Atoll Res. Bull. 255:49-54. Hasel, A. A. 1938. Sampling error in timber surveys. J. Agric. Res. 57:713-736. 213 Helfrich, P. 1975. An assessment of the expected impact of a dredging project proposed for Pala Lagoon, American Samoa. Sea Grant Technical Report UNIHI-SEA GRANT-TR-76-02, Univ. Hawaii, Honolulu. viii + 76 p. Intes, A., and J. L. Menou. 1979. Quelques holothuries (Echinodermata) des environs de Noumea et leur repartition. 0. R. S. T. 0. M. Rapports Scientifiques et Techniques No. 3:1-15. Jones, R. S., and M. J. Thompson. 1978. Comparison of Florida reef fish assemblages using a rapid visual technique. Bull. Mar. Sci. 28:159-172. Jordan, D. S., and A. Seals. 1906. The fishes of Samoa. Pages 173-455. In Bulletin of the Bureau of Fisheries XXV. Loya, Y. 1978. Plotless and transect methods. Pages 197-217. In D. R. Stoddart and R. E. Johannes (eds.), Coral Reefs: Research 14-e-thods. Monographs on Oceanographic Methodology 5. UNESCO, Paris. 581 p. Madow, L. H. 1946. Systematic sampling and its relation to other sampling designs. J. Am. Stat. Assoc. 41:204-217. Marsh, L. M. 1974. Shallow-water asterozoans of southeastern Polynesia. I. Asteroidea. Micronesica 10(l):65-104. Mayor, A. G. 1920. The reefs of Tutuila, Samoa, in their relation to coral reef theories. Proc. Amer. Philosophical Soc. 19(3):2-14. Mayor, A. G. 1924. Structure and ecology of Samoan reefs. Carnegie Inst. Publ. 340. Depart. Mar. Biol. 19:1-25. Milne, A. 1959. The centric systematic area-sample treated as a random sample. Biometrics 15:270-297. Nishihira, M., and K. Yamazato. 1974. Human interference with the coral community and Acanthaster infestation of Okinawa. Proc. Second Internat. Coral Reef Symp. 1:577-590. Osborne, J. G. 1942. Sampling errors of systematic and random surveys of cover-type areas. J. Am. Stat. Assoc. 37:256-264. Pearson, R. G. 1981. Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser. 4:105-122. Randall, J. E., and D. E. Devaney. 1974. Marine biological surveys and resource inventory of selected coastal sites at American Samoa. U.S. Army Corps of Engineers, Pac. Ocean Div. 108 p. Setchell, W. A. 1924. Vegetation of Tutuila Island. Carnegie Inst. Publ. 341. Dept. Mar. Biol. 20:1-188. 214 Tsuda, R. T. 1973. Functional group analysis of the marine benthic algae in Fanning Lagoon, Line Islands. Pages 69-73. In K. E. Chave and E. A. Kay (eds.), Fanning Island Expedition, July and August 1972. Hawaii Inst. Geophysics Tech. Rept. HIG 73-13. U.S. Army Corps of Engineers, Honolulu District (USACEHD). 1980. American Samoa coral reef inventory. Prepared for Development Planning Office, American Samoa Government. Part A: text. Part B: Atlas. U.S. Army Corps of Engineers, Pacific Ocean Division, Honolulu. iii + 314 p. Vine, P. J. 1970. Densities of Acanthaster planci in the Pacific Ocean. Nature 228:341-342. Warde, W., and J. W. Petranka. 1981. A correction factor table for missing point-center quarter data. Ecology 62(2):491-494. Wass, R. C. 1978a. Fagatele Bay reef front and flat: list of species recorded along reef front ofi September 25, 1978, and along reef flat on February 15, 1978. Office of Marine Resources, American Samoa Government, Internal Report. Wass, R. C. 1978b. Current status of the crown-of-thorns starfish (Acanthaster _planci - "alamea") around Tutuila Island. Report to Governor P. T. Coleman. Prepared by Office of Marine Resources, Government of American Samoa. 7 p. Weber, J. N., and P. M. J. Woodhead. 1970. Ecological studies of the coral predator Acanthaster planci in the South Pacific. Mar. Biol. 6(l):12-17. Yates, F. 1946. A review of recent statistical developments in sampling and sampling surveys. J. R. Stat. Soc., London. 109:12-43. Yates, F. 1948. Systematic sampling. Philos. Trans. R. Soc. London Series A, 241:345-377. Yates, F. 1953. Sampling methods for censuses and surveys. Hafner Publ. Co., New York. 401 p. 215 Appendix i i. i I I Cu I., I i i vc,, rd- I I i o,a 'I i i Wiy h aiis@ct No. i"o I 9 12 1 1. 9 1-2 1 3 5 1) 1 3 CLASS-ANTHOZOA ORDER-SCLERACTINIA SUBBORDER-ASTROCOENIINA FAMILY-ASTROCOENIIDAE Stylocoeniella amata (Ehrenberg, 1834) x K x x x x x FAMILY-THAMNASTERIIDAE Psammocora contigua (Esper, 1797) x x Psammocora haimeana Milne Edwards and Hatme, 1851 x Psammocora We-irstraszi van der Horst, 1921 x x x Psaimnocora ap. I x x x x x x FAMILY-POCILLOPORIDAE Stylophora mordax (Dana, 1846) x x X x x x Pocillopora ankeli Sheer and Pillai, 1974 x Pocillopora danae Verrill, 1864 x Pocillopora elegans Dana, 1846 x x x x x x X X X x x Pocillopora eydouxi Milne Edwards and Haime, 1860 x x x x x x x x x Pocillopora ligulata Dana, 1846 x F- ON Pocillopora meandrina Dana, 1846 x x x x Pocillopora setchelli Hoffmeister, 1929 ix x x x x x x x Pocillopora verrucosa (Ellis and Solander, 1786) x x x x x X X X X x x Pocillopora sp. 1 (Juvenile) x x x FAMILY-ACROPORIDAE Acropora (Acropora) actuningta Verrill, 1864 x Acro2ora (A.) azurea Veron and Wallace, 1984 x x x x Acropore (A.) cerealis (Dana, 1846) x Acropora (@.) qjjiktLt!-_rA (Dana, 1846) x x x x x x x x x x x x Acr2l!ora (A.) cf. gemmifera (Brook, 1892) x x x x x x ,@crppora (A.) humilis (Dana, 1,846) x Acropora (A-.) hyacinthus (Dana, 1846) x x x x x x x x x x x X" X, Acrokura (A.) irregularis (Brook, 1892) x x x Acr22ora (A.) cf. nana (Studer, 1878) Acropora (A.) monticulosa (Br"ggemann, 1879) x AcroL)ora (A.) nobilis (Dana, 1846) 1 x x x x x x x x x 'ra,.-@L No. Z La L I ,is I)CI) 01 WeLerti) 5 9 12 1 3 5 9 12 1 3 5 9 12 1 Acropora (A.) ocellata (Klunzinger, 1879) x x x Acropora (A.) pagoensts Hoffmeisteri, 1925 x x x Acropora (A.) palmerae Wells, 1954 x Acropora (A) robusta (Dana, 1846) x x x x Acropor- (A.) samoensis (Brook, 1891) x Acropora (A.) cf. squarrosa (Ehrenberg, 1834) x x x Acropora (A.) tenuis (Dana, 1846) x Acrop ra (jL) -@ututlenats Hoffmetstert, 1925 Acropora (A.) valida (Dana, 1846) x Acropora (A.) yougel Vercin and Wallace, 1984 X X Acrop ra (A.) ap.1 Acrop ra (Isopora) crateriformis (Gardiner, 1898) x x x x x x x x Acropora (I.) palifera (Lamarck, 1816) x x x x Astreopora sp.1 x Montipora berryl Hoffmeistert, 1925 x Montipora caliculata (Dana, 1846) x x x x Montipora ehrenbergii Verrill, 1872 x Montipora elschneri Vaughan, 1918 x x x Montipora foveolata (Dana, 1846) Montipora lobulata Bernard, 1897 x Montipora tuberculosa (Lamarck, 1816) x x Montipora venosa (Ehrenberg, 1834) x Kontipor verrill Vaughan, 1907 x x x Montipora sp.1 x x x Montipora sp.2 x Montipora ap.3 x x x SUBORDER - FUNGIINA FAMILY - AGARICIIDAE Pavona divaricaLa (Lamarck, 1816) x x @x x Pavona duerdeni Vaughan, 1907 x x x x Pavona venosa (Ehrenberg, 1834) x x x Pavona @-p - -I x x x x Pavona sp.2 Pavona sp.3 x x x x Gardineroseris planulata (Dana, 1846) x x Curals .... .. 9 12 9 .9 FAMIJA - SIDERASTREIDAE Coscinaraea columna (Dana, 1846) x x x Coscinaraea Sp. I x x x FAMILY - FUNCIIDAE Fungla (Verrillofungia) repanda Dana, 1846 x E!!@a (Pleuractis) scutarta Lamarck, 1801 x 1 x x x FAMILY - PORITIDAE Goniopora somaliensis Vaughan, 1907 x L'2a!2pork@ sp. I x !@o r it e s Olorites) anni!e Crossland, 1952 x x L _ I@u r i t iL!j (P.) Eylitj4ric@ Dana, 1846 x x x Lyrites (P.) lichen Dana, 1846 Porites (P.) fut-ea--milne Edwards and Ilaime, 1860 x x x x x !1orl tes (P.) murra ensis Vaughan, 018 x @x Port tes (P.) sp. i x x I Porites sp.2 x x x x x x x x x x x x x N@r I tL x x x x x x sp.3 Porites (Synaraea) rus, (Forskal, 1775) x x x x x x x x @�ra @.@erltciaLis Scheer and Pillai, 1976 x !@'Iveopora virldis Quoy and Gaimard, 1833 x x x x F1 SUBORDE FAVIINA OD FAMILY FAVIIDAE Caulastrea fureata Dana, 1846 x x x Favia favus (Forskal, 1775) x x FLia @;at6iali Vaughan, 1918 x x ---- F x @av a j@@ (Dana, 1846 i@;v i arotumana (Gardinvr, 1899) x !@@v La !@tel @tja (Dana, 1846) x x x Favites cf. cLnj@14nat:a (Ehrenberg, 1834) x x x x x -vi- - - '. I I jj@_s c I halicur-a (Ehrenberg, 1834) Gonlastrea edwardsi (Clievalier, 1971) x G q- form s (Lamarck, 1812) K Ix x x x x x 01 asCr@7a @-eti Coniastr@a sp.1 x 1, _L@Lyo e d aj@e s and Solander, 1786) x x x @:a (Elli, Le Tt,ori_@! L@hrygia (Ellis and Solander, 1780) K x x x x x x x x Cva"sCCL No. 2 S[aLioll D@1)01 (weLertj) 5 9 12 1 3 5 9 12 1 3 5 9 12 1 Hydnophor exesa (Pallas, 1766) x Hydnophora microconos (Lamarck, 1016) x x Hydnophora rigida (Dana, 1846) x MonLaStrea annuligera (Milne Edwards and Haime, 1849) x x x x Montastrea curta (Dana, 1846) x x x x X X x Leptastrea purpurea (Dana, 1846) x x x x x Leptastrea transversa Klunzinger, 1879 Leptastrea sp.1 x Cyphastrea serailia (Forskal, 1775) x Cyphastrea sp.1 x x x Echinopora hirsutissim Milne Edwards and Haime, 1849 x x x x x Echinopora lamellosa (Esper, 1795) x FAMILY - OCULINIDAE Galaxea fascicularis (Linnaeus. 1767) x x x x x x x x x FAMILY - MERULINIDAE Merulin ampliata (Ellis and Solander, 1786) x x x Merulina vaughani Van der Horst, 1921 x x FAMILY - MUSSIDAE Acanthastrea echinata (Dana, 1846) F@ I:obophylli (Forskal, 1775) x Lobophyllia costata (Dana, 1846) x x Symphyllia recta (Dana, 1846) FAMILY - PECTINIIDAE Echinophyllia asper (Ellis and Solander, 1786) x x I SUBORDER - CARYOPHYLLIINA FAMILY - CARYOPHYLLIIDAE Euphyllia glabrescens (Chamisso and Eysenhardt, 1821) x x SUBORDER - DENDROPHYLLIINA FAMILY - DENDROPHYLL11DAE Turbinaria reniformis Bernard, 1896 Tradisect no. 2 3 SLaLiwl UpL11 (met- 3 5 9 12 1 3 5 9 12 1. CLASS - HYDROZOA ORDER - MILLEPORINA FAMILY- MILLEPORIDAE Millepora dichoLoma Forskal, 1775 x Millepora platyp Is Hemprich and Ehrenberg, 1834 x X X A I A X x Millepora tuberosa Boschma, 1966 x x x x x x x x Millepora sp.1 x x ORDER STYLASTERINA FAMILY STYLASTERIDAE !@y @asLer cf. gractlis Dana, 1846 x Total Species per Depth Isobar 24 19 22 24 42 37 19 14@3B 39 26 13 14 15 2 Total Species per Transect 47 74 63 Total Genera per Transect 19 29 26 Total Species for Fagatele Bay 115 Total Genera for Fagatele Bay r-j 35 APPEMIX 2. List of coral species recorded at locations outside Fagatele Bay in 1979, 1982 and 1985. Site 1 is i,asefau riay (Asaya Strait), 3 is Aoa f@ay, 4 is Onenoa, 5 is Aunuu, 6 is Matuli Point, 7 is Fagasa Bay, 8 is mabsacre Bay, 11 is Rairvitaker Hotel, and 12 is Fatu Rock. SITE 1 2 3 4 5 6 7 8 9 YEAR 79 H2 35 79 112 85 79 82 115 79 82 85 79 82 85 79 82 85 79 132 85 79 82 85 79 8 CLASS - AlIVIOMA ORDER - SCURAMNIA S'UFDRDM - MIMOCIOUJIVIA rAJ'JLY - ASMCCOE2111DAF Stylocoeniel I'd armata x x x (Ehrenberq, 1834) FAMILY - THANIUMERIMAE Psamocora contigua x x x (Esper, 1797) Psaguncora baiWAM x x Milne Edwards and Ilaime, 1851 Psanumora neirstra--zi van der Horst, 1921 Psaimpmra Hoffmeister, 1925 Psajivx=ra suivrficialps Gardiner, 1898 Psanuccora sp.1 x x x x x x x x FAMILY - POCILLOPORMAE Stvlmliora mrclax x x x (mm' 1846) SeriatoWgra crassa x Quelch, IM6 Seriatowra hystrix X X x x x x Dam, 1846 PocilloLara ankeli x sin 1 2 3 4 5 6 7 8 9 YEAR 79 82 05 79 82 85 79 82 85 79 82 65 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 pocillgWra dd= x x x x x x x x Verrill, 1864 pocillQWra clegam x x x x x x x x x x x x x x x x x x x x x Dana, 1846 pocillgWra aydoxi x x x x x x x x x x x x x x x x x x x x x x x x x tAlne Fdwards and Haim, 1860 Pocillopora liguLU& x x x x x x Dana, 1846 Pocillopgra MCQDLILiM x x x Dam, 1846 Pocillnonra -&tcbCjjj x x x x x x x x x x x x x x x x 11offneister, 1929 pc)cillg=ra ygLLuC2.cia x x x x x x x x x x x x x x x x x x x x x x x x (Ellis and Solander, 1786) pocillQWra ap.1 x x x x x x x x x x x x x MILY - ACFUPCRIDAE Acrgpora (Acropgral abrotanoidgs x x x (Lanharck, 1616) Acrgl)ora (A,,) a-imirtat-a x Verrill, 1864 Ar-rot)ora (&j a&uL= x x x x x x x x x x x x x x x x x x x x x Veron and Wallace, 1984 Acrot@ura (11.) rlat-hrata (Brook, 1891) Acrooora QIJ conj@lanata x x (r,rook, 1891) Acrj"ra (b_) cerealis x x x (Dana, 1864) AcrQjzra (L,) cytherea x x x x x x x (Dam, 1846) Acrgpora (11,) daD&i x x x x x x x (Milne Fdwards and Mine, 1860) Acrgliora (a,) digitifera x x x x x x x x x x x x x x (rxma, 1846) AcroLara (,3_) divaricata x x x x x x Oana, 1746) SrrE 1 2 3 4 5 6 7 8 9 WAR 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 Agrgionra (L,) formnsa x x (Dana, 1846) AGLDWM (A@) cf. qcmdlaa x x x x x x x x x x x x x x (Brook, 1892) AcrgWra (A-) h&-g- x x x x x (Dana, 1846) Acramra (AJ himilir, x x x x x x x x x x x x x (Dana, 1046) AcrgWra (&j hyacinthus x x x x x x x x x x x x x x x x x x x x x x x x x x x (Dana, 1846) AcropQra (A.) irregularis x x x x x x x x x x x x x x x X x x (Brook, 1892) AQLQPUA (A,) monticillm-a x x x x x x x x (Bruggemam, 1879) Agul"A W Dam x x x (Studer, 1878) AcrgWra (Aj nagnt-a x x x x x x x (Dana, 1846) Acrglara (&j DQUjW x x x x x x x x x x x x x (Dana, 1846) AGLQD= (AJ ngellata x x x x x x x x (Klunzinger, 1879) Arrmara (Aj x x Hoffneister, 1925 Acropora (Aj VdLW.L= x x x x x Wells, 1954 Ayrnmra (&) paxilligera x x x x x x x x x x x x x x x x (Dana, 1846) AcrWara (A.) rant)leri x (Bassett-Saiith, 1890) Acromra (A.) rokmist-a x x x x x x x x x x x (Dana, 1846) Acromra (A,) x x x x x x (Brook, 1691) AcrQWra (A@j .92UAW= x x (Brook, 1892) Acropura (&j cf. agjQLLQqa x x x x x x x x x x x (Ehrenberg, 1834) Acrapora (&j x x x x (Dana, 1846) SITE 1 2 3 4 5 6 7 8 9 YWI 79 Q 85 79 Q 85 79 82 85 79 82 65 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 7 Acr"ra (Aj symetrica x x x (Brook, 1891) AvrgWra (&,) hituilerigis x x x x x 11offmister, 1925 AcrQlQra (Aj valitia x (Dana, 1846) ArrgWra (AJ Veron and Viallace, 1984 AcrQMra sp.1 x x x X X Y. X X X x X x X x x x x x x x x AvrgWra sp.2 X x x x x Acropora sp.3 x AcrQWra (IsoLQra) crater iforiAs x X Y x x x x x x x x x x x x x x x x x x (Gardiner, 1090) AcrQWra (W L&jjL= x (I.mitarck, 1816) Astreoijora PI I ii*im Yabe and Wgiyajru, 1941 Antre"ra myriolAithalma x x x x X X x x x x (L.viiarck, 1816) to Astrenuora Land" x x x N) Lanberts, 1980 4.1 Astrg"ra sp.1 x x x x x 11antipgra berryi x x Hoffneisteri, 1925 fvxitit4ra mlei x x x Wells, 1954 tinntingra gUU&Qajta x x x Crossland, 1952 finntiiara vAlictilata x x x x (Dana, 1046) I-Inntipura ehrentx-r9ii x x x x x x x x x x x x x Verrill, 1872 I.VxltipQra elselinpri x x x x x x x x x x x x x x Vauglen, 1918 llpnti%@gra folitis-n x x (Pallas, 1766) Mantipara fovenlata x x x (Dana, 1846) nontiLara j(LAUUI= x Bernard, 1897 SnE 1 2 3 4 5 6 7 8 9 YEAR 79 B2 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 7 flontii)pra hisuida x x x x (Dana, 1846) [4nntiWra hnfficteisteri x Wells, 1954 informis x I*rnard, 1897 flontiLQra Ic"ilata x Bernard, 1897 t-Innt-iogra mar-balli-n-gis x Wells, 1954 Montipgra socialis x x x x x Bernard, 1879 FtontiLmra tulberenlo.-A x x x x (Lawarck, 1816) Mot-iLs)ra vennsa x x x x x (Ehrenberg, 1834) montipora vorrilli X x x x x x x x x x x x x x x x x x x x Vaughan, 1907 Mnntipora sp.1 x x x x x x x Montipgra sp.2 x LWnLipa& sp. 3 x x x x x x x x SIMORM - FIRIGIINA MILY - AGARICHME Paynna clams x (Dana, 1846) PaVnna dP<mq&at-a x x (Dana, 1846) Payona cf. diffinpng, x x x (Lamarck, 1816) paVopa diVarivAta x (Lamarck, 1816) &y= dait-rdprii x Vaughan, 1907 Payona explanulfi-ita x x x x (Lamarck, 1816) Payona maldiwnsis x x x x x x (Gardiner, 1905) SITE 1 2 3 4 5 6 7 8 9 YFAR 79 02 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 02 05 79 82 85 79 Pavorka minuta x Wells, 1954 Payom x x x x X x x x x x x x x x x x x x Verrill, 1064 Payona yonona x x x x x x x (Ehrenberg, 1834) Payona sp. 1 x x x x x x x x x x Payona sp. 2 x Eas= sp. 3 x x x x x x x x x x x x x x x x Clardineroseris @Iannlata x x (Dana, 11146) r&Ltoserir. incrimt-anq x x (Nelch, 1OC6) L,gL&os@@ris jikvvptncw@roidt-". x x x x 1&-Ils, 1954 Pachyspris LuUQW (Lamarck, 1801) Pachyseris x t-j (Dana, 1046) t'.) FABILY - SIDFRAc,'MIDAE rAcysimarapa minwria x x x x x x x x x x X x x x x x x x x (Dana, 1846) cQwjauarA sp.1 x x x x x x x x x x x x x x x x x FMILY - FtR)GIIDAP EUMia (Verrilloftiogia) cy@w-iprja x x Verrill, 1064 E"ia ()I,) reLkiodd x x Dana, 1846 Fungia (UwiatuugW clanai milne r-dwards arui itaim, 1851 Fungia (E"ia) f"ites x x x x x (Limaeus, 1750) Filnuia (Pleuragtip, &c-nitaria x x x x Lamarck, 1801 llari&toulo'sa 51flulux x (Gardiner, 1901@-) SITF 1 2 3 4 5 6 7 8 9 YEAR 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 Herpolitha lijfox x x (Houttuyn, 1772) JkLjQmjLrA Ri I Pus x (Linnaeus, 1758) ,ganddialliba re"inta x x (()uelch, 1886) MILY - PORITIDAE conirmnra mlimma x x (Dana, 1846) GmiQp= imalifflaia x x Vaughan, 1907 r0niQDQra S13.1 x x x x W=i=) Ann= Crossland, 1952 Porites (p,) cylindrica x x x x x x x x nana, 1846 (2,) lichen x x x x x x x x x x x x x x x x Dana, 1846 Porites (p,) 1jabata x x Dana, 1846 Porites (P,) Intoa x x x x x x x x x x x x x x x x Itilne Edwards and uaime, 1860 Porites (F,) x x x x Vaughan, 1918 Par ites (2.j st-f-phensolii x Crossland, 1952 Porites sp.1 x x x x x Porites sp.2 x x x x x x x x x x x x x x x x x x x x x x X x x x Porites; sp.3 y x x x x x x Porites sp.4 x x x (Z=aLaca) mnvexa (Verrill, 1864) (L!,) horizontalata x x (11offiteister, 1925) Pcirites (,'L,) monticulasa x x x x x x (Dana, 1846) Porites (aj nW x x x x x x x x X x x x (mrskal, 1775) SME 1 2 3 4 5 6 7 8 9 YEAR 79 112 85 79 82 85 79 82 35 79 82 05 79 62 85 79 82 85 79 82 85 79 82 85 79 82 85 Alyg=ra jujv.Ljjajaj&& x x x Scheer and Pillia, 1976 Aly=Wra viridis x x x x x x x x x Qmy and Gabrord, 1833 AlyggWra sp.1 x x x x x x x x x x x SUDOMER - FAVIINA FIWILY - FAVIIDAC Favia faviis x x x x x (Forskal, 1775) mia baliantWidea x wells, 1954 Favia Ipat-thaii x x x x Vaughan, 1918 Mid Da I I ida x x x x x (Dwia, 1846) . rnbiriona x x x x x x x x x x x x x (Gardiner, 1999) Favia qtplligpra x x x x x x x x x x x x x x x x x (Dana, 1846) OD E&yi& sp-l x x x x Favites ahdita x x x x (Ellis and Solander, 1706) Favites r"Pplanata x x x x x x x x (Ehrenberg, 1834) Favites flpxlln.-,a x x x x x Ouia, 1846) Faviter. balimra x x x x x x x x x x x x x x (Ebrerd)erg, 1834) Favites russell x x x (Wells, 1954) Favites sp.1 x x Goniastrea anst-ralipil-sis x (Itilne Edwards and Rairtie-, 1857) C,nnia-qtrp.i edwardni x Chevalier, 1971 anniastrea, faynhis x x x x (Dana, 1846) s M.: 1 2 3 4 5 6 7 8 9 YPW 79 B2 85 79 82 115 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 SUDOPDM - CARYOPUYLLIINA FAMILY - CARYOPIIYLLIIDAF CarvoLAivllia sp.1 rui)hvllia glabre@x-ens x (dowisso and Eysentordt, P21) SUMMER - DEMIDPINIMINA Fti-ilLY - DENDPOPHYLL11DAE, nendrolAivIlia sp.1 'Dillant-rApa du= (Quoy and Gaimard, 1833) "irbinaria reniformis x x x x x x Bernard, 1896 CIAM - IIYDROZOA ORDER - 1111JXPORIM FAHILY - IIILLEPORIDAF millej)ora digbQLWQ x x x x x x x x x x Forskal, 1775 millQpora t)latyj@hylla x x x x x x x x x x x x x x x x x x x x x x x flenprich and Ehrenberg, 1834 flillepara tubprosu-4 x x x x Bosclutha, 1966 milleLQra sp.1 MDER - MYLASTERINA FNIILY - MYLASWERHAE F)isticWuc)ra gracilis x x DEma, 1846 stylaster ciracilis x x Milne Edwards and Ilaime, 1850 SM. 1 2 3 4 5 6 7 8 9 10 YFJVI 79 82 85 79 82 85 79 02 85 79 82 85 711 02 05 79 82 85 79 82 85 79 132 85 71.) 112 85 79 132 85 7 76 47 50 5 57 46 26 47 45 28 53 44 76 31. 29 40 M 22 54 62 40 24 41 46 52 67 47 6 30 39 4 Total 197 s1p. 108 72 69 74 92 60 91 67 91 56 Li SrrE 1 2 3 4 5 6 7 a 9 YrAR 79 82 85 79 82 85 79 112 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 Caajd@@LLaa i@=inata x (Ehrenberg, 1834) C@nniastrea retiformis x x x x x x x x x x x x x x x x (Lamarck, 1816) rnniastrpa sp.1 x Platy,(Zaa daptialt-a x x x x x x x x x x (Ellis and Solander, 1786) platygyra IdarjjjW- x x (Ehrenberg, 1034) PlatyWra ' ' x Chevalier, 1975 reptoria phrygia x x x x x x x x x x x x x x x x x x x x x x x (Ellis and Solander, 1706) allgityllia x (Lamarck, 1816) ilydnoLihora CA= x (Pallas, 1766) Ilytingubora ' x x x x x x x x x x x x (Lawarck, 1816) IlydDujAigra rigida x x x (Dana, 1846) tinnt-a--t-ri-a annuliopra x x (milne Edwards and flaime, 1849) tinntastren onrt-a x x x x x x x x x x x x x x x x x x x x x x x x (Dana, 1846) Plesiastrea x (Lamarck, 1816) niplowqtrea heliQWra x x x x x x x x (Lamarck, 1816) je4&,k&j= incersa x x x x Y Klunzinger, 1879 Lp"astrea UU"&L= x x x x x x x x x x x x x x x (Duo, 1846) LpLtastrea transyt-rna x x x x x Klunzinger, 1879 cypb,wtrea microphthalfin x x (Lmorck, 1016) C4@bastrea sprailia x (Forskal, 1775) CA)hastrea sf).l x x SITE 1 2 3 4 5 6 7 8 9 YFAR 79 112 85 79 82 65 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 79 82 85 7 Fx-hi=x3ra hirnuti-minn N x x x x x Milne Edwards and Ilaime, 1849 ErIdDQpQra lamplIma X x x x x x x (Esper, 1795) FNITLY - OCUL1141DAE Galaxpa fa-cirtilari--@ x x x x x x x x X X x x x x X X X (Linnaeus, 1767) PAMILY - W-RULINIDAE f-terkilina awii= x x (Ellis and Solander, 1786) 14-rulim vaughani x van der Horst, 1921 rlavarina triangularin x Veron and Pichon, 1979 Acnnt'hast-rga gghin= x x x (Dana, 1046) LAoLjQjUllia carynt)nsa x x x (Fbrskal, 1775) I"Aul I ia QQBL= x x x x x x (D,m, 1846) Tj-jWAjvlIia jwqij)rirhii x x x x x x x (Marenberg, 1834) S .,=Aivllia rprta x x x (Dana, 1846) IMVUllia 3111cocienne.-Lij x x x x Ilibue- Edwards ary3 Ilaime, 1849 FMILY - PfrrINIIW, Erhincakyllia -&.9j&jA x x x (Ellis and Solander, 1786) Hycedium Plephant-ntim, x (Pallas, 1766) OxUWra JaCCIA x (Verrill, 1064) 36668141076291 3 6668 14107 6291