[From the U.S. Government Printing Office, www.gpo.gov]
Key Largo Coral Reef 0 Ilk arine Sanctuary LITERATURE SURVEY UALITY MONITORING PROGRAM IQ SEPTEMBER 1980 P I 10 " M@, 000. 4#4 GC512 F6 K48 U.S. DEPARTMENT OF COMMERCE 1980 NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION OFFICE OF COASTAL ZONE MANAGEMENT 1,6 A] KEY LARGO CORAL REEF MARINE SANCTUARY LITERATURE SURVEY AND WATER QUALITY MONITORING PROGRAM sweparty of CBC ubraz7 08 Department of C reo C" X0AA Coastal Services Center LibruT 2234 south Hohnor Avenue 29405-2413 Charleston, SC LIST OF CONTRIBUTORS Ronald Gaby, Ph.D., Editor* Stephen P. Langley, M.S. Meredith T. Park, M.S. Richard W. Curry, M.S. Environmental and Urban Systems Analysis Department Connell Metcalf & Eddy, Inc. 1320 South Dixie Highway P. 0. Box 341939 W1fVkjR0ftda 33134 TABLE OF CONTENTS I ten ?@aae Nimber LIST OF CONTRIBUTORS TABLE OF CONTENTS LIST OF TABLES Vi LIST OF FIGURES Vii INTRODUCTION 1 METHODS 2 RESULTS 3 Water Quality Within the Sanctuary 3 Temperaturt 3 Salinity 3 Dissolved Oxygen 4 Nutrients 4 PE 4 Metals 4 Currents 4 Turbidity 5 Pigments 5 Coliform Bacteria 5 Pesticides 5 Summary 5 water Quality in Adjacent Areas 5 Reef Tract 5 Temperature 5 Salinity 7 Dissolved Oxygen 7 Nutrients 7 PE a Metals 8 Currents 6 Turbidity 9 Pigments 9 Coliform Bacteria 9 Pesticides 9 Florida Current 9 Temperature 9 Salinity 9 Dissolved Oxygen 10 Nutrients 10 PE 10 Metals 10 Currents 10 Turbidity 11 Pigments 11 Coliform Bacteria 11 Pesticides 11 TABLE OF ODNTENTS (continued) inshore Areas 11 Temperature 11 Salinity 12 Dissolved Oxygen 12 Nutrients 13 PH 13 Metals 13 Currents 13 Turbidity 14 Pigments 14 Coliform Bacteria 14 Pesticides 14 Summary 16 Geological/Biological Studies within the Sanctuary 23 Geology 23 Sedimentology 23 Reef Distribution 24 Hurricane Effects 24 Topography 25 Bathymetry 25 General Reviews 25 Biology 25 Foraminifera 25 Fungi 25 Diatoms 25 Echinoderms 26 Corals 26 Fishes 26 Reef Ecology 26 Deep Reefs 27 Aerial Surveys 27 Geological/Biological Studies in Adjacent Areas 28 DISCUSSION 29 Currents 29 Topography 30 Temperature 30 Salinity 31 Temperature-Salinity Relationship 31 Turbidity 32 Nutrients 32 Metals 33 Pesticides 34 iv TABLE OF CONTENTS (continued) CONCLUSION & RECOMMENDATIONS 35 Stations 35 Parameters 36 Water Quality Criteria 37 Temperature 37 Salinity 38 Dissolved Oxygen 38 pH 38 Turbidity 39 Phosphates 39 Total Organic Carbon 39 Pesticides 39 Metals 40 Photography 42 Remote Sensing 42 Biological Monitoring 46 APPENDICES A. Information Sources 48 B. Bibliography 51 C. Key Word Index 74 D. Unpublished Water Quality Data, 1974-1979, Fla. Dept. of 88 Environmental Regulation E. Figures v List of Tables Table Page No. 1. Summary of Manker's (1975) current data for Molasses and 4 Carysfort Reefs 2. Summary of water quality data for the Sanctuary 6 3. Monthly insecticide application rates, Monroe County, Florida 15 4. Insecticide formulations, Monroe County, Florida 16 S. Summary of water quality data for adjacent waters 16 6. EPA recommended water quality criteria 41 7. Electromagnetic spectral bands 43 S. Representative oceanographic remote sensors 45 Vi List of Figures 1. Locator map, South Florida and Florida Keys 2. Locator map, Key Largo Coral Reef Marine Sanctuary 3. Surface temperature, Carysfort Reef, 1878-1890 4. Surface temperature, Carysfort Reef, 1891-1899 5. Annual temperature curves, U.S. East Coast 6. Surface temperature, Carysfort Reef, 1878-1900 7. Station locations (Shinn, 1966) 8. Temperature and coral growth, Key Largo Dry Rocks 9. Bottom temperatures, Molasses Reef and Mosquito Bank 10. Station locations (Griffin, 1974) 11. Temperature, salinity, dissolved oxygen, turbidity, Florida Reef Tract 12. Station locations (Manker, 1975) 13. Current directions and supplementary data for reef tract 14* Metal concentrations, summary table 15. Distribution of metals in four micron fraction 16. Distribution of metals in suspended particulates 17. Distribution of metals in bulk sediments 18. Distribution of metals in coral specimens 19* Traverse locations (Griffin, 1974) 20. Turbidity levels, Traverse A 21. Turbidity levels, Traverse B 22. Turbidity levels, Traverse C 23. Turbidity levels, Traverse D 24. Turbidity levels, Traverse E 25. Turbidity levels, Traverse F vii 26. Transmittance - Elbow Reef 27. Transmittance - Government Cut and Pacific Reef 28. Summary of available water quality data 29. Surface temperature, Powey Rocks, 187e-1890 30. Surface temperature, Powey Rocks, 1891-1902 31. Surface temperature, Powey Rocks, 1903-1912 32. Surface temperature, Powey Rocks, 1879-1934 and Sombrero Key, 1925-1934 33. Bottom temperature, January - May, 1974, Hen and Chickens Reef 34. Water quality data, including Truimph Reef and Soldier Key 35. water quality data, Margot Fish Shoal 36. Vertical and seasonal fluctuations in temperature and sigma-t, Fowey Light 37. Vertical and seasonal fluctuations in temperature and sigma-t, Alligator Reef 38. Salinity and precipitation, Fowey Rocks, 1914-1915' 39. Nutrient concentrations, Brewster Reef, 1973 40. Current data, Hawk Channel and Rodriquez Key, 1914 41. Current direction, Hen and Chickens Reef, 1974 42. Current direction, Hawk Channel, 1963 43. Station locations, region 13 (Churgin and Halminski, 1974) 44. Temperature-salinity composite, Florida Current 45. Temperature data, Florida Current 46. Temperature-salinity envelopes, Florida Current 47. Temperature, salinity, and dissolved oxygen, Florida Current 48. Seasonal and vertical temperature distribution, Florida Current 49. Station location and water quality data, Florida Current: temperature, phosphate, nitrite-nitrate, Kjeldahl and ammonia nitrogen, iron, silicon, and chlorophyll "a" 50. Phosphate, oxygen and temperature, vertical profiles, Florida Current Viii 51. Salinity data, Florida Current 52. Seasonal and vertical distributions of phosphate, salinity and nitrate, Florida Current 53. Dissolved oxygen data, Florida Current 54. Sigma-t, phosphate and chlorophyll data, Florida Current 55. Vertical and seasonal distributions of phosphate, total phosphorus and nitrate, Florida Current 56. Phosphate data, Florida Current 57. Vertical distributions of total soluble copper, particulate copper, and chlorophyll "a", Florida Current 58. Vertical distributions of iron, nickel and copper, Florida Current 59. Seasonal variation of extinction coefficient and plant pigment, Florida Current 60. Temperature, pH, and nutrient data, Molasses and Bahia Honda Keys 61. Temperature, dissolved oxygen, metals and nutrient data, Florida Keys residential canals. 62. Station locations (Michel, 1973) 63. Temperature, salinity, dissolved oxygen and nutrients, Venetian Shores Canals, Florida Keys 64. Station locations (Chesher, 1974) 65. Station locations (Chesher, 1974) 66. Station locations (Chesher, 1974) 67, Station locations (Chesher, 1974) 68. Station locations (Chesher, 1974) 69. Temperature, dissolved oxygen, salinity, pH, turbidity, nutrient and coliform data, residential canals, Florida Keys 70. Pesticide concentrations in canal sediments, Florida Keys 71. Tracks of Hurricanes Donna and Betsy ix 72. Profile across south Florida shelf margin 73. Seismic reflection profiles, Fowey Rocks to Sombrero Rey 74. Average annual surface temperature, Carysfort Reef 75. Comparison of recent temperature data (Shinn, 1966) with historical temperature data (Vaughan, 1918) 76. Comparison of salinity and temperature ranges of Florida Bay, Card/Barnes Sound, South Biscayne Bay, and the Florida Reef Tract x INTRODUCTION The K'ey Largo Coral Reef Marine Sanctuary, established on December 18, 1975, was created to preserve and protect the aesthetic appeal and natural state of the coral reef ecosystem within its boundaries (Figures 1 and 2). The Office of Coastal Zone Management of the National Oceanic and Atmospheric Administration has been charged with the responsibility of maintaining the Sanctuary; one of their principal tasks is the development and implementation of various types of monitoring programs which will provide data from which analyses of the present and future health of the Marine Sanctuary can be made. A precursor to the development of any monitoring program is an examination of the existing literature to locate historical data suitable for use as a baseline against which new data can be evaluated. This report presents a review of the pertinent literature for the Key Largo Coral Reef Marine Sanctuary and adjacent areas. Unpublished data are also presented. The literature review has been divided into four sections. The first section reviews water quality information for the Sanctuary and the following section reviews water quality for areas adjacent to the Sanctuary. The next two sections present, respectively, geological and biological studies conducted within the Sanctuary and geological and biological studies in the areas adjacent to the Sanctuary. Water quality data for the Key Largo Coral Reef Marine Sanctuary are summarized in Table 2, while Table 5 presents water quality data for areas adjacent to the Marine Sanctuary. Following the literature review is a discussion of water quality within the Sanctuary and factors that are important in maintaining a healthy reef environment. Recommendations are proposed for establishing a water quality monitoring program in the Sanctuary. This monitoring program will enable the Office of Coastal Zone Management to detect subtle, long-term changes in 'the water that flows through the Sanctuary. These recommendations emphasize long-term trends rather than transient disturbances such as hurricanes, occasional phytoplankton blooms, or severe cold spells, because the latter are unpredictable and ephemeral. Catastrophic events of short duration present severe logistical problems with respect to data collection and it is unlikely that the cost of monitoring such events would be justifiable. METHODS The search for water quality data began with the computerized information retrieval services available through the NOAA Library on Virginia Key, Miami, Florida. The search criteria were kept broad to ensure the retrieval of as many articles and unpublished documents as possible.. The prime search words were "South Alantic Coastwo OU.S. East CoastO, wFlorida Keys', and "Key Largo". From the references recovered using these key words# only those that dealt with the Atlantic coast of the Florida Keys between Miami and Key West were retained. This information was supplemented by interviews with scientists who have recently worked in the Florida Keys. The pertinent literature was examined during visits to several libraries, most of them in the Miami area. Appendix A summarizes the information sources used during the course of this project. Appendix B presents a complete bibliography of the literature examined. Each article has been assigned a seven-character alphanumeric code composed of: the first three letters of the author's last name; his or her first initial; the last two digits of the publication year and a sequential alphabetic character for multiple publications in any given year. This code, borrowed from Bridges et al. (1978), can be adopted to computer listing, allows periodic updating and provides a convenient means of cross-indexing. Several key words were selected from each article and the words compiled in a Key Word Index (Appendix C), arranged alphabetically and cross-indexed according to subject. Selected key words are not limited to those supplied by the author. Appendix D is a copy of a computer print-out of data obtained by the Florida Department of Environmental Regulation at Station 28040975, located near the entrance to South Sound Creek, John Pennekamp, State Park (see map in Appendix D). In order to reduce the volume of material presented in this report, the original articles dealing with water-quality have not been included as an appendix as was originally proposed. instead, pertinent tables, graphs and figures were photocopied from the original articles and assembled as figures (Appendix E). Figures 9, 11, 33, 41, and 42 are original summarizations of unpublished data supplied by Dr. George Griffin, University of Florida, Gainesville and the National Ocean Survey, Rockville, Maryland. 2 RESULTS Water Qual!ty Within the Sanctuary Temperature: The keepers of the Carysfort Light were the first to measure water quality in the Marine Sanctuary. Their daily records of surface water temperature were summarized by the U.S. Bureau of Fisheries and published by Vaughan (1918). He provided a table of 10-day means for the period 1878 to 1899, and presented maximum, minimum and mean temperatures for each interval (Figs. 3 and 4). Temperatures during this period ranged from 18.20C to 30.30C with a mean temperature of 25.80C. Parr (1933), using the same data, constructed an average annual surface temperature curve for the period 1881 to 1885 and compared these data with data gathered from other lighthouses and lightships along the eastern coast of the U.S. (Fig. 5). He found that the Atlantic Coast of the U.S. could be divided into three areas of relatively uniform temperatures: the Straits of Florida, the Cape Hatteras region and the Gulf of Maine. Bumpus (1957) published mean monthly temperatures for Carysfort Light for the period 1878 to 1900 using the same data (Fig. 6). Vaughan (1918) and, to a lesser extent, Parr (1933) and Bumpus (1957) remain today the primary sources for surface temperature data in this area. More recently.Shinn (1966) presented bottom temperature data for Key Largo Dry Rocks (Station "A", Figs. 7 and 8) for the period February 1961 to February 1962. His data, derived from maximum-minimum thermometers placed on the bottom in less than 12 feet of water, show a temperature range of 20.OOC to 30.50C at Key Largo Dry Rocks. Springer and McErlean (1962), in a study of tagged reef fishes, reported temperatures of 19.50C and 21.90C for December 7, 1960 and January 14, 1961, respectively, at Mosquito Bank, while at Molasses Reef temperatures were 25.OOC and 24.60C for the same dates. Bottom temperatures (2.1 m) at Molasses Reef were monitored continuously during the period January to May 1974 by Griffin (unpublished data, Fig. 9). Griffin also measured temperature at a number of spot stations in the Sanctuary (Figs. 10 and 11) and found greater fluctuations closer to shore than in offshore waters. Manker (1975) recorded sumer surface temperatures at numerous locations in the Sanctuary during 1973 and 1974 (Figs. 12 and 13). Salinity: Manker (1975) and Griffin (1974, unpublished data) both measured surface salinity at a number of stations in the Sanctuary during 1973 and 1974. Manker's data appear in Fig. 13 and those of Griffin are summarized in Fig. 11. Their station locations are identified in Figs. 10 and 12, respectively. 3 Dissolved OLcygen: Manker (1975) recorded dissolved oxygen at several stations in the Sanctuary. The data are shown in Fig. 13. Griffin (1974, unpublished data) also measured dissolved,oxygen in the Sanctuary (Fig. 11). Nutrients No data on nutrient levels in Sanctuary waters have been found. 08 No pR measurements have been identified for Sanctuary waters. Metals: Manker (1975) measured lead, mercury, cobalt, zinc and chromium in bottom sediments, suspended particulate matter and coral specimens in the Sanctuary (Carysfort, Elbow and Molasses Reefs) as part of a larger study of Biscayne Bay, Florida Bay and the Upper Keys (Figs. 14 to 18). His stations are identified in Fig. 12. Currents: Manker (197S) measured surface currents at Molasses, Elbow and Carysfort Reefs (Fig. 13). He concluded that prevailing easterly winds produce a slight southwesterly drift in the back reef area. Manker's evidence for a southwesterly drift is unconvincing due to the small number of observations (maximum of 5 per station) and the long interval between measurements (4 days to one month) at any given station. Furthermore, a review of his data indicates that, in at least two instances, errors were made in calculating average current direction. Manker's data for stations 3 and 23, for example, are presented in Table 1. In each case, the map (Fig. 13), shows a southwesterly flow, yet no southwesterly component is apparent in the data for either station. Table 1. Summary of Manker's (1975) current data for stations 3 (Molasses Reef) and 23 (Carysfort Reef). (Station 23 is identified as station 36 in Appendix B; see Fig. 12). Station 3 Station 23 Date Current Direction (to) Date Current Direction ROF 6-11-73 700 (NE) 6-14-73 0900 (E) 6-15-73 450 (NE) 7-18-73 0000 (N) 7-19-73 3500 (NW) 8-14-73 8-15-73 2700 (W) 5-26-74 1800 (S) 5-14-74 3000 (NW) 4 Turbidity: Ambient turbidity levels were measured by towing an optical transmissometer along several traverses terminating at Carysfort, Elbow and Molasses Reefs (Fig. 19) by Dr. G. Griffin as part of his study of the effects of a dredge and fill operation on Key Largo (Griffin, 1974b). The unpublished results are shown in Figs. 20 to 25. Griffin (1974, unpublished data) also measured turbidity at a number of stations in the Sanctuary (Fig. 11) as did Manker (1975), whose data are presented in Fig. 13. Hanson and Poindexter (1972) measured irradiance and transmittance at Elbow Reef during the FLARE (Florida Aquanaut Research Expedition) project conducted by NOAA (Figs. 26 and 27). They found a mean transmittance of 8.1% + 2.1% at Elbow Reef (normalized to a depth of 13 meters). Pigments: No pigment measurements were found for Sanctuary waters. Coliform Bacteria: No coliform bacteria counts were identified for Sanctuary waters. Pesticides: No pesticide measurements were identified for Sanctuary waters. Summary: Table 2 summarizes means and ranges of values for parameters measured in the Sanctuary. Water Quality in Adjacent Areas Review of water quality records in areas adjacent to, but outside the Marine Sanctuary is divided into three sections: Reef Tract, Florida Current and Inshore Areas. For the reef tract, the area of consideration extends from Fowey Rocks to Sombrero Key, while the area considered for inshore areas and Florida Current extends from Miami to Key West. A summary of available data is presented in Fig. 28 and Table 5 presents maximum and minimum values for all parameters discussed below. REEF TRACT Temperature: Lighthouse temperature records for Fowey Rocks were published by Vaughan (1918) (Figs. 29 to 31), Parr (1933) (Fig. 5) and Bumpus (1957) (Fig. 32). Bumpus (1957) also published temperature records for Sombrero Key (Fig. 32). Griffin (1974, unpublished data) measured bottom temperatures at Hen and 5 ftbl* 2. fumuffy of water Quality Data fair Key Largo Coral "at Marine agactuary parameter Unit& Minimum Mean Maximum source Methods ftr iod Depth Location TV" of Rowed ren"Caters, 9C 18.2 25.6 30.3 Vaughan (19161 U9 that P -or 11178-1099 Surma Carystort met Daily 22.9 27.0 30.8 Griffin Thernistor/ 10/72-$/74 various various, periodic (1974, unpub) Ng therm=etw 22.S 2S.4 26.S Griffin Rustrak 1192 1/74-6/74 2.1 a Molasses fter continuous (1974, unpub) continuous cecordair 26.S "A 31.0 Manket (197SP Thermistor/ 6/73-6/73 surface var1cus2 periodic -3 30.S 6him (I H9 theremetee CS 2000 N61 Taylor max/min 2/61-2/62 2.5 m ley Largo DRY peciodi thermometer sockS4 "Unity 0/00 34.6 36.0 36.6 Griffin Beckman Induction 10/73-5/74 vat is" vaciousl periodic (1974# unpub) salinometer 36.3 36.7 36.9 Manku 1197S) Beckman induction 6/734/73 @ucrace v"I"02 periodic salinameter Diasolwd OUMS NE 6.1 7*3 9.3 Griffin YS1 #Sl-A oxygen 10/72-5/74 various various, periodic (1974, unpub) meter 6.0 6.7 6.6 Hanker (1975) vsr #S1-A oxygen 6/73-8/73 surface vatioU63 periodic Turbidity "tt 0001 0.9 8.0 . Griffin Hydroproducts 10/72-S/74 various vaclovel periodic (1974, unpub) Transmissawatec 0029 1.16 S.10 Manker (1975) Hydroproducto 6/73-0/73 outs" vatIOUS2 periodic Iftamemittance 1 5.9 12.6 26.4 Banow and Transmissametse 4/73 various Tbe 31bow Daily for am Poindexter (19731 lPyranom*tec weak entrant vilecity know too 0.3 0.7 Griffin Rydroproducts 14/72-S/74 various vWlems, periodic (1974, unpub) rotor motor 6.1 002 0.6 Manker 11"s) xydroproducts 6/73-4/73 surface vW1oo@2 periodic current Sister Mercury 13 U 32 Mankee (197S) neutron activation S/74-6/74 surface vaciou*3 periodic analysis Cobalt. 3 5.9 is Masker J197S) neutron activation S/7"/74 surface vericus3 periodic analysis Cbroulun, 97 131 266 Manker JIM) neutron activation S/74-6/74 surface Wetiou@3 periodic analysis See Fig. 10 far list of Gclff ings @pot stations. "was within the Sawtusty (t) have been tabolated. 2 Stations 3, 6, 21, 23. 24, 3S a" 36 (fee rig. U). 13 No mean mailable tot maxiwjWminl@ date. 4 5tation A only (See rig. 7). S Can be conoideced continuous In the some that the tbarnoestac records continuouslyt bet readings were taken periodically. 4 fuspended particulates. Chickens Reef (depth 18 feet) and Mosquito Bank (depth 8 feet) with continuous recorders from January to May, 1974. The results are presented in Figs. 33 and 9 respectively. He also measured temperature at a number of spot stations along the reef tract. These data are summarized in Fig. 11. Manker (1975) measured surface temperature in his toxic metals survey, including stations at Fowey Rocks, Mosquito Bank, Hen and Chickens Reef, Hawk Channel, Pacific Reef and Triumph Reef. His station locations are shown in Fig. 12 and his data in Fig. 13. Smith et al (1950) presented temperature data for Triumph Reef and Soldier Key (Fig. 34). Jones (1963) presented temperature data for Margot Fish Shoal (Fig. 35). Vargo (1968) measured vertical and seasonal temperature variations at Powey Rocks (Fig. 36) and Alligator Reef (Fig. 37). Salinity: Dole and Chambers (1918) presented daily salinity data (in g/kg chloride) for Fowey Rocks for the period 1914 to 1915 (Fig. 38) and correlated salinity fluctuations with precipitation. Manker (1975) measured salinity (Fig. 13) at the locations mentioned above (see temperature section). Smith et al. (1950) recorded salinity at Triumph Reef and Soldier Key (Fig. 34) and Jones (1963) measured salinity at Margot Fish Shoal (Fig. 35). Griffin (1974, unpublished data) also recorded salinity at a number of stations along the reef tract (Figs. 10 and 11). Dissolved Oxygen: Dissolved oxygen has been reported for the reef tract by Manker (1975) (Fig. 13) and Griffin (1974, unpublished data) (Fig. 11). Smith et al. (1950) presented dissolved oxygen data for Triumph Reef and Soldier Key (Fig. 34) and Jones (1963) presented dissolved oxygen data for Margot Fish Shoal (Fig. 35). Nutrients: Smith et al. (1950) measured phosphates and nitrates at Triumph Reef and Soldie@-riie-y (Fig. 34) and Jones (1963) reported inorganic phosphate, total phosphorus, nitrate and nitrite data for.Margot Fish Shoal (Fig. 35). Simmons (1973) measured phosphate, nitrite, nitrate and ammonia at Brewster Reef (Fig. 39). 7 Jones (1963) measured pH at Margot Fish Shoal (Fig. 35). Metals: Manker (1975) measured mercury, cobalt, chromium, zinc and lead concentrations at a number of locations on the reef tract (see Fig. 12 for station locations) in the suspended particulate fraction, bottom sediments, the 4 micron fraction of bottom sediments and in living corals (data presented in tabular form in Fig. 14 and graphically in Figs. 15 through 18). Currents: The concept of a southerly flow of water in the shallow back reef area (referred to as a "countercurrent') has been a source of contention over the years. A southwesterly current flowing through Hawk Channel was reported by Agassiz as early as 1888. Vaughan (1935) attempted to verify this current by measuring current direction and velocity at four stations in Hawk Channel between Soldier Key and Rodriguez Key (Fig. 40). Measured velocities ranged from 0.05 m/sec to 0.34 m/sec, with a mean value of 0.12 m/sec. Vaughan noted that there was more motion toward the west than toward the east, but admitted that his data were inadequate for positive conclusions regarding the countercurrent. Smith et al. (1950) mentioned a southward flowing countercurrent in the l_agc&n_ channel between the Keys and the outer reefs, but provided no supporting data. Jones (1963) measured current velocity and direction at Margot Fish Shoal (Fig. 35). He concluded that water transport is controlled directly by the wind, a shift in wind direction being reflected by a corresponding change in current direction within one hour (Fig. 35). He reported that tides have little influence on current patterns, that the countercurrent does not appear to exist shoreward of the outer reefj and that the general net flow is toward the north, probably about 0.1 m/sec. Manker (1975) recorded current velocity and direction at various stations in the reef tract (Fig. 13). Griffin (1974, unpublished data) recorded current velocity and direction every three hours for one month at Hen and Chickens Reef (Fig. 41). His data indicate a predominating current toward the northeast. The National Ocean Survey (1963, unpublished data) measured currents every hour for four days at two depths (2 meters and 4 meters) in Hawk Channel between Soldier Key and Fowey Rocks (Fig. 42). The data show a predominant northeasterly flow along the bottom and an easterly flow at mid depth. Enos and Perkins (1977) noted that a Florida countercurrent on the shallow shelf has been postulated but that it has not been adequately documented. They suggest that tide-induced water movement may result in a weak countercurrent southwestward along the shelf margin. 8 Turbidity: Manker (1975) reported turbidity readings for a number of stations on the reef tract (Fig. 13) and Griffin (1974, unpublished data) gathered data on turbidity on the reef tract (Fig. 11). Griffin (1974, unpublished data) also recorded turbidity along two transects; terminating at Pacific Reef and at Crocker Reef using an optical transmissometer (Figs. 20 and 25). Pigments: No records of pigment measurements have been found for Florida reef tract waters. Coliform Bacteria: No measurements of coliform bacteria have been found for Florida reef tract waters. Pesticides: No measurements of pesticide concentrations are available for reef tract waters. FLORIDA CURRENT .Temperature: Most,,reports dealing.with the Florida current present temperature data. One, in particular, is noteworthy because it is a comprehensive summary of data accumulated during the past fifty years. This is the report by Churgin and Halminski (1974). Their Key West region (region 13) includes the area just south of the Sanctuary, from 230 to 250 north latitude (Fig. 43). Fig. 44 presents a temperature salinity curve for this region and temperature data for various months and depths are shown in Fig. 45. Vargo (1968) presented temperature data for the Florida Straits, including temperature salinity envelopes for eight stations in the Florida Current (Fig. 46). Bsharah (1957) presented temperature data for 40 Mile Station (located 40 miles east of Miami) (Fig. 47) and Miller et. al. (1953) did the same for 10 Mile Station (10 miles east of Miami) (Fig. 48). Corcoran and Alexander (1963) measured vertical distribution of temperature over*a 31 month period at 40 Mile Station (Fig. 49). Gomberg (1976) presented vertical temperature profiles for two stations in the Florida Current south of Key West (Fig. 50). Salinity: Salinity, like temperature, is reported in almost all the literature on the Florida Current. Churgin and Halminski (1974) sununarized this data (Fig. 51) for the Key West region and presented a composite temperature salinity curve (Fig. 44). Vargo (1968) presented temperature salinity envelopes for eight stations in the Florida Current (Fig. 46). Bsharah (1957) presented data on vertical and seasonal variations in salinity at 40 mile station (Fig. 47) and Miller et al. (1953) did the same for 10 mile station (Fig. 52). 9 Dissolved Oxygen Bsharah (1957) measured seasonal and vertical distribution of dissolved oxygen at 40 mile station (Fig. 47) and Churgin and Halminski (1974) summarized dissolved oxygen data for the Key West region (Fig. 53). Gomberg (1976) presented vertical dissolved oxygen profiles for two stations in the Florida Current south of Key West (Fig. 50). Nutrients: Alexander and Corcoran (1963) measured phosphate in the Florida Current from Miami to Cape Canaveral (Fig. 54). Corcoran and Alexander (1963) measured vertical distribution of ammonia, silicates and Kjeldahl nitrogen at 40 Mile Station and studied seasonal changes in the vertical distributions of phosphate-phosphorus and nitrate-nitrite nitrogen during the period May, 1958 to November 1960 (Fig. 49). Bsharah (1957) measured nitrate, phosphate and total phosphorus at 40 Mile Station (Fig. 55). Gomberg (1976) included phosphorus measurements in his study of the area between Key West and Cuba (Fig. 50). Miller et al (1953) measured phosphate and nitrate at-10 Mile Station (Fig. @2_) Tnd Churgin and Halminski (1974) summarized phosphate records for the Key West region (Fig. 56). PH: No records of pH have been found for the Florida Current in the vicinity of the Marine Sanctuary. Metals: Alexander and Corcoran (1967) measured copper concentrations at eight stations between Powey Rocks and Cat Cay (Fig. 57). Corcoran and Alexander (1963) measured the vertical distribution of iron at 40 Mile Station (Fig. 49) and vertical distribution of iron, copper and nickel in the Florida Current (Corcoran and Alexander, 1964) (Fig. 58). Currents: Most papers on the Florida Current deal in some way or another with currents, but most studies have focused on the Miami area or along transects running from Miami to Bimini, Fowey Light to Cat Cay, Sombrero Reef to Cay Sal Bank or Key West to Cuba. The edges of the Current (at depths less than 100 meters) in the vicinity of the Sanctuary have been ignored. 10 An important series of reports was published by Dr. Thomas N. Lee and his associates (Lee, 1972; 1975a; 1975b; Lee et al., 1977a; 1977b; 1977c). These reports examine the phenomenon of spin-off eddies and their effect on shallow water circulation in the Niami-Fort Lauderdale area. These eddies, which occur on the average of once per week, are recognized as warm, southward- oriented extrusions of the Florida Current. They appear to evolve as part of the final growth stage of unstable meanders of the Florida Current and both the meanders and eddies appear to be linked to wind perturbations (Lee et al., 1977b). Turbidity: Griffin (1974, unpublished data) measured turbidity in offshore waters (Fig. 11) up to two miles seaward of the outer reefs. Manheim et al. (1970) found that appreciable amounts of suspended matter (greater than 1.0 mg/liter) in surface waters of the Atlantic continental margin are confined to nearshore areas. In the Straits of Florida a "strongly birefringent, fibrous material" was especially abundant. This material appeared to be derived from toilet paper and it was suggested that ship refuse is the most likely source. Pigments: Miller et al. (1953) reported seasonal variation of plant pigments at 10 Mile Station@ (ilig. 59) and Alexander and Corcoran*(1967) studied seasonal changes in chlorophyll "a" concentration in the Florida Current during 1963 (Fig. 57). Coliform Bacteria: No studies of coliform bacteria concentrations have been identified for the waters of the Florida Current in the vicinity of the Sanctuary. Pesticides: No pesticide measurements have been found for Florida Current waters in the vicinity of the Marine Sanctuary. INSHORE AREAS Temperature: Griffin (1974, unpublished data) measured surface temperature at numerous stations in the shallow waters along the Florida Keys (see Fig. 10 for station locations). These data are summarized in Fig. 11, categorizing the stations into three distinct groups: tidal creeks, Hawk Channel and inner reefs. Manker (1975) also measured surface temperature at a number of stations on both sides of the Florida Keys (locations shown in Fig. 12; data presented in Fig. 13). The Florida Department of Environmental Regulation has been monitoring surface water temperature at a number of coastal stations throughout the State. One of these (No. 28-04-0975) is located just inshore of the Marine Sanctuary, -adjacent to channel marker #2 at the entrance to the John Pennekamp Coral Reef State Park Marina. This comprehensive set of data, measured monthly since 1974, has not yet been summarized or published. A copy of the raw data is included as Appendix D. Harold Hudson (personal communication, 1979) has unpublished records of bottom water temperature dating from 1974. His measurements, made at Snake Creek, Hen and Chickens Reef, and at a third station midway between them, are part of a study of the effects of temperature on coral growth. Dawes et al. (1974) determined seasonal temperature variations at Molasses Key (just -Sou@E of Pigeon Key) and Bahia Honda Key as part of their study of the alga Eucheuma (Fig. 60). Temperature data were collected by the Florida Department of Pollution Control (1973) (now the Department of Environmental Regulation) in residential canals of Key Largo (Fig. 61) and Michel (1973) measured temperature in a residential canal.system at Venetian Shores, just north of Snake Creek (Figs. 62 and 63). Chesher (1974) measured temperature in a number of residential canals in his survey of canals in the Florida Keys (Fig. 69). His station locations are identified in Figs 64 through 68. Shinn (1966) published a one year record of bottom temperatures at two inshore stations near Key Largo Dry Rocks (Stations *B* and 'C", Figs. 7 and 8@. Salinity: Manker (1975) and Griffin (1974, unpublished data) included salinity measurements in inshore waters in their water quality surveys (Figs. 13 and 11, respectively). Inshore salinity (reported as conductivity) is included in the Florida D.E.R. data in Appendix D and salinity was'measured in the residential canals at Venetian Shores by Michel (1973) (Fig. 63). Chesher (1974) measured salinity in a number of canals in the Florida Keys (Fig. 69). Dissolved Oagen: Manker (1975) and Griffin (1974, unpublished data) measured dissolved oxygen in inshore areas (Figs. 13 and 11, respectively). Dissolved oxygen in residential canals was measured by the Florida Department of Pollution Control (1973) (Fig. 61) and at Venetian Shores by Michel (1973) (Fig. 63). Chesher (1974) included dissolved oxygen among the parameters he- measured in his survey of residential canals in the Florida Keys (Fig. 69). Dissolved oxygen has been measured monthly since 1974 by the Florida Department of Environmental Regulation (Appendix D) at their Pennekamp Station. 12 Nutrients: Dawes et al. (1974) measured nitrate, nitrite, and phosphate concentration at Bahia Tonda and Molasses Key (Fig. 60). Michel (1973) determined nitrate and phosphate concentrations in the residential canal system at Venetian Shores (Fig. 63) and the Florida Department of Pollution Control (1973) measured phosphate, nitrate and organic nitrogen in numerous canals in the Florida Keys (Fig. 61). organic nitrogen, ammonia nitrogen, nitrate and total phosphorus have been measured monthly since 1974 by the Florida Department of Environmental Regulation (Appendix D) at their station near the entrance to John Pennekamp State Park. Chesher (1974) determined orthophosphate and nitrate in his Florida Keys canal survey (Fig. 69). pH: Dawes et al. (1974) included pH measurements in their study of water quality at Molasses and Bahia Honda Keys (Fig. 60). The Florida Department of Environmental Regulation data (Appendix D) include pH measurements. Chesher (1974) determined pH in his survey of residential canals in the Florida Keys (Fig. 69). Metals: Manker (1975) included numerous nearshore stations in his toxic metals survey (Fig. 13). He determined mercury, cobalt, chromium, zinc and lead concentrations in suspended particulates, bottom sediments and coral specimens. The Florida Department of Pollution Control (1973) measured chromium, copper, manganese, iron, nickel, lead, cadmium and cobalt in the waters and bottom sediments of residential canals in the Florida Keys (Fig. 61). The Florida Department of Environmental Regulation water quality data (Appendix D) include cadmium, copper, iron, lead and zinc measurements. Currents: Manker (1975) measured current velocity and direction at a number of near-shore stations (Fig. 13). 13 Turbidity: Both Manker (1975) and Griffin (1974, unpublished data) measured turbidity in inshore areas (Figs. 13 and 11, respectively). Chesher (1974) measured turbidity in Jackson Turbidity Units (JTU) as well as horizontal visibility (Pig. 69) in his canal survey of the Florida Keys. Turbidity is routinely monitored at John Pennekamp State Park by the Florida Department of Environmental Regulation (Appendix D). Pigments: Chlorophylls A, B and C are monitored by the Florida Department of Environmental Regulation (Appendix D), and color is also routinely determined. Coliform Bacteria: The Florida Department of Environmental Regulation performs coliform counts at their John Pennekamp State Park sampling station (Appendix D). Chesher (1974) presented ooliform data for a number of residential canals in the northern Florida Keys (Fig. 69). Pesticides: Concentrations of the pesticides Aldrin, Dieldrin, Heptachlor epoxide, DDE, and MT in canal sediments in the Florida Keys were measured by Chesher (1974) (Fig. 70). The highest concentration encountered was that of p,pI-DDT, 328.2 ppb. The Monroe County Mosquito Control District, under the jurisdiction and supervision of the Office of Entomology of the Florida Department of Health and Rehabilitative Services in Jacksonville, has been applying insecticides in the Florida Keys in an attempt to control mosquito populations. Although these substances are sprayed along the land areas of the Florida Keys, there is a good probability that some portion of the applied insecticides ultimately finds its way to the inshore waters adjacent to the Marine Sanctuary. Mosquito larvae are controlled by spraying'a mixture of No. 2 diesel fuel, motor oil and Triton X207 from trucks. Another method, used since April 19791 consists of dropping small briquettes of Altosid SR-10 in standing bodies of water. This substance is a growth regulator that disrupts the mosquito's life cycle. Adult mosquitos are sprayed on the ground with Baytex and in the air with Dibrom 14. Application volumes (in gallons) during Fiscal Year 1979 are shown in Table 3. The data reveal that peak insecticide use occurs in the summer and minimum use in the winter. Formulations are presented in Table 4. 14 Table 3. Monthly application rates (in gallons) of ground-applied adulticide, ground larvicide, air-applied adulticide and numbers of ALTOSID briquettes applied in Monroe County, Florida from October 1978 to September 19791. Ground* Ground* Air* ALTOSID Month Adulticide Larvicide Adulticide Briquettes October 78 178 12,310 151 November 78 134 5,117 430 December 78 42 1,579 0 January 79 30 2,319 20 February 79 20 211 0 March 79 17 1,153 63 April 79. 27 7,119 0 250 May 79 200 6,195 753 159 June 79 214 3,410 913 697 July 79 251 5,552 678 782 August 79 24 6,630 279 216 September 79 160 7,738 422 166 Totals 1,517 gal. 59,333 gal. 3,709 gal. 2,270 lSource: Office of Entomology, Florida Department of Health Rehabilitative Services, Jacksonville, Florida (personal communication, May, 1980). See Table 4 for formulations. 15 Table 4. Formulations of ground applied adulticide and larvicide and air applied adulticide used by Monroe County Mosquito Control District Type of Insecticide ingredients % Adulticide, ground Baytexi 93.0 Larvicide, ground No. 2 Diesel Fuel 96.1 Triton X 207 2.9 30 wt. ND Motor Oil 1.0 Adulticide, air Dibrom 142 4.0 Ortho Additive 5.5 No. 2 Diesel Fuel 57.2 X Lite Fog Oil 33.3 lAlso known as Fenthionj chemical name Dimethyl methylthiotolyl phosphorothioate 2 Also known as Naled; chemical name Dimethyl 1, 2 -dibromo - 2,2 dichloroethyl phosphate. Source: Narrative description of temporary control activities, Monroe County, for fiscal year 1979-1980. mimeographed report from Lois M. Ryan, Director, Monroe County Mosquito Control District. Summary: Table 5 summarizes reported ranges of water quality parameters for areas adjacent to the Marine Sanctuary. Table 5. Summary of ranges of values reported for water quality parameters in areas adjacent to the Key Largo Coral Reef Marine Sanctuary. (Asterisks indicate values estimated from graphs.) A. REEF TRACT Parameter Units min. Max. Source Remarks Temperature OC 15.6 31.2 Vaughan, 1918 OC 25.5 29.0 Griffin, 1974, unpubl. data OC 18.1 30.7 Bumpus, 1957 converted from OF OC 23 29 Parr, 1933 OC 19.58 30.5 Smith et al., 19501 OC 21 30 Jones, 1963 OC is 32 Schmidt and Davis, 1978 OC 25.7 30.8 Manker, 19752 16 Table 5A. (continued) Parameter Units Min. Max. Source Remarks Salinity 0/00 34.2 38.8 Dole and Chambers, 1918 0/00 35.25 36.5 Smith et al., 19501 0/00 36 38 Jones, 1963 0/00 34 39 Schmidt and Davis, 1978 0/00 35.9 36.4 Griffin, 1974, unpubl. data 0/00 36.6 37.7 Manker, 19752 Dissolved Oxygen ppm 6.2 8.6 Manker, 19752 % Sat. 93.3 106.7 Smith et al., 19501 % Sat. 85 126 Jones, 1963 % Sat. 100 119 Griffin, 1974, unyubl. data mg-At/l .375 .447 Smith et al, 1950 pH 7.0 8.3 Jones, 1963 Turbidity mg/l 0 10 Griffin, 1974, unpubl. data mg/l 0.24 1.68 Manker, 19752 Trans- mittance 0.032 0.310 Hanson & Poindexter, 1972 Currents knots 0 0*79 Jones, 1963 knots 0 0.5 N.O.S., 1963, unpubl. data knots 0.2 0.6 Manker, 19752 Phosphate ug-At/L 0 0.10 Smith et al, 19501 ug-At/L 0 0.2 Jones, 19i3 inorganic ug-At/L 0.18 0.3 Jones, 1963 total ug-At/L 0.02 0.21 Simmons, 1973 inorganic ug-At/L 1.00 1.15 Simmons, 1973 total Nitrate ug-At/L 0 0.2 Smith et al., 1950 ug-At/L 0.12 1.96 Simmons, 1973 Nitrite ug-At/L 0.01 0.13 Simmons, 1973 Ammonia ug-At/L 1.10 3.01 Simmons, 1973 Pesticides Metals: Cd Cc PPM 1 12 Manker, 19752 suspended partic. PPM 0.1 0.3 Manker, 19752 sediments ppm 2 178 Manker, 19752 4 micron fraction ppb 58 882 Manker, 19752 corals 17 Table 5A. (continued) Parameter Units min. Max. Source Remarks CU Cr PPM 37 141 Manker, 19752 suspended partic. PPM 5 10 Manker, 19752 sediments PPM 15 34 Hanker, 19752 4 micron fraction ppb 361 1361 Manker, 19752 corals Fe - - Rg PPM 6 21 Manker, 19752 suspended partic. PPM 0.1 0.4 Manker# 19752 sediments PPM 1 137 Manker, 19752 4 micron fraction ppb 36 549 Manker, 19752 corals Mn Ni Pb PPM 14 34 Manker, 19752 sediments Si Zn Rpm 1 22 Manker, 1.97S sediments 3 141 Manker, 1975 4 micron fraction ppb 891 4767 Manker, 1975 corals Pigments Coliform B. FLORIDA CURRENT3 Parameter Units Min. Max. Source Remarks Temperature OC 17 25 Gomberg, 1976 OC 15 30 Vargo, 1968 OC 26 30 Corcoran and Alexander, 1963 OC 23 32 Bsharah, 1957 0 13 30 Miller et al., 1953 OC 10.90 31.80 Churgin & Halminski, 1974 Salinity 0/00 36 36.5 Vargo, 1968 o/oo 35 36.5 Miller et al., 1953 0/00 34.16 37.20 Churgin & Ralminski, 1974 o/oo, 35.8 36.3 Griffin, 1974, Unpubl. data Table 5B. (continued) Parameter Units Min. Max. Source Remarks Diss. Oxygen Mi/i 3.2 4.5 Bsharah, 1957 MIA 2.87 6.06 Churgin & Halminski, 1974 % Sat. 80 108 Gomberg, 1976 % Sat. 95 114 Griffin, 1974, unpubl, data pH - - Turbidity mg/l 0 8 Griffin, 1974, unpubl. data Currents knots 0.97 4.66 Lee et al., 1977a Phosphate ug-At/l <.1 0.8 Miller, et al, 1977 ug-At/l 0 0.5 Gomberg, 1976 ug-At/l 0 0.1 Corcoran and Alexander, 1963 * ug-At/l 0 0.4 Bsharah, 1957 * P04-P ug-At/l 1.0 1.9 Bsharah, 1957 * Total P ug-At/l 0 1.22 Churgin & Hlaminski, 1974 Nitrate ug-At/l <5 30 Miller et al., 1953 ug-At/l <5 >25 Bsharah, 1957 Nitrite - - Ammonia ug-At/l 0.7 3.0 Corcoran and Alexander, 1963 Pesticides - - - Metals: Cd - cc - - Cu ug/l 2 19 Alexander & Corcoran, 1967 * soluble ug/l 0 0.7 Alexander & Corcoran, 1967 * particulate Cr - - Fe ug/l 5 8.4 Corcoran and Alexander, 1963 * particulate ug/l 0 4 Corcoran and Alexander, 1963 * soluble ug/l 5.5 8.5 Corcoran and Alexander, 1964 * particulate Hg ug/l 0- 6.7 Corcoran and Alexander, 1964 * soluble Mn - - Ni ug/l 0 5 4 Corcoran and Alexander, 1964 * soluble ug/l 0.*01 0.15 Corcoran and Alexander, 1964 * particulate 19 Table 5B. (continued) Parameter Units Min. Max. Source Remarks Pb - - Si ug-At/1 0.15 0.3 Corcoran and Alexander, 1963 * Sn - - Pigments mg/m3 0.2 0.3 Alexander and Corcoran, 1963 * chlorophyll mg/z3 0 0.7 Alexander and Corcoran, 1967 * chlorophyll Coliform - - C. INSHORE AREAS Parameter Units Min. Max. Source Remarks Temperature OC 13.3 33.8 Shinn, 1966 OC 19.5 28.5 Griffin, 1974, unpubl. data OC 18.25 32.3 Smith et al., 19504 OC 20.5 33.0 Dawes i-t i-1. 1974 OC 26.9 32.0 Manker, 19759 OC 25.40 32.60 Chesher, 1974 canals OC 23.0 27.0 Fla. Dept. Poll. Cont., 1973 OC 15.8 24.8 Michel, 1973 canals OC 20.5 33.7 Griffin, 1974, unpubl. data canals Salinity o/oo 33.06 39.26 Smith et al., 19504 0/00 35.2 36.9 Griffin, 1974, unpubl. data o/oc, 30.96 37.0 Manker, 19755 0/00 32.25 40.80 Chesher, 1974, unpubl. data canals o/oo 36.442 37.918 Michel, 1973 canals 0/00 27.6 43.5 Griffin, 1974, unpubl. data canals Diss. Oxygen ppm 0.9 9.6 Manker, 19755 PPM 0 13.15 Chesher, 1974 canals PPM 0.2 7.8 Fla. Dept. Poll. Cont., 1973 canals ppm 0 10.8 Griffin, 1974, unpubl. data canals mg-At/l 0.297 0.525 Smith et al., 1950 MIA 3.12 5.98 Michel, 1973 canals % Sat. 78.3 117.0 Smith et al., 19504 I Sat. 84 lie Griffin, 1974, unpubl. data Sat. 0 164 Griffin, 1974, unpubl. data canals Sat. .61.2 117.0 Michel, 1973 canals 20 Table SC (continued) Parameter Units Min. Max. Source Remarks PH 7.6 9.1 Dawes et al., 1974 8.17 9.32 Chesher, 1974 canals Turbidity mg/l 0 27.4 Griffin, 1974, unpubl. data mg/l 0.19 10.2 Manker, 19755 mg/l 2 43 Griffin, 1974, unpubl. data canals JTU 1.30 36.60 Chesher, 1974 canals visibility 1.0 32.0 Chesher, 1974 canals (in feet) Trans- mittance T/10 cm 0.45 0.87 Griffin, 1974, unpubl. data canals Currents knots 0.094 0.657 Vaughan, 1935 0.1 1 Manker, 19755 Phosphate PPM 0.022 0.21 Dawes et al., 1974 ppm 0.03 0.07 Fla. Dept. Poll. Cont., 1973 canals PPM 0 15.000 Chesher, 1974 canals, ortho-phosphate ug-At/l 0 0.06 Smith et al., 1950 ug-At/l 0.5 2.46 MichelTiM canals Nitrate PPM 0.0026 1.000 Dawes et al., 1974 PPM 0.20 0.26 Fla. 6ep@. Poll. Cont., 1973 canals ppm 0.02 0.11 Chesher, 1974 - canals Ug-At/l 0 1.6 Smith et al., 1950 0.20 0.60 Michel, i973 canals Nitrite ppm 0.0007 0.0264 Dawes et al., 1974 Ammonia mg/l 0.76 1.48 Fla. Dept. Poll. Cont., 1973 canals Pesticides Aldrin ppb6 12.2 44.5 Chesher, 1974 canal sediments Heptachlor Epoxide ppb6 7.7 18.3 Chesher, 1974 canal sediments Dieldrin ppb6 11.1 39.8 Chesher, 1974 canal ppb6 sediments O'p, ME 14.8 27.4 Chesher, 1974 canal sediments 21 Table 5C (continued) Parameter Units Min. Max. Source Remarks p,pl DDE ppb6 12.3 43.7 Chesher, 1974 canal sediments o,p, MT ppb6 9.6 20.4 Chesher, 1974 canal sediments p,p, MT ppb6 Trace 328.2 Chesher, 1974 canal sediments Metals: Cd mg/l 0.0015 0.002 Fla. Dept. Poll. Cont., 1973 canals PPM 0.17 0.25 Fla. Dept. Poll. Cont., 1973 canal sediment cc ppm 1 22 Manker, 1975S Mg/1 0.01 0.03 Fla. Dept. Poll. Cont., 1973 canals mg/l 0.1 0.6 Manker, 19755 sediment mg/kg 2.2 8.0 Fla. Dept. Poll. Cont., 1973 canal sediment PPM 1 52 Manker, 1975S 4 micron fraction Cu Ug/1 0.00 0.16 Fla. Dept. Poll. Cont., 1973 canals Mg/1 1 10 Fla. Dept. Poll. Cont., 1973 canal sediments Cr PPM 25 345 Manker, 1975 suspended partic. Mg/l 0.02 0.20 Fla. Dept. Poll. Cont., 1973 canals 3 23 Manker, 1975 sediment g/kg 5.5 11.0 Fla. Dept. Poll. Cont., 1973 canal sediment PPM 7 34 Manker, 1975 4 micron fraction re Mg/l .01 .35 Fla. Dept. Poll. Cont., 1973 canals mg/kg 280 390 Fla. Dept. Poll. Cont., 1973 canal sediment Eg PPM 4 270 Manker, 1975 suspended partic. PPM 0.2 1.7 Manker, 1975 sediment PPM 1 39 Manker, 1975 4 micron fraction Mn mg/l 0.01 0.03 Fla. Dept. Poll. Cont., 1973 canals Ni mg/1 0.01 0.22 Fla. Dept. Poll. Cont., 1973 canals mg/kg is 25 Fla. Dept. Poll. Cont., 1973 canal sediment Pb mg/1 0.12 0.25 Fla. Dept. Poll. Cont., 1973 canals mg/kg 0.6 6.6 Fla. Dept. Poll. Cont., 1973 canal sediment PPM 12 36 Manker, 1975 sediment 22 Table 5C (continued) Parameter Units Min. Max. Source Remarks Si Zn ppm 1 22 Manker, 1975 sediment ppm 1 53 Manker, 1975 4 micron fraction Pigments - Coliform No./100ml 0 246.5 Chesher, 1974 canals lStation 9, Triumph Reef 2Stations 3, 11, 21, 23, 24, 26, 32, 34, 35, 36 and 37 30nly the upper 100 meters were considered at deep stations 4Stations 6, 7, 8 and 10 5Stations 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22 and 25 6&y weight basis The lagoon systems to the west of Key Largo have been'extensively studied. These basins are effectively separated from the Marine Sanctuary by the land mass of Key Largo and are.not expected to influence water quality in the Sanctuary to any great extent. The reader is referred to Goodell and Gorsline (1961) for water quality data for Florida Bay, Lynts (1966) for Buttonwood Sound and Segar et al. (1971) for Card Sound and South Biscayne Bay. Geological/Biological Studies Within the Sanctuary In contrast to the dearth of chemical data for Sanctuary waters, the reefs of the Marine Sanctuary have attracted a great deal of attention from biologists and geologists. The following is a review of articles that deal directly with the reefs and shoals of the Key Largo Coral Reef Marine Sanctuary. GEOLOGY Sedimentology: Enos and Perkins (1977) published a comprehensive review of the sedimentology of the Florida Keys and reef tract. This report includes a series of benthic community maps, topographic profiles, sediment thickness, porosity and permeability data, as well as underwater and aerial photographs. They discuss the ecology and distribution of organisms that contribute to, or modify sediments. Further, they review the topography and hydrography of the Florida Keys and discuss the formation of sand shoals, patch reef banks and tidal deltas. 23 The process of grain accretion in sediments has been examined in the Marine Sanctuary by Boyer (1972) and Hattin and Dodd (1978). Boyer, working between Molasses Reef and Rodriguez Key, found that accretionary features such as grain coatings, intragranular void fillings, and internal and external cements of reef tract calcarenites result from non-skeletal submarine carbonate precipitation and lithification. These processes are most abundant along the platform edge and are less abundant on back reefs. Muddy environments inhibit cementation because of their impermeability, poor aeration and high organic content. Hattin and Dodd (1978), sampling the sediments of White Bank, showed that submarine cementation is a recent phenomenon (1705 + 120 years). Chesher (1973) included sediment analysis in his study of the sea-biscuit Meoma ventricosa. He reported that, in the Molasses and Alligator Reef areas, average grain size was about 0.45 = with a sorting coefficient of 1.54; porosity averaged 47.5% by volume; permeability averaged 0.909; organic carbon was about 1.8% (by weight) of the total substrate; no hydrogen sulfide was found in the upper 20 cm of sand; and temperature was slightly lower in the sand than in the water during the day. Reef Distribution% Marszalek et al. (1977) concluded that reef distribution is a result of factors that affect exchange between the reef tract and the coastal lagoons and Florida Bay, such as land barriers, tidal passes and orientation to wind-driven currents. They described Carysfort Reef and Key Largo Dry Rocks as well-developed reefs, while Long Reef and French Reef are poorly developed. They also counted more than 6000 patch reefs between Miami and the Marquesas. An aerial photomosaic of the Florida reef tract is in preparation (Marszalek, personal communication, 1979). Hurricane Effects: Hurricanes occasionally sweep over the reefs with devastating force. The effects of two major hurricanes which pi@ssed directly over the northern reef tract, Donna in 1960 and Betsy in 1965 (Fig. 71), were studied by Ball et al. (1967), Perkins and Enos (1968) and Shinn (1972). The effects of Hurricane Donna were investigated by Ball et al. (1967). They looked at Key Largo Dry Rocks, Molasses Reef, the Elbow Tn_eiihite Bank and found that the most obvious effect was freshly broken coral rubble, that massive coral heads were more resistant than other types, that patch reefs were not as badly damaged as outer reefs and that sediment transport was shoreward on the shoals along the outer reefs. Perkins and Enos (1968) studied the effects of Hurricanes Betsy and Donna and found that coral damage by Betsy was not as extensive because the weaker colonies had already been removed by Hurricane Donna. They also reported little damage to patch reefs, documented the deposition of 1 to 6 inches of "soupy mud' over the firm mud bottom in Hawk Channel and noted that very turbid water flowed over Carysfort Reef with little apparent damage to the coral. Shinn (1972) found that the reefs at Key Largo Dry Rocks recovered quickly after the passage of Hurricanes Donna and Betsy. After one year damage was visible only to those familiar with the area's pre-storm condition. Two years after Hurricane Betsy the reef had completely recovered. 24 Topography: The topography of the Florida reef tract has been described by numerous authors (Agassiz, 1888; Enos and Perkins, 1977; Hoffmeister et al., 1964a; Multer, 1969; and Shinn, 1963). A generalized profile across the shallow shelf in the area of the Sanctuary is shown in Fig. 72 (after Enos and Perkins, 1977). Agassiz (1888) included a bathymetric profile across the reef tract in the vicinity of Carysfort Reef, and Enos and Perkins (1977) presented a series of profiles across the reef tract, including several within the Sanctuary (profiles D, E, F and G, Fig. 73). Shinn (1963) studied the Acro22ra reefs at Key Largo Dry Rocks and Molasses Reef and described the formation of spur and groove topography, documenting his work with underwater and aerial photographs. In 1977 Shinn et al. concluded that most linear reefs are localized by pre-existing t;p__o@_raphy, that reef accumulation rates are greater near Key Largo and at Dry Tortugas than anywhere else in the reef tract and that accumulation rates were greater in the past than they are today. Bathymetry: Carysfort Light was used as the western terminus of bathymetric transects across the Florida Straits by Hurley et.@l. (1962) and Malloy and Hurley (1970). Their figures and bathymetric maps include soundings taken at the extreme eastern boundary of the Sanctuary (100 meters depth). Genera 1: Field guides published by Hoffmeister et al. (1964a) and Multer (1969) discuss the more important geological features of the Sanctuary reefs. BIOLOGY Foraminiteraz Foraminiferan distribution between Rodriguez Key and Molasses Reef was investigated by Wright and Hay (1971) and again by Rose and Lidz (1977). The former reported that distribution is correlated with grain size distribution and that most living forams are found on vegetation and settle to the bottom after death. Both reports include species lists. Fungi- Thompson (1969) studied the distribution of Deuteromycete fungi along a transect extending from Key Largo to Molasses Reef via Mosquito Bank. Diatoms: Diatom distribution was the subject of papers by Miller et al. (1977), who showed that characteristic diatom assemblages are associated with different substrates, and by Montgomery et al. (1977), who suggested that attached diatom populations may be nutrient limited. Montgomery etal. concluded that the diatom flora of Molasses Reef differs from that of Sombrero Reef or Western Sambo Reef. 25 Echinoderms: McPherson (1968) studied the sea urchin Eucidaris tribuloides and Chesher (1969) investigated the biology of the s-ea biscuit Meoma ventricosa. Both worked at Molasses Reef as well as reefs outside the Sanctuary. Corals: Working at Key Largo Dry Rocks, Shinn (1966) conducted field measurements of coral (Acrpj?ora cervicornis) growth rates (Fig. 8). He reported an average growth rate of 10 cm/year and compared growth on the reef with that of Corals transplanted close to shore. The near-shore colonies expelled their zooxanthellae due to thermal stress (33.80C) during September-November and died the following spring due to an influx of cold water (13.30C minimum water temperature). Thompson (1979) subjected corals to different dilutions of drilling mud at Carysfort Reef in a field toxicology experiment. He found that three species of Porites (P. asteroides, P. divaricata and P. furcata) and Dichocoenia stokesii survived all tested dilutions while Montastrea annularis, Agaricia agaricites and Acropora cervicornis suffered significant mortality after a 65 hour exposure to a 1000:1 dilution. Burial under either natural carbonate sediment or drilling mud for periods as short as two hours caused stress to corals. Antonius (1973)studied predation on corals by the marine bristle worm Hermodice carunculata and infection by Oscillatoria submembranacea and reported the stress phenomenon called a "shut-down reaction" whereby the coral's living tissue disintegrates as a result of stress (Antonius, 1977). Fishes: Fish censuses have been conducted by Alevizon and Brooks (1975) at Grecian Rocks and Key Largo Dry Rocks, and by Jones and Thompson (1978) at Molasses, French and Carysfort Reefs. Springer and McErlean (1962) conducted a tagging study of the fishes at Mosquito Bank and Molasses Reef and found that they are territorial. Bohnsack (1980, unpublished data) conducted fish censuses at Molasses, French, and Elbow Reefs. The results will be published as part of a study comparing fish communities at Looe Key Reef (off Big Pine Key) with the reefs of the Marine Sanctuary. Reef Ecology: The Harbor Branch Foundation (Fort Pierce, Florida) operated a field laboratory at John Pennekamp State Park in the early 1970's and conducted a series of reef studies at sites that are now under the jurisdiction of the Marine Sanctuary. The results of this effort have been published by Antonius (1973, 1974a, 1974b, 1977) and Griffin and Antonius (1974). Although a number of scientists (Voss, 1973; Dustan, 1977a, 1977b and Thomas, 1979) have voiced concern over signs of poor health in the Sanctuary's reefs, Antonius (1974b) 26 was the first to attempt a quantitative analysis of reef health in the Sanctuary. He measured the percentage of live corals at Carysfort (92.75%), Elbow (92.90%), Molasses (93.13%), Key Largo Dry Rocks (88.61%-93.52%), Grecian Rocks (83.33%-87.84%) and Hen and Chickens Reef (10-18.03%). The Sanctuary reefs will soon be re-surveyed in order.to see if any changes have occurred over the intervening years (Dr. Dennis Taylor, personal communication, 1979). Dustan (1977a) documented recreational pressure on the coral reefs, citing anchor chafing and boat groundings as agents of reef destruction. He showed that reef corals recovered slowly after being damaged by the wreck of the catamaran "Maya" at Key Largo Dry Rocks in 1974 and recommended that permanent moorings be placed on the reefs to prevent anchor damage. Dustan (1977b) found low coral recruitment rates at Carysfort Reef, reported that coral infection by Oscillatoria may be related to temperature and suggested that coral populations are declining. In 1972, NOAA conducted a series of coral reef studies with the undersea habitat "EDELHAB" during the FLARE project. Summaries of each mission were published in the Annual Report of the Manned Undersea Science and Technology (MUST) Program (U.S. Department of Commerce, 1973, pages 21-26). At both Long Reef and Elbow Reef it was noted that large, predatory fish were scarce, while small reef fishes were abundant (Missions 1 and 6). At Elbow Reef (Mission 6) large numbers of diseased fish were observed and it was suggested that there 'may be a correlation between overfishing, lack of large predators and presence of diseased fish. These findings were contradicted by Mission 8, however, during which it was reported that Elbow Reef is in excellent health, comparable to similar reefs in the Bahamas. Deep Reefs: Due to the physiological limitations imposed by the use of SCUBA, most research in the Sanctuary to date has been restricted to waters less than 30 meters deep. NOAA recently conducted a series of investigations of the deeper regions of the Sanctuary (Carysfort, Elbow and French Reefs), using the submersible "Johnson Sea-Link", the results of which have not yet been published. Aerial Surveys: Finally, Thompson (1974) tested a water penetration film along an aerial transect from Key Largo to Molasses Reef and found it to be a valuable tool for mapping benthic communities in shallow water. Workable resolution was lost at a depth of 40 to 50 feet. 27 Geological/Biological Studies in Adjacent Areas In the course of this search for water quality data pertaining to the Key Largo Coral-Reef Marine Sanctuary, a considerable portion of the published literature relating to the Florida Keys, Florida coral reefs and Florida Current was examined. Rather than discuss this extensive volume of published material article by article the reader is referred to the Key Word Index (Appendix C) in which all the reviewed literature is cross-indexed according to subject. The coral and coral reef literature is voluminous and a complete listing is beyond the scope of this review. A few noteworthy references have been included, such as the three International Coral Reef Symposia (University of Miami, 1977;Great Barrier Reef Committee, 1974; and Mukundan and Gopinadha Pillai, 1972), the most recent review of Goreau et al. (1979) and the works of Buddemeier and Kinzie (1976), Jones and Endean (T97T, 1976), Wells (1957), Yonge (1963), Stoddart and Yonge (1971), Stoddart and Johannes (1978), and Johannes (1972, 1975). A number of recent guides to the identification of corals and of marine organisms associated with coral reefs have also been included. For regional bibliographies, the reader is referred to the works of Schmidt and Davis (1978), U.S. Department of Commerce (1979), U.S. Department of the Interior (1976), Rosendahl (1975), Tabb and Iverson (1971), Voss et al. (1969), Morrill and Olson (1955) and Joseph and Nichy (1955). 28 DISCUSSION Currents in designing a water quality monitoring program for a system of unrestricted circulation such as the Marine Sanctuary, an area of primary interest must be consideration of currents. There is little historical current data for the Marine Sanctuary and very little is known about the patterns and structure of the currents in adjacent areas. The Florida Current, whose waters flow northward through the eastern region of the Sanctuary, has been intensively studied, but most studies have focused on the Miami area or along transects running from Miami to Bimini, Fowey Light to Cat Cay, Sombrero Reef to Cay Sal Bank or Key West to Cuba. The edges of the Current (at depths less than 100 meters) in the vicinity of the Sanctuary have been ignored, This vast reservoir of warm, oceanic water serves to moderate temperature and salinity along the eastern boundary of the Sanctuary. Its waters pass immediately seaward of the reef tract and under the influence of prevailing easterly breezes and the thrust of waves impinging on the reef, a drift of Gulf Stream water flows over the shallow outer reef. The fate of this water after it passes over the reefs is uncertain. Aggassiz (1888), Smith et al. (1950), and Manker (1975) reported that a southerly countercurrent@ fio@s:through Hawk Channel. Neither Aggassiz nor Smith et al., offered evidence to support this hypothesis and Manker's data are unconvincing. Vaughan (1918) attempted to demonstrate a southerly flow in Hawk Channel but failed. Continuous records of surface currents in adjacent areas (Griffin, 1974, unpublished data; National Ocean Survey, 1963, unpublished data) reveal that the predominant current in Hawk Channel flows toward the northeast. Part of the confusion may be due to spin-off eddies similar to those studied by Lee et al. (1977a). Such an eddy could possibly be perceived as a counter current@if_encountered during a limited study of current patterns. It should be noted that Lee's work was conducted in the Miami-Ft. Lauderdale area; spin-off eddies have not been demonstrated in the area of the Sanctuary. Rapidly moving fronts of clear water, generally flowing to the south or southwest, have been noted in the patch reef area of Biscayne National Monument (Richard Curry, personal observation) and it is probable that spin-off eddies or extrusions from the Florida current do occur in the Sanctuary, especially in areas where the outer reef structure is poorly developed or entirely missing. The influence of wind speed and direction on surface currents in the shallow waters between the Florida Keys and the reef tract was demonstrated by Jones (1963). Surface currents in this area are wind-induced and, as a result, are as variable in both direction and velocity as are the breezes that drive them. It seems reasonable that predominantly southeast winds, coupled with the northeastern orientation of Hawk Channel, would result in a net flow of surface water to the northeast in Hawk Channel. 29 The importance of a southerly current in the vicinity of the Sanctuary lies in the possibility that such a current might carry pollutants from Biscayne Bay and the Miami area into the Sanctuary. This possibility has been mentioned in the literature (Dustan, 1977b; Manker, 1975) but it has never been substantiated. Topogra2hy: To the west of the Sanctuary lies Hawk Channel, a wide, natural channel with maximum depths of 15 to 20 feet. This channel extends the entire length of the Keys and separates them from the outer reefs. A secondary channel, referred to as a "moat" by Griffin (Figs. 20 to 25), lies between Hawk Channel and the outer reef, separated from Hawk Channel by White Bank, a linear sand shoal that parallels the Keys. This shoal can be seen in profiles E, F and G in Fig 73. in other areas (see profiles B, C and D, Fig. 73) patch reef banks form a similar barrier. This secondary channel is narrower and somewhat deeper than Hawk Channel (maximum depths of 25 to 30 feet). rt is, however, poorly defined and loses its identity completely south of the Sanctuary (compare profiles B-G with profiles H-L, Fig. 73). Nevertheless, the topographical barriers that separate the secondary channel from Hawk Channel play an important role in maintaining good water quality in the outer reef. They serve to isolate the reef from the more turbid, more variable water in Hawk Channel (see Fig. 11). Temperature: , I Temperature is the only water quality parameter for which adequate historical data exist. Fig. 74 summarizes twenty-one years of surface temperature data for Carysfort Reef provided by Vaughan (1918). Mean temperature is indicated by the solid line and the dotted lines indicate a band one standard deviation wide on either side of the mean. minimum temperatures (22.50C) occur in early January and maximum temperatures (290C) occur in mid-August. Temperature variation, as indicated by the standard deviation, is least in summer and greatest in winter. This probably reflects alternating warm and cool weather as cold fronts pass through the region during the winter. Fig. 75 shows Shinn's (1966) maximum-minimum temperature records for Key Largo Dry Rocks superimposed on Vaughan's data. No substantial difference is evident. Temperature fluctuates over a much wider range in nearshore waters than it does on the outer reef. Smith et al. (1950) reported a temperature range of 24.350C to 29.80C for the outer reef (Triumph Reef) while nearshore waters (East Elliot Key) showed a temperature range of 19.20C to 32.310C (Fig. 34). Shinn (1966) reported a temperature range of 20.OOC to 30.50C at Key Largo Dry Rocks while close to shore temperature ranged from 13.30 to 33.80C (Fig. 8). Griffin's unpublished data (1974) (Fig. 11) show that temperature variations are greatest in Hawk Channel and decrease with distance from shore. 30 Temperature is also the only water quality parameter whose effects on corals have been studied in the Sanctuary. Shinn (1966) showed that a temperature of 33.80C arrested coral growth and caused expulsion of zooxanthellae. When temperatures fell to 13.30C the corals died. These experiments were conducted with Acropora cervicornis, a coral species that thrives in the shallow waters b ind the outer reef. Vaughan (1917) cited A.G. Mayer's laboratory experiments with corals that led him (Mayer) to conclude that corals die at a temperature of 13.90C. Vaughan set the minimum temperature for coral growth at 18.150C, basing this conclusion on a comparison of recorded temperatures at Carysfort Reef and Fowey Rocks. At Carysfort Reef, where the reef is healthy, minimum recorded temperature was 18.150C while at Fowey Rocks where the reef is poorly developed, minimum temperature was 15.60C. Jaap (1979) observed zooxanthellae expulsion by the corals Acro22ra Palmata, Millepora complanata and Montastrea annularis at Middle Sa Reef (near Key West) during a period of elevated temperature. Most of the corals regained their normal color after six weeks. He concluded that short periods of thermal stress have no lasting effect on corals. Shinn (1966) also reported that corals that had expelled their zooxanthellae in September had resumed their normal color by December when maximum temperatures had dropped to 270C. Salinity: Manker (1975) and Griffin (1974, unpublished data) recorded surface salinity in the Sanctuary. Manker'-s values range from 36.3 o/oo to 36.9 o/oo (Fig. 13) while Griffin recorded values from 34.6 o/oo to 36.6 o/oo, (Fig. 11). Griffin's data are more representative since they were recorded throughout the year while Manker's measurements-were restricted to the summer months. Dole and Chambers (1918) showed that precipitation patterns resulted in short-term salinity fluctuations at Powey Rocks (Fig. 38). Their data indicate a salinity range between 34.2 o/oo and 38.8 o/oo, in surface waters. Salinity, like temperature, is more variable close to shore than on the outer reefs. This can be seen by comparing inshore and offshore salinity ranges in Griffin's (1974, unpublished) data (Fig. 11). Smith et al. (1950) reported a salinity range of 35.25 o/oo to 36.50 o/oo for the ou-te-r-reef (Truimph Reef) while nearshore waters (East Elliot Key) showed a salinity range of 34.43 o/00 to 37.40 o/oo (Fig. 34). Temperature - Salinity Relationship The temperature-salinity envelopes shown in Figs. 44 and 46 give excellent examples of the ranges of salinity and temperature of waters around the outer reef. Synoptic temperature and salinity readings obtained now could be expected to plot within the envelope observed by Vargo (1968) as shown in Fig. 46. Stations close to shore will have values which fall outside this T-S 31 plot, but a similar diagram could be developed for waters at various locations in the back reef area. Once established, the T-S plot characteristics should not change unless water from a different source is introduced into the area. Therefore the T-S plot can be used as a diagnostic tool in a 'Monitoring program. -- Turbidity Griffin (1974, unpublished data) has provided excellent background data on turbidity in the Sanctuary. Ambient turbidity fluctuates greatly, depending on wind and sea-state conditions, depth of water and type of sediment. in general, turbidity ranges from practically nil to about 10 mg/1 (transmissometer readings converted to mg/1). Turbidity is greater close to shore than it is in the outer reef area. This is partially due to the nature of the sediments, runoff from adjacent land areas and current patterns. Close to the reef, the sediments consist mostly of medium to coarse grained particles which settle quickly after being disturbed, while in Hawk Channel fine, easily-suspended sediments predominate (Enos and Perkins, 1977). These fine particles are put into suspension during periods of high wind to give the inshore water a chalky white color. Griffin's traverse data (Figs. 20 to 2S) clearly show the resuspension of sediment by ship wakes. It can also be seen that the highest turbidity levels occur during the winter months (mid-December to early February). Griffin's spot station data (Fig. 11) show turbidity fluctuations to be greatest inshore and least on the outer reefs and Atlantic Ocean. ' I Unpublished turbidity data for Biscayne National Monument (National Park Service) show a higher turbidity in Hawk Channel (approximately 0.7 N.T.U.) than in the secondary channel west of the outer reef (approximately 0.2 NTU). The water on either side of the outer reef has essentially the same turbidity. Over the patch reefs, turbidity values vary widely but the range is always between that observed in Hawk Channel and that of the secondary channel. Hanson and Poindexter (1972), in comparing transmittance at Elbow Reef with Government Cut and Pacific Reef (Fig. 27), expected to find increased turbidity at Government Cut because it is an outlet for the polluted waters of Biscayne Bay but were surprised to find greater transmittance at Government Cut (7.0%) than at Pacific Reef (S.5% + 1.21),. The large standard deviations, however, coupled with the fact that th@e`re are only two data points for Government Cut, render any differences statistically insignificant. They suggested that the large variations in transmittance were caused by currents and reported that natural fluctuations In cloudiness, sea state and turbidity result in a day to day variability of 4S-58% in solar irradiance reaching the coral reefs. Nutrients: Concentrations of primary nutrients within the boundaries of the Sanctuary have not been investigated. Data from adjacent waters indicate low nutrient levels. Phosphates are a normal constituent of seawater. They normally occur in low concentrations in the Florida Current. Reported values for the Florida Current (Table 5B) are consistently less than 1 ug-at/l, with slightly higher values found at depths greater than 100 meters. 32 Jones (1963) (Fig. 35) reported that ortho-phosphate concentrations on Margot Fish Shoal ranged between 0.0 and 0.1 ug-atoms/l having a mean around 0.04 ug-atoms/l. These data agree well with the data collected by the National Park Service on the patch reefs in Biscayne National Monument (Curry, R. personal observation). Simmons (1973) reports slightly higher values (Fig. 39), with a mean of 0.12 ug-atoms/l. Her nitrate and nitrite data for Brewster reef show a range of 0.16 to 1.96 ug-atoms/1 and 0.01 to 0.13 ug-atoms/l, respectively. These values are in good agreement with National Park Service data (Curry, R., personal observation). Simmons reports a mean concentration of 1.84 ug-atoms/l for ammonium on Brewster Reef. The Park Service, on the other hand, has observed a mean of 0.7 ug-atoms/l on the patch reefs between Hawk Channel and the secondary channel. Simmons also reported a mean total phosphate phosphorus concentration of 1.06 ug-atoms/l which is about four times greater than that reported by Jones (1963) for Margot Fish Shoal. The specific cause of these higher values for ammonium and total phosphate can not be explained at present. Simmon's values do, however, agree with measurements observed in the Florida Straits by Bsharah (1957) and by Corcoran and Alexander (1963). In nearshore areas, the situation is quite different. Chesher (1974) recorded a phosphate concentration of 15 ppm in a residential canal in the upper Florida Keys and Michel (1973) reported a maximum concentration of 2.46 ug-at/l in the Venetian Shores canal system. The source of the nutrients is unclear but it is quite likely that they derive from runoff from the adjacent land. Fertilizers applied to lawns, leaking septic tanks and detergents are all possible contributors to this nutrient load. Further development in the Florida Keys could result in higher phosphate levels near shore. Metals: Metal concentrations in the suspended particulate matter far exceeded those for the bottom sediments (Manker, 1975). Manker found highest concentrations of metals in the four-micron and suspended particulate fractions and warned of the potential for dispersal of this mobile fraction during high winds. High metal concentrations were correlated with proximity to heavily populated areas and the Turkey Point power plant (Figs. 15 to 17). Corals near densely populated areas contained higher metal concentrations than those in more remote areas (Fig. 18). Highest toxic metal concentrations were found in sediments at Tavernier Key which receive effluent from a storm sewer system, the Pennekamp State Park Marina, and Tarpon Basin, a restricted lagoon west of Key Largo. Manker suggested that these metals derive from automobile and boat traffic and poorly maintained sewage disposal systems and stated that pollutants introduced in the northern portions of the study area move southward via longshore drift and countercurrents present at the shelf margin. 33 A higher concentration of metals in fine particulates is expected because of the greater surface area available for adsorption/absorption phenomena. Chelation of metals by organic matter associated with the suspended particulates may also be a factor. Interestingly there does not appear to be a significant difference between the metal concentrations observed in Biscayne Bay and Card Sound and those observed on the reef tract, but this does not necessarily demonstrate mixing of the respective water masses, as Manker (1975) suggests. ,Pesticides: Both of the insecticides used in the Monroe County Mosquito Control program are organo-phosphates. Naled (Dibrom) is insoluble in water and is non-persistent. It is quite volatile (McEwen and Stephenson, 1979) and is almost completely hydrolyzed in water within two days at room temperature (Eto, 1974). Mammalian toxicity of Naled is fairly low; oral LD-50 to rats is 430 mg/kg (Eto, 1974). Fenthion (Baytex) has a water solubility of 54 ppm and is a persistent insecticide (Eto, 1974). McEwen and Stephenson (1979) report a persistence of several months. Its mammalian toxicity ii similar to that of Naled; acute oral LD-50 to male rats is 215 mg/kg and to female rats is 615 mg/kg (Eto, 1974). Fenthion is reported to have a 96 hour TL-50 of 3.00 ppb to Palaemon macrodactylus (USEPA, 1972). The U.S. Environmental Protection Agency (USEPA, 1972) reports that Fenthion is not likely to be present in seawater or marine organisms, and that trophic accumulation is also unlikely. The less persistent Naled would be even less likely to be found in seawater samples. It would nevertheless be foolish to ignore these two insecticides as potential pollutants in Marine Sanctuary waters. 34 ODNCLUSION AND RECOMMENDATIONS In sumaryp ver y little water quality data was found for the Florida reef tract. Biologists and geologists have been very active on the reefs, but chemists have not. Chemical oceanographers have been primarily interested in the deep waters of the Florida Current, while other chemists have concentrated their efforts in the nearshore waters of Biscayne Bay and Card Sound where pollution from the Turkey Point power plant, dredge and fill operations and drainage canals has focused public attention on water quality. The clear waters of the reef tract, in contrast, are relatively pristine and in no imediate danger of gross contamination from human activity, so they have been generally ignored. This neglect is particularly regrettable because these are the only coral reefs within the territorial waters of the continental United States. Subtle, long-term deterioration in water quality, while not as dramatic as the more visible forms of pollution, is just as real and the eventual impact equally devastating. This absence of relevant water quality information for the Sanctuary and adjacent areas adds significance to the development of a compr ehensive water quality monitoring program. Stations: Water quality stations should be established at the source points of water in the Marine Sanctuary. It can be assumed that once the water is within the boundaries of the Marine Sanctuary, it will not change significantly since there are no sewage outfalls or other point sources of pollution within the boundaries. Florida Bay, because of its great surface area and shallow depth, and, to a lesser extent, South Biscayne Bay, Card Sound and Barnes Sound, experience wide fluctuations in salinity and temperature (Fig. 76). Since reef corals cannot tolerate such extremes, the very existence of a thriving reef depends on its isolation from these waters (Ginsburg and Shinn, 1964; Marszalek et. al., 1977). The land mass of Key Largo provides an effective barrier between these regions and the Sanctuary. Nevertheless, water flowing out of Biscayne Bay and Card Sound through Broad Creek and Caesar's Creek to the north and water flowing seaward from Florida Bay through Tavernier Creek and Snake Creek to the south can reasonably be expected to influence water quality at the northern and southern extremes of the Sanctuary. This has never been demonstrated, but should be considered in the water quality monitoring program. With the present inadequacy of our understanding of the current system in the Sanctuary it is impossible to suggest the location and number of permanent sampling stations to be used for a long term monitoring program. A study of the current system in and around the Marine Sanctuary should be conducted prior to the start of the water quality monitoring program or at least concurrent with the initial phase of the program. The following discussion presents the location of temporary stations which could be used to. monitor water quality pending completion of such a study. 35 At least two water quality stations should be located at Elbow Reef (one north and one south of Elbow Reef Tower) since it is centrally located and influenced by water from both sides of the outer reef. The water here is shallow and a sample need only be collected at the surface and bottom. At deeper stations salinity and temperature profiles should be constructed in order to determine the degree of stratification of the water column. The number of samples and their corresponding depths will be based on an analysis of these profiles. A third station should be located one to two miles southeast of molasses Reef on the Marine Sanctuary boundary. Here water entering the Marine Sanctuary via the Florida current could be monitored and compared with the Elbow Reef stations. A fourth station should be located in the Molasses Reef Channel (indicated in Fig. 2). This station would monitor water entering the Marine Sanctuary via the deep channel west of the outer reef. At least three water quality stations should be located in Hawk Channel (north of the Sanctuary, South of the Sanctuary and midpoint) to evaluate the quality of water moving through the area westof the Marine Sanctuary. Hawk Channel is heavily trafficked by both commercial and recreational boaters and is an area where periodic point source pollution would most likely occur. Parameters Parameters that should be measured routinely are the following: temperature, salinity, turbidity, dissolved oxygen, pH, ortho-phosphate, and total organic carbon. Each water quality station should be sampled at monthly intervals if possible and at least at quarterly intervals. Because of its variability, turbidity will have to be monitored more frequently than once a month if significant trends are to be detected. Daily measurements would be ideal, but weekly determinations of turbidity might provide an acceptable compromise. At less frequent intervals (semi-annually) samples should be collected and analyzed for pesticides (both chlorinated and organo-phosphate types) and a detailed trace metal scan performed. A detailed trace metal scan is required since it would detect elevated levels of metals which are not normally suspected to be marine pollutants. If elevated levels of a toxic metal are detected a more intensified sampling schedule could be employed. If a particular pesticide or herbicide is regularly found in the general scans then that particular compound should be included in the monthly or quarterly sampling program. There is one additional source of pollution that could influence water quality in the Marine Sanctuary and should be monitored. That is particulate air pollution. There is enough industry in the south Florida area to cause a measurable deterioration of air quality. This material is washed out of the air by rain and, to a lesser extent, by sea spray and could present a chronic low level source of pollution. At least one air particulate station should be established within the Sanctuary. The best location for this station would be the Elbow Reef light tower since it is centrally located and high enough (36 feet) to protect the station from heavy seas. 36 Clearly many other parameters could be included in the monitoring program. The suggested parameters have been selected because they directly affect the coral reef biota and they would provide means of detecting those types of pollutioh-that can most reasonably be anticipated. Water Quality Criteria: A water quality monitoring program is meaningless unless the data are periodically reviewed to determine whether the measured parameters are within acceptable limits. This, of course, implies that such limits have been established beforehand. Ideally, water quality criteria for the Sanctuary should be based on the requirements and tolerances of the most sensitive organisms residing there. 'At present, this information is not available. Biological research on the Florida reefs is still at a very basic stage. The taxonomy and distribution of the major groups are fairly well known but only recently have biologists begun to experiment with responses to physiological stress among local organisms (Shinn, 1966; Antonius, 1977; Thompson, 1979). Much work has been done elsewhere, but the data are not applicable to the Marine Sanctuary. It would be unwise, for example, to establish water.quality criteria for the Marine Sanctuary based on studies done with Hawaiian coral species. Even studies done elsewhere in the Caribbean may not be applicable because corals in the Sanctuary are near the northernmost limit of their range and this could influence their susceptibility to stress. Local species must be studied under local conditions if valid data are to be obtained. The following is an attempt to recommend acceptable limits for the parameters that will be monitored, and to relate these criteria to existing data for the Sanctuary and adjacent waters. Temperature: Short periods of temperature extremes are tolerated by corals but prolonged periods (over three consecutive days) of exposure to temperatures above 320C or below 200C should be considered hazardous to coral health. Temperature data from adjacent areas (Table 5) show that temperatures in excess of this range have been reported in nearshore waters and that temperatures below this range have been found both in nearshore waters and in the Florida Straits. The cool temperatures recorded in the Florida Straits are generally encountered at depths greater than 50 meters. Churgin and Halminski (1974) reported a minimum temperature of 21.630C at 50 meters for the months of 3uly, August and September and a minimum temperature of 10.900C at 75 meters for the same period. Since the eastern portion of the Sanctuary includes depths in excess of 75 meters, bottom temperatures should be closely monitored here because cold bottom water could influence coral growth, mortality and/or recruitment. A vertical temperature profile should be recorded each month at the station seaward of Molasses Reef. 37 Shinn (1966) recorded the most extreme temperatures in inshore areas (Table 5C) and demonstrated their deleterious effects on coral survival. Such extreme conditions are local in nature. They result from the large surface-to-volume ratio of the water-mass due to the shallow depth. These fluctuations are not experienced on the outer reefs because of the influence of the Florida Current but extreme temperatures might be encountered at the Hawk Channel stations. Salinity Until more data are available for the salinity tolerances of reef organisms, we recommend that prolonged (over three consecutive days) exposure to salinities below 35 o/oo or above 36 o/oo be considered hazardous to coral health. Data from adjacent areas (Table 5B) show no salinities in the Florida Current over 38 o/oo. The maximum reported salinity 4T-able 2) was 37.20 o/oo (Churgin and Halminski, 1974). A minimum value of 34.16 o/oo, recorded in surface water probably resulted from a brief dilution by rainwater. Inshore waters, especially residential canals, experience wide salinity fluctuations. The widest salinity range reported (Table 5C) is that of Griffin (1974, unpublished data). Be recorded a minimum of 27.6 o/oo and a maximum of 43.5 o/oo. These salinities do not presently pose any threat to the Sanctuary because the volume of water in the canals is small and even if this water were transported to the reef tract it would undergo considerable mixing along the way. Dissolved Oxygen: Dissolved oxygen values of 6.0 to 9.3 ppm have been recorded in the Marine Sanctuary (Table 2). Until further information on dissolved oxygen and its effect on corals becomes available, we recommend that a value of 6.0 ppm or 85% saturation be set as a minimum acceptable limit for this parameter in Sanctuary waters. Supersaturation is a common phenomenon (Table 5) and does not appear to pose any threat to reef organisms. PH: No pH data have been found for the Sanctuary. Jones (1963) reported a pH range of 7.0 to 8.3 (estimated from his graphs) for Margot Fish Shoal. Once background data are available for the Sanctuary, we suggest that the EPA (USEPA, 1972) guidelines for pR be used as criteria for the Sanctuary. EPA recommends that +0.2 pH units beyond the normal pR range be considered acceptable limit7s but that pH should never exceed 8.5 nor go below 6.5 pH units. 38 Turbidit The large natural variability of this parameter makes it difficult to establish acceptable limits. No lower limit is necessary, but some upper limit must be set, not only because high turbidity affects corals by reducing the light available to zooxanthellae, but because it reduces underwater visibility,.thereby rendering the water unfit for recreational diving. It is quite possible that sport divers are more sensitive to increased turbidity than are corals. Because of the primary importance of water clarity in this Sanctuary, we recommend that any significant increase in turbidity levels be considered unacceptable. Griffin (1974, unpublished data) recorded turbidity readings of 27.4 mg/l in inshore waters (Table 5C) and in residential canals he found turbidity values of up to 43 mg/l. Chesher (1974) found canals with less than one foot of horizontal visibility. These canals are a potential source of turbid water but it is not yet known whether this water is transported to the reefs. The preliminary current survey of the Sanctuary should address this potential problem. Phosphates: Because of the danger that elevated nutrient levels could bring about e-utrophication in Sanctuary waters, we recommend that phosrhates be closely monitoredF especially-in the nearshore stations. Total phosphate concentrations greater than 1.0.ug-at/1 should be considered an indication that inshore water may be contaminating Sanctuary waters. Until background phosphate levels in the Sanctuary have been ascertained, we recommend that 1.0 ug-at/l be set as the upper acceptable limit for phosphates. Total Organic Carbon: No records of total organic carbon levels are available for either the Sanctuary or adjacent waters. A study conducted by Westrum and Meyers (1978) on the coral reefs at Dry Tortugas indicated a maximum TOC level of 480 +20 ug C/l. This study was conducted outside the region defined as "adjacent areas," but for lack of any other relevant data and until background data are available for Sanctuary waters, we recommend that 500 ug C/1 be the maximum acceptable limit for TOC. Pesticides: Pesticide application data have been presented for the Florida Keys (Table 3) but pesticide use is certainly more widespread than indicated by this limited data. 39 No pesticide records have been identified for reef tract waters or the Florida Current in the vicinity of the Sanctuary. For this reason we recommend that the EPA criteria for pesticide levels (Table 6) be applied to Sanctuary waters until local data become available. Pesticide concentrations in residential canals in the upper Florida Keys were measured by Chesher (1974). The results (Table 5C) show that maximum levels of the aldrin group (aldrin, dieldrin and heptachlor epoxide) are over twenty times the hazard level established by EPA (103 ppb versus 5 ppb), and MT concentrations (including o,p'DDE, p,p'ME, o,p'DDT and p,p,DDT) are over eight times greater than the EPA limit of 50 ppb. These are sediment concentrations, which are normally greater than concentrations in the overlying water, but the presence of these pesticides in the canals is adequate justification for monitoring them. It would also be desireable to determine whether Fenthion or Naled occur in Sanctuary waters since these insecticides are presently being used for mosquito control. Metals: For metals, as for pesticides, the EPA recommended criteria (Table 6) are offered for use in the Sanctuary until sufficient local data are available to propose more realistic criteria. Manker's (1975) trace metal data cannot be compared with the EPA recommended criteria because he measured metal concentrations in sediments and suspended particulates rather than water samples. Dissolved metals were not measured. Manker's data are the only trace metal data available for the reef tract. The only metal records available for the Florida Current in this region are the measurements of iron, copper and nickel by Alexander and Corcoran (1967) and Corcoran and Alexander (1963, 1964). These data (Table 5B) are all well below the tPA hazardous limits but their copper and nickel maxima exceed the EPA minimal risk levels. inshore areas have been investigated by Manker (1975) and the Florida Department of Pollution Control (1973). Again, Manker measured sediment concentrations rather than soluble metal concentrations, so no comparison can be made between his data and the EPA criteria. The data provided by the Florida Department of Pollution Control in numerous canals in the upper Florida Keys show that concentrations of copper, chromium, iron, nickel and lead exceed EPA criteria for environmental hazard while cadmium and manganese are below hazardous levels. 40 Tabl* 6. EPA recommended water quality criteria (USEPA, 1972). Safety Substancis Razard I Minimal Ri%k2 Fact.oO Aluminimum 1.5 Ug/1 0.2 mg/1 0.01 Ammonia 0.4 89/1 0.01 Mg/1 0.1 Antimony 0.2 mg/l 0.02 Arsenic 0.0s 019/1 0.0; 09/1 0.01 Bar um 1.0 109/1 0.3 09/1 0.05 Beryllium 1.5 mg/1 0.1 109/1 0.01 Boron 5.0 ag/l, 5.0 82/1 0.1 Bromine (free) 0.1 09/1 - Bromine (ionic as BrO3) 100 29/1 - Cadmium 0.01 mg/1 0.2 109/1 0.01 Chlorine (free residual) 0.01 09/1 - - Chromium 0.1 Ug/1 0.05 sq/1 0.01 Copper 0.05 Ug/l 0.01 89/1 0.01 Cyanide 0.01 mg/1 0.005 mg/1 0.1 Fluoride 1.5 89/1 O.S mg/1 0.1 Iran 0.3 Dg/1 0.05 mg/1 - Lead 0.05 109/1 0.01 mg/1 0.02 Manganese 0.1 J09/1 0.02 m9/2 0.014 Mercury 0.1 09/1 - 0.02 Molybdenum - - 0.05 Nickel 0.1 mg/1 0.002 mg/l 0.02 Phosphorus (elemental) 0.001 mg/l - 0.01 Selenium 0.01 mg/1 0.005 mg/1 0.01 Silver 0.005 mg/1 0.001 29/1 0.0s Sulfides 0.01 Ug/1 0.005 mg/1 0.1 Thallium 0.1 109/1 0.05 09/1 O.Oss Uranium 0.5 ag/l, 0.1 Ug/1 0.01 Vanadim - - 0.05 Zinc 0.1 Ng/1 0.02 ag/1 .0.016 Organica7s PCO 0.5 mg/kg WTe 0.05 Ng/k9 Aldrin GrCUP9 0.005 mg/kg Other Chlorinated sydrocarbonalO 0.0s agAg PH +0.2 unitall I Concentrations in excess of this value pose a hazard to the marins environment. 2 Concentrations below this value pass minimal risk of deleterious effects. 3 Recommended factor for deriving safe concentration from 96 hour LD-SO data. 4 24 hour average concentration. 5 20 day bioassay recommendedl test for sublethal effects. 6 Lowered to 0.001 If copper or cadmium present due to synergism. 7 Razardous levels expressed as mg/kg (wet weight) of a sample of at least 25 whole fish In the size range of fish consumed by birds or mammals. 8 Includes p,pl-DDT, p,p'-DDD, p,p'-DDE and ortho-paraisomers of these. 9 Sun of concentrations of Aldrin, Di*ldrin, andrin and Heptachlor should not exceed this level. 10 Includes lindane, chlordane, endosulfan, methoxychlor, mirox, toxaphone and hexachlorobenzene. 21 Beyond normal pH range. within normal range +0.5 units is acceptable. Never to exceed 8.5 or go below 63 pH units. 41 Photography: A several meter square photographic plot should be established to document the condition of the benthic biota at each station. Quarterly photo-mosaics of these plots would indicate trends in the benthic community structure which might parallel trends observed in various water quality parameters. Remote Sensing: Remote sensing is broadly defined as the collection of information about an object without being in physical contact with the object (Sabins, 1978). In practice, the use of the term 'remote sensing' is limited to techniques using electromagnetic energy (heat, light and radio waves) in detecting and measuring target charcteristics. The electromagnetic spectral bands are described in Table 7 with their respective wavelengths. Platforms for remote sensing instrumentation are usually satellites or aircraft. Acoustic remote sensing (from ships) should also be mentioned for its potential for monitoring suspended sediment in the water column (Rona, 19771 Proni and et al.p 1976; Proni and Rona, 1975). Remote sensing is categorized as active or passive. Active systems provide an energy source (e.g. radar) whereas passive systems measure naturally radiated or reflected energy. Remote sensing is useful as a tool for monitoring large areas synoptically and repeatably. To achieve similarly synoptic and large area monitoring coverage using conventional field techniques would require a prohibitively vast network of calibrated instruments. Remote sensing techniques may be used to monitor surface and subsurface phenomena in the marine environment. Surface information such as temperature, sea surface roughness (waves), and oil films may be monitored using thermal infrared (IR), microwave, and photographic UV techniques. Within the water column techniques are limited to visible wavelengths of electromagnetic energy since water absorbs or reflects all other wavelengths. Depth of penetration is influenced by suspended and dissolved materials in the water column. A summary of remote sensors representative of those used in oceanography is presented in Table S. The thermal infrared instrumentation used to measure sea surface temperature measures electromagnetic energy in the 8-15um range. This range, however, is affected by water vapor. Since the oceans average 60% cloud cover, most applications of IR temperature measurements utilize aircraft rather than spacecraft as platforms where the instrument can travel below the clouds (McAlister and McLeish, 1965; Lintz and Simonett, 1976). Sea state may be remotely sensed by the visual range of electromagnetic energy by sun glitter or by radar techniques (Strong and McClain, 1969; Duntly, 1965; Badgley, 1965; Lintz and Simonett, 1976). 42 Remote sensing of transparency and color of seawater yields information useful in bathymetric mapping in shallow regions, productivity (by chlorophyll assay), sediment transport, and surface wave action (Ross, 1968, 1979; Yentsch, 1960). Research into the remote sensing of salinity is still under way (Lintz and Simonett, 1976). Oceanic fronts, where two or more water bodies are brought into contact, such as bay water and ocean water, or the Gulf Stream and surrounding waters, are often observable due to a difference in their properties (e.g. temperature, velocity and color) (Cromwell and Reid, 1971; Ewing, 1964). In developing a monitoring program for the Marine Sanctuary, remote sensing could serve in initial siting of monitoring stations by delineating current and dispersion patterns and providing wave climate background. As part of the monitoring program, remote sensing might be used to obtain synoptic current, temperature, turbidity, and productivity data over the entire Sanctuary. Table 7. Electromagnetic spectral bands (Sabins, 1978) Band Wavelength Remarks Gama ray 0.03 nm Incoming radiation from the sun is completely absorbed by the upper atmosphere, and is not available for remote sensing. Gamma radiation from radioactive minerals is detected by low-flying aircraft as a prospecting method. X-ray 0.03 to 3 run Incoming radiation is completely absorbed by atmosphere. Not employed in remote sensing. Ultraviolet, UV 3 nm to 0.4 um Incoming UV radiation at wavelengths less than 0.3 m is completely .absorbed by ozone in upper atmosphere. Photographic UV 0.3 to 0.4 um Transmitted through the atmosphere. Detectable with film and photodetectors, but atmospheric scattering is severe. Visible 0.4 to 0.7 um Detected with film and photo- detectors. Includes earth reflectance peak at about 0.5 m. Infrared (IR) 0.7 to 300 um Interaction with matter varies with wavelength. Atmospheric transmission windows are separated by absorption bands. 43 Table 7 (continued) Band Wavelength Remarks Reflected IR 0.7 to 3 um This is primarily reflected solar radiation and contains no information about thermal properties of materials. Radiation from 0.7 to 0.9 m is detectable with film and is called phot22raaic IR radiation. Thermal IR 3 to 5 UM These are the principal atmospheric 8 to 14 um windows in the thermal region. Imagery at these wavelengths is acquired through the use of optical-mechanical scanners, not by film. microwave 0.3 to 300 cm, These longer wavelengths can penetrate clouds and fog. Imagery may be acquired in the active or passive mode. Radar 0.3 to 300 cm Active form of microwave remote sensing. 44 Table 8. Representative Oceanographic Remote Sensors (Lintz and Simonett; 1976) Sensor Spectral Band Resolution (m/OC) Absorption spectrometer 0.25-0.60 u 70-100/- Ultraviolet imager 0.29-0.40 u 5/_ Multispectral camera 0.30-1.00 u 30-50/- metric camera 0.30-1.00 u 20-30/- Laser*a 0.30-0.90 u 0.15-300/- Image spectrophotometer 0.40-0.70 u 700/- Video visual band 0.48-0.84 u 50-500/- Infrared radiometer 2.00-2.40 u 25/0.1 Absorption spectrometer 2.50-16.0 u 70-100/- High-resolution IR radiometer 3.40-4.20 u 9000/2.0 Infrared radiometer-spectrometer 8.00-14.0 u 30-300/ 0.1-0.8 Infrared imager 8.00-14.0 u 300-2000/0.5 Microwave radiometer 0.30-30.0 cm 3-30,000/ 0.3-2.0 Microwave imager 3.0 cm 300-10,000/ 0.3-0.7 Scatterometer radar* 4, 10, 21, 75 cm. 1-7000/- Radar imager* 1-19.3 cm 30-1000/- Magnetometer 20-100k gamma 1 aThe asterisk indicates an active sensor. 45 Biological Monitoring: Water quality cannot be viewed as a simple matter of chemistry and physics. The importance of good water quality lies in its enhancement of the biological con-ounities which depend on it and ultimately, in cases such as the Marine Sanctuary, its role in providing an aesthetically attractive medium for human recreation. Similarly, the detection of deteriorating water quality cannot be considered only from a chemical/physical viewpoint. Although measurement of parameters such as temperature, salinity, nutrients, etc., is a necessary part of any water quality monitoring program, it is often desirable to supplement this data with a biological monitoring program. Such a program attempts to identify a single species (often referred to as an 'indicator species"), a group of species, or a community that responds to changes in the composition of its environment with some easily measurable change in appearance, behavior or composition. Biological monitoring has been used successfully in freshwater systems, usually in connection with specific effluent discharges (ASTM, 1976). There are several advantages to biological monitoring as a supplement to chemical monitoring. For one thing, living organisms respond to the total envikonment. In selecting chemical or physical parameters for monitoring, it is always possible that one or more important factors may be omitted. There is also the possibility of synergism, whereby two or more factors combine to produce an effect that is greater than that which would have occurred if the factors had acted separately. Living organisms, unlike the chemist's probe, sense all parameters. They are also in continuous contact with the water, whereas chemical and physical monitoring is usually limited to periodic sampling. The major drawbacks to effective biological monitoring are cost, the great effort needed to conduct the study and difficulty in interpreting the results. It must be acknowledged that no single species will serve as a 'canary" in a system as complex as a coral reef. There is no such thing as an indicator species on a coral reef. The futility of this approach has been pointed out with respect to freshwater systems (Hart and Fuller, 1974) and certainly also applies to marine systems. The alternative approach is to consider the entire community, using some measure of diversity as a means of monitoring changes in species composition over a period of time. This is where the first disadvantage, cost, comes into play. Community analysis requires a highly-trained team of specialists, including taxonomists, statisticians and ecologists, and large expenditures of time and money for field work, laboratory analysis and computer time. On a coral reef, these problems are compounded by the structure of the reef itself. Nets, dredges and cores, for instance, cannot be used efficiently on a hard, craggy substrate. 46 .7urthermore, at depths greater than ten meters, such as are found on the seaward slope of the outer reef, bottom time limitations exert severe time restraints on the amount of data that can be obtained, These factorst combined with the large area that would have to be studied (approximately 100 square miles) and the diversity of com.-unity types found within the Sanctuary (coral reefs, hardgrounds, seagrass beds and sandy areas), would demand a great effort and huge expenditures for any meaningful biological monitoring program. Another problem area is difficulty in interpreting the data. Even assuming that a single species or community index has been identified as an appropriate monitoring tool and an easily measurable response has been found, it is still not possible to define the cause of any biological response. As was mentioned earlier, living organisms respond to the total environment, not just one or two parameters, and establishing a cause for a particular effect can only be done under carefully controlled experimental conditions. Shinn (1966) acknowledged the difficulties inherent in interpreting biological responses in his study of growth rates in transplanted corals. Although it appeared that variations in growth rate were due to temperature, he admitted that "Results might have been more fruitful if the abundance of food, oxygen and carbon dioxide saturation, sedimentation and the effects of wave agitation could have been determined-. Antonius (1974b) encountered the same problem in his study of the health of coral colonies in the Sanctuary. He was able to document that 84 percent of the hermatypic corals of Hen and Chickens Reef were dead, but was not able to define the cause of death. It does not seem appropriate at this time to engage in an extensive biological monitoring program in the Marine Sanctuary. The cost would be great and there is no guarantee that the data obtained would provide the desired information. instead, basic ecological research on the various communities that comprise the Sanctuary should be encouraged and special emphasis should be placed on funding well-controlled field experiments to determine the effects of temperature, salinity, turbidity, nutrient enrichment, etc., on the flora and fauna. Thompson's (1979) study of the effects of drilling muds on corals is a step in the right direction and similar in situ studies should be encouraged. Only after this preliminary work has been completed can biological monitoring be effectively conducted and meaningfully interpreted. 47 I I I I I .I I I Appendix A I SOURCES OF INFORMATION I I . I I I I I I 48 1 I NOAA Computerized Information Retrieval Services: Enviroline - -National Oceanographic Data Center - National Technical Information Services - Oceanic Abstracts - Pollution Abstracts Libraries: - Florida Department of Environmental Regulation, Tallahassee, Florida Florida State University, Tallahassee, Florida - NOAA, Virginia Key, Florida - Nova University, Ft. Lauderdale, Florida - Rosenstie.1 School of Marine and Atmospheric Science, Virginia Key, Florida - Scripps Institute of Oceanography, La Jolla, California - University of Miami, Coral Gables, Florida Interviews: - Dr. Arnfried Antonius Florida Reef Foundation, Homestead, Florida - Dr. D. A. Atwood AOML, NDAA, Virginia Key, Florida - Ms. Elizabeth Beck Office of Entomology, Florida Department of Health and Rehabilitative Services, Jacksonville, Florida Dr. James Bohnsack University of Miami, Florida Dr. Thomas Bright Texas A & M University, College Station, Texas Dr. Patrick L. Colin University of Puerto Rico, Mayaguez, Puerto Rico Dr. Eugene Corcoran RSMAS, University of Miami, Coral Gables, Florida Mr. Gary Davis Everglades National Park, Florida Dr. Donald DeSylva RSMAS, University of Miami, Coral Gables, Florida Dr. Phillip Dustan Scripps Institute of Oceanography, Le Jolla, California Dr. Paul Enos SUNY, Binghamton, New York Capt. Jack Gillen John Pennekamp State Park, Key Largo, Florida - Dr. Robert Ginsburg United States Geological Survey, Miami, Florida - Dr. George Griffin University of Florida, Gainesville, Florida - Mr. John Halas Sun Dive Station, Key Largo, Florida (formerly with Harbor Branch) - Mr. Richard Helbling Florida Department of Environmental Regulation, Marathon, Florida - Mr. Harold Hudson United States Geological Survey, Miami, Florida Mr. Walter Jaap Florida Department of Natural Resources, St. Petersburg, Florida 49 Lt. Steve Jameson Office of Coastal Zone Management, Washington, D.C. Mr. Doug Jones Florida Department of Environmental Regulation, Tallahassee, Florida Dr. Robert Jones Harbor Branch Foundation, Ft. Pierce, Florida Dr. Tom Lee RSMAS, University of Miami, Coral Cables, Florida Ms. Karen J. Lukas Vassar College, Poughkeepsie, New York (formerly with Harbor Branch) Dr. Donald Marszalek RSMAS, University of Miami, Coral Gables, Florida Mr. Kevin O'Kane Florida Department of Natural Resources, Pennekamp State Park, Key Largo, Florida Ms. Lois Parker Office of Entomology, Florida Department of Health and Rehabilitative Services, Jacksonville, Florida Dr. Shirley Pomponi RSMAS, University of Miami, Coral Gables, Florida Mr. Paul Priest Aquachem Co., Miami, Florida Dr. William Richards NMFS, NOAh, Virginia Key, Florida Ms. Lois M. Ryan Monroe County Mosquito Control District, Stock Island, Florida Ms. Jennifer Smith Florida Department of Natural Resources, St. Petersburg, Florida Dr. Dennis Taylor RSMAS, University of Miami, Coral Gables, Florida Mr. Bob Ting NDAA library, Virginia Key, Florida Dr. J. Morgan Wells NOAA, Dive Office, Washington, D.C. (formerly with Project FLARE) Dr*. Arthur Wiener Florida Reef Foundation, Homestead, Florida so I I I I I I I 11 I Appendix B BIBLIOGRAPHY I I I I I I I I I 1 51 AGAA88A Agassiz, A. 1888. The Florida reefs. Pages 52-92 in: Three Cruises of the U.S. Coast and Geodetic Survey Steamer "Blake* in the Gulf of Mexico, in the Caribbean Sea, and along the Atlantic Coast of the United States, from 1877 to 1880, Volume 1, The Riverside Press, Cambridge, Mass., 314 pp. ALLW75A Alevizon, W.S. and M.G. Brooks. 1975. The comparative structure of two western Atlantic reef-fish assemblages. Bull. Mar. Sci. 25(4): 02-490. ALEJ63A Alexander, J.E. and Z.F. Corcoran. 1963. Distribution of chlorophyll in the Straits of Florida. Limnol. Oceanogr. 8(2):. 294-297. ALEJ67A Alexander, J.E. and E.F. Corcoran. 1967. The distribution of copper in tropical seawater. Limnol. Oceanogr. 12 (2): 236-242. ANTA73A Antonius, A. 1973. New observations on coral destruction in reefs. Tenth Meeting, Association of island Marine Laboratories of the Caribbean, 4-7 Sept., 1973, Abstracts, Dept. of Marine Sciences, Univ. of Puerto Rico, Mayaguez, P.R.# p. 3. ANTA74A Antonius, A. 1974a. Determination of the health of Florida reefs. Proceedings of the Florida Keys Coral Reef Workshop, Oct. 21-22, 1974, Fla., Dep. Nat. Resour., Coastal Coordinating Council, p. 11 (Abstract). ANTA74B Antonius, A. 1974b, Final Report of the Coral Reef Group of the Florida Keys Project for the project year 1973. Harbor Branch Foundation, Fort Pierce, Fla., 200 ppo ANTA77A Antonius, A. 1977. Coral mortality in reefs: a problem for science and management. Proc. Third Internat. Coral Reef Symp., Univ. of Miami, Miami, n, May, 1977, Vol. 2: 617-623. ANTA78A AntonLus, A., A.B. Weiner, J.C. Halas and R. Davidson. 1978, Looe Key Reef Resource Inventory. Florida Reef Foundation, Homestead, Florida, 63 pp. ASTM75A ASTM.1975. Water Quality Parameters: A symposium cosponsored by the Canada Centre for Inland Waters and the Analytical Chemistry Division of the Chemical Institute of Canada, Burlington, Ontario, Canada, 19-21 November, 1973. ASTH Spec. Tech. Publ. 573, Silvio Barabas, general chairman, 580 ppo 52 ASTM76A ASTM. 1976. Biological Monitoring of Water and Effluent Quality. Cairns, J.0, Jr., K. L. Dickson and G. F. Westlake, (eds.). ASTM Spec. Tech. Publ. 607, Philadelphia, PA. 246 pp. ATWD70A Atwood, D.K. and J.N. Bubb. 1970. Distribution of dolomite in a tidal flat environment, Sugarloaf Key, Florida, J. Geol. 78(4): 499-505. BADP65A Badgley, P. C. 1965. Introductory briefing to the conference on the feasibility explorations from aircraft, manned orbital, and lunar laboratories, in: Ewing, G.C., ed. Oceanography from Space. Woods Hole Oceanographic Inst. Ref. No. 65-10, Massachusetts. BADR71A Bader, R.G. and M.A. Roessler. 1971. An ecological study of South Biscayne Bay and Card Sound. Prog. Report to U.S.A.E.C. and Fla. Power & Light Co., Univ. of Miami, Miami, FL., 381 pp. BALM67A Ball, M.M., E.A. Shinn and K.W. Stockman. 1967. The geologic effects of Hurricane Donna in South Florida. J. Geol. 75 (5): 583-597. BANJ59A Banks, J.E. 1959. Limestone conglomerates (recent and cretaceous) in southern Florida. Am. Assoc. Pet. Geol. Bull. 43(9): 2237-2243. BANA74A Banner, 4.H. 1974. Kaneohe Bay, Hawaii: Urban pollution and a coral reef ecosystem. Pages 685-702 in: Proceedings of the Second International Symposium on Foral Reefs, Vol. 2. Great Barrier Reef Committee, Brisbane, Australia, 753 pp. BARE76A Barrett, E. C. and L. F. Curtis. 1976. Introduction to Environmental Remote Sensing. John Wiley a Sons, Inc., New York. BATR71A Bathurst, R.G.C. 1971. Recent carbonate environments 2: Florida, Gulf of Batabano, Persian Gulf, British Honduras. Pages 147-216 in: Carbonate Sediments and Their Diagenesis, Elsevier Publ.-Co., NY, 620 pp. BELR72A Belderson, R. H., N. H. Kenyon, A. H. Stride and A. R. Stubbs. 1972. Sonographs of the Sea Floor. Elsevier Publishing Co., New York. BOHJ68A Bohlke, J.E. and C.C.G. Chaplin. 1968. Fishes of the Bahamas and Adjacent Tropical Waters. Livingston Publ. Co., Wynnewood, PA, 771 pp. BOHJ76A Bohnsack, J.A. 1976. An investigation of a photographic method for sampling hard-bottom benthic communities. M.S. Thesis, Univ. of Miami, Miami, FL, xii, 188 pp- 53 BOHJ79A Bohnsack, J.A. 1979. Photographic quantitative sampling of hard-bottom benthic communities. Bull. Mar. Sci. 29(2): 242-252. BOYB72A Boyer, B.W. 1972. Grain accretion and related phenomena in unconsolidated surface sediments of the Florida reef tract. J. Sediment. Petrol. 42 (1): 205-210. BRIX78A Bridges, K.W., J.C. Zieman and C.P. McRoy. 1978. Seagrass Literature Survey. Technical Report - U.S. Army Engineer Waterways Experiment Station: D-78-4, 174 pp. BROS66A Broida, S. 1966. Interpretation of geostrophy in the Straits of Florida. Ph.D. Thesis, Univ. of Miami, Miami, FL, 108 pp. BROD75A Brooks, D.A. 1975. Wind-forced continental shelf waves in the Florida Current. Ph.D. Thesis., Univ. of Miami, Miami, FL, xii, 268 pp. BRD175A Brooks, I.H. and P.P. Niiler. 1975. The Florida Current at Key West: Sumer 1072. J. Mar. Res. 33(l): 83-92. BSHL57A Bsharah, L. 1957. Plankton of the Florida Current. V. Environmental conditions, standing crop, seasonal and diurnal *changes at a station-forty miles east of Miami. Bull. Mar. Sci. 7 (3): 201-251. BUDR76A Buddemeier, R.W. and R.A. Kinzie 111. 1976. Coral growth. Pages 183-225 in: Harold Barnes (ed.), Oceanography and Marine Biology, Annual Review, Vol. 14, Aberdeen Univ. Press, 559 pp. BUMD57A Bumpus, Dean F. 1957. Surface water temperatures along Atlantic and Gulf coasts of the United States. U.S. Fish Wildl. Serv. Spec. Sci. Rep. No. 214, 153 pp. CAIS73A Cairns. S.D. 1973. The distribution of the cephalopods collected by the R/V Gerda. in the Straits of Florida. M.S. Thesis, Univ. of Miami, Miami, FL, viii, 221 pp. CAIS76A Cairns, S.D. 1976. Guide to the Commoner Shallow-water Gorgonians (Sea Whips, Sea Feathers and Sea Fans) of Florida, the Gulf of Mexico, and the Caribbean Region. Sea Grant Field Guide Series, No. 6, Univ. of Miami Sea Grant Program, Miami, FL, 74 PP. CARP76A Carlson, P. R. 1976. Mapping surface current flow in turbid nearshore waters of the northeast Pacific in: Williams, R. S. and W. D. Carter, eds. ERTS-1, A New Window on our Planet. US Geological Survey Professional Paper 929. 54 CHAE76A Chan, E.I. 1976. Oil pollution and tropical littoral conununities: biological effects of the 1975 Florida Keys oil spill. M.S. Thesis, Univ. of Miami, Miami, FL, viii, 72 pp. CHER69A Chesher, R.H. 1969. Contributions to the biology of Meoma ventricosa (Echinoidea: Spatangoida). Bull. Mar. Sci. 19(l): 72-110. CHER73A Chesher, R.H. 1973. Environmental analysis, canals and quarries, lower Florida Keys. Marine Research Foundation, Key West, FL, 162 pp. CHER74A Chesher, R.H. 1974. Canal Survey Florida Keys. Society for Correlation of Progress and Environment, Big Pine Key, PL, 173 pp- CHUJ74A Churgin, J. and S.J. Halminski. 1974. Temperature, Salinity, Oxygen and Phosphate in Waters Off United States. Vol. II. Gulf of Mexico. U.S. Dept. of Commerce, NOAA, Environmental Data Service, Wash. D.C. CLAB67A Clausner, E., Jr. 1967. Characteristic features of the Florida Current. M.S. Thesis, Univ. of Miami, Miami,_FL, viii, 55 pp. COLP78A Colin, P.L. 1978. Caribbean Reef Invertebrates and Plants: A Field Guide to the Invertebrates and Plants Occurring on Coral Reefs of the Caribbean, the Bahamas and Florida. T.P.H. Publ., Neptune City, N.J., 512 pp. CORE63A Corcoran, E.P. & J.E. Alexander. 1963. Nutrient, chlorophyll and primary production studies in the Florida Current. Bull. Mar. Sci. 13(4): 527-541. CORE64A Corcoran, E.P. and J.E. Alexander. 1964. The distribution of certain trace elements in tropical sea water and their biological significance. Bull. Mar. Sci. 14: 594-602 CROP70A Croley, P.C. and C.J. Dawes. 1970. Ecology of the algae of a Florida Key. I. A preliminary checklist, zonation and seasonality. Bull. Mar. Sci. 20 (1): 165-185. CROT71A Cromwell, T. and J. L. Reid. 1971. A study of oceanic fronts, Tellus, 8 (1). DAVG77A Davis, G.E. 1977. Anchor damage to a coral reef on the coast of Florida. Biol. Conserv. 11(l): 29-34. DAVJ76A Davis, J.C. 1976. Biology of the hogfish, Lachnolaimus maximus (Walbaum) in the Florida Keys. M.S. Thesis, Univ. of Miami, Miami, FL, 86 pp. 55 DAVW67A Davis, W.P. 1967. Ecological interactions, comparative biology and evolutionary trends of thirteen Pomadasyid fishes at Alligator Reef, Florida Keys. Ph.D. Thesis, Univ. Of Miami, Miami, FL, 126 pp. DAWC74A Dawes, C.J., A.C. mathieson and D.P. Cheney. 1974. Ecological studies of Floridian Eucheuma (Rhodophyta, Gigartinales). 1. Seasonal growth and reproduction. Bull. Mar. Sci. 24(2): 235-273. DAWC51A Dawson, C.E., Jr. and C.P. Idyll. 1951. Investigations on the Florida spiny lobster, Panulirus argus (Latreille). Fla. Board Conserv. Mar. Res. Lab. Tech. Ser. No. 2, 39 pp. DEUM77A Deutsch, M., A. E. Strong and J. E. Estes. 1977. Use of Landsat data for the detection of marine oil slicks. Offshore Technology Conference, Texas. DEVT69A Devany, T. 1969. Ecological interpretation of distribution of the lanternfishes (Myctophidae) in the Straits of Florida. Ph.D. Thesis, Univ. of Miami, Miami, FL, 431 pp. DODJ73A Dodd, J.R., D.E. Hattin and R.M. Liebe. 1973. Possible living analog of the Pleistocene Key Largo reefs of Florida. Geol. Soc. Am. Bull. 84(12): 3995-4000.. DODR74A Dodge, R.E. 1974. The natural radiochemical and growth records in contemporary hermatypic corals from the Atlantic and Caribbean. Earth and Planetary Science Letters, 23: 313-322. DODR77A Dodge, R.E. 1977. Coral populations and growth patterns: responses to sedimentation and turbidity associated with dredging. J. Mar. Res. 35 (4) : 715-729. DODR78A Dodge, R.E. 1978. The natural growth records of reef building corals. Ph.D. Thesis, Yale Univ., New Haven, Conn., 217 pp. DODR74B Dodge, R.E., R.C. Aller and J. Thomson. 1974. Coral growth related to resuspension of bottom sediments. Nature, 147 (5442): 574-577. DOLR18A Dole, R.B. and A.A. Chambers. 1918. Salinity of ocean water at Powey Rocks, Florida. Papers from the Tortugas Laboratory, Vol. 9, Carnegie Inst. Wash. Publ. No. 213: 299-315. DUNS65A Duntley, S. Q. 1965. Oceanography from manned satellites by means of visible light, in: Ewing, G. C. ed. Oceanography from Space. Woods Hole Oceanographic Inst. Ref. No. 65-10, Massachusetts. 56 DUSP74A Dustan, P. 1974a. Proposed research on reefs at John Pennekamp State Park (Abstract). Pages 13-14 in: Proceedings of the Florida Keys Coral Reef Workshop, Oct. 21-22, 1974, State of Fla. Dep. Nat. Resour., Coastal Coordinating Council. DUSP77A Dustan, P. 1977a. Besieged reefs of Florida's Keys. Nat. Hist. 86(4): 73-76. DUSP77B Dustan, P. 1977b. Vitality of reef coral populations off Key Largo, Florida: recruitment and mortality. Environ. Geol. 2 (1): 51-58. DUSP76A Dustan, P.W. Jaap and J. Halas. 1976: The distribution of members of of the class Sclerospongiae Lethaia, p(4): 419-420. EhRC68A Earley, C.F. and H.G. Goodell. 1968. The sediments of Card Sound, Florida. J. Sediment. Petrol. 38(4): 985-999. EBAW75A Ebanks, W.J., Jr. and J.N. Bubb. 1975. Holocene carbonate sedimentation, Matecumbe Keys tidal bank, South Florida. J. Sediment. Petrol. 45(2): 422-439. EBBN66A Ebbs, N.K. 1966. The coral-inhabiting polychaetes of the northern Florida reef tract. Part I. Aphroditidae, Polynoidae, Amphinomidae, Eunieidae, and Lysaretidae. Bull. Mar. Sci. .16 (3): 485-555. - EMEA73A Emery, A.R. 1973. Comparative ecology and osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull. Mar. Sci. 23 (3): 649-770. EMIC78A Emiliani, C., J.H. Hudson, E.A. Shinn and R.Y. George. 1978., Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science 202 (4368): 627-629. ENOP77A Enos, P. and R.D. Perkins. 1977. Quaternary Sedimentation in South Florida. Geol. Soc. Am. Mem. 147, 198 pp. ESTJ74A Estes, J. E. and L. W. Senger. 1974. Remote Sensing and Techniques for Environmental Analysis. Hamilton Publishing Co., Santa Barbara. ETOM74A Eto, M. 1974. Organophosphorus Pesticides: Organic and Biological Chemistry. CRC Press, Cleveland, OH, 387 pp. EWIG64A Ewing, G. C. 1964. Slithering isotherms and thermal fronts on the ocean surface, in: Techniques for Infrared Survey of Sea Temperature. Bureau of Sport Fisheries and Wildlife Circular No. 202. Scripps Institute of Oceanography, San Diego. FANJ74A Fantasia, J. F. and H. C. Ingrao. 1974. Development of an experimental airborne laser remote sensing system for the detection and classification of oil spills. Proceedings, Ninth Symposium on Remote Sensing of Environment. Environmental, Research Institute of Michigan, Ann Arbor, Mich. 57 EDH63A Feddern,'H.A. 1963. Aspects of the biology of the Bluehead Wrasse, Thalassoma bifasciatum (Pisces: Labridae). H.S. Thesis, Univ. of Miami, Miami, FL, 116 pp. FEDH68A Feddern, H.A. 1968. Systematics and ecology of western Atlantic angelfishes, family Chaetodontidae, with an analysis of hybridization in Holacanthus. Ph.D. Thesis, Univ. of Miami, Miami, FL, 211 pp. FLEJ62A Fleece, J.B. 1962. The carbonate geochemistry and sedimentology of the Keys of Florida Bay, Florida. Contribution No. 5, Dept. of Geology, Florida State Univ., Tallahassee, FL, 112 pp. FLOR74A Florida Bureau of Land and Water Management. 1974. Final report and recommendations for the proposed Florida Keys Area of Critical State Concern. December, 1974. Report to the State of Florida Administration Commission, DSP-BLWM-21-74. 55 pp. FLOR73A Florida Dept. of Pollution Control. 1973. Survey of water quality in waterways and canals of the Florida Keys; With recommendations. Tallahassee, Florida. 19 pp. + Tables and Appendices. GALJ76A Gallagher, J. and J. B. McManus. 1976. Optical remote sensing of water pollutants. Report No. ERC 0876, Georgia Institute of Technology. GALP54A Galtsoff, P.S. (coordinator). 1954. Gulf of Mexico: its Origin, Waters, and Marine Life. U.S. Fish Wildl. Serv. Fish. Bull. 89 Volume 55, U.S. Gov't Printing Office. Wash. D.C., 604 pp. GARP75A Garrett, P. and H. Ducklow. 1975. Coral diseases in Bermuda. Nature, 253(5490): 349-350. GILM76A Gilmore, N.D. and B.R. Hall. 1976. Life history, growth habits, and constructional roles of Acropora cervicornis in the patch reef environment. J. Sedimen@it_. Petrol., 46 Mt 519-522. GINR56A Ginsburg, R.N, 1956. Environmental relationships of grain size and constituent particles in some South Florida carbonate sediments. Am. Assoc. Pet. Geol. Bull., 40 (10): 2384-2427. GINR64A Ginsburg, R.N. (editor). 1964. South Florida Carbonate Sediments (Reprint of the 1964 Field Trip Guide) Sedimenta 11, Univ. of Miami, Miami, FL, 1972, 72 pp. GINR64B Ginsburg, R.N. and Z.A. Shinn. 1964. Distribution of the reef-building community in Florida and the Bahamas (abstract). Am. Assoc. Pet. Geol. Bull., @ff (4): 527. 58 GINR74A Ginsburg, R.N. and N.P. James. 1974. Spectrum of Holocene reef-building communities in the western Atlantic. Pages 7.1 7.22 in: Principles of Benthic Community Analysis. A.M. Tiegler, K.R.Walker, E.J. Anderson, E.G.Kaufman, R.N.Ginsburg, and N.P. James, Sedimenta IV, Division of Marine Geology & Geophysics, RSMAS, Univ. of Miami, Miami, FL. GLAE78A Gladfelter, E.H., R.K. Monahan and W.B. Gladfelter. 1978. Growth rates of five reef-building corals in the northeastern Caribbean. Bull. Mar. Sci. 28(4): 728-734. GOLJ73A Golden, J.H. 1973. The life cycle of the Florida Keys waterspout as the result of five interacting scales of motion. Ph.D. Thesis Florida State Univ., Tallahassee, FL, 370 pp. GOND76A Gomberg, D.N. 1976. Geology of the Pourtales Terrace, Straits of Florida. Ph.D. Thesis, Univ. of Miami, Miami, FL, xix, 371 pp. GOOH61A Goodell, H.G. and D.S. Gorsline. 1961. The hydrography of Apalachicola and Florida Bays, Florida. Data Report, Contribution No. 1, Dept. of Geology, Florida State Univ., Tallahassee, FL, 316 pp. GORH74A Gordon,.-H. R.. and 0. B. Brown. 1974. Influence of bottom depth and albedo on the diffuse reflectance of a flat homogeneous ocean. Applied Optics, 13. GORH75A Gordon, H. R. and W. R. McCluney. 1975. Estimation of the depth of sunlight penetration in the sea for remote sensing. Applied Optics, 14, (2). GORT79A Goreau, T.F., N.I. Goreau and T.J. Goreau. 1979. Corals and coral reefs. Sci. Am. 241 (2).- 124-136. GRFA74A Great Barrier Reef Committee. 1974. Proceedings of the Second International Symposium on Coral Reefs. Vol. 1. The Great Barrier Reef Committee, Brisbane, Australia, 630 pp. GRIG74A Griffin, G.M. 1974a. Effects of dredging on the natural turbidity regime of the northern Florida Keys. Pages 24-33 in: Proceedings of the Florida Keys Coral Reef Workshop, Oct. 21-22, 1974, Fla. Dep. Nat. Resour., Coastal Coordinating Council, Tallahassee, FL. GRIG74B Griffin, G.M. 1974b. Dredging in the Florida Keys: Case history of a typical dredge-fill project in the northern Florida Keys Effects on water clarity, sedimentation rates, and biota. Harbor Branch Foundation Publ. No. 33, 51 pp. & Figs. GRIG74C Griffin, G.M. and A. Antonius. 1974. Turbidity and coral reef health in waters of Pennekamp Park, Upper Keys. Fla. Sci., 37, Suppl. 1, p. 15 (abstract). C;Q HANK72A Hanson, K.J. and M.F. Poindexter. 1972. The solar irradiance environment of Florida coastal water during FLARE. NOAh Tech. Memo. ERL AOML-16, AOML, Miami, FL, 98 pp. HARC74A Hart, C.W., Jr., and S.L.R. Fuller. 1974. Pollution Eoology of Freshwater Invertebrates. Academic Press, N.Y., San Francisco, London. 389 pp. HATD78A Rattin, D.E. and J.R. Dodd. 1978. Holocene cementation of carbonate sediments in the Florida Keys. J. Sediment. Petrol., 48 (1): 307-312. HAZB74A Hazlett, B.A. 1974. Field observations on interspecific agonistic behavior in hermit crabs. Crustaceana 26(2): 133-138. HEIF75A Hein, F.J. and N.J. Risk. 1975. Bioerosion of coral heads: inner patch reefs, Florida reef tract. Bull. Mar. Sci. 25 (1): 133-138. HESS78A Hess, S.C. 1978. Guide to the Commoner Shallow-water Asteroids (Starfish) of Florida, The Gulf of Mexico, and the Caribbean. Sea Grant Field Guide Series, No. 7, Univ. of Miami Sea Grant Program, Miami, Fl, 39 pp. HOFJ74A Boffmeister, J.E. 1974. Land from the Sea: The Geologic Story of South Florida. Univ. of Miami Press, Coral Gables, FL, 143 pp. HOFJ64A Boffmeister, J.E., J.1. Jones, J.D. Milliman, D.R. Moore and B.G. Multer@ *1964a. Living and Fossil Reef Types of South Florida. A Gui@;book for the Geological Society of America Convention, Nov., 1964, Field Trip No. 3, 28 pp. HOFJ64B Boffmeister, J.E. and B.G. Multer. 1964b. Growth rate estimates of a Pleistocene coral reef of Florida. Geol. Soc. Am. Bull. 75 (4): 353-357. HOFJ68A Roffmeister, J.E. and H.G. Multer. 1969. Geology and origin of the Florida Keys. Geol. Soc. Am. Bull. 79: 1487-1502. HOLR78A Holm, R.F. 1978. The community structure of a tropical marine lagoon. Estuarine Coastal Mar. Sci. 7(4): 329-345. HUDJ77A Hudson, J.H. 1977. Long-term bioerosion rates on a Florida reef: a new method. Proc. Third Internat. Coral Reef Symp., Univ. of Miami, Miami, FL, Vol. 2: 492-497. HWJ76A Hudson, J.H., B.A. Shinn, R.B. Halley and B. Lidz. 1976. Sclerochronology: A tool for interpreting past environments. Geology, 4 (6): 361-364. 60 H'URR62A Hurley, R.J., V.B. Siegler & L.K. Fink, Jr. 1962. Bathymetry of the Straits of Florida and the Bahama islands. Part I. Northern Straits of Florida, Bull. Mar. Sci. 12 (3): 313-321. JAAW74A Jaap, W.C. 1974. Scleractinian growth rate studies . in: Proceedings of the Florida Keys Coral Reef Workshop, Oct. 21-22, 1974, Fla. Dep. Nat. Resour., Coastal Coordinating Council, Tallahassee, FL, p. 17. (Abstract) JAAW79A Jaap, W.C. 1979. Observations on zooxanthellae expulsion at Middle Sambo, Reef, Florida Keys. Bull. Mar. Sci. 29 (3): 414-422. JAAW74B Jaap, W.C. and J.W. Smith. 1974. Observations on Florida reef corals treated with fish collecting chemicals. in: Proceedings of the Florida Keys Coral Reef Workshop, Oct. 2i--22, 1974, Fla. Dep. Nat. Resour., Coastal Coordinating Council, p. 15. (Abstract) JINV69A Jindrich, V. 1969. Recent carbonate sedimentation by tidal channels in the lower Florida Keys. J. Sediment Petrol. 39(2): 531-553. JOHR72A Johannes, R.E. 1972. Coral reefs and pollution. Pages 364-375 in: M. Ruivo (ed.), Marine Pollution and Sea Life, Fishing News (Books) Ltd, London, FAO, 624 pp. JOHR75A Johannes, R.E. 1975.. Pollution and degradation of coral reef communities. Pages 13-51 in: E.J.Ferguson Wood and R.E. Johannes, (eds.), Tropical Marine Pollution, Elsevier Scientific Publishing Co., Amsterdam, Oxford, New York, 192 pp. JOHR75B Johnson, R. W. 1975. Quantitative sediment mapping from remotely sensed multispectral data. Fourth Annual Remote Sensing of Earth Resources Conference, Tennessee. JONE52A Jones, E.C. 1952. A preliminary survey of the copepods of the Florida Current. M.S. Thesis, Univ. of Miami, Miami, FL. JONJ63A Jones, J.A. 1963. Ecological studies of the Southeastern Florida patch reefs. Part I. Diurnal and seasonal changes in the environment. Bull. Mar. Sci. 13 (2): 282-307. JONJ77A Jones, J.A. 1977. Morphology and development of southeastern Florida patch reefs. Proc. Third Internat. Coral Reef Symp., Univ. of Miami, Miami, FL, Vol. 2: 231-235. JON073A Jones, O.A, and R. Endean, 1973, Biology and Geology of Coral Reefs. Vol. II, Biology I. Academic Press, N.Y. and London. JON076A Jones, O.A. and R. Endean. 1976. Biology and Geology of Coral Reefs. Vol. III, Biology 2. Academic Press, N.Y., 435 pp. 61 JONR76A Jones, R.S., R.H. Randall and N.J. Wilder. 1976. Biological impact caused by changes on a tropical reef. U.S. Environ. Prot. Agency Res. Ser., EPA-600/3-76-027, 209 pp. JONR78A Jones, R.S. and N.J. Thompson. 1976. Comparison of Florida reef fish assemblages using a rapid visual technique. Bull. Mar. Sci. 26 (1): 159-172. JOSE55A Joseph, E.B. and F.E. Nichy. 1955. Literature survey of the Biscayne Bay area. Part 11. Algae, marine fouling and boring organisms. Supplement to: A Literature Survey of the Biscayne Bay Area, J.B. Morrill and F.C.N. Olson, 33 pp. KAUL77A Kaufman, L. 1977. The three spot damselfish% effects on benthic biota of Caribbean coral reefs. Proc. Third internat. Coral Reef Symp., Univ. of Miami, Miami, FL, Vol. 1; 559-564. KELM69A Kelly, M.G. 1969. Applications of remote photography to the study of coastal ecology in Biscayne Bay, Florida. Contr. to Dept. of Biology, Univ. of Miami, Miami, FL, 24 pp., 18 Figs. KISD65A Kissling, D.L. 1965. Coral distribution on a shoal in Spanish Harbor, Florida Keys. Bull. Mar. Sci. 15(3).- 599-611. KISD77A Kissling, D.L. and G.T. Taylor. 1977. Habitat factors for reef-dwelling ophiuroids in the Florida keys. Proc. 'Third Internat. Coral Reef Symp, Univ. of Miami, Miami, FL, Vol. 1, 226-231. KLEV73A Klemas, V., J. F. Borchardt, and W. M. Treasure. 1973. Suspended sediment observations from ERTS-1. Remote Sens. Environ. 2. KLEV73B Klemas, V., R. Srna, W. Treasure, and M. Otley. 1973. Applicability of ERTS-1 imagery to the study of suspended sediment and aquatic fronts. Paper M3, Symposium on Significant Results from ERTS-1, 1 (B). NASA SP-327. KOLK70A Kolipinski, N.C. and A.L. Higer. 1970. Detection and identification of benthic communities and shoreline features in Biscayne Bay using multiband imagery. Section 47 in: Third Annual Earth Resources Program Review, Vol. 3, Hydrology and Oceanography, NASA Manned Spacecraft Center, Houston, Texas. KOZM62A Kozlyaninov, N.V., and 1. V. Semenchenko. 1962. On the measurement of the sea brightness from a plane. Akademiya Nauk. S.S.S.R. Institute Okeanologic, Trady 15. KRIB74A Krititos, H., L. Yorinks, and H. Smith. 1974. Suspended solids analysis using ERTS-A data, Remote Sens. Environ.,.j. 62 LEET72A Lee, T.N. 1972. Florida Current spin-off eddies. Ph.D. Thesis, Florida State Univ., Tallahassee, FL, 91 pp. LEET75A Lee, T.N. 1975a. Circulation and exchange processes in southeast Florida's coastal lagoons. Technical.Report TR75-3, RSMAS, Univ. of Miami, Miami, FL, 71 pp. LEET75B Lee, T.N. 1975b. Florida Current spin-off eddies, Deep-Sea, Res. 25: 753-765. LEET77A Lee, T.N., I. Brooks and W. Duing. 1977a. The Florida Current; its structure and variability. Univ. of Miami, RSMAS Technical Report No. 77003, Miami, Fl, 124 pp. & appendices. LEET77B Lee, T.N., D.A. Mayer. 1977b. Low-frequency current variability and spin-off eddies along the shelf off southeast Florida. J. Mar Res. 35 (1): 193-220. LEET77C Lee, T.N. and C.N.K. Mooers. 1977c. Near-bottom temperature and current variability over the Miami Slope and Terrace. Bull. Mar. Sci. 27(4):.758-775. LINJ76A Lintz, J., Jr. and D. S. Simonett. 1976. Remote Sensing of Environment. Addison-Wesley Publishing Co., Massachusetts. LITE72A Little, E.J. 1972.. Tagging of spiny lobsters (Panulirus argus) in the Florida-Keys. Fla. Dep. Nat. Resour., Mar. Res. Lab. Spec. Sci. Rep. No. 31, 23 pp. LONW41A Longley, W.H. and S.F. Hildebrand. 1941. Systematic catalogue of the fishes of Tortugas, Florida with observations on color, habits, and local distribution. Papers from the Tortugas Laboratory, Vol. 34, Carnegie Inst. Wash., Pub. 535, Wash., D.C., 331 pp, 34 plates, LOYY76A Loya, Y. 1976. Effects of water turbidity and sedimentation on the community structure of Puerto Rican corals. Bull. Mar. Sci. 26(4): 450-466. LYNG66A Lynts, G.W. 1966. Relationship of sediment-size distribution to ecologic factors in Buttonwood Sound, Florida Bay. J. Sediment. Petrol. 36(l): 66-74. MALR70A Malloy, R.J. and R.J. Hurley. 1970. Geomorphology and geologic structure: Straits of Florida. Geol. Soc. Am. Bull., 81 (7): 1947-1972. MANF70A Manheim, F.T., R.S. Meade and G.C. Bond. 1970. Suspended matter in surface waters of the Atlantic continental margin from Cape Cod to the Florida Keys. Science 167: 371-376. 63 MANJ75A Hanker, J.P. 1975. Distribution and concentration of mercury, lead, cobalt, zinc, and chromium in suspended particulates and bottom sediments - upper Florida Keys, Florida Bay, and Biscayne Bay. Ph.D.'Thesis, Rice Univ., Houston, Texas, 114 pp. .* I MARJ74A Maragos, J.E. 1974. Coral transplantation: a method to create, preserve, and manage coral reefs. Sea Grant Advisory Report UNIHI - Seagrant - AR-74-03, Univ. of Hawaii Sea Grant Program, 30 pp. MARD75A Marszalek, D.S. 1975. Calcisphere ultrastructure and skeletal aragonite from the alga Acetabularia antillana. J. Sediment. Petrol. 45 (1) :266-271. MARD77A Marszalek, D.S., G. Babashoff, Jr., M.R. Noel and D.R. Worley. 1977. Reef distribution in South Florida. Proc. Third Internat. Coral Reef Symp., Univ. of Miami, Miami, n, Vol. 2: 223-229. MATJ74A Mattson, J.S., C.A. Smith, T.T. Jones & S.M. Gerchakov. 1974. Continuos monitoring of dissolved organic matter by UV-visible photometry. Limnol. Oceanogr. 19 (3): 530-535. MAUG74A Maul, G. A., R. L. Charnell, and R. H. Qualset. 1974. Computer enhancement of ERTS-1 images for ocean radiance. Remote Sens. Environ., 3. MAYD75A Mayer, D.A. and D.V. Hansen. 1975. Observations of currents and temperatures in the southeast Florida coastal zone during 1971-72. NOAA Tech. Rep. ERL 346-AOML 21, 36 pp. MCAE64A McAlister, E.D. and W. L. McLeish. 1965. oceanographic measurements with airborne infrared equipment and their limitations, in: Ewing, G. C., ed. Oceanography from Space. Woods Hole Oceanographic rnst. Ref. No. 65-10, Massachusetts. MCEF79A McEwen, F.L. and G. R. Stephenson. 1979. The Use and Significance of Pesticides in the Environment. John Wiley and Sons, NY, 538 pp. MCPB68A McPherson, B.F. 1968. Contributions to the biology of the sea urchin Eucidaris tribuloides (Lamarck). Bull. Mar. Sci. 18: 400-443. MCPB69A McPherson, B.F. 1969. Studies on the biology of the tropical sea urchins, Echinometra lucunter and Echinometra viridis. Bull. Mar. Sci. 19(l): 194-213. MEYP77A Meyers, P.A. 1977. Patty acids and hydrocarbons of Caribbean corals. Proc. Third Internat. Coral Reef Symp., Univ. of Miami, Miami, n, Vol. 1, 529-536. MICJ73A Michel, J.P. 1973. A study of the hydrodynamic effects of additional canal construction at Venetian Shores. Report for Venetian Shores Subdivision, RSMAS, Univ. of Miami, Miami, n, 19 pp. 64 MILS53A Miller, S.M., H.B. Moore and K.R. Kuammen. 1953. Plankton of the Florida Current, I. General Conditions. Bull. Mar. Sci. 2(3): 465-485. MILW77A Miller, W.I., R.T. Montgomery and A.W. Collier. 1977. A taxonomic survey of the diatoms associated with Florida Keys coral reefs. Proc. Third Internat. Coral Reef Symp., Univ. of Miami, Miami, FL, Vol. 1, 349-355. MILD62A Milligan, D.B. 1962. Marine geology of the Florida Straits. M.S. Thesis, Florida State Univ., Tallahassee, FL, 120 pp. MILJ73A Milliman, J.D. 1973. Caribbean coral reefs. Pages 1-50 in: O.A. Jones and R. Endean (eds.) Biology and Geology of Coral Reefs, Vol. 1, Geology 1, , Academic Press, NY, 410 pp. MITH78A Mitchell-Tapping, H.J. 1978. The mechanical breakdown of recent carbonate sediment in the coral reef environment. Ph.D. Thesis. Florida State University, Tallahassee, FL, 441 pp. MONR78A Monroe County Planning Dept. 1978. Monroe County Coastal Zone Protection and Conservation Element: Preliminary Draft. 65 pp. + Appendices. MONR77A Montgomery, R.T., W.I. Miller III, and A.W. Collier. 1977. A preliminary investigation of the structure of diatom communities associated with the reef habitats of the Florida Keys. Proc. Third Internat. Coral Reef Symp. Univ. of Miami, Miami, FL, Vol. 1; 357-363. MOOC77A Mooers, C.N.K. and D.A. Brooks. 1977. Fluctuations in the Florida Current, summer 1970. Deep Sea Res. 24 (5): 399-425. MOOW57A Moore, W.E. 1957. Ecology of recent foraminifera in northern Florida Keys. Am. Assoc. Pet. Geol. Bull. 41 (4): 727-741. MORJ55A Morrill, J.B., Jr., and F.C.W. Olson. 1955. Literature survey of the Biscayne Bay area. Report to U.S. Navy Hydrographic Office, Florida State Univ., Tallahassee, FL, 134 pp. MUKC72A Mukundan, C. and C.S. Gopinadha Pillai (eds.). 1972. Proceedings of the First International Symposium on Corals and Coral Reefs, 1969. Marine Biological Assoc. of India, Cochin, 591 pp. MULH69A Multer, H.G. 1969. Field guide to some carbonate rock environments: Florida Keys and Western Bahamas. 'Fairleigh Dickinson Univ., Madison, N.J. 131 pp. & appendices. NAT172A National Academy of Sciences. 1972. Water Quality Criteria: A report of the Committee on Water Quality Criteria, Environmental Studies Board, National Academy of Sciences, National Academy of Engineering, Wash., D.C. 65 NEUC78A Neumann, C.M., G.W. Cry, E.L. Caso, and D.R. Jarvinen. 1978. Tropical cyclones of the North Atlantic. U.S. Dep. of Commerce, NOAh, National Weather Service, 170 pp. NIIP73A Niiler, P.P. and W.S. Richardson. 1973. Seasonal variability of the Florida Current. J. Mar. Res. 31: 144-167. OBRE67A O'Brien, E.J., 111. 1967. On the validity of the geostrophic approximation for the Florida Current. M.S. Thesis, Univ. of Miami, Miami, FL, 46 pp. OPRD73A Opresko, D.M. 1973. Abundance and distribution of shallow-water gorgonians in the area of Miami, Florida. Bull. Mar. Sci. 23 (3): 535-558. OTTS72A Ott, B. and J.B. Lewis. 1972. The importance of the gastropod Coralliophila, abbreviata,(Lamarck) and the polychaete Hermodice carunculata (Pallas) as coral reef predators. Can, J. Zool. .50 (12): 1651-1656. OWRH67A Owre, H.B. and M. Foyo. 1967. Copepods of the Florida Current. Fauna Caribaea, No. 1, Crustacea, Part 1, Copepoda. Institute of marine Science, Univ. of Miami, 137 pp. PARA33A Parr, A.E. 1933. A geographic - ecological analysis of the seasonal changes in temperature conditions in shallow-water along the- Atlantic coast of the United States. Bull, Bingham Oceanogr. Collect. Yale Univ. 4(3): 1-90o PATD72A PatriquAn, D.G. 1972. The origin of nitrogen and phosphorus for growth of the marine angiosperm Thalassia testudinum. Mar. Biol. 15(l): 35-46o PERR68A Perkins, R.D. and P. Enos. 1968. Hurricane Betsy in the Florida Bahamas area - geologic effects and comparison with Hurricane Donna. J. Geol. 76(6): 710-717o PHIR59A Phillips, R.C. 1959. Notes on the marine flora of the Marquesas Keys, Florida. Qo J. Fla. Acad. Sci. 22(3): 155-162. PLAR74A Plaisted, R.O. 1974. Fine structure of the Florida Current. Ph.D. Thesis. NOVA Univ. Ft. Lauderdale, n, 90 ppo & appendices. PROJ75A Proni, J.R. and D. C. Rona, 1975. Acoustic observations of suspended particulate matter in the ocean. Nature, 254. PRDJ76A Proni, J. R., F. C. Newman, D. C. Rona, D. E. Drake, G. A. Berberian. 1976. On the use of acoustics for studying suspended oceanic sediment and for determining the onset of the shallow thermocline. Deep.-Sea Res., 23o 66 QUIJ77A Quinn, J.F. 1977. The systematics and zoogeography of the gastropod family Trochidae collected in the Straits of Florida and its approaches. M.S. Thesis, Univ. of Miami, Miami, FL, 181 pp. RANJ68A Randall, J.E. 1968. Caribbean Reef Fishes. T.H.F. Publ., Inc., Neptune City, NJ, 318 pp. RICK69A Richardson, W.S., W.J. Schmitz, Jr. & P.P. Niiler. 1969. The velocity structure of the Florida Current from the Straits of Florida to Cape Fear. Deep-Sea Res., Suppl. to Vol. 16: 225-231. RDBP63A Robertson, P.B. 1963. A survey of the marine rock-boring fauna of southeast Florida. M.S. Thesis. Univ. of Miami, Miami, FL, 169 pp. ROND77A Rona, D. C. 1977. Remote sensing of turbidity In Biscayne Bay, Florida. Fla. Sci., 40 (2). ROSD68A Ross, D. S. 1968. Photographic and spectral factors affecting depth analysis by color variation, @Ln: Proc. of the Ninth Meeting of the Ad Hoc Spacecraft Oceanography Project, January, NAVOCEANO, Maryland. RIOSD79A Ross, D. S. 1979. Color enhancement for ocean cartography, in: Badgley, P. G., L. Miloy, and L. Childs, eds. The Oceans from Space. Gulf Publ. Co., Houston, Texas. ROSP77A Rose, P.R. and B. Lidz. 1977. Diagnostic foraminiferal assemblages of shallow-water modern environments: South Florida and the Bahamas. Sedimenta VI, Division of Marine Geology and Geophysics, RSKAS, Univ. of Miami, Miami, FL, 55 pp. ROSP75A Rosendahl, P.C. 1975. A bibliography of Biscayne Bay, Florida monitoring and research programs. Univ. Miami Sea Grant Special Report No. 2, Miami, FL, 82 pp. ROUL76A Rouse, L. J. and J. M. Coleman. 1976. Circulation observations in Louisiana Bight using landsat imagery. Remote Sens. Environ., 5. SABF78A Sabins F. F., Jr. 1978. Remote Sensing, Principles and Interpretation. W. H. Freeman and Co., San Francisco. SCHE76A Schanda, E., ed. 1976. Remote Sensing for Environmental Sciences. Springer-Verlag, Berlin. SCHT78A Schmidt, T.W. and G.E. Davis. 1978. A summary of estuarine and marine water quality information collected in Everglades National Park, Biscayne National Monument, and adjacent estuaries from 1879 to 1977. Report T-519, U.S. National Park Service, South Florida Research Center, Everglades National Park, Homestead, FL, 79 pp. 67 SCHW66A Schmitz, N.J. 1966. On the dynamics of the Florida Current. Ph.D. Thesis. Univ. of Miami, Miami, FL, 128 pp. SEGD71A Se-gar, D.A., S.M. Gerchakov, T.S. Johnson. 1971. An ecological study of South Biscayne Bay and Card Sound, Florida. Chemistry Appendices, Appendix I. Progress Report to U.S. A.E.C. and Florida Power & Light Co., Univ. of Miami, Miami, FL, pp. 1-201. SHIE63A Shinn, E.A. 1963. Spur and groove formation on the Florida reef tract. J. Sediment. Petrol. 33 (2): 291-303 June. SHIE66A Shinn, E.A. 1966. Coral growth rate, an environmental indicator. J. Paleontol. 40 (2): 233-240. SHIE72A Shinn, B.A. 1972. Coral reef recovery in Florida and the Persian Gulf.* Environmental Conservation Dept., Shell Oil Co., Houston, Texas, 9 pp. 22 Figs. SHIE77A Shinn, E.A., J.H. Hudson, R.B. Halley and B. Lidz. 1977. Topographic control and accumulation rate of some Holocene coral reefs: South Florida and Dry Tortugas. Proc. Third Internat. Coral Reef Symp., Univ. of Miami, Miami, FL, Vol. 2: 1-7. SIMJ73A Simons, J.R. 1973. A seasonal study of nutrient levels and dinoflagellates in waters near Miami, Florida. M.S. Thesis,. Univ. of Miami, Miami, n, vii, 74 pp. SMIP48A Smith, F.G.W. 1948. Atlantic Reef Corals: A Handbook of the Common Reef and Shallow-water Corals of Bermuda, Florida, The West Indies and Brazil. Univ. of Miami Press, Miami, FL, 112 pp. + 41 plates. SMIF58A Smith, F.G.W. 1958. The spiny lobster industry of Florida. Fla. Board Conserv. Mar. Res. Lab., Educational Series No. 11, 36 pp. SMIP50A Smith, F.G.W., R.H. Williams and C.C. Davis. 1950. An ecological survey of the subtropical inshore waters adjacent to Miami. Ecology 31 (1) : 119-146. SMIJ68A Smith, J.A. 1968. Tidal fluctuations of the Florida Current. M.S. Thesis, Univ. of Miami, Miami, n, 44 pp. SMIJ74A Smith, J.W. 1974. Growth studies on gorgonian octocorals. in: Proceedings of the Florida Keys Coral Reef Workshop, Oct. T1-22, 1974, Florida Dep. Nat. Resour., Coastal Coordinating Council, p. 16. (abstract) SPEM73A Specht, M. R., D. Needler, and N. L. Fritz. 1973. New color film for water penetration photography. Photogrammetric Engineering, 40. 68 SPRV62A Springer, V.G. and A.J. McErlean. 1962. A study of the behavior of some tagged South Florida coral reef fishes. Am. Midl. Nat. 67 (2): 386-397. STAW68A Starck, W.A., 11. 1968. A list of fishes of Alligator Reef, Florida with comments on the nature of the Florida reef fish fauna. Undersea Biology 1 (1): 1-40. STEC77A Stearn, C.W., T.P. Scoffin and W. Martindale. 1977. Calcium carbonate budget of a fringing reef on the west coast of Barbados. Bull. Mar. Sci. 27 (3): 479-510. STED77A Steinker, D.C., B.R. Weis and R.F. Waszczak. 1977. Foraminiferal assemblages associated with South Florida coral reefs. Proc. Third Internat. Coral Reef Symp., Univ. of Miami, Vol. 2: 79-85. STET50A Stephenson, T.A. and A. Stephenson. 1950. Life between the tide-marks in North America. I. The Florida Keys. J. Ecol. 38: 354-402. STID74A Stilwell, D. Jr. and R. 0. Pilon. 1974. Directional spectra of surface waves from photographs. J. Geophys. Res., 79, (9). STOK67A Stockman, K.W., R.N. Ginsburg and E.A. Shinn. 1967. The production of lime mud by algae in South Florida. J. Sediment. Petrol. 37 (2): 633-648. STOD71A' Stoddart, D.R. and M. Yonge. 1971. Regional Variation in Indian Ocean Coral Reefs. Symposia of the Zoological Society of London, No. 28, Zoo-logical Society of London, Academic Press, 1971, London, N.Y., 584 pp. STOD78A Stoddart, D.R. and R.E. Johannes. 1978. Coral Reefs: Research Methods. UNESCO, Monographs in Oceanographic Methodology, Paris, 581 pp. STRA69A Strong, A. C., and E. P. McClain. 1969. Sea-state measurements from satellites. Mariners Weather Log, 13 (5). STUH74A Stumpf, H. G. and A. E. Strong. 1974. ERTS-1 views on oil slick. Remote Sens. Environ., 3. STUW71A Stubbs, W.O., Jr. 1971. The baroclinic structure of the Florida Current. M.S. Thesis, Univ. of Miami, Miami, FL, 57 pp. TABD58A Tabb, D.C. 1958. Investigation of possible effects on the marine environment of dredging and filling the Ragged Keys. Report to Fla. State Board of Conservation. Univ. of Miami, Miami, FL, RSMAS, 13 pp. 69 TABD71A Tabb, D.C. and E.S. Iverson. 1971. A survey of the literature relating to the South Florida ecosystem. Final Report, Part 1, to U.S. Dept. of Interior, National Park Service, 205 pp. TAYW28A Taylor, W.R. 1928. The marine algae of Florida, with special reference to the Dry Tortugas. Papers from the Tortugas Laboratory, Carnegie Inst. Wash., Publ. No. 25: 219 pp. + 37 plates. TAYW60A Taylor, W.R. 1960. Marine Algae of the Eastern Tropical and Subtropical Coasts of the Americas. Univ. of Michigan Press, Ann Arbor, MI, 870 pp. THOL79A Thomas, L.P. 1979. Who's killing the corals? Sport Diver, Winter 1979: 69-76. THOW72A Thomas, W. A. (ed.) 1972. Indiocators of Environmental Quality. Plenum Press, NY, London, 275 pp. THOJ79A Thompson, J.H., Jr. 1979. Effects of drilling mud on seven species of reef-building corals as measured in field and laboratory. Final Report to the U.S. Geological Survey, Texas A&M Univ., College of Geosciences. 29 pp. + Appendix + 14 figures. THOM74A Thompson, N.J. 1974. Validation of Water Penetration Film. Pages 8-10 in: Proceedings of the Florida Keys Coral Reef Workshop, Octob;Wr 21-22, 1974, Fla. Dep. Nat. Resour. Coastal Coordinating Council. THOM77A Thompson, N.J. and T.W. Schmidt. 1977. Validation of the species/time random count technique sampling fish assemblages at Dry Tortugas. Proc. Third Internat. Coral Reef Symp., Univ. of Miami, Miami, FL, Vol. 1, 283-288. THOT69A Thompson, T.W. 1969. Deuteromycete populations in the attached Sargassum communities off Key Largo, Florida. Ph.D. Thesis. Univ. of Miami, Miami, FL, 212 pp. THOE35A Thorp, E.M. 1935. Calcareous shallow-water marine deposits of Florida and the Bahamas. Papers from the Tortugas Laboratory, Carnegie Inst. Wash., Publ. No. 29: 37-119. TURR76A Turmel, R.J. and R.G. Swanson. 1976. The development of Rodriguez Bank, a Holocene mudbank in the Florida reef tract. J. Sediment. Petrol., 46 (3): 497-518. TURW72A Turney, W.J. and B.F. Perkins. 1972. Molluscan distribution in Florida Bay. Sediments 111, Division of Marine Geology and Geophysics, RSMAS, Univ. of Miami, Miami, FL, 37 pp. USDC73A U.S. Dept. of Commerce. 1973. Florida Aquanaut Research Expedition (FtARE). Pages 21-26 in: Manned Undersea Science and Technology Program. iiscal Year 1972 Report, NOAA. 70 USDC79A U.S. Dept. of Commerce. 1979. Key Largo Coral Reef Marine Sanctuary Management Plan. NOAA, Office of Coastal Zone Management. USD176A U.S. Dept. of the Interior. 1976. Environmental Assessment: Proposed General Management Plan for Biscayne National Monument, Florida. Denver Service Center, National Park Service, 261 pp. USEP72A U.S. Environmental Protection Agency. 1972. Water Quality Criteria, 1972. A Report of the Committee on Water Quality Criteria, Environmental Studies Board, NAS, NAE, Wash. D.C. 594 pp. UNIV77A University of Miami. 1977. Proceedings: Third International Coral Reef Symposium. Vol. 1, Biology; Vol. 2, Geology. University of Miami. 656 pp. (Vol. 1), 628 pp. (vol. 2). VARG68A Vargo, G. 1968. Studies of phytoplankton ecology in tropical and subtropical environments of the Atlantic Ocean. Part 2. Quantitative studies of phytoplankton distribution in the Straits of Florida and its relation to physical factors. Bull. Mar. Sci. 18 (1): 5-60. VAUT11A Vaughan, T.W. 1911. The recent madreporaria of southern Florida. Carnegie Inst. Wash. Year Book, No. 9, pp. 135-144. VAUT17A Vaughan, T.W. 1917. Corals and the formation of coral reefs. Smithson. Inst. Annu. Rep., 1917, pp. 189-276. VAUT18A Vaughan, T.W. 1918. The temperature of the Florida coral-reef tract. Papers from the Tortugas Laboratory, Carnegie Inst. Wash., Publ. No. 9: 319-339. VAUT35A Vaughan, T.W. 1935. Current measurements along the Florida coral reef tract. Papers from the Tortugas Laboratory, Carnegie Inst. Wash., Publ. No. 29: 129-143. VOSG73A Voss, G.L. 1973. Sickness and death in Florida's coral reefs. Nat. Hist. 82 (7): 40-47. VOSG76A Voss, G.L. 1976. Seashore Life of Florida and the Caribbean: A Guide to the Common Marine Invertebrates of the Atlantic from Bermuda to the West Indies and of the Gulf of Mexico. E.A. Seemann Publishing, Inc., Miami,.FL, 168 pp. VOSG55A Voss, G.L. and N.A. Voss. 1955. An ecological survey of Soldier Key, Biscayne Bay, Florida. Bull. Mar. Sci. 5 (3): 203-229. VOSG63A Voss, G.L. and P.M. Bayer. 1963. Ecology and dynamics of coral-reef populations, Florida. National Geographic Society Research Reports, 1963, pp. 225-230. VOSG69A Voss, G.L., P.M. Bayer, C.R. Robins, M.Gomon and E.T. Laroe. 1969. A report to the National Park Service, Department of the Interior, on the Marine Ecology of the Biscayne National Monument. Institute of Marine and Atmospheric Sciences, Univ. of Miami, Miami, FL, 128 pp. + 40 Figs. 71 VOSG73B Voss, G.L., L. Opresko and R. Thomas. 1973. The potentially commercial species of octopus and squid of Florida, the Gulf of Mexico and the Caribbean Sea. Sea Grant Field Guide Series No. 2, Univ. of Miami Sea Grant Program, Miami, FL, 33pp. WANH69A Wanless, B.R. 1969. Sediments of Biscayne Bay - distribution and depositional history. Technical Report 69-2, Inst. of Marine Sciences, Univ. of Miami, Miami, FL, 260 pp. WARG69A Warnecke, G. L., M. McMillin and L. J. Allison. 1969. Ocean current and sea surface temperature observations from meteorological satellites. NASA Technical Note D-5142, NASA, Washington. WEBJ77A Weber, J.N. and E.W. White. 1977. Caribbean reef corals Montastrea annularis and Montastrea cavernosa - long-term growth data as determined by x-radiography. Pages 171-179 in: S.H. Frost, M.P. Weiss & J.B. Saunders, (eds.) Reefs and-Related Carbonates - Ecology and Sedimentology. Am. Assoc. Pet. Geol., Tulsa, Oklahoma, 421 pp. WEIM77A Weiss, M.P. and D.A. Goddard. 1977. Man's impact on coastal reefs an example from Venezuela. Pages 111-124 in: S.H. Frost, M.P. Weiss, & J.B. Saunders, (eds.) Reefs and ie-lated Carbonates Ecology and Sedimentology. Am. Assoc. Pet. Geol., Tulsa, Oklahoma, 421 pp. WELJ57A Wells, J.W. 1957. Coral Reefs. Pages 609-631 in: Joel W. Hedgpeth (ed.) Treatise on Marine Ecology and Paleoecology, Vol. 1, Ecology. Geol. Soc. Am. Mem. 67, 1296 pp. WENM59A Wennekens, M.P. 1959. Water mass properties of the Straits of Florida and related waters. Bull. Mar.-Sci. 9 (1): 1-52. WESB78A Westrum, B.L. and P.A. Meyers. 1978. Organic carbon content of seawater from over three Caribbean reefs. Bull. Mar. Sci. 28 (1) : 153-158. WILW73A Williams, W.G. 1973. Short-term variations of dissolved argon, oxygen and nitrogen in the salinity maximum of the Florida Current. Ph.D. Thesis, NOVA Univ., Ft. Lauderdale, FL, 85 pp. WIMS75A Wiman, S.K. and W.G. McKendree. 1975. Distribution of Halimeda plants and sediments on and around a patch reef near Old Rhodes Key, Florida. J. Sediment. Petrol. 45(2): 415-421. WOEW76A Woelkerling, W.J. 1976. South Florida benthic marine algae. Sedimenta V, Division of Marine Geology and Geophysics, RSMAS, Univ. of Miami, Miami, FL, 145 pp. 72 WRIR71A Wright, R.C, and W.W. gay. 1971 The abundance and distribution of Foraminifers in a back reef environment, Molasses Reef, Florida. Pages 121-174 in: J.1. Jones and W.D. Bock, (eds.) A Symposium of Recent South Florida Foraminifera. Memoir 1, Miami Geological Society, 245 pp. YANW57A Yang, Won Tack. 1957. A systematic study of the Hyperiidean amphipoda of the families Hyperiidae, Dairellidae, and Phrosinidae in the Florida Current. M.S. Thesis, Univ. of Miami, Miami, FL, 101 pp. YENCIIA Yentsoh, C. S* 1961, The influence of phytoplankton pigments on the color of sea water. Deep Sea Res., 7. YONC63A Yonge', C.M. 1963. The biology of coral reefs. Pages 209-260 in: F.S. Russell (ed.), Advances in Marine Biology, Vol. 1, Ac@a-demic Press, London and N.Y., 410 pp. ZEIW74A Zeiller, W. 1974. Tropical Marine Invertebrates of Southern Florida and the Bahama Islands. John Wiley & Sons, Inc., N.Y., London, Sydney, Toronto, 132 pp. ZEIW75A Zeiller, W. 1975. Tropical Marine Fishes of South Florida and the Bahama Islands. A.S. Barnes &,Co., Inc., Cranbury, N.J., 127 pp. 73 .. I I I I I i I Appendix C i KEY WORD INDEX I I I I I I I I I 1 74 I Acetabularia antillana MARI)75A Acropora cervicornis ANTA73A, ANTA77A, DAVG77A, CILM76A, JAAW74A, JAAW74B, KAUL77A, MITH78A, SHIE66A, SHIE72A, THDJ79A Acropora palmata ANTA77A, JAAW74A, JAAW74B, JAAW79A, MITH78A, SHIE63A, SHIE77A Agaricia agaricites THDJ79A Ajax Reef CHER69A, VOSG73A Algae COLP78A, CROF70A, DAWC74A, JOSE55A, KAUL77A, MARD75A, PHIR59A, TAYW28A, TAYW60A, WOEW76A Alligator Reef CHER69A, DAVJ76A, DAVW67A, EMEA73A, FEDH63A, HURR62A, MCPB68A, RDSP77A, STAW68A, VARG68A Amphinomidae EBBN66A Amphipods YANW57A Amphora MILW77A Angelfish PEDH68A Angelfish Creek THOE35A Aphroditidae EBBN66A Asteroidea HESS78A Barnes Sound LEET75A, WANH69A Bathymetry HURR62A, MALR70A Beggiatoa GARP75A 75 Benthic Community Structure BORJ76A, BOHJ79A, HOLR78A, KOLM70A, MCPB68A, MCPB69A, MILW77A, STET50A, THDT69A, TURW72A, USD176A, WRIR71A Bibliography BRIK78A, JOSE55A, MORJ55A, ROSP75A, SCHT78A, TABD71A, USD176A, VOSG69A Big Pine Key BOHJ76A, BOHj79A, DODJ73A, RAZB74A, KISD65A, SHIE77A Big Pine Shoal MITH78A Biscayne Bay BADR71A, JOSE55A, KELM69A, KOLM70A, LEET75A, MANJ75A, KATJ74A, MORJ55A, ROND77A, ROSP75A, SEGD71A, WANH69A Biscayne National Monument GILM76A, KOLM70A, SCHT78A, USD176A, VOSG69A Bluehead Wrasse FEDH63A Brewster Reef SIMJ73A Campylodiscus MILW77A Buttonwood Sound LYNG66A Canals BOHJ76A, BOHJ79A, CHER73A, CHER74A, FLOR73A, MICJ73A Candacia pachydactyla JONE52A Carbon, Organic BANA74A, CRER69A, MATJ74A, WESB78A Card Sound BADR71A, FARC68A, LEET75A, MATJ74A, SEGD71A, WANH69A Carysfort Reef AGAA88A, ANTA74B, BUMD57A, DUSP74A, DUSP77A, DUSP77B, ENOP77A, HOFJ64A, HOFJ64B, HURR62A, JONR78A, MANJ75A, PARA73A, PERR68A, SHIE72A, SHIE77A, THDJ79A, VAUTISA Cephalopods CAIS73A, VOSG73B Chaetodontidae FEDH68A Chlorophyll ALFJ63A, CORE63A, MILS53A Cold Water Source (CWS) LEET77B Coliform Bacteria CHER73A Conductivity FL40R73A 76 Content Keys CROP70A Copper ALEJ67A, CORE64A Corals: Bioerosion ANTA73A, HEIF75A, HUDJ77A, MITH78A, ROBP63A, SHIE72A Bleaching JAAW79A Burial THOJ79A Chemical Composition MEYP77A Density Bands DODR74A, DODR77A, DODR78A, EMIC78A, HUDJ76A, HMJ77A Disease ANTA73A, ANTA77A, DUSP77B, GARP75A Distribution KISD65A Growth BUDR76A, DODR74A, DODR74B, DODR77A, DODR78A, GLAE78A, HOFJ64B, JAAW74A, MITH78A, SHIE66A, SHIE72A, SMIJ74A, WEBJ77A, VAUT11A, VAUT17A Identification Guide SMIF48A Mortality ANTA73A, ANTA74A, ANTA74B, ANTA77A, BANA74A, DODR77A, DUSP77A, DUSP77B, GARP75A, HUDJ76A, JAAW74B, OTTB72A, SHIE72A, THOJ79A Predation ANTA73A Thermal Stress ANTA77A, JAAW79A, JONR76A, SHIE66A, SHIE72A, VAUT17A Trans- plantation MARJ74A, SHIE72A Coral Reefs: Anchor Damage DAVG77A, DUSP77A Artificial Reefs JONJ77A, VOSG63A Community Structure AGAA88A, ALEW75A, ANTA74B, ANTA78A, DAVJ76A, DAVW67A, DUSP74A, DUSP76A, EBBN66A, EMEA73A, FEDH63A, FEDH68A, GINR74A, GORT79A, HEIF75A, KAUL77A, KISD77A, LOYY76A, MCPB69A, MILW77A, MONR77A, MOOW57A, OTTB72A, SPRV62A, STAW68A, STED77A, THOM77A, USDC73A, WRIR71A 77 Damage ANTA73A, ANTA77A, BALM67A, BANh74A, DODR77A, DUSP77A, GARP75A, OTrB72h, PERR68A, WEIM77A Development GILM76A, JONJ77A, SHIE77A Dispersal GILM76A, SHIE72A Distribution DODJ73A, ENDP77A, GINR64B, HDFJ74A, MARD77A, VAUT17A Health ANTA73A, ANTA74A, ANTAUB, ANTA77A, ANTA78A, BANA74A, DODR77A, GARP75A, GRIG74C, JONR76A, THOL79A, USDC73A, VOSG73A, WEIM77A Patch Reefs BALM67A, EBBN66A, GILM76A, GINR74A, GRIGUA, GRIG74B, JONJ63A, JONJ77A, SPRV62A, STED77A, WIMS75A Recruitment DUSP77B Reviews, Symposia BATR71A, GORT79A, GRFA74A, JOHR72A, JOHR75A, J014073A, JON076A, MILJ73A, MUKC72A, KJLH69A, STOD78A, UNIV77A, WELJ57A, YONC63A Stabilization GILM76A Topography AGAA88A, ENOP77A, GORT79A, BOFJ64A, MULH69A, SHIE63A, SHIE77A, THOM74A Coralliophila abbreviata OTTB72A Crocker Reef DAVJ76A Currents AGAA88A, BROD75A, BR0175A, BROS66A, CARP76A, CLAE67A, DAWC74A, GOMD76A, GOOH61A, JONJ63A, LEET72A, LEET75A, LEET75B, LEET77B, LEET77C, MAYD75A, MOOC77A, NIIP73A, OPRD73A, PLAR74A, RICW69A, ROUL76A, SCHW66A, SMIJ68A, STUW71A, TABD58A, VAUT35A, WARG69A Dairellidae YANW57A Damselfish EMFA73A, KAUL77A Deuteromycetes THOT69A Diatoms MILW77A, MONR77A Dichocoenia stokesi ANTA77A, HEIF75A, JAAW74B, THOJ79A Dictyosphaeria cavernosa BANA74A 78 Dinoflagellates SIMJ72A Di2loneis MILW77A Diploria clivosa HEIF75A, JAAW74A Diploria labyrintheformis DODR74A, DODR78A, GARP75A Diploria strigosa GARP75A, HEIF75A, JAAW74B, SHIE72A Dredging DODR77A, FLOR73A, GRIGUA, GRIGUB, GRIG74C, TABD58A Drilling Mud THDJ79A Dry Tortugas DAVG77A, DUSP76A, JONR78A, LONW41A, MEYP77A, MITH78A, PARA73A, SHIE77A, TAYW28A, THOE35A, THOM77A, VAUTUA, VAUT18A, WESB78A Echinoderms CHER69A, HESS78A, KISD77A, MCPB68A, MCPB69A Echinometra lucunter MCPB69A Echinometra viridis MCPB69A Elbow Reef ANTA74B, BALM67A, HANK72A, MANJ75A, USDC73A Eucheuma DAWC74A Eucidaris tribuloides MCPB68A Eunice schemacephala EBM6A Eunicea tourneforti SMIJ74A Eunicidae EBBN66A Eupomacentrus planifrons KAUL77A Eutrophication BANA74A, WEIM77A Favia fragu KISD65A Fishes: DAVJ76A, DAVW67A, PEDH63A, FEDH68A, LONW41A, SPRV62A Census ALEW75A, JONR78A, STAW68A, THOM77A Disease USDC73A, VOSG73A Identification Guides BOHJ68A, RANJ68A, ZEIW75A 79 Flare RANK72A, USDC73A Florida Bay FLEJ62A, GINR56A, GINR64A, GOOH61A, MANJ75A, MATJ74A, ROSP77A, TURW72A Florida Current BRW75A, BRO175A, CLAE67A, CORE63A, CORE6", JONE52A, LEET72A, LEET77A, LEET77B, MAYD75A, MILS53A, MOOC77A, NIIP73A, OBRE67A, OWRH67A, PLUM, RICW69A, SCHW66A, SMIJ68A, STUW71A, YANW57A Florida Current, fluctuations BROD75A, BSHL57A, LEET72A, LEET75B, LEET77A, LEET77B, LEET77C, MOOC77A, NIIP73A, SMIJ68A Florida Straits ALEJ63A, ALEJ67A, BROS66A, CAIS73A, CHUJ74A, DEVT69A, GOMD76A, HURR62A, MALR70A, MANF70A, MILD62A, QUIJ77A, RICW69A, VARG68A, WENM59A Foraminifera MOOW57A, ROSP77A, STED77A, WRIR71A Fowey Rocks ALEJ67A, BROS66A, BROD75A, BUMD57A, CHER69A, CLAE67A, DEVT69A, DOLR18A, MANJ75A, MOOC77A, OBRE67A, PARA33A, SCHW66A, VARG68A, VAUT18A French Reef JONR78A, MCPB68A, MCPB69A, MLR69A Fungi THOT69A Gastropoda. OTTB72A, QUIJ77A, TEIRW72A Gorgonia ventalina SMIJ74A Gorgonians CAIS76A, JAAW74B, OPRD73A, SMIJ74A Grecian Rocks ALEW75A, ANTA74B Gulf of Mexico GALP54A Gulf Water JONE52A, MILS53A Halimeda MARD75A, WIMS75A Hawk Channel GRIGUA, MANJ75A, PERR68A, SHIE66A, VAUT35A Hen and Chickens ANTA7", ANTAUB, ANTA77A, EMIC78A, Reef HEIF75A, HUDJ76A, HUDJ77A, MMJ75A, THOL79A, VOSG73A Hermit Crabs HAZB74A Hermodice carunculata ANTA73A, ANTA77A, OTTB72A, SHIE76A Holocanthus PEDH68A so Hogfish DAVJ76A Hurricanes BALM67A, NEUC78A, PERR68A, SHIE72A Hyperiidae YANW57A Identification BOHJ68A, CAIS76A, COLP78A, HESS78A, Guides OWRH67A, RANJ68A, SMIF48A, TAYW28A, TAYW60A, VOSG73B, VOSG76A, WOEW76A, ZEIW74A, ZEIW75A In'dicator Specias JONE52A, SHIE66A, THDW72A Invertebrates, Identification COLP78A, VOSG76A, ZEIW74A Guides Iron CORE64A Key Largo CHER74A, CORE64A, FLOR73A, GRIG74A, GRIG74B, GRIG74C Key Largo ALWE75A, ANTA74B, BALM67A, DEJSP77A, Dry Rocks HDFJ64A, PERR68A, SHIE63A, SHIE66A, SHIE72A Key West BRO175A, CHUJ74A, GOLJ73A, JINV69A, LITE72A, MILS53A, VAUT18A, WEBJ77A Lachnolaimus maximus DAVJ76A Lanternfish DEVT69A Lobster DAWC51A, LITE72A, SMIP58A Long Key BOYB72A Long Reef MCPB68A, MCPB69A, SHIE77A, USDC73A Looe Key ANTA78A, KISD77A, MITH78A, STED77A Loop Current MARD77A Lyngbia OTTB72A Lysaretidae EBBN66A Manicina. areolata HEIF75A, KISD65A Margot Fish Shoal EBBN66A, JONJ63A, MCPB68A, MCPB69A, ROBP63A, VOSG63A Marquesas PHIR59A, THDE35A Maryland Shoal KISD77A 81 Mastogloia MILW77A Matecumbe Key EBAW75A Meandrina meandrites JAAW72A Meoma, ventricosa CHER69A Metals ALEJ63A, ALEJ67A, CHER74A, FLOR73A, MANJ75A, SBGD71A Methodology ALEW75A, AMER75A, BORJ76A, BOHJ79A, JONR78A, KELM69A, NAT172A, STOD78A, THDM77A Miami Terrace LEET77B, PLAR74A Millepora complanata JAAW79A Molasses Key DAWC74A Molasses Reef ANTAUB, BALM67A, BANJ59A, BOYB72A, CHER69A, ENDP77A, HDFJ64A, HURR62A, JONR78A, MANJ75A, MCPB68A, MILW77A, MONR77A, KILH69A, PERR68A, RDSP77A, SHIE63A, SPRV62A, THOM74A, THDT69A, WRIR71A molluscs OTrB72A, QU177A, TURW72A Monitoring (see Remote GOOH61A, KELM69A, KOLM70A, MATJ74A, RDSP75A, Sensing) SBGD71A Montastrea annularis ANTA77A, DODR74A, DODR78A, EBBN66A, EMIC78A, HEIF75A, H:)FJ64B, HUDJ77A, JAAW74A, JAAW79A, KAUL77A, SHIR72A, THOJ79A, WEBJ77A Montastrea cavernosa WEBJ77A Mosquito Bank HDFJ64A, MANJ75A, MULE69A, RDSP77A, SPRV62A, THDT69A Muricea atlantica SMIJ74A Myctophidae DEVT69A Mytilidae HEIF75A Newfound Harbor Key DODJ73A, STED77A Nickel CORE64A Nitrogen/Nitrates BSHL57A, CHER73A, CHER74A, DAWC74A, JONJ63A, MICJ73A, MILS53A, OPRD73A, SIMJ73A Nitrogen Fixation GORT79A Nutrients CHER74A, CDRE63A, DAWC74A, FLOR73A, JONJ63A, MICJ73A, MILS53A, SBGD71A, SIMJ73A, SMIF50A 82 Octopus VOSG73B Oil Pollution CHAE76A, DEUM77A, FANJ74A, STUH74A Old Rhodes Key HOLR78A, WIMS75A Ophiuroids KISD77A Oscillatoria submembranacea ANTA73A, ANTA7A, DUSP77B Oxygen, Dissolved BSHL57A, CHER74A, CHUJ74A, FLOR73A, GOMD76A, GOOH61A, JONJ63A, MICJ73A, OPRD73A, SMIF50A, WENM59A, Pacific Reef HANK72A, MANJ75A, ROSP77A, USDC73A Paguridae HAZB74A Panulirus argus DAWC51A, LITE72A, SMIF58A Pelican Shoal KISD77A Penicillus MARD75A, STED77A, STOK67A Pesticides CHER74A, ETOM74A, MCEF79A PH CHER74A, DAWC74A, FLOR73A, HOLR78A, JONJ63A, LYNG66A, SEGD71A Phosphorus/Phosphates ALEJ88A, BSHL57A, CHER73A, CHER74A, CHUJ74A, DAWC74A, GOMD76A, MICJ73A, MILS53A, OPRD73A, SIMJ73A, WENM59A Photography, Aerial BALM67A, ENOP77A, HOFJ64A, JINV69A, KELM69A, (See Remote Sensing) KOLM69A, MULH69A, PERR68A, SHIE63A, THOM74A, TURR76A Photography, Underwater ALWE75A, BALM67A, BOHJ76A, BOHJ79A, DODJ73A, ENOP77A, HDFJ64A, MITH78A, MULH69A, PERR68A, SHIE63A, SHIE66A Phrosinidae YANW57A Phytoplankton BSHL57A, MILS53A, SIMJ73A, SMIF50A, VARG68A, YENC60A Plantation Key BOYB72A, MICJ73A Plexaura homomalla SMIJ74A Plexaurella dichotoma SMIJ74A Podocystis MILW77A 83 Pollution BADR71A, BANA74A, CHAE76A, DEUM77A, FANJ74A, GALJ76A, JOHR72A, JOHR75A, JONR76A, KELM69A, MMF70A, STUH74A, THOL79A, WEIM77A Polychaetes EBBN66A, HEIF75A, OTrB72A Polynoidae EBBN66A Pomacentridae EMEA73A Pomadasyidae DAVW67A Porites astreoides THDJ79A Porites divaricata THOJ79A Porites furcata, THDJ79A Porites 22rites KISD65A Pourtales Terrace GOMD76A, MILD62A Primary Production ODRE63A Pseudoplexaura porosa SMIJ74A Pseudopterogor2ia americana SMIJ74A Quinaldine JAAW74B Ragged Keys TABD58A Red Reef OPRD73A Remote Sensing BADP65A, BARE76A, BELR72A, CARP76A, CROT71A, DEUM77A, DUNS65A, ESTJ74A, EWIG64A, PANJ74A, GALJ76A, GORH74A, GORH75A, JOHR75B, KELM69A, KLEV73A, KLEV73B, KOLM70A, KOZM62A, KRIH74A, LINJ76A, MAUG74A, MCAE65A, PROJ75A, ROND77A, ROSD68A, ROSD79A, ROUL76A, SABF78A, SCHE76A, SPEM73A, STID74A, STRA69A, STUR74A, THOM74A, WARG69A, YENC60A Rodriquez Key BOYB72A, GrNR64A, GrNR74A, MARD75A, ROSP77A, STOK67A, THDE35A, TURR76A, VAUT35A, WRIR71A Rotenone JAAW74B Salinity ALEJ63A, BSHL57A, CHER74A, CHUJ74A, DAWC74A, DDLR18A, GOOH61A, HDLR78A, JONJ63A, LEL-05A, LYNG66A, MICJ73A, MILS53A, OPRD73A, SEGD71A, SMIF50A, TABD58A, VARG68A, VAUT17A, WENM59A 84 Sambo Reef JAAW74A, JAAW74B, JAA W79A, KISD77A, MILW77A, MONR77A, SMIJ74A Sand Key'- KISD77A Sargassum THOT69A Scleractinia See Corals Sclerospongiae DUSP76A Sedimentation DODR74B, DODR77A, LOYY76A, VAUT17A, THOJ79A Sediments: ATWD70A, CHER79A, JOHR75B, MANJ75A, MONR77A, MULH69A, SEGD71A, WIMS75A Cementation BOYB72A, HATD78A omposition BANJ59A, EARC68A, EBAW75A, ENOP77A, FLEJ62A, GINR56A, GINR64A, GINR74A, GOMD76A, JINV69A, MARD75A, MILD62A, MITH78A, STOK67A, THOE35A, TURR76A, WANH69A Grain Size Distribution CHER69A, DODJ73A, LYNG66A, MITH78A Transport BALM67A, ENOP77A, MILD62A, PERR68A Sewage FLOR74A, WEIM77A Siderastrea siderea ANTA77A, JAAW74B, KISD65A Siderastrea radians HEIF75A, KISD65A Snake Creek MICJ73A Soldier Key VOSG55A Solenastrea hyades ANTA77A Sombrero Reef BUMD57A, CrAE67A, DEVT69A, GINR56A, MILW77A, MONR77A, MOOW57A, OBRE67A, PARA73A, RICW69A Species Lists CROF70A, HOFJ64A, LONW41A, PHIR59A, ROBP63A, ROSP77A, STAW68A, TABD58A, TURW72A, USD176A, VOSG55A, VOSG69A Spionidae BEIF75A Sponges HEIF75, ADUSP76A Squids CAIS73A, VOSG73B Starfish HESS78A 85 Succession JONJ77A, KAUL77A, VOSG63A Sugarloaf Key A7WD70A Sulfides CHER69A, CHER74A Sumerland Key CHER73A, HAZB74A Suspended Solids DODRUB, KLEV73A, KLEV73B, kRIH74A, MANF70A, PROJ75A, PROJ76A Tagging Experiments DAWC51A, LITE72A, SPRV62A Temora stylifera, JONE52A Temperature ALEJ63A, BSHL57A, BUMD57A, CHUJ74A, CIAE67A, DAWC74A, EMIC78A, EWIG64A, FLOR73A, GOLJ73A, GOMD76A, GOOH61A, HOLR78A, HUDJ76A, JAAW79A, JONJ63A, KOLM70A, LEET77B, LYNG66A, MAYD75A, MICJ73A, MILS53A, OPRD73A, PARA33A, SEGD71A, SHIE66A, SMIF50A, SPRV62A, TABD58A, VARG68A, VAUT17A, VAUT18A, WARG69A, WENM59A Tennessee Reef GINR56A Territoriality SPRV62A Thalassia BRIK78A, GRIG74A, LYNG66A, MILW77A, MONR77A, PERR68A, STED77A Thalassoma bifasciatum PEDH63A Tidal Banks ATWD70A, EBAW75A, JINV69A Tides SMIJ68A, VAUT35A Toxicity JAAW74B, THOJ79A Transmittance HANK72A Triceratium MILW77A Triumph Reef CHER69Aj, GINR56A, KELM69A, MANJ75A, 40OW57A, SMIF50A, THOT69A, VOSG73A Trochidae QUIJ77A Turbidity BANA74A, BSFM57A, CHER74A, DODRUB, DODR77A, FLOR73A, GRIGUA, GRIG74B, GRIG74C, KLEV73A, KLEV73B, KRIH74A, LOYY76A, MANF70A, MANJ75A, PROJ75A, PROJ76A, ROND77A 86 'Urbanization BANA74A, FLOR74A, MITH78A, WEIM77A Water Quality ALFJ63A, ALFJ67A, AMER75A, BSHL57A, BUMD57A, CHER73A, CHER74A, DAWC74A, FLOR73A, GOOH61A, GRIGUA, GRIG74B, GRIG74C, HANK72A, HOLR78A, JONJ63A, LYNG66A, MANJ75A, MATJ74A, MICJ73A, MILS53A, NAT172A, OPRD73A, PARA33A, SCHT78A, SEGD71A, SHIE66A, SIMJ73A, SMIF50A, TABD58A, USEP72A, VARG68A, VAUTI8A Waterspouts GOLJ73A White Bank BALM67A, EMP77A, HATD78A, PERR68A Wind BROD75A, GOOH61A, LEET75A, SMIJ68A Wrecks DUSP77A Yucatan Water JONE52A, MILS53A Zonation CROF70A, KISD77A, MILW77A, MOOW57A, RDSP77A, STET50A, TABD58A, VOSG55A, WIMS75A Zooplankton JONE52A, MILS53A, OWRH67A, SMIF50A Zooxanthellae JAAW79A 87 I I I I I I I Appendix D I UNPUBLISHED WATER QUALITY DATA 1 1974 - 1979 FLA. DEPT. ENVIRON. REGUL. I .I I I I I I I 1 88 1 t say Coo Ale, k Biscayne National Phallic Monument post @road crook Card ;n9elf 6; sound 4 Barnes Sound Roof John Key Large Pannokampt Coral Roof Coral Roof Marine State Park Sanctuary Blackwater Sound Cb % a end a Nov Lot@@ Dry Rocks Florida Buttonwood say lound 0 Grecian Rocks if/ Mesquite Bank .4 OF eve @% podil 8'4,, if 1 0 proack fleet molasses meet Towerelor 0 pickles Post Key 6 Coach Roof *,.gloat 011199 0 Dawls 00*1 Location of D.E.R. Station 28.04.0975 89 UIATL OF FLOml6h. o#Tt% uUALLTV ioAIA MLPbRI UF ILLLCIE6 SIAlInItS LoATA RUL-A-ST-LD NY SItWE LANuLLY I 9j. FOR STAI ION 26004009?b STAIIQ% DATE I 114L brp IN AGLNLY SIORLI DAVE 211904OU975 081?0174 Ills IOU S, CAST III bALT WATER SAMPLL- TOP CLOUD iAqp%*U97% LOS/Ze/74 Ills IOU S LAST Oi LUVtn-bU& IIL#L- H1bH 2#004OU9?S 0812G17% 111% to(, S. EAST It"P MAILQ 41013 111/20117 "BOU401497% On/20/7% Ills loc S EAST 01411 VLLuCiIV 120S OI/do/?? a --- -- T- 1eff allially (16/737711 Ills ion t CA@ wIND OIRLMOM 0.13400?s up/Zd/7% Ills 100 S E %$I too Sob al/doll? 2p.r%.69?S I;6/?u/7Q ills top S EAST PH 7,9(1 011201?7 i 5 7.4-z 07 @ 0 Ills IOU S EAST LUL I Imer LI 1 01/20/77 !e.U".u9?5 6812U174 ills 100 S EAST FfLAL LULI FIF LI I Ullioly? &8.v4.;;9?s GAM/7% I I IS 7 * Ll S LAST III bALI WAILR SA"PLL HIU-6EPIN 2A.P4.L#97S tdj2j/74- 1115 7OU S EASY -fuhplully icu LT 2500 28.r%.09?S GA120174 Ills ?00 S EAST L-OLUR db 011201f7 le.Cm.4975 as/26/7% 1115 700 S EAST PH LAS "*1 01#4201?1 -70 . I) -.e. u 9 i -% i5mi2,5171i ills 700 S EASI &LKJ1LIftIfv 70 Ol/iO/17 26004OU97S GRIZU/741 111% 700 S CAST ACIDITY s Ollicill 48004OU97S 0812U/74 Ills 700 S EASI 0410 01firnly? [email protected]% (581YU11" Illb ?.u S FAST LT 6000 01/20/77 260040097S Us/ZU/74 Ills S EAST hod soul 011.0177 2AoU4oO9?S OR/20174 Ills ?,U S EAST 1,103 14 00,40 UI12U*f1? 26.0%oU975 0120746 Ills ?*0 % EAST p M 00ito ul/dO177 %0 ;8.Oq.U97s U6126174 111% 700 S FAST L uRb 400 UMOM 28004.091s C4/26171 111% TOO S CAST (.n %.u%Fl I Ulf;cUM 28e0ft*4)97S U61201746 Ills 700 S, EAST Lu OIS$ LT So 01120407 20a6fteU97S U412(p/7% Ills TOO S CAST FE LT 250 olliol?7 2e*04#09?S bfli2U/?4I Ills 700 S EAST en LT to 011&01?7 28Gr4Oijq7s 06/2U17% Ills 7*p S EAST am LT I LOD 01120177 28*049U97% Ue/20/74 Ills 700 S CAST p ORINU OOIU 01/90117 ZROU40697% 08121.0/74 Ills 1300 S EAST III aALI mAILI.' bAlOPLL- BOTTOM S 04120/74 Ills 1,300 S EASY -TURIF-iii 3100 01/21.1117 i8oU%o(J975 (#6120170 1115 13#0 S EAST ul) 5*5 U1120111 ilk.04.097S ;W20174 Ills 13.0 S EAST PH 7*90 Ulliculy? da.ck.csls osize/7% Ills 14160 S EAST 01 bALI WAILR d6seftotools DR12LI74 1115 14160 S CAST c OR(a 400 olficl?l 219904ou97S OPI?U/74 Itirs 141913 S EAST 1,11 SuSp 1 01120171 if F -004-04 q 4 Ills 1400 S L"v-1i i S 5. L1 :0(1 2"9174OU97% 0/211174 Ills its OC S CAST FE LI zbn 28.U40UM tog/16114 ills 181*0 S LAST 10% LI III Ulnu/17 28Wvf1.&)907s--c . u/ % VIS U S SI ison$460979A U9,117174 1110 1,11 S EASI 01 %ALI IsAlLk SAMPLL-IUV CLOUD C et*0%ob97S U9117/7% Illp 1 0 1, S EASI 112 I.V01-31it d a . vq . t.. 1 -2 7 f? L T.L. -0 1-tio [email protected]% 69117114 kilo 100 S EAST .110 VLLUE&TV 15 0 011doll? 2H.U%.J9?S C9117114 Ilic ton S LAST WIND Ulfifcl lug$ 01120/77 --N.U975 ].I' 'S EAST- -r C91 17174 1110 170 wo.e%.G9?% U9117/7% Ille IOU S EASI ek 1.bu zv.nqo(j9?% ug., I I/?* I I I L, I F:A S I (60LI "I LI M, St A I I PJN DATE I I"c &[PIN AGENCV OAIL i@*O4oG97S 09/17t7ft Me 300 S EAST IrCAL LOLI OF LT 1 01120177 2$oU%*U975 09/1?/?% 1111) 70U S EAST at $ALI MAILU SAMPLL -111-So 700 S EAST lukulpliv icu L 1 2%00 U1126tyl 9r*0%*J97S 09/17/74 ilia 700 S EAST IUNPIOATI flu 4*0 011&0171 dR.C4.697S U9117174 ilia ?on S EAST COLOR LY s j -.0-4 j F7 @5-r, 4 -/-f f 1-7 #f W I I f U I.U S EAST CONU 4900 01/20117 kmeo*007s U9117174 Ilia 700 S EAST to" @ 6040 011200?7 jeoU46097b 09117/7% Ilia ?00 S EAST PH LA" 7*6 oiliooll ZA6046697S to 9 117 17 ft Ilia ?.U S EAST ALkALIkITT 116 1 ollkoI17 24.C%.Gq?s 091IM4 1110 700 S EAST ACIDITY 14 Ul/dOllf 2P.0%.09?s 49117/74 1110 ?on S FAST e%Lv 111b-P C1140111 4P.04.057S 09117/7% ilia ?on S EAST h ORUAkIL .%bn ollaol?? 20*04OU975 09/17/7% Ilia 700 S EASI %NJ " IOT 00#10 011dC071 28004OU975 09/1?174 Illu ?6v S EAST c 40Rb 200 01120117 AR90%oU97S 69/17174 ilia 7.0 S EAST Ln suse LI 1 01/20111 26OU4 orj97s U9/1?/?% Illu 700 S EAST LU UISS LT bo ollaolly 28904*497S U9/1?f7ft Illu ?SO S EAST Ft tLRWOUS LI luo oliguly? igeOftoQ975 U9117/7% -TI 10-7 . 0 S EAST PH LT ;k 0 olldely? 26004049?S 09117174 Ilia 700 S EAST ZN LT tua 011doll? 6- 28*04OC97S 09117/?o 1110 1390 S EAST 01 $ALT WATLR SAPPLE-bOTTOlq 98.04.U97s 09/17/?% Ilic 1300 S EAST ItmP wATER 299S 011doll? 280040097% 09117/7% Ilia 1301) S EAST U0 602 01120177 k8*04609?s 0911?174 1110 130!1 S CAST 0)" IOU 01120M ge.0%.097S - 10/1&M lobc 1*0 S EAST 01 SALT WATLR SA"PLE-TOP CLOUO c 25*04o097S 10/15/?% 1050 lea S EAST 02 Ovt II-2tox 20o04oQ97S IWIS/74 1050 ISO S EASY IEMW WAILR 01120117 280oft.U97S 161 ls.,741 lubu 100 S EAST I%U VELOCIOV 1000 01120177 26*049097S 10/15174 10bn ISO S EAST bimo DIRLCIJUM 911 01120171 28*04*09?S 10/IS/74 A nae I.c S EAST UV 6*0 011201?7 ZP*04*U97S 10/15/7% 1050 lea S EAST LOLI MF LT 1 011201?7 26004*49?S loilsf?* lobo 100 S EAST fLCAL COLI OF LI I 01120M 26004OC97S 10/15/7% 1050 9*0 S EAST 01 b,11LT VATER SAMPLE 100-01PTh asooftoU975 10/15/7% luso 900 S EASY IUk8IU11V JCU LT dsoo 01120177 28.04.697S 10/15174 IUSO 9,0 S EAST COLUR b U1120117 jm*U4&Uq7% in/151?e I0sV 900 S CAST c(OPM SPUD 01120177 2600%.U975 10/15774 luso 900 S EAST P14 LA8 1614 01120M ZG*O%*U97S 10/15/7% IDSO 900 S EAST ALkALI%ITV oil OWO/77 280049097s 10/lb/7% 1050 .900 S EAST ACIDITY 11 011201" k6oO4oU975 1GlIS/7% Ioao 900 S EAST WE$ su.%P 3 0112ul?l z#,c4ooq7S 10/is/7% loso 900 S EAST ft upbANIL oldo ol/iO/?? zAoe%909?s lo/15/7% iusn 9.0 S EAST %"3 N lot elbo 011gol?7 --zm -.U 4 - U 9 7 5 10/isf 4 10SU 9.0 S EAST hoz " *OU? ol/&Ui?7 2600400975. 1 a/ lb/7% 1050 900 S EAST fjol is 0030 01/20/?7 ite*0400975 lo/ls/7% 1050 900 S EAST P lot 0010 oll.@0/77 ZR004009vs 10/15/7% luso 900 S EAST E QRb boo Ollio/77 28*04o697S IOMP17% 1050 900 S EAST ko SUSP LT s 01120/77 IMOU46097s loll.W% Inia 90" S EAST LU UISS Ll bel 01120177 -'e". V.-OV-15 10/15/yo lobe 900 S EAST ff ZUG alliol7l 280040697s 10/15/7% IOSU 900 S EAST LT so VIIJ0177 Z8004009?s 10/15/7% lubu 990 S EAST LT lun 01120117 26ockgU915 10/lb/7% I cb@ v 9.0 S EAST P Upf"o 0010 oilkol?l is.04.0975 lolls/74 loan 1?*0 S CAST 01 !OAL I WA TLR SAMPLL-bOTTUP je,u%ou97s liulS/7% inst, I I. U S EAST ItmP WATCR ases 0 1 7 1 STATION DATE Tl"L wEPTh AGLNCY SOURLY nAIL . Uq.u97b W/Ib/74 10511 1700 S EAST uo 010io/77 26OV41OuQ7S 1111151741 U91b 17OU S EAST 1101 1U02011b 98.04.6975 1210b/74 104n IOU S EAST '01 WAILk bAnPLi-TOP LLOU6 GOVLR- 16.c%.697S 171oh/7% 1030 ISO S CAST ai 04 TIOL-LOb jh*04*L,97S 120113/7% 1030 -100 S EAST Ttmo, WAKR Is*$ 01/40/77 4 1030 IGO S-- f Iff;d -VLLOCLIV IZOS 01IM477 12105174 1030 IOU S EASY :146 VIRLCTION vo ollicl?l db.D4o.j9?S 12111!i/741 103U 100 S EAST Coho: 57% 011&0177 i8on**L#975 1210b/7% 1050 100 S LAST LOU ael U11&o/77 260040697s 1210b17% 1030 ISO S EAST COLI LY 1 01120177 &.8.c%.u9?s 12105t7#6 10 40 IOU S EASY VkCAL LOLI Pf LY I 21toO4*0975 12105/74 1030 6Ob S EAST 01 AILR bAmPLL MIO-DLP1H 26.04.097b IZ/Ob/74 IUJU bes S EAST lUkOlUITY JCU LT 'iboo 01/20177 280040097S 1210!s/74 lUJ0 bes S EAST LOLOW so U11201r? ;.A*O41*U97S 121o%/74 Injo b.S S EAST PH LAR 106 olliol`77 28*n**wV7S 12105/74 1030 605 S EAST ALaALIkITY 14% 011do/77 28*34*07S 12/05/74 1030 6.5 S EAST Ac 0i I V 1? 01/,0177 a$.U4o,L;97S 12/1W 740 1030 be$ S EAST Is OW6461C *020 011do/71 28.0%.L975 12/06/7% IU30 69S S EASI k"3 k 101 .060 01/20111L 260040097b 12/U!)174 IU40 6 ob S EAST hod. N Ll 0001 01120177 2BOU010097's 1211)S/7% 103U 60% S EAST %03 h 02too 01/20177 211.U44*4197s 121115174 luju 6o% -S EAST P 101 .060 U112C.477 28*0491;97S 121US/7% 103(1 605 S EAST C ullb zoo U112ully 28*04OC97S 121ob/7% 1030 605 S EAST CD SUSP LT 2 01120M 26*040097S 12/0b/74 1030 605 S CAST cu u1sbo LT so 0112oi7i de.040097S 12/05174 1030 605 S EAST FF 200 OliaG177 28.04.kMs 12105/74 inju 6#5 S EAST pit LT SO 01/20/77 2b*O%*U97S 12/05174 1030 6.b S LAST IN LT I Go olli0i'll 26.0%.U97S IZ/Ob/74 Inju 6.S S EAST P fullf"a LT Soul 011f20177 2doU#4ofj975 12'/6%1741 1030 l2oO S EAST 01 wAJLW :@AnPLE-BOTTON lees u1*0iloill 2860410691% IZIUS/74 103U l7ou 5 EAST ILMP WATLR 24&04*09?S 12/05/74 1030 1290 S EAST 00 602 ollaoly? 26oU%oL975 01193/75 12 01 du IOU EASY 1AhPLL 14(jo UVIS-1 28604*097S 01103/75 12dO 1.0 S EAST IthP WATEN 2505 01120117 28*04.097S 01/03/75 1710 100 S EAST L0KD boloun 01/20177 ujinV7S 1220 100 5 EAST goo 2FA&041*097S 0, do @77 dR*04*(j97S 01/03M 12dD 12*0 S EAST al SAMPLE NU. 09TS-7 26*04*0975 01193175 1220 1200 S EAST TLMP WATLR 230s 2ooo4ou97S ui/n3/75 lW110 1200 S EAST 4;0%0 54000 01120177 2660406975 011u3tis Izzo 1200 S EAST b" 704 011;L0177 &"BoU4*097S 01/1)3/75 123b fi.u S EAST (It SAFSPLt OdUe UV'16-1 26004*097S 0@10317S I?Jb 6.0 S EAST 01 &AUR SAMPLE - MJU-VEPTH ZBoG%*097S 01103/75 123S 600 S EAST AGLNEV COLLECT #093 26*04*09?S olinji7s 121% 600 S EAST JUROWIFY icu 8*0 01120177 28.04.U97S WOVIS 12JS 6oO S CAST PH LAH 705 UlfgOi`77 211904*07S U1/U3/75 1235 600 S EAST ALRALIKITY lbs DIJ2pj?? 28.0%.097S 01/0317S 12sb 6on S EAST AcArilly so Dili:41/711 2o.U%.UV75 01/03/75 1235 600 5 EAST RL5, Nusp 17 01726.47r- - 28.0%0097S 0110317S 123b 600 S EAST h ORUA%IC *too ollzo/Ty : 0 280040097S OliU3175 1235 600 S LAST h"j h TOY LT 0010 ultdi)177 28.04.0975 01/03775 1235 6.U S EAST ko,- h euLl _D11 UM 26.0%.U97S U1103/79 1235 600 S EAST wOS h .001 011201?7 Z8*04*U97S 0110317S 123S 6 0 C 5 EAST p 101 LT 00@10 U102U177 = = m = mm m m m SIATION UATE '11144. urelm AGE14CV 24,U%,091% 01003"S '2j*j bell S Last p doing LI as.eft.447% U70961's loss IOU S CAST bAAPLt 84-IPVS-0 Ti. 0-4 . c4K_Lfi_01@iis A I)Z% 100 S A$1 ltnp MAILS joeaft.097% 671061,S lubs 100 S EAST Lafte %Iowa io.04.497% 07106,75 10P S LAST ju lot le ; @_L I . u- S E A if-- PH j9,c1%0wv?% 0710017% &US% sou S CAST 01 @iAnftt L f W4.04OU97% MOSOM loss Roo S CAST TknP WAILN olf20111 d&_00%aw9?S a ZTO t, S POO S EAST &;Oka % Ifluo 011dooll lot CIP40171 23,Uft.U9?S 67/0617S IDZS O'n S CAST MO Y.?u 0 1 ifgol 77 28.0%.697% C211)ws IOUs 11.0 S CAST 1#14 28.0%069 2.400/79 Ilea SO S EASY- at 1AMPLI. cuiroo?7 2400%.6975 0210617% 1102 EAST tuwviullv r1w 21 U21U617% 1,62 Sao S EAST COLON olodolly 40milys 1142 -sea $ EAST PH LAN ollawrl : 28*U%*JOIS U200617% 1102 Soo S CAST AL A ft 1 #0 1 Ito 2800%.0970. W2000/7% Ilu? %,a S fAST Ac 194.1-T 9 0 V-4 100 ?1 11 L All 1 2 01120*477 %*a 01020177 1102 Sao S CAST 4; bob I cltiloo7v 0/lut7s 11 coz Soo S rAst cu SUSP LT its 177 0210407S 1162 sou S EAST cu UMb tuo 011dooy? 28.u%*j97% aziubm IIUZ San S C&SI an % EAST l4vu 1107 40 -augYK-cylublys Iluz S ?A%w 2860%*097S WOWS 1102 Sao S CAST COLI fif LT. Glizoey? Soo S EAST FEC&L COLI 14F LT 01120177 a U2.10017S 11 tfz U24 - %1 01 SALT WAILD SAPOLL NGILI I SHE 41(0075 IfjuO S G 0 48,0%.697% U201407S 1040 S,10 S CAST 02 LI O1.LV-FILLb MIT by NANATTOO ft squi esECEIVLO 4ILL0 bAPOPLE 2o.m%.w97S 0701(,07S 10t;O Soo S, CAST as J600%q U@i I(JI'l-slovo S . 0 -S-IE-A S 0% 01'ciri-0i'Gop "ARAT150k) 26000*097% 0211U17% Iftoo SOO S CAST 01 v"b&% I C 0010 01020177 200ofteV97S 0211017% SOO SOO _S EAST 4"A ft lot 0010 011211177 24euft.uv % 62WIUM Auju %Of) S EAST ho'i ft eaus 01120077 48*o%*49TS 0?010/?S Icuo Sea S, CAST %as k Lf erplu 01.0dul 77 UP Zd.Uftfu9?S 16211U07% A PLOO sou S CAST io lot 90jo ollioll? 16;w4i-,,jq7v unnulws lufjd 'Sao K Ch WHO LT 0039 04120077 Jde0%*u9?S, w310117S 1140 *0 S CAST 01 SAMPLF No* OvIb-9 MANU b-10 W 2d.04.0?s 0310717% 1100 00 S CAST 02 _160.0C6011.9b TIOE-2.u 24 orm a L;97S 6310717S IIw-0 00 S. CAST Ir ATLV 41200 JR.U%949?S d310717S 1160 10*0 S, EAST 01 AMPLt %go UvIb-0 W1066#1 lb-AS 2A.n%.u9?s 01"?M IlLo-- 10.0 S CAST rz 1011 OL&MIA Ilt)[s 2au d A a 0 4 a U Si-fs-u I-iu- 1/ 7 S Ilua loou S @AST IFMP 64100 2R,u%0uq?s U3V0717% 1110 Sao S EAST 01 %ALI %Alifl SA0101.4. $@Oil A SHLE 28*04*497S__031071?S 1240- Soo S EAST 01 SAMPLI. VU6 DVIS-V WINOR b-14 26.0%.UV75 UJIUII15 LIAO SOO S, CAST 02 "AWL" aq.0fteuv7s asin?ivs 1130 %00 S, Cast Ila 164 UEURLtu ISOLS 200 4fv.t:f4.O97S G319117% 1110 see S CAST fid I #,#ILV-FltLO ShtLT 61161 RLC*O if d, - -f - - n . r- Us Won 01AM1114tog ACLd Sill dA.u%.f.#9?s 03/0711% 113U 5.0 S cast 0% So Fman "Abal"Goll 0 %at atcr 46.0%.097s 03107/?S 1130 0 S, -EAST ob, SWLO M MO Set! Air- &Ut%LV CULL1.0 vs ,gwa 5% 6407 d44040697% U1107179p still Soo S EAST IU%PAUIIV ocu 40 24.04OW97S 03107/?S lIju_ SOO S '@AST 16OL01d 2% S1411001 IIATL T I 04L DEVIN AGL"cV UAIE 2800%oaqls 0310?/7s lisp Soo S CAST Lofto S 10611 zo.ot.io97S 03/071?S 1130 son S EAST Ph L AH 7*0 011201?l .26 .6% J97-i-IDW17-7-75 i 1ju -@ -.i-v S EA%l -A cv-, iii h I I v i- ollano" Z4oo%*ij9?S GSinlf?S 1130 son 5 EAST ACIDIVY bi 011WOM ZA*04o&i97S U3/0?/7S 1130 %.(1 S EAST kf $ SIPSO ripioll''? -Vflvf -/1% 1430 S EAST ft UP44AMIC *Oda 01/201yi J80046097S 03/1M., ?S 1130 Sao S EAST 4"3 ft lot 0030 U1020117 ZS*0%*U97S 03/U7/7% 1130 son S EAST hud * Nos of 0210 26.0%OG91% 0 17% 1140 sou S EAST L OWN 405 2600404191S UJ/07/7s 1130 Soo S EAST co Susp LI U112U117 2800406397S U3107/7% 1130 Soo S EASI cu oiss Ll in 01160ily 26.04.075 M"M ilia sad i fAsr fE 01190177 Z8*0ft*%:97S 03/U7/?S 1140 SOO S EAST OR Ll to 01/ifo/77 lb*C%oU9?S 03/0717% 1130 Sao S CAST ift 160 clizoly? 3 M N.O%Zv7s (, % -1130 soc S CA$ - COU Mf I 2So0%o0V?5 63/0717S 1130 Soo S CAST FELAL LOLI "t Lf 1 03124176 2800%0097% 0%/10/?% Iuso ou S EAST 01 U4011OU flVlb-IU wirial ?U-dS ISS 24.0-S.W97s uft/IGM I cili ou S CAST 07-PLUOKI.S1 VIUL-11 CLOU108 PbS 240040097S U411017S IOSO 00 S CAST tEmF WATEM SOO 01120177 26004*097% ofttlcl?s IOSO *0 S EAST bikU UIRECTION 13S U11doill 24.04.497S 041 / Ij.*?S lobo 00 S EAST 4;oku Squou ollkolfr- - 280040097% 04/lui?s 1050 00 S EAST jo 60b 01190177 2Aoo%ou9?s 04116/7% In%0 00 S EAST of" 011201?7 28.041.097S 04/1017S JOvO on S EAST IIGE UIRLCTION 26004009?% O%IIG/?S 10bo 1600 S EAST 01 SANFLI OVIS-18 blMDI 20-2S 1 2800%.09?S 4)4/10/7s luso 1600 3 CAST 02 JS ULGhILSs VJDL Is CLOUDs 2 28.04.Ggvs 0%iij/75 IotM lb.U S EASY 03 b% !6 00% o#j97S 04/10/7% 10SU 16011 S EAST YLPIP WAILU Z%ob 01120177 La Z60040097S 04/10/?S 10,50 16017 S CAST WIND uIptcylull lis Uliau/77 ZA 9040 091-s-1,4/ I to/?s Lobo 16*0 S EAST c4hid bqouo 01/20177 28004*097S 041 ltd?s 105n 1600 S CAST wo 60S 02/20177 260040097S 0411017S IOSO Aboo S EASf PH 6900 0110177 2300fte;j U14110/7S leso 16*0 S CAST IIUL UIRLCTIUN I 4600%*097S 0%,IU17% Ills sob S EAST 01 bAMFLt RIP Z8o0%oJ97S 04116/7% 111% Has S CAST ni sAILN IAMPLL - "10-DEPT" 20.04.07% 54110775 Ills 6.5 S EAST 01, as Movol as Z8*081oU975 U41.4 I J/ IS 111% :as S CAST 03 % 2P*04*097% 04/IU/7S 111% as S EAST AGtNCV CQLLLCI $093 03124170 28004009vs 40 irA cu 1 S Ill's i.s s EAST 01;40 PIOLCTION lis 011200477 26*0%009?S 041lu/Ts Ills SOS S CAST fuh9jolly icu ZOS ullduil? 28oo%*u9?S GO/1017's Ills to% S EAST LOLOW 20 01110/7? ,i8*p4,Ou;p,ys@Q4 IG/TS-1I-1-S-- 6.5 S CAST ivg L Aft TOT 01/20177 28*0%oG97S 04kIlUM Ills SOS S EAST ALKALIklTV lion 011201" 24*04*097S -WID/7S Ills SOS S EAST ACIUITV as oltzell'? --2-b.u4l..39 - % U775 IIIS has S [Asr Of -011USA ft I c 0765 011dLO/77 JOSC40697S 001IL017% 111% so% S EAST %"I k lot *180 U1120/17 24*0%009?S O%Itw/?S Ills "'s S EAST 1402 * hoj Ll 0010 03.*,,@0179 TIN-.,d 1C.-UNYS-047077 5 111% -87 A S T p Toy LT olou --vi-M-777- dn*0%009?S 04114317S Ills Fes S EAST 4; ovb 300 0112017? 04016/7S 111% Nos S EAST cu Susp Ll --2e.V4i.Gjre7r# ID%jku77s MIS Gas S CIST Cu DISS LV Au ulrdD777 2600%ou9ls aftiluils Ills go% S EAST FE lbo 6411011's 111% sob S EAST 10 =%SAM ML @L AL Nos S EAST 2un 01120111 jN.c%.uq1S SOS S CAST COLO "t L I 1 01120117 Y67 14 -A-b-7) -%I f-I S 8,% . 5.7 ff0l. LOLI Pf L I I OII1OTjFf- adeqt.uols 4411di7s 111% Res S EAST 10 umlmo LI *lug 01140,17 4:h."%O0Q7s uftiluils Ills SOS S CAST 1140( UIRLC114#10 I -d,b7. Y,; 0 -6-1 0*151-11 S AST of li 1@'WL 012117s 10%2 Soo S CAST IFNP WAILP 1600 01040,77 1800%0097% u%/ZI17S 1047 ISO S CAST cuhO Sb?O0 01120077 -Iso S LAST I# no I I ;".uq.uq7% usi'l % Iu%7 0 dROn%.uq?% US12117S 10%2 Ion S [All SON GOOD 010,0011 US12117s 111412 6.u S LAST 01 !bAbIOLLS efilt RUN LAIL bui. 10 R ?AOO#S.oovs 0%12I/-7v-li1%2 600 S EAS? 01 miltil SAMPLE Z-1610-OLP114 W&*C%OW9?S OSIZIM 1047 600 S CAST 02 LmwOLLjMb L&b S&PPLL NO* 091S 28OOft.uq?S OS12117S 1042 6*0 S CAST 05 -11 '600%.Ogys Ls7i-177% 10,62 be() -S fist AGI.Iftll CuLLELT boos i6o0%eU97% O%iJI/1S 1042 6.0 S CAST TU&PInIIv ICU Is$ 011,0177 ZRO"400097S USIZIM 10%2 6,n S EAST COLON Z I OlIzOd7? too 600 PH LAN OlIkOM -28.04*69 42 Sy V, lag 01120177 apoofteoqls QSIZIIIS 1042 60" S EAST ALk4LlftIIW 2"OU40097S GSIZI/?s lu%z 6*0 S EAST ACLUIOV 24 01140171 28.0%.097S 10%2 610 S EAST k[ 31 Sulp -uI 12 Q VV 1�OuftOu97% 0%12117S Iu%Z boo S CAST k04 q %OJ h LT 011d4116 14.0%.097s OS12117S 10%2 600 S EASI #ELAL COLI PF LI 10%2 1700 S CAST 01 -i-AIMPU-10-0--o 0117b"11 280040097S OS121/7S 10%7 A700 S CAST floiP WAILP agog Ol/ZOI?7 delloo%O097%, Osd2I17S 10%2 1200 S EAST L8060 S6060 OlIdOITT zA.O%[email protected] l"42 12.0- S CAST LIO 606 OWO/77 29.0%.Uqvb OSI'livs luftz 120" S EAST PH 9*00 Sim Ze.u%.GV?S US/1317S IU"Z 600 S EAST 01 %AL I WAILM SAPPLL -a i (0%4fzji?% IU%Z 600 S EAST cn susp LI 01120111 28.04.097S OS/2317% 10%2 6OU S EAST cu VIS5, LI 10 011JO117 28.04.697S OS/23/?S 1042 600 S EAST Of vuO Oltzoly? a .04.og7s osjz3I7s ln%7 600 S EAST Ion LY 10 gild all? It 29.0%.U97S USIZ317S 104Z 600 S CAST U112U011 @R.04.uq?s 6611617S 1030 6.0 S EAST 01 sAL I #at PI,SIICIbt SLAN - bob Of IQjO 0 S CASI 02 IELILO* SAMPLE 66975-12 dBOO60097S 0611617S IO.So b: 0 S CAST LA owl 101160TS 280040097S bbild/?S 1030 600 S EAST ft6 But jutd#17S 28*U%OU975 aMbI75@1030 600 S EAST 0# put 7equ I ulifal 7% ahoO%9097S 06/16#47S 1030 600 S EAST LU owl 7010 1&12001% 28.0%.097S C6118/7% IU30 6.0 S EAST Pp out S14070 IL14807S I? im pwl 4sel a lutiells 28004OU97S '06114647S 1030 600 S fAST FE "Of 20olU I b/dails 28.04.097% 06/14/7s 103C 12oO S EAST Nod * 110.1-to Not LI 04109176 dR*O%ow9?S Ob/1417S IOAO eOwOeO S CAST 01 $ALlkf SANPLL *0915-12 S&OINEN 28004*097% 06,01617S 104n 006000 S CAST OW I SAMPLE PLSTIL161 SCAN$ 2 VAT 26.0%.097% 6611617% 1030 u0CO.f) S EAST 01 LP 6,OC: 2 WA-TL9 SCSOCI a 6-. 0-%-. 6 id-1;1) (i a 7.t I % 'CWi"f- oft lot-iijcl- lCAH - NOV OLTECIE Z4.04.097% 06/14/?S IUSO doGn.0 S EAST Ob US 280040097s uTIlO/?S 113? 100 S CAST 01 SAMPLE ftb* 09?b-11 d8.O%.O ilul7s All? 100 S EAST -,tc7"P AILR 3000 01120171 26.0%.w9ys 07110175 1137 100 S CAST dl%fl WLLOCIIV 10*0 U11,0111 201.00.0197% U711017S 111? 100 S EAST 01120117 STATION 04 IL I I"L urvy" AGENCY oAlt 24*04.097S 4711317S M? 1.0 S rAST b2obo 4111120017 480000697S U711617S 1137 IsC S CAST 00 sea 01140077 N704--c-9 S dyllu/7% 1137 100 S CAST P" @ , . ?*DO 011209 r F 26*U%OU975 OVIIJ17S 1137 100 S EAST 1140t ulacclsom I U?IIL/?% 1137 100 S C&ST Mot LLVLL - AS LI too A a 0 % 0 0 9 pri, 1139 Do 6-S c v of b#RPLL NO. U915-IS ZO*O%*QQIS U?114/?S 1139 17.0 S Easy It14P WATLQ 3060 01140111 28o0ftob97S 0116/7S 1139 1200 S CAST ulkO-VELOCSIV -0-1,fdoly? 20 0 04 , -(Aqp ii-b-i7i 6 1 @ S 1139 12.0 S CAST vloott DIRECTION lb? 004011 9800%*497% U71101?% 1139 I2oU S CAST cliko U112oll? 28o:014.C975, U7.410-47S 1139 1700 S EAST too Sam dA.O%*O 5-00101vs 1139 l7oO S EAST P14:- loom U102UO77 zbouft*W97% 0711017S 1139 1200 S CAST 116t UJNECTAOM J6.04.097S 0711GOTS 1139 12*0 S CAST Mot LLVLL LI 100 07S 11ts 600 S EAST 01 $ALI Will SAPPLk 2400%*(097S 0711017S lifts 600 S CAST 01 %A14PLL - NO* 097b-IS 2660%009?S 07ilulls ll%S 600 S CASI fAlIdU WELUCItV logo 01140071 5'i 0 "04009 S-G71 779 INS 600 ST GINO UIRECTION lby 01120177 26*04*09?% 0711017% 114% 6*0 S CAST CULOW 20 01120011 zeO0ftOU97% OM017S 114S 60 O-S- [A $I PH LAN 800 oliao/77 Z4O0%.Uqvs (b, Uys INS 6*0 S EAST ALKALINITY 131 01120177 28OV46097s 0711017S ll%b 600 S EAST ACIUIIV 5 01120117 28o0ftoO97% U711017S 1145 400 S CAST WES 'IUSP 7 01140177 01140177 26604*097 a .410vs lifts 6.0 -SC WS I L QRb Igo 240040007s 0711ul7s lIfts 6*0 S CAST Cn SUSIP Ll 1 01120077 @1400%0697S 07116/7% 114S 600 S EAST CU DISS LT in 01120177 ?6901*069vs -OW110M lifts 6.0 S EASY FE zoo 011.4017y- 4800410097s 0/1417S 114% 600 S CAST PH LT In olldo/77 2RO04*097s 07110/1's 114% 600 S (-A S T AN 191100 olliol7l FGU%- QipM%-.-%,r.W-1d7v9 ll%b 600 S LASY CULI "r LT I biholff- 26*016:b"s 0711007S 114% 600 S EAST VIOL DIRECTION I 2600%009?S 07/10/7s 11fts 6*0 S CAST ME LLVEL LI 100 2200%OGM U 17,Ao-DaS IsO S-EASY 01 $A"PLL %go 09lb-14 2400000097S 01110717S l2wS log S EAST IIMP WATER 3000 10129175 280040097% 06/0117S 12cs 1.0 S EAST 01 kU VLLULIIV 1%*0 1 wasl?b z-8Oc%OQ9y%-047d-4/wS 12ug 1.0 S CAST lose Isv 26004069,S 0810717S 120S 1*0 S CAST &0 ?as lulaslys 28004*097S Golums 120% too S LAST PH gels 28004ouql@-ve W15 PUS IOU S CAST Ilut ULN Isom 1 k60046697s 09107/7% 120% too S CAST 7101 LEVEL LV 2AoU4oQ97S 06JU717% I 7ulb &too S CAST 91 ShnPLL 100o UVIS-1% 26004 *(A Clip -WA i-Lif 280046097S 04107/7S I2GS 1190 S CAST blhO VLLOCITV &Sao 10120,07b 20o0fto097S Q4107/7S 170S 1100 S EAST GINO UIQECIJUM lb? IG/16176 "78711%. 7S 9 'G @ T U6 716 10GOrs- 26*0400975 U40U717% I2U% 1190 S CAST PH 280ofteov7s G0107I)s 170% 1100 S EAST flu[ OIRLCTIOM -J6-o0%-*CT73--01/u777S 120 A I a U 5 LAST nyr-crvcc Lf on 28*0400975 U610707S lzis SOS S CAST as $ALI VAIEQ SAMPLE* SAMPLE $097 0610717% 121S SOS S CAST 02 5-14 BOOMS 171 15 505 5 L IT A LT COLLECT OUTS U 37 1 wyrb- 0410717S 121% SOS S CAST CO SUSP Ll 1012017S 8610717% Ills SOS S CAST cu 111%$ 03124076 116ULT DAIL DAIL T I"L DEPTH A6E%CV U81,1711S Ms SOS S CAST lop LT MOW usiollys 1210 SO% S EAST 01 -Altk SAMPLE 1110-DEPIN lulasof is 9 )-S- 0 j-,fU-J-fy-6 1-2 1 j-S . S S EAST Iliks lu I IV icu 18.04.697S 681011IS 1216 SOS S EAST LOLOk dp.04.097S GRIn7lIs 12101 SOS S EAST PH LASI 7,9 -g jo . 0,,7.0 4-7 C-Cs-jo 7 j-@-S-j 2rl4- -S.S S CAI r- A1:1iAL I h I IV 142 28.0%.097S G613717S 1218 SOS S [ASO ACIDITV is 2R.c%.L9?S 00,097/75 1716 SOS $ EAST kES- Sulp 27 10/18175 26.0%.0975 Oslo ) il% 1218 SOS S-E A S I ORi&A%IC *300 10128/7$ 28.04.097S U8107447S 1218 SOS S EAST 0,143 k 101 *0%0 IQ/;tsl?b 1718 SO% S CAST hod * has is LT *IOU 14A/ZA/7s - . -S-t-A- 0030 IU/2A/7S SOS If-- P TOY LT 28-0%-097S 406007M IZIA SOS S EAST 4.61. 1 Off 10128175 2A.04.697s Gmit)717S 1216 SOS S EASY FECAL COLI NF 10/dpl?b is.0".us?s 0813717S 121 P ORTHO Ll SOSO 10128/1$ 8 SOS S CA S Y 28.04.4@97S Wows 121S 1,n S 1C A S 1 01 "nPLF NO. 09lb-lb SALINE 2c.(!46.69 75 U91oft/7S 171% ISO S CAST TFmP W&ILV 290S 2#004OG97S 0910%t?S 121S ISO S CAST a if-Wd-icud-ccc - v 1100 IU1281?5 2e.O%.G9?S 09-40417S 171S ISO S EASY b1%O DIRLMUN 13% 1012817% Is.eft.097S c9i04/75 171b ISO S EASY cofto %bO(10 1012611S 10148irs 26.0%.U975 690U4/7S 121S 100 S EAST 00 600 J8004.097S 09004175 Ills ISO S EASY PH 1026175 ,8.u#s.O97S C91U%07S 171% lee S EASY I I L-L 01"tclium ;jl.014.0975 oqjn%/)V' IZIS 100 -v-G S I -fiUE LLVLL LT 286046697s. 4191044p7s 12LS 10GO S CAST 01 SAMPLE 40* 0976"AS SALINE 299S 1012617S l3e0ft*O97S 09/0%/7s 1715 1040 S EAST Tr"P WAILN E- -;- b I NO VLLUCIIV 11*0 -7-,zs-o4s-c91S 0910417S 1215 1000 S ASf- 10720175 28.0%.U97% 0900417s 121% le.0 S CAST wlkU UIRL01911 135 IQ/lolls 16.0%.097S 491(14/75 171S -1000 S EASY Loku 541SOV IU126/7's al 1215 10*0 S CAN fjo co' S.iv 10/dol7b logo 10/2617s 2800%.007S 0910417S IZIS 1000 S, FAST PH J8.0%.G97S 09108117S 121% 1000 S EAST II&E DIRLCTION I 24.0%.Uols o9io4l'IS 121S 1000 S EArT- TIUE LLVLL LT 26.04*097S 0910411S 1215 17*0 S CAST 01 IE61011,11 SAMPLE &WATL11 600CO I 28.0%.0975 (#9104617S IZIS 1200 S CAST 02 9." %%AILR 1036CI %SOSO 20'.0%.G97s 04 do% ITS DIS 1260 S CAST hog IN Oil$ LT 01500 04169176 260040097S 0900417S 1215 12,0 S EAST hoic * %a] k 20060 04109176 28*0%oj9ls o9ioft/7S lzib, Soo S EAST 01 bAICk SAMPLE DOTS 28*U%OG975 ovdpoftlls 122% SOO r -rics-f - AGENCV CULLFC1 sovs 03/211178 46.040J97S 090OWS 1225 SOO S CAST 1uhmiullor Socu 103 24OC490(097S 09io4tis 122S son S EAST AL k AL 1,16 11 133 b ife*04OC97S (09 S lus 5.6 s. EASY idt 5 @Au$p 2 16/28/7b 28.0%-U9?S U9iO%l?S 1225 Soo S EASY h CRGAhIc 0 3an 04/69170 28.040697S 694PO417S I?ZS Soo S CAST *NJ 6 101 0000 004/69l7b if.eft.U975 uv*404ils -l?zS Soo S FASY h0i * has Ll Golfo 04/49/76 26.040497% 69du4/7% lus, Soo S EAST P 101 LI 340 O%jto9l?b is.0%.L97% 69.*0417S I?ds SOP S EASI ED SUSP LI U%/UV/lb je.0%.U975 6 LU O&S4 Z8604OU97% uvdl%lls lag% Soo S, EAST Pb LT Scuo 04/09/76 a8.o%.Gq?% U9.40417S 124% Soo S IASI COLI Of LT I I U/,it a 17 5- 26.0%.4j979-- 09 0 9 I?,LS 5.0 9 EASI FELAL LULJ Rt LT I I at is 26.C%*69?S U910417S 172S SOP S CASI p WHO LT "3180 0%169176 g*.u%.G9IS U400417S l?j!S In.0 %6 LA but S 14 b 3 0 q4j 1&141176 S [A 110% UAIL 11011. 1011, IN AGLNCT 1160LI OATE 28-04*097S 0913417S 1215 Ingo SU hG pal slunslu as.04.097% 0910%1?S 17is 1000 su NO' out 6634.9w ni-i- SL; , go sjqf%7-u47#Js,*1s Ins If)OO A boy 41162U 121411?b ks.o%.697% fjoin,417% 12is 10*11 so as b 0 1 069 1 zli I 176 26.U%-6975 VQfU%/lS 122S Iflou Su Lu out 10413 19,21116 4900406975 Uq.* nis I I s W172S 1060 so CR OUT LI 106U 14(121176 2A."46097S U910417S 122S Ir*O su LO 8401 6060 121ally& za.0%.097S 0910417S 122S Inoo so cu Sol Soso 12/21016 "a .4,97S U900%/75 1725 I(?Oo MA IOU Sol 206U 121211?0 oo%.G9?% U91oft/Is 12is It.0 So 1401 Sul Jeju 1 76 2P9644607's _G9104/7S 12is 117011 S f, $4 14cy 9.qj lalzii?b 26*040;jq7s U9/04175 179% 10.0 so 1 ft b.2u 11721116 28904*09?S C910417b 1225 1000 bu FL out 32096 12121176 280490971 1'2102/7S IUSC 6*0 S CAST 01 kUIVILNIS HLLD 90 NOS bATER S4 2 1010divs NO bou $ LAST 09 Afti U-IOTS-16 28o0%oU9?S 10/02/?S 10io boo S EAST AGLKV COLLtCl 0093 031Z4176 18004*1497S I0191.47S IDSO 600 S EAST lUknlPSVV JCU 703 03licol7d 2So0%OG9VS MU217S loso 600 S fAS1 COLON Is 031doef7a 260040491's IOIOJ/TS IOSO boo S EAST PH ?OSQ 0302%174 18#0*o097S 10/0217S loan boo S EAST AL@tALINIIV 13S 03124176 28*04*0975 10102M 1050 boo S LAST Aciulov 36 031dollb 260040697s Io/U2/?S luau 690 S EAST MEN 51USP 1 01124170 do.0%.697le IOIUZI?S 10,30 6*U S EAST w Umbahic 0360 oftluilil 2800400975 10/od/7% lubo 600 S EAST 18"s ft fol LI 0010 04/01177 240040097S 10102/75 1050 600 S CAST Nod * NOS Is Oulu O%/G1117 26*0%oG97S l0102/?S 1050 0 S CAST p 101 LI 0010 04/01/77 26*C%*097% 10192175 1obo ::o S CAST FELAL COLI My, LT 1 031.041,4 ?a 00 18049AA975 10/021f7S 10*0 6on S EAST p OR THU LT 0010 04101/77 2A*OftoO9? 5 10/0217S 1100 1 of) S EAST 01 S$MPLt WOO 0975-16*SALINL TOP YjioQ%-.-u975-10/U2/V5 IIUU ISO S CAST ILMP WATER 290S Oft/09176 280040097's 1010217S 1100 100 S CAST foku Moo O%IGOI?6 ---24oO%oO9?S IOIU2/?S 111.0 1*0 S EAST UO S06 o%/u9l?6 44604OU97S IO/oZ1?S lluu IOU S EASY PH Tolo Oft/Lev/ 76 280040097S 1010211's 11 bo loo S CAST CL 12000 04109176 28*(!%*Oq?S 1010217% IIUU 1*0 S CAST Ift0t LLVLL LI iss k6Oc41Ou47s 10.492 Y Tr 110 3000 S CAST 01 -14110a-0i0i. 0975-16 SALINE 11011 28*O4oU9?S 10102/7S 1103 lOoO S EAST 02 U10- 28oO%eU975 1010217S 1103 10.0 S EAST IEMP WATER 290S Oft/u9/76 28#0496975-10/01/7S 11 J3 10oO S EASV colow- %3 041U9176 26PO409497% 10102/?S 110 10*0 S EAST LOU Sob 041696476 24*O%&097S If)/0217S 13 153 1000 S EAST EL 16200 U41".476 7,6064.0475 107017S@--I-I U3 10.0 S EAST 10t LEVEL LI 105 2@00460497% 11113/?S 12%;U IOU S EAST 01 $AMOLt. N09 U975-11 SALliff i8Oo%qG9Ts 11113/IS 12ao 100 S CAST 01%0 VLLbCIIV logo a%/U9176 dAoO%oU9YS 11115/7S 120 100 S EAST '11;0 0 -10L c I I of$ iss OftIU9/76 26oO%oC9?S 1111317% I?uG 1*0 S CAST 400hu $1000 oft/U907b 2RoO4oG9?S 11113M 120n 100 S EAST UO d- oft O%,fU91Fb 76.04.5975 11111175 1 zuo 1&0 S CAST Poo -7,94, 260040097s IIIII/Is IZUO 100 S CAST 1161. UIRECTIUN 2 266040091's 1111317% 1200 IOU S LAST ME LLVLL LI 100 2060400975 1111sr'15 1700 Sell u Ii/21/76 26*O%*U9T% It/11M 12UU Soo so LU I d:12 I 116 1660406097's 110130.1s I2U0 Soo si p tv LI I J/d 11 ?6 Sl@ MIL MPE MPTJ=GLNW= m m m m m 04 on," m I 4:6*04.4,97S 1111317S 126C SOP S EAST at SAhPLE Hu- OV75-17 SALINE 1111D 26oG%.U97S 11113175 12,;,0 sea S CAST 02 UE#,Th JmQO4.u97S 1111317b 12" sea S EAST lukulolly JEO, 0 303 %A09176 26*04*U975 1111317S 12uo SOO S EAST ALKALINJIV 134 O%0Uq1Ift 18.0%.U97% 11113/75 12@;O ,.a S EAST bt I NUSp 7 041LOVi7b 26*G%*w97S 11111/7%o 1200 500 S EAST fECAL COLI OF LI I 0%P09176 28*04.uQ?S 11113#17s 1200 Ilea S EAST at SAMPLE NO* 11VIS-11 SALIHL 280040097S 1I/IJ/7S 22UO Ilea S CAST w1kn VLLOCITV 1060 Z8eO%9b9?S 11/13M 1200 11." S CAST w1mu UIRECTiGN 13S OftJobvi 28*V4eJ9?S 11/13M 12UO 1100 S CAST cofto b? Z8004.4j97s 114*14i7s 17UO ilea S EAST UO 662 O%fU91?% 26.0%eO47 11/1317S l?L;O 11*0 S CAST PH 709U - 28*0%06975 11113115 1260 1100 S EAST Tlbf DIRLCTIUM 2 26004@097S 1111317S 12Liv Ilea S EAST 116F LLVLL LI 100 2pO0%eG9?S 11/13#47% 1JU0 600 S CAST 01 REL'6 ff PILKCL IJUG Jill$17b 28*04*C97% 1111317% 13on 600 S EAST Oslo 041uq/76 48GU4*097% 11/1317S 13JO 6OU S EASf gEeO%*U97S 11/13175 1300 6.0 S EAST "Hi N IOT Obo O%IU9176 NOL * kOJ ft SOZU 0#61091?6 28eO%*4i97% 1111317S 13.,C 600 S F&ST P lot 00%0 041U9176 28*04.097S 11/1317S 13JO bou S EAST P ORTHO e943 2800460097S .12.4061?s 1040 600 S EAST at $AftPLLi HELD 12 NOS MEFOME ANA 2GOc%*u97S MOWS 1010 6.0 S EAST Da LV.NIS. 28*04OU97S 12100/?s 1030 66n S CAST a uRbAldlc 28.04.09ys 12134/7S 103U boo S EAST %H3 ft IoT .3bo ovfk9l?6 28904*6975 12/06/75 1030 600 S E&ST P IOT LT OCIO 09129176 2800%*09?S 12/08/75 1030 600 S EASY LT 0010 OV/i9i?6 29-U%-U97S 1200617S 1230 600 su P ORTHO LI 0010 OVI29176 q. 4R4& 700 la/Z1176 28eOft.697S 12/0&1?S 1230 6.0 SU FE %0 260040097S UI/14et?6 lieu Soo SU at Peft*Se SA14PLL 811VIb-le de*04*07S 01112176 71'e _nS . a so ft ORuANIC .3bu 12/21/76 28004OU97S 01/12/76 1120 SOO SU 14H3 ft lot 0020 lklali?6 280040097S 01112176 1120 -See so Noi # Nos Ai *010 12/21/76 28*04*U97S 01112176 11, a sea su p Tel 0019 28604OU97S ul/W76 11do Soo Su p but"O *Out 28*0%e0Q7% 071UV/76 1%uO IOU S a at SL"VLL bulwft-au UALIML.. 12/11176 Z8-046.015 m021O9.'V& ISCO 100 Su 02 Top 280040697S 02109.176 ISOD too SU IERP MAIL* 160S 12121176 0 26004OU97S 02109176 ISGO 100 so w1ft0 VELOCIIV 330*0 IZ/23176 2P.04*697S 02109176 Isuo 100 S40 ilea UIRLCllux is 28*04ei#97S 021OVIT6 ISUo 1*0 Va b I ielZ IJ# ?b C219V176 ISuG ISO SO ZOND FIELD 56060 1214117b 28 0 C%@U97S 0 60 PhObE 609 ld:/illlb zluvt?6 Isan Ien SU PH 700b 12121176 '07109176 ISOO 1.0- Su slut ulptclION, I 28#04OU97S 021ovilb ISGn 100 Su flut. I.Lvil. 100 U?iovt?6 ISUS Iles su WI-p-i-.@; 2R*04*0975 62109/76 IsUb 119b Sj Di bUISUPI 021ovIn Isus 1105 SU -lt,mp MAILP 6 S uthn VLLJCfl-V--, 3jo,n 14191176 021346/76 150b Iles SU v I wU UIPLETIUK is 121iliT6 f 26eC%oU9?S 02.4"1?6 ISGS Iles SO L0hU OMU 56sun 121211?b zeeuk*047% L07inv/76 ISIA Su un Pgout 6*8 lilkli`lb dR*U%*09?S L2109/76 lbuS Iles Si PH 608U ? 2P*1)%-U91S U?10vt76 I%u% I10b st.0 01OLCTION S I A I I to" UA it I IPL U1,661" AULOOLV stuaLl DAVE jp.q%.&97S UP/09176 1 SUS ll.S Sto VILE LLVLL too ZA.n%.u97S U2/9V/76 ISIP Soo %U at [email protected] SA"PLL 41197%-dU 79 70-4r. W-4 7 Os G ? M-4 7 19 As I e K . G- S.0 of G w C F Fff -c- aim' JA*U%ojo97% 6ziov/76 lblu 5 0 Le s co 00"I % lug :uvU ji;i&, glib J8.0%.U97S 0?/IV/vb Isla sou 46U NO. * NOS N *,)if) lkoalll& 047.501 S__U_27dv_rf6___Kl 0 590 SU P fol- 0009 2A.V40,0975 42/09176 Isla SOS SU of Pehebo& .-SAMPLE NOVIb-20 SALINL- d66049W97s U21OS/76 Isla so% su 01 fq1U1)LpTi4 S 021UP76 1 S 1-6--s-3- SU Itthbioliv Flu 26S ZVoU4*4975 UZ/09&*76 1%10 SOS so COLUh 'kn ii I I ?b ze.o*.o9?% u7invi?& isio SOS S t, PH L 60 not 121211?6 1-9 .0c. U975 U2709776 1510 Seto S U AL%Atlklvv Ifts I Z1491.4 Y6 i4*04@097S 02/09/76 ISIU SOS SU Acluify 1 12121176 61A.Cftou97S 07/09/76 ISIO SOS st, ar S SUIP 3 Ii/21116 da.cq.075 0 4 ISIO SOS .50 COLI Mf 12iii0b 24oO%eO9?S 07/0*176 ISIO SOS SU FELAL LOLI NF lJldll76 i&.0%.U97S U3/18/?b lZbe too Sv 01 PokoZoor SAMPLL 609TS-21 W,04.6975 03/06/76 1250 led so I P WAILN 2%00 28*04009?S U3/0d/76 12bo ISO SU wlftO WLLUCATV 13590 2490%*09?S 03106176 12SO too- so wl%0 OINE01018 to IZ121116 28.04.0'079 MUbM 12SO M su I fUE S I AWL 41206 lil2llfb a ZB.O%*09?S 43/06/?b l2bO 100 SU Lofto lItL0 %boon W41116 iA.U4.097S UJ.*Ubl?b 12SU 101) %1) UU PkUbt 60% 12filolb 29.0%.0975 UNIU176 MO 1.0 SU PH Real) J96040097% 03106/76 IZSO 100 S co TIUC DIRECTION I j86O%.U9?S 0/08176 l2bo 190 SG fluE LLVEL IOS 28.6%.UV75 61706/76 1225 11.0 55 01 Po%*.%o SAMPLE $0975- 1 24.C%.(,Q?S 03194/76 125S 1100 SU It"P WAVLQ WSOO W21176 2A*0400975 03118176 12%S IlOc S6 elki) VLLOCITT 13500 191211?6 28.0%.0975 OW08776 1755 11.0 Sa 11 1 1bu-1yrofcm 0 16 12721176 J40040097s 03104/76 IZ5S 11*0 st; mot $lAbL 4200 12121176 26*O%wG9?S U3106176 12h% 1100 so LOW t1tLO Milo 12/211?6 18.0r.,697S 01706776 Pis 11OU su too Pauat 605 12721176 29004OU97S 03/06/76 12%S 1100 SU PH Palo 12121116 26.0%.U97S US/06/76 IZSS 1140 % fj 1161 OIQLCTION I 46404*075 031067Y6 125's 1160 so Mit LEVLL 105 2AoV%o097S 63108/76 13JO 600 So 01 Poke!ae SAMPLE 60916-21 240040097S 03/08176 13GO 600 so luk"Jolly Flu 103 12121176 2R,04.0975-01111,176 Uu 6*U 51%0 LOLOfo 10 12/21,76 28904*09?S G3lUb/76 13LO 600 so ION tap 8*2 li,02106 &m.0%.Gq7s 031'10176 1300 600 %,@ ALkAtakily too lo,litl?b a6.6%.Ms 6176 1300 600 so ACUM 51 141dillb 2R*04eU9?S 0319*/76 130" 690 S3 UE& W$P 1 191211?6 260040097S Glin9/76 1360- --Goo Soo at Poo%*$*-PEWfttKAhP Sto P0L* SAMPL 26.04.U415, Eli LN00 SUVIS-71 ZG&C%*697S 611OV176 1300 b.c Sw -SH3 h 101 LT *at(, 14111176 z6.n%.;j9?s u3piv/76 13vu- f.*n Sw h hitt. Orin lildillo 0%0 -75 w 0-49 00 10 97,5--(430 G ff--,Tj 2600%OWS t@111V/76 130 69v %U P lot 0be 2ROU%*U97S 03/119176 13WO b*O SU P boll"o onuo li/23176 ZA.U4.4475 UNWIMb lSuU loll 1) 0; -Or .10 i47-Th"FUL kU. 41975-1d dPo1)%o09lS 6%1121lb ISCU IOU SO "A ILM 41bes 240040697S U%112/76 ISUO 190 sl6uun mmm = = mm'm m = m m m m NP SIATIUN DATE IIML LOEPTH AGLNCV MR? DA 04112116 ISOU 1*0 So wo Too &A.c4ec97S 44114/76 1560 60p SU as Polvs@jo SAMPLL 609lb- .160 d A 0 oJIVIVY'-wifts lal 6 IS.1c 600 S a " #.W4mAk1L 180C404097S 04,12/76 ISUo 6.0 So ft"I ft 101 0010 lifidlilb .i@eo%.C97S 0%1li/76 1500 60U oil Af-L"CV CULLW V151 6.6 %1 1@6, " kol k 0002 ZdqU%GU97S 6411Z/76 ISUO 6*0 SI e 10T 0020 121d I 116 ZA*04*09?S 04/12/76 ISOO -600-SI p URTHO 9020 041,24176 irp oa [email protected] 1510 Itloo 0) Wj---$ALf%t SAMPLE hoo 09?S-22 28604OU97S U%ilal?6 ISIO VIGO Su ft"P WAILU 269% 2A.0%.097S 04112/76 IS10 1000 SU Coftt, 56000 dA.0%.G97S MUM 1510 10.0 SU U0 700 12/21176 is,C%,697S 0%112/76 Isis Soo Sw at iALIkE SAPPLL k0* 091S-2a j8*04*097S G%/Id/76 ISIS Soo So LLLUU COVEld so 12/2106 G4600 S-0411120776 ISI-5 Sep SU wlX0 VLLOCLIT 13soo id aii 6 Z8:04.697% 64112/76 ISIS Soo S fj b1hf) 101OLCT1001 3 12121176 28oO%oU9?S C4/12176 ISIS 500 so lumblully f lu z0b ii/21176 2 a . 0 % . to 9 12,0 7 6 ISIS Soo SO COLOW W21176 26*040097S 04112/76 ISIS Soo S ci PH LAN 796 12121176 '060160097S (04 1 14i / ? 6 Isis Soo so ALkALl"I1V US 12/21176 98.0%.497S 04ilZ/76 I S TS-S . 0 SO ACLUJIV 7 16/41176 26.0%01,97S to%/ Id/76 ISIS Soo so wra, sul-P 4 12/21176 jfi.0%.w97S 04/lk#476 ISIS Soo SO LOL I fqf LT 1 Ij/41176 28.04.U975 0470776 Isis son so FECAL COLI P# LT 1 12121176 28*04o497S 04112/76 ISIS Soo so Ilut LEVEL 1*0 26ov%oc97S osilol?& 1700 too. so 01 KWOLKAMP Slefte PUS SALIML 28.64.V�75 04Wf"t 6 IZU0 I.U SO 02 - !bimct milveb-23 J0.04.091S 051 IG/ 16 17jo 100 so lEmP WAVLQ J7*0 14121176 Z8.04.397S CSIIG/76 Izao 100 si LOW1 FIELD Sbluo 12#421176 24.04.0975 6 5T1-0-/-Tb I?Uo 100 so UO PROWL 707 12121176 28oC%eO9?S 05/10/76 IZJO 100 so ON *Goo 2&o0%,Q97S GS/10176 120S 9*0 so 01 PEkNLNA"P $To PNe P"S SAL111c 26,04804AYS --os.410,016 12j% 900 so 02 - SAMPLE 80*16-23 26*0%9097% OS40 10/ 76 120S two so T(mP WAILD 279% 12121176 2m.0%.G97S OSIIO176 12GS 9*U SU COhil t ILLO bsiun 12121176 di 0%.0975 US110/76- IZUS 9.0 STJ kfi-ek"i 705 12121170 24:0%9097S OSIW76 IPUS .% too so PH 8440 12121116 2ROO4.097S OS.4101?6 12IS 4.0 so 01 PLNNLRANP $is Pllo PNS $ALIKE agoo%*097S DWIU176 IZIS 4.0 So ad - SAMPLL NOVI$-23 ds.04.4976 os/IU176 121S 04.0 %to Tilkeloill flu los 12121176 2R.o%.697S US/10/76 121S 4.0 so LOL 04% in I iftd 1 /76 261046-0697S OW10/76 121S 4.0 Sa PH LAb 802 lifai/76 2A 0 0% . E09 7S 6SI10/76 IZIS 400 SO ALRALINIfy Adz ialaii?b . 0 2800%009?S (AS110176 121% 4*0 so ACIDITV A IIZ/dl/76 2 8 . 0 -4.4191 S 0%110176 IZIS 1# 0 U 5 @0 WE5, susp 2 121ilito 260040697% US110176 IZI% ftee S a AS NOT onu 12/21176 am.U%.W97% GS/10/76 171% %or se, Lo "W 260 %.0 107Y6 12IS 4.6 So auf LT 1, 2 If aa.o%.097S GS110176 121S 4.0 Uo CO a lif 1003U 12#421176 26.04.697S OS/10/76 121S 6.0 Sa -6U PUT 2*60 11/21176 24.04.69vs GS/10/76 121% 16,0 SU p" boil LT 1707b ld.#21176 2e.o%.U97S OS116/76 121% 4,0 SU out 6000 Id/21076 26.04.091% G5110176 121b 41,0 so 41 plif stallum UATL 11"L DEPTH AGENCV SIONLI DAIL 28.0%*097% US110176, 121% 4,0 SO Z8.04.697s CS110/76 AZIS 400 so 12121176 ?"eC46697% US/lu/76 121% 5 J Ct L Ll I I&IJ1116 26*0%.69?s 05116/76 1715 4,0 su COLA Pr LT a ds.04.697S GS/10/76 121S -0.0 sa -owl 00 2 6 9 0 14 e 0 9 FS-1XI-I -0-Yi 121s 0 su r9.%%,6i6P ble PM - PhS SAL111L '18.04.697s lisilu/76 1215 S:c so Oir 'mr4.t:s%o 11ML 602-1103 LXCLEUIEU 2ASO4000975, US/10176 171S Soo so --03 it 640%. Got 211OU46.69y5@0571U/76 121% Soo su w8o's.61L 3111 a I a I 48.04.497t 4)5/lG/76 1715 Soo So 4; lot :0%0 la@021176 26.0%.097s f.S/10/76 I?lb see su its Aej as *Dab 12121176 -----2s.uh.G97% MGM IZIS Soo sto or #to# *Oda 12121176 24*04*097S OJ6107/76 IIJU 100 SO) 91 tvtj j.&mPLt 409TS-24 SALAIIIE 2&-CQoC9?S 66107176 1130 too so of me watts Z6*3 12/dli?6 dGeC46669 s MOM 1140 --too sij sr%1. 04LO S1000 12121.076 28o041ec97s 06/07176 IIJO 100 so .PapsL J6.0%.407s 06107176 1130 lea so ro. 8*2U faf2li?to j8.0%ol,97S 06/0?f?6 113% 16,0 Su 01 F&%o;po-tA%PLL 60015-20 SALINE 201.0%*097S 061U7176 113S 1080 sa It 0.61 SA ICU 26*0 12121176 2fi@CftoC9?S 06/07/76 Ilis 1000 so a'. oil 0 JELO %30uD 121al/76 JR00419091s US/O?/76 Il.1% logo SID it P%CoL 703 Id/21176 d1loOtoeb'97% Cb/07176 Il.5% 1000 sks vot @*so ii;fi 1176 ;A.cft.qj9?s fib/071 16 Ilion SOO) sl as 40J A, AND MMJ-M AIOALVZLO 6 1100 Soo st 01 a to Ab UtTualu mccoll"ENUED 28*04*09?S 06/07176 11"0 Soo sl 03 lowl.016b TIPL*66 28eO4ob975 &6/07/74 11vu Soo sl COWLI 4051 IZ/21176 26.0%OU97% SaJ6107176, 1140 See sl Aqp&%jv AMIALUE OOSI 28*O%oG9?S C6,10MG, 1100 Soo st 0290 12/21/70 ;0 Z6604*0097s 06/01176 11 IOU, Soo sl ts lot 0010 12121176 adeUkoUVTS U6107/76 11400 500 sl 1444-16 6013 121211vb 2116041OUVIS 06101176 1160 Soo %1 00413 IM1116 26*0%oUVIS 061U?/76 1142 Soo so 01 WIPLE 80915-24 S&P 4' 12121ir Z69011OU97s 064407116- 11,62 sell VWit IV 13%00 6 28*0%0047S 06107176 1142 Soo so *:ftL :'I 4C 136101 5 IdI21176 les da.0%.097S 06107/76 1147 Soo Mo It st*-if 0V I IV Id/21/76 F.(,& 00 is 28004006975 06/0,776 114Z Soo so ;1600%009?s G6107/76 114? Soo so rm LAP NOR IdI41176 29sOfteO97S 06/0176 1142 Soo so 4tft8Ll%l1V ale 12121176 d8.0ft&Grq79 06/07/79 1147 Soo so atol'sti- 3 MOM 2800410097s 04/01.#76 1147 see 50 of Ll 1 IJ121116 28*U4o*U9?S Ub/U?176 1141? Soo 106 OF Ll 1 lk/21116 Z8.04.0-975 OM7779 lit? 500 SO LY Jell 2A00410097s 8,126t7b 12as )so su 01 SAMPLL 0091%-4iS SALINE 2@eD%oU9?S 0176176 IZUS ISO su flv!@ salty .0060 121111?6 -0712617 so 0 ldl2lilft d66046909 S 6 12us J,r I o 5101011 2soO%04j9?s 071?bf?6 12us to" su lot TO lildloyal kx.uft.u97s W?Izbtlb 12 @All loll s a 46141 n/21176 Z46046SU975 - 07/74o 6 Azill Inou 54 SAPIRL-011 SALITM 28011%ecols U7176176 Me 1060 S& -04 101 it9*41 IdI21176 fill,l) b!#UUU Ii/J1176 000i re locisoU975 C7126176 1710 1 U U 2 26404o.ulls U1176176 I?Ip Acoo so) SOCINSOVIS W120176 IZIS ben 'oto SAPPLL 8111#15,-dj, SALINE STATION DAIL T.1"t UEPTH AGENCY 0 v 20.046b9is 0126/76 121s bou Su *INU VELUCIIV Isboo 12121116 26.04..@97s U?/26/76 121s 600 SLI iol%D DIPLCllfjW 10 lic/11176 28.U4.uq7s u?/Z6i76 1715 6*0 s Aj TILE STAGE dOLO 12/211?6 306 IdI21176 ja.o%.ug7s U7126176 121s 600 Su TUh0tVI1V FIU 12/2117b zb.(14,uq?% b?/26176 121b bell Su COLOR ld/21176 ZB*04*6975 07/2*/76 1261S 6*U SG ALRALINITV Ifi 1 2800404975 07126/76 IzI5 600 Su ACIUITV 10 2s.c4.u975 07/24i/76 121S 6Su Su kfS SW 3 121i:117b ii/21176 de.O4.u4-fS-jj?/2a/76 121S 6*0 St. ORU zs.(!%.Ugls 07126176 121S, 600 S 4 F t SE10 28.04.097S 07/26/76 lZIS 6*11 Su COL I RF Ll I zs,049097S U7/26/76 1215 600 Su FECAL COLI Mr LI I 12/2li76 28.04.097s 07/26/76 Izas 6*0 so IlUk DIRECTION 7 280040097S 07126/76 121b boo Su Tlut LLVLL ktIMORK SVSFL14 SAMPL 105 2A.94.J97S 091lb/76 124za 1*0 S2 Ol Pts,"ANLNT as.04.097s 49115176 1220 ISO sit 0.4 4 NOV?b-27 2e.e4ou9is 09ils/76 1220 loc! si TEMP WATLR 2ses 01120177 mOb2 07119177 28.O#j.rjq7s G911!3/76 1221) ISO Sd AGENCY CJLLECV 28*04oG97S U9/16176 1220 I'D S1 AbLNCV AkALTit 01/20/77 26.0%.497S 091IS/76 12eO 100 51 LLGUU L0VEk bo 011201?7 2feO%e097S 09/15/76 IZiU 1 0 U s @1 IIINU VLLUCIly 2300 07118177 28.04.697S U9/15176 1220 100 Sa alho Ulf-tcliuk 14S 07/18/77 28.04.1;97% 09115/76 1220 1*() S2 116t SfAbt I&OU0 filfwa/r? 28*04s0975 G9115176 12ZU ISO sa TUkB11111V FVU lob ulliui 17 28-04-UM 09115176 1220 1*0 Sa COLOk 9 01120177 2s.rj4*097S 09115/76 1220 100 S2 LONU tILLD b3oan 2e. e4s jj9-jS Q91 IS/76 12,eO 1*0 sit JO PNObE S,9 PH 8920 01120/77 28.04*ug7s 09/16/76 1220 1.0 52 24.04.097S 09115/76 Izze 101) %2 ALkALINIIV 133 Dili al ZeeO4*097S :91l$/76 1210 100 S2 ACIDITY 10 01120177 28.04.0975 0911slib 122C 100 S2 RES $ubp 1 01120/?? 28.U4.0975 09/16/76 1220 100 S2 COLI Mf LT 1 01120177 ge.04.U975 011W76 IZZO IOU 52 @LLAL LULI PF LT I 0112U177 is.0%.497% 0911S/76 IZZU I'D S2 TILL VIULC110" 2 2a.04.fj9?S D9 /I b 176 122U 100 sz lIbL LLVLL too 280046.0975 Oilts/76 12db 600 so 01 PLWHANLNT kETWQRk SYSTEM 330 12121/76 28.04-097S 49115176 1226 6*0 Su N UWUANIL to TOT LT 0010 12/21176 2e.04.0975 09115176 1226 .600 Su N"i 004A 14121/76 2s.c4.u97S 69/15/76 1226 600 Su ho, * kO3 k 10do 2a.04.0975 U9/15/76 1226 600 Su P ]at 2B.n4.ug?s 09/lb/76 1226 600 52 "1 P t.S : 14 -LIAL!k 60 SPECIFY ILSTS 7 dae --o ?S 09/lb/76 12db 600 Se Od u uE RUNS 2s.O%.1@97S 07/15176 1226 6.0 S2 02 15 lu bL Mike 2g.04.u97S U9/15/76 IZZ6 6.0 b2 AGENCY CULLW OU52 .03124/7# 2hoO4.0975 U9/lb/76 1226 6 * V si AGE-110 ANALYZE #no& '03124174 2a.0%,09?5 169115176 1226 690 S2 Co Ll 03114176 :,. 0 2p.oqovO?S C9/lb/76 124:6 G.n sd Lu 10 n4/2%i7a 2 a ;-U -4. U 0 7 S 09/1%/76 1296 6*0 S2- FE lun 031d4ilb ee.04.UgTs G9/15/76 1226 600 sd PEI LI in 031W%176 2a.O%.C97S 09/lb/76 l2e6 6.0 s4i d" 16P ni p@-,4"ANLNI NFIWOPIt Mill.14 SaMPL 280040 975-69iibm iza -iin s2 2a.U%.u97S U911S/76 1126 11.11 si (12 L 4 015-?7 Zg.o%.09?S 0911S/76 12,16 11.0 52 Jtp.P WAILN imos ul/.eo/ 77 S11111011 OAIL 114 ULPIN AGLMCT 0 2*oC%oUQ?S WAS116 A746 IloO S2 COLLICI 6OS2 0 26*0%OU97% 49/1%114 12d6 1100 Sit AsOLUE UP oltaolly --76004OU975--c 041ill* lzd& Iled 54 -L t 4. L 1;@L 6-0- ON W U&"G-Py@ 28oGft*J97s r"g.41s/76 12.16 1100 sd allot VI.Licliv k See 011kaill : I 2800%0097% 0911S/76 1746 1100 S, UISEC11011 07116171 tj 7o IT0,9-7 lls 6 IZ26 1 -5@-Jjlo 1.6 sd I I OwE a A 7Yd-1f t 'A.0%*Lvls 4)911%176 Izab 11911 si LOW fItLO birsuo ioAlaoir? ;.moO%*U9T% 09/1$176 1726 1100 Si be Sol 14 1Z.16 .Zsoufte P If.(' si 6920 olpiM ry@. 09/IS/76 1246 1100 sa I Iwo, a4wtcl loft 2 ZP*Cfte4Q7S 09/IS/76 I7d6 1100 %1 11.01 tLVEL tell 2w.aft.u0s 10.0 11M A 1 '0 6*0 sz 01 SAMPLL 60916-29 SALINE ZGoO%*G*?S 10/12/76 IldO 600 sa MoV60 COLUCT boup o3jaelve i, 600%0097S 1-01121?6 Ilio 600 si t 20*0 .03124.*?* . I .8*0%*VV7,p 1/7 Alin 600 si IF 756 2600%009?S In/121?b 114% 600 sot a& v0stsobe S.AMPLL has OVIS-26 MI [email protected]%.Uq?s 1011W176 112% 604 %1 al 44, ZO.U4.0975 16711M 112S 6.1) Sa mok%&.4 CKLM G"by 94701,71- Z6900*097S 10/12/76 Ali% 600 SJ to 0,0094111C 94160 44061011 26*94*09?S IWI20*76 IUS 6*0 S2 1600A b 101 LT 00be 041011?? 28*014oL#97S@10/1,1/76 112$ sd Viet L11 0010 26*0%OG9?S ICIZU/76 1110 1*0 Sa at Pokeae SAPPLL 6 09IS-16 MINE 2soo4*097s Inj20176 1110 I*C %2 - Of@,$* bAILR g6ol OlIZOIT? 29.0%.09 9 10120/76 1110 ISO Sj &EA.9-LV OLUCT bubz 01140171 26.0%.097S 10/20176 1110 100 Sd olkle OLLUCI IT Osoo 010*10M 28oO4oU9?S 10/70t76 1110 100 Sd diftIP-9111EC11091 17 0AIM077 2690%*01@7@-10/70/76 Illu 100 S2 1-twe 11 1 20bo -61"Clivy- - 260040091's Ioizo/1`6 111" 100 sz 011bil 11141LID ssoco 010*20177 28004OU97% 10120/76 1110 1*0 sz 0, 10mobt So% 11112017? lea S2 it" best] 01120/77 940040097S 10,f?0074 1110 100 S2 F(LAL LOLI MF Ll 1 0112CWTV 2600%009?s 10/20176 1110 300 S2 91"MIGN 2 260046097S -10/20/76 1110 5d LL 200 Z6oOfte&97S 10/20/74 Ills AOOO sa as Fe%*.Io APPLL a 09TS-2a bALShl ZR*0%0097S 30170/76 Ills 1000 Sz of (NAILP too? 01120171 26.04.'07% Mzuln Ills 1000 Si &G& 0057 011201?7 16*0466975 IOIZU/76 Ills 1000 51 61%0 VLLGCIIV %Sao 01120/77 28*0%049?S 10/20176 111% 10*0 S2 01%u VIWILCI logo 12 01fdaly? aa.04*647S-10#420776 Ills 1000 S.9 1164 L ZOUG 01120117 28#04*0975 IO/ZU/76 111% 1000 sa %'r %U ;Zou 113000 0112U/71 26.04.uv7s Inl?u/76 Ills IrIgo Wo a P9,661 so$ ul@ko/yl` 24.0fte-U1475 10/?U/76 Ills InOC! sa PoGv 01,1201TY 460040091V IOIZO/76 Ills 1000 %a llwf UJILC110% 2 2900%*097s 1017U/76 Ills 1000 SZ tLVLL W660460975--10726174 1125 600 % j as 4b LM 26oO%*G97S O/Zto/76 112% 600 sa COLUCI gas? 01110/71 2p*oftou9?S 1012011`6 114% 660 S, 110ftesully Flu 201 ulnul?l -i 3-0 C% 0 U9 75 1177U116 11.5 6*U nog 0100- 1 U11207TY 28*0%00975 10120176 Ili% 600 sa pit L 44 1162 0II&W77 z6*C%*09TS IOIZUOF?4 Ills 600 S2 Atk4%.Iftily 1440 olfzoirl im.ut.-OTS-lulzurib IIJS ban 51 it! 7 U1120771 2860%409ls IOIZU116 Ilirs 6*0 S2 :Ib iv;p 3 0114ultl leooftftuols 101?0116 Ills 6*0 S2 L1 1 0110011 MSTA ML MWL MT14 MENCM M M M M M M M M WW"LWWE Me 2S.040097S lni2u/76 112S 6. 0 52 FECAL COLI PF LT 1 01120/7? d8Oo%,u97S 111lb/76 I I is 100 S2 01 P.NoS SAMPLE NOVIS-29 SALINE 1011 hi E R 2400 D 14 41 112b Sd T 0 W 28.04o-U97S ll/lh/76 0i 28,04,047S 111is/76 lids 100 52 AbLNCY CULLECI bob? 04/ul/11 28.046007S 11/15/76 112S 1.0 52 CONU FIELD bzrGo o4/U1177 1'0.E'4.j975 j f-.*-f-5Yf(4 112b 1.0 52 UO PNODE 600 04/01/77 j8904,U975 II/lb/76 1125 1.0 52 PH .--' 8010 U41GI/77 j:bo04oU97S IM5176 1130 Ilea 52 01 P.,NoSo SAMPLL NUV?b-d9 SALINE db*O%e&97S 11115/76 1130 Ilea Sz If"AP WATLR Z30S 04/61177 29.0%.4397S 11/15176 1140 11.0 S2 AGLNCV COLLFLI 6052 04/01/77 j8*V4.Ej97% 11/15/76 113n 1100 S 2 LV60 FIFLO b2obo 04 / L, I / 7 1 jR,Q4.uq75 11115/76 1131, Ilea S2 UO PRUDE 700 04/filip? i0*64*097b 11115/76 113U IIOU S2 PH 8*20 04JUI/77 .8*04.U97S 11/15/76 IZ@X boo S2 01 P.ft.:i. SAMPLL NO. UV7b-SALINL 2 U052 dMo049U97S -11*115/76 12@;O 6oU S2 A(vtMCY COLLECI 28o-049U97S li/lb/76 12wO boo S2 t4 6RuAhIL olull U%/G1177 28*04*1@47S 11115/76 170;0 6.0 S10 hHJ*k TOT . N: 0 04/LI/77 28.04.U97S 11/15/76 12UU 6.tl S2 P TOT *Odo 04/ril/77 26*04o0qTS 11/15/76 12UO 660 S2 LHL A eou 04/ully? 28*04oG97S 11/15/76 12UO 6oO sle c"L- b 0 of) 2#ioO%,r,97b 11115176 12JO boo S2 LHL C . at# 04/02/77 2A-04-u97S 11/15/76 1210 6*0 Su ni P.he$o S&MPLL 601#?S-29 SALINL 28,04,397S 111lb/76 l2le 6 * 0 si alho VLL6LllV 13500 (34/0/77 28*04e097S 11/15/7b 1210 boo Su at NO UIRLCTION 3 04101177 28.04.097S 11/15176 1210 6*0 so fluE SIA61 42uo 04/uI177 28;04.097S 11115/76 1210 6*0 su TUk"IUIIV FIU 105 04101177 77- 28,04,097S 11/15/lb 1210 6*0 Su COLOR 3 04/Ul/77 0 28o04*097S 11/15/16 1210 600 Su PH LAS goo 04/01/77 Ln 2goo%oo97S illib/76 1210 600 Su kt.', SOZP I 24/t11177 Z804*0975 11/15/76 1210 6*0 so LOLI MF L T 1 04/UI/77 2e.u%.0975 1111517b 1210 6.0 Su FFLAL LOLI PF LI 1 04101171 28,04,09?s 1111S/76 1210 600 so --Tlut DIRECTION I 28.o4*097S II/IS/76 1210 6oU so 116E LLVLL log 28,ote&975 11115/76 1210 690 51? 01 P.N.S. SAPPLL &D97b-29 SALINE Zs.04.U9?S 11/15/76 1210 boo S2 AbLNEY COLLECT 6052 -US/24/lb its.04 v97S II/IS/76 1210 6*0 52 C upb 400 031216176 28.04.097S 11115/76 1210 6*0 S # FE 220 03/24/7# 28904&0975 1212U/76 1130 ion 52 01 P.k.S. SAMPLE. I 0975-3U SALINE ZAo04@U97S 12120/76 1130 100 52 TEMP MATO 23oO 04/01177 28o04&G97S 12/20/76 1130 100 52 AGL4CV COLLELT NOS2 041&1177 dA.04.U975 12/20/76 1130 IOU sd LONO FILLD 511000 04/01M Za.C4.C975 12/20/76 1130 IOU bi UO PRObt 6*2 eft/U1177 26*04*697b. 12120/7b 1135 1(1*0 sle 01 p.K.S. SAmPLt NO. 097b-JU $ALI 2e.o4.0975 12/20/7b 113S 10.0 si 02 hL U%IUIIFI 2'3.0#4ou975 1212U/16 IIJS Icea S1 TrmP WAILP 22oS ze.04.u975 IZ/2U/7b 113b 1000 52 AbLNCV COLLECT bUb2 ka.04.u97S 12/2u/76 113S Mon 9; 2 Mon FiELC sbor.0 04/bi/77 ZSGC4oG97S 12/26/76 113S 10.0 S2 U0 PiioisE 6 W4 04161M 2e.04.097S 12/20/76 114U 600 S2 01 P.N.S. SAMPLE kO. 0975-30 $ALI 28.O4oij97S 12120/7b 114C 6*0 52 04 -NE ge.04orjQ75 IZ/?0/76 114f) 600 b2 A60.CV CULLL4.T bOb2 Za.u4.G975 1212U/Ib 1140 boo b2 p TOT 0010 04/01/71 z8.04.G975 12120/7b 1140 6.0 S1 C14L b 7 ST A I I o" DA TE TIML UIPTH AGLNCV blORLY DATE 0 za.uft.097S 12/ZQ/76 1140 600 sit LML C 0410177 26.0%.097S 1212C/76 1140 609 bit P, UP INV 0010 Oftfuill? ZSOG40U975 12/24176 114S 6 a S41 ot sampl.l. m 6975-Su SALIkE 280C48697S Azlf2oln llqs 6:0 Sg At-L%16V CULLtLl OOS? ZR,o%o69?S 1212&/16 II%S 600 S2 s1kil VLLOCITV 3*0 07116#477 .0 RTIUN U-7 -11 ETI -7 j7.6% -.L, 2 Zf,-,1 fb-. I 14 5 be I 1@ 0.- JWFRR L C 28*04.697S 12120116 11%5 6or Sa VILL7 SfAbl 43110 04/bI171 Z6*04*097S 12/20176 1145 boo Sj lukelully Flu 104 041(ilip? zfioc%*U97S 145 600 5i LOL 0 h ft 0410177 iS*U%%U97S 12/26/76 Il%s 600 S2 01H LA P*Z 24,04,bg7s 12/20/76 ilos boo 52 aLkOL141,041 I v I _Z6.0%.41479 I Z/ 20 76 A I %S 6.-o S2 ACIDATI 131 of#/ G 17-f 7- 26.04.097S 12/20/76 Il%S 6*0 Si kt% MP' 3 04101177 2So04*U9?S--I?/?U/76 Il%S 600 S2 %o,-, * 603 h 0030 eft/61177 WA.6400 - - - 6-11-Is 600 Sd %; #lob Sol) 04101177 26sC4*097S 1212U176 1145 600 Sa VE , lbo o%1UI1?T :p.n%.G*7S 121?ul?b lifts 600 %z U%L I IMF Ll I 041U1117 2 6 . 0 % . U91-f" IZIZU/Tb I1%S &go S2 FfL4c-cOLI 04F Ll 1 2A*C%eU9?% LMU/76 Il%S boo SZ lj&t UIR"110" I ifeeo%*097S 12/20/76 114S 640 52 lILL LLVEL 100 ul/luly? 1126 100 Sd 01 Pt.OALKANP S1*PR* Pok*No SALINE 28*04.09?S 01/10/77 1120 1*0 Sa 02 -SAPPLL kOon9lS-3I ze*040097% Ol/It;/77 IldO ion S2 Ir"p wca 210S d8oP4oU975 GIIIG/77 1120 too sz A(%Lffty COLLECT #052 22*04*49?S 01110/77 1120 100 S2 LOOM FIELD SaOuO 177 28.04.1@975 01/IC/77 1120 too S &I, UO PhOSE beg 04101177 28.04OU97b ol/IU/17 ilia IOC sa e" sebu 041401 /?1 boo bie 01 SA14PLL sOgIb-31 SALINE 28*049097S 01/10/77 111S 28.0%.L97!p 6111U177 1125 600 52 It CP WAILR 11611 04101177 z8*04.01S 01110/77 112b boo Sa AGOkV COLLECI $057 04101/77 28.04.ug7s 01/10/77 lids 600 S2 COkU FIELD S3000 114/61117 284040097S 01110177 Ilds 600 S2 UO PhObt 700 04/01177 2S,U4vU97S (WIUM !Ids 600 b4i PH 60610 98*049697S 01110177 1130 boo S11 01 Vokebe SA"PLL NO@ U975-31 $ALI 0.0%.097S Cl/16/77 1130 660 Sg hi 18.0%.07S ullIU/77 1130 6oD sl@ A(-CkLV COLLUT- SOW 28*04*097S 011IG/77 1130 6*0 Sz % LPUAklc 0060 04/01/77 2Me04*097S 01/10177 1130 600 S2 %"I % 101 Ll *1330 04/Ul/77 ,c8 Of$ .0479 01/10/77 1130 6*0 se: p 161 LT *010 041U1717 20*04*697S 101110/77 1131) 6oD %2 %;�'L A 0 flu 04/0177 jo.94,ug7s 011lair? Ii3n 60U ba 04L b ou uft/ioi 177 28 .046.007S .01/10/77 1130 boo si Ltk K OR 28*04009?S UMU/77 Ills boo S%p 01 P-hole SA"FLL d0975-31 SALINE 01/1#1/7? 113S boo S ii 0141) VLLUCI1V 181DO 07116/77 2Go% wl,75 61/161T7 113S boo So -W-1-90 WOLE I Ito" 13S U7118177 dRmUft*U9?S U111UM 113S 6oP sl@ IlLf SIALE 42UO oftlul/77 46.u%.497S 0111aff? Ills boo SU t0kPaultv flu 3oS 04ti,1177 24.014.0,ys 0171U177 113b boo -p U 4.6com 1 0 4-fi;l-/,rr VoCho(*975 W/16177 113S 600 su PH Laft SOS fl%/IDI/ll iS*U4oj97s 01110177 113S boo su ALA AL 116 11 V 132 U%/Ul/17 269p4OU975 01110177 1135 boo Sa U%/Ul/7T 2800%oc9ls 41110177 Ills 600 Su id.1v SUbP I &a.0%.6975 U111UM 1145 600 Su 603 k =IMP! ST AT 1001 DATE I Aft DEPTH AGL"CV 01116171 iiis 600 so LOLI PF Lf I de.0%.u97S 01110/77 113S 6*f? 5 J FELAL t.OLI 14F LT 1 041U1111 dd*0%00075 U111.177 Ills &on slu liur LLVLL 100 26.0%.097% 01/IG/77 IIJS 600 Sa 01 LOkPLCIIUK FGR DATA Ulf U1,10AIL knouft*69?b 01110/77 11,)% boo %61 Q I -Poh*!be SA"PLi aMilb-SI %ALI#6L d8O"%.U9?s 6fTf I is 6*0 sli ca ft'dou%O097s 61110177 Ili% &OC S9 AGL%LV COLLtLI OW 28.04.ug?s 01/10/7? 1145 600 %;9 blkl) VLLUCIIV 101911 O31d41v6 680040097% cilia/77 1135 bee sd w1ht) UIRLCT16% ISS 0312#01 to 28*0%oU97S 01110/77 113% bop W f. 200 041ulM 28004OU97% Ut/16,77 1135 600 %d fr ISO 041161177 d8@04*097S OMPT IZAO tell sd PESINLICA04P ALINL 2AoC%*s)97S 03122177 1210 IOG $4, 02 @,ANPLL 00U. OVIb-37 i6*0ft*Q9T% 03122177 1210 IOU sd TLHP WAILM igls 47116177 26oO%.U97S 0122M 1210 i.C 1bd AbLkCV CULLI'Ll bosp 0711P177 jn*U%*09?% 03122177 1210 too S2 CO@%U P IELO 11IS400 011141111 aAeCft*G9?S 03#42.@17? IdIU 1*0 W U0 empot 603 01118171 YB.O%.U9VS 03/22111 1210 100 %d PH Gobo 011141117 26.0%ou97S 03122/77 12AS Ines Sd (It PL#ANLNA"fo $11o one @Ophs SALM 26o04*097% 03122/77 121S 100% 52 02 1AMPLE 40o OV?b-32 a@ ot&.fj97 s 0312Z/77 IZIS Ines sd 11"P MAILR alos 0701817) 2AOU400975 030PZ21? 7 IZIS lo.i S4 AGLNLI Cul.1.1.0 imobz 07116171 26.Pft.u97S 03tW77 171S lugs W LOW F IfLb basoo 07118/77 2 a 0 C? 0 9 rs-O v -7-1-7 1 % --Ines %z bo PRObt 24.0%.097S 03122/77 121b loes sd PH sobs 07118111 28.04.097S 03/2i/77 1220 600 S-U 01 Poftol@o SAPPLL &091b-32 SALINE PIN i180046097S 031zi/77 l2do 6.,# tow 4"3 h 101 OOVO a$.Cft.1jq7S 0312Z/77 1710 600 %u P low onto 07118177 dd*C%*49?S 03#422/77 I?jn 6,n %L, LNL-A nu 11710/77 dA.0%.U97S 031ZZ/77 l2du boo su CHL 0 gnu U7/16/77 26.1D%.G9?S U3/ZZ/77 12za 6*0 Su LHL L OOu 0711fill 29.0%.097S 03/22/77 123" 600 S tj 01 P.k.,*. SAMPLL *OVIS-32 SALINIC 071161TV 2600%GU97% 6312d/77 12su boo bu ;iltm VELOCITY Igloo ae.0%.697S C31Z2/77 IZJU bou % th aIfto uIQLc11UN 1.05 0,1118117 ae.0%.C97S 03.422177 1730 600 5(0 Iful, SlAuL q3GU 07118177 .8.0%.097% 0312MI 1230 6.0 Su Whol"lly fit, 106 07/16177 28.04.07S o3d2l/77 1230 600 SG LOLOk 6 076416177 28.0%.097S GW22/77 - 1230 600 So -PH LAS Ael 071181?7 26.04.0975 63122/77 1240 boo 5u ALAALINIly 127 07118177 &,G.o%.49?S 01122tly 1210 600 SW AcIllavy 3 01118077 n usp 1 011119117 28 oft.U97S U3/?Z/77 I?JL - be :46 j8*04*0975 U3,PZ2177 T.7'-3-n- 6-0 '14. 1 ilL C I I tfk I ,ep.fjft.O9?S 03122117 124U (IOU % 16 11161: LLYLL 160 26*04.09?s 04/?S/77 124*0 -6.p sd el SAHFLL 1600 y9lb-34 $ALI 2M_.U%*ij97S oftizsll? 1206 bou %i Cd %L 48.04,L197S 0412S/77 lzUU 6.(v so. kbt#.Lv CuLLI'Ll 4111.6ob 031J4116 pull 66t, %. ACLNLV CULLtCl &US? 03164116 &b.94.697S D%IZS/77 I--- a 97S 001215/77 12UO 6 o @F-4;j onb2 03124116 a A o 0 % 0 7 S 04125M 12WC &on S.C A6041 AsoALIA 6066 0114,1174 a8.c4.Uq?S U412@,177 12' %1 f. o e k 011LA1.1%, 60011 oildWa 6,11 Vol I %;n 0312#9176 0412b/?? I zf;o #6 . 0 S.: P 101 onto n j/iff' , 74i 26.0%.U97S 6412*177 lzull b o C %i Ibn U 344,01176 Ill I t6m "A it 1101L WEPIN A6LIICV SIORLI DAIt us d:6*041OG9?5 Lolabill 12UD 600 %g LHL A 4.11 03144010 : #1 d".040OUVIS 04/25/77 12U0 600 'ba 4,04L o LI 044016 CHL L 05144116 6 0 it L 26.04OU97% 404IM77 IZ&O fee %Z 0.1 .0tillm 104:fthkashr SIO PRO POwOs* 12do 101) se! Va :DhnpLt IU91%-34 $ALI&[ S 041/2SI77 1210 1*0 Sa &GL*4;y C4#LLICT 0402,101 VIA j8.c4OUq?S-,j%lzbl77 1220 100 %2 4.01611) I`IELU bbsoo 031441176 ke 40 040 0 a 1220 1*0 %di Ue. 03194176 4zaaftommon aftizsIry 47211 100 Si 0,04 03litill 76 dAoC%ou%7S Q417b/77 M5 1100 %2 01 JUhlV 1`040111tKAMP $to PRO pokes* iA*C4oG97S - X? V 1225 11*0 54 od bAnP4.C'8UVIS-SJ SALI&I 28.040697S 04/2b/77 Izes 1100 Sj TrIll" WAILIP 0SIGS178 26,0%,Fjq?S oftizbm 122S 1140 Sd AGL"dLV COLLELT SOS? 03124111111 260eq.097S -- U'A.421pily -124% lieu Si L01.0 FIELO 960110 OJI'd4174 iseefteuels 04125**77 lZis 1101, 54 be Pk0bE Sev 03124076 28.04.1697S U%/ZS/77 122% 1100 S.: PH * , Mebb is.0%ougis u4/7MY 1233 600 Sd jobOt Pc#Jh#NAIIP 28.o%&a97S 44/25/77 1235 600 W od ISLIbURS %V51to SAMPLL 41097S-S z6OC%OU9?S Gol?b/77 121S 600 Sd 01 3 SALIkE 20.C%.097S U412b/77 123S LOG Sd Ifolp Wayl.11 9406 2nor%.497S aftinly? 123S 600 %2 AGL*NLV CULLiCT bab2 JA.C%.oA7S G4IiZb/?? 123S 600 sd AGL"LV ANALT&C 52 oil;(*.# 7 a 28.c%.,Ogys C4115/77 Pis 60C %2 1,UoUb LOvIk is 041a,11174 2800%0409?s 04125/77 123S 600 Sa wI%0 VLLuClIV 83SOG 03/24ift 2e.04.097S LAMM 123S bell S2 1*1%0 011ILCII&A is 03/14i7le, zd0c*eA;9yb &41z5l7? lZIS bou Sd IUMPAULIT Flu 300 oPilli 16- ZROP40097S 0412SIT? 123% 6*U Sd 4.01.0od Is 03194iYal cc g40046097S 04/2b/77 1?3% 600 ro 9 OLAALI&ITY 113 03124114 Z60040097S oftlps/77 -123S 600 ika krs ;Dubp 6 Uslaoirs Zsoo%@09?S 0412b/77 12SS 600 Sa t(CAL LGLI PIF LT 1 03l2ftlT* seedI6097S 04125177 173S 600 %z UUhNI.011 11111 ZIS 2600%.U97% 0%/Z%/77 12%S 600 S2 01 Poh*3oo SA"I'LL 609810-34 SALNE ZAO0%Ou9IS OS/?4/77 1745 bee %d &bLNCV CoLLE161 601oz zp.0q0Q$?S GS41?4/77 1241S 6*0 S2 " LpLahlc 10000 031d4l?b 26.u%.Ugvs - C,50/2%/VV IZ4% 6*0 Sd "NJ k lot elt.0 037vilys 0 111180469097% CS124177 1245 6.0 Sd C14L A LI 010 03144174 2$9040097S US124117 12%S 600 Sa LNL 0 LI 010 03124174 28 - 4;041. L Ll sib 031241M C41.(,97S U.P2,677Y I ZWS be 0 S;i 2800%OU97S CS124177 12tpo 600 Sa Voho4* SANIOLL 60VIS-3410 SAL11111. 28040097S US124/77 l2sa 600 %d III aNALIM PEVhAfttkI 16LVbGkN SVSTL dk.o%.Lgys US/Z4171 120 6*0 Sz 02 2600406975 LOS/?%/?? 12bo 600 Sd od i(GoU41oU97% 4%174177 17bo 6.0 %,C #,UL%LV CULUO onbi 0 J11 iIII I to 280 Uft 01,973 EIM4777 1250 hot] %2 AULkLY ANALTit 6052 UjId%IT4I 249C416697% 4%iZ*M lW.NU 6*0 %a @.Ahftt "umatol IIISS41 ollaftord : I 28604501.197S USI?%177 UZU 600 Sg LLUUL CUvI.N 1% ailzoord a ag-.04-0075 457 4777 MUD f L-c (OCTI v UZ d- it 2,14 " TW- i8004OU9?S 01241177 126 0 600 Sol 1%0 to ASLCIIGN b 031J411740 . to . 6904.(091% USI!P%/?? IZUO 600 %d flut SlAut boun 03120176 ......... --& - - '4170 i#16049j975 05174777 lz5q 6.1 Sd 7110%vs STY fib Ion VM jp.q%.69?S DS/2%177 17!00 601% Sd L01.0me 46 03/24179 o 1!% 9 09 7 % 0%12%17? 12.0 609 Of 2 Vol tA4 STAIlum DATE .11"L lJEPTh AGLNCV SIUMLI DAVE 28.04.697S Us/?4177 I?sn 600 Si AtkALIbIIW 1&41 i86046091's GSI?4177 1?" 6.0 Sg ACIUIIV U"94116 U - -7 d6OU%qU97S usiz%177 IZUO 600 sd krs .!, SP oii@@% To Z860%O697% ObI24117 IzS(l boo sa hod * kol A, *OAS 113pdftilb 96*0%ow97S OSIZ%/7? 1250 600 Sg ft. LI lull 04i*1X'?1;-fA!PJvi1fi -12bO6;G- Sd lor LI 1 ON24170 dimoU416091's Los/?46/77 1250 600 si FrLAL COLI Pf LI 1 031241741 J56040697S OSIZ%177 1250 600 %d llut 01RECIlble I dp.u%OW97S U512%117 IJUO-i-.0 %,j ot %ALlIaL PLQ1180W %LI6060 STSIE d8*04669IS US/246177 1300 IOU S, 01 IS dx,n%,o97% us/z%/77 l3utl IOU_ Ithp fmaltif :P.04660S ub/z4if7v m(AU Is(' bi AbL%LV CULLILI GITS2 03124174 496040697% OSI24/71 136U IOU S4 AGLNCV 4ftALV&L subl U.IP24114 2400%OU97% AAS1241/77 1360 Ion sa bANPLt litlwatil 91534 03144170 a&Oc4OG97S US124117 13UO too si C1.4ollb LOVfk is 0312417* 2boO**#;97S 0%124/77 1560 100 !. a e I all -VLL(,C. I V 13SOO 031,iftile o:Roe%.u97S U%12%177 1300 ISO So, bILD DIPLCII&06 78 zeOrftOU9?S US124177 13U0 top S4 O.Oku FIELD biblio 031241741 286C400975 Usiz%177 IJvU IS() b4@ 4#0 phobt 6*2 031io.476 21100404147S US/24/77 1300 Ion $a PH 806U 03124i7b 16.046.0915, LAINWIV IjIU 1160 S.9 at 4ALSO& 960040097S OS174/77 1310 1100 %,j Od dpO0qO(j97S 05124/7? 1310 1100 so IF016' MAIL9 kboo oblissil's 201.0,4.691S C912sivir I lieu ii- AGL06CV CmLLtLV U31J4174 41190469097S OS/24177 1310 Ilse Si AGLNLV &%ALV&l &Cb2 03124/1's 2SOC40097S GS124177 131U Ilse S41 NAhPL( MAO 03/Z41?4 Z- ---' '-- 03194/76 je.04.097S us/?%/)? 131n I I . (=@ LLt#Ut# Cowfol Is aAoO4oO97S OS/24/77 1310 Ilea sa alftf) WiLUCSIV MOO 031kolft %0 26*040697% US124/77 A310 Ilse 464 .11.1t olorl.C.110L % (13124/76 -21160%odll)s GSIZ4/wv -1j1U 1100 Sj LUftU 1,11.1.1) WIND 03/24/74 2600fteil9ls OSIZ%177 1310 11.0 %2 lots Pmobt 705 U312411t 26oD4oU9?S OS/24177 15111 11-0-0 %.1 Ph sold 031414/76 28.04.519 MGM Ilub 1*0 W 01 JOHN Pl.kWI kbAr SIO Pao PONOSO .98.016OG97S 661U6177 116% 100 si 1w @.AL IhT ZA.04.09?s 061"M Ilus Ion 5d lf#.P MAILM 2767 OWUS1740 26.0%.G915 06706177 1 14%o- 1.0 S11 Ab0tFcv-c4,-LcfLl -,- vosgr 03/961VIb a Z&00%0097S 06106177 IIUS 100 se ACLNLV ANALVal $062 03124170 28.04.0975 06.400/77 11 1@s ISO sa SAftPLI 16U01bla 9163S 03120176 "28.64.00% 06106117 -1 lub 1*0 541 (,O%U t IELU %"bo - 03124-4174 ze.ut*097S ubonsi'll LICb Ion %.@ UO Pk00t SO& OW417o a ;:4,016649?s 061U6/77 IIU% lefl 6A @ PH mobil 03124178 26.CftoD97S 4610o177 I I Ls 100 %,j 1,ALIftIIT Clfk16 3201 03/24170 2e.0401.197S 06106177 11 If) Ilea si 01 ,0n1j PLNht&Amp Sig PAO pollos S dA*040647S 060ob/77 1110 1100 S2 02 @8.0404975 06/00/77 1110 -11.0 %@ OSIGS174 26*C%oG97% UblUb/77 1110 lisp a. it A6LNjpv CuLL1.4.1 *Ob2 031t40170 d8.r%OU9?S U61nu/77 1110 lisp. S.: AGLN4-V AOLVdt .W9 lo A no@L -Ev me, b- t a' 9 2 @ 0 6% e m" is it @Sk (13/24/74 i6904OU97S Cb/Jbf?v Illu 110C ba f ILLO bIOG0 03/2"1740 [email protected] OW06177 -11 A U 1100 %d wo PWU*L bell 03/14/7v -2". 4.0975 U610677T M T (y 5, PH TU 0@wdowya : 4A.04.097% 06106/77 IIIU lieu S's J1LIkIlV Cbl6w 330% 03t4efol 16 is.0%04@97% U6109177 11119 b.e S@. 01 1,9-IS-jb @,ALW SIMON GAIE firc brptk AGLNCV dooofteuels 060q6011 ilia 6011 sa "I OSUMI PLNNI %&OF Sl* PRO Folios S 24.04OU91S U61"6117 liar 600 Sd 01 PohoUe SAMOLL 000 109IS-3$ bAL1 -'A-. ed ALI Pit, de,U4.097S ubluftivy 1120 LOU Sa f1d: M. 061946177 Ilde Gen %, &Gthtlf CULLtO lost 04 Alic f.07&ft&C'v'AL -6 5 vz@ id.0%001% U4106077 llao 600 Sd 1AMPLE MulObtR VISSS 0*04*097% 06,064*77 Ildo 600 S2 ?[for. SlAur 2000 U31zeird Sa WWWOM61-1i, (to too 0112WO [email protected] 66106117 silo 600 St LOLON 031doile &W.C%009?S 06406177 1160 #.,(1 %a P14 LAN -03.*2017& 2p.0%.G47%-G61dU7v7 0 -6011 52 AciAciftliv M O.Witsive is*040097S bbiubly? 1120 600 si ACIU1111 3 0.1044ile .8*"%o09lS U6106117 1120 6*0 Sj Nab $Uap 141 & - 03.0.1%407b w 280.00*6075- a CATU 7 lidu -6-00 si- 6"UANIC 61160 by-f-d % a 0 49490ftoO97% 0610bll? &tau 600 sa k" 3 to 101 efluo 030dollb i4olft.uq?s w0*177 1120 Leo S2 p Vol Ozo U302411o i:66064OU9 S -66.406/7'y 1110 6.0 %@ L bub OS U.3J#d%J4 16 26.0%*UOTS .06.40bil? IIJO 400 S2 Ft LT sue o3pafti?v 28004OU97% 06106177 1120 400 S2 L64L If LT ON 03024176 ii.04.091S -Ublobily 1120 6*0 si; LHL. b Lf *10 031fJ41141 2690%*697S 061U6177 Aldo 600 Sd L"L L Ll olb 030iftlye l6,nft,Gq?S C6106117 1120 60 %a IIUC 1140ILCIAUIO 7 76,0%,3475 06100,71 1110 69U Si I I IA-L Oft. c too 2690%*09?S 06006177 1300 600 Sa 81 PohoSe SAMPLI. boo GOTS-11%, bALl 26*04oQ97S 06106177 1500 600 S& 02 for dequo.ov7s U6006777 AUU 6, d sa 461.100.1 CULLECT 411157 a6*V%909?S 06106177 13JO 6*'U sd L"L A LT *16 03024170 JAq0%OUq?S 116/06177 1300 600 sle L14L b Ll sib 031aftift 2&.c%.oV7S_ 66.4667V7 y3u6 boo 52 E-V#L -C LY flu o 3.02 0.7 ye 20.64,007S 07111177 1210 leo Sd ol KN911,11414P $11ofte PUS SAL&NL $A 26.0%.09?S 07111177 1210 100 %2 oa RPLf NO. 0911b-.66 28004049vs- 0111177 1zlo 1.0 Sj If "r WAIR 30oz 05J04076 ;8*o%*c9?% 07111177 IZIU IOU Sa AUL94LV COLL&CI be$? 031#24116 28OU40097% 07111177 17lu IOU sit LOOM fIf LO b3%wo 031ifellb . dloo%,0975 C7711777 171U IOU bd 01 VdGb( SO'S 0312,6176 0 2800%OU97S 07111177 1210 100 S2 PH .. sale a6*044097% 071011/7? -171S '000 sd ol rrkfttoA"P UV* PN*-PNS SALIME S d6.o%.aq7s U771177? MIS V. o 5't oJ A"VLL 160o-6110TS-36 ZB*04*097S 67111177 121S 9.0 sit lrhp WAILP 3002 osocso?b dhooft0097% 67111t77 INS 960 Sd AI-LN:4.V CULLILT lost CbO24076 of 0 44.0475 sG7.011777 171w, 9. F1 Sd I AtLU 53000 0372417W 20tqo%qUqTS 07011077 121% 9*0 Sa 60 PkUvL Sol 010dW6 ae_,U4O0q?S U? I I 16# 7 7 171% 94LI %,i to" , 030241.4le E doelftOG97A 67111171 Pds 600 Sd at eoholo -WO' EV--a-00 IS- 36 SALIWL d8*04*697S 0?111/77 1?&% &.0 %2 fit 00(k%L01AMP $10 too Ftjb MINE S d"0046497% 6111117, I?Z% 6.14 %d 02 A"I,LL kO. Uvl%-Sb A. 0 0 0T_ "a M177 1:25 6.0 52 AbLv.&Y-Cwl. .1 U Ma-C171 i- J8094*497% 67111t?? I?ZS 600 sd elovil VLLwCITV logo 0.1tdoll's 29*0%*097% 6711ko?? 111b 600 Sd MI&OU uIWLCI lots lbo 2 .P,r.%,6975 11177 1 7.7's 680 11; der$" 6 d6*p%oG9?% 67111177 1745 bar Sd 11110111111110 flu I "o UJ/it##/ To 071;lfl? 12i% LOU si = = = = m = = = m = m . m m m m p"Ll StAllom DAIL TIME 1AEPIN AGLI1CV U711117F 124ib beto Sd ION LAN xa.n%.a9is 0/11177 12.% 600 % htk&LlkllV -U Al it 4 1-1 a 03,12%076 iK.0%.a97S 0111177 122% ben Ic lvv 031a4176 16004OW97% 0711117? 12&15 600 Nd WES subp %, njn%iyu dft.q4.G,0S G7111/77 12,iS boo wMa W 101 db.oi-.@Vi'i- #)7111/77 lzas 600 %d 280040697% 07111/77 121S 600 Sd P Tel' - 0000 dKOu%OG97% OMI/77 I22S 600 --LI- I 2800406975 Willopl? 121S boo Sd FECAL COLI Pf Ll 1 200040097S 07111171 1225 6or sd LHL A Li lu 031,0116 ;!Goqqoog?s or/11177 lzd% bou %1L L"L b L I-.-- olto U3/j%jf7G ZR.0#4.(;97S 0111177 121CS ben Sa LML C LI olu 28*0%OU97S G7111/77 IZJ% bon Sod ME ulutc1lurs 2 TIUE LLVLL les zf#oqOu97S 0111/7? I2.cs 6*U sd 26*C49C97% U7112/77 l7bS I.i %a: 01 POJbl 96LIALS AK4. kVl01I%I& 0 S 260040&9?S 67/12177 1255 10% sj V2 PLLIFT ItSIS lw we #4060 2*.p%.G97s 601IJ/77 lzus 1*% 05 d C4.LLf%.I 16ob? 2900404;97S 01 Idl 7 7 1255 10% Sd( A (;C%-L i-i@4 v a .00-6-6 2"0040497S 07112177 I?Sb I .% %2 VSO OUoU U3124178 .1a.G%.097% 6?11.1177 12%,S les %1L 00hj k lot oiju p3/d%17a jp.u%.Ug?s 6?112/77 lZbS 1 *5 %d p lot LI Olu 03124176 2POU49697S 07/12177 12ss I*s S& r.ML A LI Iu U3/;4176 dA.04.uQ7S G?/IZ/7? l2is I * 1# %if L"L b - 44.04.091S 67/w7v l2bs 10% so; Ll olu 28o0ftoU97S GO/W77 1110 lea si: 01 P.%.S. SIAIIv#1 SALIIIL 28oC%ow9?% C917W/77 1110 lon sd IENP WAIL11. 299S oblos/76 ; 6*04*u97S OS/22/77 ilic 1*0 W AGLkLT CioLLtLI bob? 0312%170 ifaOo%OJ97S 08/79/?l 1110 100 51@ AGLOKV A168LV&t bob? 03/24170 It 2,9.04.09?s 1;81221?7 1110 IOU %@ LOhP FA(LU bi 211904696 S 0812J/77 1110 100 sit W) PkObc- 600 28.0%*697S C81?2/77 1110 100 sli PH 8020 U312076 Z6.04.097S 08122177 Ills boo Si 01 Ph$ $IAIjoh bA IIGL &A.0%ou97S 08122/77 ills 600 Sc IthP WAILP 40.0 05110SIT6 28*0#s.097S UW217? Ills 600 wo i AfiLIJLV CuLLFLI do$? .01144116 2P.0%.097S b4i2d17? Ills 600 46d AbLf-'LV A1bALV2( n3/2%i?a ,da.04*097% 08122M 1 F1 -S6 - 0 @ a c 6 -1ftd-fT i -R) 0 VVI 1 7a jGooft*Ao97S 06122#0?7 Ills 600 Sal UO PNOSE 03124/7a 2@oc4oo97s- 06122177 Ills 600 %2 PH 603U 03/44176 -@7. SAMPLE %6o CV10- 28.u%.697b U81W77 1120 600 %a Ul ze.cq*C97S 04122177 Ilk" bon 04 37 SAL Ift [email protected]%.Lq?s 0njzg17j lign hoe At-L#ICV (I.I.L10 60S2 osluslys ab.-Oft.497S u8i2d177 1140 6.0 Sa oobn USIG%1416 24.C00097S oi/21/77 lide 600 %d NH3 h 101 .040 OSIGS176 26.o*.ug?s U8122177 1140 600 sd ho$ LI I-ou US/uSlib- 2$.C%.'975 6812JIT? II&n be" So. P lot Oijnq ozlus.470 LI 010 ob/us/70 2q.0%.c9?% 04/21/17 112U 60C Sd &HL A tA.cq.uQ7% GRI22/77 1120 0 P %. HL LI Olu NOIGS170 y-l I LI olu fl-btu b I ? 1A VfS-15 L"L L 260049o097% 0612ii7l 600 ol Pft$ $1101PLt 'SAL &'-L 0 2t*94eUV7S 6812g/77 I li% 6OU At;LWCI CuLL90 GUS2 0312411 IN 2 b , 0 Wfs-(.472,0 17 lId5 boo S4 -bob2 U3144.416 zs.oq.t.97S 0912dll? Ilas 6.C. sd 111I.P111111 I ho nj/01116 0 28.014.U97% 66/2,1/77 1 IZ% 6.u So, Ll In 11 $/a%/ Fb db S I A I I U01 UAtL I IML Witt" AGLNLT i8.1104.097S U6171/77 Ills 6,U SM: PH L Ab Pei 28046097S usizill? 114S 6or Sd ALKALIftlIT Usidolls ---------- 121177 a 12 V-6 70-0 0-0 i Gj/ .doll jpOUqO4V7S -06172177 112% 600 Si NOZ 0, &Uj ft 0040 &N*VfteC97S IIIZ9177 '11%0 IOU Se fit Pt:p $AM#'Lt #uV?b-Jfo $ALM zG*U%Oo97s II/Zv/77 'llou IOU sit AbLKLT L#jLLLCI sob? USlosird jo.04.697S 1117VI?7 11%0 IOU S2 LOkD fIfL0 bs ob/GS0 Is 26*04o697S 1112V/77 AI%U Joe Sd bo PRODE 600 &,p*c4Ou%7S 11129177 II%r I loo Sz as Foho!o. SAIOPLL 80%fb-39 SALINL zs.C40697% 1112V177 11%7 1360 %2 111'.P WAILU 0 26.04.405 1 7 J14? 1304- sic ACtNLY COLLECT Deb? obfusl rib As.r%049751 JIIz9/?? 1141 1500 SAE Loki) tILLU S%Duo oblusild dM*0%*U97S It/ZVt?7 1141 13OU sl uu vkubt 601 oblublis a . 0 4 . u4OW-i P -zo* I W 7 Jibs 6. Sd UA Pshob. SAPPLL N0411S- SALM SA 26&U%ouq?S 1112VI77 II*S 600 Sg ad toPLf NUVIS-3V d6.n%.u97S It/ZVI?? Ilts 600 sd ibLkLY COLLLUT dob2 OS/aSl?d d8*Uft*uCi-S1ljzVI7T Ilis 600 Sd ft u"bA%jL .040 aslips/76 230040405 IIIZV/77 Ilas 600 sif NH3 ft 101 0010 0516SIT6 980040097S II/zv/77 Ili5 600 sd We4i * NOS ft 901ho oslosl?d 46.04.097S 11129/77 IISS 600 5 1* 10 Tel LI 0010 0slus/70 29004OU97% It/ZVI?? It$$ 6* to 54 C14L A LT ON oblus/78 2800%OC09?s ll/ZV/77 II%S 60P S41 LHL ra L I elm 0510sl7e, a.0%.C05 I 11210777 IISS boo si C14C C LT eta 0571-55774 2eo34oU97S 11.029/77 1260 600 W 01 PRS SOMPLt fUV1b-J9 SAL1161 ee.c4oag7S II/2V/77 IM 600 AGLNCT COLLECT 11052 061fift/ I# 2I..124.uff Vs 11/zv/7v Ruo boU %i LLUIfu Covtog 20 USIOSIr j8Oc%*uvIS It/ZV/77 1700 6*3 si 61%0 VLLUCITV 2000 05/USI?: J@OC%.4q7S - -11129177 I?oe fj 0 0 ik ulhO UIRLCII001 150 05135/?o '18.04.0975 11124171 12jo 600 S" I i -Ij @- -%1 2360 Oblu%/70 28004*697s 11129M 12bo 660 Sd TION0101TV Flu 16*0 05/oS/76 Z#o04*097S 11/2V/77 12uo boc! sd to" LAN Sol OSIOS/7* kooo%06975 II/ZVM 114;0 600 52 ALSALIN I IT 138 obfuslib 26*0%*Q97S 11129177 12@,() 600 S& ACIDITv 2 oslus/76 6:4.0%OU975 ItIZ9177 Izoo 600 S2 "LID S115,P Is oblusl?s j8.0%.1.T S 1172VIV? 1200 9.c S2 17fL-,LUIWLCIIQft Z ISOC40097s 1112V177 1200 600 SZ IJLE LEWLL es dA*f,%oc97s It/29177 120S ben Si III Phi SAMPLE RU9165-39 $ALI%[ 26- 04i-.409-7s 1112VI77 170% boo Sd AbLIOGY CULLtLI flosp 05/OS/76 26:c%Oc97S 12WL 600 sd AGL14CY AkALYA 6066 oblus/76 ifloc%OU97s ll/?V/?? 170S hou S11 16 4; N 0. 700 ablOlle, Z9.cft.uq7S 12165777 Ins IOU Sd 91 P%$ S&hPLL MU975-411 SALIkE aG*G%*uv7% 17105/71 1215 IOU 52 If"v WAILP dsO2 0SIGS116 26004OU97S IZIUS/77 174% IOU Sj AtitfttT CULLLCI 405z ubluillb apoceoug7s 12/ns/71 i7j% ion Si LOMI f ILLO sbutill g9*C%*G97S 12IP5/77 l2eS 1*0 sd bo Pkotf 6 0 0 Ubfus/76 ZP*DftoU9?S M95M 12d% b.P Sc PON.:.. SAPPLL *119?b-%U SALA11L, d %OM975 12 -1-WITT-7 Nis Con 51 6"52 96004obvis 1210517? l2as 600 sit Ar-.L#.CV ANALVJE 0066 031 o6 %176 :860%*091's 121US/77 12fes 600 sZ bpUAWIL two "bluslift Z8oqfto097S IZ1115177 l2eS 6001 It'i -3 -71-T-o-t- din hblusi7a apon%OU97% 12195111 12is 6011 Sd 1.04J ft 101 ontoo oblusirb 2@o0%.O97S 1210bill I za: % f..e sd U AJLL 16 STATI01M nARM TFF bMW )My @T Um 28*U4*UQIS 12/1)b/71 122b bou %d P 10T 0010 U*/Lob/ To 2P.D%oU9?5 12105/77 12is ben Sc L ORb 2oZ -11SIZ41 76 2t.(!%.uS?S 1213:1/77 12&S 6 0 r, SO, Li4L A LT ON U@id@@ I& 2P.C4.U97S' 122b 6*0 5@ LHL a Ll Sol Obll;slf To ZR.r4ous7s 12105/77 1 ?z S bon sk 01L G LT OnI as/tibils -2 7 b ly-i'6Z.177 1235 lien sli Ol P%lo SAMPLF SU915-40 SALINE &@oU4oU97b 12106177 121b 11001 si TthP WAILM 2S*O 2S.OftOu9?s 12/05/77 123S liou si! AGLNCY COLLLCI busz Us/0.4141 is 04.697% 121OS777 1215 11.0 Se COND tIELO b Med-0- 05/uS/76 28:04.UM 121ob/77 1235 1100 sli W, Phout 6o2 Ui/Oblia 28,04,097S 12105177 1250 6.c si 01 Pt.S ,sOrIPLE Nfj97b-%U SALINE 280040697s 12/3b/77 12bo ben S2 AGtNCY COLLECT acb? 05/US/76 28*0400975 12/05/77 12ba 6 0 11 sie MIND VLLUCIIV 1890 U!blub/fo 28.04s497S I?M/77 1250 boo S2 b1hD 0IQECTIwM ISO 28*C4*G9Y5 1219S117 IZSO 6*0 2 ION LAP. Ao2 ob/Lsi?s 28e04oU97b 12/nS/?? 1250 600 si ALkALI&ITV 1 a ft oblos*476 2s.U%#G9?s 17/ns/77 12sn b*u 52 -----ACIUITV I Ob/4s/76 28*V4*0975 12/US/77 1250 6*0 b2 ut @0 SO!& 3 Z80040457s UI/Ubt?s 1150 ISO %@f 01 PNS !oAftPLL NUV?b-41 SALM Z804*697S Ul/Ub/7P liso 100 sit ILMP IPAILP 1990 214.04.U975 bl64ob/78 lisu 100 S,@ AbLNLY COLLLCI 0052 nt)/rib/ 76 28604OU97s 01105176 1150 100 S2 L01-0 F IELD b5OOO oblub/76 2foCkeU97S 01/n5/76 115q 1 0 t, Se uO PmObE 66s 05/05/76 2600400975 01/ob/78 1159 1000 si 01 P.ho:pe SAPPLE h0f,15-41 SALINL dS*04*097S OIJOS/78 IIb9 Ip*0 si ICHP WAVER 1900 o5iuslTa 24.046s,097S 01/05/78 1159 1000 sz ACL%LV CtiLLELT 6052 OSIUS/In 5.04.0915 MOMS I 15,9-1 o . U bi CUNU tItLU SSOUD ablublia ZBOU4609?s 01/05/78 1159 1000 52 uO PmUbL 606 0 b/ U5.4 76 w 28oV4eU9?S 01/05/78 121b 600 S& 01 P.hose SA"PLL NO* U975-411 $ALI 260040091s Ul/05/76 IZIS 6oO $a 02 KL 28*04*0975 61/05/78 121S 600 s4e AGLNCV COLLLCT 6052 05/Ubila 26,04*097S U11OS/78 121S 6.0 se w OPuAhlc 0050 Os/Us/?b 2900406975 bl/oto/78 1215 600 S2 %NJ N lot 0010 OS/Ggj/76 280040097s 01101/78 I?Ib 6of? S2 P 101 0020 ob/65178 20.04.07S 01 /Oto/78 IZIS 6*11 S2 CHL A LT ON vs/us/76 28.04.U975 01/05/78 121S boo Si LHL b Ll elu 05/05/70 28004OU975. Ollob/78 1215 600 52 ILHL C LT 010 obik;50476 28.0%.0975 Ol/as/78 1220 690 52 ol PWS SA14PLL 9697S-41 SALIkE 28*04eG975 Ul/US/78 12ZO 600 52 AULN0 CL#LLECT 6052 28.04,0975 01.405/7e 1210 690 si TIUL STAUE 43UO ob/04176 igoe4oU975 UIIOS17P 1220 6.0 sd 711krIully flu 17*0 05/ub/78 da.04.07S 01/0b/78 1220 6*0 se PH LAO' Sol OS/lisiTs 26.04.isM ullOb/7P 174C 6.0 si ALmALIntly 1.16 26*04*07S Ol/nbt78 12e.0 600 sg ACIIJIIV s obfusi7d hod * NOS k LT Soln I 105/1@51 76 2e.o4..,g s uimaix 15,2 o 600 S-1 de.04.u9?s ul/qs/?" 122n 6,00 S2 IIUL DARLMO11 2 ib.04.097s GlIns/7h 1211) b'(1 ffbi ll&)F LLVtL 2.0 Ujitif7m Il%U IOU si ut P.N.b,. SA"PLL NUV b-4Z $A 28.04.a975 021IS178 1140 IOU S ie Tt14P ItAILM 1905 Ouffiftl7a 2e.04.Q9?S 0?/1517A 114V 1*0 sk AbLNLY CGLLLLI bC-b2 Oft/wq/T6 d80,34OU975, U?1l!)/1ft 11 e6 I I on Wa d c 55000 00/04/70 .:8.04.u97S i@?/Isjjs ll%n 1.0 S& bO PkCUE 708 00/1@4/70 : 2P.04.j97S U2/lh/76 11% f) lop 5.6 003U ot. uft / 7 b SIA11011 DAIL 11"t 01001" AGENCT 110*Lt OhIt 211.049601S 0211SITS 11%S In*% S2 ol SANPLJ 26.040097S 02/-IS/7-8 114% 10.% Sz IfftV VAIQ U7115176 lifis loss 52 2600410097S 021150170 &Its logs S.? k0f.U 6 ILLU 24.04.697% UMS176 ll%S toes 416 d be Pkebt fol, 9971-uTr17i-,0-f-4-f If ICS-1 if 006 -F; sit ;Aoo#ioug?s U2115/yo &ISO 600 sa P%b SARPU 9609lb-40if SALINE 28.041.097S azilb/70 I I!kO 600 %a AG&04LV CULLIECT 6052 2 -.wo-U-9 7% GZASIV - -sd i a Also alou 111"1011V Flu too 286046G97S U71IS178 1150 6*0 %a V &CHI It. I** J8.00toU971 021IS/76 ltbl 600 Sd - ht&*LlhlfT ISO --7X.u%*Cv7S 0115178 1150 6.0 vp a At jbff@ 20-06-097S 02115174 IlJtO 600 $a NO 10 bulp 06/44178 28*040097% 02/1%/78 Ilso 'Goo S2 tbLI "F LT I 04*4(044fro --za Oft 6975 D115776 1150 4.5 52 1 kiL EWL-1 "r LT I -6-clivii-im- 46:04:697% 02115/76 IISO 600 Sa bakfibity CONO 2000 i'A.0%.49?S U71lb/78 I?UO 6ofJ sa &I-LIM CpjtLtLT -6OS2 -7f 0 4-40-"g 5 1) y I i S 120 690 52 falfwalat. *1 0-6 2P:O%o49?S UZIIS/76 IZOO 6*0 SZ 16111 ft Is? UU 2800410497% IWIS/?p 1200 600 Sif 16 A,JLL 0030 174)0 600 S2 0130 oolu 0*1 41116 260041OU97% 0211S,076 IZUO 6*U S2 L"L A L1 olu oblutilu ja.coteuv?s 0711%174 171;0 6*U %a 1.011L 0 LT 016 06#404170 2600404914, (JillMS IZUU -6.43 $2 LOIL E LT 010 26.04*097S w3114178 1050 too S2 01 P%S 3t&*PLt 809lb-43 SALINE dsoo%64@97S ID3114179 1050 too S2 1114P %AVLR 2300 - - Wev,U%.497V@-07-1167116 10SO too- Sg A(-L*%4;V CULLUT 5z 28.04*69?S 6311ts/74 1050 100 S2 L06-1i FAELO 540000 2Xeft%o09?S 03/14178 1"0 100 sit wit pboof 6*6 a .04.(09ys G .0146M 1030- 100 52 PH ?b 2:00%009?S. 03 -00,6481 31146/78 IIU% 6oO sa 01 01%@b 51811PLE oug1s.es SALINE wqUU 28 0040097S 03114/78 IIOS 6oO S2 &F-060 COWLI JG*041*07S 031146176 110% 6.0 sa 28*041*697% 03114617P I I QS 600 Sir itt *low 26004*697% 0)3114176 Ilds 6oU S2 let 0130 '2804.15975 u37[%77X nug 9.0 52 4011 OUIJU ulof 1411 to 24004*497S 03114/78 Ilus 6*0 SZ 4,0L 14*0 UP10417 26004*097% 03114/78 IJOS 600 Sz 061. 6 000 ovifloile 26041of,97S-0/14171 Ifus &.6 92 %14@ '& *OU -09110170 26oO41*097S 03116/78 IOSS Also S2 01 &%- bAMPLF @ij9jS-q& ON 28.04.09?% 03/16179 105% 11 of) Sj 1tv-1p wafts. -; 0 1341.0975 0171&179 A055 1100 S2 -*bg% 27's 28*O%&G9iS 03116/?S IUS% 11&0 52 4.461*0 1 AkLo 8051 28.04.091% MJ16/78 IUS% IloO S2 400 PhObL S410410 061041041 M776 IM 11-0 52 @&" I- 1 06.404174 - a 28004*497S 03/36.*70 Ilus 600 s;( 00- &AINPLE 4091so,fis SALINE Coo .016.074 11 us 600 S2 411'"Alts /167170 -1105 - a j 'eta, o4opp"Alts IN cou PwOus 6.6 S2 ko 2800410097's USI16178 110% 6*0 sj "to'" COkLfC? 28.040.097% D1116#478 114% 6*0 sd LtwU& COVER &0 116774 JIUS Kou 52 TV 81hr VIVLCIIUI$ lpou 03116178 110% 690 S41 ISO 060,04170 0301617@8 IIJS 600 S2 J CC%l ................... .......... .. . ................................................. 33n ustuftile SIMN U*ATLMRIMLlWEPTPNAGtXW 26.04.U97S usinans Ins 6.0 S2 hLS bUbP 3 Oo/U%ilb i8,n4,w97S ZiS/go/78 121S 600 sz h Oodo obiliftlTs ze.cft.0975 d S TUR R-fe-1 2 1 13 600 sw Ff ZAL OLI MF LT 1 -0 i'/ L *4 -ifa- ZAOO%OU975 06/12/78 113b 100 sz lthP bAILR 0 3100 U9114116 28.0%.UQ75 06/ld/78 113S 100 sz AGLNLV CULLECI bobz VV/ 141 To -2 A-. u -4. G 9 VK-5-6 -.11-PITIF liss 100 5.e zeO04OU97S U6112/78 113S 100 S2 PH sepu UV/14174 2$00400975 06112/78 1140 1100 Sie IEMP WATER 3100 0io/14.476 2A.04.0975 U6/12/78 1140 Ilea 52 AGLNCV CULLULT bob? 09/14/74 ig.U%*J9?b Ub/11/78 114U 1160 52 U0 PWOOF S02 09/14/76 16.0%.fj975 U6/12176 1140 Ilea Sid PH popu OV/14176 Z100400975 U6112178 114b 96 b1z AliLKLY COLLECT 6052 OV/14178 2800400975 06/12/78 114b 96 sa AbLNLY ANALVIL 6066 OV/14/16 28*0%e097S 06/12178 1145 e6 S2 h ORuANIC 09/14/10 28.0%.G975 U6112/78 1145 e6 bi k KJLL sUbU M,7141yi 28.04.097S 06112178 1145 e6 S2 P TOT OOJo OV/14176 28.0%.097S j61l2/76 1145 06 S2 LHL A 0 ft 09/14/lb 40604.69?s 0611217P 1145 *6 52 CHL d 006 09ii4lis 28.049097S 06112178 1145 b S2 CHL C, OOU OV114176 28004.097S 06/12/78 liso 600 52 AULNCY COLLELT 8Ob2 09/14178 28.04.j4ys 06ilzt7s I IS 0 Fb . u bz kIND VLLOCITV %so 09/14176 ?,8.04*0975 06/12178 1150 6*0 S2 I NO OlWLClIUW lib 09114116 28.0%.G975 06/12/78 llbU 6.U 52 TUktliUIlY FTU 1#5 -Of,/ 14176 28.0%.0975 06112/73 1150 600 si@ bf -(ICH1 " 307 0 911#41417 a 28*04*097S 06/12/78 1150 ben 52 COND FIELD 57000 09114176 28*O%eO97S 06/12/78 1150 690 S2 noif * Nos N 00,40 09/14/79 29.0%.0975 U6712779 ilsn 'b9Q S@l 16L 210be vs/14774 28*04*09?S 06/12178 11*0 6*0 52 COLI MF LT 1 09114178 Ul 26eO4,09?5 06/12/78 1150 6*0 S2 FFLAL COLI 14F LT 1 09/14176 26*04e0975 06/12178--TI50 .6.0 52 IIUL UIRECTION I 28*O%eO97S 07128/78 Iluo lev S2 Ol PNS SAMPLE $0975-47 SALIkE 28sO4eG9?S 07128178 1100 100 S2 TLMP WATER k9*0 11121178 28.04.097S C-7-126/78 1100 1.0 52 AGLNLY COLLECT #ub2 11121114 28*04&09?5 07128/76 lluo 10(i sz COND FIELD SJOEJO 11/21170 ZR*04,G97S U7128/78 lluO )on %ld bn PhObE SOS 11121176 28904OU975 0712bM 1100 lea 52 PH F*30 11/21178 28*04OU975 07i28178 !IGO 100 52 4ALINITY PPT 1904 lifill7b 28904OU97S 07128178 1101 600 sz al Pl"$ $AMPLE 8 0975-41 SALINE 28.04.0975 07128/78 1101 6*0 52 AGL%LY COLLELT 405Z ll/ill7b 28004ob975 u7i28178 1101 600 s;d LHL A eou 11121178 W8*04.0975 0/26/78 1161 6.0 S2 L"L u ODU ll/igl/ld 2R.04.075 07/2al7g --- 1101 600 52 CHL-c- au 11/21074 28.0%.W'S 07128170 llub 900 Di P%j SAMPLE NU915-47 SALINE 28004009?S M28/79 116S 900 Sz It"ll WAILR 29.80 1112 11 ?is 2A.04.6975 07126/78-ilus 900 sk AGLNLY COLLELT bobz 11/21178 28,049097S 07128178 11US 99c 52 bfLchl m YOO 11/2117b 24.04-U%7S U?120/78 IlUb 900 sle Lohn FIELD bt4vin 11121.470 za.04.6975 07/28/78 IILS 9.0 b2 Ll (1-p h-0 6T- 2 1.4Tb- 28.04*G975 07126/78 a I lb 910 52 8*36 111iij,76 28*049U97S U?/28178 lius 9.0 S2 hul * N04 ft Ll 0010 1112111b zu 67/Zb/le lilt] 6.0 5z 111 s--v4-"rf-- hE ;e8:04:uV15 U975-47 5ALI 04 0975 U?IZO/IR Illu 600 S4: AGLfjLY COLLECT bOb2 09/14/?d 28.e%OU9?s U712b/76 1110 6. rl S2 lGR&jAl%lL 0210 09/14/76 station oAft tift UEPtH AGLNCT SIOULT "AIL 01 as.n%.097% U?/Z&/?e 1110 bon 52 AJLL 05an ab.04.697S 0?/?6/76 Ille 600 sit P Tel SOW 28.0% u0s 0.129178 IlIz 6,n Se ol PhZb $A"PL( lb9lb-ftl 5,ALIkE PhS de.04:097% jjf@,24/16 1112 6OU b Z, 04i I htf 'ALS A%U NUTRILNTS UO $PLC 28.V40097s 0?/29/78 1112 bon si: oz U A%U NUTRIFNIS 60 SPILIFT TLS bou SO; 03 dyliev 4 61112 -Wi-firs-vi 16-91. NUMe 20.04.0975, 0?/29176 1112 6*0 52 03 is fu bt sm", 28000OU97S U?129/76 1112 600 si AbLNCT CULLICT 0052 @ fe- -a- 0 4 0 u 9 7 5 OlIZ9/16 1112 6*U sz AbLMLY AhALVIL 5066 11161114 260040097S U?129178 1112 600 %a L Upu 100 11faille 2804*49?5 UP/76/76 IIJ6 boo SS: 01 PWS-SAMPLf IU91S-fib $ALI%[ PUS 26004OU975 09/78176 IIJ6 6.6 Sz 01 PUS "MPLE 0 OV75-46 SALINE 28004OC91S 06/76/78 IIU6 600 sa 02 1 MEIALS ANO NUTRILNIS 00 SPLC 28049U97S 04120/78 1106 600 52 pit $I "LIALS AND kUTRIENTS UO SPE M 0404975 ub/26/76 IlUb b*U S2 03 CIF'T ILSTS TO ut "U"O 26:00.097S 'J4126176 1106 6*0 %a as OV U;PTS fU ft hUN. aRo0ft9G97S UBIZb/78 llUb 69p bie AbL*ILV CULLECI bob? 11141176 2800%0097% GO/Ze/76 liab 600 St AbLNCT A0601.1it 6066 11121176 i(SO041.U97s 08128170 1106 6*0 S2 fto 3 h lot U%u 11121176 2800400975 beizWe Ilub 6*0 sk P fol OoU0 lifalf7a &".C4.u97s 6RIZ6176 IIW6 600 s le L UR6 ion 11121170 &f&OaqOuVTs G6170116 1146 6*0 sd GHL A Sou 11/21/76 28004OG97s OP/28/70 IlLb 600 So: %;HL a Sol) 11/11170 Z660400975 USiieS/78 IlUb 6.0 SZ CHL L OOU 111alild 26*04ou975 UAi?8176 1114 IOU sa at PNS $AMPLE I 09lb-40 SALIM 28.04OC97S 06/26/78 1114 IOU bi ILhP WAILK 29eD 11121/70 21A.014.69VS- U61216/78 11140 IOU tod A6LNCT COLUCC-1 6052 11121/70 266040697s up/26175 111% 100 sz TUK0111111 FTU 2*1 111al/74 28.04.097S 06126178 1114 too S2 LUND 0 ILLD stisuo 11121178 2600400975 W26178 1114 100 Sd U0 PRObE S09 111dilys 280040097S 08/28178 1114 1' PH 1:0 sa 709U 28004.09?s 06128178 111* 0 S2 SALIWIT PPI dooo 11121176 28404OU97s uaizb/78 Ills 96s sa at PN:b oAmPLE 6 OV?b-44 SALINE 2&s04eG97S, 06128176 Ills 99s sa If"P WATLQ 2900 31121176 28004*097S U8126179 111% 90s sd At-Lf.L1 COLLICI go$? 11/21174 2400406975 UR124/76 Ills 905 Sw itLCH1 M 3OZ 11121110 260040697% Uelzb/76 Ills 96%, S2 C040 tItLD 5booo 11121116 a 6-28904*i#97S US/261?6 Ills 9.s Sz Uo Phobt 600 11121176 0 98604OU97s US/28/76 Ills 965, sd PH Teau 11121170 28*0%.097S 06/76178 Ills 995, bd ION 0 hol h 0010 111;eWs 4 Zfiof)4909?S .-U9/17/78 IJUG ]so Sz Phc._:,AMPLr SUOlb-49 $4LIN[ i!RoGftoU97S Qgln7/76 lluo 100 S'd TEMP WEP ;9963 31141176 28*040a97S U9107176 Ilun 100 S2 AGL"LT CuLLECT 0052 1112117b 26004OU97S 09/37/79 1100 IOU sa Ont) F&ELU b3V1jP 1112117* 28.0%.J97S U9/07178 llun ISO st bo pKobr kfi*U%*U9?% 091U7174 1140 1eq %j PH polu Z8.e%.uqT% 09197178 llul Ifles %;L 1ko-p WAILf. 6403 lifil/78 ,i8.o46.u97s U9107170 Ilul InGs S2 AeL@@i'-CNCCfO *as? 26004009?S U9/111/78 slut IO&S S, J bot LC141 If 506 1 Ifd I / 70 kdo0ftoU9?S U94407/78 IIJI Ices sa cofto rl1L0 bscuo IM1176 2#.V,#.U9WS 09/07/70 1 IJ I IVOS Sa uO PWOuE So? 11161176 2600%ou9ls 09107170 IIUI 06S sl PH polb 11121174 26.0%oug?s U9101174 1111 boo Sit ri SA1wPLL mCip7b-bC SALINL "4119M AqP WR Wk RKC I Z8604OU97s C9/07/70 11,11 600 sl AGL-NLY CuLLECT bOS? 03169/79 ZR*O%oU97S U91U7/78 lilt 600 52 CHL'A . OLO 03169179 wft.0%.U97s FJ9W/7% lilt G.U %a 04L t eau U31U91TV Z8.04o6975 091U717A 1111 6oO S2 L"L L fou U31uv/lv Z8.O%.Gq7S ufv/17/78 1112 6.0 S2 01 INb-':)AhPLIE AU975-49 NALIaE PmE 6oO - -if dR*O4*UV7S U9/01/791 1112 sz 01 ATER: PqLTAC@-iAWb-k -1-iflULS Z"04*07S U9107/78 1112 600 S2 02 NENVLU HkSU" WATLRt MLTALS AN 289049097S 09/07178 1112 60 s;9 03 U Pfb.FICIVLS i!80O4.GV?s u91UMS 1112 6*0 F) 12 AfiLf-*Cy COLLECT 8052 as/U9179 28*Ufts@&975 (J91U7178 1112 6oU SL AGLN(.Y Ai%ALUL dobb UJI(09/19 2P.0%.497S U9107178 1112 660 sz c 01 %v ISO 031U9119 zs.R.5975 15176118 1045 I.U 52 Ol PNS $AhPLL OU9?b-bU SALlht 28sO49097S lDdZb/78 IU45 100 S2 1EhP WAILP Zb*O 03169179 2804.097S 1012b/78 IC45 1.0 S2 AGLNLY COLLECT 8052 03/U9/79 ZBoU4*0975 10126178 1045 100 S2 110E SlAut. 431p O3/UV/ 11) 28eO4*U975 10/2b/78 1045 too S2 LONO FIELD 51 03/49179 28.04.U97S 10/2b/78 1045 loc S2 U0 PROOL b69 03/t.9179 [email protected]*697S 10126/78 104S 100 5,19 PH Pfau 03/0917$ 2R.0%%U97S 1012b/16 104S ISO sz 11L#E DIRECTION 2f*O%o097S 10/26/78 104b 1.0 52 111it LEVLL 09 28.U4.U9?S 10/2b/78 lubo 100b 51 01 PN:, SAMPLL NU97b-bU SALINL 28*04*69?S iw2bne ia@o Iv.5 sz TLMP WATLR ;:Sou U3/09/79 Zget)4*0975 l012bl7b Who 10*b 52 A(PLF.CV CULLtC1 bnb2 03/1)9/19 61.8*0490979 10.42bl?g 1050 lues S2 LOND FILLU b1soo U3169179 26.04.097S 10/2b/78 lObO I0.s S2 60 PROaE 690 03/69M 28*04OU97S 10126178 lotpo 10.5 52 PH 8*0u 03/09179 28.0% SUM 1012b/78 I f-OO6 . 0 5,2 ni @-A"PLF NU97b-bO whIER SALl z8*c%*U97s 10/2b/?R lljO 6.c sz 02 NE MLIALS ANU PLSTICIULS 28*04eG97S In/76/78 11 Oil 6.0 S2 AGL%LY COLLILT 6052 03/09/79 28.U%.097S l0/Zb178 1100 6.0 sz A6LNt;V AkALTit dobb 03/09/79 28.04.U9?S 10126/78 1100 6*0 152 4, owb SO 03/09/79 28*041&U97S lO/2b178 1110 600 sz AGLNLY CULLLCI 6052 03/09/79 Z8o04oU97S 1012b/78 1110 6*0 52 N oRbANIC *150 U3/fiv/79 ,'$*O4oJ97S 10/26/78 1110 6*0 sl %P@i N TOF 0070 03/091?9 2P.C%.U57S 10/2b/7s 1110 6.0 sit 14 1kitl. 022U Os/U9/7V 2p.c%.Zq7s In/2b/16 1110 6.0 St P T07 golf] (51P.479 ZSs04eG975 13/26178 1110 6*0 S2 CHL A SOU 03/09/79 28.04.097S lnl2bi?e illo 60c 52 CHL b no 03/09/79 28.C4.u979 10/2b/78 1110 6oO sle LHL C 000 28.0%.G975 11/26.478 1111 6*0 sd@ AbLNCT CrjLLECT 8052 03/U9179 28.U%.b97S 10/2b/7P 1111 6.f) b2 1"Plully Flu bet 04/09/19 28 0-4*0975 ICM,778 AM 6.0 sz E c C N-F-04 7.U 0 3 / k@ 9.4 7 9 deg:0#4 J097b 13.02b/7P 1111 600 S2 fits WNP b 03109M Za.C4.097S 10/2o/78 1111 6*0 S& NO& 0 NOS ft 0096 cW09/79 2b.04.O09 1012b/7A 1111 660 52 CC- 16800 U.51%JV/ IV 26.c4.0975 leiza/78 1111 600 sit COLI MF Ll 1 03/6917V 28.04.697S in/2b/7fi 1111 6.0 sz FELAL COLI MF LT 1 03/09/79 2 Ovuw Ze.o%.097S 11114/7A 12uO 1*0 S2 AbLMLY COLLECT GGS2 03/09/79 28.04.097S 11/14178 lzUU ISO S2 LOW) F IELU blsGO 03/u91?9 2A-9 U-04-0 U 9 7 5 11/14178 17#@U IOU Is 1z U0 pko-bu-- h 0 U3/U9179 28.uq.a9ls 11114178 lZuU I.U sz vH polo 03/6W19 28.0%.U97S 11114178 I?G5 12.(1 S, 1FhP WATLR if 5 0 WSIU9/79 S I A 11001 uAl't '11"L UEP TH AGLt4CV Ifollct DAU 18004OU97S 11114/78 lZus 1700 Sz *ULNCV CULLLLI koblz osluqi79 28004ob9ls 11114/78 124S 1260 sd CONU FIELI) S2060 03/6917V 10.04.U975 11/14/16 12ub 000 $a mu pk0of S04 C4101MVP ZROU40097b liltwa Izas 1200 %a PH Bola 031U9/Yg 2A.0q.u97s It/14178 IZIS 600 51 Afst'OLT CULLECT 60b? _@L3 I i, 9LY 9 2801)%00975 11114176 01215 bou S&I TI&L STAbt 41in 03109179 28*04*097S 11/14/76 121S 600 S2 SELCHI M les 03109179 28*04*U9?S 11114/76 121S bou- sa WES busp 1 051U9179 28 * U* o 09 7 S 11114/78 1215 600 si LL 19000 03169M 4j8*04@U97S 11/14179 1215 600 s I COLI MF LI 1 03109179 Z860*04)97s 1211"M 121s 6*0- sle frCAL COLI MF LI 1 03109179 280%oU97S 11114/78 12IS 600 sz TIUf UIRLCTION I 280040097s 11.414178 IZIS 600 S2 IIuE LLVLL 202 28*040097S 11121178 1312 680- sZ 01 PNS SAMPLE 8697S-Sl SALIkE Zbe0g*097S 1112 il fS 1312 600 sz AGLNCY CuLLLCT 60S2 03109179 2A@0490975 11/21/76 1312 6913 S2 .210 03109179 S1 289U*oU9?5 11121176 1312 600 k#fi to 101 o 0.g 0 03169179 28*04*0975 11121178 1312 boo 52 k KJLL 0290 ojluv/r9 28o04oOM 11121178 1312 600 S2 p tof Ll 0010 03109/19 z8oD4oD97S 11/21178- 1312 640 S2 CHL A 000 03/U9iT9 26004OU97S 11121178 1312 600 sit LHL 0 00(o oj/U9179 28o04*097S 11/21/78 1312 boo S11 CHL C 000 03/u9179 28e0ft*G97S 12/20176 1015 too W 28*04oD97S 121ZGIIB 1015 1 2f$*S 03/09/79 1:0 S2 11-HP UATLR 2&oO*oC9?S 12120178 LOIS 0 sz AbENCT CULLECT 11052 0310179 Zge04o097S IM0178 101% 100 sl C0%0 FIELD -53SUD 03109179 280040497S lz*420178 Leib 100 sa UO Pwubt 70% 03/w9l7v w ZB@04*097S 12/20/78 101S 100 Sk PH ?*so 03109179 160040097s 12120/74 101b 600 %,t AfiLMLY CULLtCl 6052 031u9/79 26-.044.09is- 12.00/78 Lois boo S2 WMANIC *000 03169179 26oO4oO97S 12120178 Lois 6*0 S2 18".1 " 101 *030 03/09/79 2804o097S 12/20/78 LOIS 600 sl kO I o faclo 03fu9179 28004OU97S !ZIZU/78 -leis 6*0 sit M RJLL o03O 0316917V 280040097s 12120178 Lois 600 Sit P TOT 0010 03/09/?V 101b 600 S2 CHL A os/U9179 28*040097S 12/20.476 1 u Is 690 sz LHL a o P ov/ 79 M04*097S UtZ0178.. IULS boo sit CHL C oufj 280040997S IM0178 1020 000 C3109/79 11*0 51 ILMP WAILR '2300 03109179 ae.04.397S IZIZU178 1010 1100 sa AC-L"Cy COLLECT 40S2 031FJ9179 28004*09?s 121Z0176 1020 1100 sd LOW F IELD Woo 03/U9/79 2600%9097s lzi?0178 luio 1160 52 60 PkObt 700 03109179 dSO040497s- IZIZU/78 1020 1100 sz ON 7060 03/09179 2600%*09rs 17/76/78 Lois boo 52 AGLNL.V CULLALT 40S2 05/0179 26904*U97S 12/90/78 103% boo sa TURRIDITV Flu 103 03109179 -5-014 -U975 12/20/78 LrIJ% boo sli SELCHI h 3oD 03/U917V 16*U%.097S 12/ZU/78 IoJS 600 ba hl!o Mop 1 03/4909 2600%qG9?% IZ/ZU/18 luj% 6 a to bg CL 19600 03/69/19 EGLI 14F LI 1 0 @M09/ 79 260040097s 121z;,Irs 103% 600 S2 FECAL LOLI MV LI 1 0310V/19 28.04*497s 0I1?Zj?q lg%S 600 sz AGLNCV CULUCT 4062 ov/1009 2 8 A OG r, 9-7 S 41/ZZ/19 In4s 600 sd AGLNLV AkALVdF 6oSz OV/10/TV 280040097S OIIZ2/19 Iv4s 6*11 si ItIM4101TV flu los ovilut7v 28.04.09?s U112jJ19 Ju4s 6*V W 3.0 CV/10179 r m mmm mmm M = S I AT 1014 OATL I Ifft UEPTH A(iL%LY sIORLI UAIL 28.f)4.697S Ul/22/79 1045 6%0 S;: mtN 4usp ()9/10/79 ip.04OU975 0112le119 1045, 6.U Se hu. * hc@ h 19OU0 iii'Ti fj Tr -9 29.U4.u975 01722779 1545 6*U b2 L@- I us/IP/0 28.04.G97S UI/22/79 104S 6.0 S2 C(LI Of 1 OW10179 2e.04.Cq7S Uli22/79 IP45 640 sle I I L AL LOLI OF --f'o-C 4 o U 9 7 S ANU VESTICIOLS 2 i-A-11 I I - - L, 1122 / 7 9 IU47 6 0 0 S@! a j it .. @LTAL@, 09/10179 28.0%.6975 (1112 2 / 7 9 1047 too S2 Jl@iLNLV C@LLELY bob? 28*04.097S U1122/79 1047 6*0 52 AfL%L-V AhALVZE 8066 09/10/79 1.0 09/10179 28-.04.t,975 611?2/79 1047 6.0 S2 28.0%oJ975 (il/22/79 1110 100 Sle WAILP 2000 44 28.04eG97S Ul/22/79 11111 1.0 S2 IL-.Lv CULLICT c,1152 09/IC/79 bO52 09./ 10#4 19 28.04.0975 01122/T9-1110 1*0 so., 460-0 ANILY" 28.04oG975 GI/22/79 Liln 1.0 S2 .C't*L @ IELO beOUO 09/10/Y9 28*04*097S Ul/22/79 ilia lop 52 @u. P.uvE 701 09/10/79 28.04.iA75 Ul/22/79 1110 1.0 S2 PP 8. 31A Ov/10/79 o ZA*n4*U97S Uli22/79 Ills 10.0 52 is#-P VAILP ieti . s a:8.04.097S Cl/22/79 ills 10*0 52 Ct;LLECT an!@2 28.0406975 Ul/22/79 111$ 10.0 si bC152 09/10179 0 2A.U4.097S Uli2Z/79 ills 10.0 S2 urhr- FIELO S@fsLo 09/10/79 28.04oU97b 01/22/79 ilih 1000 51 U0 10hoot bo9 4?8*04oU97S UI/Zi!/79 Illb lo.n 52 @.20 Oro/ 10/ 7v 0 28.04.u97S 0310b/79 IDZU 1.0 Sk lttl$- WAILP k7es t)9/10/19 28.04.097S 031ou/79 I fill 1i l.u 52 of C%;LLECT kiffs? 09/10/79 n 28.04.097S 03/06/79 102U loo 52 A 11L P.L ALYiE 6052 uioliu/79 I- Z@*04*L975 03/Ub/79 1020 1 . r) Se LCI-0 FALD 54OUO 09/10179 %D 29.04.u97S 03/06/79 1020 ion S2 09/10179 Ov/10179 28.04.U9YS 031t)9/7 lczn 1.0 S2 all S.au 28*C!4*097S 03/0b/799 1025 10-0 S2 0 1,p WAILR k2os OV/10/79 28*04.0975 03/0b/79 IC2S 10.0 SZ .1 t NLI CULLEL I bri 52 09/10/79 28.04.U975 ih 31 Jb/ 7 9 1025 inoo S2 At, L %i%. AL Tit 6052 cv/lcd79 0 28oO4oU975 U31nb/79 1025 1000 sz L"Mo I ALO 54000 09/10/79 28.04.L97S U310*/79 1025 10*0 S2 @#, Pn()Dt 6*8 U10/10179 28.04*G97S OW06/79 l0i5 1000 sie Polu U9/10/79 0 Z8oO4o(j97S 03,06179 10%S 600 5;e COLLECT bOS2 Mel I W 79 28.04.G97S U3/0b/79 104S 6*0 52 -1 0-6y -P1iALV,!E 8057 09/111/79 28.04.U97S C-3/3(P/79 1045 6*0 si@ I Vftv 4u&: 1 V f Yu 205 09/lB/79 ;,8*049097S 03106/79 104S 6*0 S2 :,t Lcttl " 200 09/10/79 0 28on4*0975 C3/06/79 104S 690 S2 -ftf b Iu4p LT 1 09/10/?9 28*04*6975 0310b/79 IV45 6.n 52 19 'Ffj -o 69710/79 28,04,0975 03106/79 104b 6.1) 52 @iLl OF LT USP/10/79 28.04.097S 03/0b/79 IV4S 6.0 S2 LULI Pf LT 09/10/79 28.04.097S U611b/79 I I.-W 5.0 S2 DI 28o()4*0975 061lb/79 I 1:@O 5.u S2 N #%Ji.L *21U 09112179 ZAoO4*097S Obilb/79 IloO 5.0 S.4 101 *010 09/12/79 11@2 -W@ L N @N @A 28.04.OS7S L61la/79 5.0 S2 01 L I @SA 28.04.L,97S rib/lb/79 Ila2 S.0 S2 02 hUTRIENTS UO SPECIFY TLS zB.04.0975 L6/16/79 I I :o2 .5.0 Sz n3 UE PUN. 09117/79 28.04.U975 MG/lb/79 1152 5.0 52 ""LP-Z"h L bubb 28.04.U975 C611b/79 IIb2 S.u 52 L 100 09/12179 270 09/12/79 28.04.U975 Chila/79 1152 5.c 52 I I I I I I I I Appendix E I FIGURES I I . I I I I I I I 120 1 N FLORIDA OISCAYNE DAY -Fee Zhe It V InGLADIS *..I. Reef ATIONAL 81 SCAYNE Reef 'AP19 ATIONAL JI MONUMEN .,'L_, Ifee, GULF OF MEXICO a KEY "LARGO/ 0 Oft .6 / I CORAL 6. REEF a .4 NAAR INE W..14691 W-114011 F LOPIDA41 DAY 04 .010 ::.$�. ca..b." 0.01 -cleeks, beef N .A11196161 Roof 0 0 be If I00 0 Lw. INS- Ot me I -116.1o'em Key Ci Fig. I Locator map, south Florida and the Florida Keys 121 Biscayne it Boy Crook Alaa Biscayne apple if National Pacific/if Monument "got road Crook Card Angelfish Sound 0 Crook 0 earneil Bound Catlefort :ills 0 meet /if John Key Large ennekarrip Coral Pool oral Pool Marine State Park Sanctuary Blackwator Sound 0 0 The lElbow 00 Largo Tarpon Sound a Key Largo Dry Rocks Florida say Buttanwood 9 Grecian Rocks 9 u d Mosoulto sank /04 #0 de le -, I/J Key t French Reef blotesifilil Rest 6 Pickles Tavernier f Key 0 Coach fleet U8.11eal miles 2 0 Davis Roof Fig. 2 Locator map, Key Largo Coral Reef Marine Sanctuary 122 CARYSFORT REEF, FLORIDA. Date. 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 t8go Mean. M2X. Min. OC. 6C. OC. OC. OC. OC. OC. OC. C. C. C. 0C. 0C. 0C. C. C. J211. 10 .... 20.1 24.7 24.0 24.8 23.6 23.4 24-1 22-2 22.4 24 .2 2T.S 22-16 23.2 24.8 20.1 20 .... 20.4 24.5 24.1 25.9 2Z.9 24.3 23.9 20.9 22.1 24.1 22.8 23.4 23.3 25-9 20.4 30 .... 22.1 24.5 24.1 24.8 22.4 23.2 23.6 21.4 21.9 24.1 23.1 23.4 23.2 24.8 21.4 Feb. 9 .... 22.9 24.4 24.3 24.5 21.9 24.3 22.2 2o.6 23.5 23.6 21.8 23.5 23.1 24.5 20.6 19 .... 22.7 24.4 23.6 23.9 23.4 24.8 22.1 21.8 23.7 23.5 23.1 23.5 23.4 24.8 21.8 Mar. I .... 22.3 24.0 23.4 23.6 23-S 14.7 22.3 22-5 23.8 23.5 23.3 23.2 23.4 24.7 22.3 11 .... 22-3 24-4 22.8 24-2 .... 24.8 22.9 22.S 23.5 23.2 23.7 21.S 23.3 24.8 2t-S 21 .... 23.3 2S.3 23.3 24.3 .... 2S.1 23.2 22-4 22.4 22.S 23.6 21.7 2.3.4 25.3 21.7 31 .... 24-1 25.6 22.8 24.3 .... 25.0 22.7 23.0 22.3 23.4 22.9 23.2 23-S z5.6 22.3 Apr. 10 .... 22.8 25.3 22.9 24.2 24.0 24.8 24.6 23.1 22.9 24.9 23.0 23.3 23.8 25.3 22.8 20 .... 23.0 2S.S 24. @ 24.2 2S.1 2S.3 24.S 24.0 23.7 24.9 23.7 23.5 24.4 2S-S 23.0 30 .... 22.6 26.4 24.8 2S.1 2S.7 24.7 25.0 24.9 25.3 24.7 24.8 23.4 24.8 26.4 22.6 May 10 .... 25.8 26.8 26.0 26.1 26.S 25.7 26.S 25.7 25.4 25.1 25.3 24.0 25.8 26.8 24.0 2 .... 26.5 26.5 26.S 26.o 26.4 27.0 26.8 26.8 25.5 25.7 26.S 24.0 z6.2 27.0 24.0 300 .... 26.6 z6-3 26.8 z6. 1 26.9 27.9 26.8 26.8 26.4 z6-4 26.6 2S.1 26.S 27.9 25.1 June 9 .... 27.2 27.1 28.4 27.2 27.7 27.9 26.8 27.4 26.4 27.0 27.8 2S.9 27.2 28.4 2S.9 19 .... 28.1 28.2 29.4 27.9 28.S 28.8 27.8 28.1 26.5 27.3 27.9 26.8 28.0 29-4 26.5 29 .... 27.7 28.7 29.7P 28.2 29.1 28.4 28.4 28.4 28.1 28.4 28.2 27.0 28.3 29.1 27.0 JtllY 9 .... 27.8 28.8 .... 28.7 28.7 29.1 z8.6 z8. 5 28.3 28.7 27.9 27.1 28.4 29.1 27.1 19 .... 29.0 229.0 .... 29.0 29.4 2-9-7 29.4 :8.6 29.6 29. z 28. -' 27.1 29.0 29.7 27.1 29 .... 29.4 29-S .... 28.5 29.4 29.1 29.4 28.7 29.6 29.5 28.7 27.3 29.1 19.6 27.3 Aug. 8 .... 29.3 29.6 .... 28.8 29.3 28.9 30.2 29.1 29-5 30.3 z8. 8 26.S 29.2 30.3 26.5 18 .... 29.8 29. 1 .... 29.0 29.3 29.2 30.2 28.7 30.0 30.1 28.6 27.3 29.3 30.2 27.3 z8 .... 29.6 29.3 .... 28.6 29.5 29.0 30.3 28.5 29.7 29.S 28.4 27.3 29.1 30.3 27-3 Sept. 7 .. . . 29.0 28.4 .... 28.9 29.1 29.3 30.1 28.4 29.3 29.3 28.1 27.5 28-9 30-1 27.5 J7 ,8.6 229-3 29.1 .... :8.9 zq. 1 28.9 -29-9 -28-4 229-5 29.1 -28 3 27-2- 28.9 29,9 27.2 27 28-0 29.4 29.2 .... -28.6 28.7 28.6 29.5 28.2 28.4 29.3 27.9 27.1 28.6 29.S 27.1 Oct. 7 27.5 2.8.1 28.7 26.3 27.7 29.0 28.1 29.1 z8.2 28. 1 28.5 2-7-4 27.0 28.1 29.1 26.3 17 2-7-2 27.3 28.2 z6. 8 28.2 28.5 28.2 27.6 -27-7 27.3 z6. 9 26.5 27.1 27.5 28.5 26.5 2 7 25.9 -27.6 -7.1 27.1 27.0 28.1 6.9 :7.1 26.8 27.4 27.2 25 .5 26.9 27.1 28.1 225-5 Nov. 6 24.4 27.0 27.1 26.5 26.0 26.9 26.9 25.0 24.3 26.4 27.1 26.0 24.4 26.2 27.2 -24-3 16 2s. 1 2-6-4 --6-7 26.8 24.7 27.7 25.8 25.1 24.4 25.7 26.7 27.3 25.1 26.0 27.7 24.4 26 25.0 26.o 26.2 25.9 24.4 27.7 26.0 24.1 24.S 24.6 25.8 z6. 0 24.4 25.4 28.7 24.1 Dec. 6 -.3.5 24.8 26.4 25.8 23.3 27.3 25.2. 2.2.3 23.5 23.9 .... 25.4 24.0 24.7 227-3 21.3 16 23.4 24.9 24.8 24-S 24.4 26.0 24.6 22.8 22.7 24.4 .... 23.5 22.4 24.1 26.0 22 - 4 31 1.2.2 2S.2 1 24.1 1 24.0 1 23.2 25.1 1 24.6 21.9 22.5 1 23.6 .... 22.2 21.0 23.4 25.2 21.0 Fig. 3 Surface temperature, 10 day means from 1878 to 1890, Carysfort Reef (from Vaughan, 1918) 123 'EF, FLO)UDA-Continued. CARYSFORT RE Date- 1891 189-' 1693 3894 189S 180 1897 1899 0" h1can. Max. Itlin. *C. *C. &C. 0C. -C' -C. -C. -C. 6C. 0C. C. 'C. lan. to zo. S 21.8 18.7 23-5 22.8 22.0 22.7 22.8 21.1 21.8 23.5 19.7 20 19.9 22.3 18.2 21.9 2z. 1 22-2 23-8 14.1 31-S 21.6 24.1 18.2 30 :0.4 22.0 19.8 22.1 Feb. 9 21-8 :2-8 22-1 24.1 21.0 21.8 24.1 19.8 :1.8 22.: 22.9 22.7 21.7 2z.6 39 33.2 22.1 22-4 22.2 24.6 z:.6 24.6 21.7 23-S 23.2 21.3 22.6 22.S 21.9 24.2 2:-7 24.2 31.3 at. 1 22.1 22.3 23.1 23.2 21-1 21.9 23.6 22.S 24-4 22.7 24.4 21-1 I I ::-S :2.4 Z-2.9 2:. S 22.0 22.0 23,6 22.0 :4-3 22.7 2-4-3 ::-0 -'1 22-3 22--S --.-.6 23.7 22.7 ::.2 24-4 22.6 24.4 -'3. 1 24.4 23-2 31 2---0 :-' - 1 22.4 :2.4 22.2 2Z-S 2-3-7 23-S 2S.2 ::-9 35.2 3--.0 Apr. to 2:4 23.3 22.5 2-:.8 2:.6 23.6 :5 - 3 23.5 23-S 23.3 25.3 U-4 20 23-0. 24-1 24.2 23.4 23.1 24.3 :4.2 24.1 24.6 23.9 24.6 a3.o 30 23-7 24-1 24.9 23.6 23-S 26.1 24-4 24.8 3S.3 24.5 26. 1 23-S May 10 23.7 24.4 --6-: 23.8 24.7 24.: 24-7 24.6 24.7 :4.5 :6.-, :3.7 20 23.3 25.0 2.; .7 24.3 --S.7 26.S :5.2 zS. 8 z6.3 2S.-- 26.5 23.3 30 24-2 a6. o 26.o 24.7 :7-1 26-4 23.9 25.9 z6.7 2S.2 27.1 24.2 june 9 25.4 :5.9 16. 8 25.4 27.0 2-7-0 26.6 z6.9 26.3 z6-4 27.0 2S 19 :6-3 25.9 ag.o z6. 8 :7.5 27.1 27.8 27-4 26.6 27.1 28.0 2. 5 @ 94 29 27.4 :6. o :8. 1 27.4 :8.3 -'9.1 29.2 28.1 27.0 27.9 29.2 26.o JulY 9 27.9 :7.5 :-9- 1 :9.0 -.9. 1 28.6 :9.6 28.2 28.4 :6.4 1 ig 6 :7.5 I . ) .4 39 :7.2 29.1 :9.0 29-0 30. ' '.R - -'9 :9.6 :9.3 :9-0 - 10-: :7-22 29 :7.3 :S-l 229-3 :9.4 .9-S 29.., 29-S :8.7 28.8 :9.5 27.1 Aug. 8 -O.o 28. 1 -9 29.5 39.0 29.0 1 29.5 29.0 - 1 :9.0 :9 4 -'9- 29-4 18 228.0 28.3' 2c). 6 :9.6 -'8 - 3 29 o 2c)-8 2.9.5 :9.6 :9. t :9. 8 28.o 28 27.7 28.5 :f)-O 30.0 -29-4 -'9 6 29 @ 11 29@4 :9.8 1 10.0 27-7 ; .9 29 '9 7 '7 Sept- 7 :7.7 - .4 :8.7 - .6 :9.1 29 7 - -4 29-1 - - .7 17 :F-l 28.6 14.9 1 29.8 1,29-3 '-s. 5 28,@ :9.6 zq. 3 :,). o :9. 8 wi. i :7 --7.2 28.1 --N-4 29.0 28-1' Z'13 - 4 ;:8@6 29.7 29-3 :S .4 -19-3 :7 (kt. 7 26-1 227-3 :7.8 --7-5 27 .9 :8. 1 27.6 :8.5 :8.6 :77-7 :8.6 ,6. 17 :5.5 27.4 --6..; :6.4 :8.; :6. 8 z8. 5 :8. : :7.3 :7.: :S. ; ;.; :7 :;.8 :1). z :6. o -..; . -, :6.4 337-0 --7.-- -25-8 26-8 :6 0 :7. -'1 21 S Nuv. 6 24.1 Z-6. 1 Z-5-7 25.7 :6.7 27.0 i 25.8 :5.6 :6. o ,;. 9 --7-0 4-1 16 23 7 24.7 :4-7 24.3 :5.9 :6-4 !5.: 24.9 :4.0 -24 - 6 -2 6- 4 Z; 7 z6 2.1 6 13.0 25.1 -- --,3..3 .3!- - 8 :4.6 z4. 8 33.9 -24-4 '5.S a';-0 Z DCC- 6 24 .0 21.5 24.4 1 3 25-4 25.2 24. 1 :4.3 2-4 1 5 16 24.4 24.5 -34 4 :.;.o 2:-6 .1 8 -'2-9 24.0 24.1 0 31 --3.: Z-3-1 -'j.S & 22 - 7 -24 4 22.3 :3.6 :3.3 4-4 -3 Fig. 4 Surface temperature, 10 day means from 1891 to 1899, Carysfort Reef (from Vaughan, 1918) 124 80 75 '70 60 S5 % so 4s- 10 40 3s 30 ----TAPRIL I MAY I 3UNE I JUQY I MARCM AUG.- sEPT.1 oc-r. NOV. DEC. Average annual surface temperature curves for the five-year period 1881-83, calculated from Rath- bun's temperature charts (Rathbun. 1887). First group from the top (Florida Keys): Solid line ( ): Dry Tortugas. Broken line (- -): Carysfort Reef. Dot and dash (- - -): Fowey Rocks. Second group from the top (Southern Atlantic section): heavy solid line ( ): Martins Industry. Broken line (- -): Rattlesnake Shoal. Dot and dash (- - -): Frying Pan Shoals. Thin solid line ( . ): Cape Lookout Lighthouse. Third group from the top (Middle Atlantic section): heavy solid line ( ): Winter quarter. Broken Una (- -): Five- Fathom Bank. Dot and dash (- - -): Sandy Hook. Two dots and dash (. - -) - Block Island. Dot and two dashes (. - -): Brenton Reef. Thin solid line (-): Tineyard Sound. Fourth group from the top (Nan- luckel Shoals. Gulf of Maine): heavy solid Una (_): Nantucket. Broken line (-- -): Pollock Rip. Dot, and dash (- - -): Boon Island. Two dots and dash (- - -): Sequin. Dot and two dashes (. - -): 'Matinicus. Three dots and two dashes (. - - - -): Nfount DeserL Dots ( ..... ): Petit 7%fanan. The dotted line In the second group from the top represents the average curve for Diamond Shoals Llghtship during 1928-30, for cow- parison with the others. ve Fig- 5 Annual a rage surface temperature curves, including data from Carysfort Reef and Fowey Rocks (from Parr, 1933) 125 Owthu WA iiMUSI us" Aurface water Temperatums r '0 CAILISFOR? NEU LUNTHWt W33,330M. 80"u-462"E.- UU Jan. Feb. Var, - Aw. Kai he* JdY &mz. UyL. Oct. Ow. Joe IM 76.7 MI 79 ".7 ;2 -? ;3-0 ;@.O ; A ;1.8 @.S ;.C 04.4 61.7 ".0 77.0 "A IIW 76.2 7S4 774 79A "A 22.5 16.6 66.6 ILA 12.0 ".9 76.7 00.1 ISIS& 75.) ?16.1 73.) ".8 "A $6.0 - 80.1 "A 76.1 (".3) 82 17A 7$-1 75.7 76.2 TI-I 42.0 83.6 04.0 03.0 IIA 76.3 74 A MI 03 73.5 73.) - 76.0 00.0 83.) 06.5 ft.9 04.1 83.2 U.0 74.7 (78-8) 86 74.1 76A 76.9 76.9 80.3 13.2 ft.@ &.3 06.0 02.5 79.1 76.3 ?9-8 LOSS 74.9 72.0 ".3 76.5 80-1 41-6 ft.? 06-4 ISJ a A 76.) U's 74.0 IM 70A 70.9 72.0 ".2 "A 02.6 13A 03.8 82.9 82*3 71A 73.2 77.7 0 71.9 74.8 73.0 75.1 79.5 9D.7 $6.7 $5.6 $6.2 $2.5 77.0 75.3 78.5 0 "A 74.4 73.6 76.6 714 U-1 96.6 85.9 &.7 81.3 78.7 74.5 ".2 " 72-S 72-6 744 "A "-1 12.4 $3.0 63.5 42A 79.2 ?9.9 T)-S 76.1 LOW 73.4 740.) - 1"I 92 - ;3.0 ;2.8 ;0.0 ;S .3 ;3-4 - 74.0 72.7 ?S-0 "A U.? OL .0 016-6 63A MS 77.2 75.2 (78.3) IL 72.5 73.3 73.2 74.1 76.1 ".9 02.9 45.4 k.0 70.9 77.1 746.0 77.7 ms n-9 76-4 725 ?j.s ms u.s es.s aw W2 Zi 74-s 73.1 77.o 10% 72A 72.3 72.0 764 ".0 $2.0 96.0 04.8 13.4 81.2 79.2 75.0 784 17 73.3 7J.0 ".I 76A 77.4 02.4 &.9 45.5 $3.9 U-8 77.0 76.5 76.9 " 74.6 72.0 72-4 75.5 77.4 91.5 GLA ".2 SSA U.2 76.9 US TGA " 70.2 76.2 76.5 76.1 78.6 00.0 4L.0 85.2 ft.? $1.0 76.0 74.8 78.6 1900 73*2 (19) - ill) j20) j20) i2O) 47) 111) 6 i1t) (17) (18) U) 73.6 U.-O ?5-7 74.9 $2.0 14.2 $6.8 84.0 111-0 77.7 74.9 78.7 loodings at first bl&b voter and first Us meter after a.m. Source USUP Fig. 6 Monthly and annual mean surface temperature data for Carysfort Reef, 1878 to 1900 (from Bumpus, 1957) 126 6PP ..!Puwo Py 14 09 A 0 4 .00 4 I ,11 1. .." .0 1 T be 34- to 4 Elbow .3. y B Is 8 argo:-- so ry is ocks., all 47 A. MEA14 Of AVERAGE HOURLY VELOCiTIES is lit to 17. at 8% 140% 14 a:A, 250% to 40% ,:64., -7- `4@ 97% 24 2% as D iI C S h 0 a I PERCENTAGE TOTAL M06IRS FROM EAC04 OiRECTION Rocks F L a R 1 0 A - )'0,*, n k A'. A. y k 0 c rench Reef a IL Ike to ONP 84 L*,ge 0.1 flocks Is 4P J1 no*f Molasses Reef % 230-1 Nlap showing locations of growth-rate stations. Water depth is indicated in feet. Wind ruses show strength and direction of prevailing winds. Dashed line marks approximate shoreward limit of naturally growing Acropora cervicornis. Fig. 7 Shinn's (1966) station locations (from Shinn, 1966) 127 301 It win too 4 KIP too, Ml low STATION A STATION 8 -Cumulative growth-curve and tem- -Cumulative growth-curve and tempera- N ture maxima and minima at Station A. Arrows ture maxima and minima at transplant Station B. era' o. inflections in growth-rate. 31 W: WIN 10, It 008@1. LOT 1:111.00 ... ...... A z C W 111141) own All STATION C -Cumulative growth-curve and tempera. -Cumulative growth-curves of all ture maxima and minima at transplant Station C. growth-stations. Growth at Station C was equal to Note relationship or death to sudden drop of mini. rowth at Station A during the months of 'May and mum temperature. lune. Fig. 8 Maximum/minimum temperature and coral growth data, Key Largo Dry Rocks and inshore stations (from Shinn, 1966). Station locations shown in Fig. 7 128 30- 28- 26- 0 24--* w 22- A 20- JAN FEB MAR APR MAY 30- 28- 26- 0 24- LU 22- 20- JAN FEB MAR '--APR MAY Fig. 9 Bottom temperatures during the period January to May 1974 at Molasses Reef (A) and Mosquito Bank(B)'.'Dots indicate average daily temperature (readings taken at three hour intervals). Circles indicate 10-day means (from unpublished data, G. Griffin, Univ. of Florida, Gainesville) 129 TIDAL CREEKS OUTER REEFS Whale Harbor Bridge Alligator Reef Snake Creek Bridge Crocker Reef Tavernier Creek Bridge * Molasses Reef South Sound Creek 114" * French Reef South Sound Creek '119 & 20" * Dixie Shoal Caesar Creek at Christmas Point * Grecian Rocks * Key Largo Dry Rocks * Elbow Reef HAWK CHANNEL * Carysfort Reef Pacific Reef off north Key Largo off Tavernier Creek channel to Tavernier Creek ATLANTIC OCEAN Snake Creek "2" & 11411 off Snake Creek * 0.25 ml SE of Elbow Reef Tavernier Creek '1211 & 11411 * 0.5 mi SE of Elbow Reef Markers 1119, 20, 21, 29, 33 4111 * 0.7 ml SE of Elbow Reef South Sound Creek "211 * 1.0 ml SE of Elbow Reef Garden Cove Wrack * 1.5 ml SE of Elbow Reef 0.25 ml NW of "31BH" * NNE of Carysfort Reef off dock near Radome * WHIS R "2" N of Carysfort Reef Ocean Reef Club "2" * 200 yd SE of Carysf3rt Reef Angelfish Creek "2" * 0.5 ml SE of Carysfort Reef * org buoy at Molasses Reef * 0.25 ml SE of Molasses Reef INNER REEFS * 0.33 mi SE of Molasses Reef * 0.5 ml SE of Molasses Reef Men and Chickens Reef 0.3 mi SE of Pacific Reef west of Pickles Reef 0.5 ml SE of Pacific Reef Triangles Reef 2 mi SE of Pacific Reef Mosquito Bank 0.25 ml SE of Crocker Reef Basin Hills patch reef 0.6 mi SE of Crocker Reef Basin Hills Shoals 2 ml SE of Crocker Reef Turtle Rocks "31' 0.25 ml SE of "4DS" White Bank 0.25 ml SE of Bendwood 0.25 mi SE of Pickles Reef 0.25 ml SE of Conch Reef Fig. 10 Station Locations used by Griffin( unpublished data, 1974) in his survey of water quality in the Marine Sanctuary. Asterisks Indicate stations located within the Key Largo Coral Reef Marine Sanctuary. 130 30- 132 t2 2 Q -99 *'120 - 25- 101 r104 0 93 0110- -20 76 0100- -- CL 20- E Ci go- so __B C D E A B C D E 27.4 00, 37- 'M 10 - E ISO ,-e 79 %_W >% 36- !so Z 5- 35 @t 14 _02 01 1 1 _P A B C D E A B C D E Fig. 11 Temperature, salinity, dissolved oxygen and turbidity. (A). Tidal creeks;(B) Hawk Channel; (C) Inner Reefs; (D) Outer Reefs; (E) Atlantic Ocean. From unpublished data of Griffin, 1974. Horizontal bars indicate means; vertical bars, standard deviaticn; numbers above means, sample size. See Fig.10 for station locations. 131 Zridicatee coral collection siteti an too f tract. Sup- porting date plus suspended and bottom sediments were is also collected at these 0 UmItLons. a 4 0 & 9 Indicate@ areas %&are %J only bottom sediment@ were Obtained. % oil" -0 &31 Is go at 4L & 0 tow WO-60 Date/sample collection stations (1974). Soo Appendix for accompanying data. rJAWMDA 0 OX I 1. on of 16 o, 0 01 C1 OU two" LZ J Date acquisition stations (1973). too Appendix a for accompanying data. Fig. 12 Manker's station locations (from Manker, 1975) 132 3ta. Mon-Da.-Mr-Time T*C Turb. Via. WSad Sol. Cum. Sta- WOR-Day-Yr-TUm T*C TUrb; Md. Wind (29/1 (to) (W44) 27 (frm) /00) (to) ixy I- P;; (frolz) In kta in kto in kto in kto 06-1i-73-IiOg 27.0 2.12 - 100/18 - 000.5 20 06-14-73-0955 28.0 1.42 6ol 180/10 az/.I& 1 06-15-73-0925 29 0 3-51 6.1 00015 - 060/.2 20 01:19-73-0955 30.5 2.60 .5. ?Oqo/8 330/.2 :1:19-?3-1236 30:8 3.70 6.2 100/? . 290/-3 20 0 15-73-105- 29o6 109 6.3 115/8 15-73-1417 31.0 1.95 0.32 7.9 140/7 6.9 180/4 21 06-14-73-1200 28.0 %0511.3 21 19-73w1126 06-11-73-114,5 28.0 1"51 - 120/10 . OVA V 29-5 Oo38 6.3 12016 .3 2 06.15-73-1007 29 0 1.14 fio4 ooo/j - 270/.2 2MI -15-73-1235 29o9 140 7 0 120/7 - 0 -19 3-1305 30:9 o51 6o2 120/ - 320/.2 22 06-14-73-1254 29.3 lo42 7:6 175/10 - 210/.2 06:IS-73:1455 30.3 3.51 6.9 ISO& 22 07-la-?3-1418 32.0 2. sog 090/10 - - 11- 3 1300 28oO 0.60 100/17 0?07.6 22 OB-14-73-1430 31.2 2. L4 7.7 1501? - 06-15-73 1 1,8 28 .54 6.9 000/3 045/.2 23 06-14-?3-1431 29.5 0.54 GA 12015 - 090/.2 0 9-7 15 30:1 00 79 6.6 1@5110 350/.1& 23 0 10-?3-1544 30.0 0.79 6.4 120110 . 000/.3 01:1 531 T 1 2 14-73-1600 30.0 1 6a 5-73 1 7 30.1 1:68 6.2 100/4 2?0/- 9 6:3 110/1 - - 06-11 : 29.0 3:51 - 120115 . 300/.4 in 07-10-73-114 29of 0:45 6 2 0 51 - - 73 13 30.0 1 68 7.0 000/7 240/.3 -15-73-131 30.1 1.55 6.5 - - - 5:73 1 25 06-1 01 w 015 : 19- 3-1535 31.0 3.51 6.1& 120/- - 300/.3 2 06-14-73-1534 29o5 3.51 6.7 120/6 - 150/1 1:15w73-1719 30.1 1-19 6.3 170/6 1& 3-1152 31oO 5.10 6.2 150/9 - 300/-8 06-11- 3-1515 30.0 3.51 120/18 2207.2 9:14- 3:1144 29o6 400 5.9 150113 - - 06- -73-1351 31.0 - 6:8 300/6 240/.3 06-14- 3 1 ?Ot% 29.0 0.5 7.1& 150/7 - 270/ if 26 t I * 9-73-1170 31.0 2.30 6.2 110/10 100/.2 0?-Itl-73-1323 30.0 0.3 6.3 160/20 - 2251 -15-73-1811 31.0 2.12 Sof 115/7 06-25-73-1035 29.5 1.95 5.7 240/6 - 090/0 I 06 06-25-73-1055 29.5 1.80 5.6 290/6 06:12-?3-1010 28.0 1.42 6.2 100/12 12-73-1120 28.0 3.93 5.6 110/14 - ISO/.? 06-2,-73-1105 29 5 4o75 6.0 270/5 150;.1 :1:20-73-1310 31.0 1.95 6.7 120/14 - 3810/.9 06-25-73-il2O 29:5 400 6o? 250/6 090/ol 12. 3:1445 30.0 4.90 6.9 090/22 - 1 0/.2 31 06-25-73-1130 30.0 5.75 ? 0 220/ 090/.1 06-25- 3-1135 30.0 OW2 73 1455 30.0 4.30 7.0 090/22 150/.7 32 5.95 6:8 210A o 110/.2 0 06-12-73-1220 29oO 0. 98 6.8 130/14 060/ 5 06.25- 3-1144 30.0 5.60 6.9 270/6 - 090/.1 10 :1-20- 3-1355 30 0 98 6 100/io 2701:5 06-25o 3-1153 30.0 5.10 6 2 270/5 - 10 06:16-73-1306 29:1 2: 6:j 120115 06-25- 3-1210 30.0 2.95 6:2 W 06-26- 3-0955 12-73-1305 27oO 1 04 6. 31.0 5.10 6 0 225/7 340/ol 9:20-73-1435 30.5 1:08 6o2 120115 31 06-26- 3-1020 29.0 %70 5:3 240/8 000/- 6-73-1350 30.2 lo42 - 090/15 3 06-26-73-1031 28o5 4.90 5.4 2101 030/-3 1 28.0 3.93 5.7 23 060/.2 06-12.?3-1345 PoO 10 20 9:1 090/12 - J09 Of-2643-1045 0/i 12 090/12 - 06-26-73-1100 29oO 6.10 1.9 220/8 090/.2 13 06.12-73-1405 30.0 3 TO 5 51 2?.0 ?oBO 009 31 4 4 0?-20- 3-1243 304 3.93 5.5 120115 41 06-26-73-1128 28.5 3.51 5:? 20015 030/.4 06-1243:lto3o 29.5 4.10 6 090/15 . 130/.g 42 06-26-?3-1157 28 5 3.93 6.0 210/6 0501.3 1, 06-12-73.1 ? 30.0 2.95 6:1 090/12 . 150/.6 43 06-13-73-1251 30:6 . 1:8 12015 30o96 - 1 06-12-73 1530 30.0 3.?0 7. 090/22 . 300/.4 lag 29.1 - 0 33-20 - 16 06-25-73-1240 30.5 4.90 6.2 280/6 - 170/.2 1? 06-12-73-1540 30.0 3.35 9.6 090/18 I 160% 3 11 06-2543-1230 '30.0 2.97 ?.0 260/5 06-12-73-1550 30oO 4-90 7.6 090/9 18 06-25-73-1200 30.0 7o3O 6.6 270/6 19/0 ig 06-12-73-1600 31.0 3-70 6.9 1 /A 3ta. Mon-Day-Mr-Time ToG Twb. Dds. Wind 3oil CWr. (NSA) (fron) ( /go) (to) Lr. kta in kta PUAZDA 1 05-14-74-1010 OoT? 120/11 - 285/- 2 05-14.71&-io4O 28 0 0.54 130/11 36o7 05-14-74-MO 26:5 0.41 135/11 36.6 300/- 05-14-74-13'0 27oO 0.24 1501- 37o7 d 0 14-74-1345 28o3 0 2 10/- 36.6 2501- 01-14-74-1525 28.4 0:29 1151- 36.3 330/- 05-15-74-1025 29-1 1-01 1501- - 3151- 05-15-74-140 Oj2 23:93 0 1:0 11 - 315/- 9 05-15-74-11 1501- . 315/- 10 05-15-74-1130 28.8 1.90 1501- . 315/- 1 0 -15-74-li53 29.2 2.20 1501- - 330/- 2 0; 1 -15-74-1200 29.5 lo38 1501- 11 05-15o?4-1225 29 0*46 18;/. 1 05-1,5-74-1245 291 1.70 i57o/- 3151- 11 05-15-74-1305 29o5 1.04 - ISO/- 1 05-16-74-1055 28.5 2.63 135/15 300/- 19 05-16-74-M2 28 6 3 13 135115 300/- 20 05-16-74-1130 28:5 1:84 135/15 300/- 21 05-16-74-1200 28o5 1.24 135/15 - 39 05-1 @-74-121 7 28-7 1 JO 135/15 300/- 23 05-,'!0- -0945 MO 1.17 120/16 290/- 24 n,-!'O.74-1010 26.9 loO9 120/16 29o/- 1b 21 05-'-10-74-1032 27.0 1.34 120/- 290/- 1 2 05:25-74-0845 27.8 0.64 - 120/7 29 05 25-74-0903 28.2 0.67 - 240/6 - 315/- 30 0 25- :092 M9 2.30 240/10 - 300/- 1*16 31 5:25- 094 27.7 0.7 240/8 330/- 32 05-25o74-1006 25o7 0.5t 240/7 36:7 -1* U-25-74-1050 27.2 009 - 240/5 36.7 300/- j OS-25-74-MS 26.3 0.36 - 240/4 360 - 27 0 0.55 - 180/10 - 1501- 0@-26-74-0812 29.1 0 -26-74-0832 26.? 0.29 - 180/9 36.9 210/- 05-26-74-0902 27.1 0.46 - 180/10 36og i$o/- 05-26-74-0955 26.8 0.30 180/10 36.7 090/- 05-26-74-1023 28 6 0 91 - 180/- 37:0 - 05-26-74-1112 28:9 0: 180/10 180/_ 40 05-26-74A130 - 3 Po 41 Oo9o - - Current directions in reef t r8ct area. Data Collected d4rLng l4ay-Auguat 1973-74. 3 1 7 7 7 7 7 7 Fig. 13 Current directions in reef tract and supplementary data (temperature, salinity, dissolved oxygen, turbidity, wind and currents) (from Manker, 1975) 133 Concentration tp,.=) at Concentration ("n) at RS. erg Co. and Cir in suer dad PLAIculates Co. 2h. and ?b in bottom Sed1nents per W stations plott:06 In nSurs, S. stations plotted in Figure S. Statlea 19 60 or Statim 14 or Go 25 Fb 0.2 1 0.1 a 92 10 23 9 0.3 It 0.5 2 21 10 6.2 lk 36 9 11,477 11 0.3 10 GJ 31 Is 0.2 11 0.2 16 T 002 1 33 135 1 V t 33 '00 11 0*3 1 4 19 19 107 , 1 0.1 2 25 21 IM 0.2 0. 1 22 0.1 ::1 22 0.1 2 1 0.2 0.1 1; 30 0.6 19 1 32 0.2 16 It I 1 9 0.3 7 0.1 as 167 0. 0.2 21 14 0. 0*2 4 14 0.1 2 32 6 3 Is M 2 17 -1 fail 00 0.1 k as I M 04 9 002 k 26 37 Its ;0 7 137 Concentration (ops) or Isp Concentration (Ppb) or 36, Cr. Got alp t::o dLz: in 4p friction or and zn in corsis from the study area. 3** bot to per stations plotted Figure i? for location of "*to. PLCure S. zeration or Go 312 statift NS ar ae, So Paw*7 Rocks 549 j U2 1 �53 Trlmpb Roof 77 2 1 1 9 11 Pacific Roof @2 929 go eAU,sr;rt.RO r 1;&13 In 00 1272 1 Molasses Bee; ia 496 73 2329 6 son and Mdekens 37 767 2%9 Roof (821TO) 2 Von and Chick one 114 694 183 4767 1 &1 12 Rest (dead) 10 7 1 11 a 19 a 3 It 1 21 1 1 14 13 11 2 11 11 52 5 1 6 22 19 a 22 21 1 27 2 ? 19 to 2 10 1; It 16 19 N 26 25 119 161 11416 39 ?43 52 1 27 1To r 109 0 5 19 17 19 2S 25 Fig. 14 Concentration of toxic metals in suspended particulate fraction, four micron fraction,bulk bottom sediments and corals in northern Florida Keys (from Manker, 1975) 134 714RZDA so 9901 so Or KM a 0. d 13 oil" 0 name 14 Distribution/concentration of 39 in olpfraction Distribution/concentration of Cr in 4),fraction of bottom sediments. Areas of bigb*st concentration sbown of bottom sediments. Areas of bigbest concentration sbcrlm La red. La red. YLQRXDA FWAIDA a Cc gym Zn Be d d lb so soft. Watribution/concoontration of Co in olpfraction DistrLbutLon/concentration of Zn in 4p frahctio of bottom sediments. Areas of bighost concentration mhown of bottom sediments. Areas of Mgbest concentration a own Lis red. In red. Fig. 15 Distribution of mercury, chromium, cobalt and zinc in the four micron fraction of bottom sediments, upper Florida Keys (f rom Manker, 1975) 135 FL40RMA VWRxDA C1 .0 Cr Pigs IN Mms 0 :0 on 0 10 lip, so ft .0 .0 lip Is .wo 0 0 2r; well" 40 131 Coistribution/coroctontratLan of 89 in suspended VistrLbution/concentration of Cc in suspended WtLculates. Areas of highest concentriltich Shown in particulates. Areas ef highest concentration shown in blue. blue. 0 g Zhterjor Key Largo a-plan 0 Co O.Tav*rnier way sample 0. (drainpipe) 0 0 a as 09 .Or Vigotribution/concentration of CO in suspended Distribution/concooont,.tion of pb in bottom particulates. Areas of highest concentration sham La bulk seftments. Areas of highest concentration shown in blue. Fig. 16 Distribution of mercury, chromium and cobalt in suspended particulates and lead in bulk sediments of upper Florida Keys (from Manker, 1975) 136 rLORMR a tot*vLor Key sample 8Interior Key Largo samples *-Tavernier Key sample 0-TaverTiLer Key sample (drainpipe) .2 (drainpipe) IN PiLM Cr ppe miles llibe* 0 0 .3 3 9 6 04 30 la Me .9 .9 0' 9 9 0 0 low TO.S. W-de - I Distribution/concentration of H9 im bottom Latribution/concentration of Cr in bottom bulk sediments. Areas of highest concentration shown in D bulk sediment.. Areas of highest concentration shown in yellow. yellow. FLOREDA j 04 .9 FL40im 8 XnterLor Key Largo samples 9 8tntorior Key Largo samples W-Taverni*r Key sample (drainpipe) 41--Tevernier Key 4'ample Co ppm .9 (drainpipe) j 9 th ppm 9 gibes else. 0 9 9 oil 3 Distribution/concentration of Co in bottom Distribution/concentration of Zn in botto bulk sediments. Areas of highest concentration shown in bulk sedLeents. areas of highest concentration shown in yellow. yellow. Tig. 17 Distribution of mercury, chromium, cobalt and zinc in bulk sediments of upper Florida Keys (from Manker, 1975) 137 . 4 q PLORM FLORM & Live coral specimen � Live 0=01 specia@n VIDCU A Dead coral speAMM � Dead ear &I speciften meet & bps Pacific It"t Ob Cary0fort "of A L MOW e. % Reef dw "of Ift and Chickens It"f Now* some LZ Concentration Of 59 in Coral SpOCiffiGnG Concentratice Of ft in coral specimens PLOOMA � Live coral sp*cLwm 0 a � Dead coral spec@wftft & Live Carol specia" Co L & Dead coral speciven P job & S a" % % floe none Cow vow concentration of Co, in coral specimens Concentration of Zn An coral specimens (AL tres 21919A). UUdILLS111" older& Fig. 18 Concentration of mercury, chromium, cobalt and zinc in coral specimen.s (Siderastrea siderea) from northern Florida reef tract (from Manker, 1975) 138 sd'30'W to, 10, 0 6 ft Contowr Key @164 F I Inner Nich Roof PACIFIC C.. Wto Dank j. & 'JIMb Owter " 412 It deep 0 W- Travenol 40 20" -Pon ,nokornp Fork oundery 7 0 4F# GOP n Be HII a or CARYSPONT Proiect QLQ E go., V d' ILDOW to t:b. 0 cv V V/ 40 a win a MOLASSES P. REEF c@ 25000'N 0 ... . ....... N (/HENS A4 0 5 *I -"'@ICHICKIN Imp- N. Milos A *10 CROCKER REEF Fig.19 Map showing monthly transmissometer traverse lines used to measure ambient turbidity levels (from Griffin, 1974b) J'_ 139 vie oo- .0*1 #4.* 0010* Depth so I so ont Suspended I.Pedirn 10 jam. V 0.0 CIA c Mm 20 ApL 9 M-r 22 r jw" 12 Few!, PON: t 3 MOD$ Fig.20 Monthly turbidity levels along traverse "All (see F19.19). From Griffin. unpublished data, 1974. 140 0 so Depth so Suspended Sediment 10 7.3 jeft III + 3.0 ; 7-1 2.5 1.0 FdL P W.&L 20 ApL 9 Mwf 22 JUNIS is A*j Au& 5 Sq* 12 CWL 2111 DOC 3 Dec. 17 tj ij 1: 0 nautical Miles Fig- 21 Monthly turbidity levels along traverse "Bit (see Fig.19). From Griffin, unpublished data, 1974. 1 A I Depth so so Suspended Sediment Am. 23 7.5 Pli, @-41 ELUL rlll@ nig to LO FOAL a VISL 20 ApL 9 77@ 0 May AM IS P AwwU POO SOPL a OLL W cd 11.11 @11 3 4 AMM Fig. 22 Monthly turbidity levels along traverse "C" (see Fig-19). From Griffin, unpublished data, 1974. 142 0 0 Depth NOW Suspended Sediment 10 7.5 JWI. so E-7 . . . . . . . . . . ... 2.5 1.0 Feb. 13 0 lAw. 19 Apr. 12 Mav 24 June 14 July 19 Auq.15 OcL 17 Do- 6 Dow- 19 0 2 3 4 5 Nautical Miles Fig. 23 Monthly turbidity levels along traverse I'D" (see Fig.19). From Griffin, unpublished data, 1974. 14 'A Ve 00 "@@D e @pt h so Suspended Sediment 7.5 L.W. jots. 19 1�41- m co 1.0 Feb. 7 0 MOR.19 Apt.0 May 24 Aron Residvel Two$ Wake Jose 14 July U Aup-4 OCL 16 7 Doc. ............... . . 0 3 Alealleal 11111*6 Fig. 24 Monthly turbidity levels along traverse "Ell (see PI9.19). From Griffin, unpublished data, 1974. 144 0 0 Depth so Suspended Sediment 7.5 &0 na 2.5 VW6. 7 mw. w ApL V SQPL W Jt- 7 D. a 0 Fig. 25 Monthly turbidity levels along traverse 'IF" (see Fig.19). From Griffin, unpublished data, 1974. 145 0 10 PACIFIC REEF DEPTH GOVERNMENT CUT (M) ELBOW REEF S GASSO SEA 20 1 1 Ll. I till I - 1 1 0.2 0.5 1 5 10 so 100 T (%) Afean transmittance profiZes by sitee in comparison to that for the Sargasso Sea. The brackets indicate the standard deviation of the daiZy transmittance vaZues at three ZeveZ9 at Pacific Reef. SoZar Radiation ProfiZe Measurements EZbow Peedf AFRIL 3 4 4 3 G 7 a a 9 9 I too (CHT) 1-40 16SZ 1710 1523 1454 1700 1629 1654 1616 1740 Avg Do ,to" 3.0 .203 .214 .229 .159 .264 ASS .170 .161 .197 .106 .1% .049 6.1 .147 .179 - .189 . .121 .117 t2l .095 .143 .035 VA J" .134 - .140 - .105 .107 .098 .077 .115 .025 U.2 .119 .124 . .104 - .090 .076 .0" .073 .0% .022 15.2 .104 .108 - .091 - .070 .071 .074 .054o .003 .020 AR Fig. 26 Transmittance profiles for Pacific Reef, Government Cut and Elbow Reef and solar radiation profile measurements at Elbow Reef (from Hanson and Poindexter, 1972). 146 SoZar Radiation ProfiZe Measurements - Government Cut M. 12 22 23 23 23 standard Tise(Cia) 1742 1954 1539 1634 1630 Avg. Deviation Depth (a) Transmittance 3.0 .207 .249 .164 .190 .210 .032 6.1 .186 .138 .125 .128 .137 .140 .016 1:.1 .139 .141 OV8 .0" ..103 .117 .019 .2 .122 .073 .097 .067 .090 .020 13.1 .110 OU .0% .021 SoZar Radiation Profile Measurements - Pacific Reef 26 F88ja Is J# 20 29 OJA 1 13 14 14 14 A-11. 21 11 IS 15 15 16 16 16 7 Us (01a) kiss 2010 1523 IM loot 1036 1523 -1951 IS26 1016 IS31 1714 1928 1556 1710 Ills 1541 1110 1901 A.$ a.. W I- TMPSmlrrApcg 3.0 2" .263 .273 1 a l 6 .035 :101 AM 1. .211 .124 1 41 V1 11 1.1 L t .310 .1" 133 37 41 22 24 9 1 14 lte 208 6.t AM .185 .000 .094 .005 .089 .105 .169 .14% .1%1 .154 .166 .157 .160 .132 .103 .133 .143 .134 .141 .034 9.1 .139 .136 .032 .046 .057 .065 .119 .118 .13- .112 .111 .113 .105 .102 .095 .067 .102 .106 .100 .098 .033 2, .116 111 - - - - .0-94 . 0-" -ols -0'- - --- --- -0- .." --- -0'- -- -0-- Mean Transmittance by Sites (based on fixed depth pyranometer) hean Transaittance At Mornalited Depth Indicated to Depth of Standard Site (a) Depth 13 Motors Deviation Government Cut 14.3 .061 .070 Pacific Reef 10.7 .068 .05S .012 g1baw Reef 15.2 .067 .081 .021 Fig. 27 Solar radiation profiles for Government Cut and Pacific Reef. Comparison of mean transmittance at Government Cut, Pacific Reef and Elbow Reef (from Hanson and Poindexter, 1972). 147 3=4ARY OF WATER QUALITY DAT& NORTHERN REEF TRACT MUM= am VJLV 1?210 G chambers 119191 stiffin -cumpubitowd) wwarort. Molasses, Mcm Iteets xansm G pot"dextes t5_721 zlb= Z"fA lp&Clf'C R" son WA Chickens Rest wudscn Kazoot Ptah lb"I Lanes (19631- Itanker (1975) Mlasses, Patt (1933) Car @fort 066) NU L4z20 at, Room timpons (19731 stewster R"r 1palth etel. 41950) Vctunvb R"t sprimer a R.C20-tirn-11962) yvnha'n (19121 rooty, Caryefort. tomb loan= ILRAMVM DIS80" Ax" Cbemhar 120731 11974) ans%$ May r4r;W) Dow" ot U. HAV41 -Molasses & Bala 8=%d& zero Vlorida Dept. ImIr. awlstlan tumpb-3 peri%skasm state Park (Charitall Florida Dept. Pollution Contrzl" R971T ftnals MgZ Lmrpj Griffta Q974b) Basin Bule fta Lat2o) sols (19781 Old Rbo4e$ tar L8200D Bodeen CUM-PA110W) --snake Cts*k ftnals (Ilantation Itery) X1 chal U971) Vaughan (19351 awk channel MOM& CUO= Alelmnaer a cotoptaft fltf=@ M____1 I A- A _M Maul to Ca2! Canaveral j coractaft 119@@ rolmy Rocks to Cat Cal as has ab -(1957J mile staum Rutgtn a xabdneki (LPEJ 9!1 vast corcatan 6 Alex"W_ (1963) 44 mile statim RRrooran a Aloz"w VJ64) do mile staff-Aft Ggsbarg 0376) 11ax West to Clubs p I U at ot &1. (19531 10 mile statim Tw9a (19681 ro%my Rocks, allisetat Reef Fig. 28 Summary of available water quality data for the northern Florida Reef Tract. Florida Keys and Florida Current. 148 FOWEY ROCKS, OFF COCOANu'r GROVE, FLORIDA. Date. 1979 IM 1881 1882 1883 1884 1885 1886 1887 z888 IRR9 189o Mean. Max. Min. T. 9C. cc. 0C. T. 0C. 0C. OC. OC. T. 9C. 0C. 0C. Jan. to .... .... 234 22.9 24.0 23.0 23.7 22.S 20.9 24.0 22.9 23.3 23.1 24.0 20.9 20 .... .... 23.2 23.4 2-3-4 23.3 24.0 21.0 22.0 23.7 z3.6 23.9 23-3 -24-0 zt-0 30 .- - - - - 22.5 23.5 23.S 22.9 23.7 21.2 22.3 23.6 22.0 23.7 23.0 23.7 2t-2 'Feb. 9 .... 23.3 23.0 z3.6 z3.9 23.7 22.3 20.3 23.7 24.1 21.6 24.3 23.1 -24.3 20.3 19 .... 24.1 23.2 23.6 24.5 24.0 21.9 21.6 24.2 23.1 22.4 24.2 23.3 24-S 2t.6 'Mar. 1 22.8 23-S 23.9 2a.6 24.2 23.1 22.0 22.3 24.5 22.S 23.0 24.0 23.2 24,S 22.0 11 22.5 24.4 22.S 23.8 23-S 22.7 21.2 22.3 23.7 22.8 22.2 22.S 22.9 24.4 21.2 21 22.9 23.S 22.9 24.2 23.4 24.1 21.8 22.7 2z.6 22.4 22.9 23.0 23.1 24.2 21.8 31 23.6 22.8 21.3 24.4 23.2 24.0 22.6 23.0 22.3 23.0 23.3 24.3 23.2 24.4 21.3 Apr. 10 26.7 23.8 22.0 24.8 24.8 23.8 24.5 22.9 23.1 24.3 23.2 24.6 24. t 26.7 22.0 20 26.9 24.3 23.6 2S.7 2S.2 24-S 25.1 23.7 24.3 24.4 24.0 24.0 24.6 26.9 23.6 3o :6.8 2S.1 2S.3 26.0 25.6 24.6 24.8 24.7 25.3 23.8 23.6 24.3 2S.0 26.8 23.6 MaV 10 26.6 zS. 1 25.8 2S.2 2S.6 25.2 2S.8 25.7 2S.3 24.2 25.4 26.1 25.S 26.6 24.2 20 27.6 25.3 26.2 26.0 26. 1 2S.8 27.2 26.9 25.3 24.3 z6. o 25.8 26. 1 27.6 24.3 30 27.4 ZS.8 26.8 26.3 2S.7 26.S 27.0 26.8 z6-3 24.6 26.7 26.9 26.4 27.4 24.6 June 9 27.2 26.6 27.8 27.7 26.8 z6. S 26.8 27-S 27.0 25.S 27.3 27.6 27.1 27.8 2S.S 19 27.4 27.5 28.9 28.0 28.3 27.0 27.6 28.4 27.1 26.8 27.4 z8.5 27.7 z8.9 26.8 29 27.3 28.S 28.0 :8.8 28.5 27.3 27.7 28.9 27.7 29.1 28.S 28.9 28.3 29.1 27.3 JulY 9 2S.4 28.9 29.1 29.4 28.4 28.0 28.S 29. t 28.4 29.4 28.3 28.7 28.5 29.4 2S.4 19 24.6 29.0 29.2 29.4 29.1 28.5 19.3 28.5 29.3 30.2 29.0 28.6 28.7 30.2 24.6 29 24.3 29.3 28.6 29.o zq. S 29.3 29.3 28.S 29.8 30.3 29.3 29.3 29.0 30.3 24.3 Aug. 8 24.8 29.6 29.3 z8.6 29.2 29.1 30.1 29.0 29.8 30.9 29.4 29.2 29.1 30.9 24.8 18 2S.0 29.1 29.1 29.4 29.3 29.1 30.2 28.7 29.8 29.8 29.1 29.3 29.0 30.2 2S.0 28 24.8 28.2 28.8 29.0 29.8 28.8 29.7 28.6 29.6 29.3 28.9 29.6 28.7 29.8 24.8 Sept. 7 2S.2 28. 1 28.7 28.7 28.7 29.3 29.4 28.7 28.7 z8. S z8-4 29.3 28.S 29.4 2S.2 17 24.6 28.S 28.7 z8. S 28.8 28.8 29.7 29.3 29.o 28.S 28. 1 29.3 28.5 29.7 24.6 27 24.4 28.6 28.2 28.4 29.3 28.6 29.7 z8-3 28.3 27.2 28.0 28.8 28.2 29.7 24.4 Oct. 7 . ... 28.3 27.9 28.1 29.0 28.0 28.7 27.7 28.4 26.6 27.4 28.4 28.1 29.o 26.6 17 .... 28.9 26.8 28.1 27.9 27.0 27.2 27-S 28.2 26.3 26.9 28.5 27-S 28.9 26.3 27 .... 2S.8 2-7-1 27.3 26.6 z6. S 26.4 26.8 27.5 26.3 26.S 27.3 26.8 27.5 25.8 Nov. 6 .... 26.0 26. 1 26.2 26.4 2S.7 ZS-3 25.6 26.: 26.5 z6. i 2S.8' 26.o 26.S 2S.3 16 .... 26.S 25.9 2S.3 25.5 2S.4 24.8 25.0 25.3 26.9 26. 1 2S.7 2S.7 2.6.9 24.8 26 .... 25.7 2S.9 24.3 2S.4 ZS-2 23.1 24.4 24-S 24.1 25.2 25.S 24.8 2S.9 23.1 Dec. 6 .... 26. a z5. 5 23.6 24.6 24.4 21.8 23-4 24.5 23.0 24.4 24.3 24.2 26.2 21.8 16 .... 24.1 2S.2 24.2 24.2 24.3 23.0 21.9 24.2 23-S 24.1 23.6 23.8 2S.2 21.9 31 23.0 1 23.8 1 23.3 1 24.2 1 24. t 22.2 22.S Z3.7 22.2 Z4. t 1 22.1 123.2 1 24.2 1 22.1 Fig. 29 Surface temperature, 10 day means from 1878 to 1890, Fowey Rocks (from Vaughan, 1918) 149 FOWEY ROCKS, COCOANUT GROVE. FLORIDA-Continued. Date. s891 1692 1693 1994 189S 1896 1697 1898 1 8C)q 1900 1901 i902 Mean. Max. Min. OC. Oc. Oc. ac. Oc. 9C. Oc. Oc. Oc. Oc. 9C. *C. sc. C. Jan. W .... 22.9 21.6 s3.3 21.3 19.6 20.1 ao.8 ao.7 Wo at.9 Ma ii.o z3.3 Is.a 20 .... 23-3 20-8 33-4 22.7 19-3 22-4 22.4 23-3 20.8 21.2 IS.8 21.4 23.4 ISA 30 .... 23.0 22.0 23-1 23.3 23.0 20.2 23.6 21.8 20.2 20.3 19.9 11.8 X3.2 19.9 Fcb- 9 24.3 22.4 23-S 2j. 1 21.1 22.9 31.3 21.2 23.0 .... 16-7 22.0 22.1 24.3 18.7 19 24-S 23-0 23.9 23.1 ".2 21.0 22.3 22.3 is.6 .... 21.4 20.4 21-S -14.5 IS-6 Mar. 1 23.9 22.6 2S.6 23.4 19.9 20.2 22.3 21.0 22.1 .... 18.7 19.5 &I.S 23.9 18.1 11 13.6 22.9 23-6 23-1 23-3 22-4 22.4 21.4 21.9 .... 21.1 X0.S 22.4 23.6 20.S 21 24.0 22.6 33.7 2J-4 22.9 21.1 23.6 23.0 23.0 .... 19-6 21.3 22-S 4.0 19.6 31 23.8 23.0 23.3 23-0 22-8 23-4 23.3 23.2 23.3 .... 21-7 22-1 33-t 23.8 22.1 Apr. io 23.7 23.5 z3.6 23.7 24-0 23.1 33. a z6.3 24-2 21-S 24-1 :t.o z3.5 a6-4 21.0 30 25.3 24.1 24. j 2J.9 2j. 5 24.1 32.3 2S.2 4-7 21-9 24.3 22.5 23.8 IS-3 21.9 30 2S.4 IS.0 2S.0 24-3 23-8 24.6 23.2 24-0 2S-8 23.6 24-3 23.0 24-3 ZS-8 33-0 1-13Y 10 3S.3 34.9 2S.S 24.3 2S.3 2S.3 23.6 24.2 24.7 23-9 23-3 23-S 24.4 2S-S 32.3 20 3S.? 2S.3 IS-6 24.7 aS.9 16. 3 :3. S 24-S z7.6 23-4 24.0 23.6 sS.o 27.6 2] -4 3a z6.3 z6.3 26.o aS. 3 aS.9 27.6 zS.7 26.8 28.2 23.8 23.4 23-3 ZS-7 28.2 33-3 June 9 26.6 z6-3 28.4 z6. a 3S.9 27.9 26.7 z6. 8 27.6 24.8 22-7 23.3 26.0 27-9 22-7 19 27.5 35.9 27.8 26. a a6. a 27.6 27L.9 27-S 27-7 24.7 23-3 23.4 26-3 27.9 23.3 29 26.4 27.2 29.3 27.4 26.6 fl. 8 29.2 28.3 28.1 2S.7 Wl 23.6 27.2 29.3 z3.6 JUIY 9 29-3 28-0 29-S 28.0 27.3 :8-8 29-9 28-S 28.3 27-1 23-S 34-S 27-7 29.8 23-S 19 29-1 28.4 29.7 28.1 28.4 30.0 29-S 29.1 28.0 27.6 24-S 24.4 28.1 30.0 24-4 29 29.5 28.7 29.6 29.8 28.7 30-7 29.3 29-S 28.3 28-2 23-S 14.6 28.2 30.7 2J.S Aug. 8 29-6 29-0 29-8 29-7 28-8 30-7 30-0 29.4 28.7 27.6 28-2 23-6 28-7 30-7 23-6 18 29.1 28.9 29,7 29.9 28-7 30.1 31.2 29.S 29.2 27.2 27.3 23.7 28-6 31.1 23.7 Se 28 29.3 29.1 29.1 29.8 29.6 30-2 30-8 29-2 29-4 27-S 27.9 23-S 28.6 3o.8 23-S Pt- 7 29.0 29.0 .29.2 29.S 28-8 30-4 38.7 30-1 28.3 27-0 :7.8 22.9 28-4 30.4 22.9 17 26.6 29.c 29.3 29-1 29-3 30.1 28.3 3o.7 27.6 27.z 27-4 23-S 28.3 30.7 23.5 27 28.4 28.6 28.2 29.0 29.6 29-7 27-8 29.5 ig. 2 s7.6 27.3 24-0 28-2 29.7 24.0 Oct-' 7 '27.7 27.S 27.8 26.1 28.2 29.3 2S.9 119.1 26.8 26-0 227-0 24-2 27.3 29.3 24.2 I? a6.7, 27-3 27. 1 Is.9 26.S 28.1 25.8 28.S 27.3 ZS-8 27-S 23.6 26.6 -.S.S 23.6 27 x4. 7 x6.8 26.s Z4.7 23.4 26.5 2SA) 26.1 z6.6 s6-3 26.o 33-S 3S-4 26.8 ;:2. S NOT- 6 24-2 24.6 XS-4 24.6 14. 1 28.0 25.2 24.4 26-4 26.3 z5. 1 23-3 2S.2 28-0 23.3 16 24-3 23.7 24.4 23-S 2S.3 28-4 14.1 23-S 2S-1 22-t 22-2 24.6 24.3 28-4 22.2 26 24.4 23.4 24.7 4-1 23.6 27-0 23.7 23.5 ZS-3 23.1 20.0 24.7 24.0 27.0 zo.v Dec- 6 24.6 23.7 :4. S 33-S 22.8 24-4 24.0 22.2 23-S 22-4 21.0 24.2 23.4 24-6 21.0 16 4.6 24.3 23-6 4.0 18-S 2t-.9 23-S IS-$ 23.0 2t.6 21-4 24-9 23-2 24-9 15.8 $11113-31 23-3 123-3 1 22.2 1 24.7 1 21-4 1 33-1 1 18.3 1 2t.1 21-4 I8.z 1 21.8 121-9 124.7 1 18.3 Fig. 30 Surface temperature, 10 day means from 1891 to 1902, Fowey Rocks (from Vaughan, 1918) ISO FOWEY ROCKS, COCOANUT GROW, FLORIDA-Continued. Date. sqo3 zqo4 s9oS sqo6 t9o7 i9oS igog 1910 1911 19t2 Mean. MM Min. Oc. OC. OC. OC. ec. T. 9C. ec. OC. OC. T. ec. 0C. Jan. T* 21.0 21.4 21-4 22.2 22.8 22-4 2S.3 xi.6 2o. 1 24.3 22.2 2S.3 20.1 20 21.S 20.7 20.2 20.7 23.1 21.1 26.2 21.S 23.0 24.1 22.2 26.2 20.2 30 22.2 20.3 21.2 20.6 22.1 21.7 23.3 21.9 24.1 24.8 22.2 24.8 20-3 Feb. 9 z6-4 19.8 24.8 21.2 22.S 22.2 21.8 20.S 23.4 21.9 22.S 26.4 19.8 19 2S.2 21.2 2S.2 21.4 20.8 23.6 22.4 2t. 1 23.9 21.4 22.6 IS-2 20.8 MaT. 1 21.9 21.4 22.S 21-S 22.S 20.9 22.1 22.4 23.2 23.1 22.1 23.2 21.0 11 22.2 21.1 24.1 21.9 26.3 z6.0 2S.2 23.2 22.3 22.S 23.4 26.3 21.1 21 12.6 21.0 2S.3 23.6 24.4 24.4 27.4 22.1 22.1 24.1 23.6 27.4 21.0 31 21.4 2t .3 2S.9 24.2 24-S 23.7 z6.9 2z.7 24. z 2S. i z4.o 26.9 21.3 Apr. ic 23.7 21-S 2S.3 23.6 al-S 24.0 27.2 23.7 2S.S 24.3 4.0 27.2 21.4 20 23.7 22.3 25.0 2S.3 23.3 24.7 27.1 24. a z4.6 26.7 24.6 27.1 22.3 30 24.0 22.S 26.3 27.1 - 24.3 :6.1 29.4 4.3 24.6 26.8 2S-S 29.4 22.S May 10 22.2 22.4 26.7 27.4 28.1 28.2 29.4 23.4 2S.0 z6. i 2S-9 29-4 22.2 ZO 22-S 21.4 28-4 24-2 27-S 28-4 28.4 WS 4-9 27.0 2S-8 28-4 21-4 30 24-1 21.S 28.3 26.6 28. 1 29. z 28.6 ZS-7 ZS-1 27-3 26.4 29.2 21.S June 9 24.6 21.S 27-S 28.1 27.0 28-4 28-0 27.8 28.1 26.9 26.8 28-4 2t. S 19 24.9 22.0 27.7 28.6 27-S 29.3 28.3 29.S 27.6 28.z 27-4 29.S 22.0 29 23-7 24-4 29-4 29-0 27.6 29.6 28.2 28.8 28.4 27.9 27-7 aq.6 23.7 July 9 23.4 26-S 29-S 28-2 27.7 29.S 28.9 28.7 29.0 27.7 Z7.9 29-S 23.4 19 24-1 27.3 29-S 30-1 27.8 30.9 29.2 38.S 28.1 28.2 28.4 30.9 24.1 29 24-8 27.3 30-0 28-S 28.2 30.8 29.4 28*.7 29.S 28.S 28-S 30-8. 24.8 Aug. 8 23*6 27*1 "A 27*8 29*0 29,9 30*0 29,0 21,9 lll*S 21,4 30*0 23 *6 18 23.S 27.6 :9@6 29-4 30-3 29,S 29.0 29.8 28.9 26-3 28.6 30.3 23-S 28 2S.1 27-4 29-4 29-3 29-S 29-1 29-4 30.0 z8.6 z8. t z8.6 30-0 ZS-1 Sept- 7 ZS-4 27-S 29-4 29-8 29-4 28.6 z8. S zq.6 zS.o 28.8 z8. S 39.8 2S.4 17 23.8 27.7 29.0 29.7 28.6 28-3 28.3 z7.6 29.0 28.9 28.1 29.7 23.8 27 24.3 27.6 28.8 29.S 28.7 29.0 28.2 27.8 28-S 29.1 28-2 29-S 24.3 Oct- 7 23.6 27.6 26.8 28-3 28.3 27.9 27.2 27.2 228.3 28.6 27-4 z8. 6 23.6 17 23.6 26.8 26.6 27.1 27-4 26.8 27-S z6-7 28.2 28.9 27.0 28.8 23-6 27 22.3 24.0 26.9 26.9 :6. S XS-3 28.0 27.5 27-9 29-4 26.5 29.4 22.3 Nov. 6 22.S z4.6 26.8 26.8 2S-7 24.2 27.0 23-4 27-7 26.5 2S-4 27.7 ::-S z6 22.2 25. t 16.0 2S.0 2S.3 27.4 2S.0 23.4 27.4 z6. 0 2S.3 27-4 22.2 26 :1.6 24.4 23.8 2S.7 24-4 z6-3 23.0 23.0 26.2 26.4 24-S 26.4 21.6 Dec. 6 21.2 24-3 24.0 23-8 23-S 27.9 22.8 22-4 24.9 23.8 23-8 27-9 21-2 W 21.8 21-8 32-0 23-1 24-4 24.8 23-S 20-9 24-7 14-4 23-2 24-8 20-9 2l.S 32.0 22.S 2 " 2S-1 24.9 ig.6 20-4 ZS-3 14-3 2z.6 2S.3 ig.6 [:16 16 31 1 Fig, 31* Surface temperature, 10 day means from 1903 to 1912, Powey Rocks (from Vaughan, 1918) 151 DuKku mid Amma lbso wfroa* ftur f"Orowroo. of wall ISOT40116 "Sk asown-S. soft).4ag. im- ft- aw. -404. 091. 90, 10-:. IM 114 NJ S.1 43J T&A U.9 16.) - - - - no %A "A IT.? 414 &A &A 0-1 ftJ "A TIJ - IM "J %.1 11.1 %A ".3 42.9 1L.9 1L.2 OA W.? "A 16.1 18.7 a 14.0 "1 ".1 ":1 ::')1 1', Aft.) 0).1 81 76.0 IL:? "A 9 @ ft 43:1 63 14.5 %.8 77A " j .0 &L.2 971A " I 13.6 ILA %A ".4 10.5 40A VA 16.8 4L.0 ""A ".) 103 I= IL-9 I&J 11.3 16A WA &A &A 0-0 15.) 191 "J 214 ".3 WID 104 "A 11.6 T&.9 "A MG 0.1 Mg 03.1 W.? U.5 "A W.? nq "A ".I ".v ma aj &.v ws #).4 la AVVJ ".3 "A 16-9 "A 10-9 ".S ".9 MIA 0.2 0-8 0.1 "A 71A IIA 90.2 "A ".1 14.9 ".9 41.1 ILA $16:91 W.S N.1 "A VIA "i 111161 ".S 1160 "A 11.3 424 OLA 06 aj W.0 71.0 "A "A Im . W-0 14-0 IS.? "A RJ 04 &A 0.5 "".6 "A - "A 11-6 1161 ".6 "A "A 01.1 OL.1 03.0 0:1, ".0 U..? 19.0 "A %A 16.9 ".9 "j 0.6 ftj 0.1 M.9 IDJ "A 1L.5 "A 96 IL.0 IXG TX? ".2 16.1 IDA 03.8 M.4 OL4 TOA "J "A 11.9 IN" IXI NA M) %A WA "A fth 1&? $6.9 ".0 ".6 nJ "A IM 0.3 "J "J ".1 ".9 0.9 8.9 0.9 06.0 42.6 41.9 IIJ "A 0 *A TLA "A "A ".1 0.5 4.11 V.8 0.4 74.6 114 1L.0 19A 16 12.5 10.8 "A ".) "A &A 06 -L 05.1 0.1 434 T4.1 ".9 "J 71 A "A "A 16.6 40A 0.1 0.9 03.6 0.0 0.3 "A 11.1 4 190 WA "A 16-V ".) a.* a.) 49.0 76.1 73.9 ISA sm lei NJ 194 "A %.# ".0 ".0 &.0 0.2 80.1 91.2 61.1 1kJ 6LA 0.0 11L) 13A It .1 744 76.1 % A 14.6 TX% 76.) 1).9 ILS "A IN ".0 164 13.3 16.0 M4 IS.? 7%.6 IS.$ 11.5 70.6 UO 69A 09A 70.0 72.4 n.8 13.0 42.8 U.0 12.0 70.1 ".1 "A I HN *J1 16A 16.0 "A a.* 03.0 04 &.9 0360 "A TV AILI "A 190 ".0 "A n4 "A ".0 0.1 1L.1 46.1 4 A 44 17A "A INJ 0 ".1 11.3 714 114 0.1 ft.) 83.0 01.1 ".0 W.0 WA 4, " A VIA ". 1 77.0 13.6 ft., :: a, 10 03 "J "A "A " 7 a wo n.& "A W.1 0).I W.7 1'7 OL.9 0:7, 03.5 "A 10.8 ":8 I"D 21-0 TOJ 11-0 ".0 764 43.9 4.6 4.5 &A 19.9 13.7 694 "A IOU W.? ILA 11.8 16.9 TTJ 0.6 4.0 13.9 43.1 ft AWJ 11.0 10.9 U "A 12.0 1169 "A 0.8 42.9 0.4 0.1 ILA OLA 10.1 ".0 "1 33 111 116.5 - GDJ 04 054 15.1 V A &.5 "A IL.2 - U TIA IRA 124 TFA ".) 03.1 1L.) 66.0 4RA &A ".) ".5 90-3 &W I" U-S W-0 114 0.5 124 03.2 031 aA d&4 lei 11.3 it.? I"k " A 13-1 14-0 M 1 16-3 0-5 13-1 40.3 N.0 TV A7SA " A "A IT "' a ".0 A 94.0 16.7 U.1 63j 42.0 a.? 0.9 14.6 "J 76.6 34 70.1 TM A 16.9 "A &.5 13.) 1).8 80.1 a.) 774 T)4 "a 19 WA TIA WA %.s "A a.@ wi ik.o w.? 82.9 17.0 ".% "i IM 72-3 UA M? "A "J 404 0.1 0 A 40.0 ".3 76.1 %J 17.0 1112 "A IM n? "A ".) 42.3 "A 44.3 76-0 4 GA U !M ".3 %J TYJ 0.1 U4 0'9 ft-? fth 40:11 1*6 A a : : I :: Ift "A ft., ;X.9 ;1.) 0.2 71.9 UA Ift U.3 "A IDA W I VTJ WO M.9 04 ftA NJ 16J "A ISJ 'a" ;0-1 ;L@ ;1.4 is I%. I Na 1.0 ;'J : ;J ;.) ;.a : I " 12.? U.3 "A " 3 7T.7 IDJ MI &.1 460 ".5 "A "A ".9 1"D WJ ILA I&A 16.0 0.3 S.) ft ANA 2b.8 4L.) IIJ 'kJ VO-0 SOX It.? IIA " A TO A 70.9 12.1 01.0 M-0 OL-I a" 16.9 10.5 "A *:1 1.1 ":11 *1 " 1 16 -* 1.1 19.3 1A "A "A " W S 71 7::1 5 A TO .0 go: I ILA : .1 ALA a4?&A %A "A 1L.T 12.9 16.7 16.9 "4 &.4 ft.2 46A 4L.1 MA "A W.9 (69) (so) (50) (U) (01) (53) (53) (52) (0) (9)M (9) 1@ "A U.1 VA NJ "A UJ 43.) 13.0 a A 0.3 W? T3A TTA 36041AP at ft"% blo motor and ft"I be mwr' I $A.. U09v* I"L 1121-14M. PNWLW at 0 OJ6 ftw" - V"". SM SOMM IV, Rnm VA r. ME' Phff -bo" ftV !M. lott' Pn' No. 1m-2 3M ftA VA3 ILI ILJ NJ "A Ib.T W NJ %A TVJ ftj a ;iA ;Ls ;,.a ;LT ie ;61. Lz @)J ou %,A nv vv.& 76.9 "A "A "A W 6 01.1 81.9 ILO . . . . nA H4 tut NJ a5 65 R5 R3 ma ftj *.I "a ws VA "A 764 0.1 ILA "i ft.) ILA 86.0 03.1 &.1 %J TV.? "A 31 15.9 "J "A ".1 ".2 01.3 W.1 &.1 1L.T NA ".I ".T "J 7h.9 Ih.5 11.4 ".4 ftJ 01.9 U.) ILJ 43.9 VIA 76.9 75.0 ".8 %4 "A 162 TTJ IDA ILI 85.0 NJ VhA 0.1 71.1 TIA TPJ 110410 A UA U.6 NJ 19.6 .6 1 .9 A U.0 ft.A NA 84041460 64 0 4.46 WIN 6 P.06 imme" - MW Fig. 32 Monthly and annual mean surface temperature data for Fowey Rocks, 1879 to 1934, and Sombrero Key, 1925 to 1934 (from Bumpus,.1957) 1r.2 0 %..# 24- IL 2 - 22- 20- is JAN FES MAR APR MAY Fig. 33 Bottom temperatures during the period January to May 1974 at Hen and Chickens Reef. Dots indicate average daily temperature (readings taken at three hour intervals). Circles indicate 10- day means. (from unpublished data, G. Griffin, Univ. of Florida, Gainesville). 153 IkIrews Ce"I;KrMb ll;mcram ww" per liw 1001bas won, 0401 01" Is T'4:.vb *@Mha ch"" x C Zv= "9 a Va." Vftq I.A.. AN- W-ft K" N-T 4-1 New S*r alas two- ft- -41.3 31.0 n.9 al-$ 39.4 .11.1 1 7.4S <11M Colo.% <001 <001 COM <00J <0 0.1 <001 <D41 <O.W 30.1 8-4-0 "45 ".7 29. i, I o". I I Jo. % .1111'4 XOA ". 8X 5 C.0.4 #U <.03 C.03 .00 .00 JIMMon oft -27 4.; 24,62 '24 on )C93 A. [email protected] 2% an it. , 31.90 17A,11 26.611 24.70 '90 10-27-45 C.03 .12 AD OD An An 1C.O.9 C.63 All) C.01a 12-2-4% 211.46Y. 21.94 20.24 19.93 zl.%" 111.2% 14,01% 19.15 24.35 lo.%A 101 11-2-43 AM 120 .01) fill 10.1 Ao An CM .10 .10A 1-6-46 21.00 22-41" 21 Is 21.16 21.70 it In 11.01) -alto 2.41 8-046 .00 .4D .00 C.03 C.03 4111 AD 7,M on AD 1 2110 2191 22 1*0 2244 17w :1111) 1 A3 2-3-46 22. RIO 22.18 2son 23.2.1 4 0111 2-3-46 AD 1.3 An .01) .00 C.OA C.83 4-2"6 26. 1 in 27@w 24 as 25:211 J% an 2467 34.01 14.11 23.23 35.15 .57 4-2*-46 A3 12 .4141 .00 ICJIJ As Ab C.0%IZAD ILSP 2w 33-28 29.3,' 21.00 29.13 28.90 129.05 21.1111) 32,13 .78 "46 A 2*A ADIC.411 CM A111 It 03, <.w sno wow sati.44s so W awfew GroFft per Ungraft NiftiAr-ailrol'a in "A -owem, otrat &.Pfaff vants Va 6w Stations paw "nat Tiv P44b. ebilso, 4 V.1104 11."_ I-A '11kh llvn,@ Is 11w. 111. to. %.on- 01.1we U__ lob. '_q. - "'os' I*d v1w* 911@ 1w..6 Mai ol.bw pa.k N@v Nor K4_ AT.52 38.41 J01.60) AT.AS .10.97 31.40 MIA 37.81 - 1-1-45 44 4% WA 46-21 .17-11 37 RA X17 30 (111 XX A6,83 3562 11,67 33.47 &a W all 0.1 ki 90.1 0.0W 10-27.4s 27 it. . ..). J0.99 xlAI SSAI 35.19 35.52 35.2% 33.06 rIAS "-45 j 25 .1 .1 .01 .1 .1AAa IJIM 31.11 .1 1 1 12-24S MAI 37 'oil 433.71 34 M J4.43 36.04 311-01 N'3,11 10.21.45 .9 1.0 .3 is .1 .1s CA #1 .0 .15 1-6-46 114 '".0 .4.1. 1 .1 3!t. 14 .44.41 33.37 --A 22 211.411 12 A A A .1 a AAAA.0 2-346 U as 211.1A U.0 34.41 A5.59 36.58 36.56 36AS 36.02 36-26 33-19 1-6-46 .4 1.0 .2 .1 .1 .1 .2 .2 4-29-46 P-M 311.0 111.24 31.26 16-% SAA 31106 37.25 A0,10 3696 M-22 2-3-416 A 2A A A A IIIA 6-6-46 34.29 WI? 35.10 35.23 35.50 37.39 36A 36.22 36.06 35.70 33.14 4-2"6 .3 .2 A .2 -9.1 4: 4C.1 0-6-0 A 1.9 .15 .2 A.. C:', Cc:,) :1' is Dwalmd "Yxea is " weller as dw oft*oo lklilficrtat stom. pow riter P&.41.a od.." is ta,#,lam %awwa its" a I a Ut a Loan 1.01.0 '-t ..a r. 6 11 U. a. Ms. P. ,- s..0 .1%. r.. Is. "I , "z...l r@r_C P -A -it 1" 1'.44.4 1 1" "16sh Is- on karft$ h"-" swat K" U-v lk@ N" Iir.. - 4.11m kAh"t 1 1144- "" N- K., M.'al ll.tw R.0 - -- 71W -.J%l AIA .. 7-7 45 AIV .3' i It 7,;@- -74'Z, 7i;*- -77f_ .444 1-7-43 12.8 22.0 11.0 31.1 6.4 1-$ _<_1.00C0.5 0.5 0-443 .313 ..%%6 A". .2%x .314 .445 _1112 AM .40 .491 AM "4S 2.0 3.0 0.5 0.5 Its 1.0 1.00 ill .27-43 .342 -411 .351 .397 .426 .394 A41 *4411 416 *114 A47 10-27-43 1.0 Ic 1.0 3.3 S.5 0.5 trash JA 4.0 cs 5.0Ij 12-245 .421 AM .467 .421 AM AM Ali .325 .434 AM All 12-2-43 <D.5 5.0 1.5 Lo 2.3 col; 2.5 3.3 2.5 3.3 1-646 .3113 .3`66 .438 -1.41 .2%8 .443 A T I I I I on ft -AIG .410 1-&46 13.0 5.0 2.0 2.0 Is 2-3-46 .04 .287 A32 .3-16 .363 AM .448 .424 .493 .443 2-3-46 1.0 2.0 5.0 4.0 0.5 D's 1.3 4-28-46 .416 All AU A% .4% .492 A46 491 441 .479 .311 4-28-" 11 0.75 1 A Lot 1.0 0.3 0.5 1.0 0.5 1.0 6-6-46 .307 .118 J69 IJ36 .1% .4.11 X4 Jig1AM .40 .452 6_6_46 10.0 4.5 1.0 9.3 0.5 Us [email protected] 1.0 1.0 Dissalrd ovysrs in so orelff at low awfue #01 M cent If eaturation 43 z to .j ZI just a X. x wool so w"a to z task It-. %,mw bbra I-at I..- C' lad Filmot kaft 0 ft- u... R...=1 bash am Nor fiffor 0 7-7-4S "5 91. VAG 92.3 1(11.6 11 GA TA.A ".6 93.1 10%.8 - X 8-4-4 tl 70.3 96A 111.6 74.3 96.0 111.6 3.7 10.4 .0 106.7 114.1 101.5 z 10 27-45 74.7 67.5 77.7 89.5 95.3 9.4.1 96.3 117.0 97.51 101.1 VAG .4 1 12 2 AS 64.0 Pa.? ".0 11A.7 96.9 9.16 901.0 107.9 96.5 00.9 04.0 a 16 46 79-6TA.4 03.1 74.5 53.# 1 vs.1 9J.0 --W.S Kt 1, IL 2-446 64'4611.3 02.9 775 796 lot 8 10110 n6.G ".5 tool Ws 4 19-46 9Lj " 3 It" 6 107.*; losol Il':2 104.1 1112.4 10%.4 111.1 InA dW N-4.. 6-646 I'll 4IJ 89.4 3: 107.6 921 97.1 ".3 OLT 10.1 P N 3& 0 loc no- '^'M'J 'J '^'3'0'N' D'J 'r-M'^'M'J MONTH 0twitative observoitkm 4t stat;on I on Triumph IteelL IN t shrile nit-am P: phosphott jil-ft- p1borm tath talwesK4 in microoram ato@ns [A" liler. Foilliottl taprewd in ph I 2 2 n 39 L It itriths of pawl cowed after one th of capossro. Plankton iAprcswd is milliliters ptr stantlard savqk. Fig. 34 Water quality data, including Triumph Reef and Soldier Key (from Smith et al., 1950) to 24 17 to a 00 so is a 00 Do a a a 00 06 a a 00 06 a 0 00 " a Istiollsool 'SIIII.M. .1 TEMKRAI Uat to _11 90 'a. to 39 TEMPE" URE j ..... ..... .... 00 ......... . . 00 Z so: 74 4?o .60 260 $""TV .30 - 16 16 0- Z 16 ps:. 4- =so 7 DISSOLVED Ovum DISSOLVED 0XV14011 to -es KIA sat Go P" to: :10 'Ai P"OSPHOR US (000, @ANIC) 0 Ptak n1mit -v O-K'o 021 %Ar I -_Oo oic- -CURRENT I ELOCITY WRTNERLY WIND V L -Elo TUARIENT ELOCITT fool Kftv WIND Ve OCOITT I Zia at aat RENT WTA. -a Ile,77., -V, oca 0.0 as: SGOTMNLT Z 00 IPA- X10 ILLUM"IAT 104 11.1.11111101A ION 000 = .000 AMP $AMP: 11L 11AMP @i '(610KNA'sygi Fz 0 0 &0 SKY CLATT@ =So To, 0 as - %@'@ I ....... SKY .1.014T.V -:2 PNIESS URE 111111111 11114111414 1 1111111111 610,111 21199.1 Ijssel off, 111#11101"I fool It's. 1 161141,1111 . ........... It of 11 0 6 1 H1_ 00 a 111 -2 IS __Do _44 a a 06 10- Observed phy,.ical and chemical features of the patch reef environ- Observed physical and chemical features of the patch reef environ. ment from 21 to 24 August 1%1. onent from 17 to 20 November 1%1. 3 4 5 03 111 it is 00 of is is of I of :of of a Is *a " 0 $sal-Ilsoll CTEMPERAI URE 490 HISPER USE F so "q/ To 4 J 0 SALINITY A I-TE %.a- -:36 so En DISSOLVED OxvC.Eft INSSOLvgo Oxyotn a.* its ft@. six SAT :.., "K _'01 " - Soft 7 --Jac 460,_ =00 a --so 4's I P";t\., Z 4.0 A@ INV IS 72.7- -=to W, =70 11400106PS Or (INORGA f. lot 40% -Zot 4ur IF CA oux _160 _01"TA Pat: TOTAL of 0.1 of 0.:1%A 01i -:16 --co i NENT V avywcolLy W" VELOCITY : I.CURRENT IFLOGIly il44T.C#tL, WIIND V4LOCITT .40 A- i, , .. C4uo4KmT V4 Pilt .5z 11 r) Kill AN 0 060. of: at :so CA: --so SOVTWRLY r- Isou'"CAL -T "AT 000 LLUTl ON ,%MAC4E z "U"' .OOL4nF"g 7 --:40DO 1606 MAW % so:. -00% 0 &Z@ @YCLAAIITY SKY CLARV V BAROPIETR C PRESSUR E ZM MI Ic PRIS 301-- -i. *E . . ............. n-, =760 ............. ........... ...... :Fw- - "a 7 04 1 - as - - ["'Olsoller still Ill$ .Of 00 4 to Is 00 Do a a ro 03 it is A . .... ..... a L., VE 1OC47 4v@ @W- no as 0 S&PONIETS 4 Observed phy%ical and chemical features of the patch reef environ- Observed physical and chemical features of the patch reef environ- anal from 2 to 5 March 1962. ment from I I to 14 May 1%2. Fig. 35 Climatological and water quality data, Margot Fish Shoal (from Jones, 1963) 155 LOW 94 M4 Vertical and seasonal variations In temperature at Fowey Light. from January, 1964. to January. 1966. 0 Aj. LOW j/ % so 44 Verlical and seasonal variations In we at Fowey Light. from January, 1964. to January. 1966. Deep surface mining and subsurface pockets of mixed water indicated by hatched areas. FOWET I'MM so %% I -i - r --i -Y i d Seasonal variation in standing crop of phytoplarkton during 19W - 1966, at Fowey Light, Fig. 36 Seasonal variation In temperature, sigma-t and phytoplankton standing crop, Fowey Rocks (from Vargo, 1968) 0 WIN an W So- ALLIGATOR W REEF a so. LC 100, no .1 r isA j 10 44solooj FMAMj j Ago j M65 a" Vertical and seasonal variations in temperature at Alligator Reef from January, 1964, to January, 1966. 0 404 ALLIGA@OR EE R no 120. C3 j IF M A j i A 3 0 N D a r IN A M j J. 1964 1965 Vertical and seasonal variation s in es at Alligator Reef, from January, 1964, to January. 1966. Deep surface mixing and subsurface pockets of mixed water indicated by hatched areas. ALLIGATOR REEF Rol "M so- 1965 Ed 40 1966 - - -------- 40 196*4 i F M A M i i A A 0 l, D i Seasonal variation in standing crop of phytoplankton during 1964- 1966, at Alligator Reef. Fig. 37 Seasonal variation in temperature, sigma-t and phytoplankton standing crop, Alligator Reef (from Vargo, 1968) 157 Chloride Rainfall 21.0. 20.0- 19.11 19.0 0 Gap Oct Mel c Jon Feb mar Apt way Avg top Oct Graph showing daily content or chleiride nf sta-water at Fowey Rocks and daily pfecipitatinn at Miami. Finrida. 'Sertembtr 12. 1914- to October 17. t9q. Fig. 38 Salinity data for Fowey Rocks (chloride content) and precipitation data for Miami, 1914 to 1915 (from Dole and Chaffbers, 1918) Jos Js 158 Summary Nutrient Data From Water And Core.Samples Taken From Stations 1-5 S Tv%T I OIN I Date Inorganic po 43- Total P04 3- N02- 1@03- NH4 ( pg at P/L) yg at P/L) yg at N/L) 8/29/72 N 0.04 1.01 0.01 0.16 1.10 C 1.57 1.21 0.15 3.69 1.52 9/8/72 N - 1.00 0.02 0.12 1.21 C - 2.29 0.12 3.96 1.52 11/7/72 N 0.16 1.04 - - - C 2.44 3.82 - - - 1/23/73 N 0.15 1.11 0.05 1.51 2.34 C 4.71 6.75 - - - 3/13/73 N 0.02 1.15 0.04 1.95 1.53 C 2.17 3.59 0.21 - 2.29 5/19/73 N 0.21 1.04 0.13 1.96 3.01 C 4.42 8.58 0.75 - 2.82 Symbol de2.jFnation N - water sample C - core sample Fig- 39 Nutrient data, Brewster Reef (from Simmons, 1973) 159 -COWNU at Astivas No$. 1. 1 Ma I (For At currrverreordi -curread "twit. "-A& roof 0" Daft &ot;m r 'Vow" Cm. Divertion (No rib Station Ne, 1. of uWar's 19". 1W 1m*I N. % "..k Ckonesi - I ING, I -b;cb Mr"al so" tAL Sim 33-31, t.% W ir (. U. L C Or 0. L.km 146) 1#14 A, M & ML 16064 1 1 WO 41 s. vs. M13 L WW. Ebb ' 123-1 13 ma. 0 74 N. 6W L rim CA"nl 3 2 15-2 43 6" N. W L Flow 3 3 3D4 00 12." N. 3V L Ebb 9 3 6 40-6 SS sa. 33.96 AL WL Ebb Dan% rms Way lreh*Y 'Wind rsh C. K. See ftco per boo L na 4 1M-0 45 L M MOM 0.211 SWW. ILL fight Dbiq StO606 No. 2. Csnw*s Creek Net. Hawk Chased L&L 21' "Y. I-S, IV I Lr (am U. IL C. & 0. L then 1") 0 L- 123-1 ON Wo N.4rL ILlight (an U. L C & M L chart too 115-2 41j, IS." L310 NO' L L Sight 4 $30460 it" .2S2 N: 31r L L ht a. Se hebs EA, S 640.4 IS 33.96 ASS LWL STATON AOW 0 Starine N- 4. eff Stedr4pers Key. Rawl Ch ... 4 dph 12 IL 1AL 23- OLr N, 1"q- IV NO' W. (sm U. L C & Q L than IM taiD a. sa. 1110 262% L 3kr W. SM light FJ-big 011- I I S 2 t 2 M 2 PmL 4.1: A04 S, 30P W. -L al,mwt calm Neorly auk STAMPS IAOX S 51 6,28 .122 L S.E almost calm Fiow.,q 5 3 15-3 31) 6.90 .135 L 10' L M almon ealm, Ficmg S 4 OD- 4 IS 11.42 M1 N. IV E L 1qkt Fhm,.g S S 106- 1:-11: .271 N. OW L L kgkt 1`10-ag S 6 OD- I ' XJ N. 30* L L h1ke Fl....g 5 7 00-7 is 14.18 .271 M. IV' L L hgkt Flow'.4 STATOM a Malt 4 8 0068 IS 14.16 .375 N. 3V L L light Flow,% 90069 of 1112 J54 N. 801 L L light ri.-I -Current rosettes for staticna 1. 2. 3, #. 1. &ad S. Currents are vprewatod as 11 .000-10 is 8.04 .156 N. W L L light Me,% dowing toward statics, Bell-ence of readi"ge, wbieb vm boarly, is shown by ounbris S 11 0041 as 9." .191 L 40L E1,609 Velwity is 1-di,sl-d by the lengib of Iivq6 ushp: I tava,.4 a& per Ebbi beginning with 1. 6 6 10- 6 15 L Ah.1 7.19 438 L 101 W. "S *KvDL I con. Per oscood=0.0104 knots W hone. Fig. 40 Current data, Hawk Channel and Rodriguez Key (from Vaughan, 1935) 160 26.4 8. 9.0 5.0 18.4 8.0 10.0 Fig. 41 Current rose showing percent frequency of current direction (toward) at Hen and Chickens Reef. Readings taken every three hours during the period of February 15 1974 to March 15 1974 (201 readings total). Data from Griffin (unpublished, 1974). 161 W tea as ITS 2 m n 141 N E is 4 m na 1413 Fig. 42 Current roses showing predominating currents (percent frequency toward) In Hawk Channel between Soldier Key and Fowey Rocks at depths of 2 and 4 meters. (unpublished data, National Oce an Survey Station J-22, hourly readings, February 10 to February 14, 1963) 162 79 I as 23 23 63 7. MONTHS 1 3. as 79 % ts-T 23 03 MONTHS 4 6 16 15 14 83 79 115 22 7% MONTHS 7 9 or 83 79 ES as as 23 93 79 MONTHS 10-12 Distribution of stations reporting assi-surfaw tesp*reture values. Fig. 43 Station locations, Key West region of Florida Current (from Churgin and Halminski, 1974) 163 TEMPERPTURE - SALINITY CO"POStTE ALL MONT"S cc cc 2 CL LLJ ;74. 9.w M'w 0.0 F!M =a SALINITT PARTS/THOUSAND Fig. 44 Temperature - salinity composite, Key West region of Florida Current (from Churgin and Halminski, 1974) 164 &::A 13 KEVOIEST -2!N ?9-63V TEMPERATURE MCNIHS 1 3 MONTHS PRESENT 1. 29 3 MONTHS 4 6 MONTI4 PRESENT 4. So 6 DIPTm MAX AVG PIN COS SDEV MAX AVG "IN UBS SOEV 20.10 22.70 to.90 .1as 1.76 30.9@'. 26.41 21.41 Be? Loss to 26.C2 22.4C Is.00 2IS 1.?,. 29.73 25.90 1108 ITS 1.73 20 20.Cl i2.20 1600 195 29.72 25.29 20.07 336 1.81 3C 25.Sd 22.2e 14.96 1*5 2.12 28.85 a4.92 19.01 22L 2.06 so 26.02 21.74 IT.Ob 120 2.69 27.93 23.vj 10.21 1?2 2.66 ?'S zs.e? 20.51 &S.C9 IIS 3.42 26.93 22.56 13.10 lot 3.31 too 2S.e! 19.3L 12.0 11 1@ 4.1t 26.98 21.24 12.24 154 -b. 13 12! 2502 11.03 11.52 106 401 'It.01 JO.A? 12.04 137 4.26 ISO 2,b.to 17.6.2 11.is ve 4.69 25.20 19.50 10.9s 127 4.31 ;Do 24.22 11.51 11.,3 51 3.32 22.SS 16.35 10.00 101 3.31 25c 20.02 14.61 9.95 41 3.11 20.66 17.18 10.0 97 2.Sa ?3c 16.34 14.93 r..c? *c 3.11 19.47 15.63 9.97 sa 2.62 MONTHS 7 9 v3NIHS PkESEN7 To 8, 9 MCNTMS 10 - 12 MONThS PRESENT 10.11,12 OfPTM PAX AVG MIN DOS SCEv MAX AVG "IN Do$ SDEV 0 31.61 2S.8. 27.64 W 11.77 29.54 2S.3S 21.60 176 2.30 10 31.C2 2S.Ob 25.6; 202 L.14; 29.45 25.61 21.60 146 2.1.6 20 30::4 29:13 21 64 164 2.17 29.35 20.10 22-25 122 1.6d 30 2S 5 27 51 ZD:!7 92 I.;e 29.20 26.!0 22.92 72 1.54 50 2;.31 2S.dl 21.63 49 2.61 24.07 26.34 2.).24 43 1.45 75 2e.!T 22.71 IC.90 49 '..57 28.50 24.71 14.08 41 3.do too 27.4! 2!.26 11.44 *3 5.24 2?.63 23.64 13.24 32 3.32 125 2t.24 2C.51 L1.4t 39 5.23 26.C7 22.16 IZ.41 31 1.61 11 1: 25:1" 1; 82 11:41 31, 5 25 280:72 11:74 30 3:49 2:35 3:14 2 2 ,Do 22 IS:,4 12 62 37 V 2 5c, I $I to aq 4 87 250 19.!3 17.62 10.92 12 2.65 21-ke 13.75 10.03 12 .4.58 300 37.St 17.2: 15.bl to O.7t IGA4 13.96 9.28 11 3.23 PONThS I - 12 PON'INS PRESENT 2. 3, 4. So 6. So 9.10#11 DEPTH PAX AVG 141h DOS Sotv 400 17:11 12:70 7:5526 130 2:9S? 5 00 15 49 10 50 6 122 1 7 600 12.63 8.53 5.73 114 1.4b Too 9.10 7.27 4.92 91 0.90 sco 1.31 6.21 4.6-0 ?S 0.50 900 7:00 S.Se 4.77 62 0.34 1000 5 77 S.0c fo.50 4U 0.29 1100 11:620 4:!,l 4:2e 2: 0 1200 b 5 4 4 211 1 31 1300 5.30 4.4i 4.17 13 0.31 14CO !o.02 4@37 4.09 7 0.33 1500 *.6e 4.3C 4.09 6 0.21 Fig. 45 Temperature data, Key West region of Florida Current (from Churgin and Halminski, 1974) 165 SALINITY %o 345 350 3350 360 363 3 0 35s 3*0 S65 355 360 36 .370 no US 370 as Cr so 6 d w 30 to lk a-f, Tempera t ure-sal inity envelopes for the Straits of Florida result- ir@g from data collected from January 1. 1964, to Januury. 1966: a. Fowey Ught. b, Alligator Reef; c, West Channel. d, Midchanncl-. e. Cat Cay: f. Suntaren Channel.-g-h, T-S curves: g, for Western Atlantic water (W. A.). and Yucatan Channel water (Y. C.). h, for three GEMA stations in Santaren Chan- nel for cruise G-6103. SALINITY %o 35.00 35.50 36.00 36.50 3700 30- 20- LLI CL W 10- 0- - - - - - - - FOWEY LIGHT - MID-CHANNEL ............. CAT CAY - - - - - - - SANTAREN CHANNEL WEST CHANNEL ALLIGATOR REEF Superimposed T-S envelopes for six stations in the Straits of Florida. Fig- 46 Temperature-salinity envelopes, Florida S .traits (from Vargo, 1968) see. a. too. am 31.0011 age VAT 8.0" am 0.464 is SAO, a" so@ TOO 0 he Sea na no age Ir- It it Is IF- all a as Twa"Ttag a *9 Typical vertical distribution of temperature encountered in the Temperaturc-salinity relalkm%hip of the water forming the Florida Current. showing the extreme fluctuations. 1710rida Current. 16 .10 11"A . ........ ING so n sa- we 9W, 01 -.00 so we a. 116- 115 %11 IQ ka 11101 6 ba @R i" boo Vol go h& to UZ US ko IC$ PC ganry ia -A. Seasonal variation of temperatures at constant depths. Salinity-depill relationship of typical Florida Current water. 0 40 MILE IT so too_ Nov 84"s .J A? am 0.10" :P me 8.004 Mo. SVC @AT 1. one lls Oz. IfI P [am 9 - as P no am tr- 0 TRIECONOUNIN III LOWINTUOI 41199" L I 00 Ls .0 45 Go Temperature profilti across the Florida Current, at 25033' N. Lat., as "veto It. during the summer months. Typical vertical distrituiions of oxygen in the Florida Current. Fig. 47 Temperature, salinity and dissolved oxygen data for the Florida Current at 40 Mile Station (from Bsharah, 1957) Y W 167 00 so GULF WATER 0 a M. 1950 0951 1952 0- 100 zoo b OFPTH OF IV ISOTHERM 3 M. JAUGISEP JOCT INOVIDEC 1JANIFESIMARIAPI. IMAYIJUNI JULIAUGISEPIOCTit4OVlDiECIJANIFFBI 0 30V is t5 Z too too 30 0 TEMPERATURE 400 0. scasonal variation in the perccntape of Gulf of Melkico -Aatcr prcsent. h. SLa%(Nnaf variation in the depth of t1te 15*C. isotherm. c. Sca-tonal vertical distrihution of temperaturc (T.). 0 100 lee 0 W 0/ 7. 200 W 0 3004-- 10 20 30 TEMPERATURE - *C. Extremc lempcrature range cncountcrcd from August 1950 to February 1932. Fig- 48 Seasonal vertical temperature distribution and seasonal variation in percentage of Gulf of Mexico water in Florida Current at 10 Mile Station (from Miller et al., 1953) I S OT H E R @M@ OF IS. OEPTH 5 -42 168 Z 00 300 *00 too 000 7001 . . . . . . . . .. 21 j a a 9 0 it 0 a r 111 A a j a A 8 0 01 0 J F 4 A If J 4 A 6 0 11 a loo too 01 8500 & 613"A'' @* 0 a F a 'A a 0 4 a 0 #00: 1*1110 19410 . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . to V. IIA M. "0 0.0 <90 Vertical and seasonal distributions. 1958 through 1960, of: top, rature; middle. phosphate-phosphorus in the uppet 300 m; bottom. =.nitrate nitrogen in the upper 300 In. W 30, 20': 50, J., so ..... . .......... too I ISO% TOM Di BIMINI ISLAWS SIMI* swFiVA too 40' No no L ;IHGIM coy 1 1.9 zo so 4 III 111$ 04 Of to 12 L4 1.6 If 20 se#,-W1-0/L Milli 67 The vertical disitibution of Kjeldahl and ammonia nitrogen, iron, and silicon; 600-InCter depth scale applies only to distribution of iron. 300. rMer wale to others. 'ctwy cop -2 @k 40-MILE STATION t%t.,\; C'. so J 25*2d Its W A A I Map showing the location of the Cat Cay station. The vertical and seasonal distribution of chlorophyll a ing/m.). I -ILI V W, 0 N cc )3 Fig. 49 Station location and distributions of temperature, phosphate, nitrite-nitrate, Kjeldahl and ammonia nitrogen, iron, silicon and chlorophyll a in the Florida Current at 40 Mile Station (from Corcoran and Alexander, 1963) 169 po" - IJ- C&-cm)-810 -100 -10-60 -70 -40-90 -go -30 -25 -;Lo - to - 5 0C %6 *Ib Joe- o/ JL *. It See. ji Coo Sov, j Fig. 50 Phosphate, oxygen and temperature profiles at two stations in the Straits of Florida over the Pourtales Terrace (from Gomberg, 1976). 170 TLT OM '!)IsulwieH Pue uiBjnq3 wojj zuajjn3 ep!jotj 10 U0160i js9M AaN Iejep Aj!uijeS TS *6!j :6:v: L::Vg toast o0st t !'# I SOSO 1 9 916.'4109 06 is 99 Ouct vo 00 1 t I I lot 106,119 -00 *99 cart VO 00 :1 to I It 061#09 coast 001t . :0 to 18:01 1::,Cg CO:ic out t: 0 it & vt a SP a* 1 036 #000 c goo 90*0 :49 It : "fpc 61 f1p c 110, :s9, M 1*0 It L::', to g :Site t S;::g 0009 2*0 0211 A 406 0 C 0 69*0 tit 640fpc 19099 ice" A342 goo Ito SAW Kid "LONG tioat's at 69 as at at $11 LNUM 1"1434 It I SHAWN 9::: :1 It::: 6L::: ct:qt -91'a at 01191 floor IVIC 009 I r 9 ?too 21 S5*9c 0019t to-It ast :900 Of at 'it 101-94 so 3 :2:: At 91 *1 AS 1 0 9 00 ?,:;I j::1 ::I g T::Ig AS'S 61 16161 V-0099 to 11 'of a I 0 too 119C it .0 C 50*69 6VIC IOU "It 01 a 1: 1:4: !IC:Z :..w Ly 'a :fp 69*99 Scott 16019 ;at qT:O it 68*99 Stott 99,94 6100 off (9*59 Hatt LGIOI It WO to LVISC orate 96*" 0 !;:It of, & IM r P 9 9too a :80 0.11:3 it all 1 9:4: ;,::: A$::! I tit 00 1C I C I 6Z.0 69 9 11 4 91 i :It 161:9LIC 00 it We 991 9004 OVIC *VC 1910 AN 69 Lt t I 0010 itt W" 06,59 ::Sol It *0 0,02 close 19*09 orate a AM 9to 141 w SAT ITIO 4202 Soo "in SAT Nile "Advo 110116ot LNJSlvd $414010 21 - at 1"14310 6 69 OL 1433310d SOL40d 6 L SMLNOV 4000 140:0 641 tell 96-fil 06-va 0011 0 :1 :1:9499 NE" 09::"c ..0 0 at 61 99 0-:41 1 0 1, I V14 I:T 611"St "*:t GAS"" 99-0 of LIT go V:461 060 I C 0910 41 1 -1:15C It:91 LL:94 9.0:: 94 CVSC AVIS ?6*09 061, Iceo Ott 91 it a 6L It a 0'99 It::! sit OCI 6 96 11, Otott :894C, 9fol *9 90. 0 4p, as. it c. 1 1.0 a Oot ,14 Ult 94-st flit-:t :&.9t sI:o 911 ts-st 11:9g is $A Vt,O SO SVIC tt*qc 0 1 11 3 1 It C I "::a 06 10too off Wsc OVot N.'"09 At 'a M ,:if U.1 :4.19 at $too vic 69*59 AVic 5p* It 9 P M is, 211C, '-111 *It t 91 of 1200 9&9 61*19 C191 OVN &I ot *1 *a "C 4069*9 :9199 01*Lc At I@ --t 1: 149: 16-09: 0 A301 goo 1VIN IJAV IT" A332 goo SO 1 v 'JAY SIM 101430 9 Of of, 1113siva S"Allow 9 - 114100011 It 1411311d 1001"Ou 9 1 INAACM att"11vt Ato-64 "fl-98 At 9319 Aug sto, [OCT Inoviogg I .4AN loce IWAR I AVL Iwav I jww I ML laws IstploCTIftowl etc Ilaul toH 1. ago to too Seasonal venical d5stribution of pho%phatc-ph obphoru% (ml-atorns. AI 0 K t3a SJ@35-6 I owe R 2w- 34b-.r 300. AUGI SEP JOCTINOIADECIJANI Fit IMAKI APLIMAYI)UNI JUI. IAUGI SEP IOCTINOvIDECIJANI 10-2020-30 200 ' 5;d 300 I MAR I APL I MAY I JUN I JUL I AUG I SEP I OCT I NOV i DEC I JANI- %cau-onal veniv-1 dittriNuti" eq %ahniv% C.. I !reni Upw "I"P -t- ref-u. -% 10"'! Scaumal ventcal douribution of nemitc- miropm tiny-auwn. Oki, j Irt"n jamsm% 10 1or 141%run-v 19.112. Fig. 52 Seasonal vertical disti-butions, of phosphate, salinity and nitrate at 10 Mile Station (from Miller et a]., 1953) 172 AREA 13 RETWESY 23-254 Y9-83W OXYGEN MONTHS I - I MONTHS PRESENT Ze3 MONTHS 4 - 6 MONTHS PRESENT 4. 6 DEPTH PAX AVG "IN Obs SOEV MAX AVG 14IN Do$ SUIV 0 5 *:657 4:D3 32 0:20 A:25 3 0 1 4:62 33: 99: 332 '0j : 22 S, 0 6 4 3 4 3 2 33 0 Od 4 20 5.43 4.:15* 1.01 344 0.30 5.4 3 4.63 4.04 33 0. 26 4A 3. % 3 0. a S.S6 4 61 3 914 3 0.29 1 1:11 .04 3.97 3' 0.231 5.77 4.59 4.0 5 3: 0. 31 sc 1 32 16 e 79 3.05 4.4 i.15 377 0.42 4.3 3.76 3? 0.3 73 V 6 4: 4. I too 4.1 2.67 3 0. S 61 1: 3.48 37 0#472 121, 6' 3.4 1.01 3 0. 4.43 3:97 3:031 37 0#31, 350 1.70 3.7: K.3 34' 0.41 4.47 3 81 2 5 3, 0.3 & 5 29C *.54 3: 51 2:70 2S O.4C 4.34 3.4 2.2 35 0#42 25C 4.49 3 ". 2 63 2 0:41 4006 3.3: 2.369 24 0:439 3.. 300 4.52 2.4 2: 0 48 4.16 3.26 2.43 27 0 1 MONTHS 1 9 MONTHS PRESENT 9 MONTHS 10 - 12 MONTHS PRESENT DEPTH MAX AVG plod OBS SUEV MAX AVG MIN Des SOEV 0 4:16 4:1: 3 4 7 0.21 5*24 4.51b 4.24 10 0.2? to 3:1 4,3: 4 1 119 7 0.17 4.74 4.51 4.25 10 0.17 20 4 4 4.16 3.60 7 0.20 4.72 4.51 4.27 10 0.17 ]a 4:43 *:17 3.74 7 0.24 4.73 4.5c 4o2l to 0.16 50 4.47 4.20 3 77 7 0 U 4:0a 4:4,5 4:23 11 0:13 75 4 53 4 !9 3:13 7 0:2.1 4 a1 4 2 3 32 11 0 43 100 4:24 3.86 3.13 7 0*30 4.45 3075 2*90 11 0.46 125 3 97 Uso 2.51 7 0.31 4.24 3.49 3*0 11 0.41 ISO 3 3:!4 3:2S 2:C9 7 0 U 4:16 3:44 2:589 9 0:?: zoo 96 3 04 202 2 0:31 3 6 2 3 30 2 8 4 0 4 250 3.08 2.90 2.72 2 0.25 3.47 3.33 2.16 5 0.25 300 3.3S 3.08 2.84 4 Oo2l : GNTMS I - 12 PONTHS FRESENT 2* 3* 49 6. 9,10,11 EPTh MAX AwG "IN Cos SOEV 400 4.09 3.34 2.27 53 Oo29 Soo 3.70 2.86 2.1b so 0.25 600 3:9S 2:093 2:276 47 0.33 700 4 23 3 5 a 0 40 0.38 so 2:25 34 0:43 SCO 4:,36 3:29 0 4.2 3 65 2 94 29 0 39 1000 4.45 3.97 Zo82 22 0*41) 1100 4.eO *.27 3.7C 17 0.32 1200 .5 4:45 4:00 13 0:30 ,:03 3 1300 TO 4 94 4 3 9 0 to 1400 4oB9 4.w2 4.72 4 ooo? ISCO 4.96 4o9o 4.64 3 0.07 Fig- 53 Oxygen data, Key West region of Florida Current (from Churgin and Halminski, 1974). Dissolved oxygen is reported in ml1l. 173 CAPE CANAVERAL ------------ 100 f. e4oftw P.41 P-10 Plawwom fps-4041 P-1 P-6 0-7 91A@vq 4L Oka P" ow Wo vosw4g- k N "@v % @j P"WIDENCE Sao CHANNEL P-1 t-I The relationship of wo. PhmPh-"tt%-Ph0$PlNMW and Chlorophyll a P-1 vo fft NOW P-1 04 P-3 "%=P4 P-7 A-W-;:rP' PQ 5 PIS P-1? INIP-Me MIAMI E go. CAT 44 CAT CL 026 1Mvr@0q0 I "owe 0 lot). 2Go Ilydiognilhic a"d 0111-PlIvil --amPl"'9 .20 & Imi QPC Canaveral. lbeinin between -Nii; and fbavoraphic slatillm are Mirk-etl wilh all If ISO A a .2 Were the numix-r and IIN' lW%ilit"I i% in(I'"t"' oth a small S41141.1re. ClIbItI111115-11 vimpling stdifffm 4" Prt4ised wilh a P atod a triangle inarks t1w TIME (hmrs) P011100. The chloroPhYll a concentrations (M91W) dudni 47-hr study. The stippit-d area J'hvw$ @@hl'DmPhVll a maxims. F 'g- 54 Station locations, sigma-t, phosphate and'chloroph 11 data during a 47 hour study in the Florida Current (from Alexander and Corcoran, 1963T MM M M M 0- Moss W.004 .00 1011 - W. ., -was A01041 #00 '00 so 40.10" ja is. Me i% -UPW.G" 3019 Ne- got 146004 see Vt% ---AWN.isoo -_xlms 146096 moss % -00 81011 % 481 see 011 _8011 sac sm 110 1.0 1.0 '140 %rl P04/L I i _8 so w 1. vs, Us Is 101,11s"s"As I'm ON Typical vertical dkirilwation of total phosphorus Typical vertical distributions of the nitrate-nitrogen in the Typical vertical distributions Of phosphate-P@Fw in the Florida Current. Florida Current. in Itse Florida current. pgA,L plAIL C 0 ------ - ----- SA _j EZ:3 C3 was . . . . . . see EJ Ma 0-8 a 'j MIDA-64 C3 #%*.no see. X. 03 see-m X MM 8"4 .300 ass, IV deg RAP am w ses, An AL &Us up OCT sm Kc was loss L_ Seasonal variation of total phosphorus in the Florida Cu-L Seasonal variation of nitrate-nitrogen in the Florida Current. Seasonal vertical distribution of phosphate-phosphOrus in the Florida Current. Fig. 55 Vertical and seasonal distributions of phosphate, total phosphorus and nitrate in the Florida Current at 40 Mile Station (from Bsharah, 1957) @21 OI:OMT"$ mat 2 "Old"s PRESENT -80 j MONTHS .4 - mcm?" oxisthT --4, 5, X AVG MIN oat MW MAX AVG Pik W sotv 0*42 cool Coo 36 Does 6.40 0*10 0.0 is O.cs 0.20 coos 0*0 1? 0.06 0.20 004 0.0 Is 'Jocs 1* 0.27 0.06 9.0 27 0.07 0.17 D*Di 0.0 21 0.0* Be 0:20 c.cs C.C at 0-40, 0.20 0#02 coo to 0.04 9 0 a 15 toto 0*0 24 0.11 0.76 0.1) 000 36 0.13 73 1006 '026 Got 1) 0.11 0.67 0.21 0.0 17 0.20 too -1040 C641 Coo 31 '34 * a 1943 0.30 Goo so 0.27 12S I.S'A Cola 0.010 12 Dose Goss G.27 coal I **so is. fell 0.71. 0.0 26 0.61 1.42 0.5#4 Dell Is 0.41 Sao tell go*% Coss is 0.55 1.76 Got* 0.19 39 0.39 250 2.00 0.11 0.30 6 0.70 I.L4 Oe73 Goss &1 0.20, 1 300 1.92 0*96 0.20 16 cost 1.50 0*75 000 Is 0037 "OHNS I - I 140"T"S PRIStoll it at * MONTr4s 10 - 12 MONT14S PREANT &Doll DEPI" MAX AVG "am ass Stiv PAX AVG Pik ass Suiv 0 Goss O*G7 toe as 0.1k 0.21 0.14 0.0 to 0.00 10 0.13 0.01 coo is 0.03 0.09 O.V4 GOO 5 O.C) so 0.25 0.03 0.0 Is 0.07 0.14 6.0? Goo I O.G? 30 9.06 0.0 C.C 17 Goal 0.09 0.03 coo 4 Got#* so 0.40 0007 Doc 22 0.12 1.22 40.11 Goo &a 0.3* is O.IT 0.17 0.0 IT 0.21 0.10 0.11 000 7 0*13 toe I.Ok 0.35 toe at 6.34 0.74 0630 0.0 to 0022 12! 1*31 O.*'v 0.0 3 0.70 Goss 0.1% 0.16 1 Doc ISO 1.64 Gosb 0.0 17 0#90 1.6S 0.61 0.0 It 0*50 200 1.44 0.43 C.12 is 0*36. 1.44 0.75 0915 Is 40341 ISO Cow 0.39 cots 6 0.07 I.S#, 1*02 0.50 3 Goss too 106 4073 c*36 7 4.51 1909 &*&'1 0.94 8.14 Poklms I - Is NONIHS PRISW as so 49 60 so 9910.11 DePT14 MAX AVG "IN as$ MV 400 2.15 &oat Goa? 4w 0047 Soo 9.97 1034 0.64 IT 0029 6co 9.93 t*63 toL4 Is 0024 700 2.14 lost 1.111 it 0.23 Soo 8.11 1.47 1.66 14 0.21 sco 8.06 &.93 1.11 1 0.19 1000 9.45 L.66 1.3%. 1.11 **a& 1100 1.61 1.31 1.23 ji C610 Saco 1.61 l.SS S.66 3 deal -1300 1.67 &.So &.10 a 3.23 Iftoo too? L.It 1.0 1 0.17 isco 1.460 9.64 to-bo 1 4.0 Fig. 56 Phosphate data, Key West region of Florida Current (from Churgin and Halminski, 1974). Units are ug-atoms/l. 176 'vtIt[N 0 S 0 5 0 a a 0 1 0 a 1 0 0 a 0 a 0 Is P 0 S 10 0 9 10 0 9 .0 -5 0 s 10 0 s 0 M 10 0 9 4 6 so so XID M No 30 ISO d" HMO 3 4 5 no PqOLITEW VAT" a 1 05 to so s to 03 to as is as 10 as to 0 AS 40 so ZIna STATION My Star" a 4 lite vertical and horizontal distribution of the total soluble copper between Fowey Rocks AM .0 Cot Cay during January,90-3. swim IN I 1 3 4 6 4 r I Station Awationa In the Straits of FIOWS The di.Aribution of the total soluble (ahove) nertl parlivulate (befaw) colver in the upper 2W alk" N. LAS In of water betwv@n Fowry Horlis aml Cat Gmy in Atemb MCI 1 25 39N WMW W pl/LiTER I 25:3r N 79,57, %V 0310 005100 0510 0 03100 OSIP 00510 05 1-0 05 so 3 25*17'N 79'52* W 0 - Copq1URN 4 25*37'N 79-47 2:W 5 25..w N 79*4 W 50 0 0 as 1.0 4 as 10 0 as of a ZV-W N 7q*.l(r W 100 t 7 2-5*35' N 79*25'W I 25'.34. N 79*2(v %V X KTOKO omfiKs STATION 0 LU am STATION not 0% to 0 as it 4 as a 0 as to 0 STATION As S so GOD 0 In f JANUARY rowim am" WIN. 100 SWJ STATION IW 5 STATION ft, T 0 as to I as to a as to 0 as to 0 to to STATION 094 STATION No G ------------------------- The vertical and horizontal distribution of partievilate copper in the Straits of Florida duriniq A comparison of the wasonal distribution of topper and thlorophYll as in the upper 200 at at January MI. station 7 during loal. Fig. 57 Station locations, distributions of total soluble copper, particulate copper and chlorophyll a in the Florida Current between Fowey Rocks and Cat Cay (from Alexander and Corcoran, 1967) Cu (pg/L.) 0 2 4 6 8 10 0 5 10 15 2D 0 0 200 a 3w %I 4L - Total Dissolved s w 400- - Porticuloll. Goo GUMO ?00 Vertical distribution of particulate and total "soluble" iron and copper at the Cat Cay Station. Ni(PO/L) NiW/L) 0 .05 .1 2 0 1 2 3 4 5 0.- 1 0. 100- 100- 200- 200- AN' 331DO, IL A" 400- 4OD- 50D. 500- 600- 60 Particulait Nickel j TOD Tali WO - Vertical distribution of particulate and total -soluble- nickel at the Cat Cay Station. %I Fig. 58 Vertical distribution of iron, nickel and copper in the Straits of Florida (from Corcoran and Alexander, 1964). 178 .0 91 -07. EXTINCTION COEFFICIENT .05, -03 1950 1951 1952 JAUG ISEP JOCT INOV IDEC I JANI FEIIJMAR I APLIMAY I JUNI JUL I AUG I SEPIOCT INOVIDEC I JANIFE11 I 104. PLANT PIGMENT W 916 10 0.0 A%0@0 0----0 a. Scabonal varwtl ... I ill ill%: "Illwilull h. %jr- intion in the surface concentralitw, of rolani rigment mer the @imc peri-1. 0 0. . . . . ... . . . @70 Gn N.G.14 100 50. 0200 uj KG.4 0 1 11 J^N I F ED'I I JUN I JULI:UGI SEPI OCTI NOVI DECI JANII 2% 100 1., 0 0 to N 12 AL -5 5.0 10-ib L%-20 *20 Scabonal vertical distrihution of ZrK)pIajlLIon (CMI/Mile) from January193 1 to r-chruury 195 ". Arrows enclose periodb of pot'sihIc intrusion of Sarga%so water. 150. ib I.5 20 H.U.PER M3 %'criical disfribuiinn of plant pipmeni on Atigust 3. 1950 (Na- tional Geographic Station 4), and on January 12,1931 (N.G. 14). Fig. 59 Seasonal variation of extinction coefficient and plant pigment from August, 1950 to February, 1952. Vertical distribution of zooplankton from January 1951 to February 1952 at 10 Mile Station (from Miller et a]., 1953) 179 40' Anclote Molasses ...... Bahia Honda U 30- 10 Uj IX 20- % LU 10 A 0 D A i A 0 D '197; F A i A 1971 ' I Seasonal variation of water temperatures at the three study sites. SUMMARY OF ENviFtoNNIENTAL DATA AT BAIIIA HONDA KEY Clod card lemp. VC) NO, NO, PO, Date i g lom/hr) pH Min. Max. (pprn) (ppni) (ppm) May 1. 1971 2.23 8.4 May 29.1971 0.96 8.5 June 26.1971 2.61 8.6 31.0 33.0 July 23, 1971 0.59 8.2 31.0 32.0 An. 20.1971 0.94 8.2 30.0 32.0 &-pt. 18. 1971 0.38 8.1 28.0 30.0 0.0212 0.0024 0.124 Oct. 15. 1971 0.55 8.6 29.0 30.5 0.0405 0.0045 0.111 Nov. 13.1971 0.66 8.3 21.0 24.0 0.0809 0.0050 0.087 Dec. 10. 1971 0.52 8.4 2121.0 26.0 0.0422 0.0028 0.071 Jan. 7. 1972 0.60 3.2 25.5 25.5 0.0557 0.0198 0.050 Feb. 5, 1972 0.55 8.3 19.0 22.0 0.0431 0.0029 0.035 %hir. 3. 1972 0.57 8.3 14.4 27.0 0.0376 0.0054 0.022 Mar. 29,1972 0.92 8.7 27.0 29.0 1.000 0.0103 0.074 Apr. 29.1972 0.87 6.1 21.0 29.0 0.0082 0.0020 0.052 NI ay 24. 1972 0.78 8.0 25.0 30.0 0.1610 0.0020 0.061 June 23,1972 0.83 9.1 30.5 31.1 0.0106 0.0040 0.054 July 21. 1972 0.75 9.1 27.9 32.2 0.0052 0.0013 0.055 Aug. 19.1972 8.2 27.8 32.2 0.0901 0.0109 0.144 SUMMARY OF ENviitoNMENTAL DATA AT MOLASSEs KEY Temp. VC) Clod cord NOs NOm PO, Date (Z lost/hr) pH Min. Max. (PPM) (PPM) (PPM) May 1. 1971 2.07 7.6 May 29.1971 1.05 8.1 June 26, 1971 3.29 8.5 28.0 32.0 July 23, 1971 0.82 8.2 29.0 32.0 Aug. 20,1971 0.80 8.0 29.0 33.0 Sept. 18, 1971 0.43 8.2 29.0 31.0 0.0599 0.0021 0.21 Oct. 15, 1971 0.72 8.5 29.0 30.0 0.0690 0.0034 0.07 Nov. 13,1971 0.58 8.4 22.5 28.5 0.0970 0.0032 0.06 Dec. 10, 1971 0.66 8.6 22.0 26.0 0.0545 0.0034 0.047 Jan. 7, 1972 0.67 8.2 24.0 25.5 0.0511 0.0264 0.044 Feb. 5. 1972 0.66 8.2 20.5 22.0 0.0566 0.0033 0.047 Mar. 3,1972 0.91 8.5 0.0636 0.0109 0.030 Mar. 29, 1972 1.22 8.6 20.5 29.0 0.3235 0.0045 0.074 Apr. 29,1972 1.63 8.2 21.0 29.0 0.0057 O.OW7 0.052 M ay 24, 1972 0.83 8.0 25.0 29.0 0.08ftl 0.0041 0.061 June 23, 1972 0.99 9.9 29.3 30.0 0.0149 0.0039 0.069 July 21, 1972 0.99 9.1 0.0016 0.0059 0.080 Aug. 19.1972 0.94 8.2 O.OOi2 0.0018 0.059 Fig. 60 Water quality data, Molasses and Bahia Honda Keys (from Dawes et ai.. 1974) Summary of Water Quality Data Fla. Dept. Pollution Control (1973) "Survey of water quality in waterways and canals of the Florida Keys; with recommendations" TEMPERATURE (CONTROLS) Depth (ft) n x S m-in max n s min max 0 - 5. 63 25.7 0.7 24.9 27.0 13 25.8 0.7 25-0- 27.0 5 -10 59 25.6 0.7 24.0 27.0 5 26.0 0.4 25.5 26.5 10 -15- 27 25.1 0*.6 24.0 26.o - - - - - 15 -20 17 24.7 0.7 24.0 26.o 1 26.0 0.0 26.0 26.0 20 -25 7 24.2 o.4 24.0 25.0 - - 25 -30 2 23.5 0.7 23.0 24.0 - over 30 3 24.0 0.0 24.0 24.o - DISSOLVED OXYGEN (CONTROLS) Depth (ft) n S min max n s min max 0- 5 61 3.8 2.2 0.2 7.8 13 6.8 1.0 4.5 7.7 5-10 59 4.3 1.8 0.3 7.3 5 7.3 0.2 7.1 7.4 10 -15 26 3.3 2.5 0.3 7.7 - - - - m 15 m20 16 1.8 1.4 0.4 4.0 1 7.4 0.0 7.4 7.4 20 m25 7 1.7 1.6 0.4 3.9 - m 25 -30 2 2.8 3.4 o.4 5.2 over 30 3 0.4 0.2 0.2 0.6 I HEAVY METALS .(WATER) HEAVY METALS (MUD) n x S min max n S min max Cr 11 0.07 0.06 0.02 0.20 3 8.2 2.8 5.5 11.0 Cu 11 0.04 0.05 0.00 0.16 3 4.3 4.9 1 10 Mn 11 0.02 0.01 0.01 0.03 3 14 1.0 13 15 Fe 11 0.17 0.11 0.01 0.35 3 340 57 280 390 Ni 11 0.12 0.06 0.01 0.22 3 21 3.8 18 25 Pb 4 0.19 0.05 0.12 0.25 3 3.1 3.1 0.6 6.6 Cd 4 mo]8 0.0003 .0015 .002 3 0.2) 0.04 0.17 0.25 Co 11 0.01 0.01 <O-Ol 0.03 3 4.2 3.3 2.2 8.o NUTRIENTS n s min max P04 11 0.04 0.01 0.03 0.07 N03 11 0.23 0.02 0.20 0.26 NH2 11 0.93 0.22 0.76 1.48 organics Fig. 61 Summary of water quality data for canals in the Florida Keys (From Fla. Dept. Pollution Control, 1973). Sample size( n), mean (R), standard deviation (s), minimum (min) and maximum (max) values given for temperature (*C), dissolved oxygen (mg/1), heavy metals in water (mg/1), heavy metals in mud (mg/kg) and nutrients (mg/1). 181 BAY aw 6 FiORIVA Wv 6 0 Aw C Key so a 0 I -@%saft. a NP, 13 WW41V a Ptw*c"Q. FAT 0 saw 0 C.: a., a aw a be 13 & re) 0 KSCUPTION Of STATIONS Description, Station At the dead and of Canal No. I which Is the easternmost of the existing eanals. 12 at approximtely the aid point of canal No. I 13 At the uouth of Canal No. I 31 At the dead MA of CarAl No. 3 U At the dead and of Canal 010- 5 52 at the aid point of cowl go. 5 53 at the mouth of Canal go. 5 S At the dead sad of Canal go. I 82 At the aid point of Canal go. a At the dead and of Canal go. 11 which Is ca%.. the westarrimet of the existing canals ca.AL w@ 112 at the aid point or CarAl go. it jr 113 At the mutb of canal No. It c Control Statioa Atlantic Between Nsrksts a and 9 on the Atlantic aid* of the Snake Crook arid&* *cZaX Florida Say Approxivately 112 mile north of the entrance Of the V*V Canal Dy8tOM snake Crook just opposite of canal No. 11 R" via or THL "Dj= Fig. 62 Station locations and descriptions (Michel, 1973) TompAwNS. ". USITT An 901OLV" wvQw MNFCUTUU. SALlVtTT AND DIESSOLV911 GIRTON S3.13 j"WIRT 9973 t4.1% rLDWAn 1073 SI sea 03 01 1482680 NY fuw 11) of to- $AMID T;)P Smote To" Ut 01 It (an 9) inaw a "t) (it) 00 (10.10 1% Lat) U Hil %651 8.9 It It PlAs 1-11 111:1 It, Is "so As AS.$ 37.691 3.34 66.0 160 111.3 %1 to 1 6 29:0 11.4161 4:4"? w I It U all IS 99.14 36.029 1.19 62.1 096S 1.9 $&.to 316.1195 91.0 Is is ow 12 11.6 W.734 4.06 16.0 no& 0 33.It $$.In :21 119.3 am at ".a 4.16 30.10 IMS3 4.07 02.1 is U am 1. 19.91 U.164, $AT 1111.6 8 36.6" 6.01 ".a 16" 1103 23.16 is AS INS is mi 11.1% hJ7 "A 1436 0 16.14 ft.w 4AI 10.3 We 10.5 81.2- 4.13 Ws 0 21P.& $1.431 A. so 109.9 93 U 8426 Ali 20-11 As -m 6.0 39 16 1159 as at.0% 4.11 81.6 Is" 6.3 33.56 As am 11.9 19.5 S.41 am a 36.61 We" 5.0 W-7 Saw 0 29.6 31.113 S." I".$ AS am AS 32.41 14 IU 6.62 s"I &A" UJ 11.26 36.493 5.411 13:1 31 AS On? 11.2 39.612 4.97 $1.2 INS 0 26.17 36.461 6.n 10.6 0930 98.5 36.0 S.019 032 0 30.11 37.862 5.06 11J 38 "as 96 SAM 116.949 4143 0.6 Sell is 23.17 36.453 4.16 :A st 96 last as U.3 31.173 G." ".I 23.3s 36.490 4.65 .2 1"3 11.1 10.7 4.941 a 99.6 ".04 $.to 1411.1 U 0.25 3S.W6 6.n U.8 Was 36.096 4 "0.1 U IS Is a.* MISS 3.09 06.1 13U 26.61 36.06 4:ft 10.6 ow U.5 29.6 0.26 1w "so 0 80.6 31.06 Let 01.10 63 a lot 202.5 21.41 111.660 401 1531 a.? U to 34.2911 "Is 10:4 16 1"% U at 31.371 10.7 U36 6 U:" 36.1631 $.at Los.$ go" U 99:25 !:6'*L we 0 ".a 37.110 1.0111 111.0 23 ism 33 12.97 37.0w 4.0 "1 all it" Is .5 it SI 371" 3 &2 633a AS a" 21 IVA ".M S.14 91.2 tus a 66:19 36:60 4:0 0.7 0.3 MI 2.21 Ali 23 am 33 11.93 Mau 6.0 16*9 am 0 ItJ 36.932 4.00 03.6 nil 16.5 12-181 36.675 4 U0.6 as 14 sets as 90.0 21.914 1.0% 91.9 Lot a 86.11 3616" 6:46 Sri Sol 45.5 U.S 2.11 US 83 an? U.9 0." 31-015 4.w " A U36 16.1 It at 37.0111 11.111 U IS 1411 $1 UA ".gas 4." 61.4. Ism 0 34:00 36.747 "66 97.9 U.3 0.9 S.61 am 0 SOA 32.9" 1.05 too. 2 AS 127 to 23.93 U-Shl a .0 Atiaegfiff a 15.11 ,.$" g: S, all It am 32 96.0 87.1160 6.07 01 on to $1 31.663 45 91.0 its 16 as a so U 81116 a 61 m$ a 19:60 ".441 s:lo 11.3 am 2223-30 .616 1.30 ".0 Us 14 1"? 32 16.2 ftift 4.0 09.9 962 1I":S no 16 0.0 4.93 So- 4So lot U.2% on site U." 36.116 !%1 0 30.0 97.411 tit is 32 16.9 N."I 4.61 016.2 16 to 62 BITUATIS 416 r" ram 061 0 24:: 37.1" 1.05 100.3 14-13 Mean 9973 111 Is 22 94.0 31.77t a M ST.$ is 12.0 4.16 verpt "m it" a 88.9 ".no 6.92 We stat"s In tw $ovtole Towe, local manowto shawl (011,11 4) tit) CDC) as At/L of &SIL Coattet sta%14M St. is no as U.s 8.71 0.40 some Cifta 66 11311 A& 99.0 5.16 13 94 U30 1113 NJ 1.10 0.40 load CIO* Is 12 n ow It 19.0 $js $is &&Is 9 U.9 91.191 6.11 121.5 29 14 17" U.5 99.9 1.39 0.30 31 U 4030 U.2 111.0 &A& 041 $1 14 AGO 123 18.7 8.63 For statist, 41,11scriPtIon see Table 2, U U WAS 12.5 19.4 C11 0.26 kl)Ti- to Rosters Stand&td TU". 9 14 14WA is 19.1 0.63 0.80 (2)Tbe deepest $asple Lo taken at the bottm. is 111100 13.5 19.0 8.61 0.20 14 ASIA U.S 111.5 630 GAS is sell IM 18.8 0.63 11.33 113 14 1116 16 :-6 1.010 AS 113 14 am to .0 0.0 :A@ tit AS too to 0.0 0.66 *AD III U &1011 So 11.0 0.83 6.45 Costrol Isestow- sombe Croft 16 1396 0 39.0 6.70 0.22 : ft" twoos, 15 :19 :.AD 0.46 Mbe Creek, IS 16 0.0 Fig. 63 Temperature, salinitydissolved oxygen, nitrates and phosphates. Data from Venetian Shores canal system,Plantation Key, and control Moto sites (from Michel, 1973 183 UPPER KEYS CANAL 35. VIIJETIAN SIIORES SUBDIVISIO14, PLANTATION KEY (Fig.14). CANAL 43. BIPARK CANAL. KEY LARGO (Fig.16). A small, branching r A system of eleven finger canals emptying into Snake can&$ adjoining Pennekamp State Park. There were no Crook. The canals were built at different times from residences adjoining the canal. the south towards the north. Single family dwellings on septic tanks are more abundant on the southern half, CANAL 44. CROSS KEY WATERWAY ESTATES, KEY LARGO (Fig.17). of the subdivision than on the younger canals on the A large. branching system of canals rined with trailers northern end of the subdivision. on septic tanks. CANAL 36. PLANTATION KEY COLONY, PLANTATION KEY (Fig.14). CANAL 45. LARGO SOUND VILLAGE, KEY LARGO (Fig.17). A curved A branching canal system with moderately dense single canal with two entrances. lined with single family family residences on septic tanks. residences on septic tanks. The canal is Inside CANAL 37. OCEAN DRIVE CANAL, PLANTATION KEY WOO. A long,. Largo Sound. finger canal with single family residences on almost CANAL 46. NORTH CREEK, KEY LARGO (Fig.17). A natural mangrove every lot (36 houses). canal extending from the northern end of Largo Sound to the Atlantic. The mein canal is well flushed by CANAL 38. BLUE WATER TRAILER VILLAGE I KEY LARGO (Fig.15). tidal currents, tributaries are less well flushed. A branching ca &I system with a large central basin. The canals or* lined with trailers on septic tanks. CANAL 4z. SEXTON COVE ESTATES, KEY LARGO 019.17). A system of three finger canals and one branching canal system all CANAL 39- DOVE CREEK, KEY LARGO (Fig.15). A long. finger canal lined with a dense population of trailers on septic 00 bisected at 'Its center with a natural mangrove canal. tanks. The canals empty into Blackwater Sound which There was a moderate density of single family houses on Is an almost totally enclosed basin. Tidal variations Septic tanks. are slight In the Sound and canal flushing Is achieved CANAL 40. SUNRISE POINT KEY LARGO (FI9.IS) A long finger canal almost entirely by wind-driven circulation. densely populatted with s n2le family residences on CANAL 48. LAKE SURPRISE ESTATE, KEY LARGO (Fig.17). Two large, septic tanks. branching canal systems lined with a dense population of trailers on septic tanks. One canal system empties CA14AL 41. OCEAN S"ORES ESTATES.-KEY LARGO (Fig.16). Two canals. Into Blackwater Sound while the other empties Into Lake One of which continues from the ocean side of Key Largo Surprise. Circulation is poor and the canal walls through to Rock Harbor. Only a few single family have considerable amounts of mangrove peat which causes residences adjoin the canal. nutrient problems and stains the water a tea color. CANAL 42. PORT LARGO, KEY LARGO (Fig.16). A lot" system of CANAL 49. GARDEN COVE CANAL, KEY LARGO (119.17). A long finger branching canals four of which were constructed within a canal with two marinas and throe residences adjoining year of the survey and four have been In use for several It. years. A sparse population of single family houses adjoins two canals whilo the third has a motel. two CANAL $0. WORLD6S, BEYO"D MARINA, UPPER KEY LARGO. A saiall marine marinas. and an airport adjacent to It. with an entrance canal at Point har@_on the Atlantic side of Upper Key Largo. The marina had only a few boats and one or two travel c rs at the time of the survey (Fig.25. Section 7.11e Fig. 64 Locations and descriptions of Chesher's (1974) water quality stations. See Figs. 65 through 68 for exact locations. (from Chesher, 1974). j N4 to 7w@@ ll@ C3 OV 0 PLANTATION KEY COLONY 4 % C7 4' ro . @ X, . .... X., C Ct p C OCE N DRIVE (37) re .......... CJF ro rh fo \\\@ 0-All! 116 rb e6l co C' 0 '42 VENETIAN SHORES (35) 4b 00 \,13. \Ib C111 .......... 4b Sl -b 've "t j-71 vc ot Fig- 65 Locations of stations 35, 36 and 37 from Chesher, 1974). 185 45. 30- .6 45- G3 30' C; lb tb fD SUNR I SE POIN (40) lb Ilk, ID At DOVE CREEK (39) Cb 0'e. W4 / Y;7 8) BLUE WATER N 4. 00,@ 71@ 46 .0 pt .40 Fig. 66 Locations of stations 38, 39 and 40 (from Chesher, 1974). 186 t@p Al 4 t Ft V co %;5 B I PARK (43) C) 0 AV 0 p. ;44 :r.-A tl- 17 7 V .. . ....... ,.0 4i 4-1 C.) 61 PORT LARGO (42) , n@,-e el OCEAN SHORES (40 JV. 4b Ai CS 9. .7 Q- Fig.67 Locations of stations 41, 42 and 43 (from Chesher, 1974). 187 IN.LIGC Lake surptiev l-r CL 0011. 5 Igor Ct ff IT 0. Py 6 GARDEN oat C %I fit- Q0 4 5 LAKE SURPRISE (48) .... . ............ ? 11"feAwdler Pagii ............ r; i o.e. 1611" Is 0 6 ........... COP _111. PA 4 ? I 1 ;7' PERGLADES NATIONAL PARK'Ce SEXTON COVE (4 7 bf-11 Key (prolecled arca) 7 IF ? ? 8611wriAhl 6 co 7 WORTH CR .1., 060"o BLA C K W A r F. R so Ov D 00 ...... 3 4 4 Co lot 7 4 6 4.0 Is 4 5 6 - 6 ? C' .10'a 6 .6 aull ties Iflocilifs loop Ill Its C& 3 1111911111. 411 will 1111 3 -4, .1 Y 4 11111911110 sell was ontim. Ill will "it CROSS KEY (44) 4 Ce 6 poll 1141016 v Ice Y y rlltl" OP% 00ttle Oft I 1_1q Fig. 68 Locations of stations 44 to 49 (from Chesher, 1974). Canal Temp. Oxygen Salinity PH Or'tho- Nitrate Horizontal JTU Coliform Date 0C PPM ppt phosphate PPM Visib. ft. Per 100 nil PPM 35 Surf. 28-75 5.10 32.25 9.16 0.500 15-50 4.70 - 8/15/73 Bott. 29.00 2.70 35.87 9.02 0.360 - - 9.70 - 8/29/73 36 Surf.. 29.41 3.74 39-96 9.10 0.020 - - 5.60 - 8/15/73 Bott. 29-53 1.17 40-75 9.05 0.010 - - 36.60 - 10/16/73 37 Surf. 29.42 5.73 34-83 9.0 0.040 - - 7.40 71.5 8/15/73 Bott. 28-25 1.37 40.17 9.13 0.020 - - 7.30 95.5 10/16/73 38 Surf. 31-75 7.30 38-50 8.94 0.100 0.02 28.0 - 14.0 8/7/73 Bott. 27.62 1.82 39.25 8.8o 0.150 0.04 - - 38.0 39 Surf. 29.08 5.23 34.92 8.99 0.020 - 24.0 4.20 0 8/14/73 Bott. 28-83 4.98 35-58 9.02 0.020 - - 4.80 246.5 10/16/73 40 Surf. 28-77 5.92 33.83 9.10 m4o - 23.0 5.40 122.0 8/14/73 Bott. 28.17 5.03 35-17 9.10 0.040 - 23.0 6.00 59.5 io/16/73 41 Surf. 32.00 6.00 38-00 9.00 - - 20.0 - - 8/6/73 Bott. 31-00 6.io 40.00 9.10 - - - 00 42 Surf. 31-19 7.10 37-25 9.07 0.11 28-33 4.o 8/6/73 Bott. 29.90 5.00 37-83 8.93 - 0.02 - 45.0 8/8/73 43 Surf. 28-35 3.17 37-50 9.10 0.025 - 14.5 0 8/13/73 Bott. 26-75 2.00 37.65 8.85 0.025 - - - 153.0 44 Surf. 31.60 4.94 39.60 8.96 0.050 0.06 25.0 3.50 0 8/7/73 Bott. 32.10 3.52 40.80 9.13 0.050 0.11 - 1.30 0 10/15/73 45 Surf. 29.25 5.40 35-37 8.6o 0.060 0.05 27.0 2.00 0 8/6-7/73 Bott. 28-75 5.00 36-50 9.20 0 0.08 21.0 3.50 0 10/15/73 46 Surf. 29.80 2.70 38.00 9.05 0.150 0.05 32.0 - 0 8/6/73 Bott. 29.80 2.80 38-00 9.15 0.050 0.05 - - 49.0 47 Surf. 28-32 5.13 36.81 9.05 0.015 - 27.2 4.50 86.0 8/13/73 Bott. 26.18 0.99 39-11 9.07 0.025 - 4.40 80.66 10/15,30,31/73 48 Surf. 32.60 4.32 38.60 9.01 0.075 - 9.37 14.50 54.0 8/8/73 Bott. 30.60 2.16 39.60 9.04 0.080 - - 20.00 22.0 8/14-15/73 49 Surf. 29-50 5.85 35-75 8.17 0.030 - 10.0 - 63.0 8/14/73 Bott. 25.45 0 37-75 8.77 15-000 - 1.0 - 111.0 50 Surf. 32.17 13-15 35-00 9.32 0.035 - 5.0 - 164.0 6/14/73 Bott. 25.40 0 37.66 8.37 4.000 - - - 92.0 Fig. 69 Temperature, dissolved oxygen, salinity, pH, orthophosphate, nitrate, visibility, turbidity and coliform data for canals in the northern Florida Keys (from Chesher, 1974). Station locations are shown in Figs. through CONCENTRATIONS OF PESTICIDES (PARTS PER BILLIMI, DRY WEIGHT) FOUND IN SEDIMENTS FROM CANAL BOTTOMS Hep'tachlor Sample Aldrin Epoxide Dieldrin o,p'DOE p,p'DDE o,p'DDD p,p'DDD o,p'DDT p,p'DDT Ocean 9.8 T Drive MY 12.2 18.3 20.1 27.4 43.7 Garden T 9.6 36.0 Cove (49) 14.5 7.7 39.8 22.5 43.7 Port 14.8 T 11.7 93.6 Largo (42) 21.4 9.8 17.8 31.5 Sexton - 14.2 40.5 Cove (47) 44.5 13.8 11.5 15.5 Sexton 20.4 328.2 Cove (47) 21.3 16.8 11.1 24.9 12.3 Fig. 70 Pesticide concentrations in canal sediments, northern Florida Keys (from Chesher, 1974). T trace amounts. Do na 4 Itsy > no Alt 11 In L Fig- 71 Tracks of Hurricanes Donna( 1960) and Betsy (1965) (from Neumann et a]., 1978) 191 John Pennekarnp Coral Res Key Lar2o Cor&.J Reef Slat* Park Marine Sanctuary Level Patch Send Outer Shoat Reef Reef$ FlortNa., Hawk White I Secondary Keys i Channel Bank Channel Fig. 72 Diagrammatic profile across the south Florida shelf margin, showing location of secondary channel between White Bank and the Outer Reef (after Enos and Perkins, 1978) !e 192 a10' A C D- Iw -M a H M&M, q LOCATION MAP FLORIDA all' N C...w M, 4 011 sw at Sit K ------- I K M M .10 at, L r%%" 49 sgk"dd reardwit PWIN &M of A rM obw at&. n. Is at M Raw. the kwaff b 60 lop of MOW rkdwm*m redi. Pralks an vim 9w9oft awW for wwa "ity Is &a willont %k-% b dow 12 par"at NOW Cb- 111 71he vertical welia ih@ arv, a Ima.wslas d time to waier dWk. Proffln am anpail " W 60 foot (18 a) dqtb cagimar IM The sessuf Wr- M Wankel negittratim b 49L Featumi Warated Isidht am outer mok OIL s-W Aaak 115; faith booka. F12; MW ""velft IL Sw N 0 Fig. 73 Seismic reflection profiles, Fowey Rocks to Sombrero Key (from Enos and Perkins, 1977) 193 30- ......................... ................. ............ w 25- .......... ........................ w . ......... %0 w 20- JAN FES 1M'AR' I APR' 'I MA'Yl' JUIN .1 JU-L-1 AU-G-j SE ,P .1 -OCT. I INOV' I 'DEC I Fig.74 Average annual surface temperature curve for Carysfort Reef for the period 1881 to 1899. Dotted lines indicate � one standard deviation. Derived from 10-day means of Vaugh an (1918). 30- ..................... U 0 MAX 25 ................ ................... ........... MIN Uj .............. vi a. 20- JAN F E B M'A R' A'P R MAY I. JUIN .1 JU-L .1 AU-G .1 S'E'P 'I 'OC*T'j 'NO'V'l C .Fig. 75 1966 Maximum/Minimum temperature data for Key Largo Dry Rocks (Shinn, 1966) superimposed on Vaughan's (1918) temperature data for Carysfort Reef for the period 1878 to 1899 (shaded curve). J @AN Florida Bay Card/ Barnes Sound South Biscayne Bay i Reef Tract Salinity 0 10 20 30 40 50 60 70 Florida Bay Card / Barnes Sound South Biscayne Bay Reef Tract Temperature 0 16 20 30 40 OC Fig-76 Salinity and temperature ranges for Florida Bay, card and Barnes Sound, South Biscayne Bay and the Reef Tract (Data from Schmidt Davis, 1078) 196 I i - I I I i I I I I I I - I I , I I I I I INNIIIIIIIIIIN V 3 6668-00004 9421