[Title 10 CFR ]
[Code of Federal Regulations (annual edition) - January 1, 2021 Edition]
[From the U.S. Government Publishing Office]



[[Page i]]

          
          
          Title 10

Energy


________________________

Parts 200 to 499

                         Revised as of January 1, 2021

          Containing a codification of documents of general 
          applicability and future effect

          As of January 1, 2021
                    Published by the Office of the Federal Register 
                    National Archives and Records Administration as a 
                    Special Edition of the Federal Register

[[Page ii]]

          U.S. GOVERNMENT OFFICIAL EDITION NOTICE

          Legal Status and Use of Seals and Logos
          
          
          The seal of the National Archives and Records Administration 
              (NARA) authenticates the Code of Federal Regulations (CFR) as 
              the official codification of Federal regulations established 
              under the Federal Register Act. Under the provisions of 44 
              U.S.C. 1507, the contents of the CFR, a special edition of the 
              Federal Register, shall be judicially noticed. The CFR is 
              prima facie evidence of the original documents published in 
              the Federal Register (44 U.S.C. 1510).

          It is prohibited to use NARA's official seal and the stylized Code 
              of Federal Regulations logo on any republication of this 
              material without the express, written permission of the 
              Archivist of the United States or the Archivist's designee. 
              Any person using NARA's official seals and logos in a manner 
              inconsistent with the provisions of 36 CFR part 1200 is 
              subject to the penalties specified in 18 U.S.C. 506, 701, and 
              1017.

          Use of ISBN Prefix

          This is the Official U.S. Government edition of this publication 
              and is herein identified to certify its authenticity. Use of 
              the 0-16 ISBN prefix is for U.S. Government Publishing Office 
              Official Editions only. The Superintendent of Documents of the 
              U.S. Government Publishing Office requests that any reprinted 
              edition clearly be labeled as a copy of the authentic work 
              with a new ISBN.

              
              
          U . S . G O V E R N M E N T P U B L I S H I N G O F F I C E

          ------------------------------------------------------------------

          U.S. Superintendent of Documents  Washington, DC 
              20402-0001

          http://bookstore.gpo.gov

          Phone: toll-free (866) 512-1800; DC area (202) 512-1800

[[Page iii]]




                            Table of Contents



                                                                    Page
  Explanation.................................................       v

  Title 10:
          Chapter II--Department of Energy                           3
  Finding Aids:
      Table of CFR Titles and Chapters........................    1239
      Alphabetical List of Agencies Appearing in the CFR......    1259
      List of CFR Sections Affected...........................    1269

[[Page iv]]





                     ----------------------------

                     Cite this Code: CFR
                     To cite the regulations in 
                       this volume use title, 
                       part and section number. 
                       Thus, 10 CFR 202.21 refers 
                       to title 10, part 202, 
                       section 21.

                     ----------------------------

[[Page v]]



                               EXPLANATION

    The Code of Federal Regulations is a codification of the general and 
permanent rules published in the Federal Register by the Executive 
departments and agencies of the Federal Government. The Code is divided 
into 50 titles which represent broad areas subject to Federal 
regulation. Each title is divided into chapters which usually bear the 
name of the issuing agency. Each chapter is further subdivided into 
parts covering specific regulatory areas.
    Each volume of the Code is revised at least once each calendar year 
and issued on a quarterly basis approximately as follows:

Title 1 through Title 16.................................as of January 1
Title 17 through Title 27..................................as of April 1
Title 28 through Title 41...................................as of July 1
Title 42 through Title 50................................as of October 1

    The appropriate revision date is printed on the cover of each 
volume.

LEGAL STATUS

    The contents of the Federal Register are required to be judicially 
noticed (44 U.S.C. 1507). The Code of Federal Regulations is prima facie 
evidence of the text of the original documents (44 U.S.C. 1510).

HOW TO USE THE CODE OF FEDERAL REGULATIONS

    The Code of Federal Regulations is kept up to date by the individual 
issues of the Federal Register. These two publications must be used 
together to determine the latest version of any given rule.
    To determine whether a Code volume has been amended since its 
revision date (in this case, January 1, 2021), consult the ``List of CFR 
Sections Affected (LSA),'' which is issued monthly, and the ``Cumulative 
List of Parts Affected,'' which appears in the Reader Aids section of 
the daily Federal Register. These two lists will identify the Federal 
Register page number of the latest amendment of any given rule.

EFFECTIVE AND EXPIRATION DATES

    Each volume of the Code contains amendments published in the Federal 
Register since the last revision of that volume of the Code. Source 
citations for the regulations are referred to by volume number and page 
number of the Federal Register and date of publication. Publication 
dates and effective dates are usually not the same and care must be 
exercised by the user in determining the actual effective date. In 
instances where the effective date is beyond the cut-off date for the 
Code a note has been inserted to reflect the future effective date. In 
those instances where a regulation published in the Federal Register 
states a date certain for expiration, an appropriate note will be 
inserted following the text.

OMB CONTROL NUMBERS

    The Paperwork Reduction Act of 1980 (Pub. L. 96-511) requires 
Federal agencies to display an OMB control number with their information 
collection request.

[[Page vi]]

Many agencies have begun publishing numerous OMB control numbers as 
amendments to existing regulations in the CFR. These OMB numbers are 
placed as close as possible to the applicable recordkeeping or reporting 
requirements.

PAST PROVISIONS OF THE CODE

    Provisions of the Code that are no longer in force and effect as of 
the revision date stated on the cover of each volume are not carried. 
Code users may find the text of provisions in effect on any given date 
in the past by using the appropriate List of CFR Sections Affected 
(LSA). For the convenience of the reader, a ``List of CFR Sections 
Affected'' is published at the end of each CFR volume. For changes to 
the Code prior to the LSA listings at the end of the volume, consult 
previous annual editions of the LSA. For changes to the Code prior to 
2001, consult the List of CFR Sections Affected compilations, published 
for 1949-1963, 1964-1972, 1973-1985, and 1986-2000.

``[RESERVED]'' TERMINOLOGY

    The term ``[Reserved]'' is used as a place holder within the Code of 
Federal Regulations. An agency may add regulatory information at a 
``[Reserved]'' location at any time. Occasionally ``[Reserved]'' is used 
editorially to indicate that a portion of the CFR was left vacant and 
not dropped in error.

INCORPORATION BY REFERENCE

    What is incorporation by reference? Incorporation by reference was 
established by statute and allows Federal agencies to meet the 
requirement to publish regulations in the Federal Register by referring 
to materials already published elsewhere. For an incorporation to be 
valid, the Director of the Federal Register must approve it. The legal 
effect of incorporation by reference is that the material is treated as 
if it were published in full in the Federal Register (5 U.S.C. 552(a)). 
This material, like any other properly issued regulation, has the force 
of law.
    What is a proper incorporation by reference? The Director of the 
Federal Register will approve an incorporation by reference only when 
the requirements of 1 CFR part 51 are met. Some of the elements on which 
approval is based are:
    (a) The incorporation will substantially reduce the volume of 
material published in the Federal Register.
    (b) The matter incorporated is in fact available to the extent 
necessary to afford fairness and uniformity in the administrative 
process.
    (c) The incorporating document is drafted and submitted for 
publication in accordance with 1 CFR part 51.
    What if the material incorporated by reference cannot be found? If 
you have any problem locating or obtaining a copy of material listed as 
an approved incorporation by reference, please contact the agency that 
issued the regulation containing that incorporation. If, after 
contacting the agency, you find the material is not available, please 
notify the Director of the Federal Register, National Archives and 
Records Administration, 8601 Adelphi Road, College Park, MD 20740-6001, 
or call 202-741-6010.

CFR INDEXES AND TABULAR GUIDES

    A subject index to the Code of Federal Regulations is contained in a 
separate volume, revised annually as of January 1, entitled CFR Index 
and Finding Aids. This volume contains the Parallel Table of Authorities 
and Rules. A list of CFR titles, chapters, subchapters, and parts and an 
alphabetical list of agencies publishing in the CFR are also included in 
this volume.
    An index to the text of ``Title 3--The President'' is carried within 
that volume.

[[Page vii]]

    The Federal Register Index is issued monthly in cumulative form. 
This index is based on a consolidation of the ``Contents'' entries in 
the daily Federal Register.
    A List of CFR Sections Affected (LSA) is published monthly, keyed to 
the revision dates of the 50 CFR titles.

REPUBLICATION OF MATERIAL

    There are no restrictions on the republication of material appearing 
in the Code of Federal Regulations.

INQUIRIES

    For a legal interpretation or explanation of any regulation in this 
volume, contact the issuing agency. The issuing agency's name appears at 
the top of odd-numbered pages.
    For inquiries concerning CFR reference assistance, call 202-741-6000 
or write to the Director, Office of the Federal Register, National 
Archives and Records Administration, 8601 Adelphi Road, College Park, MD 
20740-6001 or e-mail [email protected].

SALES

    The Government Publishing Office (GPO) processes all sales and 
distribution of the CFR. For payment by credit card, call toll-free, 
866-512-1800, or DC area, 202-512-1800, M-F 8 a.m. to 4 p.m. e.s.t. or 
fax your order to 202-512-2104, 24 hours a day. For payment by check, 
write to: US Government Publishing Office - New Orders, P.O. Box 979050, 
St. Louis, MO 63197-9000.

ELECTRONIC SERVICES

    The full text of the Code of Federal Regulations, the LSA (List of 
CFR Sections Affected), The United States Government Manual, the Federal 
Register, Public Laws, Public Papers of the Presidents of the United 
States, Compilation of Presidential Documents and the Privacy Act 
Compilation are available in electronic format via www.govinfo.gov. For 
more information, contact the GPO Customer Contact Center, U.S. 
Government Publishing Office. Phone 202-512-1800, or 866-512-1800 (toll-
free). E-mail, [email protected].
    The Office of the Federal Register also offers a free service on the 
National Archives and Records Administration's (NARA) website for public 
law numbers, Federal Register finding aids, and related information. 
Connect to NARA's website at www.archives.gov/federal-register.
    The e-CFR is a regularly updated, unofficial editorial compilation 
of CFR material and Federal Register amendments, produced by the Office 
of the Federal Register and the Government Publishing Office. It is 
available at www.ecfr.gov.

    Oliver A. Potts,
    Director,
    Office of the Federal Register
    January 1, 2021







[[Page ix]]



                               THIS TITLE

    Title 10--Energy is composed of four volumes. The parts in these 
volumes are arranged in the following order: Parts 1-50, 51-199, 200-499 
and part 500-end. The first and second volumes containing parts 1-199 
are comprised of chapter I--Nuclear Regulatory Commission. The third and 
fourth volumes containing part 200-end are comprised of chapters II, 
III, and X--Department of Energy, chapter XIII--Nuclear Waste Technical 
Review Board, chapter XVII--Defense Nuclear Facilities Safety Board, and 
chapter XVIII--Northeast Interstate Low-Level Radioactive Waste 
Commission. The contents of these volumes represent all current 
regulations codified under this title of the CFR as of January 1, 2021.

    For this volume, Gabrielle E. Burns was Chief Editor. The Code of 
Federal Regulations publication program is under the direction of John 
Hyrum Martinez, assisted by Stephen J. Frattini.

[[Page 1]]



                            TITLE 10--ENERGY




                  (This book contains parts 200 to 499)

  --------------------------------------------------------------------
                                                                    Part

chapter ii--Department of Energy............................         202

[[Page 3]]



                    CHAPTER II--DEPARTMENT OF ENERGY




  --------------------------------------------------------------------

                            SUBCHAPTER A--OIL
Part                                                                Page
200-201

[Reserved]

202             Production or disclosure of material or 
                    information.............................           5
205             Administrative procedures and sanctions.....           6
207             Collection of information...................          51
209             International voluntary agreements..........          55
210             General allocation and price rules..........          60
212             Mandatory petroleum price regulations.......          67
215             Collection of foreign oil supply agreement 
                    information.............................          68
216             Materials allocation and priority 
                    performance under contracts or orders to 
                    maximize domestic energy supplies.......          69
217             Energy priorities and allocations system....          73
218             Standby mandatory international oil 
                    allocation..............................          93
220

[Reserved]

221             Priority supply of crude oil and petroleum 
                    products to the Department of Defense 
                    under the Defense Production Act........          98
                      SUBCHAPTER B--CLIMATE CHANGE
300             Voluntary Greenhouse Gas Reporting Program: 
                    General guidelines......................         102
                         SUBCHAPTER C [RESERVED]
                    SUBCHAPTER D--ENERGY CONSERVATION
400-417

[Reserved]

420             State energy program........................         124
429             Certification, compliance, and enforcement 
                    for consumer products and commercial and 
                    industrial equipment....................         138
430             Energy conservation program for consumer 
                    products................................         277
431             Energy efficiency program for certain 
                    commercial and industrial equipment.....         783

[[Page 4]]

433             Energy efficiency standards for the design 
                    and construction of new Federal 
                    commercial and multi-family high-rise 
                    residential buildings...................        1039
434             Energy code for new Federal commercial and 
                    multi-family high rise residential 
                    buildings...............................        1043
435             Energy efficiency standards for the design 
                    and construction of new Federal low-rise 
                    residential buildings...................        1104
436             Federal energy management and planning 
                    programs................................        1111
440             Weatherization assistance for low-income 
                    persons.................................        1138
445

[Reserved]

451             Renewable energy production incentives......        1160
452             Production incentives for cellulosic 
                    biofuels................................        1165
455             Grant programs for schools and hospitals and 
                    buildings owned by units of local 
                    government and public care institutions.        1169
456

[Reserved]

470             Appropriate Technology Small Grants Program.        1200
473             Automotive propulsion research and 
                    development.............................        1205
474             Electric and Hybrid Vehicle Research, 
                    Development, and Demonstration Program; 
                    petroleum-equivalent fuel economy 
                    calculation.............................        1209
490             Alternative fuel transportation program.....        1210
491-499

[Reserved]

[[Page 5]]



                            SUBCHAPTER A_OIL



                        PARTS 200	201 [RESERVED]



PART 202_PRODUCTION OR DISCLOSURE OF MATERIAL OR INFORMATION--Table of Contents



Subpart A [Reserved]

 Subpart B_Production or Disclosure in Response to Subpoenas or Demands 
                     of Courts or Other Authorities

Sec.
202.21 Purpose and scope.
202.22 Production or disclosure prohibited unless approved by 
          appropriate DOE official.
202.23 Procedure in the event of a demand for production or disclosure.
202.24 Final action by the appropriate DOE official.
202.25 Procedure where a decision concerning a demand is not made prior 
          to the time a response to the demand is required.
202.26 Procedure in the event of an adverse ruling.

    Authority: Freedom of Information Act, 5 U.S.C. 552; Emergency 
Petroleum Allocation Act of 1973, Pub. L. 93-159; Federal Energy 
Administration Act of 1974, Pub. L. 93-275, E.O. 11790, 39 FR 23185.

Subpart A [Reserved]



 Subpart B_Production or Disclosure in Response to Subpoenas or Demands 
                     of Courts or Other Authorities

    Source: 39 FR 35472, Mar. 13, 1974, unless otherwise noted.



Sec.  202.21  Purpose and scope.

    (a) This subpart sets forth the procedures to be followed when a 
subpoena, order, or other demand (hereinafter referred to as a 
``demand'') of a court or other authority is issued for the production 
or disclosure of (1) any material contained in the files of the 
Department of Energy (DOE), (2) any information relating to material 
contained in the files of the DOE, or (3) any information or material 
acquired by any person while such person was an employee of the DOE as a 
part of the performance of his official duties or because of his 
official status.
    (b) For purposes of this subpart, the term ``Employee of the DOE'' 
includes all officers and employees of the United States appointed by, 
or subject to the supervision, jurisdiction, or control of, the 
Administrator of DOE.



Sec.  202.22  Production or disclosure prohibited unless approved 
by appropriate DOE official.

    No employee or former employee of the DOE shall, in response to a 
demand of a court or other authority, produce any material contained in 
the file of the DOE or disclose any information relating to material 
contained in the files of the DOE, or disclose any information or 
produce any material acquired as part of the performance of his official 
duties or because of his official status without prior approval of the 
General Counsel of DOE.



Sec.  202.23  Procedure in the event of a demand for production or disclosure.

    (a) Whenever a demand is made upon an employee or former employee of 
the DOE for the production of material or the disclosure of information 
described in Sec.  202.21(a), he shall immediately notify the Regional 
Counsel for the region where the issuing authority is located. The 
Regional Counsel shall immediately request instructions from the General 
Counsel of DOE.
    (b) If oral testimony is sought by the demand, an affidavit, or, if 
that is not feasible, a statement by the party seeking the testimony or 
his attorney, setting forth a summary of the testimony desired, must be 
furnished for submission by the Regional Counsel to the General Counsel.



Sec.  202.24  Final action by the appropriate DOE official.

    If the General Counsel approves a demand for the production of 
material or disclosure of information, he shall so notify the Regional 
Counsel and such other persons as circumstances may warrant.

[[Page 6]]



Sec.  202.25  Procedure where a decision concerning a demand is not made 
prior to the time a response to the demand is required.

    If response to the demand is required before the instructions from 
the General Counsel are received, a U.S. attorney or DOE attorney 
designated for the purpose shall appear with the employee or former 
employee of the DOE upon whom the demand has been made, and shall 
furnish the court or other authority with a copy of the regulations 
contained in this subpart and inform the court or other authority that 
the demand has been, or is being, as the case may be, referred for the 
prompt consideration of the appropriate DOE official and shall 
respectfully request the court or authority to stay the demand pending 
receipt of the requested instructions.



Sec.  202.26  Procedure in the event of an adverse ruling.

    If the court or other authority declines to stay the effect of the 
demand in response to a request made in accordance with Sec.  202.25 
pending receipt of instructions, of if the court or other authority 
rules that the demand must be complied with irrespective of instructions 
not to produce the material or disclose the information sought, the 
employee or former employee upon whom the demand has been made shall 
respectfully decline to comply with the demand. ``United States ex rel 
Touhy v. Ragen,'' 340 U.S. 462.



PART 205_ADMINISTRATIVE PROCEDURES AND SANCTIONS--Table of Contents



                      Subpart A_General Provisions

Sec.
205.1 Purpose and scope.
205.2 Definitions.
205.3 Appearance before the DOE or a State Office.
205.4 Filing of documents.
205.5 Computation of time.
205.6 Extension of time.
205.7 Service.
205.8 Subpoenas, special report orders, oaths, witnesses.
205.9 General filing requirements.
205.10 Effective date of orders.
205.11 Order of precedence.
205.12 Addresses for filing documents with the DOE.
205.13 Where to file.
205.14 Ratification of prior directives, orders, and actions.
205.15 Public docket room.

Subparts B-E [Reserved]

                        Subpart F_Interpretation

205.80 Purpose and scope.
205.81 What to file.
205.82 Where to file.
205.83 Contents.
205.84 DOE evaluation.
205.85 Decision and effect.
205.86 Appeal.

Subparts G-J [Reserved]

                            Subpart K_Rulings

205.150 Purpose and scope.
205.151 Criteria for issuance.
205.152 Modification or rescission.
205.153 Comments.
205.154 Appeal.

Subpart L [Reserved]

          Subpart M_Conferences, Hearings, and Public Hearings

205.170 Purpose and scope.
205.171 Conferences.
205.172 Hearings.
205.173 Public hearings.

Subpart N [Reserved]

   Subpart O_Notice of Probable Violation, Remedial Order, Notice of 
            Proposed Disallowance, and Order of Disallowance

205.190 Purpose and scope.
205.191 [Reserved]
205.192 Proposed remedial order.
205.192A Burden of proof.
205.193 Notice of Objection.
205.193A Submission of ERA supplemental information.
205.194 Participants; official service list.
205.195 Filing and service of all submissions.
205.196 Statement of objections.
205.197 Response to statement of objections; reply.
205.198 Discovery.
205.198A Protective order.
205.199 Evidentiary hearing.
205.199A Hearing for the purpose of oral argument only.
205.199B Remedial order.
205.199C Appeals of remedial order to FERC.
205.199D-205.199E [Reserved]
205.199F Ex parte communications.
205.199G Extension of time; Interim and Ancillary Orders.
205.199H Actions not subject to administrative appeal.

[[Page 7]]

205.199I Remedies.
205.199J Consent order.

Subparts P-T [Reserved]

            Subpart U_Procedures for Electricity Export Cases

205.260 Purpose and scope.
205.261-205.269 [Reserved]
205.270 Off-the-record communications.

        Subpart V_Special Procedures for Distribution of Refunds

205.280 Purpose and scope.
205.281 Petition for implementation of special refund procedures.
205.282 Evaluation of petition by the Office of Hearings and Appeals.
205.283 Applications for refund.
205.284 Processing of applications.
205.285 Effect of failure to file a timely application.
205.286 Limitations on amount of refunds.
205.287 Escrow accounts, segregated funds and other guarantees.
205.288 Interim and ancillary orders.

   Subpart W_Electric Power System Permits and Reports; Applications; 
 Administrative Procedures and Sanctions; Grid Security Emergency Orders

 Application for Authorization to Transmit Electric Energy to a Foreign 
                                 Country

205.300 Who shall apply.
205.301 Time of filing.
205.302 Contents of application.
205.303 Required exhibits.
205.304 Other information.
205.305 Transferability.
205.306 Authorization not exclusive.
205.307 Form and style; number of copies.
205.308 Filing schedule and annual reports.
205.309 Filing procedures and fees.

   Application for Presidential Permit Authorizing the Construction, 
Connection, Operation, and Maintenance of Facilities for Transmission of 
               Electric Energy at International Boundaries

205.320 Who shall apply.
205.321 Time of filing.
205.322 Contents of application.
205.323 Transferability.
205.324 Form and style; number of copies.
205.325 Annual report.
205.326 Filing procedures and fees.
205.327 Other information.
205.328 Environmental requirements for Presidential Permits--Alternative 
          1.
205.329 Environmental requirements for Presidential Permits--Alternative 
          2.

           Report of Major Electric Utility System Emergencies

205.350 General purpose.
205.351 Reporting requirements.
205.352 Information to be reported.
205.353 Special investigation and reports.

  Emergency Interconnection of Electric Facilities and the Transfer of 
    Electricity to Alleviate an Emergency Shortage of Electric Power

205.370 Applicability.
205.371 Definition of emergency.
205.372 Filing procedures; number of copies.
205.373 Application procedures.
205.374 Responses from ``entities'' designated in the application.
205.375 Guidelines defining inadequate fuel or energy supply.
205.376 Rates and charges.
205.377 Reports.
205.378 Disconnection of temporary facilities.
205.379 Application for approval of the installation of permanent 
          facilities for emergency use only.

   Internal Procedures for Issuance of a Grid Security Emergency Order

205.380 Definitions.
205.381 Applicability of emergency order.
205.382 Issuing an emergency order.
205.383 Consultation.
205.384 Communication of orders.
205.385 Clarification or reconsideration.
205.386 Temporary access to classified and sensitive information.
205.387 Tracking compliance.
205.388 Enforcement.
205.389 Rehearing and judicial review.
205.390 Liability exemptions.
205.391 Termination of an emergency order.

    Authority: Emergency Petroleum Allocation Act of 1973, Pub. L. 93-
159; Federal Energy Administration Act of 1974, Pub. L. 93-275 (88 Stat. 
96; E.O. 11790, 39 FR 23185); 42 U.S.C. 7101 et seq., unless otherwise 
noted.

    Source: 39 FR 35489, Oct. 1, 1974, unless otherwise noted.



                      Subpart A_General Provisions



Sec.  205.1  Purpose and scope.

    This part establishes the procedures to be utilized and identifies 
the sanctions that are available in proceedings before the Department of 
Energy and State Offices, in accordance with parts 209 through 214 of 
this chapter. Any exception, exemption, appeal, stay, modification, 
recession, redress or resolution of private grievance sought under the 
authority of 42 U.S.C. 7194 shall be

[[Page 8]]

governed by the procedural rules set forth in 10 CFR part 1003.

[61 FR 35114, July 5, 1996]



Sec.  205.2  Definitions.

    The definitions set forth in other parts of this chapter shall apply 
to this part, unless otherwise provided. In addition, as used in this 
part, the term:
    Action means an order, interpretation, notice of probable violation 
or ruling issued, or a rulemaking undertaken by the DOE or, as 
appropriate, by a State Office.
    Adjustment means a modification of the base period volume or other 
measure of allocation entitlement in accordance with part 211 of this 
chapter.
    Aggrieved, for purposes of administrative proceedings, describes and 
means a person with an interest sought to be protected under the FEAA, 
EPAA, or Proclamation No. 3279, as amended, who is adversely affected by 
an order or interpretation issued by the DOE or a State Office.
    Appropriate Regional Office or appropriate State Office means the 
office located in the State or DOE region in which the product will be 
physically delivered.
    Assignment means an action designating that an authorized purchaser 
be supplied at a specified entitlement level by a specified supplier.
    Conference means an informal meeting, incident to any proceeding, 
between DOE or State officials and any person aggrieved by that 
proceeding.
    Consent order means a document of agreement between DOE and a person 
prohibiting certain acts, requiring the performance of specific acts or 
including any acts which DOE could prohibit or require pursuant to Sec.  
205.195.
    Duly authorized representative means a person who has been 
designated to appear before the DOE or a State Office in connection with 
a proceeding on behalf of a person interested in or aggrieved by that 
proceeding. Such appearance may consist of the submission of 
applications, petitions, requests, statements, memoranda of law, other 
documents, or of a personal appearance, verbal communication, or any 
other participation in the proceeding.
    EPAA means the Emergency Petroleum Allocation Act of 1973 (Pub. L. 
93-159).
    EPCA means the Energy Policy and Conservation Act (Pub. L. 94-163).
    Exception means the waiver or modification of the requirements of a 
regulation, ruling or generally applicable requirement under a specific 
set of facts.
    Exemption means the release from the obligation to comply with any 
part or parts, or any subpart thereof, of this chapter.
    DOE means the Department of Energy, created by the FEAA and includes 
the DOE National Office and Regional Offices.
    FEAA means the Federal Energy Administration Act of 1974 (Pub. L. 
93-275).
    Federal legal holiday means New Year's Day, Washington's Birthday, 
Memorial Day, Independence Day, Labor Day, Columbus Day, Veterans' Day, 
Thanksgiving Day, Christmas Day, and any other day appointed as a 
national holiday by the President or the Congress of the United States.
    Interpretation means a written statement issued by the General 
Counsel or his delegate or Regional Counsel, in response to a written 
request, that applies the regulations, rulings, and other precedents 
previously issued, to the particular facts of a prospective or completed 
act or transaction.
    Notice of probable violation means a written statement issued to a 
person by the DOE that states one or more alleged violations of the 
provisions of this chapter or any order issued pursuant thereto.
    Order means a written directive or verbal communication of a written 
directive, if promptly confirmed in writing, issued by the DOE or a 
State Office. It may be issued in response to an application, petition 
or request for DOE action or in response to an appeal from an order, or 
it may be a remedial order or other directive issued by the DOE or a 
State Office on its own initiative. A notice of probable violation is 
not an order. For purposes of this definition a ``written directive'' 
shall include telegrams, telecopies and similar transcriptions.

[[Page 9]]

    Person means any individual, firm, estate, trust, sole 
proprietorship, partnership, association, company, joint-venture, 
corporation, governmental unit or instrumentality thereof, or a 
charitable, educational or other institution, and includes any officer, 
director, owner or duly authorized representative thereof.
    Proceeding means the process and activity, and any part thereof, 
instituted by the DOE or a State Office, either on its own initiative or 
in response to an application, complaint, petition or request submitted 
by a person, that may lead to an action by the DOE or a State Office.
    Remedial order means a directive issued by the DOE requiring a 
person to cease a violation or to eliminate or to compensate for the 
effects of a violation, or both.
    Ruling means an official interpretative statement of general 
applicability issued by the DOE General Counsel and published in the 
Federal Register that applies the DOE regulations to a specific set of 
circumstances.
    State Office means a State Office of Petroleum Allocation certified 
by the DOE upon application pursuant to part 211 of this chapter.
    Throughout this part the use of a word or term in the singular shall 
include the plural and the use of the male gender shall include the 
female gender.

(Emergency Petroleum Allocation Act of 1973, Pub. L. 93-159, as amended, 
Pub. L. 93-511, Pub. L. 94-99, Pub. L. 94-133, Pub. L. 94-163, and Pub. 
L. 94-385; Federal Energy Administration Act of 1974, Pub. L. 93-275, as 
amended, Pub. L. 94-385; Energy Policy and Conservation Act, Pub. L. 94-
163, as amended, Pub. L. 94-385; E.O. 11790, 39 FR 23185; Department of 
Energy Organization Act, Pub. L. 95-91; E.O. 12009, 42 FR 46267)

[39 FR 35489, Oct. 1, 1974, as amended at 40 FR 36555, Aug. 21, 1975; 40 
FR 36761, Aug. 22, 1975; 41 FR 36647, Aug. 31, 1976; 43 FR 14437, Apr. 
6, 1978]



Sec.  205.3  Appearance before the DOE or a State Office.

    (a) A person may make an appearance, including personal appearances 
in the discretion of the DOE, and participate in any proceeding 
described in this part on his own behalf or by a duly authorized 
representative. Any application, appeal, petition, request or complaint 
filed by a duly authorized representative shall contain a statement by 
such person certifying that he is a duly authorized representative, 
unless a DOE form requires otherwise. Falsification of such 
certification will subject such person to the sanctions stated in 18 
U.S.C. 1001 (1970).
    (b) Suspension and disqualification: The DOE or a State Office may 
deny, temporarily or permanently, the privilege of participating in 
proceedings, including oral presentation, to any individual who is found 
by the DOE--
    (1) To have made false or misleading statements, either verbally or 
in writing;
    (2) To have filed false or materially altered documents, affidavits 
or other writings;
    (3) To lack the specific authority to represent the person seeking a 
DOE or State Office action; or
    (4) To have engaged in or to be engaged in contumacious conduct that 
substantially disrupts a proceeding.



Sec.  205.4  Filing of documents.

    (a) Any document, including, but not limited to, an application, 
request, complaint, petition and other documents submitted in connection 
therewith, filed with the DOE or a State Office under this chapter is 
considered to be filed when it has been received by the DOE National 
Office, a Regional Office or a State Office. Documents transmitted to 
the DOE must be addressed as required by Sec.  205.12. All documents and 
exhibits submitted become part of an DOE or a State Office file and will 
not be returned.
    (b) Notwithstanding the provisions of paragraph (a) of this section, 
an appeal, a response to a denial of an appeal or application for 
modification or recision in accordance with Sec. Sec.  205.106(a)(3) and 
205.135(a)(3), respectively, a reply to a notice of probable violation, 
the appeal of a remedial order or remedial order for immediate 
compliance, a response to denial of a claim of confidentiality, or a 
comment submitted in connection with any proceeding transmitted by 
registered or certified mail and addressed to the appropriate office is 
considered to be filed upon mailing.

[[Page 10]]

    (c) Hand-delivered documents to be filed with the Office of 
Exceptions and Appeals shall be submitted to Room 8002 at 2000 M Street, 
NW., Washington, D.C. All other hand-delivered documents to be filed 
with the DOE National Office shall be submitted to the Executive 
Secretariat at 12th and Pennsylvania Avenue, NW., Washington, D.C. Hand-
delivered documents to be filed with a Regional Office shall be 
submitted to the Office of the Regional Administrator. Hand-delivered 
documents to be filed with a State Office shall be submitted to the 
office of the chief executive officer of such office.
    (d) Documents received after regular business hours are deemed filed 
on the next regular business day. Regular business hours for the DOE 
National Office are 8 a.m. to 4:30 p.m. Regular business hours for a 
Regional Office or a State Office shall be established independently by 
each.



Sec.  205.5  Computation of time.

    (a) Days. (1) Except as provided in paragraph (b) of this section, 
in computing any period of time prescribed or allowed by these 
regulations or by an order of the DOE or a State Office, the day of the 
act, event, or default from which the designated period of time begins 
to run is not to be included. The last day of the period so computed is 
to be included unless it is a Saturday, Sunday, or Federal legal holiday 
in which event the period runs until the end of the next day that is 
neither a Saturday, Sunday, nor a Federal legal holiday.
    (2) Saturdays, Sundays or intervening Federal legal holidays shall 
be excluded from the computation of time when the period of time allowed 
or prescribed is 7 days or less.
    (b) Hours. If the period of time prescribed in an order issued by 
the DOE or a State Office is stated in hours rather than days, the 
period of time shall begin to run upon actual notice of such order, 
whether by verbal or written communication, to the person directly 
affected, and shall run without interruption, unless otherwise provided 
in the order, or unless the order is stayed, modified, suspended or 
rescinded. When a written order is transmitted by verbal communication, 
the written order shall be served as soon thereafter as is feasible.
    (c) Additional time after service by mail. Whenever a person is 
required to perform an act, to cease and desist therefrom, or to 
initiate a proceeding under this part within a prescribed period of time 
after issuance to such person of an order, notice, interpretation or 
other document and the order, notice, interpretation or other document 
is served by mail, 3 days shall be added to the prescribed period.



Sec.  205.6  Extension of time.

    When a document is required to be filed within a prescribed time, an 
extension of time to file may be granted by the office with which the 
document is required to be filed upon good cause shown.



Sec.  205.7  Service.

    (a) All orders, notices, interpretations or other documents required 
to be served under this part shall be served personally or by registered 
or certified mail or by regular United States mail (only when service is 
effected by the DOE or a State Office), except as otherwise provided.
    (b) Service upon a person's duly authorized representative shall 
constitute service upon that person.
    (c) Service by registered or certified mail is complete upon 
mailing. Official United States Postal Service receipts from such 
registered or certified mailing shall constitute prima facie evidence of 
service.



Sec.  205.8  Subpoenas, special report orders, oaths, witnesses.

    (a) In this section the following terms have the definitions 
indicated unless otherwise provided.
    (1) ``DOE Official'' means the Secretary of the Department of 
Energy, the Administrator of the Economic Regulatory Administration, the 
Administrator of Energy Information Administration, the General Counsel 
of the Department of Energy, the Special Counsel for Compliance, the 
Assistant Administrator for Enforcement, the Director of the Office of 
Hearings and Appeals, or the duly authorized delegate of any of the 
foregoing officials.

[[Page 11]]

    (2) ``SRO'' means a Special Report Order issued pursuant to 
paragraph (b) of this section.
    (b) (1) In accordance with the provisions of this section and as 
otherwise authorized by law, a DOE Official may sign, issue and serve 
subpoenas; administer oaths and affirmations; take sworn testimony; 
compel attendance of and sequester witnesses; control dissemination of 
any record of testimony taken pursuant to this section; subpoena and 
reproduce books, papers, correspondence, memoranda, contracts 
agreements, or other relevant records or tangible evidence including, 
but not limited to, information retained in computerized or other 
automated systems in possession of the subpoenaed person. Unless 
otherwise provided by subpart O, the provisions of this section apply to 
subpoenas issued by the office of Hearings and Appeals with respect to 
matters in proceedings before it.
    (2) A DOE Official may issue a Special Report Order requiring any 
person subject to the jurisdiction of the ERA to file a special report 
providing information relating to DOE regulations, including but not 
limited to written answers to specific questions. The SRO may be in 
addition to any other reports required by this chapter.
    (3) The DOE Official who issues a subpoena or SRO pursuant to this 
section, for good cause shown, may extend the time prescribed for 
compliance with the subpoena or SRO and negotiate and approve the terms 
of satisfactory compliance.
    (4) Prior to the time specified for compliance, but in no event more 
than 10 days after the date of service of the subpoena or SRO, the 
person upon whom the document was served may file a request for review 
of the subpoena or SRO with the DOE Official who issued the document. 
The DOE Official then shall forward the request to his supervisor who 
shall provide notice of receipt to the person requesting review. The 
supervisor or his designee may extend the time prescribed for compliance 
with the subpoena or SRO and negotiate and approve the terms of 
satisfactory compliance.
    (5) If the subpoena or SRO is not modified or rescinded within 10 
days of the date of the supervisor's notice of receipt, (i) the subpoena 
or SRO shall be effective as issued; and (ii) the person upon whom the 
document was served shall comply with the subpoena or SRO within 20 days 
of the date of the supervisor's notice of receipt, unless otherwise 
notified in writing by the supervisor or his designee.
    (6) There is no administrative appeal of a subpoena or SRO.
    (c) (1) A subpoena or SRO shall be served upon a person named in the 
document by delivering a copy of the document to the person named.
    (2) Delivery of a copy of the document to a natural person may be 
made by:
    (i) Handing it to the person;
    (ii) Leaving it at the person's office with the person in charge of 
the office;
    (iii) Leaving it at the person's dwelling or usual place of abode 
with a person of suitable age and discretion who resides there;
    (iv) Mailing it to the person by registered or certified mail, at 
his last known address; or
    (v) Any method that provides the person with actual notice prior to 
the return date of the document.
    (3) Delivery of a copy of the document to a person who is not a 
natural person may be made by:
    (i) Handing it to a registered agent of the person;
    (ii) Handing it to any officer, director, or agent in charge of any 
office of such person;
    (iii) Mailing it to the last known address of any registered agent, 
officer, director, or agent in charge of any office of the person by 
registered or certified mail, or
    (iv) Any method that provides any registered agent, officer, 
director, or agent in charge of any office of the person with actual 
notice of the document prior to the return date of the document.
    (d)(1) A witness subpoenaed by the DOE shall be paid the same fees 
and mileage as paid to a witness in the district courts of the United 
States.
    (2) If in the course of a proceeding conducted pursuant to subpart M 
or O, a subpoena is issued at the request of a person other than an 
officer or agency of the United States, the witness fees

[[Page 12]]

and mileage shall be paid by the person who requested the subpoena. 
However, at the request of the person, the witness fees and mileage 
shall be paid by the DOE if the person shows:
    (i) The presence of the subpoenaed witness will materially advance 
the proceeding; and
    (ii) The person who requested that the subpoena be issued would 
suffer a serious hardship if required to pay the witness fees and 
mileage. The DOE Official issuing the subpoena shall make the 
determination required by this subsection.
    (e) If any person upon whom a subpoena or SRO is served pursuant to 
this section, refuses or fails to comply with any provision of the 
subpoena or SRO, an action may be commenced in the United States 
District Court to enforce the subpoena or SRO.
    (f) (1) Documents produced in response to a subpoena shall be 
accompanied by the sworn certification, under penalty of perjury, of the 
person to whom the subpoena was directed or his authorized agent that 
(i) a diligent search has been made for each document responsive to the 
subpoena, and (ii) to the best of his knowledge, information, and belief 
each document responsive to the subpoena is being produced unless 
withheld on the grounds of privilege pursuant to paragraph (g) of this 
section.
    (2) Any information furnished in response to an SRO shall be 
accompanied by the sworn certification under penalty of perjury of the 
person to whom it was directed or his authorized agent who actually 
provides the information that (i) a diligent effort has been made to 
provide all information required by the SRO, and (ii) all information 
furnished is true, complete, and correct unless withheld on grounds of 
privilege pursuant to paragraph (g) of this section.
    (3) If any document responsive to a subpoena is not produced or any 
information required by an SRO is not furnished, the certification shall 
include a statement setting forth every reason for failing to comply 
with the subpoena or SRO.
    (g) If a person to whom a subpoena or SRO is directed withholds any 
document or information because of a claim of attorney-client or other 
privilege, the person submitting the certification required by paragraph 
(f) of this section also shall submit a written list of the documents or 
the information withheld indicating a description of each document or 
information, the date of the document, each person shown on the document 
as having received a copy of the document, each person shown on the 
document as having prepared or been sent the document, the privilege 
relied upon as the basis for withholding the document or information, 
and an identification of the person whose privilege is being asserted.
    (h)(1) If testimony is taken pursuant to a subpoena, the DOE 
Official shall determine whether the testimony shall be recorded and the 
means by which the testimony is recorded.
    (2) A witness whose testimony is recorded may procure a copy of his 
testimony by making a written request for a copy and paying the 
appropriate fees. However, the DOE official may deny the request for 
good cause. Upon proper identification, any witness or his attorney has 
the right to inspect the official transcript of the witness' own 
testimony.
    (i) The DOE Official may sequester any person subpoenaed to furnish 
documents or give testimony. Unless permitted by the DOE Official, 
neither a witness nor his attorney shall be present during the 
examination of any other witnesses.
    (j)(1) Any witness whose testimony is taken may be accompanied, 
represented and advised by his attorney as follows:
    (i) Upon the initiative of the attorney or witness, the attorney may 
advise his client, in confidence, with respect to the question asked his 
client, and if the witness refuses to answer any question, the witness 
or his attorney is required to briefly state the legal grounds for such 
refusal; and
    (ii) If the witness claims a privilege to refuse to answer a 
question on the grounds of self-incrimination, the witness must assert 
the privilege personally.
    (k) The DOE Official shall take all necessary action to regulate the 
course of testimony and to avoid delay and

[[Page 13]]

prevent or restrain contemptuous or obstructionist conduct or 
contemptuous language. DOE may take actions as the circumstances may 
warrant in regard to any instances where any attorney refuses to comply 
with directions or provisions of this section.

(Emergency Petroleum Allocation Act of 1973, Pub. L. 93-159, as amended, 
Pub. L. 94-163, and Pub. L. 94-385; Federal Energy Administration Act of 
1974, Pub. L. 93-275, as amended, Pub. L. 94-332, Pub. L. 94-385, Pub. 
L. 95-70, and Pub. L. 95-91; Energy Supply and Environmental 
Coordination Act of 1974, Pub. L. 93-319, as amended; Energy Policy and 
Conservation Act, Pub. L. 94-163, as amended, Pub. L. 94-385, and Pub. 
L. 95-70; Department of Energy Organization Act, Pub. L. 95-91; E.O. 
11790, 39 FR 23185; E.O. 12009, 42 FR 46267)

[44 FR 23201, Apr. 19, 1979]



Sec.  205.9  General filing requirements.

    (a) Purpose and scope. The provisions of this section shall apply to 
all documents required or permitted to be filed with the DOE or with a 
State Office.
    (b) Signing. All applications, petitions, requests, appeals, 
comments or any other documents that are required to be signed, shall be 
signed by the person filing the document or a duly authorized 
representative. Any application, appeal, petition, request, complaint or 
other document filed by a duly authorized representative shall contain a 
statement by such person certifying that he is a duly authorized 
representative, unless an DOE form other wise requires. (A false 
certification is unlawful under the provisions of 18 U.S.C. 1001 
(1970)).
    (c) Labeling. An application, petition, or other request for action 
by the DOE or a State Office should be clearly labeled according to the 
nature of the action involved (e.g., ``Application for Assignment'') 
both on the document and on the outside of the envelope in which the 
document is transmitted.
    (d) Obligation to supply information. A person who files an 
application, petition, complaint, appeal or other request for action is 
under a continuing obligation during the proceeding to provide the DOE 
or a State Office with any new or newly discovered information that is 
relevant to that proceeding. Such information includes, but is not 
limited to, information regarding any other application, petition, 
complaint, appeal or request for action that is subsequently filed by 
that person with any DOE office or State Office.
    (e) The same or related matters. A person who files an application, 
petition, complaint, appeal or other request for action by the DOE or a 
State Office shall state whether, to the best knowledge of that person, 
the same or related issue, act or transaction has been or presently is 
being considered or investigated by any DOE office, other Federal 
agency, department or instrumentality; or by a State Office, a state or 
municipal agency or court; or by any law enforcement agency; including, 
but not limited to, a consideration or investigation in connection with 
any proceeding described in this part. In addition, the person shall 
state whether contact has been made by the person or one acting on his 
behalf with any person who is employed by the DOE or any State Office 
with regard to the same issue, act or transaction or a related issue, 
act or transaction arising out of the same factual situation; the name 
of the person contacted; whether the contact was verbal or in writing; 
the nature and substance of the contact; and the date or dates of the 
contact.
    (f) Request for confidential treatment. (1) If any person filing a 
document with the DOE or a State Office claims that some or all the 
information contained in the document is exempt from the mandatory 
public disclosure requirements of the Freedom of Information Act (5 
U.S.C. 552 (1970)), is information referred to in 18 U.S.C. 1905 (1970), 
or is otherwise exempt by law from public disclosure, and if such person 
requests the DOE or a State Office not to disclose such information, 
such person shall file together with the document a second copy of the 
document from which has been deleted the information for which such 
person wishes to claim confidential treatment. The person shall indicate 
in the original document that it is confidential or contains 
confidential information and may file a statement specifying the 
justification for non-disclosure of the information for which 
confidential treatment is claimed. If the person states that the

[[Page 14]]

information comes within the exception in 5 U.S.C. 552(b)(4) for trade 
secrets and commercial or financial information, such person shall 
include a statement specifying why such information is privileged or 
confidential. If the person filing a document does not submit a second 
copy of the document with the confidential information deleted, the DOE 
or a State Office may assume that there is no objection to public 
disclosure of the document in its entirety.
    (2) The DOE or a State Office retains the right to make its own 
determination with regard to any claim of confidentiality. Notice of the 
decision by the DOE or a State Office to deny such claim, in whole or in 
part, and an opportunity to respond shall be given to a person claiming 
confidentiality of information no less than five days prior to its 
public disclosure.
    (g) Separate applications, petitions or requests. Each application, 
petition or request for DOE action shall be submitted as a separate 
document, even if the applications, petitions, or requests deal with the 
same or a related issue, act or transaction, or are submitted in 
connection with the same proceeding.



Sec.  205.10  Effective date of orders.

    Any order issued by the DOE or a State Office under this chapter is 
effective as against all persons having actual notice thereof upon 
issuance, in accordance with its terms, unless and until it is stayed, 
modified, suspended, or rescinded. An order is deemed to be issued on 
the date, as specified in the order, on which it is signed by an 
authorized representative of the DOE or a State Office, unless the order 
provides otherwise.



Sec.  205.11  Order of precedence.

    (a) If there is any conflict or inconsistency between the provisions 
of this part and any other provision of this chapter, the provisions of 
this part shall control with respect to procedure.
    (b) Notwithstanding paragraph (a) of this section, subpart I of part 
212 of this chapter shall control with respect to prenotification and 
reporting and subpart J of part 212 of this chapter shall control with 
respect to accounting and financial reporting requirements.



Sec.  205.12  Addresses for filing documents with the DOE.

    (a) All applications, requests, petitions, appeals, reports, DOE or 
FEO forms, written communications and other documents to be submitted to 
or filed with the DOE National Office in accordance with this chapter 
shall be addressed as provided in this section. The DOE National Office 
has facilities for the receipt of transmissions via TWX and FAX. The FAX 
is a 3M full duplex 4 or 6 minute (automatic) machine.

------------------------------------------------------------------------
                FAX Numbers                          TWX Numbers
------------------------------------------------------------------------
(202) 254-6175............................  (701) 822-9454
(202) 254-6461............................  (701) 822-9459
------------------------------------------------------------------------

    (1) Documents for which a specific address and/or code number is not 
provided in accordance with paragraphs (a)(2) through (7) of this 
section, shall be addressed as follows: Department of Energy, Attn: 
(name of person to receive document, if known, or subject), Washington, 
DC 20461.
    (2) Documents to be filed with the Office of Exceptions and Appeals, 
as provided in this part or otherwise, shall be addressed as follows. 
Office of Exceptions and Appeals, Department of Energy, Attn: (name of 
person to receive document, if known, and/or labeling as specified in 
Sec.  205.9(c)), Washington, DC 20461.
    (3) Documents to be filed with the Office of General Counsel, as 
provided in this part or otherwise, shall be addressed as follows: 
Office of the General Counsel, U.S. Department of Energy, Attn: (name of 
person to receive document, if known, and labeling as specified in Sec.  
205.9(c)), 1000 Independence Avenue, Washington, DC 20585.
    (4) Documents to be filed with the Office of Private Grievances and 
Redress, as provided in this part or otherwise, shall be addressed as 
follows: Office of Private Grievances and Redress, Department of Energy, 
Attn: (name of person to receive document, if known and/or labeling as 
specified in Sec.  205.9(c)), Washington, DC 20461.
    (5) All other documents filed, except those concerning price (see 
paragraph

[[Page 15]]

(a)(6) of this section), those designated as DOE or FEO forms (see 
paragraph (a)(7) of this section), and ``Surplus Product Reports'' (see 
paragraph (a)(8) of this section), but including those pertaining to 
compliance and allocation (adjustment and assignment) of allocated 
products, are to be identified by one of the code numbers stated below 
and addressed as follows: Department of Energy, Code__, labeling as 
specified in Sec.  205.9(c), Washington, DC 20461.

                              Code Numbers
------------------------------------------------------------------------
                                                                 Code
------------------------------------------------------------------------
Product:
  Crude oil.................................................          10
  Naphtha and gas oil.......................................          15
  Propane, butane and natural gasoline......................          25
  Other products............................................          30
  Bunker fuel...............................................          40
  Residual fuel (nonutility)................................          50
  Motor gasoline............................................          60
  Middle distillates........................................          70
  Aviation fuels............................................          80
Submissions by specific entities:
  Electric utilities........................................          45
  Department of Defense.....................................          55
------------------------------------------------------------------------

    (6) Documents pertaining to the price of covered products, except 
those to be submitted to other offices as provided in this part, shall 
be addressed to the Department of Energy, Code 1000, Attn: (name of 
person to receive document, if known, and/or labeling as specified in 
Sec.  205.9(c)), Washington, DC 20461.
    (7) Documents designated as DOE or FEO forms shall be submitted in 
accordance with the instructions stated in the form.
    (8) ``Surplus Product Reports'' shall be submitted to the Department 
of Energy, Post Office Box 19407, Washington, DC 20036.
    (9) Documents to be filed with the Director of Oil Imports, as 
provided in this part or otherwise, shall be addressed as follows: 
Director of Oil Imports, Department of Energy, P.O. Box 7414, 
Washington, DC 20044.
    (10) Petitions for rulemaking to be filed with the Economic 
Regulatory Administration National Office shall be addressed as follows: 
Economic Regulatory Administration, Attn: Assistant Administrator for 
Regulations and Emergency Planning (labeled as ``Petition for 
Rulemaking,'') 2000 M Street, N.W., Washington, DC 20461.
    (b) All reports, applications, requests, notices, complaints, 
written communications and other documents to be submitted to or filed 
with an DOE Regional Office in accordance with this chapter shall be 
directed to one of the following addresses, as appropriate:

                                Region 1

Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; 
Regional Office, Department of Energy, 150 Causeway Street, Boston, 
Massachusetts 02114.

                                Region 2

New Jersey, New York, Puerto Rico, Virgin Islands; Regional Office, 
Department of Energy, 26 Federal Plaza, New York, New York 10007.

                                Region 3

Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West 
Virginia; Regional Office, Department of Energy, Federal Office 
Building, 1421 Cherry Street, Philadelphia, Pennsylvania 19102.

                                Region 4

Alabama, Canal Zone, Florida, Georgia, Kentucky, Mississippi, North 
Carolina, South Carolina; Regional Office, Department of Energy, 1655 
Peachtree Street NW., Atlanta, Georgia 30309.

                                Region 5

Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Regional 
Office, Department of Energy, 175 West Jackson Street, Chicago, Illinois 
60604.

                                Region 6

Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Regional Office, 
Department of Energy, 212 North Saint Paul Street, Dallas, Texas 75201.

                                Region 7

Iowa, Kansas, Missouri, Nebraska; Regional Office, Department of Energy, 
Federal Office Building, P.O. Box 15000, 112 East 12th Street, Kansas 
City, Missouri 64106.

                                Region 8

Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Regional 
Office, Department of Energy, Post Office Box 26247, Belmar Branch, 
Denver, Colorado 80226.

                                Region 9

American Samoa, Arizona, California, Guam, Hawaii, Nevada, Trust 
Territory of the Pacific Islands; Regional Office, Department

[[Page 16]]

of Energy, 111 Pine Street, San Francisco, California 94111.

                                Region 10

Alaska, Idaho, Oregon, Washington; Regional Office, Department of 
Energy, Federal Office Building, 909 First Avenue, Room 3098, Seattle, 
Washington 98104.

(Emergency Petroleum Allocation Act of 1973, 15 U.S.C. 751 et seq., Pub. 
L. 93-159, as amended, Pub. L. 93-511, Pub. L. 94-99, Pub. L. 94-133, 
Pub. L. 94-163, and Pub. L. 94-385; Federal Energy Administration Act of 
1974, 15 U.S.C. 787 et seq., Pub. L. 93-275, as amended, Pub. L. 94-332, 
Pub. L. 94-385, Pub. L. 95-70, and Pub. L. 95-91; Energy Policy and 
Conservation Act, 42 U.S.C. 6201 et seq., Pub. L. 94-163, as amended, 
Pub. L. 94-385, and Pub. L. 95-70; Department of Energy Organization 
Act, 42 U.S.C. 7101 et seq., Pub. L. 95-91; E.O. 11790, 39 FR 23185; 
E.O. 12009, 42 FR 46267)

[39 FR 35489, Oct. 1, 1974, as amended at 40 FR 36555, Aug. 21, 1975; 45 
FR 37684, June 4, 1980]



Sec.  205.13  Where to file.

    (a) Except as otherwise specifically provided in other subparts of 
this part, all documents to be filed with the ERA pursuant to this part 
shall be filed with the appropriate ERA Regional Office (unless 
otherwise specified in part 211 of this chapter), except that all 
documents shall be filed with the ERA National Office that relate to:
    (1) The allocation and pricing of crude oil pursuant to subpart C of 
part 211 and part 212 of this chapter;
    (2) Refinery yield controls pursuant to subpart C of part 211 of 
this chapter;
    (3) The pricing of propane, butane and natural gasoline pursuant to 
part 212 of this chapter and the allocation of butane and natural 
gasoline pursuant to part 211 of this chapter;
    (4) The allocation and pricing of middle distillate fuels pursuant 
to subpart G of part 211 and part 212 of this chapter, filed by electric 
utilities;
    (5) The allocation and pricing of aviation fuel pursuant to subpart 
H of part 211 and part 212 of this chapter, filed by civil air carriers 
(except air taxi/commercial operators);
    (6) The allocation and pricing of residual fuel oil pursuant to 
subpart I of part 211 and part 212 of this chapter, filed by electric 
utilities;
    (7) The allocation and pricing of naphtha and gas oil pursuant to 
subpart J of part 211 and part 212 of this chapter;
    (8) The allocation and pricing of other products pursuant to subpart 
K of part 211 and part 212 of this chapter;
    (9) An application for an exemption under subpart E of this part; 
requests for a rulemaking proceeding under subpart L of this part or for 
the issuance of a ruling under subpart K of this part; and petitions to 
the Office of Private Grievances and Redress under subpart R of this 
part;
    (10) The pricing of products pursuant to part 212 of this chapter, 
filed by a refiner; and
    (11) The allocation of crude oil and other allocated products to 
meet Department of Defense needs pursuant to part 211 of this chapter.
    (12) The allocation of crude oil and other allocated products to be 
utilized as feedstock in a synthetic natural gas plant, pursuant to 
Sec.  211.29.
    (13) Allocations, fee-paid and fee-exempt licenses issued pursuant 
to part 213 of this chapter.
    (b) Applications by end-users and wholesale purchasers for an 
allocation under the state set-aside system in accordance with Sec.  
211.17 shall be filed with the appropriate State Office.
    (c) Applications to a State Office or a DOE Regional Office shall be 
directed to the office located in the state or region in which the 
allocated product will be physically delivered. An applicant doing 
business in more than one state or region must apply separately to each 
State or region in which a product will be physically delivered, unless 
the State Offices or Regional Offices involved agree otherwise.

[39 FR 35489, Oct. 1, 1974, as amended at 39 FR 36571, Oct. 11, 1974; 39 
FR 39022, Nov. 5, 1974; 40 FR 28446, July 7, 1975; 40 FR 36555, Aug. 21, 
1975; 44 FR 60648, Oct. 19, 1979]



Sec.  205.14  Ratification of prior directives, orders, and actions.

    All interpretations, orders, notices of probable violation or other 
directives issued, all proceedings initiated, and all other actions 
taken in accordance with part 205 as it existed prior to the effective 
date of this amendment, are hereby confirmed and ratified, and shall 
remain in full force and effect as if issued under this amended part 
205, unless or until they are altered,

[[Page 17]]

amended, modified or rescinded in accordance with the provisions of this 
part.



Sec.  205.15  Public docket room.

    There shall be established at the DOE National Office, 12th and 
Pennsylvania Avenue, NW., Washington, DC, a public docket room in which 
shall be made available for public inspection and copying:
    (a) A list of all persons who have applied for an exception, an 
exemption, or an appeal, and a digest of each application;
    (b) Each decision and statement setting forth the relevant facts and 
legal basis of an order, with confidential information deleted, issued 
in response to an application for an exception or exemption or at the 
conclusion of an appeal;
    (c) The comments received during each rulemaking proceeding, with a 
verbatim transcript of the public hearing if such a public hearing was 
held; and
    (d) Any other information required by statute to be made available 
for public inspection and copying, and any information that the DOE 
determines should be made available to the public.

Subparts B-E [Reserved]



                        Subpart F_Interpretation



Sec.  205.80  Purpose and scope.

    (a) This subpart establishes the procedures for the filing of a 
formal request for an interpretation and for the consideration of such 
request. Responses, which may include verbal or written responses to 
general inquiries or to other than formal written requests for 
interpretation filed with the General Counsel or his delegate or a 
Regional Counsel, are not interpretations and merely provide general 
information.
    (b) A request for interpretation that includes, or could be 
construed to include an application for an exception or an exemption may 
be treated solely as a request for interpretation and processed as such.

(Emergency Petroleum Allocation Act of 1973, Pub. L. 93-159, as amended, 
Pub. L. 93-511, Pub. L. 94-99, Pub. L. 94-133, Pub. L. 94-163, and Pub. 
L. 94-385, Federal Energy Administration Act of 1974, Pub. L. 93-275, as 
amended, Pub. L. 94-385, Energy Policy and Conservation Act, Pub. L. 94-
163, as amended, Pub. L. 94-385; E.O. 11790, 39 FR 23185; Department of 
Energy Organization Act, Pub. L. 95-91; E.O. 12009, 42 FR 46267)

[39 FR 35489, Oct. 1, 1974, as amended at 43 FR 14437, Apr. 6, 1978]



Sec.  205.81  What to file.

    (a) A person filing under this subpart shall file a ``Request for 
Interpretation,'' which should be clearly labeled as such both on the 
request and on the outside of the envelope in which the request is 
transmitted, and shall be in writing and signed by the person filing the 
request. The person filing the request shall comply with the general 
filing requirements stated in Sec.  205.9 in addition to the 
requirements stated in this subpart.
    (b) If the person filing the request wishes to claim confidential 
treatment for any information contained in the request or other 
documents submitted under this subpart, the procedures set out in Sec.  
205.9(f) shall apply.



Sec.  205.82  Where to file.

    A request for interpretation shall be filed with the General Counsel 
or his delegate or with the appropriate Regional Counsel at the address 
provided in Sec.  205.12.

(Emergency Petroleum Allocation Act of 1973, Pub. L. 93-159, as amended, 
Pub. L. 93-511, Pub. L. 94-99, Pub. L. 94-133, Pub. L. 94-163, and Pub. 
L. 94-385; Federal Energy Administration Act of 1974, Pub. L. 93-275, as 
amended, Pub. L. 94-385; Energy Policy and Conservation Act, Pub. L. 94-
163, as amended, Pub. L. 94-385; E.O. 11790, 39 FR 23185; Department of 
Energy Organization Act, Pub. L. 95-91; E.O. 12009, 42 FR 46267)

[39 FR 35489, Oct. 1, 1974, as amended at 43 FR 14437, Apr. 6, 1978; 43 
FR 17803, Apr. 26, 1978]



Sec.  205.83  Contents.

    (a) The request shall contain a full and complete statement of all 
relevant facts pertaining to the circumstances, act or transaction that 
is the subject of the request and to the DOE action

[[Page 18]]

sought. Such facts shall include the names and addresses of all affected 
persons (if reasonably ascertainable) and a full discussion of the 
pertinent provisions and relevant facts contained in the documents 
submitted with the request. Copies of all relevant contracts, 
agreements, leases, instruments, and other documents shall be submitted 
with the request. When the request pertains to only one step of a larger 
integrated transaction, the facts, circumstances, and other relevant 
information pertaining to the entire transaction must be submitted.
    (b) The request for interpretation shall include a discussion of all 
relevant authorities, including, but not limited to, DOE rulings, 
regulations, interpretations and decisions on appeals and exceptions 
relied upon to support the particular interpretation sought therein.



Sec.  205.84  DOE evaluation.

    (a) Processing. (1) The DOE may initiate an investigation of any 
statement in a request and utilize in its evaluation any relevant facts 
obtained by such investigation. The DOE may accept submissions from 
third persons relevant to any request for interpretation provided that 
the person making the request is afforded an opportunity to respond to 
all third person submissions. In evaluating a request for 
interpretation, the DOE may consider any other source of information. 
The DOE on its own initiative may convene a conference, if, in its 
discretion, it considers that such conference will advance its 
evaluation of the request.
    (2) The DOE shall issue its interpretation on the basis of the 
information provided in the request, unless that information is 
supplemented by other information brought to the attention of the 
General Counsel or a Regional Counsel during the proceeding. The 
interpretation shall, therefore, depend for its authority on the 
accuracy of the factual statement and may be relied upon only to the 
extent that the facts of the actual situation correspond to those upon 
which the interpretation was based.
    (3) If the DOE determines that there is insufficient information 
upon which to base a decision and if upon request additional information 
is not submitted by the person requesting the interpretation, the DOE 
may refuse to issue an interpretation.
    (b) Criteria. (1) The DOE shall base an interpretation on the FEA 
and EPAA and the regulations and published rulings of the DOE as applied 
to the specific factual situation.
    (2) The DOE shall take into consideration previously issued 
interpretations dealing with the same or a related issue.



Sec.  205.85  Decision and effect.

    (a) An interpretation may be issued after consideration of the 
request for interpretation and other relevant information received or 
obtained during the proceeding.
    (b) The interpretation shall contain a statement of the information 
upon which it is based and a legal analysis of and conclusions regarding 
the application of rulings, regulations and other precedent to the 
situation presented in the request.
    (c) Only those persons to whom an interpretation is specifically 
addressed and other persons upon whom the DOE serves the interpretation 
and who are directly involved in the same transaction or act may rely 
upon it. No person entitled to rely upon an interpretation shall be 
subject to civil or criminal penalties stated in subpart P of this part 
for any act taken in reliance upon the interpretation, notwithstanding 
that the interpretation shall thereafter be declared by judicial or 
other competent authority to be invalid.
    (d) An interpretation may be rescinded or modified at any time. 
Rescission or modification may be effected by notifying persons entitled 
to rely on the interpretation that it is rescinded or modified. This 
notification shall include a statement of the reasons for the recision 
or modification and, in the case of a modification, a restatement of the 
interpretation as modified.
    (e) An interpretation is modified by a subsequent amendment to the 
regulations or ruling to the extent that it is inconsistent with the 
amended regulation or ruling.

[[Page 19]]

    (f)(1) Any person aggrieved by an interpretation may submit a 
petition for reconsideration to the General Counsel within 30 days of 
service of the interpretation from which the reconsideration is sought. 
There has not been an exhaustion of administrative remedies until a 
period of 30 days from the date of service of the interpretation has 
elapsed without receipt by the General Counsel of a petition for 
reconsideration or, if a petition for reconsideration of the 
interpretation has been filed in a timely manner, until that petition 
has been acted on by the General Counsel. However, a petition to which 
the General Counsel does not respond within 60 days of the date of 
receipt thereof, or within such extended time as the General Counsel may 
prescribe by written notice to the petitioner concerned within that 60 
day period, shall be considered denied.
    (2) A petition for reconsideration may be summarily denied if--
    (i) It is not filed in a timely manner, unless good cause is shown; 
or
    (ii) It is defective on its face for failure to state, and to 
present facts and legal argument in support thereof, that the 
interpretation was erroneous in fact or in law, or that it was arbitrary 
or capricious.
    (3) The General Counsel may deny any petition for reconsideration if 
the petitioner does not establish that--
    (i) The petition was filed by a person aggrieved by an 
interpretation;
    (ii) The interpretation was erroneous in fact or in law; or
    (iii) The interpretation was arbitrary or capricious. The denial of 
a petition shall be a final order of which the petitioner may seek 
judicial review.

(Emergency Petroleum Allocation Act of 1973, Pub. L. 93-159, as amended, 
Pub. L. 93-511, Pub. L. 94-99, Pub. L. 94-133, Pub. L. 94-163, and Pub. 
L. 94-385, Federal Energy Administration Act of 1974, Pub. L. 93-275, as 
amended, Pub. L. 94-385, Energy Policy and Conservation Act, Pub. L. 94-
163, as amended, Pub. L. 94-385; E.O. 11790, 39 FR 23185; Department of 
Energy Organization Act, Pub. L. 95-91; E.O. 12009, 42 FR 46267)

[39 FR 35489, Oct. 1, 1974, as amended at 43 FR 14437, Apr. 6, 1978]



Sec.  205.86  Appeal.

    There is no administrative appeal of an interpretation.

(Emergency Petroleum Allocation Act of 1973, Pub. L. 93-159, as amended, 
Pub. L. 93-511, Pub. L. 94-99, Pub. L. 94-133, Pub. L. 94-163, and Pub. 
L. 94-385, Federal Energy Administration Act of 1974, Pub. L. 93-275, as 
amended, Pub. L. 94-385, Energy Policy and Conservation Act, Pub. L. 94-
163, as amended, Pub. L. 94-385; E.O. 11790, 39 FR 23185; Department of 
Energy Organization Act, Pub. L. 95-91; E.O. 12009, 42 FR 46267)

[43 FR 14437, Apr. 6, 1978]

Subparts G-J [Reserved]



                            Subpart K_Rulings



Sec.  205.150  Purpose and scope.

    This subpart establishes the criteria for the issuance of 
interpretative rulings by the General Counsel. All rulings shall be 
published in the Federal Register. Any person is entitled to rely upon 
such ruling, to the extent provided in this subpart.



Sec.  205.151  Criteria for issuance.

    (a) A ruling may be issued, in the discretion of the General 
Counsel, whenever there have been a substantial number of inquiries with 
regard to similar factual situations or a particular section of the 
regulations.
    (b) The General Counsel may issue a ruling whenever it is determined 
that it will be of assistance to the public in applying the regulations 
to a specific situation.



Sec.  205.152  Modification or rescission.

    (a) A ruling may be modified or rescinded by:
    (1) Publication of the modification or rescission in the Federal 
Register; or
    (2) A rulemaking proceeding in accordance with subpart L of this 
part.
    (b) Unless and until a ruling is modified or rescinded as provided 
in paragraph (a) of this section, no person shall be subject to the 
sanctions or penalties stated in subpart P of this part for actions 
taken in reliance upon the ruling, notwithstanding that the ruling shall 
thereafter be declared by judicial or other competent authority to be 
invalid. Upon such declaration,

[[Page 20]]

no person shall be entitled to rely upon the ruling.



Sec.  205.153  Comments.

    A written comment on or objection to a published ruling may be filed 
at any time with the General Counsel at the address specified in Sec.  
205.12.



Sec.  205.154  Appeal.

    There is no administrative appeal of a ruling.

Subpart L [Reserved]



          Subpart M_Conferences, Hearings, and Public Hearings



Sec.  205.170  Purpose and scope.

    This subpart establishes the procedures for requesting and 
conducting a DOE conference, hearing, or public hearing. Such 
proceedings shall be convened in the discretion of the DOE, consistent 
with the requirements of the FEAA.



Sec.  205.171  Conferences.

    (a) The DOE in its discretion may direct that a conference be 
convened, on its own initiative or upon request by a person, when it 
appears that such conference will materially advance the proceeding. The 
determination as to who may attend a conference convened under this 
subpart shall be in the discretion of the DOE, but a conference will 
usually not be open to the public.
    (b) A conference may be requested in connection with any proceeding 
of the DOE by any person who might be aggrieved by that proceeding. The 
request may be made in writing or verbally, but must include a specific 
showing as to why such conference will materially advance the 
proceeding. The request shall be addressed to the DOE office that is 
conducting the proceeding.
    (c) A conference may only be convened after actual notice of the 
time, place, and nature of the conference is provided to the person who 
requested the conference.
    (d) When a conference is convened in accordance with this section, 
each person may present views as to the issue or issues involved. 
Documentary evidence may be presented at the conference, but will be 
treated as if submitted in the regular course of the proceedings. A 
transcript of the conference will not usually be prepared. However, the 
DOE in its discretion may have a verbatim transcript prepared.
    (e) Because a conference is solely for the exchange of views 
incident to a proceeding, there will be no formal reports or findings 
unless the DOE in its discretion determines that such would be 
advisable.



Sec.  205.172  Hearings.

    (a) The DOE in its discretion may direct that a hearing be convened 
on its own initiative or upon request by a person, when it appears that 
such hearing will materially advance the proceedings. The determination 
as to who may attend a hearing convened under this subpart shall be in 
the discretion of DOE, but a hearing will usually not be open to the 
public. Where the hearing involves a matter arising under part 213, the 
Director of Oil Imports shall be notified as to its time and place, in 
order that he or his representative may present views as to the issue or 
issues involved.
    (b) A hearing may only be requested in connection with an 
application for an exception or an appeal. Such request may be by the 
applicant, appellant, or any other person who might be aggrieved by the 
DOE action sought. The request shall be in writing and shall include a 
specific showing as to why such hearing will materially advance the 
proceeding. The request shall be addressed to the DOE office that is 
considering the application for an exception or the appeal.
    (c) The DOE will designate an agency official to conduct the 
hearing, and will specify the time and place for the hearing.
    (d) A hearing may only be convened after actual notice of the time, 
place, and nature of the hearing is provided both to the applicant or 
appellant and to any other person readily identifiable by the DOE as one 
who will be aggrieved by the DOE action involved. The notice shall 
include, as appropriate:

[[Page 21]]

    (1) A statement that such person may participate in the hearing; or
    (2) A statement that such person may request a separate conference 
or hearing regarding the application or appeal.
    (e) When a hearing is convened in accordance with this section, each 
person may present views as to the issue or issues involved. Documentary 
evidence may be presented at the hearing, but will be treated as if 
submitted in the regular course of the proceedings. A transcript of the 
hearing will not usually be prepared. However, the DOE in its discretion 
may have a verbatim transcript prepared.
    (f) The official conducting the hearing may administer oaths and 
affirmations, rule on the presentation of information, receive relevant 
information, dispose of procedural requests, determine the format of the 
hearing, and otherwise regulate the course of the hearing.
    (g) Because a hearing is solely for the exchange of views incident 
to a proceeding, there will be no formal reports or findings unless the 
DOE in its discretion determines that such would be advisable.

[39 FR 35489, Oct. 1, 1974, as amended at 40 FR 36557, Aug. 21, 1975]



Sec.  205.173  Public hearings.

    (a) A public hearing shall be convened incident to a rulemaking:
    (1) When the proposed rule or regulation is likely to have a 
substantial impact on the Nation's economy or large numbers of 
individuals or businesses; or
    (2) When the DOE determines that a public hearing would materially 
advance the consideration of the issue. A public hearing may be 
requested by any interested person in connection with a rulemaking 
proceeding, but shall only be convened on the initiative of the DOE 
unless otherwise required by statute.
    (b) A public hearing may be convened incident to any proceeding when 
the DOE in its discretion determines that such public hearing would 
materially advance the consideration of the issue.
    (c) A public hearing may only be convened after publication of a 
notice in the Federal Register, which shall include a statement of the 
time, place, and nature of the public hearing.
    (d) Interested persons may file a request to participate in the 
public hearing in accordance with the instructions in the notice 
published in the Federal Register. The request shall be in writing and 
signed by the person making the request. It shall include a description 
of the person's interest in the issue or issues involved and of the 
anticipated content of the presentation. It shall also contain a 
statement explaining why the person would be an appropriate spokesperson 
for the particular view expressed.
    (e) The DOE shall appoint a presiding officer to conduct the public 
hearing. An agenda shall be prepared that shall provide, to the extent 
practicable, for the presentation of all relevant views by competent 
spokespersons.
    (f) A verbatim transcript shall be made of the hearing. The 
transcript, together with any written comments submitted in the course 
of the proceeding, shall be made available for public inspection and 
copying in the public docket room, as provided in Sec.  205.15.
    (g) The information presented at the public hearing, together with 
the written comments submitted and other relevant information developed 
during the course of the proceeding, shall provide the basis for the DOE 
decision.

Subpart N [Reserved]



   Subpart O_Notice of Probable Violation, Remedial Order, Notice of 
            Proposed Disallowance, and Order of Disallowance

    Authority: Emergency Petroleum Allocation Act of 1973, Pub. L. 93-
159, as amended, Pub. L. 93-511, Pub. L. 94-99, Pub. L. 94-133, Pub. L. 
94-163, and Pub. L. 94-385, Federal Energy Administration Act of 1974, 
Pub. L. 93-275, as amended, Pub. L. 94-332, Pub. L. 94-385, Pub. L. 95-
70, Pub. L. 95-91; Energy Policy and Conservation Act, Pub. L. 94-163, 
as amended, Pub. L. 94-385, Pub. L. 95-70, Department of Energy 
Organization Act, Pub. L. 95-91, as amended, Pub. L. 95-620; E.O. 11790, 
39 FR 23185; E.O. 12009, 42 FR 46267.

    Source: 44 FR 7924, Feb. 7, 1979, unless otherwise noted.

[[Page 22]]



Sec.  205.190  Purpose and scope.

    (a) This subpart establishes the procedures for determining the 
nature and extent of violations of the DOE regulations in parts 210, 
211, and 212 and the procedures for issuance of a Notice of Probable 
Violation, a Proposed Remedial Order, a Remedial Order, an Interim 
Remedial Order for Immediate Compliance, a Remedial Order for Immediate 
Compliance, a Notice of Probable Disallowance, a Proposed Order of 
Disallowance, an Order of Disallowance, or a Consent Order. Nothing in 
these regulations shall affect the authority of DOE enforcement 
officials in coordination with the Department of Justice to initiate 
appropriate civil or criminal enforcement actions in court at any time.
    (b) When any report required by the ERA or any audit or 
investigation discloses, or the ERA otherwise discovers, that there is 
reason to believe a violation of any provision of this chapter, or any 
order issued thereunder, has occurred, is continuing or is about to 
occur, the ERA may conduct an inquiry to determine the nature and extent 
of the violation. A Remedial Order or Order of Disallowance may be 
issued thereafter by the Office of Hearings and Appeals. The ERA may 
commence enforcement proceedings by serving a Notice of Probable 
Violation, a Notice of Probable Disallowance, a Proposed Remedial Order, 
a Proposed Order of Disallowance, or an Interim Remedial Order for 
Immediate Compliance.



Sec.  205.191  [Reserved]



Sec.  205.192  Proposed remedial order.

    (a) If the ERA finds, after the 30-day or other period authorized 
for reply to the Notice of Probable Violation, that a violation has 
occurred, is continuing, or is about to occur, it may issue a Proposed 
Remedial Order, which shall set forth the relevant facts and law.
    (b) The ERA may issue a Proposed Remedial Order at any time it finds 
that a violation has occurred, is continuing, or is about to occur even 
if it has not previously issued a Notice of Probable Violation.
    (c) The ERA shall serve a copy of the Proposed Remedial Order upon 
the person to whom it is directed. The ERA shall promptly publish a 
notice in the Federal Register which states the person to whom the 
Proposed Remedial Order is directed, his address, and the products, 
dollar amounts, time period, and geographical area specified in the 
Proposed Remedial Order. The notice shall indicate that a copy of the 
Proposed Remedial Order with confidential information, if any, deleted 
may be obtained from the ERA and that within 15 days after the date of 
publication any aggrieved person may file a Notice of Objection with the 
Office of Hearings and Appeals of accordance with Sec.  205.193. The ERA 
shall mail copies of the Federal Register notice to all readily 
identifiable persons who are likely to be aggrieved by issuance of the 
Proposed Remedial Order as a final order.
    (d) The Proposed Remedial Order shall set forth the proposed 
findings of fact and conclusions of law upon which it is based. It shall 
also include a discussion of the relevant authorities which support the 
position asserted, including rules, regulations, rulings, 
interpretations and previous decisions issued by DOE or its predecessor 
agencies. The Proposed Remedial Order shall be accompanied by a 
declaration executed by the DOE employee primarily knowledgeable about 
the facts of the case stating that, to the best of declarant's knowledge 
and belief, the findings of fact are correct.
    (e) The ERA may amend or withdraw a Proposed Remedial Order at its 
discretion prior to the date of service of a Statement of Objections in 
that proceeding. The date of service of the amended documents shall be 
considered the date of service of the Proposed Remedial Order in 
calculating the time periods specified in this part 205.



Sec.  205.192A  Burden of proof.

    (a) In a Proposed Remedial Order proceeding the ERA has the burden 
of establishing a prima facie case as to the validity of the findings of 
fact and conclusions of law asserted therein. The ERA shall be deemed to 
meet this burden by the service of a Proposed Remedial Order that meets 
the requirements of Sec.  205.192(d) and any supplemental information 
that may be made available under Sec.  205.193A.

[[Page 23]]

    (b) Once a prima facie case has been established, a person who 
objects to a finding of fact or conclusion of law in the Proposed 
Remedial Order has the burden of going forward with the evidence. 
Furthermore, the proponent of additional factual representations has the 
burden of going forward with the evidence.
    (c) Unless otherwise specified by the Director of the Office of 
Hearings and Appeals or his designee, the proponent of an order or a 
motion or additional factual representations has the ultimate burden of 
persuasion.



Sec.  205.193  Notice of Objection.

    (a) Within 15 days after publication of the notice of a Proposed 
Remedial Order in the Federal Register any aggrieved person may file a 
Notice of Objection to the Proposed Remedial Order with the Office of 
Hearings and Appeals. The Notice shall be filed in duplicate, shall 
briefly describe how the person would be aggrieved by issuance of the 
Proposed Remedial Order as a final order and shall state the person's 
intention to file a Statement of Objections. No confidential information 
shall be included in a Notice of Objection. The DOE shall place one copy 
of the Notice in the Office of Hearings and Appeals Public Docket Room.
    (b) A person who fails to file a timely Notice of Objection shall be 
deemed to have admitted the findings of fact and conclusions of law as 
stated in the Proposed Remedial Order. If a Notice of Objection is not 
filed as provided by paragraph (a) of this section, the Proposed 
Remedial Order may be issued as a final order.
    (c) A person who files a Notice of Objection shall on the same day 
serve a copy of the Notice upon the person to whom the Proposed Remedial 
Order is directed, the DOE Office that issued the Proposed Remedial 
Order, and the DOE Assistant General Counsel for Administrative 
Litigation.
    (d) The Notice shall include a certification of compliance with the 
provisions of this section, the names and addresses of each person 
served with a copy of the Notice, and the date and manner of service.
    (e) If no person files a timely Notice of Objection, ERA may request 
the Office of Hearings and Appeals to issue the Proposed Remedial Order 
as a final Remedial Order.
    (f) In order to exhaust administrative remedies with respect to a 
Remedial Order proceeding, a person must file a timely Notice of 
Objection and Statement of Objections with the Office of Hearings and 
Appeals.



Sec.  205.193A  Submission of ERA supplemental information.

    Within 20 days after service of a Notice of Objection to a Proposed 
Remedial Order the ERA may serve, upon the person to whom the Proposed 
Remedial Order was directed, supplemental information relating to the 
calculations and determinations which support the findings of fact set 
forth in the Proposed Remedial Order.



Sec.  205.194  Participants; official service list.

    (a) Upon receipt of a Notice of Objection, the Office of Hearings 
and Appeals shall publish a notice in the Federal Register which states 
the person to whom the Proposed Remedial Order is directed, his address 
and the products, dollar amounts, time period, and geographical area 
specified in the Proposed Remedial Order. The notice shall state that 
any person who wishes to participate in the proceeding must file an 
appropriate request with the Office of Hearings and Appeals.
    (b) The Office that issued the Proposed Remedial Order and the 
person to whom the Order is directed shall be considered participants 
before the Office of Hearings and Appeals at all stages of an 
enforcement proceeding. Any other person whose interest may be affected 
by the proceeding may file a request to participate in the proceeding 
with the Office of Hearings and Appeals within 20 days after publication 
of the notice referred to in paragraph (a) of this section. The request 
shall contain
    (1) The person's name, address, and telephone number and similar 
information concerning his duly authorized representative, if any;
    (2) A detailed description of the person's interest in the 
proceeding;

[[Page 24]]

    (3) The specific reasons why the person's active involvement in the 
proceeding will substantially contribute to a complete resolution of the 
issues to be considered in the proceeding;
    (4) A statement of the position which the person intends to adopt in 
the proceeding; and
    (5) A statement of the particular aspects of the proceeding, e.g. 
oral argument, submission of briefs, or discovery, in which the person 
wishes to actively participate.
    (c) After considering the requests submitted pursuant to paragraph 
(b) of this section, the Office of Hearings and Appeals shall determine 
those persons who may participate on an active basis in the proceeding 
and the nature of their participation. Participants with similar 
interests may be required to consolidate their submissions and to appear 
in the proceeding through a common representative.
    (d) Within 30 days after publication of the notice referred to in 
paragraph (a) of this section, the Office of Hearings and Appeals shall 
prepare an official service list for the proceeding. Within the same 30 
day period the Office of Hearings and Appeals shall mail the official 
service list to all persons who filed requests to participate. For good 
cause shown a person may be placed on the official service list as a 
non-participant, for the receipt of documents only. An opportunity shall 
be afforded to participants to oppose the placement of a non-participant 
on the official service list.
    (e) A person requesting to participate after the period for 
submitting requests has expired must show good cause for failure to file 
a request within the prescribed time period.
    (f) The Office of Hearings and Appeals may limit the nature of a 
person's participation in the proceeding, if it finds that the facts 
upon which the person's request was based have changed or were incorrect 
when stated or that the person has not been actively participating or 
has engaged in disruptive or dilatory conduct. The action referred to in 
this provision shall be taken only after notice and an opportunity to be 
heard are afforded.



Sec.  205.195  Filing and service of all submissions.

    (a)(1) Statements of Objections, Responses to such Statements, and 
any motions or other documents filed in connection with a proceeding 
shall meet the requirements of Sec.  205.9 and shall be filed with the 
Office of Hearings and Appeals in accordance with Sec.  205.4. Unless 
otherwise specified, any participant may file a response to a motion 
within five days of service.
    (2) All documents shall be filed in duplicate, unless they contain 
confidential information, in which case they must be filed in 
triplicate.
    (3) If a person claims that any portion of a document which he is 
filing contains confidential information, such information should be 
deleted from two of the three copies which are filed. One copy from 
which confidential information has been deleted will be placed in the 
Office of Hearings and Appeals Public Docket Room.
    (b)(1) Persons other than DOE offices shall on the date a submission 
is filed serve each person on the official service list. Service shall 
be made in accordance with Sec.  205.7 and may also be made by deposit 
in the regular United States mail, properly stamped and addressed, when 
accompanied by proof of service consisting of a certificate of counsel 
or an affidavit of the person making the service. If any filing arguably 
contains confidential information, a person may serve copies with the 
confidential information deleted upon all persons on the official 
service list except DOE offices, which shall be served both an original 
filing and one with deletions.
    (2) A DOE office shall on the date it files a submission serve all 
persons on the official service list, unless the filing arguably 
contains confidential information. In that case the DOE office shall 
notify the person to whom the information relates of the opportunity to 
identify and delete the confidential information. The DOE Office may 
delay the service of a submission containing arguably confidential 
information upon all persons other than the possessor of the 
confidential information and other DOE offices up to 14 days. The 
possessor of the confidential information shall serve the filing with 
any

[[Page 25]]

deletions upon all persons on the official service list within such time 
period.
    (c) Any filing made under this section shall include a certification 
of compliance by the filer with the provisions of this subpart. The 
person serving a document shall file a certificate of service, which 
includes the date and manner of service for each person on the official 
service list.



Sec.  205.196  Statement of objections.

    (a) A person who has filed a Notice of Objection shall file a 
Statement of Objections to a Proposed Remedial Order within 40 days 
after service of the Notice of Objection. A request for an extension of 
time for filing must be submitted in writing and may be granted for good 
cause shown.
    (b) The Statement of Objections shall set forth the bases for the 
objections to the issuance of the Proposed Remedial Order as a final 
order, including a specification of the issues of fact or law which the 
person intends to contest in any further proceeding involving the 
compliance matter which is the subject of the Proposed Remedial Order. 
The Statement shall set forth the findings of fact contained in the 
Proposed Remedial Order which are alleged to be erroneous, the factual 
basis for such allegations, and any alternative findings which are 
sought. The Statement shall include a discussion of all relevant 
authorities which support the position asserted. The Statement may 
include additional factual representations which are not referred to in 
the Proposed Remedial Order and which the person contends are material 
and relevant to the compliance proceeding. For each additional factual 
representation which the person asserts should be made, the Statement 
shall include reasons why the factual representation is relevant and 
material, and the manner in which its validity is or will be 
established. The person shall also specify the manner in which each 
additional issue of fact was raised in any prior administrative 
proceeding which led to issuance of the Proposed Remedial Order, or the 
reasons why it was not raised.
    (c) A Statement of Objections that is filed by the person to whom a 
Proposed Remedial Order is directed shall include a copy of any relevant 
Notice of Probable Violation, each Response thereto, the Proposed 
Remedial Order, and any relevant work papers or supplemental information 
previously provided by ERA. Copies of this material must also be 
included with the copy of the Statement of Objections served upon the 
DOE Assistant General Counsel for Administrative Litigation. All other 
persons on the official service list must be notified that such 
materials are available from the notifier upon written request.



Sec.  205.197  Response to statement of objections; reply.

    (a) Within 30 days after service of a Statement of Objections each 
participant may file a Response. If any motions are served with the 
Statement of Objections, a participant shall have 30 days from the date 
of service to respond to such submissions, notwithstanding any shorter 
time periods otherwise required in this subpart. The Response shall 
contain a full discussion of the position asserted and a discussion of 
the legal and factual bases which support that position. The Response 
may also contain a request that any issue of fact or law advanced in a 
Statement of Objections be dismissed. Any such request shall be 
accompanied by a full discussion of the reasons supporting the 
dismissal.
    (b) A participant may submit a Reply to any Response within 10 days 
after the date of service of the Response.



Sec.  205.198  Discovery.

    (a) If a person intends to file a Motion for Discovery, he must file 
it at the same time that he files his Statement of Objections or at the 
same time he files his Response to a Statement of Objections, whichever 
is earlier. All Motions for Discovery and related filings must be served 
upon the person to whom the discovery is directed. If the person to whom 
the discovery is directed is not on the official service list, the 
documents served upon him shall include a copy of this section, the 
address of the Office of Hearings and Appeals and a statement that 
objections to the Motion may be filed with the Office of Hearings and 
Appeals.

[[Page 26]]

    (b) A Motion for Discovery may request that:
    (1) A person produce for inspection and photocopying non-privileged 
written material in his possession;
    (2) A person respond to written interrogatories;
    (3) A person admit to the genuineness of any relevant document or 
the truth of any relevant fact; or
    (4) The deposition of a material witness be taken.
    (c) A Motion for Discovery shall set forth the reasons why the 
particular discovery is necessary in order to obtain relevant and 
material evidence and shall explain why such discovery would not unduly 
delay the proceeding.
    (d) Within 20 days after a Motion for Discovery is served, a 
participant or a person to whom the discovery is directed may file a 
request that the Motion be denied in whole or in part, stating the 
reasons which support the request.
    (e) Discovery may be conducted only pursuant to an Order issued by 
the Office of Hearings and Appeals. A Motion for Discovery will be 
granted if it is concluded that discovery is necessary for the party to 
obtain relevant and material evidence and that discovery will not unduly 
delay the proceeding. Depositions will be permitted if a convincing 
showing is made that the participant cannot obtain the material sought 
through one of the other discovery means specified in paragraph (b) of 
this section.
    (f) The Director of the Office of Hearings and Appeals or his 
designee may issue subpoenas in accordance with Sec.  205.8 in support 
of Discovery Orders, except that Sec.  205.8 (h)(2), (3), and (4) shall 
not apply to such subpoenas.
    (g) The Office of Hearings and Appeals may order that any direct 
expenses incurred by a person to produce evidence pursuant to a Motion 
for Discovery be charged to the person who filed the Motion.
    (h)(1) If a person fails to comply with an order relating to 
discovery, the Office of Hearings and Appeals may order appropriate 
sanctions.
    (2) It shall be the duty of aggrieved participants to request that 
appropriate relief be fashioned in such situations.
    (i) Any order issued by the Office of Hearings and Appeals with 
respect to discovery shall be subject to further administrative review 
or appeal only upon issuance of the determination referred to in Sec.  
205.199B.



Sec.  205.198A  Protective order.

    A participant who has unsuccessfully attempted in writing to obtain 
information that another participant claims is confidential may file a 
Motion for Discovery and Protective Order. This motion shall meet the 
requirements of Sec.  205.198 and shall specify the particular 
confidential information that the movant seeks and the reasons why the 
information is necessary to adequately present the movant's position in 
the proceeding. A copy of the written request for information, a 
certification concerning when and to whom it was served and a copy of 
the response, if any, shall be appended to the motion. The motion must 
give the possessor of the information notice that a Response to the 
Motion must be filed within ten days. The Response shall specify the 
safeguards, if any, that should be imposed if the information is ordered 
to be released. The Office of Hearings and Appeals may issue a 
Protective Order upon consideration of the Motion and the Response.



Sec.  205.199  Evidentiary hearing.

    (a) Filing Requirements. At the time a person files a Statement of 
Objections he may also file a motion requesting an evidentiary hearing 
be convened. A motion requesting an evidentiary hearing may be filed by 
any other participant within 30 days after that participant is served 
with a Statement of Objections.
    (b) Contents of Motion for Evidentiary Hearing. A Motion for 
Evidentiary Hearing shall specify each disputed issue of fact and the 
bases for the alternative findings the movant asserts. The movant shall 
also describe the manner in which each disputed issue of fact was raised 
in any prior administrative proceeding which led to issuance of the 
Proposed Remedial Order, or why it was not raised. The movant shall with 
respect to each disputed or alternative finding of fact:

[[Page 27]]

    (1) As specifically as possible, identify the witnesses whose 
testimony is required;
    (2) State the reasons why the testimony of the witnesses is 
necessary; and
    (3) State the reasons why the asserted position can be effectively 
established only through the direct questioning of witnesses at an 
evidentiary hearing.
    (c) Response to Motion for Evidentiary Hearing. Within 20 days after 
service of any Motion for Evidentiary Hearing, the Office that issued 
the Proposed Remedial Order shall, and any other participant may file a 
Response with the Office of Hearings and Appeals. The Response shall 
specify:
    (1) Each particular factual representation which is accepted as 
correct for purposes of the proceeding;
    (2) Each particular factual representation which is denied;
    (3) Each particular factual representation which the participant is 
not in a position to accept or deny;
    (4) Each particular factual representation which is not accepted and 
the participant wishes proven by the submission of evidence;
    (5) Each particular factual representation which the participant is 
prepared to dispute through the testimony of witnesses or the submission 
of verified documents; and
    (6) Each particular factual representation which the participant 
asserts should be dismissed as immaterial or irrelevant.
    (d) Prehearing Conferences. After all submissions with respect to a 
Motion for Evidentiary Hearing are filed, the Office of Hearings and 
Appeals may conduct conferences or hearings to resolve differences of 
view among the participants.
    (e) Decision on Motion for Evidentiary Hearing. After considering 
all relevant information received in connection with the Motion, the 
Office of Hearings and Appeals shall enter an Order. In the Order the 
Office of Hearings and Appeals shall direct that an evidentiary hearing 
be convened if it concludes that a genuine dispute exists as to relevant 
and material issues of fact and an evidentiary hearing would 
substantially assist it in making findings of fact in an effective 
manner. If the Motion for Evidentiary Hearing is granted in whole or in 
part, the Order shall specify the parties to the hearing, any 
limitations on the participation of a party, and the issues of fact set 
forth for the evidentiary hearing. The Order may also require parties 
that have adopted similar positions to consolidate their presentations 
and to appear at the evidentiary hearing through a common 
representative. If the Motion is denied, the Order may allow the movant 
to file affidavits and other documents in support of his asserted 
findings of fact.
    (f) Review of Decision. The Order of the Office of Hearings and 
Appeals with respect to a Motion for Evidentiary Hearing shall be 
subject to further administrative review or appeal only upon issuance of 
the determination referred to in Sec.  205.199B.
    (g) Conduct of Evidentiary Hearing. All evidentiary hearings 
convened pursuant to this section shall be conducted by the Director of 
the Office of Hearings and Appeals or his designee. At any evidentiary 
hearing the parties shall have the opportunity to present material 
evidence which directly relates to a particular issue of fact set forth 
for hearing. The presiding officer shall afford the parties an 
opportunity to cross examine all witnesses. The presiding officer may 
administer oaths and affirmations, rule on objections to the 
presentation of evidence, receive relevant material, rule on any motion 
to conform the Proposed Remedial Order to the evidence presented, rule 
on motions for continuance, dispose of procedural requests, determine 
the format of the hearing, modify any order granting a Motion for 
Evidentiary Hearing, direct that written motions or briefs be provided 
with respect to issues raised during the course of the hearing, issue 
subpoenas, and otherwise regulate the conduct of the hearing. The 
presiding officer may take reasonable measures to exclude duplicative 
material from the hearing, and may place appropriate limitations on the 
number of witnesses that may be called by a party. The presiding officer 
may also require that evidence be submitted through affidavits or other 
documents if the direct testimony of witnesses will unduly delay the 
orderly

[[Page 28]]

progress of the hearing and would not contribute to resolving the issues 
involved in the hearing. The provisions of Sec.  205.8 which relate to 
subpoenas and witness fees shall apply to any evidentiary hearing, 
except that subsection Sec.  205.8(h) (2), (3), and (4) shall not apply.



Sec.  205.199A  Hearing for the purpose of oral argument only.

    (a) A participant is entitled upon timely request to a hearing to 
present oral argument with respect to the Proposed Remedial Order, 
whether or not an evidentiary hearing is requested or convened. A 
participant's request shall normally be considered untimely, if made 
more than 10 days after service of a determination regarding any motion 
filed by the requestor or, if no motions were filed by him, if made 
after the date for filing his Reply or his Response to a Statement of 
Objections.
    (b) If an evidentiary hearing is convened, and a hearing for oral 
argument is requested, the Office of Hearings and Appeals shall 
determine whether the hearing for oral argument shall be held in 
conjunction with the evidentiary hearing or at a separate time.
    (c) A hearing for the purpose of receiving oral argument will 
generally be conducted only after the issues involved in the proceeding 
have been delineated, and any written material which the Office of 
Hearings and Appeals has requested to supplement a Statement of 
Objections or Responses has been submitted. The presiding officer may 
require further written submissions in support of any position advanced 
or issued at the hearing, and shall allow responses any such 
submissions.



Sec.  205.199B  Remedial order.

    (a) After considering all information received during the 
proceeding, the Director of the Office of Hearings and Appeals or his 
designee may issue a final Remedial Order. The Remedial Order may adopt 
the findings and conclusions contained in the Proposed Remedial Order or 
may modify or rescind any such finding or conclusion to conform the 
Order to the evidence or on the basis of a determination that the 
finding or conclusion is erroneous in fact or law or is arbitrary or 
capricious. In the alternative, the Office of Hearings and Appeals may 
determine that no Remedial Order should be issued or may remand all or a 
portion of the Proposed Remedial Order to the issuing DOE office for 
further consideration or modification. Every determination made pursuant 
to this section shall state the relevant facts and legal bases 
supporting the determination.
    (b) The DOE shall serve a copy of any determination issued pursuant 
to paragraph (a) of this section upon the person to whom it is directed, 
any person who was served with a copy of the Proposed Remedial Order, 
the DOE office that issued the Proposed Remedial Order, the DOE 
Assistant General Counsel for Administrative Litigation and any other 
person on the official service list. Appropriate deletions may be made 
in the determinations to ensure that confidentiality of information 
protected from disclosure under 18 U.S.C. 1905 and 5 U.S.C. 552. A copy 
of the determination with appropriate deletions to protect confidential 
and proprietary data shall be placed in the Office of Hearings and 
Appeals Public Docket Room.



Sec.  205.199C  Appeals of remedial order to FERC.

    (a) The person to whom a Remedial Order is issued by the Office of 
Hearings and Appeals may file an administrative appeal if the Remedial 
Order proceeding was initiated by a Notice of Probable Violation issued 
after October 1, 1977, or, in those situations in which no Notice of 
Probable Violation was issued, if the proceeding was initiated by a 
Proposed Remedial Order issued after October 1, 1977.
    (b) Any such appeal must be initiated within 30 days after service 
of the Order by giving written notice to the Office of Hearings and 
Appeals that the person to whom a Remedial Order is issued wishes to 
contest the Order.
    (c) The Office of Hearings and Appeals shall promptly advise the 
Federal Energy Regulatory Commission of its receipt of a notice 
described in paragraph (b) of this section.
    (d) The Office of Hearings and Appeals may, on a case by case basis, 
set reasonable time limits for the Federal

[[Page 29]]

Energy Regulatory Commission to complete its action on such an appeal 
proceeding.
    (e) In order to exhaust administrative remedies, a person who is 
entitled to appeal a Remedial Order issued by the Office of Hearings and 
Appeals must file a timely appeal and await a decision on the merits. 
Any Remedial Order that is not appealed within the 30-day period shall 
become effective as a final Order of the DOE and is not subject to 
review by any court.



Sec. Sec.  205.199D-205.199E  [Reserved]



Sec.  205.199F  Ex parte communications.

    (a) No person who is not employed or otherwise supervised by the 
Office of Hearings and Appeals shall submit ex parte communications to 
the Director or any person employed or otherwise supervised by the 
Office with respect to any matter involved in Remedial Order or Order of 
Disallowance proceedings.
    (1) Ex parte communications include any ex parte oral or written 
communications relative to the merits of a Proposed Remedial Order, 
Interim Remedial Order for Immediate Compliance, or Proposed Order of 
Disallowance proceeding pending before the Office of Hearings and 
Appeals. The term shall not, however, include requests for status 
reports, inquiries as to procedures, or the submission of proprietary or 
confidential information. Notice that proprietary or confidential 
submissions have been made shall be given to all persons on the official 
service list.
    (b) If any communication occurs that violates the provisions of this 
section, the Office of Hearings and Appeals shall promptly make the 
substance of the communication available to the public and serve a copy 
of a written communication or a memorandum summarizing an oral 
communication to all participants in the affected proceeding. The Office 
of Hearings and Appeals may also take any other appropriate action to 
mitigate the adverse impact to any person whose interest may be affected 
by the ex parte contact.



Sec.  205.199G  Extension of time; Interim and Ancillary Orders.

    The Director of the Office of Hearings and Appeals or his designee 
may permit upon motion any document or submission referred to in this 
subpart other than appeals to FERC to be amended or withdrawn after it 
has been filed or to be filed within a time period different from that 
specified in this subpart. The Director or his designee may upon motion 
or on his own initiative issue any interim or ancillary Orders, 
reconsider any determinations, or make any rulings or determinations 
that are deemed necessary to ensure that the proceedings specified in 
this subpart are conducted in an appropriate manner and are not unduly 
delayed.



Sec.  205.199H  Actions not subject to administrative appeal.

    A Notice of Probable Violation, Notice of Proposed Disallowance, 
Proposed Remedial Order or Interim Remedial Order for Immediate 
Compliance issued pursuant to this subpart shall not be an action from 
which there may be an administrative appeal pursuant to subpart H. In 
addition, a determination by the Office of Hearings and Appeals that a 
Remedial Order, an Order of Disallowance, or a Remedial Order for 
Immediate Compliance should not be issued shall not be appealable 
pursuant to subpart H.



Sec.  205.199I  Remedies.

    (a) A Remedial Order, a Remedial Order for Immediate Compliance, an 
Order of Disallowance, or a Consent Order may require the person to whom 
it is directed to roll back prices, to make refunds equal to the amount 
(plus interest) charged in excess of those amounts permitted under DOE 
Regulations, to make appropriate compensation to third persons for 
administrative expenses of effectuating appropriate remedies, and to 
take such other action as the DOE determines is necessary to eliminate 
or to compensate for the effects of a violation or any cost disallowance 
pursuant to Sec.  212.83 or Sec.  212.84. Such action may include a 
direction to the person to whom the Order is issued to establish an 
escrow account or take other measures to

[[Page 30]]

make refunds directly to purchasers of the products involved, 
notwithstanding the fact that those purchasers obtained such products 
from an intermediate distributor of such person's products, and may 
require as part of the remedy that the person to whom the Order is 
issued maintain his prices at certain designated levels, notwithstanding 
the presence or absence of other regulatory controls on such person's 
prices. In cases where purchasers cannot be reasonably identified or 
paid or where the amount of each purchaser's overcharge is incapable of 
reasonable determination, the DOE may refund the amounts received in 
such cases directly to the Treasury of the United States on behalf of 
such purchasers.
    (b) The DOE may, when appropriate, issue final Orders ancillary to a 
Remedial Order, Remedial Order for Immediate Compliance, Order of 
Disallowance, or Consent Order requiring that a direct or indirect 
recipient of a refund pass through, by such means as the DOE deems 
appropriate, including those described in paragraph (a) of this section, 
all or a portion of the refund, on a pro rata basis, to those customers 
of the recipient who were adversely affected by the initial overcharge. 
Ancillary Orders may be appealed to the Office of Hearings and Appeals 
only pursuant to subpart H.



Sec.  205.199J  Consent order.

    (a) Notwithstanding any other provision of this subpart, the DOE may 
at any time resolve an outstanding compliance investigation or 
proceeding, or a proceeding involving the disallowance of costs pursuant 
to Sec.  205.199E with a Consent Order. A Consent Order must be signed 
by the person to whom it is issued, or a duly authorized representative, 
and must indicate agreement to the terms contained therein. A Consent 
Order need not constitute an admission by any person that DOE 
regulations have been violated, nor need it constitute a finding by the 
DOE that such person has violated DOE regulations. A Consent Order 
shall, however, set forth the relevant facts which form the basis for 
the Order.
    (b) A Consent Order is a final Order of the DOE having the same 
force and effect as a Remedial Order issued pursuant to Sec.  205.199B 
or an Order of Disallowance issued pursuant to Sec.  205.199E, and may 
require one or more of the remedies authorized by Sec.  205.199I and 
Sec.  212.84(d)(3). A Consent Order becomes effective no sooner than 30 
days after publication under paragraph (c) of this section, unless (1) 
the DOE makes a Consent Order effective immediately, because it 
expressly deems it necessary in the public interest, or (2) the Consent 
Order involves a sum of less than $500,000 in the aggregate, excluding 
penalties and interest, in which case it will be effective when signed 
both by the person to whom it is issued and the DOE, and will not be 
subject to the provisions of paragraph (c) of this section unless the 
DOE determines otherwise. A Consent Order shall not be appealable 
pursuant to the provisions of Sec.  205.199C or Sec.  205.199D and 
subpart H, and shall contain an express waiver of such appeal or 
judicial review rights as might otherwise attach to a final Order of the 
DOE.
    (c) When a Consent Order has been signed, both by the person to whom 
it is issued and the DOE, the DOE will publish notice of such Consent 
Order in the Federal Register and in a press release to be issued 
simultaneously therewith. The Federal Register notice and the press 
release will state at a minimum the name of the company concerned, a 
brief summary of the Consent Order and other facts or allegations 
relevant thereto, the address and telephone number of the DOE office at 
which copies of the Consent Order will be available free of charge, the 
address to which comments on the Consent Order will be received by the 
DOE, and the date by which such comments should be submitted, which date 
will not be less than 30 days after publication of the Federal Register 
notice. After the expiration of the comment period the DOE may withdraw 
its agreement to the Consent Order, attempt to negotiate a modification 
of the Consent Order, or issue the Consent Order as signed. The DOE will 
publish in the Federal Register, and by press release, notice of any 
action taken on a Consent Order and such explanation of

[[Page 31]]

the action taken as deemed appropriate. The provisions of this paragraph 
shall be applicable notwithstanding the fact that a Consent Order may 
have been made immediately effective pursuant to paragraph (b) of this 
section (except in cases where the Consent Order involves sums of less 
than $500,000 in the aggregate, excluding penalties and interest).
    (d) At any time and in accordance with the procedures of subpart J, 
a Consent Order may be modified or rescinded, upon petition by the 
person to whom the Consent Order was issued, and may be rescinded by the 
DOE upon discovery of new evidence which is materially inconsistent with 
evidence upon which the DOE's acceptance of the Consent Order was based. 
Modifications of a Consent Order which is subject to public comment 
under the provisions of paragraph (c) of this section, which in the 
opinion of the DOE significantly change the terms or the impact of the 
original Order, shall be republished under the provisions of that 
paragraph.
    (e) Notwithstanding the issuance of a Consent Order, the DOE may 
seek civil or criminal penalties or compromise civil penalties pursuant 
to subpart P concerning matters encompassed by the Consent Order, unless 
the Consent Order by its terms expressly precludes the DOE from so 
doing.
    (f) If at any time after a Consent Order becomes effective it 
appears to the DOE that the terms of the Consent Order have been 
violated, the DOE may refer such violations to the Department of Justice 
for appropriate action in accordance with subpart P.

Subparts P-T [Reserved]



            Subpart U_Procedures for Electricity Export Cases

    Authority: Federal Power Act, 41 Stat. 1063, as amended; Executive 
Order 10485, as amended by Executive Order 12038; Federal Energy 
Administration Act of 1974, Pub. L. 93-275, as amended; Pub. L. 94-332, 
Pub. L. 94-385, Pub. L. 95-70, and Pub. L. 95-91; Energy Policy and 
Conservation Act, Pub. L. 95-70; Department of Energy Organization Act, 
Pub. L. 95-91; E.O. 11790, 39 FR 23185; E.O. 12009, 42 FR 46267.

    Source: 49 FR 35315, Sept. 6, 1984, unless otherwise noted.



Sec.  205.260  Purpose and scope.

    (a) The purpose of this section is to state the procedures that will 
be followed by the Economic Regulatory Administration of the Department 
of Energy in electricity export adjudications.
    (b) Definitions. As used in this subpart--
    Administrator means the Administrator of the Economic Regulatory 
Administration.
    Decisional employees means the Administrator, presiding officers at 
adjudicatory hearings, and other employees of the Department, including 
consultants and contractors, who are, or may reasonably be expected to 
be, involved in the decision-making process, which includes advising the 
Administrator in resolving the issues in an adjudication. The term does 
not include those employees of the Department performing investigative 
or trial functions in an adjudication, unless they are specifically 
requested by the Administrator or his delegate to participate in the 
decision-making process.
    Department means the Department of Energy.
    Off-the-record communication means an ex parte communication, which 
is an oral or written communication relevant to the merits of an 
adjudication and not on the record and with respect to which reasonable 
prior notice to all participants and opportunity to be present at, or 
respond to, the communication is not given, but does not include a 
communication relating solely to procedures which are not relevant to 
the merits of the adjudication.
    Interested person means a person outside the Department whose 
interest in the adjudication goes beyond the general interest of the 
public as a whole and includes applicants, intervenors, competitors of 
applicants, non-profit and public interest organizations, and other 
individuals and organizations, including state, local and other public 
officials, with a proprietary, financial or other special interest in 
the outcome of the adjudication. The term does not include other federal 
agencies, unless an

[[Page 32]]

agency is a participant in the adjudication.
    Participant means any applicant or intervenor participating in the 
adjudication.
    Adjudication means a formal proceeding employing procedures 
identical or similar to those required by the Administrative Procedure 
Act, as codified in 5 U.S.C. 551, 556, and 557, to consider an 
application to export electricity.
    Reasonable prior notice means 7 days' written notice stating the 
nature and purpose of the communication.
    Relevant to the merits means a communication directly related to the 
merits of a specific adjudication but does not include general 
background discussions about an entire industry or communications of a 
general nature made in the course of developing agency policy for future 
general application.



Sec. Sec.  205.261-205.269  [Reserved]



Sec.  205.270  Off-the-record communications.

    (a) In any proceeding which is subject to this subpart--
    (1) No interested person shall make an off-the-record communication 
or knowingly cause an off-the-record communication to be made to any 
decisional employee.
    (2) No decisional employee shall make an off-the-record 
communication or knowingly cause an off-the-record communication to be 
made to any interested person.
    (3) A decisional employee who receives, makes, or knowingly causes 
to be made an oral communication prohibited by this section shall 
prepare a memorandum stating the substance of the communication and any 
responses made to it.
    (4) With 48 hours of receiving, making or knowingly causing to be 
made a communication prohibited by this section, a decisional employee 
shall deliver all written off-the-record communications and all 
memoranda prepared in compliance with paragraph (a)(3) of this section 
to the Director of the Coal and Electricity Division, ERA, who will 
immediately place the materials described above in the public record 
associated with the adjudication, available for public inspection.
    (5) Upon receipt of a communication knowingly made or knowingly 
caused to be made by a participant in violation of this section, the 
Administrator or presiding officer may, to the extent consistent with 
the interests of justice and the applicable statutory policy, require 
the participant to show cause why his or her claim or interest in the 
adjudication should not be dismissed, denied, disregarded, or otherwise 
adversely affected on account of the violation.
    (6) The prohibitions of this section shall apply beginning at the 
time an adjudication is noticed for hearing (or the person responsible 
for the communication acquires knowledge that it will be noticed), a 
protest is filed, or a petition or notice to intervene in opposition to 
the requested Department action is filed, whichever occurs first.
    (b) The prohibition, cited at 18 CFR 1.30(f), against participation 
in the decision-making process by Department employees who perform 
investigative or trial functions in an adjudication, shall no longer be 
applicable to ERA.



        Subpart V_Special Procedures for Distribution of Refunds

    Authority: Economic Stabilization Act of 1970, Pub. L. 92-210; 
Emergency Petroleum Allocation Act of 1973, Pub. L. 93-159, as amended, 
Pub. L. 93-511, Pub. L. 94-99, Pub. L. 94-133, Pub. L. 94-163, and Pub. 
L. 94-385, Federal Energy Administration Act of 1974, Pub. L. 93-275, as 
amended, Pub. L. 94-332, Pub. L. 94-332, Pub. L. 94-385, Pub. L. 95-70, 
Pub. L. 95-91, Energy Policy and Conservation Act, Pub. L. 94-163, as 
amended, Pub. L. 94-385, Pub. L. 95-70; Department of Energy 
Organization Act, Pub. L. 95-91; E.O. 11790, 39 FR 23185; E.O. 12009, 42 
FR 46267.

    Source: 44 FR 8566, Feb. 9, 1979, unless otherwise noted.



Sec.  205.280  Purpose and scope.

    This subpart establishes special procedures pursuant to which 
refunds may be made to injured persons in order to remedy the effects of 
a violation of the regulations of the Department of Energy. This subpart 
shall be applicable to those situations in which the Department of 
Energy is unable to readily identify persons who are entitled to

[[Page 33]]

refunds specified in a Remedial Order, a Remedial Order for Immediate 
Compliance, an Order of Disallowance or a Consent Order, or to readily 
ascertain the amounts that such persons are entitled to receive.



Sec.  205.281  Petition for implementation of special refund procedures.

    (a) At any time after the issuance of a Remedial Order (including 
for purposes of this subpart a Remedial Order for Immediate Compliance 
and an Order of Disallowance), or a Consent Order, the Special Counsel 
of the Department of Energy, the ERA Office of Enforcement, or any other 
enforcement official of the Department of Energy may file with the 
Office of Hearings and Appeals a Petition for the Implementation of 
Special Refund Procedures.
    (b) The Petition shall state that the person filing it has been 
unable readily either to identify the persons who are entitled to 
refunds to be remitted pursuant to a Remedial Order or a Consent Order 
or to ascertain the amounts of refunds that such persons are entitled to 
receive. The Petition shall request that the Office of Hearings and 
Appeals institute appropriate proceedings under this subpart to 
distribute the funds referred to in the enforcement documents.
    (c) The Petition shall contain a copy of each relevant enforcement 
document, shall be filed in duplicate, and shall meet the requirements 
of Sec.  205.9 of this part.



Sec.  205.282  Evaluation of petition by the Office of Hearings and Appeals.

    (a) After considering the Petition, the Director of the Office of 
Hearings and Appeals or his designee shall issue a Proposed Decision and 
Order. The Proposed Decision and Order shall generally describe the 
nature of the particular refund proceeding and shall set forth the 
standards and procedures that the Office of Hearings and Appeals intends 
to apply in evaluating refund claims.
    (b) The Proposed Decision and Order shall be published in the 
Federal Register together with a statement that any member of the public 
may submit written comments to the Office of Hearings and Appeals with 
respect to the matter. At least 30 days following publication in the 
Federal Register shall be provided for the submission of comments.
    (c) After considering the comments submitted, the Director of the 
Office of Hearings and Appeals or his designee shall issue a final 
Decision and Order which shall govern the disposition of the refunds. 
The final Decision and Order shall also be published in the Federal 
Register.
    (d) The final Decision and Order shall set forth the standards and 
procedures that will be used in evaluating individual Applications for 
Refunds and distributing the refund amount. Those standards and 
procedures shall be consistent with the provisions of this subpart.
    (e) In establishing standards and procedures for implementing refund 
distributions, the Office of Hearings and Appeals shall take into 
account the desirability of distributing the refunds in an efficient, 
effective and equitable manner and resolving to the maximum extent 
practicable all outstanding claims. In order to do so, the standards for 
evaluation of individual claims may be based upon appropriate 
presumptions.



Sec.  205.283  Applications for refund.

    (a) Any person entitled to a refund pursuant to a final Decision and 
Order issued pursuant to Sec.  205.282 may file an Application for 
Refund. All Applications must be signed by the applicant and specify the 
DOE order to which they pertain. Any Application for a refund in excess 
of $100 must be file in duplicate, and a copy of that Application will 
be available for public inspection in the DOE Public Docket Room at 2000 
M Street, NW., Washington, DC. Any applicant who believes that his 
Application contains confidential information must so indicate on the 
first page of his Application and submit two additional copies of his 
Application from which the information that the applicant claims is 
confidential has been deleted, together with a statement specifying why 
any such information is privileged or confidential.
    (b) The contents of an Application for Refund shall be specified in 
the final

[[Page 34]]

Decision and Order referred to in Sec.  205.282(c). A filing deadline 
for Applications shall also be specified in the final Decision and 
Order, and shall be no less than 90 days after the publication of the 
Order in the Federal Register.
    (c) Each Application shall be in writing and signed by the 
applicant, and shall indicate whether the applicant or any person acting 
on his instructions has filed or intends to file any other Application 
or claim of whatever nature regarding the matters at issue in the 
underlying enforcement proceeding. Each Application shall also include a 
sworn statement by the applicant that all information in his Application 
is true and correct to the best of his knowledge and belief.



Sec.  205.284  Processing of applications.

    (a) The Director of the Office of Hearings and Appeals may appoint 
an administrator to evaluate Applications under guidelines established 
by the Office of Hearings and Appeals. The administrator, if he is not a 
Federal Government employee, may be compensated from the funds referred 
to in the Remedial Order or Consent Order. The administrator may design 
and distribute an optional application form for the convenience of the 
applicants.
    (b) The Office of Hearings and Appeals or its designee may initiate 
an investigation of any statement made in an Application and may require 
verification of any document submitted in support of a claim. In 
evaluating an Application, the Office of Hearings and Appeals or its 
designee may solicit and consider information obtained from any source 
and may on its own initiative convene a hearing or conference, if it 
determines that a hearing or conference will advance its evaluation of 
an Application.
    (c) The Director of the Office of Hearings and Appeals or his 
designee shall conduct any hearing or conference convened with respect 
to an Application for Refund and shall specify the time and place for 
the hearing or conference and notify the applicant. The official 
conducting the hearing may administer oaths and affirmations, rule on 
the presentation of information, receive relevant information, dispose 
of procedural requests, determine the format of the hearing and 
otherwise regulate the course of the hearing. The provisions of Sec.  
205.8 of this part which relate to subpoenas and witness fees shall 
apply to any hearing convened with respect to an application for refund, 
except that Sec.  205.8(h) (2), (3) and (4) shall not apply.
    (d) Upon consideration of an Application and other relevant 
information received during the course of a refund proceeding, the 
Director of the Office of Hearings and Appeals or his designee shall 
issue an order granting or denying the Application. The order shall 
contain a concise statement of the relevant facts and the legal basis 
for the order. A copy of the order, with such modification as is 
necessary to ensure the confidentiality of information protected from 
public disclosure by 18 U.S.C. 1905, may be obtained upon request by an 
applicant or any other person who participated in the proceeding.



Sec.  205.285  Effect of failure to file a timely application.

    An Application for Refund must be filed no later than the date that 
the Office of Hearings and Appeals establishes pursuant to Sec.  
205.283(b). Any Application that is not filed on a timely basis may be 
summarily dismissed. The Office of Hearings and Appeals or its designee 
may, however, grant extensions of time for good cause shown. Any request 
for an extension of time must generally be submitted in writing prior to 
the deadline.



Sec.  205.286  Limitations on amount of refunds.

    (a) The aggregate amount of all refunds approved by the Office of 
Hearings and Appeals or its designee in a given case shall not exceed 
the amount to be remitted pursuant to the relevant DOE enforcement 
order, plus any accumulated interest, reduced by the amount of any 
administrative costs approved by the Office of Hearings and Appeals. In 
the event that the aggregate amount of approved claims exceeds the 
aggregate amount of funds specified above, the Office of Hearings and 
Appeals may make refunds on a pro rata basis. The Office of Hearings and 
Appeals may delay payment of any

[[Page 35]]

refunds until all Applications have been processed.
    (b) The Office of Hearings and Appeals may decline to consider 
Applications for refund amounts that, in view of the direct 
administrative costs involved, are too small to warrant individual 
consideration.



Sec.  205.287  Escrow accounts, segregated funds and other guarantees.

    (a) In implementing the refund procedures specified in this subpart, 
the Director of the Office of Hearings and Appeals or his designee shall 
issue an order providing for the custody of the funds to be tendered 
pursuant to the Remedial Order or Consent Order. This Order may require 
placement of the funds in an appropriate interest-bearing escrow 
account, retention of the funds by the firm in a segregated account 
under such terms and conditions as are specified by the DOE, or the 
posting of a sufficient bond or other guarantee to ensure payment.
    (b) All costs and charges approved by the Office of Hearings and 
Appeals and incurred in connection with the processing of Applications 
for Refund or incurred by an escrow agent shall be paid from the amount 
of funds, including any accumulated interest, to be remitted pursuant to 
the Remedial Order or Consent Order.
    (c) After the expenses referred to in paragraph (b) of this section 
have been satisfied and refunds distributed to successful applicants, 
any remaining funds remitted pursuant to the Remedial Order or Consent 
Order shall be deposited in the United States Treasury or distributed in 
any other manner specified in the Decision and Order referred to in 
Sec.  205.282(c).
    (d) Funds contained in an escrow account, segregated fund, or 
guaranteed by other approved means shall be disbursed only upon written 
order of the Office of Hearings and Appeals.



Sec.  205.288  Interim and ancillary orders.

    The Director of the Office of Hearings and Appeals or his designee 
may issue any interim or ancillary orders, or make any rulings or 
determinations to ensure that refund proceedings, including the actions 
of the administrator and the custodian of the funds involved in a refund 
proceeding, are conducted in an appropriate manner and are not unduly 
delayed.



   Subpart W_Electric Power System Permits and Reports; Applications; 
 Administrative Procedures and Sanctions; Grid Security Emergency Orders

(Approved by the Office of Management and Budget under Control No. 1901-
0245)

    Authority: Pub. L. 95-91, 91 Stat. 565 (42 U.S.C. 7101); Pub. L. 66-
280, 41 Stat. 1063 (16 U.S.C. Section 792 et seq.); E.O. 10485, 18 FR 
5397, 3 CFR, 1949-1953, Comp., p. 970 as amended by E.O. 12038, 43 FR 
4957, 3 CFR 1978 Comp., p. 136; Department of Energy Delegation Order 
No. 00-002.00Q (Nov. 1, 2018).

    Source: 45 FR 71560, Oct. 28, 1980; 46 FR 63209, Dec. 31, 1981, 
unless otherwise noted.

 Application for Authorization to Transmit Electric Energy to a Foreign 
                                 Country



Sec.  205.300  Who shall apply.

    (a) An electric utility or other entity subject to DOE jurisdiction 
under part II of the Federal Power Act who proposes to transmit any 
electricity from the United States to a foreign country must submit an 
application or be a party to an application submitted by another entity. 
The application shall be submitted to the Office of Utility Systems of 
the Economic Regulatory Administration (EPA).
    (b) In connection with an application under Sec. Sec.  205.300 
through 205.309, attention is directed to the provisions of Sec. Sec.  
205.320 through 205.327, below, concerning applications for Presidential 
Permits for the construction, connection, operation, or maintenance, at 
the borders of the United States, of facilities for the transmission of 
electric energy between the United States and a foreign country in 
compliance with Executive Order 10485, as amended by Executive Order 
12038.



Sec.  205.301  Time of filing.

    Each application should be made at least six months in advance of 
the initiation of the proposed electricity export, except when otherwise 
permitted by the ERA to resolve an emergency situation.

[[Page 36]]



Sec.  205.302  Contents of application.

    Every application shall contain the following information set forth 
in the order indicated below:
    (a) The exact legal name of the applicant.
    (b) The exact legal name of all partners.
    (c) The name, title, post office address, and telephone number of 
the person to whom correspondence in regard to the application shall be 
addressed.
    (d) The state or territory under the laws of which the applicant is 
organized or incorporated, or authorized to operate. If the applicant is 
authorized to operate in more than one state, all pertinent facts shall 
be included.
    (e) The name and address of any known Federal, State or local 
government agency which may have any jurisdiction over the action to be 
taken in this application and a brief description of that authority.
    (f) A description of the transmission facilities through which the 
electric energy will be delivered to the foreign country, including the 
name of the owners and the location of any remote facilities.
    (g) A technical discussion of the proposed electricity export's 
reliability, fuel use and system stability impact on the applicant's 
present and prospective electric power supply system. Applicant must 
explain why the proposed electricity export will not impair the 
sufficiency of electric supply on its system and why the export will not 
impede or tend to impede the regional coordination of electric utility 
planning or operation.
    (h) The original application shall be signed and verified under oath 
by an officer of the applicant having knowledge of the matters set forth 
therein.



Sec.  205.303  Required exhibits.

    There shall be filed with the application and as a part thereof the 
following exhibits:
    (a) Exhibit A. A copy of the agreement or proposed agreement under 
which the electricity is to be transmitted including a listing of the 
terms and conditions. If this agreement contains proprietary information 
that should not be released to the general public, the applicant must 
identify such data and include a statement explaining why proprietary 
treatment is appropriate.
    (b) Exhibit B. A showing, including a signed opinion of counsel, 
that the proposed export of electricity is within the corporate power of 
the applicant, and that the applicant has complied or will comply with 
all pertinent Federal and State laws.
    (c) Exhibit C. A general map showing the applicant's overall 
electric system and a detailed map highlighting the location of the 
facilities or the proposed facilities to be used for the generation and 
transmission of the electric energy to be exported. The detailed map 
shall identify the location of the proposed border crossing point(s) or 
power transfer point(s) by Presidential Permit number whenever possible.
    (d) Exhibit D. If an applicant resides or has its principal office 
outside the United States, such applicant shall designate, by 
irrevocable power of attorney, an agent residing within the United 
States. A verified copy of such power of attorney shall be furnished 
with the application.
    (e) Exhibit E. A statement of any corporate relationship or existing 
contract between the applicant and any other person, corporation, or 
foreign government, which in any way relates to the control or fixing of 
rates for the purchase, sale or transmission of electric energy.
    (f) Exhibit F. An explanation of the methodology (Operating 
Procedures) to inform neighboring electric utilities in the United 
States of the available capacity and energy which may be in excess of 
the applicant's requirements before delivery of such capacity to the 
foreign purchaser. Approved firm export, diversity exchange and 
emergency exports are exempted from this requirement. Those materials 
required by this section which have been filed previously with the ERA 
may be incorporated by reference.



Sec.  205.304  Other information.

    Where the application is for authority to export less than 1,000,000 
kilowatt hours annually, applicants need not furnish the information 
called for in Sec. Sec.  205.302(g) and 205.303 (Exhibit C). Applicants, 
regardless of the amount of

[[Page 37]]

electric energy to be exported, may be required to furnish such 
supplemental information as the ERA may deem pertinent.



Sec.  205.305  Transferability.

    (a) An authorization to transmit electric energy from the United 
States to a foreign country granted by order of the ERA under section 
202(e) of the Federal Power Act shall not be transferable or assignable. 
Provided written notice is given to the ERA within 30 days, the 
authorization may continue in effect temporarily in the event of the 
involuntary transfer of this authority by operation of law (including 
transfers to receivers, trustees, or purchasers under foreclosure or 
judicial sale). This continuance is contingent on the filing of an 
application for permanent authorization and may be effective until a 
decision is made thereon.
    (b) In the event of a proposed voluntary transfer of this authority 
to export electricity, the transferee and the transferor shall file 
jointly an application pursuant to this subsection, setting forth such 
information as required by Sec. Sec.  205.300 through 205.304, together 
with a statement of reasons for the transfer.
    (c) The ERA may at any time subsequent to the original order of 
authorization, after opportunity for hearing, issue such supplemental 
orders as it may find necessary or appropriate.



Sec.  205.306  Authorization not exclusive.

    No authorization granted pursuant to section 202(e) of the Act shall 
be deemed to prevent an authorization from being granted to any other 
person or entity to export electric energy or to prevent any other 
person or entity from making application for an export authorization.



Sec.  205.307  Form and style; number of copies

    An original and two conformed copies of an application containing 
the information required under Sec. Sec.  205.300 through 205.309 must 
be filed.



Sec.  205.308  Filing schedule and annual reports.

    (a) Persons authorized to transmit electric energy from the United 
States shall promptly file all supplements, notices of succession in 
ownership or operation, notices of cancellation, and certificates of 
concurrence. In general, these documents should be filed at least 30 
days prior to the effective date of any change.
    (b) A change in the tariff arrangement does not require an amendment 
to the authorization. However, any entity with an authorization to 
export electric energy shall file with the ERA, and the appropriate 
state regulatory agency, a certified copy of any changed rate schedule 
and terms. Such changes may take effect upon the date of filing of 
informational data with the ERA.
    (c) Persons receiving authorization to transmit electric energy from 
the United States shall submit to the ERA, by February 15 each year, a 
report covering each month of the preceding calendar year detailing the 
gross amount of kilowatt-hours of energy, by authorized category, 
received or delivered, and the cost and revenue associated with each 
category.

(Approved by the Office of Management and Budget under Control No. 1901-
0245)

[45 FR 71560, Oct. 28, 1980, as amended at 46 FR 63209, Dec. 31, 1981]



Sec.  205.309  Filing procedures and fees.

    Applications shall be addressed to the Office of Utility Systems of 
the Economic Regulatory Administration. Every application shall be 
accompanied by a fee of $500.00. Fee payment shall be by check, draft, 
or money order payable to the Treasurer of the United States. Copies of 
applications and notifications of rate changes shall be furnished to the 
Federal Energy Regulatory Commission and all affected State public 
utility regulatory agencies.

[[Page 38]]

   Application for Presidential Permit Authorizing the Construction, 
Connection, Operation, and Maintenance of Facilities for Transmission of 
               Electric Energy at International Boundaries



Sec.  205.320  Who shall apply.

    (a) Any person, firm, co-operative, corporation or other entity who 
operates an electric power transmission or distribution facility 
crossing the border of the United States, for the transmission of 
electric energy between the United States and a foreign country, shall 
have a Presidential Permit, in compliance with Executive Order 10485, as 
amended by Executive Order 12038. Such applications should be filed with 
the Office of Utility Systems of the Economic Regulatory Administration.
    Note: E.O. 12038, dated February 3, 1978, amended E.O. 10485, dated 
September 3, 1953, to delete the words ``Federal Power Commission'' and 
``Commission'' and substitute for each ``Secretary of Energy.'' E.O. 
10485 revoked and superseded E.O. 8202, dated July 13, 1939.
    (b) In connection with applications hereunder, attention is directed 
to the provisions of Sec. Sec.  205.300 to 205.309, above, concerning 
applications for authorization to transmit electric energy from the 
United States to a foreign country pursuant to section 202(e) of the 
Federal Power Act.



Sec.  205.321  Time of filing.

    Pursuant to the DOE's responsibility under the National 
Environmental Policy Act, the DOE must make an environmental 
determination of the proposed action. If, as a result of this 
determination, an environmental impact statement (EIS) must be prepared, 
the permit processing time normally will be 18-24 months. If no 
environmental impact statement is required, then a six-month processing 
time normally would be sufficient.



Sec.  205.322  Contents of application.

    Every application shall be accompanied by a fee prescribed in Sec.  
205.326 of this subpart and shall provide, in the order indicated, the 
following:
    (a) Information regarding the applicant. (1) The legal name of the 
applicant;
    (2) The legal name of all partners;
    (3) The name, title, post office address, and telephone number of 
the person to whom correspondence in regard to the application shall be 
addressed;
    (4) Whether the applicant or its transmission lines are owned wholly 
or in part by a foreign government or directly or indirectly assisted by 
a foreign government or instrumentality thereof; or whether the 
applicant has any agreement pertaining to such ownership by or 
assistance from any foreign government or instrumentality thereof.
    (5) List all existing contracts that the applicant has with any 
foreign government, or any foreign private concerns, relating to any 
purchase, sale or delivery of electric energy.
    (6) A showing, including a signed opinion of counsel, that the 
construction, connection, operation, or maintenance of the proposed 
facility is within the corporate power of the applicant, and that the 
applicant has complied with or will comply with all pertinent Federal 
and State laws;
    (b) Information regarding the transmission lines to be covered by 
the Presidential Permit. (1)(i) A technical description providing the 
following information: (A) Number of circuits, with identification as to 
whether the circuit is overhead or underground; (B) the operating 
voltage and frequency; and (C) conductor size, type and number of 
conductors per phase.
    (ii) If the proposed interconnection is an overhead line the 
following additional information must also be provided: (A) The wind and 
ice loading design parameters; (B) a full description and drawing of a 
typical supporting structure including strength specifications; (C) 
structure spacing with typical ruling and maximum spans; (D) conductor 
(phase) spacing; and (E) the designed line to ground and conductor side 
clearances.
    (iii) If an underground or underwater interconnection is proposed, 
the following additional information must also be provided: (A) Burial 
depth; (B) type of cable and a description of any required supporting 
equipment, such as insulation medium pressurizing or forced cooling; and 
(C) cathodic protection scheme. Technical diagrams which

[[Page 39]]

provide clarification of any of the above items should be included.
    (2) A general area map with a scale not greater than 1 inch = 40 
kilometers (1 inch = 25 miles) showing the overall system, and a 
detailed map at a scale of 1 inch = 8 kilometers (1 inch = 5 miles) 
showing the physical location, longitude and latitude of the facility on 
the international border. The map shall indicate ownership of the 
facilities at or on each side of the border between the United States 
and the foreign country. The maps, plans, and description of the 
facilities shall distinguish the facilities or parts thereof already 
constructed from those to be constructed.
    (3) Applications for the bulk power supply facility which is 
proposed to be operated at 138 kilovolts or higher shall contain the 
following bulk power system information:
    (i) Data regarding the expected power transfer capability, using 
normal and short time emergency conductor ratings;
    (ii) System power flow plots for the applicant's service area for 
heavy summer and light spring load periods, with and without the 
proposed international interconnection, for the year the line is 
scheduled to be placed in service and for the fifth year thereafter. The 
power flow plots submitted can be in the format customarily used by the 
utility, but the ERA requires a detailed legend to be included with the 
power flow plots;
    (iii) Data on the line design features for minimizing television 
and/or radio interference caused by operation of the subject 
transmission facilities;
    (iv) A description of the relay protection scheme, including 
equipment and proposed functional devices;
    (v) After receipt of the system power flow plots, the ERA may 
require the applicant to furnish system stability analysis for the 
applicant's system.
    (c) Information regarding the environmental impacts shall be 
provided as follows for each routing alternative:
    (1) Statement of the environmental impacts of the proposed 
facilities including a list of each flood plain, wetland, critical 
wildlife habitat, navigable waterway crossing, Indian land, or historic 
site which may be impacted by the proposed facility with a description 
of proposed activities therein.
    (2) A list of any known Historic Places, as specified in 36 CFR part 
800, which may be eligible for the National Register of Historic Places.
    (3) Details regarding the minimum right-of-way width for 
construction, operation and maintenance of the transmission lines and 
the rationale for selecting that right-of-way width.
    (4) A list of threatened or endangered wildlife or plant life which 
may be located in the proposed alternative.
    (d) A brief description of all practical alternatives to the 
proposed facility and a discussion of the general environmental impacts 
of each alternative.
    (e) The original of each application shall be signed and verified 
under oath by an officer of the applicant, having knowledge of the 
matters therein set forth.



Sec.  205.323  Transferability.

    (a) Neither a permit issued by the ERA pursuant to Executive Order 
10485, as amended, nor the facility shall be transferable or assignable. 
Provided written notice is given to the ERA within 30 days, the 
authorization may continue in effect temporarily in the event of the 
involuntary transfer of the facility by operation of law (including 
transfers to receivers, trustees, or purchases under foreclosure or 
judicial sale). This continuance is contingent on the filing of an 
application for a new permit and may be effective until a decision is 
made thereon.
    (b) In the event of a proposed voluntary transfer of the facility, 
the permittee and the party to whom the transfer would be made shall 
file a joint application with the ERA pursuant to this paragraph, 
setting forth information as required by Sec.  205.320 et seq., together 
with a statement of reasons for the transfer. The application shall be 
accompanied by a filing fee pursuant to Sec.  205.326.
    (c) No substantial change shall be made in any facility authorized 
by permit or in the operation thereof unless or until such change has 
been approved by the ERA.
    (d) Permits may be modified or revoked without notice by the 
President

[[Page 40]]

of the United States, or by the Administrator of the ERA after public 
notice.



Sec.  205.324  Form and style; number of copies.

    All applicants shall file an original and two conformed copies of 
the application and all accompanying documents required under Sec. Sec.  
205.320 through 205.327.



Sec.  205.325  Annual report.

    Persons receiving permits to construct, connect, operate or maintain 
electric transmission facilities at international boundaries shall 
submit to the ERA, by February 15 each year, a report covering each 
month of the preceding calendar year, detailing by category the gross 
amount of kilowatt-hours of energy received or delivered and the cost 
and revenue associated with each category.



Sec.  205.326  Filing procedures and fees.

    Applications shall be forwarded to the Office of Utility Systems of 
the Economic Regulatory Administration and shall be accompanied by a 
filing fee of $150. The application fee will be charged irrespective of 
the ERA's disposition of the application. Fee payment shall be by check, 
draft, or money order payable to the Treasurer of the United States. 
Copies of applications shall be furnished to the Federal Energy 
Regulatory Commission and all affected State public utility regulatory 
agencies.



Sec.  205.327  Other information.

    The applicant may be required after filing the application to 
furnish such supplemental information as the ERA may deem pertinent. 
Such requests shall be written and a prompt response will be expected. 
Protest regarding the supplying of such information should be directed 
to the Administrator of the ERA.



Sec.  205.328  Environmental requirements for Presidential Permits--
Alternative 1.

    (a) NEPA Compliance. Except as provided in paragraphs (c) and (e) of 
this section, when an applicant seeks a Presidential Permit, such 
applicant will be responsible for the costs of preparing any necessary 
environmental document, including an Environmental Impact Statement 
(EIS), arising from ERA's obligation to comply with the National 
Environmental Policy Act of 1969 (NEPA). ERA will determine whether an 
environmental assessment (EA) or EIS is required within 45 days of the 
receipt of the Presidential Permit application and of environmental 
information submitted pursuant to 10 CFR 205.322 (c) and (d). ERA will 
use these and other sources of information as the basis for making the 
environmental determination:
    (1) If an EIS is determined to be necessary, the applicant shall 
enter into a contract with an independent third party, which may be a 
Government-owned, contractor-operated National Laboratory, or a 
qualified private entity selected by ERA. The third party contractor 
must be qualified to conduct an environmental review and prepare an EIS, 
as appropriate, under the supervision of ERA, and may not have a 
financial or other interest in the outcome of the proceedings. The NEPA 
process must be completed and approved before ERA will issue a 
Presidential Permit.
    (2) If an EA is determined to be necessary, the applicant may be 
permitted to prepare an environmental assessment pursuant to 10 CFR 
1506.5(b) for review and adoption by ERA, or the applicant may enter 
into a third party contract as set forth in this section.
    (b) Environmental Review Procedure. Except as provided in paragraphs 
(c) and (e) of this section, environmental documents, including the EIS, 
where necessary, will be prepared utilizing the process set forth above. 
ERA, the applicant, and the independent third party, which may be a 
Government-owned, contractor-operated National Laboratory or a private 
entity, shall enter into an agreement in which the applicant will engage 
and pay directly for the services of the qualified third party to 
prepare the necessary environmental documents. The agreement shall 
outline the responsibilities of each party and its relationship to the 
other two parties regarding the work to be done or supervised. ERA shall 
approve the information to be developed and supervise the gathering, 
analysis

[[Page 41]]

and presentation of the information. In addition, ERA will have the 
authority to approve and modify any statement, analysis, and conclusion 
contained in the environmental documents prepared by the third party. 
Before commencing preparation of the environmental document the third 
party will execute an ERA-prepared disclosure document stating that it 
does not have any conflict of interest, financial or otherwise, in the 
outcome of either the environmental process or the Permit application.
    (c) Financial Hardship. Whenever ERA determines that a project is no 
longer economically feasible, or that a substantial financial burden 
would be imposed by the applicant bearing all of the costs of the NEPA 
studies, ERA may waive the requirement set forth in paragraphs (a) and 
(b) of this section and perform the necessary environmental review, 
completely or in part, with its own resources.
    (d) Discussions Prior to Filing. Prior to the preparation of any 
Presidential Permit application and environmental report, a potential 
applicant is encouraged to contact ERA and each affected State public 
utility regulatory agency to discuss the scope of the proposed project 
and the potential for joint State and Federal environmental review.
    (e) Federal Exemption. Upon a showing by the applicant that it is 
engaged in the transaction of official business of the Federal 
Government in filing the application pursuant to 10 CFR 205.320 et seq., 
it will be exempt from the requirements of this section.

[48 FR 33819, July 25, 1983]



Sec.  205.329  Environmental requirements for Presidential Permits--
Alternative 2.

    (a) NEPA Compliance. Except as provided in paragraph (b) and (e) of 
this section, applicants seeking Presidential Permits will be 
financially responsible for the expenses of any contractor chosen by ERA 
to prepare any necessary environmental document arising from ERA's 
obligation to comply with the National Environmental Policy Act of 1969 
(NEPA) in issuing such Presidential Permits:
    (1) ERA will determine whether an Environmental Impact Statement 
(EIS) or an Environmental Assessment (EA) is required within 45 days of 
receipt of the Presidential Permit application and of the environmental 
information submitted pursuant to 10 CFR 205.322 (c) and (d). ERA will 
use these and other sources of information as the basis for making the 
environmental determination.
    (2) If an EIS is determined to be necessary, ERA will notify the 
applicant of the fee for completing the EIS within 90 days after the 
submission of the application and environmental information. The fee 
shall be based on the expenses estimated to be incurred by DOE in 
contracting to prepare the EIS (i.e., the estimated fee charges to ERA 
by the contractor). DOE employee salaries and other fixed costs, as set 
forth in OMB Circular A-25, shall not be included in the applicant's 
fee. Fee payment shall be by check, draft, or money order payable to the 
Treasurer of the United States, and shall be submitted to ERA. Upon 
submission of fifty percent of the environmental fee, ERA will provide 
to the applicant a tentative schedule for completion of the EIS.
    (3) If an EA is determined to be necessary, the applicant may be 
permitted to prepare an environmental assessment pursuant to 40 CFR 
1506.5(b) for review and adoption by ERA, or the applicant may choose to 
have ERA prepare the EA pursuant to the fee procedures set forth above.
    (4) The NEPA process must be completed and approved before ERA will 
issue a Presidential Permit.
    (b) Financial Hardship. Whenever ERA determines that a project is no 
longer economically feasible, or that a substantial financial burden 
would be imposed by the applicant bearing all of the costs of the NEPA 
studies, ERA may waive the requirement set forth in paragraphs (a) and 
(b) of this section and perform the necessary environmental review, 
completely or in part, with its own resources.
    (c) Discussions Prior to Filing. Prior to the preparation of any 
Presidential Permit application and environmental

[[Page 42]]

assessment, a potential applicant is encouraged to contact ERA and each 
affected State public utility regulatory agency to discuss the scope of 
the proposed project and the potential for joint State and Federal 
environmental review.
    (d) Fee Payment. The applicant shall make fee payment for completing 
the EIS to ERA in the following manner:
    (1) 50 percent of the total amount due to be paid within 30 days of 
receipt of the fee information from DOE;
    (2) 25 percent to be paid upon publication of the draft EIS; and
    (3) 25 percent to be paid upon publication of the final EIS.


If costs are less than the amount collected, ERA will refund to the 
applicant the excess fee collected. If costs exceed the initial fee, ERA 
will fund the balance, unless the increase in costs is caused by actions 
or inactions of the applicant, such as the applicant's failure to submit 
necessary environmental information in a timely fashion. If the 
application is withdrawn at any stage prior to issuance of the final 
EIS, the fee will be adjusted to reflect the costs actually incurred; 
payment shall be made by the applicant within 30 days of above 
referenced events.
    (e) Federal Exemption. Upon a showing by the applicant that it is 
engaged in the transaction of official business of the Federal 
Government in filing an application pursuant to 10 CFR 205.320 et seq., 
it will be exempt from the requirements of this section.

[48 FR 33820, July 25, 1983]

           Report of Major Electric Utility System Emergencies

    Authority: Department of Energy Organization Act, Pub. L. 95-91 (42 
U.S.C. 7101); Federal Power Act, Pub. L. 66-280 (16 U.S.C. 791 et seq.)

    Source: Sections 205.350 through 205.353 appear at 51 FR 39745, Oct. 
31, 1986, unless otherwise noted.



Sec.  205.350  General purpose.

    The purpose of this rule is to establish a procedure for the Office 
of International Affairs and Energy Emergencies (IE) to obtain current 
information regarding emergency situations on the electric energy supply 
systems in the United States so that appropriate Federal emergency 
response measures can be implemented in a timely and effective manner. 
The data also may be utilized in developing legislative recommendations 
and reports to the Congress.

(Approved by the Office of Management and Budget under control number 
1901-0288)



Sec.  205.351  Reporting requirements.

    For the purpose of this section, a report or a part of a report may 
be made jointly by two or more entities. Every electric utility or other 
entity engaged in the generation, transmission or distribution of 
electric energy for delivery and/or sale to the public shall report 
promptly, through the DOE Emergency Operations Center, by telephone, the 
occurrence of any event such as described in paragraphs (a) through (d) 
of this section. These reporting procedures are mandatory. Entities that 
fail to comply within 24 hours will be contacted and reminded of their 
reporting obligation.
    (a) Loss of Firm System Loads, caused by:
    (1) Any load shedding actions resulting in the reduction of over 100 
megawatts (MW) of firm customer load for reasons of maintaining the 
continuity of the bulk electric power supply system.
    (2) Equipment failures/system operational actions attributable to 
the loss of firm system loads for a period in excess of 15 minutes, as 
described below:
    (i) Reports from entities with a previous year recorded peak load of 
over 3000 MW are required for all such losses of firm loads which total 
over 300 MW.
    (ii) Reports from all other entities are required for all such 
losses of firm loads which total over 200 MW or 50 percent of the system 
load being supplied immediately prior to the incident, whichever is 
less.
    (3) Other events or occurrences which result in a continuous 
interruption for 3 hours or longer to over 50,000 customers, or more 
than 50 percent of the total customers being served immediately prior to 
the interruption, whichever is less.
    (b) Voltage Reductions or Public Appeals:

[[Page 43]]

    (1) Reports are required for any anticipated or actual system 
voltage reductions of 3 percent or greater for purposes of maintaining 
the continuity of the bulk electric power supply system.
    (2) Reports are required for any issuance of a public appeal to 
reduce the use of electricity for purposes of maintaining the continuity 
of the bulk electric power system.
    (c) Vulnerabilities that could Impact System Reliability:
    (1) Reports are required for any actual or suspected act(s) of 
physical sabotage (not vandalism) or terrorism directed at an electric 
power supply system, local or regional, in an attempt to either:
    (i) Disrupt or degrade the service reliability of the local or 
regional bulk electric power supply system, or
    (ii) Disrupt, degrade, or deny bulk electric power service to:
    (A) A specific facility (industrial, military, governmental, 
private), or
    (B) A specific service (transportation, communications), or
    (C) A specific locality (town, city, county).
    (2) Reports are required for any abnormal emergency system operating 
condition(s) or other event(s) which in the judgment of the reporting 
entity could or would constitute a hazard to maintaining the continuity 
of the bulk electric power supply system. Examples will be provided in 
the DOE pamphlet on reporting procedures.
    (d) Fuel Supply Emergencies:
    (1) Reports are required for any anticipated or existing fuel supply 
emergency situation which would threaten the continuity of the bulk 
electric power supply system, such as:
    (i) Fuel stocks or hydro project water storage levels are at 50 
percent (or less) of normal for that time of the year, and a continued 
downward trend is projected.
    (ii) Unscheduled emergency generation is dispatched causing an 
abnormal use of a particular fuel type, such that the future supply or 
stocks of that fuel could reach a level which threatens the reliability 
or adequacy of electric service.

(Approved by the Office of Management and Budget under control number 
1901-0288)



Sec.  205.352  Information to be reported.

    The emergency situation data shall be supplied to the DOE Emergency 
Operations Center in accordance with the current DOE pamphlet on 
reporting procedures. The initial report shall include the utility name; 
the area affected; the time of occurrence of the initiating event; the 
duration or an estimate of the likely duration; an estimate of the 
number of customers and amount of load involved; and whether any known 
critical services such as hospitals, military installations, pumping 
stations or air traffic control systems, were or are interrupted. To the 
extent known or reasonably suspected, the report shall include a 
description of the events initiating the disturbance. The DOE may 
require further clarification during or after restoration of service.

(Approved by the Office of Management and Budget under control number 
1901-0288)



Sec.  205.353  Special investigation and reports.

    If directed by the Director, Office of Energy Emergency Operations 
in writing and noticed in the Federal Register, a utility or other 
subject entity experiencing a condition described in Sec.  205.351 above 
shall submit a full report of the technical circumstances surrounding a 
specific power system disturbance, including the restoration procedures 
utilized. The report shall be filed at such times as may be directed by 
the Director, Office of Energy Emergency Operations.

(Approved by the Office of Management and Budget under control number 
1901-0288)

  Emergency Interconnection of Electric Facilities and the Transfer of 
    Electricity To Alleviate an Emergency Shortage of Electric Power

    Authority: Department of Energy Organization Act, Pub. L. 95-91, 91 
Stat. 565 (42 U.S.C. 7101). Federal Power Act, Pub. L. 66-280, 41 Stat. 
1063 (16 U.S.C. 791(a))

    Source: Sections 205.370 through 205.379 appear at 46 FR 39987, Aug. 
6, 1981, unless otherwise noted.

[[Page 44]]



Sec.  205.370  Applicability.

    Sections 202(c) and 202(d) of the Federal Power Act are applicable 
to any ``entity'' which owns or operates electric power generation, 
transmission or distribution facilities. An ``entity'' is a private or 
public corporation (utility), a governmental agency, a municipality, a 
cooperative or a lawful association of the foregoing. Under this 
section, the DOE has the authority to order the temporary connection of 
facilities, or the generation or delivery of electricity, which it deems 
necessary to alleviate an emergency. Such orders shall be effective for 
the time specified and will be subject to the terms and conditions the 
DOE specifies. The DOE retains the right to cancel, modify or otherwise 
change any order, with or without notice, hearing, or report. Requests 
for action under these regulations will be accepted from any ``entity,'' 
State Public Utility Commission, State Energy Agency, or State Governor. 
Actions under these regulations also may be initiated by the DOE on its 
own motion. Orders under this authority may be made effective without 
prior notice.



Sec.  205.371  Definition of emergency.

    ``Emergency,'' as used herein, is defined as an unexpected 
inadequate supply of electric energy which may result from the 
unexpected outage or breakdown of facilities for the generation, 
transmission or distribution of electric power. Such events may be the 
result of weather conditions, acts of God, or unforeseen occurrences not 
reasonably within the power of the affected ``entity'' to prevent. An 
emergency also can result from a sudden increase in customer demand, an 
inability to obtain adequate amounts of the necessary fuels to generate 
electricity, or a regulatory action which prohibits the use of certain 
electric power supply facilities. Actions under this authority are 
envisioned as meeting a specific inadequate power supply situation. 
Extended periods of insufficient power supply as a result of inadequate 
planning or the failure to construct necessary facilities can result in 
an emergency as contemplated in these regulations. In such cases, the 
impacted ``entity'' will be expected to make firm arrangements to 
resolve the problem until new facilities become available, so that a 
continuing emergency order is not needed. Situations where a shortage of 
electric energy is projected due solely to the failure of parties to 
agree to terms, conditions or other economic factors relating to 
service, generally will not be considered as emergencies unless the 
inability to supply electric service is imminent. Where an electricity 
outage or service inadequacy qualifies for a section 202(c) order, 
contractual difficulties alone will not be sufficient to preclude the 
issuance of an emergency order.



Sec.  205.372  Filing procedures; number of copies.

    An original and two conformed copies of the applications and reports 
required under Sec. Sec.  205.370 through 205.379 shall be filed with 
the Division of Power Supply and Reliability, Department of Energy. 
Copies of all documents also shall be served on:
    (a) The Federal Energy Regulatory Commission;
    (b) Any State Regulatory Agency having responsibility for service 
standards, or rates of the ``entities'' that are affected by the 
requested order;
    (c) Each ``entity'' suggested as a potential source for the 
requested emergency assistance;
    (d) Any ``entity'' that may be a potential supplier of transmission 
services;
    (e) All other ``entities'' not covered under paragraphs (c) and (d) 
of this section which may be directly affected by the requested order; 
and
    (f) The appropriate Regional Reliability Council.



Sec.  205.373  Application procedures.

    Every application for an emergency order shall set forth the 
following information as required. This information shall be considered 
by the DOE in determining that an emergency exists and in deciding to 
issue an order pursuant to sections 202(c) and 202(d) of the Federal 
Power Act.
    (a) The exact legal name of the applicant and of all other 
``entities'' named in the application.

[[Page 45]]

    (b) The name, title, post office address, and telephone number of 
the person to whom correspondence in regard to the application shall be 
addressed.
    (c) The political subdivision in which each ``entity'' named in the 
application operates, together with a brief description of the area 
served and the business conducted in each location.
    (d) Each application for a section 202(c) order shall include the 
following baseline data:
    (1) Daily peak load and energy requirements for each of the past 30 
days and projections for each day of the expected duration of the 
emergency;
    (2) All capacity and energy receipts or deliveries to other electric 
utilities for each of the past 30 days, indicating the classification 
for each transaction;
    (3) The status of all interruptible customers for each of the past 
30 days and the anticipated status of these customers for each day of 
the expected duration of the emergency, assuming both the granting and 
the denial of the relief requested herein;
    (4) All scheduled capacity and energy receipts or deliveries to 
other electric utilities for each day of the expected duration of the 
emergency.
    (e) A description of the situation and a discussion of why this is 
an emergency, including any necessary background information. This 
should include any contingency plan of the applicant and the current 
level of implementation.
    (f) A showing that adequate electric service to firm customers 
cannot be maintained without additional power transfers.
    (g) A description of any conservation or load reduction actions that 
have been implemented. A discussion of the achieved or expected results 
or these actions should be included.
    (h) A description of efforts made to obtain additional power through 
voluntary means and the results of such efforts; and a showing that the 
potential sources of power and/or transmission services designated 
pursuant to paragraphs (i) through (k) of this section informed that the 
applicant believed that an emergency existed within the meaning of Sec.  
205.371.
    (i) A listing of proposed sources and amounts of power necessary 
from each source to alleviate the emergency and a listing of any other 
``entities'' that may be directly affected by the requested order.
    (j) Specific proposals to compensate the supplying ``entities'' for 
the emergency services requested and to compensate any transmitting 
``entities'' for services necessary to deliver such power.
    (k) A showing that, to the best of the applicant's knowledge, the 
requested relief will not unreasonably impair the reliability of any 
``entity'' directly affected by the requested order to render adequate 
service to its customers.
    (l) Description of the facilities to be used to transfer the 
requested emergency service to the applicant's system.
    (1) If a temporary interconnection under the provisions of section 
202(c) is proposed independently, the following additional information 
shall be supplied for each such interconnection:
    (i) Proposed location;
    (ii) Required thermal capacity or power transfer capability of the 
interconnection;
    (iii) Type of emergency services requested, including anticipated 
duration;
    (iv) An electrical one line diagram;
    (v) A description of all necessary materials and equipment; and
    (vi) The projected length of time necessary to complete the 
interconnection.
    (2) If the requested emergency assistance is to be supplied over 
existing facilities, the following information shall be supplied for 
each existing interconnection:
    (i) Location;
    (ii) Thermal capacity of power transfer capability of 
interconnection facilities; and
    (iii) Type and duration of emergency services requested.
    (m) A general or key map on a scale not greater than 100 kilometers 
to the centimeter showing, in separate colors, the territory serviced by 
each ``entity'' named in the application; the location of the facilities 
to be used for the generation and transmission of the requested 
emergency service; and all connection points between systems.

[[Page 46]]

    (n) An estimate of the construction costs of any proposed temporary 
facilities and a statement estimating the expected operation and 
maintenance costs on an annualized basis. (Not required on section 
202(d) applications.)
    (o) Applicants may be required to furnish such supplemental 
information as the DOE may deem pertinent.



Sec.  205.374  Responses from ``entities'' designated in the application.

    Each ``entity'' designated as a potential source of emergency 
assistance or as a potential supplier of transmission services and which 
has received a copy of the application under Sec.  205.373, shall have 
three (3) calendar days from the time of receipt of the application to 
file the information designated below with the DOE. The DOE will grant 
extensions of the filing period when appropriate. The designated 
``entities'' shall provide an analysis of the impact the requested 
action would have on its system reliability and its ability to supply 
its own interruptible and firm customers. The effects of the requested 
action on the ability to serve firm loads shall be clearly distinguished 
from the ability to serve contractually interruptible loads. The 
designated ``entity'' also may provide other information relevant to the 
requested action, which is not included in the reliability analysis. 
Copies of any response shall be provided to the applicant, the Federal 
Energy Regulatory Commission, any State Regulatory Agency having 
responsibility for service standards or rates of any ``entity'' that may 
be directly involved in the proposed action, and the appropriate 
Regional Electric Reliability Council. Pursuant to section 202(c) of the 
Federal Power Act, DOE may issue an emergency order even though a 
designated ``entity'' has failed to file a timely response.



Sec.  205.375  Guidelines defining inadequate fuel or energy supply.

    An inadequate utility system fuel inventory or energy supply is a 
matter of managerial and engineering judgment based on such factors as 
fuels in stock, fuels en route, transportation time, and constraints on 
available storage facilities. A system may be considered to have an 
inadequate fuel or energy supply capability when, combined with other 
conditions, the projected energy deficiency upon the applicant's system 
without emergency action by the DOE, will equal or exceed 10 percent of 
the applicant's then normal daily net energy for load, or will cause the 
applicant to be unable to meet its normal peak load requirements based 
upon use of all of its otherwise available resources so that it is 
unable to supply adequate electric service to its ultimate customers. 
The following conditions will be considered in determining that a system 
has inadequate fuel or energy supply capability:
    (1) System coal stocks are reduced to 30 days (or less) of normal 
burn days and a continued downward trend in stock is projected;
    (2) System residual oil stocks are reduced to 15 days (or less) of 
normal burn days and a continued downward trend in stocks is projected;
    (3) System distillate oil stocks which cannot be replaced by 
alternate fuels are reduced to 15 days (or less) of normal burn days and 
a continued downward trend in stocks is projected;
    (4) System natural gas deliveries which cannot be replaced by 
alternate fuels have been or will be reduced 20 percent below normal 
requirements and no improvement in natural gas deliveries is projected 
within 30 days;
    (5) Delays in nuclear fuel deliveries will extend a scheduled 
refueling shutdown by more than 30 days; and
    (6) Water supplies required for power generation have been reduced 
to the level where the future adequacy of the power supply may be 
endangered and no near term improvement in water supplies is projected.


The use of the prescribed criteria does not preclude an applicant from 
claiming the existence of an emergency when its stocks of fuel or water 
exceed the amounts and time frames specified above.



Sec.  205.376  Rates and charges.

    The applicant and the generating or transmitting systems from which 
emergency service is requested are encouraged to utilize the rates and 
charges contained in approved existing rate schedules or to negotiate 
mutually satisfactory rates for the proposed

[[Page 47]]

transactions. In the event that the DOE determines that an emergency 
exists under section 202(c), and the ``entities'' are unable to agree on 
the rates to be charged, the DOE shall prescribe the conditions of 
service and refer the rate issues to the Federal Energy Regulatory 
Commission for determination by that agency in accordance with its 
standards and procedures.



Sec.  205.377  Reports.

    In addition to the information specified below, the DOE may require 
additional reports as it deems necessary.
    (a) Where the DOE has authorized the temporary connection of 
transmission facilities, all ``entities'' whose transmission facilities 
are thus temporarily interconnected shall report the following 
information to the DOE within 15 days following completion of the 
interconnection:
    (1) The date the temporary interconnection was completed;
    (2) The location of the interconnection;
    (3) A description of the interconnection; and
    (4) A one-line electric diagram of the interconnection.
    (b) Where the DOE orders the transfer of power, the ``entity'' 
receiving such service shall report the following information to the DOE 
by the 10th of each month for the preceding month's activity for as long 
as such order shall remain in effect:
    (1) Amounts of capacity and/or energy received each day;
    (2) The name of the supplier;
    (3) The name of any ``entity'' supplying transmission services; and
    (4) Preliminary estimates of the associated costs.
    (c) Where the DOE has approved the installation of permanent 
facilities that will be used only during emergencies, any use of such 
facilities shall be reported to the DOE within 24 hours. Details of such 
usage shall be furnished as deemed appropriate by the DOE after such 
notification.
    (d) Any substantial change in the information provided under Sec.  
205.373 shall be promptly reported to the DOE.

(Approved by the Office of Management and Budget under Control No. 1904-
0066)

[46 FR 39989, Aug. 6, 1981, as amended at 46 FR 63209, Dec. 31, 1981]



Sec.  205.378  Disconnection of temporary facilities.

    Upon the termination of any emergency for the mitigation of which 
the DOE ordered the construction of temporary facilities, such 
facilities shall be disconnected and any temporary construction removed 
or otherwise disposed of, unless application is made as provided in 
Sec.  205.379 for permanent connection for emergency use. This 
disconnection and removal of temporary facilities shall be accomplished 
within 30 days of the termination of the emergency unless an extension 
is granted by the DOE. The DOE shall be notified promptly when such 
removal of facilities is completed.



Sec.  205.379  Application for approval of the installation 
of permanent facilities for emergency use only.

    Application for DOE approval of a permanent connection for emergency 
use only shall conform with the requirements in Sec.  205.373. However, 
the baseline data specified in Sec.  205.373(d) need not be included in 
an application made under this section. In addition, the application 
shall state in full the reasons why such permanent connection for 
emergency use is in the public interest.

   Internal Procedures for Issuance of a Grid Security Emergency Order

    Source: Sections 205.380 through 205.391 were added at 83 FR 1180, 
Jan. 10, 2018, unless otherwise noted.



Sec.  205.380  Definitions.

    As used in this subpart:
    Bulk-power system means the same as the definition of such term in 
paragraph (1) of section 215(a) of the Federal Power Act.
    Critical electric infrastructure means the same as the definition of 
such term in paragraph (2) of section 215A(a) of the Federal Power Act.

[[Page 48]]

    Defense critical electric infrastructure means the same as the 
definition of such term in paragraph (4) of section 215A(a) of the 
Federal Power Act.
    Department means the United States Department of Energy.
    Electric Reliability Organization means the same as the definition 
of such term in paragraph (2) of section 215(a) of the Federal Power 
Act.
    Electricity Information Sharing and Analysis Center (E-ISAC) means 
the organization, operated on behalf of the electricity subsector by the 
Electric Reliability Organization, that gathers and analyzes security 
information, coordinates incident management, and communicates 
mitigation strategies with stakeholders within the electricity 
subsector, across interdependent sectors, and with government partners. 
The E-ISAC, in collaboration with the Department of Energy and the 
Electricity Subsector Coordinating Council, serves as the primary 
security communications channel for the electricity subsector and 
enhances the subsector's ability to prepare for and respond to cyber and 
physical threats, vulnerabilities, and incidents.
    Electricity subsector means both commercial and industrial actors 
who generate and deliver electric power.
    Electricity Subsector Coordinating Council (ESCC) means the 
organization that aims to foster and facilitate the coordination of 
sector-wide, policy-related activities and initiatives designed to 
improve the reliability and resilience of the electricity subsector, 
including physical and cyber security infrastructure.
    Electromagnetic pulse means the same as the definition of such term 
in paragraph (5) of section 215A(a) of the Federal Power Act.
    Emergency & Incident Management Council (EIMC) means the 
organization, internal to the Department of Energy and chaired by the 
Deputy Secretary of Energy, designed to increase cooperation and 
coordination across the Department to prepare for, mitigate, respond to, 
and recover from emergencies.
    Emergency measures means measures necessary in the judgment of the 
Secretary to protect or restore the reliability of critical electric 
infrastructure or of defense critical electric infrastructure during a 
grid security emergency as defined in section 215A(a) of the Federal 
Power Act.
    Emergency order means an order for emergency measures under section 
215A(b) of the Federal Power Act.
    Geomagnetic storm means a temporary disturbance of the Earth's 
magnetic field resulting from solar activity.
    Grid security emergency means the same as the definition of such 
term in paragraph (7) of section 215A(a) of the Federal Power Act. A 
grid security emergency is ``declared'' once the President of the United 
States has issued and provided to the Secretary a written directive or 
determination identifying the emergency.
    Regional entity means an entity having enforcement authority under 
section 215(e)(4) of the Federal Power Act, 16 U.S.C. 824o(e)(4).
    Secretary means the Secretary of Energy.



Sec.  205.381  Applicability of emergency orders.

    An order for emergency measures under section 215A(b) of the Federal 
Power Act (emergency order) may apply to the Electric Reliability 
Organization, a regional entity or entities, or any owner, user, or 
operator of critical electric infrastructure or of defense critical 
electric infrastructure within the United States. Emergency measures may 
be issued if deemed necessary in the judgment of the Secretary to 
protect or restore the reliability of critical electric infrastructure 
or of defense critical electric infrastructure during a presidentially-
declared grid security emergency.



Sec.  205.382  Issuing an emergency order.

    (a) The Secretary will use the procedures outlined in this section 
in issuing emergency orders, unless the Secretary determines that 
alternative procedures are more appropriate for the unique circumstances 
presented by the emergency. In all instances, the Secretary has final 
authority on the procedures to be used in issuing an emergency order.
    (b) Upon the Department's receipt of the President's written 
directive or determination identifying a grid security

[[Page 49]]

emergency, the Emergency & Incident Management Council (EIMC) will 
convene at least one emergency meeting. Resulting from this meeting, the 
EIMC's responsibilities will include, but not be limited to:
    (1) Assigning consultation and situational awareness tasks;
    (2) Creating ad hoc task groups;
    (3) Assigning recommendation development tasks to the ad hoc task 
groups it has created; and
    (4) Presenting its recommendations to the Secretary as expeditiously 
as possible and practicable.
    (c) Following receipt of the EIMC's recommendations, unless the 
Secretary has determined alternative procedures are appropriate, the 
Secretary will issue an emergency order as quickly as the Secretary 
determines that the situation requires.



Sec.  205.383  Consultation.

    (a) To obtain information related to a particular grid security 
emergency and recommended emergency measures from those government 
entities, electric reliability organizations, and private sector 
companies, and their respective associations where applicable, affected 
by the emergency, the office that is delegated the authority by the 
Secretary will conduct consultation related to each emergency order. 
Before an emergency order is put into effect and, to the extent 
practicable in light of the nature of the grid security emergency and 
the urgency of the need for action, efforts will be made to consult with 
at least the following, as appropriate:
    (1) The Electricity Subsector Coordinating Council;
    (2) The Electricity Information Sharing and Analysis Center;
    (3) The Electric Reliability Organization;
    (4) Regional entities; and
    (5) Owners, users, or operators of critical electric infrastructure 
or of defense critical electric infrastructure within the United States; 
and
    (6) At least the following government entities:
    (i) Authorities in the government of Canada;
    (ii) Authorities in the government of Mexico;
    (iii) Appropriate Federal and State agencies including, but not 
limited to, those supporting Emergency Support Function No. 12;
    (iv) The Federal Energy Regulatory Commission; and
    (v) The Nuclear Regulatory Commission.
    (b) The Department recognizes the expertise of electric grid owners 
and operators and other consulted entities in seeking to ensure that 
emergency orders result in the safe and effective operation of the 
electric grid, align with additional priorities including evidence 
collection, and comply with existing regulatory requirements, where 
required. The Department will endeavor, to the extent practicable, to 
conduct consultation in alignment with the existing Emergency Support 
Function No. 12 structure and established emergency management processes 
under the National Response Framework.

[83 FR 1180, Jan. 10, 2018, as amended at 85 FR 3232, Jan. 21, 2020]



Sec.  205.384  Communication of orders.

    The Department will communicate the contents of an emergency order 
to the entities subject to the order, utilizing the most expedient form 
or forms of communication under the circumstances. The Department will 
attempt to conduct communication of emergency orders in alignment with 
the existing Emergency Support Function No. 12 structure and established 
emergency management procedures under the National Response Framework by 
relying on existing coordinating bodies, such as the ESCC and the E-
ISAC, and, recognizing the existence of established crisis communication 
procedures, any other form or forms of communication most expedient 
under the particular circumstances. To the extent practicable under the 
particular circumstances, efforts will be made to declassify eligible 
information to ensure maximum distribution.



Sec.  205.385  Clarification or reconsideration.

    (a) Any entity subject to an emergency order may request 
clarification or reconsideration of the emergency

[[Page 50]]

order. All such requests must be submitted in writing to the Secretary. 
The Department will post all such requests on the DOE website consistent 
with 10 CFR part 1004. To the extent the ordered entity believes the 
grid security emergency order lacks necessary clarity for 
implementation, or conflicts with the technically feasible operations of 
the electric grid or existing regulatory requirements, the ordered 
entity should seek immediate clarification from the Department.
    (b) Upon receipt of a request for clarification or reconsideration, 
the Secretary may, in his or her sole discretion, order a stay of the 
emergency order for which such clarification or rehearing is sought. The 
Secretary will act as soon as practicable on each request, with or 
without further proceedings. Such responsive actions may include 
granting or denying the request or abrogating or modifying the order, in 
whole or in part.



Sec.  205.386  Temporary access to classified and sensitive information.

    (a) To the extent practicable, and consistent with obligations to 
protect classified and sensitive information, the Secretary may provide 
temporary access to classified and sensitive information, at the level 
necessary in light of the conditions of the incident, related to a grid 
security emergency for which emergency measures are issued to key 
personnel of any entity subject to such emergency measures, to the 
extent the Secretary deems necessary under the circumstances. The 
purpose of this access, as defined under section 215A(b)(7) of the 
Federal Power Act, is to enable optimum communication between the entity 
and the Secretary and other appropriate Federal agencies regarding the 
grid security emergency.
    (b) CEII will be shared, where deemed necessary by the Secretary, in 
accordance with 10 CFR part 1004.



Sec.  205.387  Tracking compliance.

    Beginning at the time the Secretary issues an emergency order, the 
Department may, at the discretion of the Secretary, require the entity 
or entities subject to an emergency order to provide a detailed account 
of actions taken to comply with the terms of the emergency order.



Sec.  205.388  Enforcement.

    In accordance with available enforcement authorities, the Secretary 
may take or seek enforcement action against any entity subject to an 
emergency order who fails to comply with the terms of that emergency 
order.



Sec.  205.389  Rehearing and judicial review.

    The procedures of Part III of the Federal Power Act apply to motions 
for rehearing of an emergency order. A request for clarification or 
reconsideration filed under Sec.  205.385 of this subpart, if the 
filling entity so designates, may serve as a request for rehearing 
pursuant to section 313(a) of the Federal Power Act.



Sec.  205.390  Liability exemptions.

    (a) To the extent any action or omission taken by an entity that is 
necessary to comply with an emergency order issued pursuant to section 
215A(b)(1) of the Federal Power Act and this Part, including any action 
or omission taken to voluntarily comply with such order, results in 
noncompliance with, or causes such entity not to comply with any rule, 
order, regulation, or provision of or under the Federal Power Act, 
including any reliability standard approved by the Federal Energy 
Regulatory Commission pursuant to section 215 of the Federal Power Act, 
the Department will not consider such action or omission to be a 
violation of such rule, order, regulation, or provision.
    (b) The Department will treat an action or omission by an owner, 
operator, or user of critical electric infrastructure or of defense 
critical electric infrastructure to comply with an emergency order 
issued pursuant to section 215A(b)(1) of the Federal Power Act as the 
functional equivalent of an action or omission taken to comply with an 
order issued under section 202(c) of the Federal Power Act for purposes 
of section 202(c).
    (c) The liability exemptions specified in paragraphs (a) and (b) of 
this section do not apply to an entity that, in the course of complying 
with an emergency

[[Page 51]]

order by taking an action or omission for which the entity would 
otherwise be liable, takes such action or omission in a grossly 
negligent manner.



Sec.  205.391  Termination of an emergency order.

    (a) An emergency order will expire no later than 15 days after its 
issuance. The Secretary may reissue an emergency order for subsequent 
periods, not to exceed 15 days for each such period, provided that the 
President, for each such period, issues and provides to the Secretary a 
written directive or determination that the grid security emergency for 
which the Secretary intends to reissue an emergency order continues to 
exist or that the emergency measures continue to be required.
    (b) The Secretary may rescind an emergency order after finding that 
the grid security emergency for which that order was issued has ended, 
and that protective or mitigation measures required by that order have 
been sufficiently taken.
    (c) An entity or entities subject to an emergency order issued under 
this subpart may, at any time, request termination of the emergency 
order by demonstrating, in a petition to the Secretary, that the 
emergency no longer exists and that protective or mitigation measures 
required by the order have been sufficiently taken.



PART 207_COLLECTION OF INFORMATION--Table of Contents



    Subpart A_Collection of Information Under the Energy Supply and 
                 Environmental Coordination Act of 1974

Sec.
207.1 Purpose.
207.2 Definitions.
207.3 Method of collecting energy information under ESECA.
207.4 Confidentiality of energy information.
207.5 Violations.
207.6 Notice of probable violation and remedial order.
207.7 Sanctions.
207.8 Judicial actions.
207.9 Exceptions, exemptions, interpretations, rulings and rulemaking.

    Authority: 15 U.S.C. 787 et seq.; 15 U.S.C. 791 et seq.; E.O. 11790, 
39 FR 23185; 28 U.S.C. 2461 note.

    Source: 40 FR 18409, Apr. 28, 1975, unless otherwise noted.



    Subpart A_Collection of Information Under the Energy Supply and 
                 Environmental Coordination Act of 1974



Sec.  207.1  Purpose.

    The purpose of this subpart is to set forth the manner in which 
energy information which the Administrator is authorized to obtain by 
sections 11 (a) and (b) of ESECA will be collected.



Sec.  207.2  Definitions.

    As used in this subpart:
    Administrator means the Federal Energy Administrator of his 
delegate.
    Energy information includes all information in whatever form on (1) 
fuel reserves, exploration, extraction, and energy resources (including 
petrochemical feedstocks) wherever located; (2) production, 
distribution, and consumption of energy and fuels, wherever carried on; 
and (3) matters relating to energy and fuels such as corporate structure 
and proprietary relationships, costs, prices, capital investment, and 
assets, and other matters directly related thereto, wherever they exist.
    ESECA means the Energy Supply and Environmental Coordination Act of 
1974 (Pub. L. 93-319).
    EPAA means the Emergency Petroleum Allocation Act of 1973 (Pub. L. 
93-159).
    DOE means the Department of Energy.
    Person means any natural person, corporation, partnership, 
association, consortium, or any entity organized for a common business 
purpose, wherever situated, domiciled, or doing business, who directly 
or through other persons subject to their control does business in any 
part of the United States.
    United States, when used in the geographical sense, means the 
States, the District of Columbia, Puerto Rico, and the territories and 
possessions of the United States.



Sec.  207.3  Method of collecting energy information under ESECA.

    (a) Whenever the Administrator determines that:

[[Page 52]]

    (1) Certain energy information is necessary to assist in the 
formulation of energy policy or to carry out the purposes of the ESECA 
of the EPAA; and
    (2) Such energy information is not available to DOE under the 
authority of statutes other than ESECA or that such energy information 
should, as a matter of discretion, be collected under the authority of 
ESECA;


He shall require reports of such information to be submitted to DOE at 
least every ninety calendar days.
    (b) The Administrator may require such reports of any person who is 
engaged in the production, processing, refining, transportation by 
pipeline, or distribution (at other than the retail level) of energy 
resources.
    (c) The Administrator may require such reports by rule, order, 
questionnaire, or such other means as he determines appropriate.
    (d) Whenever reports of energy information are requested under this 
subpart, the rule, order, questionnaire, or other means requesting such 
reports shall contain (or be accompanied by) a recital that such reports 
are being requested under the authority of ESECA.
    (e) In addition to requiring reports, the Administrator may, at his 
discretion, in order to obtain energy information under the authority of 
ESECA:
    (1) Sign and issue subpoenas in accordance with the provisions of 
Sec.  205.8 of this chapter for the attendance and testimony of 
witnesses and the production of books, records, papers, and other 
documents;
    (2) Require any person, by rule or order, to submit answers in 
writing to interrogatories, requests for reports or for other 
information, with such answers or other submissions made within such 
reasonable period as is specified in the rule or order, and under oath; 
and
    (3) Administer oaths.


Any such subpoena or rule or order shall contain (or be accompanied by) 
a recital that energy information is requested under the authority of 
ESECA.
    (f) For the purpose of verifying the accuracy of any energy 
information requested, acquired, or collected by the DOE, the 
Administrator, or any officer or employee duly designated by him, upon 
presenting appropriate credentials and a written notice from the 
Administrator to the owner, operator, or agent in charge, may--
    (1) Enter, at reasonable times, any business premise of facility; 
and
    (2) Inspect, at reasonable times and in a reasonable manner, any 
such premise or facility, inventory and sample any stock of energy 
resources therein, and examine and copy books, records, papers, or other 
documents, relating to any such energy information.


Such written notice shall reasonably describe the premise or facility to 
be inspected, the stock to be inventoried or sampled, or the books, 
records, papers or other documents to be examined or copied.



Sec.  207.4  Confidentiality of energy information.

    (a) Information obtained by the DOE under authority of ESECA shall 
be available to the public in accordance with the provisions of part 202 
of this chapter. Upon a showing satisfactory to the Administrator by any 
person that any energy information obtained under this subpart from such 
person would, if made public, divulge methods or processes entitled to 
protection as trade secrets or other proprietary information of such 
person, such information, or portion thereof, shall be deemed 
confidential in accordance with the provisions of section 1905 of title 
18, United States Code; except that such information, or part thereof, 
shall not be deemed confidential pursuant to that section for purposes 
of disclosure, upon request, to (1) any delegate of the DOE for the 
purpose of carrying out ESECA or the EPAA, (2) the Attorney General, the 
Secretary of the Interior, the Federal Trade Commission, the Federal 
Power Commission, or the General Accounting Office, when necessary to 
carry out those agencies' duties and responsibilities under ESECA and 
other statutes, and (3) the Congress, or any Committee of Congress upon 
request of the Chairman.
    (b) Whenever the Administrator requests reports of energy 
information under this subpart, he may specify (in the rule, order or 
questionnaire or other means by which he has requested

[[Page 53]]

such reports) the nature of the showing required to be made in order to 
satisfy DOE that certain energy information contained in such reports 
warrants confidential treatment in accordance with this section. He 
shall, to the maximum extent practicable, either before or after 
requesting reports, by ruling or otherwise, inform respondents providing 
energy information pursuant to this subpart of whether such information 
will be made available to the public pursuant to requests under the 
Freedom of Information Act (5 U.S.C. 552).



Sec.  207.5  Violations.

    Any practice that circumvents or contravenes or results in a 
circumvention or contravention of the requirements of any provision of 
this subpart or any order issued pursuant thereto is a violation of the 
DOE regulations stated in this subpart.



Sec.  207.6  Notice of probable violation and remedial order.

    (a) Purpose and scope. (1) This section establishes the procedures 
for determining the nature and extent of violations of this subpart and 
the procedures for issuance of a notice of probable violation, a 
remedial order or a remedial order for immediate compliance.
    (2) When the DOE discovers that there is reason to believe a 
violation of any provision of this subpart, or any order issued 
thereunder, has occurred, is continuing or is about to occur, the DOE 
may conduct proceedings to determine the nature and extent of the 
violation and may issue a remedial order thereafter. The DOE may 
commence such proceeding by serving a notice of probable violation or by 
issuing a remedial order for immediate compliance.
    (b) Notice of probable violation. (1) The DOE may begin a proceeding 
under this subpart by issuing a notice of probable violation if the DOE 
has reason to believe that a violation has occurred, is continuing, or 
is about to occur.
    (2) Within 10 days of the service of a notice of probable violation, 
the person upon whom the notice is served may file a reply with the DOE 
office that issued the notice of probable violation at the address 
provided in Sec.  205.12 of this chapter. The DOE may extend the 10-day 
period for good cause shown.
    (3) The reply shall be in writing and signed by the person filing 
it. The reply shall contain a full and complete statement of all 
relevant facts pertaining to the act or transaction that is the subject 
of the notice of probable violation. Such facts shall include a complete 
statement of the business or other reasons that justify the act or 
transaction, it appropriate; a detailed description of the act or 
transaction; and a full discussion of the pertinent provisions and 
relevant facts reflected in any documents submitted with the reply. 
Copies of all relevant documents shall be submitted with the reply.
    (4) The reply shall include a discussion of all relevant 
authorities, including, but not limited to, DOE rulings, regulations, 
interpretations, and decisions on appeals and exceptions relied upon to 
support the particular position taken.
    (5) The reply should indicate whether the person requests or intends 
to request a conference regarding the notice. Any request not made at 
the time of the reply shall be made as soon thereafter as possible to 
insure that the conference is held when it will be most beneficial. A 
request for a conference must conform to the requirements of subpart M 
of part 205 of this chapter.
    (6) If a person has not filed a reply with the DOE within the 10-day 
period provided, and the DOE has not extended the 10-day period, the 
person shall be deemed to have conceded the accuracy of the factual 
allegations and legal conclusions stated in the notice of probable 
violation.
    (7) If the DOE finds, after the 10-day period provided in Sec.  
207.6(b)(2), that no violation has occurred, is continuing, or is about 
to occur, or that for any reason the issuance of a remedial order would 
not be appropriate, it shall notify, in writing, the person to whom a 
notice of probable violation has been issued that the notice is 
rescinded.
    (c) Remedial order. (1) If the DOE finds, after the 10-day period 
provided in Sec.  207.6(b)(2), that a violation has occurred, is 
continuing, or is about to occur, the DOE may issue a remedial

[[Page 54]]

order. The order shall include a written opinion setting forth the 
relevant facts and the legal basis of the remedial order.
    (2) A remedial order issued under this subpart shall be effective 
upon issuance, in accordance with its terms, until stayed, suspended, 
modified or rescinded. The DOE may stay, suspend, modify or rescind a 
remedial order on its own initiative or upon application by the person 
to whom the remedial order is issued. Such action and application shall 
be in accordance with the procedures for such proceedings provided for 
in part 205 of this chapter.
    (3) A remedial order may be referred at any time to the Department 
of Justice for appropriate action in accordance with Sec.  207.7.
    (d) Remedial order for immediate compliance. (1) Notwithstanding 
paragraphs (b) and (c) of this section, the DOE may issue a remedial 
order for immediate compliance, which shall be effective upon issuance 
and until rescinded or suspended, if it finds:
    (i) There is a strong probability that a violation has occurred, is 
continuing or is about to occur;
    (ii) Irreparable harm will occur unless the violation is remedied 
immediately; and
    (iii) The public interest requires the avoidance of such irreparable 
harm through immediate compliance and waiver of the procedures afforded 
under paragraphs (b) and (c) of this section.
    (2) A remedial order for immediate compliance shall be served 
promptly upon the person against whom such order is issued by telex or 
telegram, with a copy served by registered or certified mail. The copy 
shall contain a written statement of the relevant facts and the legal 
basis for the remedial order for immediate compliance, including the 
findings required by paragraph (d)(1) of this section.
    (3) The DOE may rescind or suspend a remedial order for immediate 
compliance if it appears that the criteria set forth in paragraph (d)(1) 
of this section are no longer satisfied. When appropriate, however, such 
a suspension or rescission may be accompanied by a notice of probable 
violation issued under paragraph (b) of this section.
    (4) If at any time in the course of a proceeding commenced by a 
notice of probable violation the criteria set forth in paragraph (d)(1) 
of this section are satisfied, the DOE may issue a remedial order for 
immediate compliance, even if the 10-day period for reply specified in 
Sec.  207.6(b)(2) of this part has not expired.
    (5) At any time after a remedial order for immediate compliance has 
become effective the DOE may refer such order to the Department of 
Justice for appropriate action in accordance with Sec.  207.7 of this 
part.
    (e) Remedies. A remedial order or a remedial order for immediate 
compliance may require the person to whom it is directed to take such 
action as the DOE determines is necessary to eliminate or to compensate 
for the effects of a violation.
    (f) Appeal. (1) No notice of probable violation issued pursuant to 
this subpart shall be deemed to be an action of which there may be an 
administrative appeal.
    (2) Any person to whom a remedial order or a remedial order for 
immediate compliance is issued under this subpart may file an appeal 
with the DOE Office of Exceptions and Appeals in accordance with the 
procedures for such appeal provided in subpart H of part 205 of this 
chapter. The appeal must be filed within 10 days of service of the order 
from which the appeal is taken.



Sec.  207.7  Sanctions.

    (a) General. (1) Penalties and sanctions shall be deemed cumulative 
and not mutually exclusive.
    (2) Each day that a violation of the provisions of this subpart or 
any order issued pursuant thereto continues shall be deemed to 
constitute a separate violation within the meaning of the provisions of 
this subpart relating to criminal fines and civil penalties.
    (b) Criminal penalties. Any person who willfully violates any 
provision of this subpart or any order issued pursuant thereto shall be 
subject to a fine of not more than $5,000 for each violation. Criminal 
violations are prosecuted by the Department of Justice upon referral by 
the DOE.

[[Page 55]]

    (c) Civil Penalties. (1) Any person who violates any provision of 
this subpart or any order issued pursuant thereto shall be subject to a 
civil penalty of not more than $10,821 for each violation. Actions for 
civil penalties are prosecuted by the Department of Justice upon 
referral by the DOE.
    (2) When the DOE considers it to be appropriate or advisable, the 
DOE may compromise and settle, and collect civil penalties.

[40 FR 18409, Apr. 28, 1975, as amended at 62 FR 46183, Sept. 2, 1997; 
74 FR 66032, Dec. 14, 2009; 81 FR 41793, June 28, 2016; 81 FR 96351, 
Dec. 30, 2016; 83 FR 1291, Jan. 11, 2018; 83 FR 66082, Dec. 26, 2018; 85 
FR 829, Jan. 8, 2020]



Sec.  207.8  Judicial actions.

    (a) Enforcement of subpoenas; contempt. Any United States district 
court within the jurisdiction of which any inquiry is carried on may, 
upon petition by the Attorney General at the request of the 
Administrator, in the case of refusal to obey a subpoena or order of the 
Administrator issued under this subpart, issue an order requiring 
compliance. Any failure to obey such an order of the court may be 
punished by the court as contempt.
    (b) Injunctions. Whenever it appears to the Administrator that any 
person has engaged, is engaged, or is about to engage in any act or 
practice constituting a violation of any regulation or order issued 
under this subpart, the Administrator may request the Attorney General 
to bring a civil action in the appropriate district court of the United 
States to enjoin such acts or practices and, upon a proper showing, a 
temporary restraining order or preliminary or permanent injunction shall 
be granted without bond. The relief sought may include a mandatory 
injunction commanding any person to comply with any provision of such 
order or regulation, the violation of which is prohibited by section 
12(a) of ESECA, as implemented by this subpart.



Sec.  207.9  Exceptions, exemptions, interpretations, rulings and rulemaking.

    Applications for exceptions, exemptions or requests for 
interpretations relating to this subpart shall be filed in accordance 
with the procedures provided in subparts D, E and F, respectively, of 
part 205 of this chapter. Rulings shall be issued in accordance with the 
procedures of subpart K of part 205 of this chapter. Rulemakings shall 
be undertaken in accordance with the procedures provided in subpart L of 
part 205 of this chapter.



PART 209_INTERNATIONAL VOLUNTARY AGREEMENTS--Table of Contents



                      Subpart A_General Provisions

Sec.
209.1 Purpose and scope.
209.2 Delegation.
209.3 Definitions.

              Subpart B_Development of Voluntary Agreements

209.21 Purpose and scope.
209.22 Initiation of meetings.
209.23 Conduct of meetings.
209.24 Maintenance of records.

   Subpart C_Carrying Out of Voluntary Agreements and Developing and 
                    Carrying Out of Plans of Actions

209.31 Purpose and scope.
209.32 Initiation of meetings.
209.33 Conduct of meetings.
209.34 Maintenance of records.

     Subpart D_Availability of Information Relating to Meetings and 
                             Communications

209.41 Availability of information relating to meetings and 
          communications.

    Authority: Federal Energy Administration Act of 1974, Pub. L. 93-
275; E.O. 11790, 39 FR 23185; Energy Policy and Conservation Act, Pub. 
L. 94-163.

    Source: 41 FR 6754, Feb. 13, 1976, unless otherwise noted.



                      Subpart A_General Provisions



Sec.  209.1  Purpose and scope.

    This part implements the provisions of the Energy Policy and 
Conservation Act (EPCA) authorizing the Administrator to prescribe 
standards and procedures by which persons engaged in the business of 
producing, transporting, refining, distributing, or storing petroleum 
may develop and carry out voluntary agreements, and plans of action 
which are required to implement the information and allocation

[[Page 56]]

provisions of the International Energy Program (IEP). The requirements 
of this part do not apply to activities other than those for which 
section 252 of EPCA makes available a defense to the antitrust laws.



Sec.  209.2  Delegation.

    To the extent otherwise permitted by law, any authority, duty, or 
responsibility vested in DOE or the Administrator under these 
regulations may be delegated to any regular full-time employee of the 
Department of Energy, and, by agreement, to any regular full-time 
employee of the Department of Justice or the Department of State.



Sec.  209.3  Definitions.

    For purposes of this part--
    (a) Administrator means the Administrator of the Department of 
Energy.
    (b) Information and allocation provisions of the International 
Energy Program means the provisions of chapter V of the Program relating 
to the Information System, and the provisions at chapters III and IV 
thereof relating to the international allocation of petroleum.
    (c) International Energy Agency (IEA) means the International Energy 
Agency established by Decision of the Council of the Organization for 
Economic Cooperation and Development, dated November 15, 1974.
    (d) International Energy Program (IEP) means the program established 
pursuant to the Agreement on an International Energy Program signed at 
Paris on November 18, 1974, including (1) the Annex entitled ``Emergency 
Reserves'', (2) any amendment to such Agreement which includes another 
nation as a Party to such Agreement, and (3) any technical or clerical 
amendment to such Agreement.
    (e) International energy supply emergency means any period (1) 
beginning on any date which the President determines allocation of 
petroleum products to nations participating in the international energy 
program is required by chapters III and IV of such program, and (2) 
ending on a date on which he determines such allocation is no longer 
required. Such a period shall not exceed 90 days, except where the 
President establishes one or more additional periods by making the 
determination under paragraph (e)(1) of this section.
    (f) Potential participant means any person engaged in the business 
of producing, transporting, refining, distributing, or storing petroleum 
products; ``participant'' means any such person who agrees to 
participate in a voluntary agreement pursuant to a request to do so by 
the Administrator.
    (g) Petroleum or petroleum products means crude oil, residual fuel 
oil, or any refined petroleum product (including any natural gas liquid 
and any natural gas liquid product).



              Subpart B_Development of Voluntary Agreements



Sec.  209.21  Purpose and scope.

    (a) This subpart establishes the standards and procedures by which 
persons engaged in the business of producing, transporting, refining, 
distributing. or storing petroleum products shall develop voluntary 
agreements which are required to implement the allocation and 
information provisions of the International Energy Program.
    (b) This subpart does not apply to meetings of bodies created by the 
International Energy Agency.



Sec.  209.22  Initiation of meetings.

    (a) Any meeting held for the purpose of developing a voluntary 
agreement involving two or more potential participants shall be 
initiated and chaired by the Administrator or other regular full-time 
Federal employee designated by him.
    (b) DOE shall provide notice of meetings held pursuant to this 
subpart, in writing, to the Attorney General, the Federal Trade 
Commission, and to the Speaker of the House and the President of the 
Senate for delivery to the appropriate committees of Congress, and to 
the public through publication in the Federal Register. Such notice 
shall identify the time, place, and agenda of the meeting, and such 
other matters as the Administrator deems appropriate. Notice in the 
Federal Register shall be published at least seven days prior to the 
date of the meeting.

[[Page 57]]



Sec.  209.23  Conduct of meetings.

    (a) Meetings to develop a voluntary agreement held pursuant to this 
subpart shall be open to all interested persons. Interested persons 
desiring to attend meetings under this subpart may be required pursuant 
to notice to advise the Administrator in advance.
    (b) Interested persons may, as set out in notice provided by the 
Administrator, present data, views, and arguments orally and in writing, 
subject to such reasonable limitations with respect to the manner of 
presentation as the Administrator may impose.



Sec.  209.24  Maintenance of records.

    (a) The Administrator shall keep a verbatim transcript of any 
meeting held pursuant to this subpart.
    (b)(1) Except as provided in paragraphs (b) (2) through (4) of this 
section, potential participants shall keep a full and complete record of 
any communications (other than in a meeting held pursuant to this 
subpart) between or among themselves for the purpose of developing a 
voluntary agreement under this part. When two or more potential 
participants are involved in such a communication, they may agree among 
themselves who shall keep such record. Such record shall include the 
names of the parties to the communication and the organizations, if any, 
which they represent; the date of the communication; the means of 
communication; and a description of the communication in sufficient 
detail to convey adequately its substance.
    (2) Where any communication is written (including, but not limited 
to, telex, telegraphic, telecopied, microfilmed and computer printout 
material), and where such communication demonstrates on it face that the 
originator or some other source furnished a copy of the communication to 
the Office of International Affairs, Department of Energy with the 
notation ``Voluntary Agreement'' marked on the first page of the 
document, no participant need record such a communication or send a 
further copy to the Department of Energy. The Department of Energy may, 
upon written notice to potential participants, from time to time, or 
with reference to particular types of documents, require deposit with 
other offices or officials of the Department of Energy. Where such 
communication demonstrates that it was sent to the Office of 
International Affairs, Department of Energy with the notation 
``Voluntary Agreement'' marked on the first page of the document, or 
such other offices or officials in the Department of Energy has 
designated pursuant to this section it shall satisfy paragraph (c) of 
this section, for the purpose of deposit with the Department of Energy.
    (3) To the extent that any communication is procedural, 
administrative or ministerial (for example, if it involves the location 
of a record, the place of a meeting, travel arrangements, or similar 
matters), only a brief notation of the date, time, persons involved and 
description of the communication need be recorded.
    (4) To the extent that any communication involves matters which 
recapitulate matters already contained in a full and complete record, 
the substance of such matters shall be identified, but need not be 
recorded in detail, provided that reference is made to the record and 
the portion thereof in which the substance is fully set out.
    (c) Except where the Department of Energy otherwise provides, all 
records and transcripts prepared pursuant to paragraphs (a) and (b) of 
this section, shall be deposited within fifteen (15) days after the 
close of the month of their preparation together with any agreement 
resulting therefrom, with the Department of Energy, and shall be 
available to the Department of Justice, the Federal Trade Commission, 
and the Department of State. Such records and transcripts shall be 
available for public inspection and copying to the extent set forth in 
subpart D. Any person depositing material pursuant to this section shall 
indicate with particularity what portions, if any, the person believes 
are subject to disclosure to the public pursuant to subpart D and the 
reasons for such belief.
    (d) Any meeting between a potential participant and an official of 
DOE for the purpose of developing a voluntary agreement shall, if not 
otherwise required to be recorded pursuant to this

[[Page 58]]

section, be recorded by such official as provided in Sec.  204.5.

(Approved by the Office of Management and Budget under Control No. 1905-
0079)

(Federal Energy Administration Act of 1974, Pub. L. 93-275, as amended, 
E.O. 11790, 39 FR 23185; E. O. 11930, 41 FR 32397; Energy Policy and 
Conservation Act, Pub. L. 94-163; E.O. 11912, 41 FR 15825; Department of 
Energy Organization Act, Pub. L. 95-91; 91 Stat. 565; E.O. 12009, 42 FR 
46267)

[41 FR 6754, Feb. 13, 1976, as amended at 43 FR 12854, Mar. 28, 1978; 46 
FR 63209, Dec. 31, 1981]



   Subpart C_Carrying Out of Voluntary Agreements and Developing and 
                    Carrying Out of Plans of Actions



Sec.  209.31  Purpose and scope.

    This subpart establishes the standards and procedures by which 
persons engaged in the business of producing, transporting, refining, 
distributing, or storing petroleum products shall carry out voluntary 
agreements and develop and carry out plans of action which are required 
to implement the allocation and information provisions of the 
International Energy Program.



Sec.  209.32  Initiation of meetings.

    (a) Except for meetings of bodies created by the International 
Energy Agency, any meeting among participants in a voluntary agreement 
pursuant to this subpart, for the purpose of carrying out such voluntary 
agreement or developing or carrying out a plan of action pursuant 
thereto, shall be initiated and chaired by a full-time Federal employee 
designated by the Administrator.
    (b) Except as provided in paragraph (c) of this section, the 
Administrator shall provide notice of meetings held pursuant to this 
subpart, in writing, to the Attorney General, the Federal Trade 
Commission, and to the Speaker of the House and the President of the 
Senate for delivery to the appropriate committees of Congress. Except 
during an international energy supply emergency, notice shall also be 
provided to the public through publication in the Federal Register. Such 
notice shall identify the time, place, and agenda of the meeting. Notice 
in the Federal Register shall be published at least seven days prior to 
the date of the meeting unless emergency circumstances, IEP requirements 
or other unanticipated circumstances require the period to be shortened.
    (c) During an international energy supply emergency, advance notice 
shall be given to the Attorney General, the Federal Trade Commission and 
to the Speaker of the House and the President of the Senate for delivery 
to the appropriate committees of Congress. Such notice may be telephonic 
or by such other means as practicable, and shall be confirmed in 
writing.



Sec.  209.33  Conduct of meetings.

    (a) Subject to the provisions of paragraph (c) of this section, 
meetings held to carry out a voluntary agreement, or to develop or carry 
out a plan of action pursuant to this subpart, shall be open to all 
interested persons, subject to limitations of space. Interested persons 
desiring to attend meetings under this subpart may be required to advise 
the Administrator in advance.
    (b) Interested persons permitted to attend meetings under this 
section may present data, views, and arguments orally and in writing, 
subject to such limitations with respect to the manner of presentation 
as the Administrator may impose.
    (c) Meetings held pursuant to this subpart shall not be open to the 
public to the extent that the President or his delegate finds that 
disclosure of the proceedings beyond those authorized to attend would be 
detrimental to the foreign policy interests of the United States, and 
determines, in consultation with the Administrator, the Secretary of 
State, and the Attorney General, that a meeting shall not be open to 
interested persons or that attendance by interested persons shall be 
limited.
    (d) The requirements of this section do not apply to meetings of 
bodies created by the International Energy Agency except that no 
participant in a voluntary agreement may attend any meeting of any such 
body held to carry out a voluntary agreement or to develop or to carry 
out a plan of action unless a full-time Federal employee is present.

[[Page 59]]



Sec.  209.34  Maintenance of records.

    (a) The Administrator or his delegate shall keep a verbatim 
transcript of any meeting held pursuant to this subpart except where (1) 
due to considerations of time or other overriding circumstances, the 
keeping of a verbatim transcript is not practicable, or (2) principal 
participants in the meeting are representatives of foreign governments. 
If any such record other than a verbatim transcript, is kept by a 
designee who is not a full-time Federal employee, that record shall be 
submitted to the full-time Federal employee in attendance at the meeting 
who shall review the record, promptly make any changes he deems 
necessary to make the record full and complete, and shall notify the 
designee of such changes.
    (b)(1) Except as provided in paragraphs (b) (2) through (4) of this 
section, participants shall keep a full and complete record of any 
communication (other than in a meeting held pursuant to this subpart) 
between or among themselves or with any other member of a petroleum 
industry group created by the International Energy Agency, or subgroup 
thereof for the purpose of carrying out a voluntary agreement or 
developing or carrying out a plan of action under this subpart, except 
that where there are several communications within the same day 
involving the same participants, they may keep a cumulative record for 
the day. The parties to a communication may agree among themselves who 
shall keep such record. Such record shall include the names of the 
parties to the communication and the organizations, if any, which they 
represent; the date of communication; the means of communication, and a 
description of the communication in sufficient detail to convey 
adequately its substance.
    (2) Where any communication is written (including, but not limited 
to, telex, telegraphic, telecopied, microfilmed and computer printout 
material), and where such communication demonstrates on its face that 
the originator or some other source furnished a copy of the 
communication to the Office of International Affairs, Department of 
Energy with the notation ``Voluntary Agreement'' on the first page of 
the document, no participants need record such a communication or send a 
further copy to the Department of Energy. The Department of Energy may, 
upon written notice to participants, from time to time, or with 
reference to particular types of documents, require deposit with other 
offices or officials of the Department of Energy. Where such 
communication demonstrates that it was sent to the Office of 
International Affairs, Department of Energy with the notation 
``Voluntary Agreement'' on the first page of the document, or such other 
offices or officials as the Department of Energy has designated pursuant 
to this section, it shall satisfy paragraph (c) of this section, for the 
purpose of deposit with the Department of Energy.
    (3) To the extent that any communication is procedural, 
administrative or ministerial (for example, if it involves the location 
of a record, the place of a meeting, travel arrangements, or similar 
matters) only a brief notation of the date, time, persons involved and 
description of the communication need be recorded; except that during an 
IEA emergency allocation exercise or an allocation systems test such a 
non-substantive communication between members of the Industry Supply 
Advisory Group (ISAG) which occur within IEA headquarters need not be 
recorded.
    (4) To the extent that any communication involves matters which 
recapitulate matters already contained in a full and complete record, 
the substance of such matters shall be identified, but need not be 
recorded in detail, provided that reference is made to the record and 
the portion thereof in which the substance is fully set out.
    (c) Except where the Department of Energy otherwise provides, all 
records and transcripts prepared pursuant to paragraphs (a) and (b) of 
this section, shall be deposited within seven (7) days after the close 
of the week (ending Saturday) of their preparation during an 
international energy supply emergency or a test of the IEA emergency 
allocation system, and within fifteen (15) days after the close of the 
month of their preparation during periods of non-emergency, together 
with any agreement resulting therefrom, with

[[Page 60]]

the Department of Energy and shall be available to the Department of 
Justice, the Federal Trade Commission, and the Department of State. Such 
records and transcripts shall be available for public inspection and 
copying to the extent set forth in subpart D. Any person depositing 
materials pursuant to this section shall indicate with particularity 
what portions, if any, the person believes are not subject to disclosure 
to the public pursuant to subpart D and the reasons for such belief.
    (d) Any meeting between a participant and an official of DOE for the 
purpose of carrying out a voluntary agreement or developing or carrying 
out a plan of action shall, if not otherwise required to be recorded 
pursuant to this section, be recorded by such official as provided in 
Sec.  204.5.
    (e) During international oil allocation under chapters III and IV of 
the IEP or during an IEA allocation systems test, the Department of 
Energy may issue such additional guidelines amplifying the requirements 
of these regulations as the Department of Energy determines to be 
necessary and appropriate.

(Approved by the Office of Management and Budget under Control No. 1905-
0067)

(Federal Energy Administration Act of 1974, Pub. L. 93-275, as amended; 
E.O. 11790, 39 FR 23185; E.O. 11930, 41 FR 32397; Energy Policy and 
Conservation Act, Pub. L. 94-163; E.O. 11912, 41 FR 15825; Department of 
Energy Organization Act, Pub. L. 95-91, 91 Stat. 565, E.O. 12009, 42 FR 
46267)

[41 FR 6754, Feb. 13, 1976, as amended at 43 FR 12854, Mar. 28, 1978; 46 
FR 63209, Dec. 31, 1981]



     Subpart D_Availability of Information Relating to Meetings and 
                             Communications



Sec.  209.41  Availability of information relating to meetings 
and communications.

    (a) Except as provided in paragraph (b) of this section, records or 
transcripts prepared pursuant to this subpart shall be available for 
public inspection and copying in accordance with section 552 of title 5, 
United States Code and part 202 of this title.
    (b) Matter may be withheld from disclosure under section 552(b) of 
title 5 only on the grounds specified in:
    (1) Section 552(b)(1), applicable to matter specifically required by 
Executive Order to be kept secret in the interest of the national 
defense or foreign policy. This section shall be interpreted to include 
matter protected under Executive Order No. 11652 of March 8, 1972, 
establishing categories and criteria for classification, as well as any 
other such orders dealing specifically with disclosure of IEP related 
materials;
    (2) Section 552(b)(3), applicable to matter specifically exempted 
from disclosure by statute; and
    (3) So much of section 552(b)(4) as relates to trade secrets.



PART 210_GENERAL ALLOCATION AND PRICE RULES--Table of Contents



    Authority: Emergency Petroleum Allocation Act of 1973, Pub. L. 93-
159, E.O. 11748, 38 FR 33577; Economic Stabilization Act of 1970, as 
amended, Pub. L. 92-210, 85 Stat. 743; Pub. L. 93-28, 87 Stat. 27; E.O. 
11748, 38 FR 33575; Cost of Living Council Order Number 47, 39 FR 24.



                         Subpart A_Recordkeeping



Sec.  210.1  Records.

    (a) The recordkeeping requirements that were in effect on January 
27, 1981, in parts 210, 211, and 212 will remain in effect for (1) all 
transactions prior to February 1, 1981; and (2) all allowed expenses 
incurred and paid prior to April 1, 1981 under Sec.  212.78 of part 212. 
These requirements include, but are not limited to, the requirements 
that were in effect on January 27, 1981, in Sec.  210.92 of this part; 
in Sec. Sec.  211.67(a)(5)(ii); 211.89; 211.109, 211.127; and 211.223 of 
part 211; and in Sec. Sec.  212.78(h)(5)(ii); 212.78(h)(6); 
212.83(c)(2)(iii)(E)(I); 212.83(c)(2)(iii)(E)(II); 212.83(c)(2)(iii); 
``Fi t''; 212.83(i); 212.93(a); 212.93(b)(4)(iii)(B)(I); 
212.93(i)(4); 212.94(b)(2)(iii); 212.128; 212.132; 212.172; and Sec.  
212.187 of part 212.
    (b) Effective February 5, 1985, paragraph (a) of this section shall 
apply, to the extent indicated, only to firms in the following 
categories. A firm may be included in more than one category,

[[Page 61]]

and a firm may move from one category to another. The fact that a firm 
becomes no longer subject to the recordkeeping requirements of one 
category shall not relieve that firm of compliance with the 
recordkeeping requirements of any other category in which the firm is 
still included.
    (1) Those firms which are or become parties in litigation with DOE, 
as defined in paragraph (c)(1) of this section. Any such firm shall 
remain subject to paragraph (a) of this section. DOE shall notify the 
firm in writing of the final resolution of the litigation and whether or 
not any of its records must be maintained for a further period. DOE 
shall notify a firm which must maintain any records for a further period 
when such records are no longer needed.
    (2)(i) Those firms which as of November 30 1984, have completed 
making all restitutionary payments required by an administrative or 
judicial order, consent order, or other settlement or order but which 
payments are on February 5, 1985, still subject to distribution by DOE. 
This requirement is applicable to only those firms listed in appendix B. 
Any such firm shall maintain all records for the time period covered by 
the administrative or judicial order, consent order, or other settlement 
or order requiring the payments, evidencing sales volume data for each 
product subject to controls and customers' names and addresses, until 
one of the following: June 30, 1985, unless this period is extended on a 
firm-by-firm basis; the end of the individual firm's extension; or the 
firm is notified in writing that its records are no longer needed.
    (ii) Those firms which as of November 30, 1984, are required to make 
restitutionary or other payments pursuant to an administrative or 
judicial order, consent order, or other settlement or order. Any such 
firm shall remain subject to paragraph (a) of this section until the 
firm completes all restitutionary payments required by the 
administrative or judicial order, consent order, or other settlement or 
order. However, after completing all such payments, a firm shall 
maintain all records described in paragraph (b)(2)(i) of this section 
until one of the following: Six months after the firm completes all such 
payments, unless this period is extended on a firm-by-firm basis; the 
end of the individual firm's extension; or the firm is notified in 
writing that its records are no longer needed.
    (3)(i) Those firms with completed audits in which DOE has not yet 
made a determination to initiate a formal enforcement action and firms 
under audit which do not have outstanding subpoenas. Any such firm shall 
maintain all records for the period covered by the audit including all 
records necessary to establish historical prices or volumes which serve 
as the basis for determining the lawful prices or volumes for any 
subsequent regulated transaction which is subject to audit, until one of 
the following: June 30, 1985, unless this period is extended on a firm-
by-firm basis; the end of the individual firm's extension; or the firm 
is notified in writing by DOE that its records are no longer needed. 
However, if a firm in this group shall become a party in litigation, the 
firm shall then be subject to the recordkeeping requirements for firms 
in litigation set forth in paragraph (b)(1) of this section.
    (ii) Those firms under audit which have outstanding subpoenas on 
February 5, 1985, or which receive subpoenas at any time thereafter or 
which have supplied records for an audit as the result of a subpoena 
enforced after November 1, 1983. Any such firm shall remain subject to 
paragraph (a) of this section until two years after ERA has notified the 
firm in writing that is in full compliance with the subpoena or until 
ERA has received from the firm a sworn certification of compliance with 
the subpoena as required by 10 CFR 205.8. However, if a firm in this 
group shall become a party in litigation, the firm shall then be subject 
to the recordkeeping requirements for firms in litigation set forth in 
paragraph (b)(1) of this section.
    (4) Those firms which are subject to requests for data necessary to 
verify that crude oil qualifies as ``newly discovered'' crude oil under 
10 CFR 212.79. Any such firm shall maintain the records evidencing such 
data until one of the following: June 30, 1985, unless this period is 
extended on a firm-by-

[[Page 62]]

firm basis; the end of an individual firm's extension; or the firm is 
notified in writing by DOE that its records are no longer needed. 
However, if a firm in this group shall become a party in litigation, the 
firm shall then be subject to the recordkeeping requirements for firms 
in litigation set forth in paragraph (b)(1) of this section.
    (5) Those firms whose records are determined by DOE as necessary to 
complete the enforcement activity relating to another firm which is also 
subject to paragraph (a) of this section unless such firms required to 
keep records have received certified notice letters specifically 
describing the records determined as necessary. At that time, the 
specific notice will control the recordkeeping requirements. These firms 
have been identified in appendix A. Any such firm shall maintain these 
records until one of the following: June 30, 1985, unless this period is 
extended on a firm-by-firm basis; the end of the individual firm's 
extension; or the firm is notified in writing by DOE that its records 
are no longer needed.
    (6) Those firms which participated in the Entitlements program. Any 
such firm shall maintain its Entitlements-related records until six 
months after the final judicial resolution (including any and all 
appeals) of Texaco v. DOE, Nos. 84-391, 84-410, and 84-456 (D. Del.), or 
the firm is notified by DOE that its records are no longer needed, 
whichever occurs first.
    (c) For purposes of this section:
    (1) A firm is ``a party in litigation'' if:
    (i)(A) The firm has received a Notice of Probable Violation, a 
Notice of Probable Disallowance, a Proposed Remedial Order, or a 
Proposed Order of Disallowance; or
    (B) The firm and DOE are parties in a lawsuit arising under the 
Emergency Petroleum Allocation Act of 1973, as amended (15 U.S.C. 751 et 
seq.) or 10 CFR parts 205, 210, 211, or 212; and
    (ii)(A) There has been no final (that is, non-appealable) 
administrative or judicial resolution, or
    (B) DOE has not informed the firm in writing that the Department has 
completed its review of the matter.
    (2) A firm means any association, company, corporation, estate, 
individual, joint-venture, partnership, or sole proprietorship, or any 
other entity, however organized, including charitable, educational, or 
other eleemosynary institutions, and state and local governments. A firm 
includes a parent and the consolidated and unconsolidated entities (if 
any) which it directly or indirectly controls.

              Appendix A to 10 CFR 210.1--Third Party Firms

                              Name of Firm

A & R, Inc.
A. J. Petroleum
ADA Resources, Inc.
ATC Petroleum
Abbco Petroleum, Inc.
Ada Oil Company
Adams Grocery
Advanced Petroleum Distributing Co.
Agway Inc.
Allegheny Petroleum Corp.
Alliance Oil and Refining Company
Allied Chemical Corp.
Allied Transport
Amerada Hess Corp.
American Natural Crude Oil Assoc.
Amoco Production Company
Amorient Petroleum, Inc.
An-Son Transportation Co.
Anadarko Products Co.
Andrus Energy Corp.
Antler Petroleum
Arco Pipeline Company
Armada Petroleum Corp.
Armour Oil Company
Arnold Brooks Const. Inc.
Ashland Oil
Asiatic Petroleum Co.
Aspen Energy, Inc.
Athens General Hospital
Atlantic Pacific Energy, Inc.
Atlas Processing Company
B & B Trading Company
BLT, Inc.
BPM, Ltd.
Baker Services, Inc.
Basin Inc.
Basin Petroleum, Inc.
Beacon Hill Mobil
Belcher Oil Company
Bighart Pipeline Company
Bigheart Pipeline Corp
Bowdoin Square Exxon
Bowdoin Super Service (Sunoco)
Brio Petroleum, Inc.
Brixon
C.E. Norman
CPI Oil & Refining
CRA-Farmland Industries, Inc.
Calcaseiu Refining, Ltd.
Carbonit Houston, Inc.
Carr Oil Company, Inc.
Castle Coal & Oil Co.

[[Page 63]]

Central Crude Corporation
Century Trading Co.
Charter Crude Oil
Chastain Vineyard
Chevron USA, Inc.
Cibro Petroleum, Inc.
Cirillo Brothers
Cities Service (Citgo) Station
Cities Service Company
Cities Service Midland
City of Athens
Clarke County Board of Education
Claude E. Silvey
Coastal Corporation (The)
Coastal Petroleum and Supply Inc.
Coastal States Trading Company
Commonwealth Oil Refining Co., Inc.
Coral Petroleum Canada, Inc.
Coral Petroleum, Inc.
Corex of Georgia
Cothran Interstate Exxon
Couch's Standard Chevron
Cougar Oil Marketers Inc.
Crude Company (The)
Crystal Energy Corporation
Crystal Refining
D & E Logging
DDC Corporation of America
Darrell Williamson
Davis Ellis
Days Inn of America, Inc.
Delta Petroleum & Energy Corp.
Derby & Company, Inc.
Derby Refining Company
Dewveall Petroleum
Dixie Oil Company
Dixon Oil Co.
Don Hardy
Donald Childs
Dow Chemical Company
Dr. Joe L. Griffeth
Driver Construction Co.
Drummond Brothers, Inc.
Duffie Monroe & Sons Co., Inc.
ECI (A/K/A Energy Cooperative Inc.)
Earnest Dalton
Earth Resources Trading
Eastern Seaboard Petroleum, Inc.
Elmer Hammon
Elvin Knight
Empire Marketing, Inc.
Encorp.
Energy Cooperative, Inc.
Energy Distribution Co.
Englehard Corporation
Englehard Oil Corporation
Entex
Evans Oil Co.
Exxon Company
F & S Trading Company, Inc.
Farmers Union Central Exchange, Inc.
Farmland Industries Inc.
Fasgo, Inc.
Fedco Oil Company
Federal Employees Distributing Co.
Fitzpatrick Spreader
Flutz Oil Company
Flying J. Inc.
Foremost Petroleum
Four Corners Pipe Line
Frank Katz
Frank W. Abrahamsen
Frank's Butane, Inc.
Friendswood Refinery
Frontier Manor Collection
Fuel Oil Supply & Terminaling, Inc.
G. C. Clark Company
GPC Marketing Company
Gary Refining Co.
Geer Tank Trucks, Inc.
Gene Clary
Gene McDonald
General Crude Oil Company
Geodynamics Oil & Gas Inc.
George Kennedy
George Smith Chevron
Gleason Oil Company
Glenn Company
Globe Oil Co.
Godfrey's Standard Service
Good Hope Industries, Inc.
Good Hope Refineries, Inc.
Granite Oil Company
Guam Oil & Refining Co., Inc.
Gulf States Oil & Refining Company
H. D. Adkinson
H. H. Dunson
H.S. & L, Inc.
HNG Oil Company
Harbor Petroleum, Inc.
Harbor Trading
Harmony Grove Mills, Inc.
Harry Rosser
Hast Oil, Inc.
Heet Gas Company
Henry Alva Mercer
Herndon Oil & Gas Company
Horizon Petroleum Company
Houston Oil & Minerals Products Co.
Houston Oil & Refining
Howell Corporation
Hurricane Trading Company, Inc.
Hydrocarbon Trading and Transport Co.
Inco Trading
Independent Refining Corp.
Independent Trading Corporation
Indiana Refining, Inc.
Intercontinental Petroleum Corp.
International Crude Corporation
International Petro
International Petroleum Trading, Inc.
International Processors
Isthmus Trading Corporation
J & M Transport
J. & J.'s Fast Stop
J. A. Rackerby Corporation
J. H. Baccus
J. H. Baccus & Co.
J. J. Williamson
J. M. Petroleum Corporation
JPK Industries
Jack W. Grigsby
Jaguar Petroleum, Inc.
James L. Bush

[[Page 64]]

Jay Petroleum Company
Jay-Ed Petroleum Company
John W. McGowan
Kalama Chemical, Inc.
Kelly Trading Corp.
Kenco Refining
Kerr-McGee Corporation
Koch Fuel
Koch Industries, Inc.
Kocolene Oil
Kocolene Station
L & L Resources, Inc.
L.S. Parker
LaGloria Oil & Gas
LaJet, Inc.
Lamar Refining Co.
Langham Petroleum Corp.
Larry Roberts
Laurel Oil, Inc.
Lee Allen
Lincoln Land Sales Company
Listo Petroleum Inc.
Longview Refining Corp.
Love's Standard
Lucky Stores Inc.
M.L. Morrow
Magna Energy Corporation
Magnolia Oil Company
Mansfield Oil Co.
Mapco Petroleum, Inc.
Mapco, Inc.
Marion Trading Co.
Marlex Oil & Refining, Inc.
Marlin Petroleum, Inc.
Martin Oil Company
Mathew's Grocery
McAuleep Oil Co.
McAuley Oil Company
Meadows Gathering, Inc.
Mellon Energy Products Co.
Merit Petroleum, Inc.
Metro Wash, Inc.
Miller Oil Purchasing Co.
Minor Oil, Inc.
Minro Oil, Inc.
Mitchell Oil Co.
Mitsui & Co. (USA) Inc.
Mobil Bay Refining Company
Montgomery Well Drilling
Mundy Food Market
Munford, Inc.
Mutual Petroleum
NRG Oil Company
National Convenience Stores
National Cooperative Refinery
Nicholson Grocery and Gas
North American Petroleum
Northeast Petroleum Corp.
Northeast Petroleum Corporation
Northgate Auto Center
Northwest Crude, Inc.
Nova Refining Corp.
Occidental Petroleum Corp. (includes Permia)
Ocean Drilling and Exploration Co.
Oil Exchange, Inc.
Oilco
Omega Petroleum Corp.
Otoe Corporation
Oxxo Energy Group, Inc.
P & O Falco, Inc.
P. L. Heatley Co.
PEH, Inc.
PIB, Inc.
PSW Distributors Company
Pacific Refinery, Inc.
Pacific Resources, Inc.
Pan American Products Corp.
Par Brothers Food Store
Pauley Petroleum Inc.
Pennzoil Co.
Permian Corporation (The)
Pescar International Corp.
Pescar International Trading Co.
Petraco (U.S.A.) Inc.
Petrade International
Petrol Products, Inc.
Phillips Petroleum Company
Phoenis Petroleum Co.
Phoenix Petroleum Co.
Pine Mountains
Poole Petroleum
Port Petroleum
Presley Oil Co.
Procoil Inc.
Publiker Industries, Inc.
Pyramid Dist. Co., Inc.
Questor Crude Oil Company
Quitman Refining Co.
R. H. Garrett Paving
Ra-Gan Fuel, Inc.
Reeder Distributing Co.
Reeder Distributors
Reese Exploration Co.
Research Fuels Inc.
Revere Petroleum Co.
Richardson-Ayres, Inc.
Robert Bishop
Robert Patrick
Roberts Grocery
Rock Island Refining Corporation
Rogers Oil Company
Roy Baerne
Russell Oil Company
S. G. Coplen
SECO (Scruggs Energy)
Saber Crude Oil, Inc.
Saber Refining Company
Salem Ventures, Inc.
Samson Resources Company
Santa Fe Energy Products Co.
Saye's Truck Stop
Scandix Oil Limited
Score, Inc.
Scruggs Energy Company
Scurlock Oil Company
Scurry Oil Company
Seamount Petroleum Company
Seaview Petroleum Company
Sector Refining, Inc.
Selfton Miller
Shepherd Trading Corporation
Shulze Processing
Sigmor Corporation

[[Page 65]]

Skelly Oil Company
South Hampton Refining Company
South Texas LP Gas Co.
Southern Crude Oil Resources
Southern Terminal & Transport, Ltd.
Southern Union Company
Southwest Petro. Energy
Southwest Petrochem
Standard Oil Co. (Ohio)
Standard Oil Co. of California
Standard Oil Company (Indiana)
Standard Oil Company (Ohio)
Sterling Energy Company
Steve Childs
Stix Gas Company, Inc.
Sunset Grocery
Sunset Oil & Refining, Inc.
Swanee Petroleum Company
T & P Enterprises
T. B. Eley
T. E. Jawell
Tauber Oil Company
Tenneco, Inc.
Tesoro Crude Oil Company
Texana Oil & Gas Corp.
Texas American Petrochemicals (TAP)
Texas City Refining
Texas Eastern Transmission Corp.
Texas Energy Reserve Corporation
Texas Pacific Oil Company
Thomas Cockvell
Thomas Petroleum Products, Inc.
Thorton Oil Company
Thyssen Incorporated
Tiger Petroleum Company
Time Oil Co.
Tipperary Refining Company
Tom Banks
Tom Smith
Tomlinson Petroleum, Inc.
Tosco Corporation
Total Petroleum, Inc.
Trans-Texas Petroleum Corp.
Transco Trading Company
Turboil Oil and Refining
Two Rivers Oil & Gas Co., Inc.
U-Fill 'er Up
USA Gas, Inc.
Uni Oil Company
Union Oil of California
Doram Energy
United Petroleum Marketing
United Refining Company
United Refining, Inc.
Universal Rundle
Val-Cap, Inc.
Vedetta Oil Trading, Inc.
Vedette Oil Trading, Inc.
Vickers Energy Corp.
W. C. Colquitt
W. T. Strickland
W. W. Blanton
W.A. Nunnally, Jr., Construction Co.
W.D. Porterfiled
Wellven, Inc.
West Texas Marketing Corp.
Western Crude Oil, Inc.
Western Fuels, Inc.
Wight Nurseries of Oglethorpe Co.
William Seabolt
Wilson's Used Tractors
Windsor Gas Corp.
Wyoming Refining

  Appendix B to 10 CFR 210.1--Firms With Completed Payments Subject to 
                              Distribution

    The following firms have completed making restitutionary payments to 
DOE but their payments are still subject to distribution by DOE. Each 
such firm must maintain relevant records until June 30, 1985, unless 
this period is extended on a firm-by-firm basis. Relevant records are 
all records of the firm, including any affiliates, subsidiaries or 
predecessors in interest, for the time period covered by the judicial or 
administrative order, consent order, or other settlement or order 
requiring the payments, evidencing sales volume data for each product 
subject to controls and customers' names and addresses.

------------------------------------------------------------------------
             Name of firm                           Location
------------------------------------------------------------------------
A. Tarricone Inc......................  Yonkers, NY.
Adolph Coors Company..................  Golden, CO.
Allied Materials Corp & Excel.........  Oklahoma City, OK.
Aminoil USA, Inc......................  Houston, TX.
Amtel, Inc............................  Providence, RI.
Apache Corporation....................  Minneapolis, MN.
APCO Oil Corporation..................  Oklahoma City, OK.
Arapaho Petroleum, Inc................  Breckenridge, TX.
Arkansas Louisiana Gas Company........  Shreveport, LA.
Arkla Chemical Corporation............  Shreveport, LA.
Armour Oil Company....................  San Diego, CA.
Associated Programs Inc...............  Boca Raton, FL.
Atlanta Petroleum Production..........  Fort Worth, TX.
Automatic Heat, Inc...................
Ayers Oil Company.....................  Canton, MD.
Aztex Energy Corporation..............  Knoxville, TN.
Bak Ltd...............................  Narbeth, PA.
Bayou State Oil/IDA Gasoline..........  Shreveport, LA.
Bayside Fuel Oil Depot Corp...........  Brooklyn, NY.
Belridge Oil Company..................  Los Angeles, CA.
Blaylock Oil Co., Inc.................  Homestead, FL.
Blex Oil Company......................  Minneapolis, MN.
Boswell Oil Company...................  Cincinnati, OH.
Box, Cloyce K.........................  Dallas, TX.
Breckenridge Gasoline Company.........  Kansas City, KS.
Brownlie, Wallace, Armstrong..........  Denver, CO.
Bucks Butane & Propane Service........  San Jose, CA.
Budget Airport Associates.............  Los Angeles, CA.
Busler Enterprises Inc................  Evansville, IN.
Butler Petroleum Corp.................  Butler, PA.
C.K. Smith & Company, Inc.............  Worcester, MA.
Cap Oil Company.......................  Tulsa, OK.
Champlain Oil Co., Inc................  South Burlington, VT.
Chapman, H.A..........................  Tulsa, OK.
Cibro Gasoline Corporation............  Bronx, NY.
City Service Inc......................  Kalispell, MT.
Coastal Corporation...................  Houston, TX.
Coline Gasoline Corporation...........  Santa Fe Springs, CA.
Collins Oil Co........................  Aurora, IL.
Columbia Oil Co.......................  Hamilton, OH.
Conlo Service Inc.....................  East Farmingdale, NY.
Conoco, Inc...........................  Houston, TX.
Consolidated Gas Supply Corp..........  Hastings, WV.
Consolidated Leasing Corp.............  Los Angeles, CA.

[[Page 66]]

 
Consumers Oil Co......................  Rosemead, CA.
Continental Resources Company.........  Winter Park, FL.
Cordele Operating Co..................  Corsicana, TX.
Cosby Oil Co., Inc....................  Whittier, CA.
Cougar Oil Co.........................  Selma, AL.
Cross Oil Co., Inc....................  Wellstone, MO.
Crystal Oil Company (formerly Vallery   Shreveport, LA.
 Corp.).
Crystal Petroleum Co..................  Corpus Christi, TX.
Devon Corporation.....................  Oklahoma City, OK.
Dorchester Gas Corp...................  Dallas, TX.
E.B. Lynn Oil Company.................  Allentown, PA.
E.M. Bailey Distributing Co...........  Paducah, KY.
Eagle Petroleum Co....................  Wichita Falls, TX.
Earls Broadmoor.......................  Houma, LA.
Earth Resources Co....................  Dallas, TX.
Eastern Petroleum Corp................  Annapolis, MD.
Edington Oil Co.......................  Los Angeles, CA.
Elias Oil Company.....................  West Palm Beach, FL.
Elm City Filling Stations, Inc........  New Haven, CT.
Empire Oil Co.........................  Bloomington, CA.
Endicott, Eugene......................  Redmond, OR.
Enserch Corp..........................  Dallas, TX.
Enterprise Oil & Gas Company..........  Detroit, MI.
F.O. Fletcher, Inc....................  Tacoma, WA.
Fagadau Energy Corporation............  Dallas, TX.
Farstad Oil Company...................  Minot, ND.
Field Oil Co., Inc....................  Ogden, UT.
Fine Petroleum Co., Inc...............  Norfolk, VA.
Foster Oil Co.........................  Richmond, MI.
Franks Petroleum Inc..................  Shreveport, LA.
Froesel Oil Co........................
Gas Systems Inc.......................  Ft. Worth, TX.
Gate Petroleum Co., Inc...............  Jacksonville, FL.
GCO Minerals Company..................  Houston, TX.
Getty Oil Company.....................  Los Angeles, CA.
Gibbs Industries, Inc.................  Revere, MA.
Glaser Gas Inc........................  Calhoun, CO.
Glover, Lawrence H....................  Patchogue, NY.
Goodman Oil Company...................  Boise, ID.
Grant Rent a Car Corporation..........  Los Angeles, CA.
Grimes Gasoline Co....................  Tulsa, OK.
Gulf Energy & Development Corp. (also   San Antonio, TX.
 known as Gulf Energy Development
 Corp.).
Gulf Oil Corp.........................  Houston, TX.
Gull Industries, Inc..................  Seattle, WA.
H.C. Lewis Oil Co.....................  Welch, WV.
Hamilton Brothers Petroleum Co........  Denver, CO.
Harris Enterprise Inc.................  Portland, OR.
Heller, Glenn Martin..................  Boston, MA.
Hendel's Inc..........................  Waterford, CT.
Henry H. Gungoll Associates...........  Enid, OK.
Hertz Corporation, The................  New York, NY.
Hines Oil Co..........................  Murphysboro, IL.
Horner & Smith, A Partnership.........  Houston, TX.
Houston Natural Gas Corp..............  Houston, TX.
Howell Corporation/Quintana Refinery    Houston, TX.
 Co.
Hunt Industries.......................  Dallas, TX.
Hunt Petroleum Corp...................  Dallas, TX.
Husky Oil Company of Delaware.........  Cody, WY.
Ideal Gas Co., Inc....................  Nyassa, OR.
Independent Oil & Tire Company........  Elyria, OH.
Inland USA, Inc.......................  St. Louis, MO.
Inman Oil Co..........................  Salem, MO.
Internorth, Inc.......................  Omaha, NE.
J.E. DeWitt, Inc......................  South El Monte, CA.
J.M. Huber Corp.......................  Houston, TX.
James Petroleum Corp..................  Bakersfield, CA.
Jay Oil Company.......................  Fort Smith, AR.
Jimmys Gas Stations Inc...............  Auburn, ME.
Jones Drilling Corporation............  Duncan, OK.
Juniper Petroleum Corporation.........  Denver, CO.
Kansas-Nebraska Natural Gas Co........  Hastings, NE.
Keller Oil Company, Inc...............  Effingham, IL.
Kenny Larson Oil Co., Inc.............
Kent Oil & Trading Company............  Houston, TX.
Key Oil Co., Inc......................  Tuscaloosa, AL.
Key Oil Company.......................  Bowling Green, KY.
Kiesel Co.............................  St. Louis, MO.
King & King Enterprise................  Kansas City, MO.
Kingston Oil Supply Corp..............  Port Ewen, NY.
Kirby Oil Company.....................
L & L Oil Co., Inc....................  Belle Chasse, LA.
L.P. Rech Distributing Co.............  Roundup, MT.
La Gloria Oil and Gas Co..............  Houston, TX.
Lakes Gas Co., Inc....................  Forest Lake, MN.
Lakeside Refining Co./Crystal.........  Southfield, MI.
Landsea Oil Company...................  Irvine, CA.
Leathers Oil Co., Inc.................  Portland, OR.
Leese Oil Company.....................  Pocatello, ID.
Leonard E. Belcher, Inc...............  Springfield, MA.
Lincoln Land Oil Co...................  Springfield, IL.
Liquid Products Recovery..............  Houston, TX.
Little America Refining Co............  Salt Lake City, UT.
Lockheed Air Terminal Inc.............  Burbank, CA.
Lowe Oil Company......................  Clinton, MO.
Lucia Lodge Arco......................  Big Sur, CA.
Luke Brothers Inc.....................  Calera, OK.
Lunday Thargard Oil...................  South Gate, CA.
Malco Industries Inc..................  Cleveland, OH.
Mapco, Inc............................  Tulsa, OK.
Marine Petroleum Co...................  St. Louis, MO.
Marlen L. Knutson Dist. Inc...........  Stanwood, WA.
Martin Oil Service, Inc...............  Blue Island, IL.
Martinoil Company.....................  Fresno, CA.
Marvel Fuel Oil and Gas Co............
McCarty Oil Co........................  Wapakoneta, OH.
McCleary Oil Co., Inc.................  Chambersburg, OH.
McClure's Service Station.............  Salisbury, PA.
McTan Corporation.....................  Abilene, TX.
Mesa Petroleum Company................  Amarillo, TX.
Midway Oil Co.........................  Rock Island, IL.
Midwest Industrial Fuels, Inc.........  La Crosse, WI.
Mississippi River Transmission........  St. Louis, MO.
Mitchell Energy Corp..................  Woodlands, TX.
Montana Power Co......................  Butte, MT.
Moore Terminal and Barge Co...........  Monroe, LA.
Mountain Fuel Supply Company..........  Salt Lake City, UT.
Moyle Petroleum Co....................  Rapid City, SD.
Mustang Fuel Corporation..............  Oklahoma City, OK.
Naphsol Refining Company..............  Muskegon, MI.
National Helium Corporation...........  Liberal, KS.
National Propane Corp.................  Wyandanch, NY.
Navajo Refining Company...............  Dallas, TX.
Nielson Oil & Propane, Inc............  West Point, NE.
Northeast Petroleum Industries........  Chelsea, MA.
Northeastern Oil Co., Inc.............  Gillette, WY.
Northwest Pipeline Corp...............  Salt Lake City, UT.
O'Connell Oil Co......................  Pittsfield, MA.
Oceana Terminal Corp. et al...........  Bronx, NY.
OKC Corporation.......................  Dallas, TX.
Olin Corporation......................  Stamford, CT.
Oneok Incorporation...................  Tulsa, OK.
Ozona Gas Processing Plant............  Tyler, TX.
Pacer Oil Co. of Florida, Inc.........  Ormond Beach, FL.
Pacific Northern Oil..................  Seattle, WA.
Panhandle Eastern (Century)...........  Houston, TX.
Parade Company........................  Shreveport, LA.
Parham Oil Corporation................  Nashville, TN.
Pasco Petroleum Co., Inc..............  Phoenix, AZ.
Pedersen Oil, Inc.....................  Silverdale, WA.
Pennzoil Company......................  Houston, TX.
Perry Gas Processors, Inc.............  Odessa, TX.
Peoples Energy Corp...................  Chicago, IL.
Perta Oil Marketing Corp..............  Beverly Hills, CA.
Peterson Petroleum Inc................  Hudson, NY.

[[Page 67]]

 
Petro-Lewis Corp......................  Denver, CO.
Petrolane-Lomita Gasoline Co..........  Long Beach, CA.
Petroleum Heat & Power Co. Inc........  Stamford, CT.
Petroleum Sales/Services Inc..........  Buffalo, NY.
Pioneer Corp..........................  Amarillo, TX.
Planet Engineers Inc..................  Denver, CO.
Plateau, Inc..........................  Albuquerque, NM.
Plaquemines Oil Sales.................  Belle Chasse, LA.
Point Landing Inc.....................  Hanrahan, LA.
Port Oil Company, Inc.................  Mobile, AL.
Post Petroleum Co.....................  West Sacramento, CA.
Power Pak Co., Inc....................  Houston, TX.
Pride Refining, Inc...................  Abilene, TX.
Pronto Gas Co.........................  Abilene, TX.
Propane Gas & Appliance Co............  New Brockton, AL.
Prosper Energy Corporation............  Dallas, TX.
Pyro Energy Corporation...............  Evansville, IN.
Pyrofax Gas Corporation...............  Houston, TX.
Quaker State Oil......................  Oil City, PA.
Quarles Petroleum, Inc................  Fredericksburg, VA.
Resources Extraction Process..........  Houston, TX.
Reynolds Oil Co.......................  Kremling, CO.
Richardson Ayers Jobbers, Inc.........  Alexandria, LA.
Riverside Oil, Inc....................  Evansville, IN.
Roberts Oil Co. Inc...................  Albuquerque, NM.
Rookwood Oil Terminals Inc............  Cincinnati, OH.
Saber Energy, Inc.....................  Houston, TX.
Sanesco Oil Co........................  Escondido, CA.
Schroeder Oil Company.................  Carroll, IA.
Seminole Refining Inc.................  St. Marks, FL.
Sid Richardson Carbon & Gas...........  Ft. Worth, TX.
Sigmore Corporation...................  San Antonio, TX.
Southwestern Refining Co., Inc........  Salt Lake City, UT.
Speedway Petroleum Co., Inc...........  Fitchburg, MA.
St. James Resources Corp..............  Boston, MA.
Standard Oil Co. (Indiana)............  Chicago, IL.
Stinnes Inter Oil Inc.................  New York, NY.
Tenneco Oil Company...................  Houston, TX.
Texas/Arkansas/Colorado/Oklahoma/Oil    Dallas, TX.
 Purchasing.
Texas Gas & Exploration...............  Dallas, TX.
Texas Oil & Gas Corporation...........  Dallas, TX.
Texas Pacific Oil Company, Inc........  Dallas, TX.
The True Companies....................  Casper, WY.
Thompson Oil Inc......................  Purcellville, VA.
Tiger Oil Co..........................  Yakima, WA.
Time Oil Company......................  Seattle, WA.
Tipperary Corp........................  Midland, TX.
Tippins Oil & Gas Co..................  Richmond, MO.
Triton Oil & Gas Corp.................  Dallas, TX.
U.S. Compressed Gas Company...........  King of Prussia, PA.
U.S. Oil Company......................  Combined Locks, WI.
U.S.A. Petroleum, Inc.................  Santa Monica, CA.
Union Texas Petroleum Corp............  Houston, TX.
United Oil Company....................  Hillside, NJ.
Upham Oil & Gas Co....................  Mineral Wells, TX.
Vangas Inc............................  Fresno, CA.
VGS Corporation.......................  Jackson, MS.
Waller Petroleum Company, Inc.........  Towson, MD.
Warren Holding Company................  Providence, RI.
Warrior Asphalt Co. of Alabama........  Tuscaloosa, AL.
Webco Southern Oil Inc................  Smyrna, CA.
Wellen Oil Co.........................  Jersey City, NJ
Wiesehan Oil Co.......................
Willis Distributing Company...........  Erie, PA.
Winston Refining Company..............  Fort Worth, TX.
Witco Chemical Corporation............  New York, NY.
World Oil Company.....................  Los Angeles, CA.
Worldwide Energy Corp.................  Denver, CO.
Young Refining Corporation............  Douglasville, GA.
Zia Fuels (G.G.C. Corp.)..............  Hobbs, NM.
------------------------------------------------------------------------


(Approved by the Office of Management and Budget under control number 
1903-0073)

[50 FR 4962, Feb. 5, 1985]

Subparts B-D [Reserved]



PART 212_MANDATORY PETROLEUM PRICE REGULATIONS--Table of Contents



    Authority: Emergency Petroleum Allocation Act of 1973, Pub. L. 93-
159, E.O. 11748, 38 FR 33577; Economic Stabilization Act of 1970, as 
amended, Pub. L. 92-210, 85 Stat. 743; Pub. L. 93-28, 87 Stat. 27; E.O. 
11748, 38 FR 33575; Cost of Living Council Order Number 47, FR 24.

Subparts A-C [Reserved]



                    Subpart D_Producers of Crude Oil



Sec.  212.78  Tertiary incentive crude oil.

    Annual prepaid expenses report. By January 31 of each year after 
1980, the project operator with respect to any enhanced oil recovery 
project for which a report had been filed previously with DOE pursuant 
to paragraph (h)(2)(i) of this section as that paragraph was in effect 
on January 27, 1981, shall file with DOE a report in which the operator 
shall certify to DOE (a) which of the expenses that had been reported 
previously to DOE pursuant to paragraph (h)(2)(i) of this section as 
that paragraph was in effect on January 27, 1981, were prepaid expenses; 
(b) the goods or services for which such expenses had been incurred and 
paid; (c) the dates on which such goods or services are intended to be 
used; (d) the dates on which such goods or services actually are used; 
(e) the identity of each qualified producer to which such prepaid 
expenses had been attributed; and (f) the percentage of such prepaid 
expenses attributed to each such qualified producer. An operator shall 
file an annual prepaid expenses report each year until it has reported 
the actual use of all the goods and services for which a prepaid expense 
had been incurred and paid. For purposes of this paragraph, a prepaid 
expense is an expense for any injectant or fuel used after September 30, 
1981, or an expense for any other item to the extent that

[[Page 68]]

IRS would allocate the deductions (including depreciation) for that item 
to the period after September 30, 1981.

(Approved by the Office of Management and Budget under OMB Control No.: 
1903-0069)

[46 FR 43654, Aug. 31, 1981, as amended at 46 FR 63209, Dec. 31, 1981]

Subparts E-I [Reserved]



PART 215_COLLECTION OF FOREIGN OIL SUPPLY AGREEMENT INFORMATION--
Table of Contents



Sec.
215.1 Purpose.
215.2 Definitions.
215.3 Supply reports.
215.4 Production of contracts and documents.
215.5 Pricing and volume reports.
215.6 Notice of negotiations.

    Authority: Emergency Petroleum Allocation Act of 1973, Pub. L. 93-
519, as amended, Pub. L. 93-511, Pub. L. 94-99, Pub. L. 94-133 and Pub. 
L. 94-163, and Pub. L. 94-385; Federal Energy Administration Act of 
1974, Pub. L. 93-275, as amended, Pub. L. 94-385; Energy Policy and 
Conservation Act, Pub. L. 94-163, as amended, Pub. L. 94-385; E.O. 
11790, 39 FR 23185.

    Source: 42 FR 48330, Sept. 23, 1977, unless otherwise noted.



Sec.  215.1  Purpose.

    The purpose of this part is to set forth certain requirements 
pursuant to section 13 of the Federal Energy Administration Act to 
furnish information concerning foreign crude oil supply arrangements. 
The authority set out in this section is not exclusive.



Sec.  215.2  Definitions.

    As used in this subpart:
    Administrator means the Federal Energy Administrator or his 
delegate.
    DOE means the Department of Energy.
    Host government means the government of the country in which crude 
oil is produced and includes any entity which it controls, directly or 
indirectly.
    Person means any natural person, corporation, partnership, 
association, consortium, or any other entity doing business or domiciled 
in the U.S. and includes (a) any entity controlled directly or 
indirectly by such a person and (b) the interest of such a person in any 
joint venture, consortium or other entity to the extent of entitlement 
to crude oil by reason of such interest.



Sec.  215.3  Supply reports.

    (a) Any person having the right to lift for export by virtue of any 
equity interest, reimbursement for services, exchange or purchase, from 
any country, from fields actually in production, (1) an average of 
150,000 barrels per day or more of crude oil for a period of at least 
one year, or (2) a total of 55,000,000 barrels of crude oil for a period 
of less than one year, or (3) a total of 150,000,000 barrels of crude 
oil for the period specified in the agreement, pursuant to supply 
arrangements with the host government, shall report the following 
information.
    (1) Parties (including partners and percentage interest, where 
applicable).
    (2) Grade or grades available; loading terminal or terminals.
    (3) Government imposed production limits, if any.
    (4) Minimum lifting obligation and maximum lifting rights.
    (5) Details of lifting options within the above limits.
    (6) Expiration and renegotiation dates.
    (7) Price terms including terms of rebates, discounts, and number of 
days of credit calculated from the date of loading.
    (8) Other payments to or interests retained by the host government 
(i.e. taxes, royalties, and any other payment to the host government) 
expressed in terms of the applicable rates or payment or preemption 
terms, or the base to which those rates or terms are applied.
    (9) Related service or other fees and cost of providing services.
    (10) Restrictions on shipping or disposition.
    (11) Other material contract terms.
    (b) Reports under this section shall be made no later than (1) 60 
days after final issuance of reporting forms implementing this 
regulation, as announced in the Federal Register, (2) fourteen days 
after the date when supply arrangements are entered into, or (3) 
fourteen days after the initial lifting

[[Page 69]]

under an agreement in which the parties have tentatively concurred but 
not signed, whichever occurs first. Reporting shall be based on actual 
practice between the parties. Material changes in any item which must be 
reported pursuant to this section shall be reported no later than 30 
days after a person receives actual notice of such changes.
    (c) Where reports under this section by each participant in a joint 
operation would be impracticable, or would result in the submission of 
inaccurate or misleading information, the participants acting together 
may designate a single participant to report on any of the rights, 
obligations, or limitations affecting the operation as a whole. Any such 
designation shall be signed by a duly authorized representative of each 
participant, and shall specify:
    (1) The precise rights, obligations, or limitations to be covered by 
the designation; and
    (2) The reasons for the designation. Such designations shall be 
submitted to the Assistant Administrator for International Energy 
Affairs, and shall take effect only upon his written approval, which may 
at any time be revoked.



Sec.  215.4  Production of contracts and documents.

    Whenever the Administrator determines that certain foreign crude oil 
supply information is necessary to assist in the formulation of energy 
policy or to carry out any other function of the Administrator, he may 
require the production by any person of any agreement or document 
relating to foreign oil supply arrangements or reports related thereto. 
Such material shall be provided pursuant to the conditions prescribed by 
the Administrator at the time of such order or subsequently. As used in 
this section, the term ``agreement'' includes proposed or draft 
agreements, and agreements in which the parties have tentatively 
concurred but have not yet signed, between or among persons and a host 
country.



Sec.  215.5  Pricing and volume reports.

    To the extent not reported pursuant to Sec.  215.3, any person 
lifting for export crude oil from a country shall report to the DOE 
within 30 days of the date on which he receives actual notice:
    (a) Any change (including changes in the timing of collection) by 
the host government in official selling prices, royalties, host 
government taxes, service fees, quality or port differentials, or any 
other payments made directly or indirectly for crude oil; changes in 
participation ratios; changes in concessionary arrangements; and
    (b) Any changes in restrictions on lifting, production, or 
disposition.



Sec.  215.6  Notice of negotiations.

    Any person conducting negotiations with a host government which may 
reasonably lead to the establishment of any supply arrangement subject 
to reporting pursuant to Sec.  215.3(a), or may reasonably have a 
significant effect on the terms and conditions of an arrangement subject 
to Sec.  215.3(a), shall notify DOE of such negotiations. Such notice 
shall be made no later than the later of 30 days after the effective 
date of this regulation or within 14 days after such negotiations meet 
the conditions of this section, and shall specify all persons involved 
and the host government affected. Notice must be in writing to the 
Assistant Administrator for International Energy Affairs. Where this 
notice pertains to negotiations to modify a supply agreement previously 
reported to the Department of Energy under this part, such notice shall 
include the agreement serial number assigned to the basic agreement.



PART 216_MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS 
OR ORDERS TO MAXIMIZE DOMESTIC ENERGY SUPPLIES--Table of Contents



Sec.
216.1 Introduction.
216.2 Definitions.
216.3 Requests for assistance.
216.4 Evaluation by DOE of applications.
216.5 Notification of findings.
216.6 Petition for reconsideration.
216.7 Conflict in priority orders.
216.8 Communications.
216.9 Violations.

    Authority: Section 104 of the Energy Policy and Conservation Act 
(EPCA), Pub. L. 94-163, 89 Stat. 871; section 101(c) of the Defense 
Production Act of 1950, 50 U.S.C. 4511(c); E.O.

[[Page 70]]

12919, 59 FR 29525 (June 7, 1994); E.O. 13286, 68 FR 10619 (March 5, 
2003); 15 CFR part 700; Defense Priorities and Allocations System 
Delegation No. 2 (Aug. 6, 2002), as amended at 15 CFR part 700.

    Source: 43 FR 6212, Feb. 14, 1978, unless otherwise noted.



Sec.  216.1  Introduction.

    (a) This part describes and establishes the procedures to be used by 
the Department of Energy (DOE) in considering and making certain 
findings required by section 101(c)(2)(A) of the Defense Production Act 
of 1950, as amended, 50 U.S.C. app. 2071(c)(2)(A) (DPA). Section 101(c) 
authorizes the allocation of, or priority performance under contracts or 
orders (other than contracts of employment) relating to, materials and 
equipment, services, or facilities in order to maximize domestic energy 
supplies if the findings described in section 101(c)(2) are made. Among 
these findings are that such supplies of materials and equipment, 
services, or facilities are critical and essential to maintain or 
further exploration, production, refining, transportation or the 
conservation of energy supplies or for the construction or maintenance 
of energy facilities. The function of finding that supplies are critical 
and essential was delegated to the Secretary of Energy pursuant to E.O. 
12919 (59 FR 29525, June 7, 1994) and Department of Commerce Defense 
Priorities and Allocations System Delegation No. 2, 15 CFR part 700.
    (b) The purpose of these regulations is to establish the procedures 
and criteria to be used by DOE in determining whether programs or 
projects maximize domestic energy supplies and whether or not supplies 
of materials and equipment, services, or facilities are critical and 
essential, as required by DPA section 101(c)(2)(A). The critical and 
essential finding will be made only for supplies of materials and 
equipment, services, or facilities related to those programs or projects 
determined by DOE to maximize domestic energy supplies. These 
regulations do not require or imply that the findings, on which the 
exercise of such authority is conditioned, will be made in any 
particular case.
    (c) If DOE determines that a program or project maximizes domestic 
energy supplies and finds that supplies of materials and equipment, 
services, or facilities are critical and essential to maintain or 
further the exploration, production, refining, transportation or 
conservation of energy supplies or for the construction or maintenance 
of energy facilities, such determination and finding will be 
communicated to the Department of Commerce (DOC). If not, the applicant 
will be so informed. If the determination and finding described in this 
paragraph are made, DOC, pursuant to DPA section 101(c) and section 203 
of E.O. 12919, will find whether or not: The supplies of materials and 
equipment, services, or facilities in question are scarce; and 
maintenance or furtherance of exploration, production, refining, 
transportation, or conservation of energy supplies or the construction 
or maintenance of energy facilities cannot be reasonably accomplished 
without exercising the authority specified in DPA section 101(c). If 
these additional two findings are made, DOC will notify DOE, and DOE 
will inform the applicant that it has been granted the right to use 
priority ratings under the Defense Priorities and Allocations System 
(DPAS) regulation established by the DOC, 15 CFR part 700.

[73 FR 10983, Feb. 29, 2008]



Sec.  216.2  Definitions.

    As used in these regulations:
    (a) Secretary means the Secretary of the Department of Energy.
    (b) Applicant means a person requesting priorities or allocation 
assistance in connection with an energy program or project.
    (c) Application means the written request of an applicant for 
assistance.
    (d) Assistance means use of the authority vested in the President by 
DPA section 101(c) to implement priorities and allocation support.
    (e) DHS means the Department of Homeland Security.
    (f) DOC means the Department of Commerce.
    (g) DOE means the Department of Energy.
    (h) Defense Priorities and Allocations System Coordination Office 
means the

[[Page 71]]

Department of Energy, Office of Electricity.
    (i) Eligible energy program or project means a designated activity 
which maximizes domestic energy supplies by furthering the exploration, 
production, refining, transportation or conservation of energy supplies 
or construction or maintenance of energy facilities within the meaning 
of DPA section 101(c), as determined by DOE.
    (j) Facilities means all types of buildings, structures, or other 
improvements to real property (but excluding farms, churches or other 
places of worship, and private dwelling houses), and services relating 
to the use of any such building, structure, or other improvement.
    (k) Materials and equipment means: (1) Any raw materials (including 
minerals, metals, and advanced processed materials), commodities, 
articles, components (including critical components), products, and 
items of supply; and
    (2) Any technical information or services ancillary to the use of 
such raw materials, commodities, articles, components, products, or 
items.
    (l) National Defense means programs for military and energy 
production or construction, military assistance to any foreign nation, 
stockpiling, space, and any directly related activity. Such term also 
includes emergency preparedness activities conducted pursuant to title 
VI of the Robert T. Stafford Disaster Relief and Emergency Assistance 
Act (42 U.S.C. 5195, et seq.) and critical infrastructure protection and 
restoration.
    (m) Person means an individual, corporation, partnership, 
association, or any other organized group of persons, or legal successor 
or representative thereof, or any state or local government or agency 
thereof.
    (n) Services include any effort that is needed for or incidental to:
    (1) The development, production, processing, distribution, delivery, 
or use of an industrial resource, or critical technology item; or
    (2) The construction of facilities.

[43 FR 6212, Feb. 14, 1978, as amended at 51 FR 8311, Mar. 11, 1986; 73 
FR 10983, Feb. 29, 2008; 85 FR 31669, May 27, 2020]



Sec.  216.3  Requests for assistance.

    (a) Persons who believe that they perform work associated with a 
program or project which may qualify as an eligible energy program or 
project and wishing to receive assistance as authorized by DPA section 
101(c)(1) may submit an application to DOE requesting DOE to determine 
whether a program or project maximizes domestic energy supplies and to 
find whether or not specific supplies of materials and equipment, 
services, or facilities identified in the application are critical and 
essential for a purpose identified in section 101(c). The application 
shall be sent to: U.S. Department of Energy, Attn: Office of 
Electricity, Forrestal Building, 1000 Independence Avenue, SW., 
Washington, DC 20585. The application shall contain the following 
information:
    (1) The name and address of the applicant and of its duly authorized 
representative.
    (2) A description of the energy program or project for which 
assistance is requested and an assessment of its impact on the 
maximization of domestic energy supplies.
    (3) The amount of energy to be produced by the program or project 
which is directly affected by the supplies of the materials and 
equipment, services, or facilities in question.
    (4) A statement explaining why the materials and equipment, 
services, or facilities for which assistance is requested are critical 
and essential to the construction or operation of the energy project or 
program.
    (5) A detailed description of the specific supplies of materials and 
equipment, services, or facilities in connection with which assistance 
is requested, including: Components, performance data (capacity, life 
duration, etc.), standards, acceptable tolerances in dimensions and 
specifications, current inventory, present and expected rates of use, 
anticipated deliveries and substitution possibilities (feasibility of 
using other materials and equipment, services, or facilities).
    (6) A detailed description of the sources of supply, including: The 
name of the regular supplying company or companies, other companies 
capable of

[[Page 72]]

supplying the materials and equipment, services, or facilities; location 
of supplying plants or plants capable of supplying the needed materials 
and equipment, services, or facilities; possible suppliers for identical 
or substitutable materials and equipment, services, or facilities and 
possible foreign sources of supply.
    (7) A detailed description of the delivery situation, including: 
Normal delivery times, promised delivery time without priorities 
assistance, and delivery time required for expeditious fulfillment or 
completion of the program or project.
    (8) Evidence of the applicant's unsuccessful efforts to obtain on a 
timely basis the materials and equipment, services, or facilities in 
question through normal business channels from current or other known 
suppliers.
    (9) A detailed estimate of the delay in fulfilling or completing the 
energy program or project which will be caused by inability to obtain 
the specified materials and equipment, services, or facilities in the 
usual course of business.
    (10) Any known conflicts with rated orders already issued pursuant 
to the DPA for supplies of the described materials and equipment, 
services, or facilities.
    (b) DOE, on consultation with the DOC, may prescribe standard forms 
of application or letters of instruction for use by all persons seeking 
assistance.
    (c) In addition to the information described above, DOE may from 
time to time request whatever additional information it reasonably 
believes is relevant to the discharge of its functions pursuant to DPA 
section 101(c).

[43 FR 6212, Feb. 14, 1978, as amended at 51 FR 8311, Mar. 11, 1986; 73 
FR 10983, Feb. 29, 2008; 85 FR 31669, May 27, 2020]



Sec.  216.4  Evaluation by DOE of applications.

    (a) Based on the information provided by the applicant and other 
available information, DOE will:
    (1) Determine whether or not the energy program or project in 
connection with which the application is made maximizes domestic energy 
supplies and should be designated an eligible energy program or project; 
and
    (2) Find whether the described supplies of materials and equipment, 
services, or facilities are critical and essential to the eligible 
energy program or project.
    (b) In determining whether the program or project referred to in the 
application should be designated an eligible energy program or project, 
DOE will consider all factors which it considers relevant including, but 
not limited to, the following:
    (1) Quantity of energy involved;
    (2) Benefits of timely energy program furtherance or project 
completion;
    (3) Socioeconomic impact;
    (4) The need for the end product for which the materials and 
equipment, services, or facilities are allegedly required; and
    (5) Established national energy policies.
    (c) In finding whether the supplies of materials and equipment, 
services, or facilities described in the application are critical and 
essential to an eligible energy program or project, DOE will consider 
all factors which it considers relevant including, but not limited to, 
the following:
    (1) Availability and utility of substitute materials and equipment, 
services, or facilities; and
    (2) Impact of the nonavailability of the specific supplies of 
materials and equipment, services, or facilities on the furtherance or 
timely completion of the approved energy program or project.
    (d) Increased costs which may be associated with obtaining materials 
and equipment, services, or facilities without assistance shall not be 
considered a valid reason for finding the materials and equipment, 
services, or facilities to be critical and essential.
    (e) After DOE has determined a program or project to be an eligible 
energy program or project, this determination shall be deemed made with 
regard to subsequent applications involving the same program or project 
unless and until DOE announces otherwise.

[43 FR 6212, Feb. 14, 1978, as amended at 73 FR 10984, Feb. 29, 2008]

[[Page 73]]



Sec.  216.5  Notification of findings.

    (a) DOE will notify DOC if it finds that supplies of materials and 
equipment, services, or facilities for which an applicant requested 
assistance are critical and essential to an eligible energy program or 
project, and in such cases will forward to DOC the application and 
whatever information or comments DOE believes appropriate. If DOE 
believes at any time that findings previously made may no longer be 
valid, it will immediately notify the DOC and the affected applicant(s) 
and afford such applicant(s) an opportunity to show cause why such 
findings should not be withdrawn.
    (b) If DOC notifies DOE that DOC has found that supplies of 
materials and equipment, services, or facilities for which the applicant 
requested assistance are scarce and that the related eligible energy 
program or project cannot reasonably be accomplished without exercising 
the authority specified in DPA section 101(c)(1), DOE will notify the 
applicant that the applicant is authorized to place rated orders for 
specific materials and equipment, services, or facilities pursuant to 
the provisions of the DOC's DPAS regulation.

[73 FR 10984, Feb. 29, 2008]



Sec.  216.6  Petition for reconsideration.

    If DOE, after evaluating an application in accordance with Sec.  
216.4, does not determine that the energy program or project maximizes 
domestic energy supplies or does not find that the supplies of materials 
and equipment, services, or facilities described in the application are 
critical and essential to an eligible energy program or project, it will 
so notify the applicant and the applicant may petition DOE for 
reconsideration. If DOE concludes at any time that findings previously 
made are no longer valid and should be withdrawn, DOE will so notify the 
affected applicant(s), and such applicant(s) may petition DOE for 
reconsideration of the withdrawal decision. A petition is deemed 
accepted when received by DOE at the address stated in Sec.  216.8. DOE 
will consider the petition for reconsideration and either grant or deny 
the relief requested. Written notice of the decision and of the reasons 
for the decision will be provided to the applicant. There has not been 
an exhaustion of administrative remedies until a petition for 
reconsideration has been submitted and the review procedure completed by 
grant or denial of the relief requested. The denial of relief requested 
in a petition for reconsideration is a final administrative decision.

[43 FR 6212, Feb. 14, 1978, as amended at 51 FR 8312, Mar. 11, 1986; 73 
FR 10984, Feb. 29, 2008]



Sec.  216.7  Conflict in priority orders.

    If it appears that the use of assistance pursuant to DPA section 
101(c) creates or threatens to create a conflict with priorities and 
allocation support provided in connection with the national defense 
pursuant to DPA section 101(a), DOE will work with the DOC and other 
claimant agencies affected by the conflict to reschedule deliveries or 
otherwise accommodate the competing demands. If acceptable solutions 
cannot be agreed upon by the claimant agencies DHS will attempt to 
resolve theconflicts.

[43 FR 6212, Feb. 14, 1978, as amended at 51 FR 8312, Mar. 11, 1986; 73 
FR 10984, Feb. 29, 2008]



Sec.  216.8  Communications.

    All written communications concerning these regulations shall be 
addressed to: U.S. Department of Energy, Attention: Office of 
Electricity, Forrestal Building, 1000 Independence Avenue, SW., 
Washington, DC 20585.

[73 FR 10984, Feb. 29, 2008, as amended at 85 FR 31669, May 27, 2020]



Sec.  216.9  Violations.

    Any person who willfully furnishes false information or conceals any 
material fact in the course of the application process or in a petition 
for reconsideration is guilty of a crime, and upon conviction may be 
punished by fine or imprisonment or both.



PART 217_ENERGY PRIORITIES AND ALLOCATIONS SYSTEM--Table of Contents



                            Subpart A_General

Sec.
217.1 Purpose of this part.

[[Page 74]]

217.2 Priorities and allocations authority.
217.3 Program eligibility.

                          Subpart B_Definitions

217.20 Definitions.

                   Subpart C_Placement of Rated Orders

217.30 Delegation of authority.
217.31 Priority ratings.
217.32 Elements of a rated order.
217.33 Acceptance and rejection of rated orders.
217.34 Preferential scheduling.
217.35 Extension of priority ratings.
217.36 Changes or cancellations of priority ratings and rated orders.
217.37 Use of rated orders.
217.38 Limitations on placing rated orders.

                 Subpart D_Special Priorities Assistance

217.40 General provisions.
217.41 Requests for priority rating authority.
217.42 Examples of assistance.
217.43 Criteria for assistance.
217.44 Instances where assistance may not be provided.

                      Subpart E_Allocation Actions

217.50 Policy.
217.51 General procedures.
217.52 Controlling the general distribution of a material in the 
          civilian market.
217.53 Types of allocation orders.
217.54 Elements of an allocation order.
217.55 Mandatory acceptance of an allocation order.
217.56 Changes or cancellations of an allocation order.

                       Subpart F_Official Actions

217.60 General provisions.
217.61 Rating Authorizations.
217.62 Directives.
217.63 Letters and Memoranda of Understanding.

                          Subpart G_Compliance

217.70 General provisions.
217.71 Audits and investigations.
217.72 Compulsory process.
217.73 Notification of failure to comply.
217.74 Violations, penalties, and remedies.
217.75 Compliance conflicts.

             Subpart H_Adjustments, Exceptions, and Appeals

217.80 Adjustments or exceptions.
217.81 Appeals.

                   Subpart I_Miscellaneous Provisions

217.90 Protection against claims.
217.91 Records and reports.
217.92 Applicability of this part and official actions.
217.93 Communications.

Appendix I to Part 217--Sample Form DOE F 544 (05-11)

    Authority: Defense Production Act of 1950, as amended, 50 U.S.C. 
4501-4568; E.O. 12919, as amended, (59 FR 29525 June 7, 1994).

    Source: 76 FR 33619, June 9, 2011, unless otherwise noted.



                            Subpart A_General



Sec.  217.1  Purpose of this part.

    This part provides guidance and procedures for use of the Defense 
Production Act section 101(a) priorities and allocations authority with 
respect to all forms of energy necessary or appropriate to promote the 
national defense. (The guidance and procedures in this part are 
consistent with the guidance and procedures provided in other 
regulations that, as a whole, form the Federal Priorities and 
Allocations System. Guidance and procedures for use of the Defense 
Production Act priorities and allocations authority with respect to 
other types of resources are provided for: Food resources, food resource 
facilities, and the domestic distribution of farm equipment and 
commercial fertilizer; health resources; all forms of civil 
transportation (49 CFR Part 33); water resources; and all other 
materials, services, and facilities, including construction materials in 
the Defense Priorities and Allocations System (DPAS) regulation (15 CFR 
Part 700).) Department of Energy (DOE) regulations at 10 CFR Part 216 
describe and establish the procedures to be used by DOE in considering 
and making certain findings required by section 101(c)(2)(A) of the 
Defense Production Act of 1950, as amended.



Sec.  217.2  Priorities and allocations authority.

    (a) Section 201 of E.O. 12919 (59 FR 29525) delegates the 
President's authority under section 101 of the Defense Production Act to 
require acceptance and priority performance of contracts

[[Page 75]]

and orders (other than contracts of employment) to promote the national 
defense over performance of any other contracts or orders, and to 
allocate materials, services, and facilities as deemed necessary or 
appropriate to promote the national defense to:
    (1) The Secretary of Agriculture with respect to food resources, 
food resource facilities, and the domestic distribution of farm 
equipment and commercial fertilizer;
    (2) The Secretary of Energy with respect to all forms of energy;
    (3) The Secretary of Health and Human Services with respect to 
health resources;
    (4) The Secretary of Transportation with respect to all forms of 
civil transportation;
    (5) The Secretary of Defense with respect to water resources; and
    (6) The Secretary of Commerce for all other materials, services, and 
facilities, including construction materials.
    (b) Section 202 of E.O. 12919 states that the priorities and 
allocations authority delegated in section 201 of this order may be used 
only to support programs that have been determined in writing as 
necessary or appropriate to promote the national defense:
    (1) By the Secretary of Defense with respect to military production 
and construction, military assistance to foreign nations, stockpiling, 
outer space, and directly related activities;
    (2) By the Secretary of Energy with respect to energy production and 
construction, distribution and use, and directly related activities; and
    (3) By the Secretary of Homeland Security with respect to essential 
civilian needs supporting national defense, including civil defense and 
continuity of government and directly related activities.



Sec.  217.3  Program eligibility.

    Certain programs to promote the national defense are eligible for 
priorities and allocations support. These include programs for military 
and energy production or construction, military or critical 
infrastructure assistance to any foreign nation, deploying and 
sustaining military forces, homeland security, stockpiling, space, and 
any directly related activity. Other eligible programs include emergency 
preparedness activities conducted pursuant to title VI of the Robert T. 
Stafford Disaster Relief and Emergency Assistance Act (42 U.S.C. 5195 et 
seq.) and critical infrastructure protection and restoration.



                          Subpart B_Definitions



Sec.  217.20  Definitions.

    The following definitions pertain to all sections of this part:
    Allocation order means an official action to control the 
distribution of materials, services, or facilities for a purpose deemed 
necessary or appropriate to promote the national defense.
    Allotment means an official action that specifies the maximum 
quantity or use of a material, service, or facility authorized for a 
specific use to promote the national defense.
    Approved program means a program determined by the Secretary of 
Defense, the Secretary of Energy, or the Secretary of Homeland Security 
to be necessary or appropriate to promote the national defense, in 
accordance with section 202 of E.O. 12919.
    Civil transportation includes movement of persons and property by 
all modes of transportation in interstate, intrastate, or foreign 
commerce within the United States, its territories and possessions, and 
the District of Columbia, and, without limitation, related public 
storage and warehousing, ports, services, equipment and facilities, such 
as transportation carrier shop and repair facilities. However, ``civil 
transportation'' shall not include transportation owned or controlled by 
the Department of Defense, use of petroleum and gas pipelines, and coal 
slurry pipelines used only to supply energy production facilities 
directly. As applied herein, ``civil transportation'' shall include 
direction, control, and coordination of civil transportation capacity 
regardless of ownership.
    Construction means the erection, addition, extension, or alteration 
of any building, structure, or project, using materials or products 
which are to be an integral and permanent part of the building, 
structure, or project. Construction does not include maintenance and 
repair.

[[Page 76]]

    Critical infrastructure means any systems and assets, whether 
physical or cyber-based, so vital to the United States that the 
degradation or destruction of such systems and assets would have a 
debilitating impact on national security, including, but not limited to, 
national economic security and national public health or safety.
    Defense Production Act means the Defense Production Act of 1950, as 
amended (50 U.S.C. App. 2061 et seq.).
    Delegate Agency means a Federal government agency authorized by 
delegation from the Department of Energy to place priority ratings on 
contracts or orders needed to support approved programs.
    Directive means an official action that requires a person to take or 
refrain from taking certain actions in accordance with its provisions.
    Emergency preparedness means all those activities and measures 
designed or undertaken to prepare for or minimize the effects of a 
hazard upon the civilian population, to deal with the immediate 
emergency conditions which would be created by the hazard, and to 
effectuate emergency repairs to, or the emergency restoration of, vital 
utilities and facilities destroyed or damaged by the hazard. Such term 
includes the following:
    (1) Measures to be undertaken in preparation for anticipated hazards 
(including the establishment of appropriate organizations, operational 
plans, and supporting agreements, the recruitment and training of 
personnel, the conduct of research, the procurement and stockpiling of 
necessary materials and supplies, the provision of suitable warning 
systems, the construction or preparation of shelters, shelter areas, and 
control centers, and, when appropriate, the nonmilitary evacuation of 
the civilian population).
    (2) Measures to be undertaken during a hazard (including the 
enforcement of passive defense regulations prescribed by duly 
established military or civil authorities, the evacuation of personnel 
to shelter areas, the control of traffic and panic, and the control and 
use of lighting and civil communications).
    (3) Measures to be undertaken following a hazard (including 
activities for fire fighting, rescue, emergency medical, health and 
sanitation services, monitoring for specific dangers of special weapons, 
unexploded bomb reconnaissance, essential debris clearance, emergency 
welfare measures, and immediately essential emergency repair or 
restoration of damaged vital facilities).
    Energy means all forms of energy including petroleum, gas (both 
natural and manufactured), electricity, solid fuels (including all forms 
of coal, coke, coal chemicals, coal liquification, and coal 
gasification), and atomic energy, and the production, conservation, use, 
control, and distribution (including pipelines) of all of these forms of 
energy.
    Facilities includes all types of buildings, structures, or other 
improvements to real property (but excluding farms, churches or other 
places of worship, and private dwelling houses), and services relating 
to the use of any such building, structure, or other improvement.
    Farm equipment means equipment, machinery, and repair parts 
manufactured for use on farms in connection with the production or 
preparation for market use of food resources.
    Fertilizer means any product or combination of products that contain 
one or more of the elements--nitrogen, phosphorus, and potassium--for 
use as a plant nutrient.
    Food resources means all commodities and products, simple, mixed, or 
compound, or complements to such commodities or products, that are 
capable of being ingested by either human beings or animals, 
irrespective of other uses to which such commodities or products may be 
put, at all stages of processing from the raw commodity to the products 
thereof in vendible form for human or animal consumption. ``Food 
resources'' also means all starches, sugars, vegetable and animal or 
marine fats and oils, cotton, tobacco, wool, mohair, hemp, flax fiber, 
and naval stores, but does not mean any such material after it loses its 
identity as an agricultural commodity or agricultural product.
    Food resource facilities means plants, machinery, vehicles 
(including on-farm), and other facilities required for

[[Page 77]]

the production, processing, distribution, and storage (including cold 
storage) of food resources, livestock and poultry feed and seed, and for 
the domestic distribution of farm equipment and fertilizer (excluding 
transportation thereof).
    Hazard means an emergency or disaster resulting from:
    (1) A natural disaster; or
    (2) An accidental or human-caused event.
    Health resources means drugs, biological products, medical devices, 
diagnostics, materials, facilities, health supplies, services and 
equipment required to diagnose, prevent the impairment of, improve, or 
restore the physical or mental health conditions of the population.
    Homeland security includes efforts--
    (1) To prevent terrorist attacks within the United States;
    (2) To reduce the vulnerability of the United States to terrorism;
    (3) To minimize damage from a terrorist attack in the United States; 
and
    (4) To recover from a terrorist attack in the United States.
    Industrial resources means all materials, services, and facilities, 
including construction materials, but not including: food resources, 
food resource facilities, and the domestic distribution of farm 
equipment and commercial fertilizer; all forms of energy; health 
resources; all forms of civil transportation; and water resources.
    Item means any raw, in process, or manufactured material, article, 
commodity, supply, equipment, component, accessory, part, assembly, or 
product of any kind, technical information, process, or service.
    Maintenance and repair and operating supplies or MRO--
    (1) ``Maintenance'' is the upkeep necessary to continue any plant, 
facility, or equipment in working condition.
    (2) ``Repair'' is the restoration of any plant, facility, or 
equipment to working condition when it has been rendered unsafe or unfit 
for service by wear and tear, damage, or failure of parts.
    (3) ``Operating supplies'' are any resources carried as operating 
supplies according to a person's established accounting practice. 
Operating supplies may include hand tools and expendable tools, jigs, 
dies, fixtures used on production equipment, lubricants, cleaners, 
chemicals and other expendable items.
    (4) MRO does not include items produced or obtained for sale to 
other persons or for installation upon or attachment to the property of 
another person, or items required for the production of such items; 
items needed for the replacement of any plant, facility, or equipment; 
or items for the improvement of any plant, facility, or equipment by 
replacing items which are still in working condition with items of a new 
or different kind, quality, or design.
    Materials includes--
    (1) Any raw materials (including minerals, metals, and advanced 
processed materials), commodities, articles, components (including 
critical components), products, and items of supply; and
    (2) Any technical information or services ancillary to the use of 
any such materials, commodities, articles, components, products, or 
items.
    (3) Natural resources such as oil and gas.
    National defense means programs for military and energy production 
or construction, military or critical infrastructure assistance to any 
foreign nation, homeland security, stockpiling, space, and any directly 
related activity. Such term includes emergency preparedness activities 
conducted pursuant to title VI of the Robert T. Stafford Disaster Relief 
and Emergency Assistance Act (42 U.S.C. 5195, et seq.) and critical 
infrastructure protection and restoration.
    Official action means an action taken by the Department of Energy or 
another resource agency under the authority of the Defense Production 
Act, E.O. 12919, and this part or another regulation under the Federal 
Priorities and Allocations System. Such actions include the issuance of 
Rating Authorizations, Directives, Set Asides, Allotments, Letters of 
Understanding, Memoranda of Understanding, Demands for Information, 
Inspection Authorizations, and Administrative Subpoenas.

[[Page 78]]

    Person includes an individual, corporation, partnership, 
association, or any other organized group of persons, or legal successor 
or representative thereof, or any State or local government or agency 
thereof.
    Rated order means a prime contract, a subcontract, or a purchase 
order in support of an approved program issued in accordance with the 
provisions of this part.
    Resource agency means any agency delegated priorities and 
allocations authority as specified in Sec.  217.2.
    Secretary means the Secretary of Energy.
    Services includes any effort that is needed for or incidental to--
    (1) The development, production, processing, distribution, delivery, 
or use of an industrial resource or a critical technology item;
    (2) The construction of facilities;
    (3) The movement of individuals and property by all modes of civil 
transportation; or
    (4) Other national defense programs and activities.
    Set-aside means an official action that requires a person to reserve 
materials, services, or facilities capacity in anticipation of the 
receipt of rated orders.
    Stafford Act means title VI (Emergency Preparedness) of the Robert 
T. Stafford Disaster Relief and Emergency Assistance Act, as amended (42 
U.S.C. 5195-5197g).
    Water resources means all usable water, from all sources, within the 
jurisdiction of the United States, which can be managed, controlled, and 
allocated to meet emergency requirements.



                   Subpart C_Placement of Rated Orders



Sec.  217.30  Delegations of authority.

    (a) The priorities and allocations authorities of the President 
under Title I of the Defense Production Act with respect to all forms of 
energy have been delegated to the Secretary of Energy under E.O. 12919 
of June 3, 1994 (59 FR 29525).
    (b) The Department of Commerce has delegated authority to the 
Department of Energy to provide for extension of priority ratings for 
``industrial resources,'' as provided in Sec.  261.35 of this part, to 
support rated orders for all forms of energy.



Sec.  217.31  Priority ratings.

    (a) Levels of priority.
    (1) There are two levels of priority established by the Energy 
Priorities and Allocations System regulations, identified by the rating 
symbols ``DO'' and ``DX''.
    (2) All DO-rated orders have equal priority with each other and take 
precedence over unrated orders. All DX-rated orders have equal priority 
with each other and take precedence over DO-rated orders and unrated 
orders. (For resolution of conflicts among rated orders of equal 
priority, see Sec.  217.34(c).)
    (3) In addition, a Directive regarding priority treatment for a 
given item issued by the Department of Energy for that item takes 
precedence over any DX-rated order, DO-rated order, or unrated order, as 
stipulated in the Directive. (For a full discussion of Directives, see 
Sec.  217.62.)
    (b) Program identification symbols. Program identification symbols 
indicate which approved program is being supported by a rated order. The 
list of currently approved programs and their identification symbols are 
listed in Schedule 1, set forth as an appendix to 15 CFR part 700. For 
example, DO-F3 identifies a domestic energy construction program. 
Additional programs may be approved under the procedures of E.O. 12919 
at any time. Program identification symbols do not connote any priority.
    (c) Priority ratings. A priority rating consists of the rating 
symbol--DO or DX--and the program identification symbol, such as F1, F2, 
or F3. Thus, a contract for a domestic energy construction program will 
contain a DO-F3 or DX-F3 priority rating.



Sec.  217.32  Elements of a rated order.

    Each rated order must include:
    (a) The appropriate priority rating (e.g. DO-F1 or DX-F1)
    (b) A required delivery date or dates. The words ``immediately'' or 
``as soon as possible'' do not constitute a delivery date. A 
``requirements contract'',

[[Page 79]]

``basic ordering agreement'', ``prime vendor contract'', or similar 
procurement document bearing a priority rating may contain no specific 
delivery date or dates and may provide for the furnishing of items or 
service from time to time or within a stated period against specific 
purchase orders, such as ``calls'', ``requisitions'', and ``delivery 
orders''. These purchase orders must specify a required delivery date or 
dates and are to be considered as rated as of the date of their receipt 
by the supplier and not as of the date of the original procurement 
document;
    (c) The written signature on a manually placed order, or the digital 
signature or name on an electronically placed order, of an individual 
authorized to sign rated orders for the person placing the order. The 
signature or use of the name certifies that the rated order is 
authorized under this part and that the requirements of this part are 
being followed; and
    (d)(1) A statement that reads in substance:
    This is a rated order certified for national defense use, and you 
are required to follow all the provisions of the Energy Priorities and 
Allocations System regulation at 10 CFR part 217.
    (2) If the rated order is placed in support of emergency 
preparedness requirements and expedited action is necessary and 
appropriate to meet these requirements, the following sentences should 
be added following the statement set forth in paragraph (d)(1) of this 
section:
    This rated order is placed for the purpose of emergency 
preparedness. It must be accepted or rejected within 2 days after 
receipt of the order if (1) The order is issued in response to a hazard 
that has occurred; or
    (2) If the order is issued to prepare for an imminent hazard, as 
specified in EPAS Section 217.33(e), 10 CFR 217.33(e).



Sec.  217.33  Acceptance and rejection of rated orders.

    (a) Mandatory acceptance. (1) Except as otherwise specified in this 
section, a person shall accept every rated order received and must fill 
such orders regardless of any other rated or unrated orders that have 
been accepted.
    (2) A person shall not discriminate against rated orders in any 
manner such as by charging higher prices or by imposing different terms 
and conditions than for comparable unrated orders.
    (b) Mandatory rejection. Unless otherwise directed by the Department 
of Energy for a rated order involving all forms of energy:
    (1) A person shall not accept a rated order for delivery on a 
specific date if unable to fill the order by that date. However, the 
person must inform the customer of the earliest date on which delivery 
can be made and offer to accept the order on the basis of that date. 
Scheduling conflicts with previously accepted lower rated or unrated 
orders are not sufficient reason for rejection under this section.
    (2) A person shall not accept a DO-rated order for delivery on a 
date which would interfere with delivery of any previously accepted DO- 
or DX-rated orders. However, the person must offer to accept the order 
based on the earliest delivery date otherwise possible.
    (3) A person shall not accept a DX-rated order for delivery on a 
date which would interfere with delivery of any previously accepted DX-
rated orders, but must offer to accept the order based on the earliest 
delivery date otherwise possible.
    (4) If a person is unable to fill all of the rated orders of equal 
priority status received on the same day, the person must accept, based 
upon the earliest delivery dates, only those orders which can be filled, 
and reject the other orders. For example, a person must accept order A 
requiring delivery on December 15 before accepting order B requiring 
delivery on December 31. However, the person must offer to accept the 
rejected orders based on the earliest delivery dates otherwise possible.
    (c) Optional rejection. Unless otherwise directed by the Department 
of Energy for a rated order involving all forms of energy, rated orders 
may be rejected in any of the following cases as long as a supplier does 
not discriminate among customers:

[[Page 80]]

    (1) If the person placing the order is unwilling or unable to meet 
regularly established terms of sale or payment;
    (2) If the order is for an item not supplied or for a service not 
capable of being performed;
    (3) If the order is for an item or service produced, acquired, or 
provided only for the supplier's own use for which no orders have been 
filled for two years prior to the date of receipt of the rated order. 
If, however, a supplier has sold some of these items or provided similar 
services, the supplier is obligated to accept rated orders up to that 
quantity or portion of production or service, whichever is greater, sold 
or provided within the past two years;
    (4) If the person placing the rated order, other than the U.S. 
Government, makes the item or performs the service being ordered;
    (5) If acceptance of a rated order or performance against a rated 
order would violate any other regulation, official action, or order of 
the Department of Energy, issued under the authority of the Defense 
Production Act or another relevant statute.
    (d) Customer notification requirements. (1) Except as provided in 
this paragraph, a person must accept or reject a rated order in writing 
or electronically within fifteen (15) working days after receipt of a DO 
rated order and within ten (10) working days after receipt of a DX rated 
order. If the order is rejected, the person must give reasons in writing 
or electronically for the rejection.
    (2) If a person has accepted a rated order and subsequently finds 
that shipment or performance will be delayed, the person must notify the 
customer immediately, give the reasons for the delay, and advise of a 
new shipment or performance date. If notification is given verbally, 
written or electronic confirmation must be provided within five (5) 
working days.
    (e) Exception for emergency preparedness conditions. If the rated 
order is placed for the purpose of emergency preparedness, a person must 
accept or reject a rated order and transmit the acceptance or rejection 
in writing or in an electronic format within 2 days after receipt of the 
order if:
    (1) The order is issued in response to a hazard that has occurred; 
or
    (2) The order is issued to prepare for an imminent hazard.



Sec.  217.34  Preferential scheduling.

    (a) A person must schedule operations, including the acquisition of 
all needed production items or services, in a timely manner to satisfy 
the delivery requirements of each rated order. Modifying production or 
delivery schedules is necessary only when required delivery dates for 
rated orders cannot otherwise be met.
    (b) DO-rated orders must be given production preference over unrated 
orders, if necessary to meet required delivery dates, even if this 
requires the diversion of items being processed or ready for delivery or 
services being performed against unrated orders. Similarly, DX-rated 
orders must be given preference over DO-rated orders and unrated orders. 
(Examples: If a person receives a DO-rated order with a delivery date of 
June 3 and if meeting that date would mean delaying production or 
delivery of an item for an unrated order, the unrated order must be 
delayed. If a DX-rated order is received calling for delivery on July 15 
and a person has a DO-rated order requiring delivery on June 2 and 
operations can be scheduled to meet both deliveries, there is no need to 
alter production schedules to give any additional preference to the DX-
rated order.)
    (c) Conflicting rated orders.
    (1) If a person finds that delivery or performance against any 
accepted rated orders conflicts with the delivery or performance against 
other accepted rated orders of equal priority status, the person shall 
give precedence to the conflicting orders in the sequence in which they 
are to be delivered or performed (not to the receipt dates). If the 
conflicting orders are scheduled to be delivered or performed on the 
same day, the person shall give precedence to those orders that have the 
earliest receipt dates.
    (2) If a person is unable to resolve rated order delivery or 
performance conflicts under this section, the person should promptly 
seek special priorities assistance as provided in Sec. Sec.  217.40 
through 217.44. If the person's customer objects to the rescheduling of 
delivery

[[Page 81]]

or performance of a rated order, the customer should promptly seek 
special priorities assistance as provided in Sec. Sec.  217.40 through 
217.44. For any rated order against which delivery or performance will 
be delayed, the person must notify the customer as provided in Sec.  
217.33.
    (d) If a person is unable to purchase needed production items in 
time to fill a rated order by its required delivery date, the person 
must fill the rated order by using inventoried production items. A 
person who uses inventoried items to fill a rated order may replace 
those items with the use of a rated order as provided in Sec.  
217.37(b).



Sec.  217.35  Extension of priority ratings.

    (a) A person must use rated orders with suppliers to obtain items or 
services needed to fill a rated order. The person must use the priority 
rating indicated on the customer's rated order, except as otherwise 
provided in this part or as directed by the Department of Energy. For 
example, if a person is in receipt of a DO-F1 rated order for an 
electric power sub-station, and needs to purchase a transformer for its 
manufacture, that person must use a DO-F1 rated order to obtain the 
needed transformer.
    (b) The priority rating must be included on each successive order 
placed to obtain items or services needed to fill a customer's rated 
order. This continues from contractor to subcontractor to supplier 
throughout the entire procurement chain.



Sec.  217.36  Changes or cancellations of priority ratings and rated orders.

    (a) The priority rating on a rated order may be changed or canceled 
by:
    (1) An official action of the Department of Energy; or
    (2) Written notification from the person who placed the rated order.
    (b) If an unrated order is amended so as to make it a rated order, 
or a DO rating is changed to a DX rating, the supplier must give the 
appropriate preferential treatment to the order as of the date the 
change is received by the supplier.
    (c) An amendment to a rated order that significantly alters a 
supplier's original production or delivery schedule shall constitute a 
new rated order as of the date of its receipt. The supplier must accept 
or reject the amended order according to the provisions of Sec.  217.33.
    (d) The following amendments do not constitute a new rated order: a 
change in shipping destination; a reduction in the total amount of the 
order; an increase in the total amount of the order which has negligible 
impact upon deliveries; a minor variation in size or design; or a change 
which is agreed upon between the supplier and the customer.
    (e) If a person no longer needs items or services to fill a rated 
order, any rated orders placed with suppliers for the items or services, 
or the priority rating on those orders, must be canceled.
    (f) When a priority rating is added to an unrated order, or is 
changed or canceled, all suppliers must be promptly notified in writing.



Sec.  217.37  Use of rated orders.

    (a) A person must use rated orders to obtain:
    (1) Items which will be physically incorporated into other items to 
fill rated orders, including that portion of such items normally 
consumed or converted into scrap or by-products in the course of 
processing;
    (2) Containers or other packaging materials required to make 
delivery of the finished items against rated orders;
    (3) Services, other than contracts of employment, needed to fill 
rated orders; and
    (4) MRO needed to produce the finished items to fill rated orders.
    (b) A person may use a rated order to replace inventoried items 
(including finished items) if such items were used to fill rated orders, 
as follows:
    (1) The order must be placed within 90 days of the date of use of 
the inventory.
    (2) A DO rating and the program identification symbol indicated on 
the customer's rated order must be used on the order. A DX rating may 
not be used even if the inventory was used to fill a DX-rated order.
    (3) If the priority ratings on rated orders from one customer or 
several customers contain different program identification symbols, the 
rated orders

[[Page 82]]

may be combined. In this case, the program identification symbol ``H1'' 
must be used (i.e., DO-H1).
    (c) A person may combine DX- and DO-rated orders from one customer 
or several customers if the items or services covered by each level of 
priority are identified separately and clearly. If different program 
identification symbols are indicated on those rated orders of equal 
priority, the person must use the program identification symbol ``H1'' 
(i.e., DO-H1 or DX-H1).
    (d) Combining rated and unrated orders.
    (1) A person may combine rated and unrated order quantities on one 
purchase order provided that:
    (i) The rated quantities are separately and clearly identified; and
    (ii) The four elements of a rated order, as required by Sec.  
217.32, are included on the order with the statement required in Sec.  
217.32(d) modified to read in substance:
    This purchase order contains rated order quantities certified for 
national defense use, and you are required to follow all applicable 
provisions of the Energy Priorities and Allocations System regulations 
at 10 CFR part 217 only as it pertains to the rated quantities.
    (2) A supplier must accept or reject the rated portion of the 
purchase order as provided in Sec.  217.33 and give preferential 
treatment only to the rated quantities as required by this part. This 
part may not be used to require preferential treatment for the unrated 
portion of the order.
    (3) Any supplier who believes that rated and unrated orders are 
being combined in a manner contrary to the intent of this part or in a 
fashion that causes undue or exceptional hardship may submit a request 
for adjustment or exception under Sec.  217.80.
    (e) A person may place a rated order for the minimum commercially 
procurable quantity even if the quantity needed to fill a rated order is 
less than that minimum. However, a person must combine rated orders as 
provided in paragraph (c) of this section, if possible, to obtain 
minimum procurable quantities.
    (f) A person is not required to place a priority rating on an order 
for less than $50,000, or one-half of the Simplified Acquisition 
Threshold (as established in the Federal Acquisition Regulation (FAR) 
(see FAR section 2.101) or in other authorized acquisition regulatory or 
management systems) whichever amount is greater, provided that delivery 
can be obtained in a timely fashion without the use of the priority 
rating.



Sec.  217.38  Limitations on placing rated orders.

    (a) General limitations.
    (1) A person may not place a DO- or DX-rated order unless entitled 
to do so under this part.
    (2) Rated orders may not be used to obtain:
    (i) Delivery on a date earlier than needed;
    (ii) A greater quantity of the item or services than needed, except 
to obtain a minimum procurable quantity. Separate rated orders may not 
be placed solely for the purpose of obtaining minimum procurable 
quantities on each order;
    (iii) Items or services in advance of the receipt of a rated order, 
except as specifically authorized by the Department of Energy (see Sec.  
217.41(c) for information on obtaining authorization for a priority 
rating in advance of a rated order);
    (iv) Items that are not needed to fill a rated order, except as 
specifically authorized by the Department of Energy, or as otherwise 
permitted by this part; or
    (v) Any of the following items unless specific priority rating 
authority has been obtained from the Department of Energy, a Delegate 
Agency, or the Department of Commerce, as appropriate:
    (A) Items for plant improvement, expansion, or construction, unless 
they will be physically incorporated into a construction project covered 
by a rated order; and
    (B) Production or construction equipment or items to be used for the 
manufacture of production equipment. [For information on requesting 
priority rating authority, see Sec.  217.21.]
    (vi) Any items related to the development of chemical or biological 
warfare capabilities or the production of chemical or biological 
weapons, unless such development or production has been

[[Page 83]]

authorized by the President or the Secretary of Defense.
    (b) Jurisdictional limitations.
    (1) Unless authorized by the resource agency with jurisdiction, the 
provisions of this part are not applicable to the following resources:
    (i) Food resources, food resource facilities, and the domestic 
distribution of farm equipment and commercial fertilizer (Resource 
agency with jurisdiction--Department of Agriculture);
    (ii) Health resources (Resource agency with jurisdiction--Department 
of Health and Human Services);
    (iii) All forms of civil transportation (Resource agency with 
jurisdiction--Department of Transportation);
    (iv) Water resources (Resource agency with jurisdiction--Department 
of Defense/U.S. Army Corps of Engineers); and
    (v) Communications services (Resource agency with jurisdiction--
National Communications System under E. O. 12472 of April 3, 1984).



                 Subpart D_Special Priorities Assistance



Sec.  217.40  General provisions.

    (a) The EPAS is designed to be largely self-executing. However, from 
time-to-time production or delivery problems will arise. In this event, 
a person should immediately contact the Office of Electricity, for 
guidance or assistance (Contact the Deputy Assistant Secretary of the 
Department of Energy overseeing the Defense Production Act program, as 
listed in Sec.  217.93). If the problem(s) cannot otherwise be resolved, 
special priorities assistance should be sought from the Department of 
Energy through the Office of Electricity (Contact the Deputy Assistant 
Secretary of the Department of Energy overseeing the Defense Production 
Act program, as listed in Sec.  217.93). If the Department of Energy is 
unable to resolve the problem or to authorize the use of a priority 
rating and believes additional assistance is warranted, the Department 
of Energy may forward the request to another agency with resource 
jurisdiction, as appropriate, for action. Special priorities assistance 
is provided to alleviate problems that do arise.
    (b) Special priorities assistance is available for any reason 
consistent with this part. Generally, special priorities assistance is 
provided to expedite deliveries, resolve delivery conflicts, place rated 
orders, locate suppliers, or to verify information supplied by customers 
and vendors. Special priorities assistance may also be used to request 
rating authority for items that are not normally eligible for priority 
treatment.
    (c) A request for special priorities assistance or priority rating 
authority must be submitted on Form DOE F 544 (05-11) (OMB control 
number 1910-5159) to the Deputy Assistant Secretary of the Department of 
Energy overseeing the Defense Production Act program, as listed in Sec.  
217.93. Form DOE F 544 (05-11) may be obtained from the Department of 
Energy or a Delegate Agency. A sample Form DOE F 544 (05-11) is attached 
at appendix I to this part.

[76 FR 33619, June 9, 2011, as amended at 85 FR 31670, May 27, 2020]



Sec.  217.41  Requests for priority rating authority.

    (a) If a rated order is likely to be delayed because a person is 
unable to obtain items or services not normally rated under this part, 
the person may request the authority to use a priority rating in 
ordering the needed items or services.
    (b) Rating authority for production or construction equipment.
    (1) A request for priority rating authority for production or 
construction equipment must be submitted to the U.S. Department of 
Commerce on Form BIS-999.
    (2) When the use of a priority rating is authorized for the 
procurement of production or construction equipment, a rated order may 
be used either to purchase or to lease such equipment. However, in the 
latter case, the equipment may be leased only from a person engaged in 
the business of leasing such equipment or from a person willing to lease 
rather than sell.
    (c) Rating authority in advance of a rated prime contract. (1) In 
certain

[[Page 84]]

cases and upon specific request, the Department of Energy, in order to 
promote the national defense, may authorize or request the Department of 
Commerce to authorize, as appropriate, a person to place a priority 
rating on an order to a supplier in advance of the issuance of a rated 
prime contract. In these instances, the person requesting advance rating 
authority must obtain sponsorship of the request from the Department of 
Energy or the appropriate Delegate Agency. The person shall also assume 
any business risk associated with the placing of rated orders in the 
event the rated prime contract is not issued.
    (2) The person must state the following in the request:
    It is understood that the authorization of a priority rating in 
advance of our receiving a rated prime contract from the Department of 
Energy and our use of that priority rating with our suppliers in no way 
commits the Department of Energy, the Department of Commerce, or any 
other government agency to enter into a contract or order or to expend 
funds. Further, we understand that the Federal Government shall not be 
liable for any cancellation charges, termination costs, or other damages 
that may accrue if a rated prime contract is not eventually placed and, 
as a result, we must subsequently cancel orders placed with the use of 
the priority rating authorized as a result of this request.
    (3) In reviewing requests for rating authority in advance of a rated 
prime contract, the Department of Energy or the Department of Commerce, 
as appropriate, will consider, among other things, the following 
criteria:
    (i) The probability that the prime contract will be awarded;
    (ii) The impact of the resulting rated orders on suppliers and on 
other authorized programs;
    (iii) Whether the contractor is the sole source;
    (iv) Whether the item being produced has a long lead time;
    (v) The time period for which the rating is being requested.
    (4) The Department of Energy or the Department of Commerce, as 
appropriate, may require periodic reports on the use of the rating 
authority granted under paragraph (c) of this section.
    (5) If a rated prime contract is not issued, the person shall 
promptly notify all suppliers who have received rated orders pursuant to 
the advanced rating authority that the priority rating on those orders 
is cancelled.



Sec.  217.42  Examples of assistance.

    (a) While special priorities assistance may be provided for any 
reason in support of this part, it is usually provided in situations 
where:
    (1) A person is experiencing difficulty in obtaining delivery 
against a rated order by the required delivery date; or
    (2) A person cannot locate a supplier for an item or service needed 
to fill a rated order.
    (b) Other examples of special priorities assistance include:
    (1) Ensuring that rated orders receive preferential treatment by 
suppliers;
    (2) Resolving production or delivery conflicts between various rated 
orders;
    (3) Assisting in placing rated orders with suppliers;
    (4) Verifying the urgency of rated orders; and
    (5) Determining the validity of rated orders.



Sec.  217.43  Criteria for assistance.

    Requests for special priorities assistance should be timely, i.e., 
the request has been submitted promptly and enough time exists for the 
Department of Energy, the Delegate Agency, or the Department of Commerce 
for industrial resources to effect a meaningful resolution to the 
problem, and must establish that:
    (a) There is an urgent need for the item; and
    (b) The applicant has made a reasonable effort to resolve the 
problem.



Sec.  217.44  Instances where assistance may not be provided.

    Special priorities assistance is provided at the discretion of the 
Department of Energy, the Delegate Agencies, or the Department of 
Commerce when it is determined that such assistance is warranted to meet 
the objectives of this part. Examples where assistance may not be 
provided include situations when a person is attempting to:

[[Page 85]]

    (a) Secure a price advantage;
    (b) Obtain delivery prior to the time required to fill a rated 
order;
    (c) Gain competitive advantage;
    (d) Disrupt an industry apportionment program in a manner designed 
to provide a person with an unwarranted share of scarce items; or
    (e) Overcome a supplier's regularly established terms of sale or 
conditions of doing business.



                      Subpart E_Allocation Actions



Sec.  217.50  Policy.

    (a) It is the policy of the Federal Government that the allocations 
authority under title I of the Defense Production Act may:
    (1) Only be used when there is insufficient supply of a material, 
service, or facility to satisfy national defense supply requirements 
through the use of the priorities authority or when the use of the 
priorities authority would cause a severe and prolonged disruption in 
the supply of materials, services, or facilities available to support 
normal U.S. economic activities; and
    (2) Not be used to ration materials or services at the retail level.
    (b) Allocation orders, when used, will be distributed equitably 
among the suppliers of the materials, services, or facilities being 
allocated and not require any person to relinquish a disproportionate 
share of the civilian market.



Sec.  217.51  General procedures.

    When the Department of Energy plans to execute its allocations 
authority to address a supply problem within its resource jurisdiction, 
the Department shall develop a plan that includes the following 
information:
    (a) A copy of the written determination made, in accordance with 
section 202 of E.O. 12919, that the program or programs that would be 
supported by the allocation action are necessary or appropriate to 
promote the national defense;
    (b) A detailed description of the situation to include any unusual 
events or circumstances that have created the requirement for an 
allocation action;
    (c) A statement of the specific objective(s) of the allocation 
action;
    (d) A list of the materials, services, or facilities to be 
allocated;
    (e) A list of the sources of the materials, services, or facilities 
that will be subject to the allocation action;
    (f) A detailed description of the provisions that will be included 
in the allocation orders, including the type(s) of allocation orders, 
the percentages or quantity of capacity or output to be allocated for 
each purpose, and the duration of the allocation action (i.e., 
anticipated start and end dates);
    (g) An evaluation of the impact of the proposed allocation action on 
the civilian market; and
    (h) Proposed actions, if any, to mitigate disruptions to civilian 
market operations.



Sec.  217.52  Controlling the general distribution of a material 
in the civilian market.

    No allocation action by the Department of Energy may be used to 
control the general distribution of a material in the civilian market, 
unless the Secretary of the Department of Energy has:
    (a) Made a written finding that:
    (1) Such material is a scarce and critical material essential to the 
national defense, and
    (2) The requirements of the national defense for such material 
cannot otherwise be met without creating a significant dislocation of 
the normal distribution of such material in the civilian market to such 
a degree as to create appreciable hardship;
    (b) Submitted the finding for the President's approval through the 
Assistant to the President for National Security Affairs; and
    (c) The President has approved the finding.



Sec.  217.53  Types of allocation orders.

    There are three types of allocation orders available for 
communicating allocation actions. These are:
    (a) Set-aside: an official action that requires a person to reserve 
materials, services, or facilities capacity in anticipation of the 
receipt of rated orders;
    (b) Directive: an official action that requires a person to take or 
refrain

[[Page 86]]

from taking certain actions in accordance with its provisions. For 
example, a directive can require a person to: stop or reduce production 
of an item; prohibit the use of selected materials, services, or 
facilities; or divert the use of materials, services, or facilities from 
one purpose to another; and
    (c) Allotment: an official action that specifies the maximum 
quantity of a material, service, or facility authorized for a specific 
use.



Sec.  217.54  Elements of an allocation order.

    Each allocation order must include:
    (a) A detailed description of the required allocation action(s);
    (b) Specific start and end calendar dates for each required 
allocation action;
    (c) The written signature on a manually placed order, or the digital 
signature or name on an electronically placed order, of the Secretary of 
Energy. The signature or use of the name certifies that the order is 
authorized under this part and that the requirements of this part are 
being followed;
    (d) A statement that reads in substance: ``This is an allocation 
order certified for national defense use. [Insert the legal name of the 
person receiving the order] is required to comply with this order, in 
accordance with the provisions of the Energy Priorities and Allocations 
System regulation (10 CFR part 217), which is part of the Federal 
Priorities and Allocations System''; and
    (e) A current copy of the Energy Priorities and Allocations System 
regulation (10 CFR part 217).



Sec.  217.55  Mandatory acceptance of an allocation order.

    (a) Except as otherwise specified in this section, a person shall 
accept and comply with every allocation order received.
    (b) A person shall not discriminate against an allocation order in 
any manner such as by charging higher prices for materials, services, or 
facilities covered by the order or by imposing terms and conditions for 
contracts and orders involving allocated materials, services, or 
facilities that differ from the person's terms and conditions for 
contracts and orders for the materials, services, or facilities prior to 
receiving the allocation order.
    (c) If a person is unable to comply fully with the required 
action(s) specified in an allocation order, the person must notify the 
Department of Energy immediately, explain the extent to which compliance 
is possible, and give the reasons why full compliance is not possible. 
If notification is given verbally, written or electronic confirmation 
must be provided within five (5) working days. Such notification does 
not release the person from complying with the order to the fullest 
extent possible, until the person is notified by the Department of 
Energy that the order has been changed or cancelled.



Sec.  217.56  Changes or cancellations of an allocation order.

    An allocation order may be changed or canceled by an official action 
of the Department of Energy.



                       Subpart F_Official Actions



Sec.  217.60  General provisions.

    (a) The Department of Energy may take specific official actions to 
implement the provisions of this part.
    (b) These official actions include Rating Authorizations, 
Directives, and Memoranda of Understanding.



Sec.  217.61  Rating Authorizations.

    (a) A Rating Authorization is an official action granting specific 
priority rating authority that:
    (1) Permits a person to place a priority rating on an order for an 
item or service not normally ratable under this part; or
    (2) Authorizes a person to modify a priority rating on a specific 
order or series of contracts or orders.
    (b) To request priority rating authority, see Sec.  217.41.



Sec.  217.62  Directives.

    (a) A Directive is an official action that requires a person to take 
or refrain from taking certain actions in accordance with its 
provisions.
    (b) A person must comply with each Directive issued. However, a 
person may not use or extend a Directive to

[[Page 87]]

obtain any items from a supplier, unless expressly authorized to do so 
in the Directive.
    (c) A Priorities Directive takes precedence over all DX-rated 
orders, DO-rated orders, and unrated orders previously or subsequently 
received, unless a contrary instruction appears in the Directive.
    (d) An Allocations Directive takes precedence over all Priorities 
Directives, DX-rated orders, DO-rated orders, and unrated orders 
previously or subsequently received, unless a contrary instruction 
appears in the Directive.



Sec.  217.63  Letters and Memoranda of Understanding.

    (a) A Letter or Memorandum of Understanding is an official action 
that may be issued in resolving special priorities assistance cases to 
reflect an agreement reached by all parties (the Department of Energy, 
the Department of Commerce (if applicable), a Delegate Agency (if 
applicable), the supplier, and the customer).
    (b) A Letter or Memorandum of Understanding is not used to alter 
scheduling between rated orders, to authorize the use of priority 
ratings, to impose restrictions under this part. Rather, Letters or 
Memoranda of Understanding are used to confirm production or shipping 
schedules that do not require modifications to other rated orders.



                          Subpart G_Compliance



Sec.  217.70  General provisions.

    (a) The Department of Energy may take specific official actions for 
any reason necessary or appropriate to the enforcement or the 
administration of the Defense Production Act and other applicable 
statutes, this part, or an official action. Such actions include 
Administrative Subpoenas, Demands for Information, and Inspection 
Authorizations.
    (b) Any person who places or receives a rated order or an allocation 
order must comply with the provisions of this part.
    (c) Willful violation of the provisions of title I or section 705 of 
the Defense Production Act and other applicable statutes, this part, or 
an official action of the Department of Energy is a criminal act, 
punishable as provided in the Defense Production Act and other 
applicable statutes, and as set forth in Sec.  217.74 of this part.



Sec.  217.71  Audits and investigations.

    (a) Audits and investigations are official examinations of books, 
records, documents, other writings and information to ensure that the 
provisions of the Defense Production Act and other applicable statutes, 
this part, and official actions have been properly followed. An audit or 
investigation may also include interviews and a systems evaluation to 
detect problems or failures in the implementation of this part.
    (b) When undertaking an audit or investigation, the Department of 
Energy shall:
    (1) Define the scope and purpose in the official action given to the 
person under investigation, and
    (2) Have ascertained that the information sought or other adequate 
and authoritative data are not available from any Federal or other 
responsible agency.
    (c) In administering this part, the Department of Energy may issue 
the following documents that constitute official actions:
    (1) Administrative Subpoenas. An Administrative Subpoena requires a 
person to appear as a witness before an official designated by the 
Department of Energy to testify under oath on matters of which that 
person has knowledge relating to the enforcement or the administration 
of the Defense Production Act and other applicable statutes, this part, 
or official actions. An Administrative Subpoena may also require the 
production of books, papers, records, documents and physical objects or 
property.
    (2) Demands for Information. A Demand for Information requires a 
person to furnish to a duly authorized representative of the Department 
of Energy any information necessary or appropriate to the enforcement or 
the administration of the Defense Production Act and other applicable 
statutes, this part, or official actions.

[[Page 88]]

    (3) Inspection Authorizations. An Inspection Authorization requires 
a person to permit a duly authorized representative of the Department of 
Energy to interview the person's employees or agents, to inspect books, 
records, documents, other writings, and information, including 
electronically-stored information, in the person's possession or control 
at the place where that person usually keeps them or otherwise, and to 
inspect a person's property when such interviews and inspections are 
necessary or appropriate to the enforcement or the administration of the 
Defense Production Act and related statutes, this part, or official 
actions.
    (d) The production of books, records, documents, other writings, and 
information will not be required at any place other than where they are 
usually kept if, prior to the return date specified in the 
Administrative Subpoena or Demand for Information, a duly authorized 
official of the Department of Energy is furnished with copies of such 
material that are certified under oath to be true copies. As an 
alternative, a person may enter into a stipulation with a duly 
authorized official of Department of Energy as to the content of the 
material.
    (e) An Administrative Subpoena, Demand for Information, or 
Inspection Authorization, shall include the name, title, or official 
position of the person to be served, the evidence sought to be adduced, 
and its general relevance to the scope and purpose of the audit, 
investigation, or other inquiry. If employees or agents are to be 
interviewed; if books, records, documents, other writings, or 
information are to be produced; or if property is to be inspected; the 
Administrative Subpoena, Demand for Information, or Inspection 
Authorization will describe them with particularity.
    (f) Service of documents shall be made in the following manner:
    (1) Service of a Demand for Information or Inspection Authorization 
shall be made personally, or by Certified Mail-Return Receipt Requested 
at the person's last known address. Service of an Administrative 
Subpoena shall be made personally. Personal service may also be made by 
leaving a copy of the document with someone at least 18 years old at the 
person's last known dwelling or place of business.
    (2) Service upon other than an individual may be made by serving a 
partner, corporate officer, or a managing or general agent authorized by 
appointment or by law to accept service of process. If an agent is 
served, a copy of the document shall be mailed to the person named in 
the document.
    (3) Any individual 18 years of age or over may serve an 
Administrative Subpoena, Demand for Information, or Inspection 
Authorization. When personal service is made, the individual making the 
service shall prepare an affidavit as to the manner in which service was 
made and the identity of the person served, and return the affidavit, 
and in the case of subpoenas, the original document, to the issuing 
officer. In case of failure to make service, the reasons for the failure 
shall be stated on the original document.



Sec.  217.72  Compulsory process.

    (a) If a person refuses to permit a duly authorized representative 
of the Department of Energy to have access to any premises or source of 
information necessary to the administration or the enforcement of the 
Defense Production Act and other applicable statutes, this part, or 
official actions, the Department of Energy representative may seek 
compulsory process. Compulsory process means the institution of 
appropriate legal action, including ex parte application for an 
inspection warrant or its equivalent, in any forum of appropriate 
jurisdiction.
    (b) Compulsory process may be sought in advance of an audit, 
investigation, or other inquiry, if, in the judgment of the Deputy 
Assistant Secretary of the Department of Energy overseeing the Defense 
Production Act program, as listed in Sec.  217.93, there is reason to 
believe that a person will refuse to permit an audit, investigation, or 
other inquiry, or that other circumstances exist which make such process 
desirable or necessary.

[76 FR 33619, June 9, 2011, as amended at 85 FR 31670, May 27, 2020]

[[Page 89]]



Sec.  217.73  Notification of failure to comply.

    (a) At the conclusion of an audit, investigation, or other inquiry, 
or at any other time, the Department of Energy may inform the person in 
writing where compliance with the requirements of the Defense Production 
Act and other applicable statutes, this part, or an official action were 
not met.
    (b) In cases where the Department of Energy determines that failure 
to comply with the provisions of the Defense Production Act and other 
applicable statutes, this part, or an official action was inadvertent, 
the person may be informed in writing of the particulars involved and 
the corrective action to be taken. Failure to take corrective action may 
then be construed as a willful violation of the Defense Production Act 
and other applicable statutes, this part, or an official action.



Sec.  217.74  Violations, penalties, and remedies.

    (a) Willful violation of the provisions of title I or sections 705 
or 707 of the Defense Production Act, the priorities provisions of the 
Selective Service Act and related statutes (when applicable), this part, 
or an official action, is a crime and upon conviction, a person may be 
punished by fine or imprisonment, or both. The maximum penalties 
provided by the Defense Production Act are a $10,000 fine, or one year 
in prison, or both. The maximum penalties provided by the Selective 
Service Act and related statutes are a $50,000 fine, or three years in 
prison, or both.
    (b) The Government may also seek an injunction from a court of 
appropriate jurisdiction to prohibit the continuance of any violation 
of, or to enforce compliance with, the Defense Production Act, this 
part, or an official action.
    (c) In order to secure the effective enforcement of the Defense 
Production Act and other applicable statutes, this part, and official 
actions, the following are prohibited:
    (1) No person may solicit, influence or permit another person to 
perform any act prohibited by, or to omit any act required by, the 
Defense Production Act and other applicable statutes, this part, or an 
official action.
    (2) No person may conspire or act in concert with any other person 
to perform any act prohibited by, or to omit any act required by, the 
Defense Production Act and other applicable statutes, this part, or an 
official action.
    (3) No person shall deliver any item if the person knows or has 
reason to believe that the item will be accepted, redelivered, held, or 
used in violation of the Defense Production Act and other applicable 
statutes, this part, or an official action. In such instances, the 
person must immediately notify the Department of Energy that, in 
accordance with this provision, delivery has not been made.



Sec.  217.75  Compliance conflicts.

    If compliance with any provision of the Defense Production Act and 
other applicable statutes, this part, or an official action would 
prevent a person from filling a rated order or from complying with 
another provision of the Defense Production Act and other applicable 
statutes, this part, or an official action, the person must immediately 
notify the Department of Energy for resolution of the conflict.



             Subpart H_Adjustments, Exceptions, and Appeals



Sec.  217.80  Adjustments or exceptions.

    (a) A person may submit a request to the Deputy Assistant Secretary 
of the Department of Energy overseeing the Defense Production Act 
program, as listed in Sec.  217.93, for an adjustment or exception on 
the ground that:
    (1) A provision of this part or an official action results in an 
undue or exceptional hardship on that person not suffered generally by 
others in similar situations and circumstances; or
    (2) The consequences of following a provision of this part or an 
official action is contrary to the intent of the Defense Production Act 
and other applicable statutes, or this part.
    (b) Each request for adjustment or exception must be in writing and 
contain a complete statement of all the facts and circumstances related 
to the provision of this part or official action from which adjustment 
is sought and a

[[Page 90]]

full and precise statement of the reasons why relief should be provided.
    (c) The submission of a request for adjustment or exception shall 
not relieve any person from the obligation of complying with the 
provision of this part or official action in question while the request 
is being considered unless such interim relief is granted in writing by 
the Deputy Assistant Secretary of the Department of Energy overseeing 
the Defense Production Act program, as listed in Sec.  217.93.
    (d) A decision of the Deputy Assistant Secretary of the Department 
of Energy overseeing the Defense Production Act program, as listed in 
Sec.  217.93, under this section may be appealed to the Assistant 
Secretary, Office of Electricity (For information on the appeal 
procedure, see Sec.  217.81.)

[76 FR 33619, June 9, 2011, as amended at 85 FR 31670, May 27, 2020]



Sec.  217.81  Appeals.

    (a) Any person who has had a request for adjustment or exception 
denied by the Deputy Assistant Secretary of the Department of Energy 
overseeing the Defense Production Act program, as listed in section 
217.93, under Sec.  217.80, may appeal to the Assistant Secretary, 
Office of Electricity who shall review and reconsider the denial.
    (b)(1) Except as provided in this paragraph (b)(2), an appeal must 
be received by the Assistant Secretary, Office of Electricity no later 
than 45 days after receipt of a written notice of denial from the Deputy 
Assistant Secretary of the Department of Energy overseeing the Defense 
Production Act program, as listed in Sec.  217.93. After this 45-day 
period, an appeal may be accepted at the discretion of the Assistant 
Secretary, Office of Electricity for good cause shown.
    (2) For requests for adjustment or exception involving rated orders 
placed for the purpose of emergency preparedness (see 217.14(d)), an 
appeal must be received by the Assistant Secretary, Office of 
Electricity, no later than 15 days after receipt of a written notice of 
denial from the Deputy Assistant Secretary of the Department of Energy 
overseeing the Defense Production Act program, as listed in Sec.  
217.93. Contract performance under the order shall not be stayed pending 
resolution of the appeal.
    (c) Each appeal must be in writing and contain a complete statement 
of all the facts and circumstances related to the action appealed from 
and a full and precise statement of the reasons the decision should be 
modified or reversed.
    (d) In addition to the written materials submitted in support of an 
appeal, an appellant may request, in writing, an opportunity for an 
informal hearing. This request may be granted or denied at the 
discretion of the Assistant Secretary, Office of Electricity.
    (e) When a hearing is granted, the Assistant Secretary, Office of 
Electricity may designate an employee to conduct the hearing and to 
prepare a report. The hearing officer shall determine all procedural 
questions and impose such time or other limitations deemed reasonable. 
In the event that the hearing officer decides that a printed transcript 
is necessary, all expenses shall be borne by the appellant.
    (f) When determining an appeal, the Assistant Secretary, Office of 
Electricity may consider all information submitted during the appeal as 
well as any recommendations, reports, or other relevant information and 
documents available to the Department of Energy or consult with any 
other persons or groups.
    (g) The submission of an appeal under this section shall not relieve 
any person from the obligation of complying with the provision of this 
part or official action in question while the appeal is being considered 
unless such relief is granted in writing by the Assistant Secretary, 
Office of Electricity.
    (h) The decision of the Assistant Secretary, Office of Electricity 
shall be made within five (5) days after receipt of the appeal, or 
within one (1) day for appeals pertaining to emergency preparedness and 
shall be the final administrative action. It shall be issued to the 
appellant in writing with a statement of the reasons for the decision.

[76 FR 33619, June 9, 2011, as amended at 85 FR 31670, May 27, 2020]

[[Page 91]]



                   Subpart I_Miscellaneous Provisions



Sec.  217.90  Protection against claims.

    A person shall not be held liable for damages or penalties for any 
act or failure to act resulting directly or indirectly from compliance 
with any provision of this part, or an official action, notwithstanding 
that such provision or action shall subsequently be declared invalid by 
judicial or other competent authority.



Sec.  217.91  Records and reports.

    (a) Persons are required to make and preserve for at least three 
years, accurate and complete records of any transaction covered by this 
part or an official action.
    (b) Records must be maintained in sufficient detail to permit the 
determination, upon examination, of whether each transaction complies 
with the provisions of this part or any official action. However, this 
part does not specify any particular method or system to be used.
    (c) Records required to be maintained by this part must be made 
available for examination on demand by duly authorized representatives 
of the Department of Energy as provided in Sec.  217.71.
    (d) In addition, persons must develop, maintain, and submit any 
other records and reports to the Department of Energy that may be 
required for the administration of the Defense Production Act and other 
applicable statutes, and this part.
    (e) Section 705(d) of the Defense Production Act, as implemented by 
E.O. 12919, provides that information obtained under this section which 
the Secretary deems confidential, or with reference to which a request 
for confidential treatment is made by the person furnishing such 
information, shall not be published or disclosed unless the Secretary 
determines that the withholding of this information is contrary to the 
interest of the national defense. Information required to be submitted 
to the Department of Energy in connection with the enforcement or 
administration of the Defense Production Act, this part, or an official 
action, is deemed to be confidential under section 705(d) of the Defense 
Production Act and shall be handled in accordance with applicable 
Federal law.



Sec.  217.92  Applicability of this part and official actions.

    (a) This part and all official actions, unless specifically stated 
otherwise, apply to transactions in any state, territory, or possession 
of the United States and the District of Columbia.
    (b) This part and all official actions apply not only to deliveries 
to other persons but also include deliveries to affiliates and 
subsidiaries of a person and deliveries from one branch, division, or 
section of a single entity to another branch, division, or section under 
common ownership or control.
    (c) This part and its schedules shall not be construed to affect any 
administrative actions taken by the Department of Energy, or any 
outstanding contracts or orders placed pursuant to any of the 
regulations, orders, schedules or delegations of authority previously 
issued by the Department of Energy pursuant to authority granted to the 
President in the Defense Production Act. Such actions, contracts, or 
orders shall continue in full force and effect under this part unless 
modified or terminated by proper authority.



Sec.  217.93  Communications.

    All communications concerning this part, including requests for 
copies of the regulation and explanatory information, requests for 
guidance or clarification, and requests for adjustment or exception 
shall be addressed to the Deputy Assistant Secretary of the Department 
of Energy overseeing the Defense Production Act program, U.S. Department 
of Energy, 1000 Independence Ave. SW, Washington, DC 20585; (202) 586-
1411 ([email protected]).

[85 FR 31670, May 27, 2020]

[[Page 92]]



       Sec. Appendix I to Part 217--Sample Form DOE F 544 (05-11)
[GRAPHIC] [TIFF OMITTED] TR09JN11.049


[[Page 93]]





PART 218_STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION--Table of Contents



                      Subpart A_General Provisions

Sec.
218.1 Purpose and scope.
218.2 Activation/Deactivation.
218.3 Definitions.

                         Subpart B_Supply Orders

218.10 Rule.
218.11 Supply orders.
218.12 Pricing.

Subpart C [Reserved]

                          Subpart D_Procedures

218.30 Purpose and scope.
218.31 Incorporated procedures.
218.32 Review.
218.33 Stay.
218.34 Addresses.

  Subpart E_Investigations, Violations, Sanctions and Judicial Actions

218.40 Investigations.
218.41 Violations.
218.42 Sanctions.
218.43 Injunctions.

    Authority: 15 U.S.C. 751 et seq.; 15 U.S.C. 787 et seq.; 42 U.S.C. 
6201 et seq.; 42 U.S.C. 7101 et seq.; E.O. 11790, 39 FR 23185; E.O. 
12009, 42 FR 46267; 28 U.S.C. 2461 note.

    Source: 44 FR 27972, May 14, 1979, unless otherwise noted.



                      Subpart A_General Provisions



Sec.  218.1  Purpose and scope.

    (a) This part implements section 251 of the Energy Policy and 
Conservation Act (Pub. L. 94-163) (42 U.S.C. 6271), as amended, which 
authorizes the President to take such action as he determines to be 
necessary for performance of the obligations of the United States under 
chapters III and IV of the Agreement on an International Energy Program 
(TIAS 8278), insofar as such obligations relate to the mandatory 
international allocation of oil by International Energy Program 
participating countries.
    (b) Applicability. This part applies to any firm engaged in 
producing, transporting, refining, distributing or storing oil which is 
subject to the jurisdiction of the United States.



Sec.  218.2  Activation/Deactivation.

    (a) This rule shall take effect providing:
    (1) The International Energy Program has been activated; and,
    (2) The President has transmitted this rule to Congress, has found 
putting such rule into effect is required in order to fulfill 
obligations of the United States under the International Energy Program 
and has transmitted such a finding to the Congress together with a 
statement of the effective date and manner for exercise of such rule.
    (b) This rule shall revert to standby status no later than 60 days 
after the deactivation of the emergency allocation system activated to 
implement the International Energy Program.



Sec.  218.3  Definitions.

    DOE means the Department of Energy established by the Department of 
Energy Organization Act (Pub. L. 95-91), and includes the Secretary of 
Energy or his delegate.
    EPCA means the Energy Policy and Conservation Act (Pub. L. 94-163), 
as amended.
    Firm means any association, company, corporation, estate, 
individual, joint-venture, partnership, or sole proprietorship or any 
other entity however organized including charitable, educational, or 
other eleemosynary institutions, and the Federal Government including 
corporations, departments, Federal agencies, and other 
instrumentalities, and State and local governments. The ERA may, in 
regulations and forms issued in this part, treat as a firm: (a) A parent 
and the consolidated and unconsolidated entities (if any) which it 
directly or indirectly controls, (b) a parent and its consolidated 
entities, (c) an unconsolidated entity, or (d) any part of a firm.
    IEA means the International Energy Agency established to implement 
the IEP.
    IEP means the International Energy Program established pursuant to 
the Agreement on an International Energy Program signed at Paris, 
France, on November 18, 1974, including (a) the Annex entitled 
``Emergency Reserves'', (b) any amendment to such Agreement that 
includes another nation as a Party to such Agreement, and (c) any

[[Page 94]]

technical or clerical amendment to such Agreement.
    International energy supply emergency means any period (a) beginning 
on any date that the President determines allocation of petroleum 
products to nations participating in the IEP is required by chapters III 
and IV of the IEP and (b) ending on a date on which he determines such 
allocation is no longer required.
    Oil means crude oil, residual fuel oil, unfinished oil, refined 
petroleum product and natural gas liquids, which is owned or controlled 
by a firm, including any petroleum product destined, directly or 
indirectly, for import into the United States or any foreign country, or 
produced in the United States but excludes any oil stored in or owned 
and controlled by the United States Government in connection with the 
Strategic Petroleum Reserve authorized in section 151, et seq., of the 
Energy Policy and Conservation Act (Pub. L. 94-163).
    Person means any individual, firm, estate, trust, sole 
proprietorship, partnership, association, company, joint-venture, 
corporation, governmental unit or instrumentality thereof, or a 
charitable, educational or other institution, and includes any officer, 
director, owner or duly authorized representative thereof.
    Supply order means a written directive or a verbal communication of 
a written directive, if promptly confirmed in writing, issued by the DOE 
pursuant to subpart B of this part.
    United States when used in the geographic sense means the several 
States, the District of Columbia, Puerto Rico, and the territories and 
possessions of the United States, and the outer continental shelf as 
defined in 43 U.S.C. 1331.



                         Subpart B_Supply Orders



Sec.  218.10  Rule.

    (a) Upon the determination by the President that an international 
energy supply emergency exists, firms engaged in producing, 
transporting, refining, distributing, or storing oil shall take such 
actions as are determined by the DOE to be necessary for implementation 
of the obligations of the United States under chapters III and IV of the 
IEP that relate to the mandatory international allocation of oil by IEP 
participating countries.
    (b) Any actions required in accordance with paragraph (a) of this 
section shall be stated in supply orders issued by DOE.
    (c) No firm to which a supply order is issued shall be required to 
comply with such order unless the firm to which the oil is to be 
provided in accordance with such supply order has agreed to a procedure 
for the resolution of any dispute related to the terms and conditions of 
the sale undertaken pursuant to the supply order. The means for 
resolving any such disputes may include any procedures that are mutually 
acceptable to the parties, including arbitration before the IEA if the 
IEA has established arbitration procedures, arbitration or adjudication 
before an appropriate body, or any other similar procedure.



Sec.  218.11  Supply orders.

    (a) A supply order shall require that the firm to which it is issued 
take actions specified therein relating to supplying the stated volume 
of oil to a specified recipient including, but not limited to, 
distributing, producing, storing, transporting or refining oil. A supply 
order shall include a concise statement of the pertinent facts and of 
the legal basis on which it is issued, and shall describe the action to 
be taken.
    (b) The DOE shall serve a copy of the supply order on the firm 
directed to act as stated therein.
    (c) The DOE may modify or rescind a supply order on its own motion 
or pursuant to an application filed in accordance with Sec.  218.32 of 
this part.
    (d) A supply order shall be effective in accordance with its terms, 
and when served upon a firm directed to act thereunder, except that a 
supply order shall not remain in effect (1) upon reversion of this rule 
to standby status or (2) twelve months after the rule has been 
transmitted to Congress (whichever occurs first) or (3) to the extent 
that DOE or a court of competent jurisdiction directs that it be stayed, 
modified, or rescinded.
    (e) Any firm issued a supply order pursuant to this subpart may seek 
modification or rescission of the supply

[[Page 95]]

order in accordance with procedures provided in Sec.  218.32 of this 
part.



Sec.  218.12  Pricing.

    The price for oil subject to a supply order issued pursuant to this 
subpart shall be based on the price conditions prevailing for comparable 
commercial transactions at the time the supply order is served.

Subpart C [Reserved]



                          Subpart D_Procedures



Sec.  218.30  Purpose and scope.

    This subpart establishes the administrative procedures applicable to 
supply orders. They shall be exclusive of any other procedures contained 
in this chapter, unless such other procedures are specifically made 
applicable hereto by this subpart.



Sec.  218.31  Incorporated procedures.

    The following subparts of part 205 of this chapter are, as 
appropriate, hereby made applicable to this part:
    (a) Subpart A-- General Provisions; Provided, that Sec.  205.11 
shall not apply; and Provided further, that in addition to the methods 
of service specified in Sec.  205.7 of this chapter, service shall be 
effective if a supply order is transmitted by telex, telecopies or other 
similar means of electronic transmission of a writing and received by 
the firm to which the supply order is addressed.
    (b) Subpart F-- Interpretation.
    (c) Subpart K-- Rulings.
    (d) Subpart M-- Conferences, Hearings and Public Hearings.



Sec.  218.32  Review.

    (a) Purpose and scope. This subpart establishes the procedures for 
the filing of an application for review of a supply order. An 
application for review is a summary proceeding which will be initiated 
only if the criteria described in paragraph (g)(2) of this section are 
satisfied.
    (b) What to file. (1) A firm filing under this subpart shall file an 
``Application for Review'' which should be clearly labeled as such both 
on the application and on the outside of the envelope in which the 
application is transmitted, and shall be in writing and signed by the 
firm filing the application. The applicant shall comply with the general 
filing requirements stated in 10 CFR 205.9 in addition to the 
requirements stated in this section.
    (2) If the applicant wishes to claim confidential treatment for any 
information contained in the application or other documents submitted 
under this subpart, the procedures set out in 10 CFR 205.9(f) shall 
apply.
    (c) When to file. An application for review should be filed no later 
than 5 days after the receipt by the applicant of the supply order that 
is the subject of the application, or no later than 2 days after the 
occurrence of an event that results in a substantial change in the facts 
or circumstances affecting the applicant.
    (d) Where to file. The application for review shall be filed with 
DOE Office of Hearings and Appeals (OHA), 2000 M Street, NW., 
Washington, DC 20461.
    (e) Notice. The applicant shall send by United States mail or 
deliver by hand a copy of the application and any subsequent amendments 
or other documents relating to the application to the Administrator of 
the Economic Regulatory Administration of DOE, 2000 M Street, NW., 
Washington, DC 20461. Service shall be made on the ERA at same time the 
document is filed with OHA and each document filed with the OHA shall 
include certification that the applicant has complied with the 
requirements of this paragraph.
    (f) Contents. (1) The application shall contain a full and complete 
statement of all relevant facts pertaining to the application and to the 
DOE action sought. Such facts shall include a complete statement of the 
business or other reasons that justify review of the supply order and a 
full description of the pertinent provisions and relevant facts 
contained in any relevant documents. Copies of all contracts, 
agreements, leases, instruments, and other documents relevant to the 
application shall be submitted with the application. A copy of the order 
of which review is sought shall be included with the application. When 
the application

[[Page 96]]

pertains to only one step of a larger integrated transaction, the facts, 
circumstances, and other relevant information pertaining to the entire 
transaction shall be submitted.
    (2) The application shall include a discussion of all relevant 
authorities, including, but not limited to, DOE and DOE rulings, 
regulations, interpretations and decisions on appeal and exception 
relied upon to support the action sought therein.
    (g) DOE evaluation--(1) Processing. (i) The DOE may initiate an 
investigation of any statement in an application and utilize in its 
evaluation any relevant facts obtained by such investigation. The DOE 
may solicit and accept submissions from third parties relevant to any 
application for review provided that the applicant is afforded an 
opportunity to respond to all third party submissions. In evaluating an 
application for review, the DOE may convene a conference, on its own 
initiative, if, in its discretion, it considers that a conference will 
advance its evaluation of the application.
    (ii) If the DOE determines that there is insufficient information 
upon which to base a decision and if upon request the necessary 
additional information is not submitted, the DOE may dismiss the 
application without prejudice. If the failure to supply additional 
information is repeated or willful, the DOE may dismiss the application 
with prejudice. If the applicant fails to provide the notice required by 
paragraph (e) of this section, the DOE may dismiss the application 
without prejudice.
    (iii) An order dismissing an application for any of the reasons 
specified in paragraph (g)(1)(ii) of this section shall contain a 
statement of the grounds for the dismissal. The order shall become final 
within 5 days of its service upon the applicant, unless within such 5-
day period the applicant files an amendment correcting the deficiencies 
identified in the order. Within 5 days of the filing of such amendment, 
the DOE shall notify the applicant whether the amendment corrects the 
specified deficiencies. If the amendment does not correct the 
deficiencies specified in the order, the order shall become a final 
order of the DOE of which the applicant may seek judicial review.
    (2) An application for review of an order shall be processed only if 
the applicant demonstrates that--
    (i) There is probable cause to believe that the supply order is 
erroneous, inequitable, or unduly burdensome; or
    (ii) There has been discovered a law, regulation, interpretation, 
ruling, order or decision that was in effect at the time of the 
application which, if it had been made known to the DOE, would have been 
relevant to the supply order and would have substantially altered the 
supply order; or
    (iii) There has been a substantial change in the facts or 
circumstances affecting the applicant, which change has occurred during 
the interval between issuance of the supply order and the date of the 
application and was caused by forces or circumstances beyond the control 
of the applicant.
    (h) Decision. (1) Upon consideration of the application and other 
relevant information received or obtained during the proceeding, the DOE 
shall issue an order granting or denying the modification or rescission 
of the supply order requested in the application for review.
    (2) The DOE shall process applications for review as expeditiously 
as possible. When administratively feasible, the DOE shall issue an 
order granting or denying the application within 20 business days after 
receipt of the application.
    (3) The order shall include a written statement setting forth the 
relevant facts and the legal basis of the order. The order shall state 
that it is a final order of which the applicant may seek judicial 
review.
    (4) The DOE shall serve a copy of the order upon the applicant and 
any other party who participated in the proceeding.



Sec.  218.33  Stay.

    (a) The DOE may issue an order granting a stay if the DOE determines 
that an applicant has made a compelling showing that it would incur 
serious and irreparable injury unless immediate stay relief is granted 
pending determination of an application for review pursuant to this 
subpart. An application for a stay shall be labeled as

[[Page 97]]

such on the application and on the outside of the envelope in which the 
application is transmitted, and shall be in writing and signed by the 
firm filing the application. It shall include a description of the 
proceeding incident to which the stay is being sought and of the facts 
and circumstances which support the applicant's claim that it will incur 
irreparable injury unless immediate stay relief is granted. The 
applicant shall comply with the general filing requirements stated in 10 
CFR 205.9 in addition to the requirements stated in this section. The 
DOE on its own initiative may also issue an order granting a stay upon a 
finding that a firm will incur irreparable injury if such an order is 
not granted.
    (b) An order granting a stay shall expire by its terms within such 
time after issuance, not to exceed 30 days as the DOE specifies in the 
order, except that it shall expire automatically 5 days following its 
issuance if the applicant fails within that period to file an 
application for review unless within that period the DOE for good cause 
shown, extends the time during which the applicant may file an 
application for review.
    (c) The order granting or denying a stay is not an order of the DOE 
subject to administrative review.



Sec.  218.34  Addresses.

    All correspondence, petitions, and any information required by this 
part shall be submitted to: Administrator, Economic Regulatory 
Administration, Department of Energy, 2000 M Street, NW., Washington, DC 
20461, and to the Director, Office of Hearings and Appeals, Department 
of Energy, 2000 M Street, NW., Washington, DC 20461.



  Subpart E_Investigations, Violations, Sanctions and Judicial Actions



Sec.  218.40  Investigations.

    (a) The DOE may initiate and conduct investigations relating to the 
scope, nature and extent of compliance by any person with the rules, 
regulations or statutes of the DOE or any order promulgated by the DOE 
under the authority of section 251 of EPCA, or any court decree.
    (b) Any duly designated and authorized representative of DOE has the 
authority to conduct an investigation and to take such action as he 
deems necessary and appropriate to the conduct of the investigation 
including any action pursuant to Sec.  205.8.
    (c) There are no parties, as that term is used in adjudicative 
proceedings, in an investigation under this subpart, and no person may 
intervene or participate as a matter of right in any investigation under 
this subpart.
    (d) Any person may request the DOE to initiate an investigation 
pursuant to paragraph (a) of this section. A request for an 
investigation shall set forth the subject matter to be investigated as 
fully as possible and include supporting documentation and information. 
No particular forms or procedures are required.
    (e) Any person who is requested to furnish documentary evidence or 
testimony in an investigation, upon written request, shall be informed 
of the general purpose of the investigation.
    (f) DOE shall not disclose information or documents that are 
obtained during any investigation unless (1) DOE directs or authorizes 
the public disclosure of the investigation; (2) the information or 
documents are a matter of public record; or (3) disclosure is not 
precluded by the Freedom of Information Act, 5 U.S.C. 552 and 10 CFR 
part 1004.
    (g) During the course of an investigation any person may submit at 
any time any document, statement of facts or memorandum of law for the 
purpose of explaining the person's position or furnish evidence which 
the person considers relevant to a matter under investigation.
    (h) If facts disclosed by an investigation indicate that further 
action is unnecessary or unwarranted, the investigative file may be 
closed without prejudice to further investigation by the DOE at any time 
that circumstances so warrant.



Sec.  218.41  Violations.

    Any practice that circumvents, contravenes or results in the 
circumvention or contravention of the requirements of any provision of 
this part 218 or any order issued pursuant thereto is

[[Page 98]]

a violation of the DOE regulations stated in this part and is unlawful.



Sec.  218.42  Sanctions.

    (a) General. Any person who violates any provisions of this part 218 
or any order issued pursuant thereto shall be subject to penalties and 
sanctions as provided herein.
    (1) The provisions herein for penalties and sanctions shall be 
deemed cumulative and not mutually exclusive.
    (2) Each day that a violation of the provisions of this part 218 or 
any order issued pursuant thereto continues shall be deemed to 
constitute a separate violation within the meaning of the provisions of 
this part relating to fines and civil penalties.
    (b) Penalties. (1) Any person who violates any provision of this 
part or any order issued pursuant thereto shall be subject to a civil 
penalty of not more than $23,437 for each violation.
    (2) Any person who willfully violates any provision of this part 218 
or any order issued pursuant thereto shall be subject to a fine of not 
more than $10,000 for each violation.
    (3) Any person who knowingly and willfully violates any provision of 
this part 218 or any order issued pursuant thereto with respect to the 
sale, offer of sale, or distribution in commerce of oil in commerce 
after having been subject to a sanction under paragraph (b)(1) or (2) of 
this section for a prior violation of the provisions of this part 218 or 
any order issued pursuant thereto with respect to the sale, offer of 
sale, or distribution in commerce of oil shall be subject to a fine of 
not more than $50,000 or imprisonment for not more than six months, or 
both, for each violation.
    (4) Actions for penalties under this section are prosecuted by the 
Department of Justice upon referral by the DOE.
    (5) When the DOE considers it to be appropriate or advisable, the 
DOE may compromise and settle any action under this paragraph, and 
collect civil penalties.
    (c) Other Penalties. Willful concealment of material facts, or 
making of false, fictitious or fraudulent statements or representations, 
or submission of a document containing false, fictitious or fraudulent 
statements pertaining to matters within the scope of this part 218 by 
any person shall subject such persons to the criminal penalties provided 
in 18 U.S.C. 1001 (1970).

[44 FR 27972, May 14, 1979, as amended at 62 FR 46183, Sept. 2, 1997; 74 
FR 66032, Dec. 14, 2009; 79 FR 19, Jan. 2, 2014; 81 FR 41793, June 28, 
2016; 81 FR 96351, Dec. 30, 2016; 83 FR 1291, Jan. 11, 2018; 83 FR 
66083, Dec. 26, 2018; 85 FR 830, Jan. 8, 2020]



Sec.  218.43  Injunctions.

    Whenever it appears to the DOE that any firm has engaged, is 
engaging, or is about to engage in any act or practice constituting a 
violation of any regulation or order issued under this part 218, the DOE 
may request the Attorney General to bring a civil action in the 
appropriate district court of the United States to enjoin such acts or 
practices and, upon a proper showing, a temporary restraining order or a 
preliminary or permanent injunction shall be granted without bond. The 
relief sought may include a mandatory injunction commanding any firm to 
comply with any provision of such order or regulation, the violation of 
which is prohibited by section 524 of the EPCA.

                           PART 220 [RESERVED]



PART 221_PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS 
TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT--
Table of Contents



                            Subpart A_General

Sec.
221.1 Scope.
221.2 Applicability.

                          Subpart B_Exclusions

221.11 Natural gas and ethane.

                          Subpart C_Definitions

221.21 Definitions.

            Subpart D_Administrative Procedures and Sanctions

221.31 Requests by DOD.
221.32 Evaluation of DOD request.
221.33 Order.

[[Page 99]]

221.34 Effect of order.
221.35 Contractual requirements.
221.36 Records and reports.
221.37 Violations and sanctions.

    Authority: Defense Production Act, 50 U.S.C. App. 2061 et seq., E.O. 
10480 (18 FR 4939, Aug. 18, 1953) as amended by E.O. 12038 (43 FR 4957, 
Feb. 7, 1978), and E.O. 11790 (39 FR 23785, June 27, 1974).

    Source: 45 FR 76433, Nov. 19, 1980, unless otherwise noted.



                            Subpart A_General



Sec.  221.1  Scope.

    This part sets forth the procedures to be utilized by the Economic 
Regulatory Administration of the Department of Energy and the Department 
of Defense whenever the priority supply of crude oil and petroleum 
products is necessary or appropriate to meet national defense needs. The 
procedures available in this part are intended to supplement but not to 
supplant other regulations of the ERA regarding the allocation of crude 
oil, residual fuel oil and refined petroleum products.



Sec.  221.2  Applicability.

    This part applies to the mandatory supply of crude oil, refined 
petroleum products (including liquefied petroleum gases) and lubricants 
to the Department of Defense for its own use or for purchases made by 
the Department of Defense on behalf of other Federal Government 
agencies.



                          Subpart B_Exclusions



Sec.  221.11  Natural gas and ethane.

    The supply of natural gas and ethane are excluded from this part.



                          Subpart C_Definitions



Sec.  221.21  Definitions.

    For purposes of this part--
    Directive means an official action taken by ERA which requires a 
named person to take an action in accordance with its provisions.
    DOD means the Department of Defense, including Military Departments 
and Defense Agencies, acting through either the Secretary of Defense or 
the designee of the Secretary.
    ERA means the Economic Regulatory Administration of the Department 
of Energy.
    National defense means programs for military and atomic energy 
production or construction, military assistance to any foreign nation, 
stockpiling and space, or activities directly related to any of the 
above.
    Person means any individual, corporation, partnership, association 
or any other organized group of persons, and includes any agency of the 
United States Government or any other government.
    Priority-rated supply order means any delivery order for crude oil 
or petroleum products issued by DOD bearing a priority rating issued by 
ERA under this part.
    Supplier means any person other than the DOD which supplies, sells, 
transfers, or otherwise furnishes (as by consignment) crude oil or 
petroleum product to any other person.



            Subpart D_Administrative Procedures and Sanctions



Sec.  221.31  Requests by DOD.

    (a) When DOD finds that (1) a fuel supply shortage for DOD exists or 
is anticipated which would have a substantial negative impact on the 
national defense, and (2) the defense activity for which fuel is 
required cannot be postponed until after the fuel supply shortage is 
likely to terminate, DOD may submit a written request to ERA for the 
issuance to it of a priority rating for the supply of crude oil and 
petroleum products.
    (b) Not later than the transmittal date of its request to ERA, DOD 
shall notify the Federal Emergency Management Agency that it has 
requested a priority rating from ERA.
    (c) Requests from DOD shall set forth the following:
    (1) The quantity and quality of crude oil or petroleum products 
determined by DOD to be required to meet national defense requirements;
    (2) The required delivery dates;
    (3) The defense-related activity and the supply location for which 
the crude oil or petroleum product is to be delivered;

[[Page 100]]

    (4) The current or most recent suppliers of the crude oil or 
petroleum product and the reasons, if known, why the suppliers will not 
supply the requested crude oil or petroleum product;
    (5) The degree to which it is feasible for DOD to use an alternate 
product in lieu of that requested and, if such an alternative product 
can be used, the efforts which have been made to obtain the alternate 
product;
    (6) The period during which the shortage of crude oil or petroleum 
products is expected to exist;
    (7) The proposed supply source for the additional crude oil or 
petroleum products required, which shall, if practicable, be the 
historical supplier of such crude oil or product to DOD; and
    (8) Certification that DOD has made each of the findings required by 
paragraph (a) of this section.



Sec.  221.32  Evaluation of DOD request.

    (a) Upon receipt of a request from DOD for a priority rating as 
provided in Sec.  221.31, it shall be reviewed promptly by ERA. The ERA 
will assess the request in terms of:
    (1) The information provided under Sec.  221.31;
    (2) Whether DOD's national defense needs for crude oil or petroleum 
products can reasonably be satisfied without exercising the authority 
specified in this part;
    (3) The capability of the proposed supplier to supply the crude oil 
or petroleum product in the amounts required;
    (4) The known capabilities of alternative suppliers;
    (5) The feasibility to DOD of converting to and using a product 
other than that requested; and
    (6) Any other relevant information.
    (b) The ERA promptly shall notify the proposed supplier of DOD's 
request for a priority rating specified under this part. The proposed 
supplier shall have a period specified in the notice, not to exceed 
fifteen (15) days from the date it is notified of DOD's request, to show 
cause in writing why it cannot supply the requested quantity and quality 
of crude oil or petroleum products. ERA shall consider this information 
in determining whether to issue the priority rating.
    (c) If acceptance by a supplier of a rated order would create a 
conflict with another rated order of the supplier, it shall include all 
pertinent information regarding such conflict in its response to the 
show cause order provided for in subsection (b), and ERA, in 
consultation with DOD and the Federal Emergency Management Agency shall 
determine the priorities for meeting all such requirements.
    (d) ERA may waive some or all of the requirements of Sec.  221.31 or 
this section where the Secretary of Defense or his designee certifies, 
and has so notified the Federal Emergency Management Agency, that a fuel 
shortage for DOD exists or is imminent and that compliance with such 
requirements would have a substantial negative impact on the national 
defense.



Sec.  221.33  Order.

    (a) Issuance. If ERA determines that issuance of a priority rating 
for a crude oil or refined petroleum product is necessary to provide the 
crude oil or petroleum products needed to meet the national defense 
requirement established by DOD, it shall issue such a rating to DOD for 
delivery of specified qualities and quantities of the crude oil or 
refined petroleum products on or during specified delivery dates or 
periods. In accordance with the terms of the order, DOD may then place 
such priority rating on a supply order.
    (b) Compliance. Each person who receives a priority-rated supply 
order pursuant to this part shall supply the specified crude oil or 
petroleum products to DOD in accordance with the terms of that order.
    (c) ERA directives. Notwithstanding any other provisions of this 
part, where necessary or appropriate to promote the national defense ERA 
is authorized to issue a directive to a supplier of crude oil or 
petroleum product requiring delivery of specified qualities and 
quantities of such crude oil or petroleum products to DOD at or during 
specified delivery dates or periods.
    (d) Use of ratings by suppliers. No supplier who receives a 
priority-rated supply order or directive issued under the authority of 
this section may use such priority order or directive in order to

[[Page 101]]

obtain materials necessary to meet its supply obligations thereunder.



Sec.  221.34  Effect of order.

    Defense against claims for damages. No person shall be liable for 
damages or penalties for any act or failure to act resulting directly or 
indirectly from compliance with any ERA authorized priority-rated supply 
order or ERA directive issued pursuant to this part, notwithstanding 
that such priority-rated supply order or directive thereafter be 
declared by judicial or other competent authority to be invalid.



Sec.  221.35  Contractual requirements.

    (a) No supplier may discriminate against an order or contract on 
which a priority rating has been placed under this part by charging 
higher prices, by imposing terms and conditions for such orders or 
contracts different from other generally comparable orders or contracts, 
or by any other means.
    (b) Contracts with priority ratings shall be subject to all 
applicable laws and regulations which govern the making of such 
contracts, including those specified in 10 CFR 211.26(e).



Sec.  221.36  Records and reports.

    (a) Each person receiving an order or directive under this part 
shall keep for at least two years from the date of full compliance with 
such order or directive accurate and complete records of crude oil and 
petroleum product deliveries made in accordance with such order or 
directive.
    (b) All records required to be maintained shall be made available 
upon request for inspection and audit by duly authorized representatives 
of the ERA.

(Approved by the Office of Management and Budget under control number 
1903-0073)

[45 FR 76433, Nov. 19, 1980, as amended at 46 FR 63209, Dec. 31, 1981]



Sec.  221.37  Violations and sanctions.

    (a) Any practice that circumvents or contravenes the requirements of 
this part or any order or directive issued under this part is a 
violation of the regulations provided in this part.
    (b) Criminal penalties. Any person who willfully performs any act 
prohibited, or willfully fails to perform any act required by this part 
or any order or directive issued under this part shall be subject to a 
fine of not more than $10,000 for each violation or imprisoned for not 
more than one year for each violation, or both.
    (c) Whenever in the judgment of the Administrator of ERA any person 
has engaged or is about to engage in any acts or practices which 
constitute or will constitute a violation of any provision of these 
regulations, the Administrator may make application to the appropriate 
court for an order enjoining such acts or practices, or for an order 
enforcing compliance with such provision.

[[Page 102]]



                       SUBCHAPTER B_CLIMATE CHANGE





PART 300_VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: 
GENERAL GUIDELINES--Table of Contents



Sec.
300.1 General.
300.2 Definitions.
300.3 Guidance for defining and naming the reporting entity.
300.4 Selecting organizational boundaries.
300.5 Submission of an entity statement.
300.6 Emissions inventories.
300.7 Net emission reductions.
300.8 Calculating emission reductions.
300.9 Reporting and recordkeeping requirements.
300.10 Certification of reports.
300.11 Independent verification.
300.12 Acceptance of reports and registration of entity emission 
          reductions.
300.13 Incorporation by reference.

    Authority: 42 U.S.C. 7101, et seq., and 42 U.S.C. 13385(b).

    Source: 71 FR 20805, Apr. 21, 2006, unless otherwise noted.



Sec.  300.1  General.

    (a) Purpose. The General Guidelines in this part and the Technical 
Guidelines incorporated by reference in Sec.  300.13 govern the 
Voluntary Reporting of Greenhouse Gases Program authorized by section 
1605(b) of the Energy Policy Act of 1992 (42 U.S.C. 13385(b)). The 
purpose of the guidelines is to establish the procedures and 
requirements for filing voluntary reports, and to encourage 
corporations, government agencies, non-profit organizations, households 
and other private and public entities to submit annual reports of their 
greenhouse gas emissions, emission reductions, and sequestration 
activities that are complete, reliable and consistent. Over time, it is 
anticipated that these reports will provide a reliable record of the 
contributions reporting entities have made toward reducing their 
greenhouse gas emissions.
    (b) Reporting under the program. (1) Each reporting entity, whether 
or not it intends to register emissions as described in paragraph (c) of 
this section, must:
    (i) File an entity statement that meets the appropriate requirements 
in Sec.  300.5(d) through (f) of this part;
    (ii) Use appropriate emission inventory and emission reduction 
calculation methods specified in the Technical Guidelines (incorporated 
by reference, see Sec.  300.13), and calculate and report the weighted 
average quality rating of any emission inventories it reports;
    (iii) Comply with the record keeping requirements in Sec.  300.9 of 
this part; and
    (iv) Comply with the certification requirements in Sec.  300.10 of 
this part;
    (2) Each reporting entity, whether or not it intends to register 
emissions as described in paragraph (c) of this section, may report 
offset reductions achieved by other entities outside their boundaries as 
long as such reductions are reported separately and calculated in 
accordance with methods specified in the Technical Guidelines. The 
third-party entity that achieved these reductions must agree to their 
being reported as offset reductions, and must also meet all of the 
requirements of reporting that would apply if the third-party entity 
reported directly under the 1605(b) program.
    (3) An entity that intends to register emissions and emission 
reductions must meet the additional requirements referenced in paragraph 
(c) of this section.
    (4) An entity that does not intend to register emissions and 
emission reductions may choose to report its emissions and/or emission 
reductions on an entity-wide basis or for selected elements of the 
entity, selected gases or selected sources.
    (5) An entity that does not intend to register emissions may report 
emission inventories for any year back to 1990 and may report emission 
reductions for any year back to 1991, relative to a base period of one 
to four years, ending no earlier than 1990.
    (c) Registration requirements. Entities that seek to register 
reductions must meet the additional requirements in this paragraph; 
although these requirements differ depending on whether the entity is a 
large or small emitter.
    (1) To be eligible for registration, a reduction must have been 
achieved after 2002, unless the entity has committed under the Climate 
Leaders or

[[Page 103]]

Climate VISION programs to reduce its entity-wide emissions relative to 
a base period that ends earlier 2002, but no earlier than 2000.
    (2) A large emitter must submit an entity-wide emission inventory 
that meets or exceeds the minimum quality requirements specified in 
Sec.  300.6(b) and the Technical Guidelines (incorporated by reference, 
see Sec.  300.13). Registered reductions of a large emitter must be 
based on an entity-wide assessment of net emission reductions, 
determined in accordance with Sec.  300.8 and the Technical Guidelines.
    (3) A small emitter must also submit an emission inventory that 
meets minimum quality requirements specified in Sec.  300.6(b) and the 
Technical Guidelines (incorporated by reference, see Sec.  300.13) and 
base its registered reductions on an assessment of annual changes in net 
emissions. A small emitter, however, may restrict its inventory and 
assessment to a single type of activity, such as forest management, 
building operations or agricultural tillage.
    (4) Reporting entities may, under certain conditions, register 
reductions achieved by other entities:
    (i) Reporting entities that have met the requirements for 
registering their own reductions may also register offset reductions 
achieved by other entities if:
    (A) They have an agreement with the third-party entities to do so 
and these third-party entities have met all of the requirements for 
registration; or
    (B) They were the result of qualified demand management or other 
programs and are calculated in accordance with the action-specific 
method identified in Sec.  300.8(h)(5).
    (ii) Small emitters that serve as an aggregator may register offset 
reductions achieved by non-reporting entities without reporting on their 
own emissions, as long as they have an agreement with the third-party 
entities to do so and these third-party entities have met all of the 
requirements for registration.
    (d) Forms. Annual reports of greenhouse gas emissions, emission 
reductions, and sequestration must be made on forms or software made 
available by the Energy Information Administration of the Department of 
Energy (EIA).
    (e) Status of reports under previous guidelines. EIA continues to 
maintain in its Voluntary Reporting of Greenhouse Gases database all 
reports received pursuant to DOE's October 1994 guidelines. Those 
guidelines are available from EIA at http://www.eia.doe.gov/oiaf/1605/
guidelns.html.
    (f) Periodic review and updating of General and Technical 
Guidelines. DOE intends periodically to review the General Guidelines 
and the Technical Guidelines (incorporated by reference, see Sec.  
300.13) to determine whether any changes are warranted; DOE anticipates 
these reviews will occur approximately once every three years. These 
reviews will consider any new developments in climate science or policy, 
the participation rates of large and small emitters in the 1605(b) 
program, the general quality of the data submitted by different 
participants, and any changes to other emissions reporting protocols. 
Possible changes may include, but are not limited to:
    (1) The addition of greenhouse gases that have been demonstrated to 
have significant, quantifiable climate forcing effects when released to 
the atmosphere in significant quantities;
    (2) Changes to the minimum, quantity-weighted quality rating for 
emission inventories;
    (3) Updates to emission inventory methods, emission factors and 
other provisions that are contained in industry protocols or standards. 
The review may also consider updates to any government-developed and 
consensus-based emission factors for which automatic updating is not 
provided in the Technical Guidelines;
    (4) Modifications to the benchmarks or emission conversion factors 
used to calculate avoided and indirect emissions; and
    (5) Changes in the minimum requirements for registered emission 
reductions.



Sec.  300.2  Definitions.

    This section provides definitions for commonly used terms in this 
part.
    Activity of a small emitter means, with respect to a small emitter, 
any single category of anthropogenic production,

[[Page 104]]

consumption or other action that releases emissions or results in 
sequestration, the annual changes of which can be assessed generally by 
using a single calculation method.
    Aggregator means an entity that reports to the 1605(b) program on 
behalf of non-reporting entities. An aggregator may be a large or small 
emitter, such as a trade association, non-profit organization or public 
agency.
    Anthropogenic means greenhouse gas emissions and removals that are a 
direct result of human activities or are the result of natural processes 
that have been affected by human activities.
    Avoided emissions means the greenhouse gas emission reductions that 
occur outside the organizational boundary of the reporting entity as a 
direct consequence of changes in the entity's activity, including but 
not necessarily limited to the emission reductions associated with 
increases in the generation and sale of electricity, steam, hot water or 
chilled water produced from energy sources that emit fewer greenhouse 
gases per unit than other competing sources of these forms of 
distributed energy.
    Base period means a period of 1-4 years used to derive the average 
annual base emissions, emissions intensity or other values from which 
emission reductions are calculated.
    Base value means the value from which emission reductions are 
calculated for an entity or subentity. The value may be annual 
emissions, emissions intensity, kilowatt-hours generated, or other value 
specified in the 1605(b) guidelines. It is usually derived from actual 
emissions and/or activity data derived from the base period.
    Biogenic emissions mean emissions that are naturally occurring and 
are not significantly affected by human actions or activity.
    Boundary means the actual or virtual line that encompasses all the 
emissions and carbon stocks that are to be quantified and reported in an 
entity's greenhouse gas inventory, including de minimis emissions. 
Entities may use financial control or another classification method 
based on ownership or control as the means of determining which sources 
or carbon stocks fall within this organizational boundary.
    Carbon dioxide equivalent means the amount of carbon dioxide by 
weight emitted into the atmosphere that would produce the same estimated 
radiative forcing as a given weight of another radiatively active gas. 
Carbon dioxide equivalents are computed by multiplying the weight of the 
gas being measured by its estimated global warming potential.
    Carbon stocks mean the quantity of carbon stored in biological and 
physical systems including: trees, products of harvested trees, 
agricultural crops, plants, wood and paper products and other 
terrestrial biosphere sinks, soils, oceans, and sedimentary and 
geological sinks.
    Climate Leaders means the EPA sponsored industry-government 
partnership that works with individual companies to develop long-term 
comprehensive climate change strategies. Certain Climate Leaders 
Partners have, working with EPA, set a corporate-wide greenhouse gas 
reduction goal and have inventoried their emissions to measure progress 
towards their goal.
    Climate VISION means the public-private partnership initiated 
pursuant to a Presidential directive issued in 2002 that aims to 
contribute to the President's goal of reducing greenhouse gas intensity 
through voluntary frameworks with industry. Climate VISION partners have 
signed an agreement with DOE to implement various climate-related 
actions to reduce greenhouse gas emissions.
    De minimis emissions means emissions from one or more sources and of 
one or more greenhouse gases that, in aggregate, are less than or equal 
to 3 percent of the total annual carbon dioxide (CO2) 
equivalent emissions of a reporting entity.
    Department or DOE means the U.S. Department of Energy.
    Direct emissions are emissions from sources within the 
organizational boundaries of an entity.
    Distributed energy means electrical or thermal energy generated by 
an entity that is sold or otherwise exported outside of the entity's 
boundaries for use by another entity.

[[Page 105]]

    EIA means the Energy Information Administration within the U.S. 
Department of Energy.
    Emissions means the direct release of greenhouse gases to the 
atmosphere from any anthropogenic (human induced) source and certain 
indirect emissions (releases) specified in this part.
    Emissions intensity means emissions per unit of output, where output 
is defined as the quantity of physical output, or a non-physical 
indicator of an entity's or subentity's productive activity.
    Entity means the whole or part of any business, institution, 
organization, government agency or corporation, or household that:
    (1) Is recognized under any U.S. Federal, State or local law that 
applies to it;
    (2) Is located and operates, at least in part, in the United States; 
and
    (3) The emissions of such operations are released, at least in part, 
in the United States.
    First reduction year means the first year for which an entity 
intends to register emission reductions; it is the year that immediately 
follows the start year.
    Fugitive emissions means uncontrolled releases to the atmosphere of 
greenhouse gases from the processing, transmission, and/or 
transportation of fossil fuels or other materials, such as HFC leaks 
from refrigeration, SF6 from electrical power distributors, and methane 
from solid waste landfills, among others, that are not emitted via an 
exhaust pipe(s) or stack(s).
    Greenhouse gases means the gases that may be reported to the 
Department of Energy under this program. They are:
    (1) Carbon dioxide (CO2)
    (2) Methane (CH4)
    (3) Nitrous oxide (N2O)
    (4) HydrofluorocarbonsHFC-23 [trifluoromethane-(CHF3]HFC-
32 [trifluoromethane-CH2F2], 
CH2CF3, CH3F, 
CHF2CF3, CH2FCF3, 
CH3FCF3, CHF2CH2F, 
CF3CH3, CH2FCH2F, 
CH3CHF2, CH3CH2F, 
CF3CHFCF3, 
CH2FCF3CF3, 
CHF2CHFCF3, 
CF3CH2CF3, 
CH2FCF2CHF2, 
CHF2CH2CF3, 
CF3CH2CF2CH3, CH3 
CHFCHFCF2)
    (5) Perfluorocarbons (perfluoromethane-CF4, 
perfluoroethane-C2F6, C3F8, 
C4F10, c-C4F8, 
C5F12, C6F14)
    (6) Sulfur hexafluoride (SF6)
    (7) Chlorofluorocarbons (CFC-11 [trichlorofluoromethane-
CCl3F], CCl2F2, CClF3, 
CCl2FCClF2, CClF2CClF2, 
ClF3CClF2,)
    (8) Other gases or particles that have been demonstrated to have 
significant, quantifiable climate forcing effects when released to the 
atmosphere in significant quantities and for which DOE has established 
or approved methods for estimating emissions and reductions. (Note: As 
provided in Sec.  300.6(i), chlorofluorcarbons and other gases with 
quantifiable climate forcing effects may be reported to the 1605(b) 
program if DOE has established an appropriate emission inventory or 
emission reduction calculation method, but reductions of these gases may 
not be registered.)
    Incidental lands are entity landholdings that are a minor component 
of an entity's operations and are not actively managed for production of 
goods and services, including:
    (1) Transmission, pipeline, or transportation right of ways that are 
not managed for timber production;
    (2) Land surrounding commercial enterprises or facilities; and
    (3) Land where carbon stock changes are determined by natural 
factors.
    Indirect emissions means greenhouse gas emissions from stationary or 
mobile sources outside the organizational boundary that occur as a 
direct consequence of an entity's activity, including but not 
necessarily limited to the emissions associated with the generation of 
electricity, steam and hot/chilled water used by the entity.
    Large emitter means an entity whose annual emissions are more than 
10,000 metric tons of CO2 equivalent, as determined in 
accordance with Sec.  300.5(c).
    Net emission reductions means the sum of all annual changes in 
emissions, eligible avoided emissions and sequestration of the 
greenhouse gases specifically identified in Sec.  300.6(i), and 
determined to be in conformance with Sec. Sec.  300.7 and 300.8 of this 
part.
    Offset means an emission reduction that is included in a 1605(b) 
report and

[[Page 106]]

meets the requirements of this part, but is achieved by an entity other 
than the reporting entity. Offset reductions must not be reported or 
registered by any other entity and must appear as a separate and 
distinct component of an entity's report. Offsets are not integrated 
into the reporting entity's emissions or net emission reductions.
    Registration means the reporting of emission reductions that the EIA 
has determined meet the qualifications for registered emission 
reductions set forth in the guidelines.
    Reporting entity means an entity that has submitted a report under 
the 1605(b) program that has been accepted by the Energy Information 
Administration.
    Reporting year means the year that is the subject of a report to 
DOE.
    Sequestration means the process by which CO2 is removed 
from the atmosphere, either through biologic processes or physical 
processes.
    Simplified Emission Inventory Tool (SEIT) is a computer-based 
method, to be developed and made readily accessible by EIA, for 
translating common physical indicators into an estimate of greenhouse 
gas emissions.
    Sink means an identifiable discrete location, set of locations, or 
area in which CO2 or some other greenhouse gas is 
sequestered.
    Small emitter means an entity whose annual emissions are less than 
or equal to 10,000 metric tons of CO2 equivalent, as 
determined in accordance with Sec.  300.5(c), and that chooses to be 
treated as a small emitter under the guidelines.
    Source means any land, facility, process, vehicle or activity that 
releases a greenhouse gas.
    Start year means the year upon which the initial entity statement is 
based and the last year of the initial base period(s).
    Subentity means a component of any entity, such as a discrete 
business line, facility, plant, vehicle fleet, or energy using system, 
which has associated with it emissions of greenhouse gases that can be 
distinguished from the emissions of all other components of the same 
entity and, when summed with the emissions of all other subentities, 
equal the entity's total emissions.
    Total emissions means the total annual contribution of the 
greenhouse gases (as defined in this section) to the atmosphere by an 
entity, including both direct and indirect entity-wide emissions.
    United States or U.S. means the 50 States, the District of Columbia, 
the Commonwealth of Puerto Rico, the Commonwealth of the Northern 
Mariana Islands, Guam, American Samoa, and any other territory of the 
United States.



Sec.  300.3  Guidance for defining and naming the reporting entity.

    (a) A reporting entity must be composed of one or more businesses, 
public or private institutions or organizations, households, or other 
entities having operations that annually release emissions, at least in 
part, in the United States. Entities may be defined by, as appropriate, 
a certificate of incorporation, corporate charter, corporate filings, 
tax identification number, or other legal basis of identification 
recognized under any Federal, State or local law or regulation. If a 
reporting entity is composed of more than one entity, all of the 
entities included must be responsible to the same management hierarchy 
and all entities that have the same management hierarchy must be 
included in the reporting entity.
    (b) All reporting entities are strongly encouraged to define 
themselves at the highest level of aggregation. To achieve this 
objective, DOE suggests the use of a corporate-level definition of the 
entity, based on filings with the Securities and Exchange Commission or 
institutional charters. While reporting at the highest level of 
aggregation is encouraged, DOE recognizes that certain businesses and 
institutions may conclude that reporting at some lower level is 
desirable. Federal agencies are encouraged to report at the agency or 
departmental level, but distinct organizational units (such as a 
Department of the Interior Fish and Wildlife Service National Wildlife 
Refuge) may report directly if authorized by their department or agency. 
Once an entity has determined the level of corporate or institutional 
management at which it will report (e.g., the holding

[[Page 107]]

company, subsidiary, regulated stationary source, state government, 
agency, refuge, etc.), the entity must include all elements of the 
organization encompassed by that management level and exclude any 
organizations that are managed separately. For example, if two 
subsidiaries of a parent company are to be covered by a single report, 
then all subsidiaries of that parent company must also be included. 
Similarly, if a company decides to report on the U.S. and Canadian 
subsidiaries of its North American operations unit, it must also report 
on any other subsidiaries of its North American unit, such as a Mexican 
subsidiary.
    (c) A name for the defined entity must be specified by all 
reporters. For entities that intend to register reductions, this should 
be the name commonly used to represent the activities being reported, as 
long as it is not also used to refer to substantial activities not 
covered by the entity's reports. While DOE believes entities should be 
given considerable flexibility in defining themselves at an appropriate 
level of aggregation, it is essential that the name assigned to an 
entity that intends to register reductions corresponds closely to the 
scope of the operations and emissions covered by its report. If, for 
example, an individual plant or operating unit is reporting as an 
entity, it should be given a name that corresponds to the specific plant 
or unit, and not to the responsible subsidiary or corporate entity. In 
order to distinguish a parent company from its subsidiaries, the name of 
the parent company generally should not be incorporated into the name of 
the reporting subsidiary, but if it is, the name of the parent company 
usually should be secondary.



Sec.  300.4  Selecting organizational boundaries.

    (a) Each reporting entity must disclose in its entity statement the 
approach used to establish its organizational boundaries, which should 
be consistent with the following guidelines:
    (1) In general, entities should use financial control as the primary 
basis for determining their organizational boundaries, with financial 
control meaning the ability to direct the financial and operating 
policies of all elements of the entity with a view to gaining economic 
or other benefits from its activities over a period of many years. This 
approach should ensure that all sources, including those controlled by 
subsidiaries, that are wholly or largely owned by the entity are covered 
by its reports. Sources that are under long-term lease of the entity 
may, depending on the provisions of such leases, also be considered to 
be under the entity's financial control. Sources that are temporarily 
leased or operated by an entity generally would not be considered to be 
under its financial control.
    (2) Entities may establish organizational boundaries using 
approaches other than financial control, such as equity share or 
operational control, but must disclose how the use of these other 
approaches results in organizational boundaries that differ from those 
resulting from using the financial control approach.
    (3) Emissions from facilities or vehicles that are partially-owned 
or leased may be included at the entity's discretion, provided that the 
entity has taken reasonable steps to assure that doing so does not 
result in the double counting of emissions, sequestration or emission 
reductions. Emissions reductions or sequestration associated with land, 
facilities or other sources not owned or leased by an entity may not be 
included in the entity's reports under the program unless the entity has 
long-term control over the emissions or sequestration of the source and 
the owner of the source has agreed that the emissions or sequestration 
may be included in the entity's report.
    (4) If the scope of a defined entity extends beyond the United 
States, the reporting entity should use the same approach to determining 
its organizational boundaries in the U.S. and outside the U.S.
    (b) Each reporting entity must keep separate reports on emissions or 
emission reductions that occur within its defined boundaries and those 
that occur outside its defined boundaries. Entities must also keep 
separate reports on emissions and emission reductions that occur outside 
the United

[[Page 108]]

States and those that occur within the United States.
    (c) An entity that intends to register its entity-wide emissions 
reductions must document and maintain its organizational boundary for 
accounting and reporting purposes.



Sec.  300.5  Submission of an entity statement.

    (a) Determining the type of reporting entity. The entity statement 
requirements vary by type of reporting entity. For the purposes of these 
guidelines, there are three types of entities:
    (1) Large emitters that intend to register emission reductions;
    (2) Small emitters that intend to register emission reductions; and
    (3) Emitters that intend to report, but not register emission 
reductions.
    (b) Choosing a start year. The first entity statement describes the 
make-up, operations and boundaries of the entity, as they existed in the 
start year.
    (1) For all entities, it is the year immediately preceding the first 
year for which the entity intends to register emission reductions and 
the last year of the initial base period(s).
    (2) For entities intending to register emission reductions, the 
start year may be no earlier than 2002, unless the entity has made a 
commitment to reduce its entity-wide emissions under the Climate Leaders 
or Climate VISION program. An entity that has made such a commitment may 
establish a start year derived from the base period of the commitment, 
as long as it is no earlier than 2000.
    (i) For a large emitter, the start year is the first year for which 
the entity submits a complete emissions inventory under the 1605(b) 
program.
    (ii) The entity's emissions in its start year or its average annual 
emissions over a period of up to four years ending in the start year 
determine whether it qualifies to begin reporting as a small emitter.
    (3) For entities not intending to register reductions, the start 
year may be no earlier than 1990.
    (c) Determining and maintaining large or small emitter reporting 
status. (1) Any entity that intends to register emission reductions can 
choose to participate as a large emitter, but only an entity that has 
demonstrated that its annual emissions are less than or equal to 10,000 
metric tons of CO2 equivalent may participate as a small 
emitter. To demonstrate that its annual emissions are less than or equal 
to 10,000 metric tons of CO2 equivalent, an entity must 
submit either an estimate of its emissions during its chosen start year 
or an estimate of its average annual emissions over a continuous period 
not to exceed four years of time ending in its chosen start year, as 
long as the operations and boundaries of the entity have not changed 
significantly during that period.
    (2) An entity must estimate its total emissions using methods 
specified in Chapter 1 of the Technical Guidelines (incorporated by 
reference, see Sec.  300.13) or by using the Simplified Emission 
Inventory Tool (SEIT) provided by EIA and also discussed in Chapter 1. 
The results of this estimate must be reported to EIA. [Note: emission 
estimates developed using SEIT may not be used to prepare, in whole or 
part, entity-wide emission inventories required for the registration of 
reductions.]
    (3) After starting to report, each small emitter must annually 
certify that the emissions-related operations and boundaries of the 
entity have not changed significantly since the previous report. A new 
estimate of total emissions must be submitted after any significant 
increase in emissions, any change in the operations or boundaries of the 
small emitter, or every five years, whichever occurs first. Small 
emitters with estimated annual emissions of over 9,000 metric tons of 
CO2 equivalent should re-estimate and submit their emissions 
annually. If an entity determines that it must report as a large 
emitter, then it must continue to report as a large emitter in all 
future years in order to ensure a consistent time series of reports. 
Once a small emitter becomes a large emitter, it must begin reporting in 
conformity with the reporting requirements for large emitters.
    (d) Entity statements for large emitters intending to register 
reductions. When a large emitter intending to register emission 
reductions first reports under these guidelines, it must provide the

[[Page 109]]

following information in its entity statement:
    (1) The name to be used to identify the participating entity;
    (2) The legal basis of the named entity;
    (3) The criteria used to determine:
    (i) The organizational boundaries of the entity, if other than 
financial control; and
    (ii) The sources of emissions included or excluded from the entity's 
reports, such as sources excluded as de minimis emissions;
    (4) The names of any parent or holding companies the activities of 
which will not be covered comprehensively by the entity's reports;
    (5) The names of any large subsidiaries or organizational units 
covered comprehensively by the entity's reports. All subsidiaries of the 
entity must be covered by the entity's reports, but only large 
subsidiaries must be specifically identified in the entity statement;
    (6) A list of each country where operations occur, if the entity is 
including any non-U.S. operations in its report;
    (7) A description of the entity and its primary U.S. economic 
activities, such as electricity generation, product manufacturing, 
service provider or freight transport; for each country listed under 
paragraph (d)(6) of this section, the large emitter should describe the 
economic activity in that country.
    (8) A description of the types of emission sources or sinks to be 
covered in the entity's emission inventories, such as fossil fuel power 
plants, manufacturing facilities, commercial office buildings or heavy-
duty vehicles;
    (9) The names of other entities that substantially share the 
ownership or operational control of sources that represent a significant 
part of the reporting entity's emission inventories, and a certification 
that, to the best of the certifier's knowledge, the direct greenhouse 
gas emissions and sequestration in the entity's report are not included 
in reports filed by any of these other entities to the 1605(b) program; 
and
    (10) Identification of the start year.
    (e) Entity statements for small emitters intending to register 
reductions. When a small emitter intending to register emission 
reductions first reports under these guidelines, it must provide the 
following information in its entity statement:
    (1) The name to be used to identify the participating entity;
    (2) The legal basis of the named entity;
    (3) An identification of the entity's control over the activities 
covered by the entity's reports, if other than financial control;
    (4) The names of any parent or holding companies the activities of 
which will not be covered comprehensively by the entity's reports;
    (5) An identification or description of the primary economic 
activities of the entity, such as agricultural production, forest 
management or household operation; if any of the economic activities 
covered by the entity's reports occur outside the U.S., a listing of 
each country in which such activities occur;
    (6) An identification or description of the specific activity (or 
activities) and the emissions, avoided emissions or sequestration 
covered by the entity's report, such as landfill gas recovery or forest 
sequestration;
    (7) A certification that, to the best of the certifier's knowledge, 
the direct greenhouse gas emissions and sequestration in the entity's 
report are not included in reports filed by any other entities reporting 
to the 1605(b) program; and
    (8) Identification of the start year.
    (f) Entity statements for reporting entities not registering 
reductions. When a participant not intending to register emission 
reductions first reports under this part, it must, at a minimum, provide 
the following information in its entity statement:
    (1) The name to be used to identify the reporting entity;
    (2) The legal basis of the entity;
    (3) An identification of the entity's control over the activities 
covered by the entity's reports, if other than financial control;
    (4) A description of the entity and its primary economic activities, 
such as electricity generation, product manufacturing, service provider, 
freight transport, agricultural production, forest management or 
household operation; if any of the economic activities covered by the 
entity's reports occur

[[Page 110]]

outside the United States, a listing of each country in which such 
activities occur; and
    (5) A description of the types of emission sources or sinks, such as 
fossil fuel power plants, manufacturing facilities, commercial office 
buildings or heavy-duty vehicles, covered in the entity's reports of 
emissions or emission reductions.
    (g) Changing entity statements. (1) Reporting entities are required 
to annually review and, if necessary, update their entity statements.
    (2) From time to time, a reporting entity may choose to change the 
scope of activities included within the entity's reports or the level at 
which the entity wishes to report. A reporting entity may also choose to 
change its organizational boundaries, its base period, or other elements 
of its entity statement. For example, companies buy and sell business 
units, or equity share arrangements may change. In general, DOE 
encourages changes in the scope of reporting that expand the coverage of 
an entity's report and discourages changes that reduce the coverage of 
such reports unless they are caused by divestitures or plant closures. 
Any such changes should be reported in amendments to the entity 
statement, and major changes may warrant or require changes in the base 
values used to calculate emission reductions and, in some cases, the 
entity's base periods. Changes in the scope of reporting made on or 
before May 31 of a given calendar year must be reflected in the report 
submitted covering emissions and reductions for the following calendar 
year. Reporting entities may choose to postpone incorporating changes in 
the scope of reporting made after May 31 until submitting the report 
covering emissions and reductions for the year after the following 
calendar year. However, in no case should there be an interruption in 
the annual reports of entities registering emission reductions. Chapter 
2 of the Technical Guidelines (incorporated by reference, see Sec.  
300.13) provides more specific guidance on how such changes should be 
reflected in entity statements, reports, and emission reduction 
calculations.
    (h) Documenting changes in amended entity statements. A reporting 
entity's entity statement in subsequent reports should focus primarily 
on changes since the previous report. Specifically, the subsequent 
entity statement should report the following information:
    (1) For significant changes in the reporting entity's scope or 
organizational boundaries, the entity should document:
    (i) The acquisition or divestiture of discrete business units, 
subsidiaries, facilities, and plants;
    (ii) The closure or opening of significant facilities;
    (iii) The transfer of economic activity to or from specific 
subentities covered by the entity's reports, such as the transfer of 
operations to non-U.S. subsidiaries;
    (iv) Significant changes in land holdings (applies to entities 
reporting on greenhouse gas emissions or sequestration related to land 
use, land use change, or forestry);
    (v) Whether the reporting entity is reporting at a higher level of 
aggregation than it did in the previous report, and if so, a listing of 
the subsidiary entities that are now aggregated under a revised 
conglomerated entity, including a listing of any non-U.S. operations to 
be added and the specific countries in which these operations are 
located; and
    (vi) Changes in its activities or operations (e.g., changes in 
output, contractual arrangements, equipment and processes, outsourcing 
or insourcing of significant activities) that are likely to have a 
significant effect on emissions, together with an explanation of how it 
believes the changes in economic activity influenced its reported 
emissions or sequestrations.



Sec.  300.6  Emissions inventories.

    (a) General. The objective of an emission inventory is to provide a 
full accounting of an entity's emissions for a particular year, 
including direct emissions of the first six categories of gases listed 
in the definition of ``greenhouse gases'' in Sec.  300.2, indirect 
emissions specified in paragraph (e) of this section, and all 
sequestration or other changes in carbon stocks. An emission

[[Page 111]]

inventory must be prepared in accordance with Chapter 1 of the Technical 
Guidelines (incorporated by reference, see Sec.  300.13). An inventory 
does not include avoided emissions or any offset reductions, and is not 
subsequently adjusted to reflect future acquisitions, divestitures or 
other changes to the reporting entity (although a reporting entity often 
makes these types of adjustments when calculating emission reductions 
under the guidelines). Entity-wide inventories are a prerequisite for 
the registration of emission reductions by entities with average annual 
emissions of more than 10,000 metric tons of CO2 equivalent. 
Entities that have average annual emissions of less than or equal to 
10,000 metric tons of CO2 equivalent are eligible to register 
emission reductions associated with specific activities without also 
reporting an inventory of the total emissions, but such entities should 
inventory and report the emissions associated with the specific 
activity(ies) they do cover in their reports.
    (b) Quality requirements for emission inventories. The Technical 
Guidelines (incorporated by reference, see Sec.  300.13) usually 
identify more than one acceptable method of measuring or estimating 
greenhouse gas emissions. Each acceptable method is rated A, B, C or D, 
with A methods usually corresponding to the highest quality method 
available and D methods representing the lowest quality method that may 
be used. Each letter is assigned a numerical rating reflecting its 
relative quality, 4 for A methods, 3 for B methods, 2 for C methods and 
1 for D methods. Entities that intend to register emission reductions 
must use emission inventory methods that result in a quantity-weighted 
average quality rating of at least 3.0.
    (1) Entities may at any time choose to modify the measurement or 
estimation methods that they use for their current or future year 
emission inventories. Such modifications would enable entities to 
gradually improve the quality of the ratings over time, but prior year 
inventories may be modified only to correct significant errors.
    (2) Entities that have had their emission quantities and the 
quantity-weighted quality rating of their emissions inventory 
independently verified may report their emissions and average quality 
ratings by greenhouse gas, indirect emissions and sequestration, rather 
than by source or sink category.
    (3) Entities that certify that they have used only A or B methods, 
may forego indicating in their reports the quality ratings of the 
methods used and may forego calculating the quantity-weighted average 
quality of their emission inventories.
    (c) Using estimation methods not included in the Technical 
Guidelines. An entity may obtain DOE approval for the use of an 
estimation method not included in the Technical Guidelines (incorporated 
by reference, see Sec.  300.13) if the method covers sources not 
described in the Technical Guidelines, or if the method provides more 
accurate results for the entity's specific circumstances than the 
methods described in the Technical Guidelines. If an entity wishes to 
propose the use of a method that is not described in the Technical 
Guidelines, the entity must provide a written description of the method, 
an explanation of how the method is implemented (including data 
requirements), empirical evidence of the method's validity and accuracy, 
and a suggested rating for the method to DOE's Office of Policy and 
International Affairs (with a copy to EIA). DOE reserves the right to 
deny the request, or to assign its own rating to the method. By 
submitting this information, the entity grants permission to DOE to 
incorporate the method in a future revision of the Technical Guidelines.
    (d) Direct emissions inventories. Direct greenhouse gas emissions 
that must be reported are the emissions resulting from stationary or 
mobile sources within the organizational boundaries of an entity, 
including but not limited to emissions resulting from combustion of 
fossil fuels, process emissions, and fugitive emissions. Process 
emissions (e.g., PFC emissions from aluminum production) must be 
reported along with fugitive emissions (e.g., leakage of greenhouse 
gases from equipment).
    (e) Inventories of indirect emissions associated with purchased 
energy. (1) To provide a clear incentive for the users

[[Page 112]]

of electricity and other forms of purchased energy to reduce demand, an 
entity must include the indirect emissions from the consumption of 
purchased electricity, steam, and hot or chilled water in the entity's 
inventory as indirect emissions. To avoid double counting among 
entities, the entity must report all indirect emissions separately from 
its direct emissions. Entities should use the methods for quantifying 
indirect emissions specified in the Technical Guidelines (incorporated 
by reference, see Sec.  300.13).
    (2) Entities may choose to report other forms of indirect emissions, 
such as emissions associated with employee commuting, materials consumed 
or products produced, although such other indirect emissions may not be 
included in the entity's emission inventory and may not be the basis for 
registered emission reductions. All such reports of other forms of 
indirect emissions must be distinct from reports of indirect emissions 
associated with purchased energy and must be based on emission 
measurement or estimation methods identified in the Technical Guidelines 
(incorporated by reference, see Sec.  300.13) or approved by DOE.
    (f) Entity-level inventories of changes in terrestrial carbon 
stocks. Annual changes in managed terrestrial carbon stocks should be 
comprehensively assessed and reported across the entity, and the net 
emissions resulting from such changes included in the entity's emissions 
inventory. Entities should use the methods for estimating changes in 
managed terrestrial carbon stocks specified in the Technical Guidelines 
(incorporated by reference, see Sec.  300.13).
    (g) Treatment of de minimis emissions and sequestration. (1) 
Although the goal of the entity-wide reporting requirement is to provide 
an accurate and comprehensive estimate of total emissions, there may be 
small emissions from certain sources that are unduly costly or otherwise 
difficult to measure or reliably estimate annually. An entity may 
exclude particular sources of emissions or sequestration if the total 
quantities excluded represent less than or equal to 3 percent of the 
total annual CO2 equivalent emissions of the entity. The 
entity must identify the types of emissions excluded and provide an 
estimate of the annual quantity of such emissions using methods 
specified in the Technical Guidelines (incorporated by reference, see 
Sec.  300.13) or by using the Simplified Emissions Inventory Tool 
(SEIT). The results of this estimate of the entity's total excluded 
annual emissions must be reported to DOE together with the entity's 
initial entity statement.
    (2) After starting to report, each reporting entity that excludes 
from its annual reports any de minimis emissions must re-estimate the 
quantity of excluded emissions after any significant increase in such 
emissions, or every five years, whichever occurs sooner.
    (h) Separate reporting of domestic and international emissions. Non-
U.S. emissions included in an entity's emission inventory must be 
separately reported and clearly distinguished from emissions originating 
in the U.S. Entities must identify any country-specific factors used in 
the preparation of such reports.
    (i) Covered gases. Entity-wide emissions inventories must include 
the emissions of the first six categories of named gases listed in the 
definition of ``greenhouse gases'' in Sec.  300.2. Entities may report 
chlorofluorocarbons and other greenhouse gases with quantifiable climate 
forcing effects as long as DOE has established a method for doing so, 
but such gases must be reported separately and emission reductions, if 
any, associated with such other gases are not eligible for registration.
    (j) Units for reporting. Emissions and sequestration should be 
reported in terms of the mass (not volume) of each gas, using metric 
units (e.g., metric tons of methane). Entity-wide and subentity 
summations of emissions and reductions from multiple sources must be 
converted into CO2 equivalent units using the global warming 
potentials for each gas in the International Panel on Climate Change's 
Third Assessment (or most recent) Report, as specified in the Technical 
Guidelines (incorporated by reference, see Sec.  300.13). Entities 
should specify the units used (e.g., kilograms, or metric tons). 
Entities may need to use the standard conversion factors specified in 
the Technical Guidelines to

[[Page 113]]

convert existing data into the common units required in the entity-level 
report. Emissions from the consumption of purchased electricity must be 
calculated by region (from the list provided by DOE in the Technical 
Guidelines) or country, if outside the United States. Consumption of 
purchased steam or chilled/hot water must be reported according to the 
type of system and fuel used to generate it (from the list provided by 
DOE in the Technical Guidelines). Entities must convert purchased energy 
to CO2 equivalents using the conversion factors in the 
Technical Guidelines. Entities should also provide the physical 
quantities of each type of purchased energy covered by their reports.



Sec.  300.7  Net emission reductions.

    (a) Entities that intend to register emission reductions achieved 
must comply with the requirements of this section. Entities may 
voluntarily follow these procedures if they want to demonstrate the 
achievement of net, entity-wide reductions for years prior to the 
earliest year permitted for registration. Only large emitters must 
follow the requirements of paragraph (b) of this section, but small 
emitters may do so voluntarily. Only entities that qualify as small 
emitters may use the special procedures in paragraph (c) of this 
section. Entities seeking to register emission reductions achieved by 
other entities (offsets) must certify that these emission reductions 
were calculated in a manner consistent with the requirements of 
paragraph (d) of this section and use the emission reduction calculation 
methods identified in Sec.  300.8. All entities seeking to register 
emission reductions must comply with the requirements of paragraph (e) 
of this section. Only reductions in the emissions of the first six 
categories of gases listed in the definition of ``greenhouse gases'' in 
Sec.  300.2 are eligible for registration.
    (b) Assessing net emission reductions for large emitters. (1) 
Entity-wide reporting is a prerequisite for registering emission 
reductions by entities with average annual emissions of more than 10,000 
metric tons of CO2 equivalent. Net annual entity-wide 
emission reductions must be based, to the maximum extent practicable, on 
a full assessment and sum total of all changes in an entity's emissions, 
eligible avoided emissions and sequestration relative to the entity's 
established base period(s). This assessment must include all entity 
emissions, including the emissions associated with any non-U.S. 
operations covered by the entity statement, although the reductions 
achieved by non-U.S. operations must be separately totaled prior to 
being integrated with the net emission reductions achieved by U.S. 
operations. It must include the annual changes in the total emissions of 
the entity, including the total emissions of each of the subentities 
identified in its entity statement. All changes in emissions, avoided 
emissions, and sequestration must be determined using methods that are 
consistent with the guidelines described in Sec.  300.8 of this part.
    (2) If it is not practicable to assess the changes in net emissions 
resulting from certain entity activities using at least one of the 
methods described in Sec.  300.8 of this part, the entity may exclude 
them from its estimate of net emission reductions. The entity must 
identify as one or more distinct subentities the sources of emissions 
excluded for this reason and describe the reasons why it was not 
practicable to assess the changes that had occurred. DOE believes that 
few emission sources will be excluded for this reason, but has 
identified at least two situations where such an exclusion would be 
warranted. For example, it is likely to be impossible to assess the 
emission changes associated with a new manufacturing plant that produces 
a product for which the entity has no historical record of emissions or 
emissions intensity (emissions per unit of product output). However, 
once the new plant has been operational for at least a full year, a base 
period and base value(s) for the new plant could be established and its 
emission changes assessed in the following year. Until the emission 
changes of this new subentity can be assessed, it should be identified 
in the entity's report as a subentity for which no assessment of 
emission changes is practicable. The other example involves a subentity 
that has reduced its

[[Page 114]]

output below the levels of its base period. In such a case, the 
subentity could not use the absolute emissions method and may also be 
unable to identify an effective intensity metric or other method.
    (3) In calculating its net annual emission reductions, an entity 
should exclude any emissions or sequestration that have been excluded 
from the entity's inventory. The entity should also exclude all de 
minimis and biogenic emissions that are excluded from the entity's 
inventory of greenhouse gas emissions from its assessments of emission 
changes.
    (c) Assessing emission reductions for entities with small emissions. 
(1) Entities with average annual emissions of less than or equal to 
10,000 metric tons of CO2 equivalent are not required to 
inventory their total emissions or assess all changes in their 
emissions, eligible avoided emissions and sequestration to qualify for 
registered reductions. These entities may register emission reductions 
that have occurred since 2002 and that are associated with one or more 
specific activities, as long as they:
    (i) Perform a complete assessment of the annual emissions and 
sequestration associated with each of the activities upon which they 
report, using methods that meet the same quality requirements applicable 
to entity-wide emission inventories; and
    (ii) Determine the changes in the emissions, eligible avoided 
emissions or sequestration associated with each of these activities.
    (2) An entity reporting as a small emitter must report on one or 
more specific activities and is encouraged, but not required to report 
on all activities occurring within the entity boundary. Examples of 
small emitter activities include: vehicle operations; product 
manufacturing processes; building operations or a distinct part thereof, 
such as lighting; livestock operations; crop management; and power 
generation. For example, a farmer managing several woodlots and also 
producing a wheat crop may report emission reductions associated with 
managing an individual woodlot. However, the farmer must also assess and 
report the net sequestration resulting from managing all the woodlots 
within the entity's boundary. The small emitter is not required to 
report on emissions or reductions associated with growing the wheat 
crop.
    (3) A small emitter must certify that the reductions reported were 
not caused by actions likely to cause increases in emissions elsewhere 
within the entity's operations. This certification should be based on an 
assessment of the likely direct and indirect effects of the actions 
taken to reduce greenhouse gas emissions.
    (d) Net emission reductions achieved by other entities (offset 
reductions or emission reductions submitted by aggregators). A reporting 
entity or aggregator under certain conditions may report or register all 
or some of the net emission reductions achieved by entities that choose 
not to report under the section 1605(b) program. In all cases, an 
agreement must exist between the reporting entity or aggregator and the 
other entity that specifies the quantity of the emission reductions (or 
increases) achieved by the other entity that may be reported or 
registered as an offset reduction by the reporting entity or aggregator. 
A large emitter that is reporting on behalf of other entities must meet 
all of the requirements applicable to large emitters, including 
submission of an entity statement, an emissions inventory, and an 
entity-wide assessment of emission reductions. If an aggregator is a 
small emitter, it may choose to report only on the activities, emissions 
and emission reductions of the entities on behalf of which it is 
reporting and not to report on any of its own activities or emission 
reductions. The reporting entity or aggregator must include in its 
report all of the information on the other entity, including an entity 
statement, an emissions inventory (when required), and an assessment of 
emission reductions that would be required if the other entity were 
directly reporting to EIA. The net emissions reductions (or increases) 
of each other entity will be evaluated separately by EIA to determine 
whether they are eligible for registration in accordance with the 
guidelines of this part. Those registered reductions (or increases) 
assigned by the

[[Page 115]]

other entity, by agreement, to a reporting entity or aggregator will be 
included in EIA's summary of all registered offset reductions for that 
entity or aggregator. If the agreement between the reporting entity and 
other entity is discontinued, for any reason, the reporting entity must 
inform EIA and must identify any emission reductions previously reported 
that could be attributable to an increase in the carbon stocks of the 
other entity. Such reductions will be removed by EIA from the records of 
the reporting entity's offset reductions.
    (e) Net emission reductions to be reported by other entities as 
offset reductions. Entities must identify in their report the quantity 
of any net emission reductions covered by the report, if any, that 
another entity will report as an offset reduction, including the name of 
the other entity;
    (f) Adjusting for year-to-year increases in net emissions. (1) 
Normally, net annual emission reductions for an entity are calculated by 
summing the net annual changes in emissions, eligible avoided emissions 
and sequestration, as determined using the calculation methods 
identified in Sec.  300.8 and according to the procedures described in 
paragraph (b) of this section for large emitters, paragraph (c) for 
small emitters of this section for small emitters, and paragraph (d) of 
this section for offsets. However, if the entity experienced a net 
increase in emissions for one or more years, these increases must be 
reported and taken into account in calculating any future year 
reductions. If the entity subsequently achieves net annual emission 
reductions, the net increases experienced in the preceding year(s) must 
be more than offset by these reductions before the entity can once again 
register emission reductions. For example, if an entity achieved a net 
emission reduction of 5,000 metric tons of CO2 equivalent in 
its first year, a net increase of 2,000 metric tons in its second year, 
and a net reduction of 3,000 metric tons in its third year, it would be 
able to register a 5,000 metric ton reduction in its first year, no 
reduction in its second year, and a 1,000 metric ton reduction in its 
third year (3,000-2,000). The entity must file full reports for each of 
these three years. Its report for the second year would indicate the net 
increase in emissions and this increase would be noted in EIA's summary 
of the entity's report for that year and for any future year, until the 
emissions increase was entirely offset by subsequent emission 
reductions. If this same entity achieved a net reduction of only 1,000 
metric tons in its third year, it would not be able to register 
additional reductions until it had, in some future year, offset more 
than its second year increase of 2,000 metric tons.
    (2) [Reserved]



Sec.  300.8  Calculating emission reductions.

    (a) Choosing appropriate emission reduction calculation methods. (1) 
An entity must choose the method or methods it will use to calculate 
emission reductions from the list provided in paragraph (h) of this 
section. Each of the calculation methods has special characteristics 
that make it applicable to only certain types of emissions and 
activities. An entity should select the appropriate calculation method 
based on several factors, including:
    (i) How the entity's subentities are defined;
    (ii) How the reporter will gather and report emissions data; and
    (iii) The availability of other types of data that might be needed, 
such as production or output data.
    (2) For some entities, a single calculation method will be 
sufficient, but many entities may need to apply more than one method 
because discrete components of the entity require different calculation 
methods. In such a case, the entity will need to select a method for 
each subentity (or discrete component of the entity with identifiable 
emission or reductions). The emissions and output measure (generally a 
physical measure) of each subentity must be clearly distinguished and 
reported separately. Guidance on the selection and specification of 
calculation methods is provided in Chapter 2 of the Technical Guidelines 
(incorporated by reference, see Sec.  300.13).

[[Page 116]]

    (b) Identifying subentities for calculating reductions. If more than 
one calculation method is to be used, an entity must specify the portion 
of the entity (the subentity) to which each method will be applied. Each 
subentity must be clearly identified. From time to time, it may be 
necessary to modify existing or create new subentities. The entity must 
provide to EIA a full description of such changes, together with an 
explanation of why they were required.
    (c) Choosing a base period for calculating reductions. In general, 
the base period used in calculating emission reductions is the single 
year or up to four-year period average immediately preceding the first 
year of calculated emission reductions.
    (d) Establishing base values. To calculate emission reductions, an 
entity must establish a base value against which to compare reporting 
year performance. The minimum requirements for base values for each type 
of calculation method are specified in Chapter 2 of the Technical 
Guidelines (incorporated by reference, see Sec.  300.13). In most cases, 
an historic base value, derived from emissions or other data gathered 
during the base period, is the minimum requirement specified. Entities 
may, however, choose to establish base values that are more stringent 
than the base values derived from the methods specified in Chapter 2 of 
the Technical Guidelines as long as their report indicates the rationale 
for the alternative base value and demonstrates that it would result in 
a smaller quantity of emission reductions.
    (e) Emission reduction and subentity statements. For each subentity, 
an entity must submit to EIA the following information:
    (1) An identification and description of the method used to 
calculate emission reductions, including:
    (i) The type of calculation method;
    (ii) The measure of output used (if any); and
    (iii) The method-specific base period for which any required base 
value will be calculated.
    (2) The base period used in calculating reductions. When an entity 
starts to report, the base period used in calculating reductions must 
end in the start year. However, over time the reporting entity may find 
it necessary to revise or establish new base periods and base values in 
response to significant changes in processes or output of the subentity.
    (3) A description of the subentity and its primary economic activity 
or activities, such as electricity generation, product manufacturing, 
service provider, freight transport, or household operation; and
    (4) A description of the emission sources or sinks covered, such as 
fossil fuel power plants, manufacturing facilities, commercial office 
buildings or heavy-duty vehicles.
    (f) Changes in calculation methods, base periods and base values. 
When significant changes occur in the composition or output of reporting 
entities, a reporting entity may need to change previously specified 
calculation methods, base periods or base values. A reporting entity 
should make such changes only if necessary and it should fully document 
the reasons for any changes. The Technical Guidelines (incorporated by 
reference, see Sec.  300.13) describe when such changes should be made 
and what information on such changes must be provided to DOE. In 
general, such changes should not result in any alterations to previously 
reported or registered emission reductions. A reporting entity may alter 
previously reported or registered emission reductions only if necessary 
to correct significant errors.
    (g) Continuous reporting. To ensure that the summation of entity 
annual reports accurately represents net, multi-year emission 
reductions, an entity must submit a report every year, beginning with 
the first reduction year. An entity may use a specific base period to 
determine emission reductions in a given future year only if the entity 
has submitted qualified reports for each intervening year. If an 
interruption occurs in the annual reports of an entity, the entity must 
subsequently report on all missing years prior to qualifying for the 
registration of additional emission reductions.

[[Page 117]]

    (h) Calculation methods. An entity must calculate any change in 
emissions, avoided emissions or sequestration using one or more of the 
methods described in this paragraph and in the Technical Guidelines 
(incorporated by reference, see Sec.  300.13).
    (1) Changes in emissions intensity. An entity may use emissions 
intensity as a basis for determining emission reductions as long as the 
entity selects a measure of output that is:
    (i) A reasonable indicator of the output produced by the entity;
    (ii) A reliable indicator of changes in the entity's activities;
    (iii) Related to emissions levels; and
    (iv) Any appropriate adjustments for acquisitions, divestitures, 
insourcing, outsourcing, or changes in products have been made, as 
described in the Technical Guidelines (incorporated by reference, see 
Sec.  300.13).
    (2) Changes in absolute emissions. An entity may use changes in the 
absolute (actual) emissions (direct and/or indirect) as a basis for 
determining net emission reductions as long as the entity makes only 
those adjustments required by the Technical Guidelines (incorporated by 
reference, see Sec.  300.13). An entity intending to register emission 
reductions may use this method only if the entity demonstrates in its 
report that any reductions derived from such changes were not achieved 
as a result of reductions in the output of the entity, and certifies 
that emission reductions are not the result of major shifts in the types 
of products or services produced. Entities may report, but not register, 
such reductions even if the output associated with such emissions is 
declining.
    (3) Changes in carbon storage (for actions within entity 
boundaries). An entity may use changes in carbon storage as a basis for 
determining net emission reductions as long as the entity uses 
estimation and measurement methods that comply with the Technical 
Guidelines (incorporated by reference, see Sec.  300.13), and has 
included an assessment of the net changes in all sinks in its inventory.
    (4) Changes in avoided emissions (for actions within entity 
boundaries). An entity may use changes in avoided emissions to determine 
its emission reductions. Avoided emissions eligible to be included in 
the calculation of net emission reductions that qualify for registration 
include those associated with the sale of electricity, steam, hot water 
or chilled water generated from non-emitting or low-emitting sources as 
a basis for determining net emission reductions as long as:
    (i) The measurement and calculation methods used comply with the 
Technical Guidelines (incorporated by reference, see Sec.  300.13);
    (ii) The entity certifies that any increased sales were not 
attributable to the acquisition of a generating facility that had been 
previously operated, unless the entity's base period includes generation 
values from the acquired facility's operation prior to its acquisition; 
and
    (iii) Generators of distributed energy that have net emissions in 
their base period and intend to report reductions resulting from changes 
in eligible avoided emissions, use a method specified in the Technical 
Guidelines (incorporated by reference, see Sec.  300.13) that integrates 
the calculation of reductions resulting from both changes in emissions 
intensity and changes in avoided emissions.
    (5) Action-specific emission reductions (for actions within entity 
boundaries). A number of source- or situation-specific methods are 
provided in the Technical Guidelines and these methods must be used to 
assess the annual changes in emissions for the specific sources or 
situation addressed by these methods. In addition, a generic action-
specific method is identified in the Technical Guidelines. An entity 
intending to register reductions may use the generic action-specific 
approach only if it is not possible to measure accurately emission 
changes by using one of the methods identified in paragraphs (h)(1) 
through (h)(4) of this section. Entities that intend to register 
reductions and that use the generic action-specific approach must 
explain why it is not possible to use any of these other methods. An 
entity not intending to register reductions may use the generic action-
specific method to determine emission reductions, as long as the entity 
demonstrates that the estimate is based on analysis that:

[[Page 118]]

    (i) Uses output, utilization and other factors that are consistent, 
to the maximum extent practicable, with the action's actual performance 
in the year for which reductions are being reported;
    (ii) Excludes any emission reductions that might have resulted from 
reduced output or were caused by actions likely to be associated with 
increases in emissions elsewhere within the entity's operations; and
    (iii) Uses methods that are in compliance with the Technical 
Guidelines (incorporated by reference, see Sec.  300.13).
    (i) Summary description of actions taken to reduce emissions. Each 
reported emission reduction must be accompanied by an identification of 
the types of actions that were the likely cause of the reductions 
achieved. Entities are also encouraged to include in their reports 
information on the benefits and costs of the actions taken to reduce 
greenhouse gas emissions, such as the expected rates of return, life 
cycle costs or benefit to cost ratios, using appropriate discount rates.
    (j) Emission reductions associated with plant closings, voluntary 
actions and government (including non-U.S. regulatory regimes) 
requirements. (1) Each report of emission reductions must indicate 
whether the reported emission reductions were the result, in whole or in 
part, of plant closings, voluntary actions, or government requirements. 
EIA will presume that reductions that were not the result of plant 
closings or government requirements are the result of voluntary actions.
    (2) If emission reductions were, in whole or in part, the direct 
result of plant closings that caused a decline in output, the report 
must identify the reductions as such; these reductions do not qualify 
for registration. EIA will presume that reductions calculated using the 
emissions intensity method do not result from a decline in output.
    (3) If the reductions were associated, in whole or part, with U.S. 
or non-U.S. government requirements, the report should identify the 
government requirement involved and the effect these requirements had on 
the reported emission reductions. If, as a result of the reduction, a 
non-U.S. government issued to the reporting entity a credit or other 
financial benefit or regulatory relief, the report should identify the 
government requirement involved and describe the specific form of 
benefit or relief provided.
    (k) Determining the entity responsible for emission reductions. The 
entity that EIA will presume to be responsible for emission reduction, 
avoided emission or sequestered carbon is the entity with financial 
control of the facility, land or vehicle which generated the reported 
emissions, generated the energy that was sold so as to avoid other 
emissions, or was the place where the sequestration action occurred. If 
control is shared, reporting of the associated emission reductions 
should be determined by agreement between the entities involved so as to 
avoid double-counting; this agreement must be reflected in the entity 
statement and in any report of emission reductions. EIA will presume 
that an entity is not responsible for any emission reductions associated 
with a facility, property or vehicle excluded from its entity statement.



Sec.  300.9  Reporting and recordkeeping requirements.

    (a) Starting to report under the guidelines. An entity may report 
emissions and sequestration on an annual basis beginning in any year, 
but no earlier than the base period of 1987-1990 specified in the Energy 
Policy Act of 1992. To be recognized under these guidelines, all reports 
must conform to the measurement methods established by the Technical 
Guidelines (incorporated by reference, see Sec.  300.13).
    (b) Revisions to reports submitted under the guidelines. (1) Once 
EIA has accepted a report under this part, it may be revised by the 
reporting entity only under the circumstances specified in this 
paragraph and related provisions of the Technical Guidelines 
(incorporated by reference, see Sec.  300.13). In general:
    (i) Revised reports may be submitted to correct errors that have a 
significant effect on previously estimated emissions or emission 
reductions; and
    (ii) Emission inventories may be revised in order to create a 
consistent time series based on improvements in

[[Page 119]]

the emission estimation or measurement techniques used.
    (2) Reporting entities must provide the corrected or improved data 
to EIA, together with an explanation of the significance of the change 
and its justification.
    (3) If a change in calculation methods (for inventories or 
reductions) is made for a particular year, the reporting entity must, if 
feasible, revise its base value to assure methodological consistency 
with the reporting year value.
    (c) Definition and deadline for annual reports. Entities must report 
emissions on a calendar year basis, from January 1 to December 31. To be 
included in the earliest possible EIA annual report of greenhouse gas 
emissions reported under this part, entity reports that have not been 
independently verified must be submitted to DOE no later than July 1 for 
emissions occurring during the previous calendar year. Reports that have 
been independently verified must be submitted by September 1 for 
emissions occurring during the previous year.
    (d) Recordkeeping. Entities intending to register reductions must 
maintain adequate supporting records of base period data for the 
duration of their participation in the 1605(b) program. Supporting 
records for all reporting year data must be maintained for at least 
three years subsequent to the relevant reporting year to enable 
verification of all information reported. The records should document 
the basis for the entity's report to EIA, including:
    (1) The content of entity statements, including the identification 
of the specific facilities, buildings, land holding and other operations 
or emission sources covered by the entity's reports and the legal, 
equity, operational and other bases for their inclusion;
    (2) Information on the identification and assessment of changes in 
entity boundaries, processes or products that might have to be reported 
to EIA;
    (3) Any agreements or relevant communications with other entities or 
third parties regarding the reporting of emissions or emission 
reductions associated with sources the ownership or operational control 
of which is shared;
    (4) Information on the methods used to measure or estimate 
emissions, and the data collection and management systems used to gather 
and prepare this data for inclusion in reports;
    (5) Information on the methods used to calculate emission 
reductions, including the basis for:
    (i) The selection of the specific output measures used, and the data 
collection and management systems used to gather and prepare output data 
for use in the calculation of emission reductions;
    (ii) The selection and modification of all base years, base periods 
and baselines used in the calculation of emission reductions;
    (iii) Any baseline adjustments made to reflect acquisitions, 
divestitures or other changes;
    (iv) Any models or other estimation methods used; and
    (v) Any internal or independent verification procedures undertaken.
    (e) Confidentiality. DOE will protect trade secret and commercial or 
financial information that is privileged or confidential as provided in 
5 U.S.C. 552(b)(4). An entity must clearly indicate in its 1605(b) 
report the information for which it requests confidentiality. DOE will 
handle requests for confidentiality of information submitted in 1605(b) 
reports in accordance with the process established in DOE's Freedom of 
Information regulations at 10 CFR Sec.  1004.11.



Sec.  300.10  Certification of reports.

    (a) General requirement and certifying official: All reports 
submitted to EIA must include a certification statement, as provided in 
paragraph (b) of this section, signed by a certifying official of the 
reporting entity. A household report may be certified by one of its 
members. All other reports must be certified by the chief executive 
officer, agency head, or an officer or employee of the entity who is 
responsible for reporting the entity's compliance with environmental 
regulations.
    (b) Certification statement requirements. All entities, whether 
reporting or registering reductions, must certify the following:
    (1) The information reported is accurate and complete;

[[Page 120]]

    (2) The information reported has been compiled in accordance with 
this part; and
    (3) The information reported is consistent with information 
submitted in prior years, if any, or any inconsistencies with prior 
year's information are documented and explained in the entity statement.
    (c) Additional requirements for registering. The certification 
statement of an entity registering reductions must also certify that:
    (1) The entity took reasonable steps to ensure that direct 
emissions, emission reductions, and/or sequestration reported are 
neither double counted nor reported by any other entity. Reasonable 
steps include telephone, fax, letter, or e-mail communications to ensure 
that another entity does not intend to report the same emissions, 
emission reductions, and/or sequestration to DOE. Direct communications 
of this kind with participants in demand-side management or other 
programs directed at very small emitters are not required;
    (2) Any emission reductions reported or registered by the entity 
that were achieved by another entity (other than a very small emitter 
that participated in a demand-side management or other program) are 
included in the entity's report only if:
    (i) The other entity does not intend to report or register theses 
reductions directly;
    (ii) There exists a written agreement with each other entity 
providing that the reporting entity is the entity entitled to report or 
register these emission reductions; and
    (iii) The information reported on the other entity would meet the 
requirements of this part if the entity were reporting directly to DOE;
    (3) None of the emissions, emission reductions, or sequestration 
reported were produced by shifting emissions to other entities or to 
non-reporting parts of the entity;
    (4) None of any reported changes in avoided emissions associated 
with the sale of electricity, steam, hot or chilled water generated from 
non-emitting or low-emitting sources are attributable to the acquisition 
of a generating facility that has been previously operated, unless the 
entity's base period includes generation values from the acquiring 
facility's operation prior to its acquisition;
    (5) The entity maintains records documenting the analysis and 
calculations underpinning the data reported on this form and records 
documenting the analysis and calculations underpinning the base values 
used in calculating annual reductions are maintained in accordance with 
Sec.  300.9(d) of this part; and
    (6) The entity has, or has not, obtained independent verification of 
the report, as described in Sec.  300.11.



Sec.  300.11  Independent verification.

    (a) General. Entities are encouraged to have their annual reports 
reviewed by independent and qualified auditors, as described in 
paragraphs (b), (c), and (f) of this section.
    (b) Qualifications of verifiers. (1) DOE envisions that independent 
verification will be performed by professional verifiers (i.e., 
individuals or companies that provide verification or ``attestation'' 
services). EIA will consider a report to the program to be independently 
verified if:
    (i) The lead individual verifier and other members of the 
verification team are accredited by one or more independent and 
nationally-recognized accreditation programs, described in paragraph (c) 
of this section, for the types of professionals needed to determine 
compliance with DOE's 1605(b) guidelines;
    (ii) The lead verifier has experience managing an auditing or 
verification process, including the recruitment and allocation of other 
individual verifiers, and has been empowered to make decisions relevant 
to the provision of a verification statement; and
    (iii) All members of a verification team have education, training 
and/or professional experience that matches the tasks performed by the 
individual verifiers, as deemed necessary by the verifier accreditation 
program.
    (2) As further guidance, all members of the verification team should 
be familiar with:
    (i) The subject matter covered by the scope of the verification;
    (ii) The requirements of this part;

[[Page 121]]

    (iii) Greenhouse gas emission and emission reduction quantification;
    (iv) Data and information auditing sampling methods; and
    (v) Risk assessment and methodologies and materiality analysis 
procedures outlined by other domestic and international standards.
    (3) An individual verifier should have a professional degree or 
accreditation in engineering (environmental, industrial, chemical), 
accounting, economics, or a related field, supplemented by specific 
training and/or experience in emissions reporting and accounting, and 
should have his or her qualifications and continuing education 
periodically reviewed by an accreditation program. The skills required 
for verification are often cross-disciplinary. For example, an 
individual verifier reviewing a coal electric utility should be 
knowledgeable about mass balance calculations, fuel purchasing 
accounting, flows and stocks of coals, coal-fired boiler operation, and 
issues of entity definition.
    (4) Companies that provide verification services must use 
professionals that possess the necessary skills and proficiency levels 
for the types of entities for which they provide verification services. 
Continuing training may be required to ensure all individuals have up-
to-date knowledge regarding the tasks they perform.
    (c) Qualifications of organizations accrediting verifiers. 
Organizations that accredit individual verifiers must be nationally 
recognized certification programs. They may include, but are not limited 
to the: American Institute of Certified Public Accountants; American 
National Standards Institute's Registrar Accreditation Board program for 
Environmental Management System auditors (ANSI-RAB-EMS); Board of 
Environmental, Health and Safety Auditor Certification: California 
Climate Action Registry; Clean Development Mechanism Executive Board; 
and the United Kingdom Accreditation Scheme.
    (d) Scope of verification. (1) As part of any independent 
verification, qualified verifiers must use their expertise and 
professional judgment to verify for accuracy, completeness and 
consistency with DOE's guidelines of:
    (i) The content of entity statements, annual reports and the 
supporting records maintained by the entity;
    (ii) The representation in entity statements (or lack thereof) of 
any significant changes in entity boundaries, products, or processes;
    (iii) The procedures and methods used to collect emissions and 
output data, and calculate emission reductions (for entities with widely 
dispersed operations, this process should include on-site reviews of a 
sample of the facilities);
    (iv) Relevant personnel training and management systems; and
    (v) Relevant quality assurance/quality control procedures.
    (2) DOE expects qualified verifiers to refer to the growing body of 
literature on methods of evaluating the elements listed in paragraph 
(d)(1) of this section, such as the California Climate Action Registry 
Certification Protocol, the Climate Leaders Inventory Management Plan 
Checklist, and the draft ISO 14064.3 Protocol for Validation, 
Verification and Certification.
    (e) Verification statement. Both the verifier and, if relevant, an 
officer of the company providing the verification service must sign the 
verification statement. The verification statement shall attest to the 
following:
    (1) The verifier has examined all components listed in paragraph (d) 
of this section;
    (2) The information reported in the verified entity report and this 
verification statement is accurate and complete;
    (3) The information reported by the entity has been compiled in 
accordance with this part;
    (4) The information reported on the entity report is consistent with 
information submitted in prior years, if any, or any inconsistencies 
with prior year's information are documented and explained in the entity 
statement;
    (5) The verifier used due diligence to assure that direct emissions, 
emission reductions, and/or sequestration reported are not reported by 
any other entity;
    (6) Any emissions, emission reductions, or sequestration that were

[[Page 122]]

achieved by a third-party entity are included in this report only if 
there exists a written agreement with each third party indicating that 
they have agreed that the reporting entity should be recognized as the 
entity entitled to report these emissions, emission reductions, or 
sequestration;
    (7) None of the emissions, emission reductions, or sequestration 
reported was produced by shifting emissions to other entities or to non-
reporting parts of the entity;
    (8) No reported changes in avoided emissions associated with the 
sale of electricity, steam, hot or chilled water generated from non-
emitting or low-emitting sources are attributable to the acquisition of 
a generating facility that has been previously operated, unless the base 
year generation values are derived from records of the facility's 
operation prior to its acquisition;
    (9) The verifying entity has procedures in place for the maintenance 
of records that are sufficient to document the analysis and calculations 
underpinning this verification. The verifying entity shall maintain such 
records related to base period data submitted by the reporting entity 
for the duration of the reporting entity's participation in the 1605(b) 
program and records related to all other verified data for a period of 
no less than three years; and
    (10) The independent verifier is not owned in whole or part by the 
reporting entity, nor provides any ongoing operational or support 
services to the entity, except services consistent with independent 
financial accounting or independent certification of compliance with 
government or private standards.
    (f) Qualifying as an independent verifier. An independent verifier 
may not be owned in whole or part by the reporting entity, nor may it 
provide any ongoing operational or support services to the entity, 
except services consistent with independent financial accounting or 
independent certification of compliance with government or private 
standards.



Sec.  300.12  Acceptance of reports and registration 
of entity emission reductions.

    (a) Acceptance of reports. EIA will review all reports to ensure 
they are consistent with this part and with the Technical Guidelines 
(incorporated by reference, see Sec.  300.13). EIA will also review all 
reports for completeness, internal consistency, arithmetic accuracy and 
plausibility. Subject to the availability of adequate resources, EIA 
intends to notify entities of the acceptance or rejection of any report 
within six months of its receipt.
    (b) Registration of emission reductions. EIA will review each 
accepted report to determine if emission reductions were calculated 
using an acceptable base period (usually ending no earlier than 2002), 
and to confirm that the report complies with the other provisions of 
this part. EIA will also review its records to verify that the reporting 
entity has submitted accepted annual reports for each year between the 
establishment of its base period and the year covered by the current 
report. EIA will notify the entity that reductions meeting these 
requirements have been credited to the entity as ``registered 
reductions'' which can be held by the reporting entity for use 
(including transfer to other entities) in the event a future program 
that recognizes such reductions is enacted into law.
    (c) Rejection of reports. If EIA does not accept a report or if it 
determines that emission reductions intended for registration do not 
qualify, EIA will return the report to the sender with an explanation of 
its inadequacies. The reporting entity may resubmit a modified report 
for further consideration at any time.
    (d) EIA database and summary reports. The Administrator of EIA will 
establish a publicly accessible database composed of all reports that 
meet the definitional, measurement, calculation, and certification 
requirements of these guidelines. EIA will maintain separate subtotals 
of direct emissions, indirect emissions and carbon fluxes. A portion of 
the database will provide summary information on the emissions and 
registered emission reductions of each reporting entity.

[[Page 123]]



Sec.  300.13  Incorporation by reference.

    The Technical Guidelines for the Voluntary Reporting of Greenhouse 
Gases (1605(b)) Program (January 2007), referred to throughout this part 
as the ``Technical Guidelines,'' have been approved for incorporation by 
reference by the Director of the Federal Register in accordance with 5 
U.S.C. 552(a) and 1 CFR part 51. You may obtain a copy of the Technical 
Guidelines from the Office of Policy and International Affairs, U.S. 
Department of Energy, 1000 Independence Ave., SW., Washington, DC 20585, 
or by visiting the following Web site: http://www.policy.energy.gov/
enhancingGHGregistry/technicalguidelines/. The Technical Guidelines also 
are available for inspection at the National Archives and Record 
Administration (NARA). For more information on the availability of this 
material at NARA, call 202-741-6030, or go to: http://www.archives.gov/
federal_register/ code_of_federal_regulations/ ibr_locations.html.

[71 FR 20805, Apr. 21, 2006, as amended at 72 FR 4413, Jan. 31, 2007]



                         SUBCHAPTER C [RESERVED]



[[Page 124]]



                    SUBCHAPTER D_ENERGY CONSERVATION



                        PARTS 400	417 [RESERVED]



PART 420_STATE ENERGY PROGRAM--Table of Contents



    Subpart A_General Provisions for State Energy Program Financial 
                               Assistance

Sec.
420.1 Purpose and scope.
420.2 Definitions.
420.3 Administration of financial assistance.
420.4 Technical assistance.
420.5 Reports.
420.6 Reference standards.

                   Subpart B_Formula Grant Procedures

420.10 Purpose.
420.11 Allocation of funds among the States.
420.12 State matching contribution.
420.13 Annual State applications and amendments to State plans.
420.14 Review and approval of annual State applications and amendments 
          to State plans.
420.15 Minimum criteria for required program activities for plans.
420.16 Extensions for compliance with required program activities.
420.17 Optional elements of State Energy Program plans.
420.18 Expenditure prohibitions and limitations.
420.19 Administrative review.

    Subpart C_Implementation of Special Projects Financial Assistance

420.30 Purpose and scope.
420.31 Notice of availability.
420.32 Program guidance/solicitation.
420.33 Application requirements.
420.34 Matching contributions or cost-sharing.
420.35 Application evaluation.
420.36 Evaluation criteria.
420.37 Selection.
420.38 Special projects expenditure prohibitions and limitations.

    Authority: Title III, part D, as amended, of the Energy Policy and 
Conservation Act (42 U.S.C. 6321 et seq.); Department of Energy 
Organization Act (42 U.S.C. 7101 et seq.)

    Source: 61 FR 35895, July 8, 1996, unless otherwise noted.

    Editorial Note: Nomenclature changes to part 420 appear at 64 FR 
46114, Aug. 24, 1999.



    Subpart A_General Provisions for State Energy Program Financial 
                               Assistance



Sec.  420.1  Purpose and scope.

    It is the purpose of this part to promote the conservation of 
energy, to reduce the rate of growth of energy demand, and to reduce 
dependence on imported oil through the development and implementation of 
a comprehensive State Energy Program and the provision of Federal 
financial and technical assistance to States in support of such program.



Sec.  420.2  Definitions.

    As used in this part:
    Act means title III, part D, as amended, of the Energy Policy and 
Conservation Act, 42 U.S.C. 6321 et seq.
    Alternative transportation fuel means methanol, denatured ethanol, 
and other alcohols; mixtures containing 85 percent or more by volume of 
methanol, denatured ethanol, and other alcohols with gasoline or other 
fuels; natural gas; liquified petroleum gas; hydrogen; coal-derived 
liquid fuels; fuels (other than alcohol) derived from biological 
materials (including neat biodiesel); and electricity (including 
electricity from solar energy).
    ASHRAE/IESNA 90.1-1989, as amended means the building design 
standard published in December 1989 by the American Society of Heating, 
Refrigerating and Air-Conditioning Engineers, and the Illuminating 
Engineering Society of North America titled ``Energy Efficient Design of 
New Buildings Except Low-Rise Residential Buildings,'' with Addenda 
90.1b-1992; Addenda 90.1d-1992; Addenda 90.1e-1992; Addenda 90.1g-1993; 
and Addenda 90.1i-1993, which is incorporated by reference in accordance 
with 5 U.S.C. 552(a) and 1 CFR part 51. The availability of this 
incorporation by reference is given in Sec.  420.6(b).
    Assistant Secretary means the Assistant Secretary for Energy 
Efficiency and Renewable Energy or any official to whom the Assistant 
Secretary's

[[Page 125]]

functions may be redelegated by the Secretary.
    British thermal unit (Btu) means the quantity of heat necessary to 
raise the temperature of one pound of water one degree Fahrenheit at 
39.2 degrees Fahrenheit and at one atmosphere of pressure.
    Building means any structure which includes provision for a heating 
or cooling system, or both, or for a hot water system.
    Carpool means the sharing of a ride by two or more people in an 
automobile.
    Carpool matching and promotion campaign means a campaign to 
coordinate riders with drivers to form carpools and/or vanpools.
    Commercial building means any building other than a residential 
building, including any building constructed for industrial or public 
purposes.
    Commercially available means available for purchase by the general 
public or target audience in the State.
    Deputy Assistant Secretary means the Deputy Assistant Secretary for 
Building Technology, State and Community Programs or any official to 
whom the Deputy Assistant Secretary's functions may be redelegated by 
the Assistant Secretary.
    Director, Office of State and Community Programs means the official 
responsible for DOE's formula grant programs to States, or any official 
to whom the Director's functions may be redelegated by the Assistant 
Secretary.
    DOE means the Department of Energy.
    Energy audit means any process which identifies and specifies the 
energy and cost savings which are likely to be realized through the 
purchase and installation of particular energy efficiency measures or 
renewable energy measures.
    Energy efficiency measure means any capital investment that reduces 
energy costs in an amount sufficient to recover the total cost of 
purchasing and installing such measure over an appropriate period of 
time and maintains or reduces non-renewable energy consumption.
    Environmental residual means any pollutant or pollution causing 
factor which results from any activity.
    Exterior envelope physical characteristics means the physical nature 
of those elements of a building which enclose conditioned spaces through 
which thermal energy may be transferred to or from the exterior.
    Governor means the chief executive officer of a State, the District 
of Columbia, Puerto Rico, or any territory or possession of the United 
States, or a person duly designated in writing by the Governor to act 
upon his or her behalf.
    Grantee means the State or other entity named in the notice of grant 
award as the recipient.
    HVAC means heating, ventilating and air-conditioning.
    IBR means incorporation by reference.
    Industrial facility means any fixed equipment or facility which is 
used in connection with, or as part of, any process or system for 
industrial production or output.
    Institution of higher education has the same meaning as such term is 
defined in section 1201(a) of the Higher Education Act of 1965 (20 
U.S.C. 1141(a)).
    Manufactured home means any dwelling covered by the Federal 
Manufactured Home Construction and Safety Standards, 24 CFR part 3280.
    Metropolitan Planning Organization means that organization required 
by the Department of Transportation, and designated by the Governor as 
being responsible for coordination within the State, to carry out 
transportation planning provisions in a Standard Metropolitan 
Statistical Area.
    Model Energy Code, 1993, including Errata, means the model building 
code published by the Council of American Building Officials, which is 
incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR 
part 51. The availability of this incorporation by reference is given in 
Sec.  420.6(b).
    Park-and-ride lot means a parking facility generally located at or 
near the trip origin of carpools, vanpools and/or mass transit.
    Petroleum violation escrow funds. For purposes both of exempting 
petroleum violation escrow funds from the matching requirements of Sec.  
420.12 and of applying the limitations specified under Sec.  420.18(b), 
this term means any funds

[[Page 126]]

distributed to the States by the Department of Energy or any court and 
identified as Alleged Crude Oil Violation funds, together with any 
interest earned thereon by the States, but excludes any funds designated 
as ``excess funds'' under section 3003(d) of the Petroleum Overcharge 
Distribution and Restitution Act, subtitle A of title III of the Omnibus 
Budget Reconciliation Act of 1986, Public Law 99-509, and the funds 
distributed under the ``Warner Amendment,'' section 155 of Public Law 
97-377.
    Plan means a State Energy Program plan including required program 
activities in accordance with Sec.  420.15 and otherwise meeting the 
applicable provisions of this part.
    Political subdivision means a unit of government within a State, 
including a county, municipality, city, town, township, parish, village, 
local public authority, school district, special district, council of 
governments, or any other regional or intrastate governmental entity or 
instrumentality of a local government exclusive of institutions of 
higher learning and hospitals.
    Preferential traffic control means any one of a variety of traffic 
control techniques used to give carpools, vanpools and public 
transportation vehicles priority treatment over single occupant vehicles 
other than bicycles and other two-wheeled motorized vehicles.
    Program activity means one or more State actions, in a particular 
area, designed to promote energy efficiency, renewable energy and 
alternative transportation fuel.
    Public building means any building which is open to the public 
during normal business hours, including:
    (1) Any building which provides facilities or shelter for public 
assembly, or which is used for educational office or institutional 
purposes;
    (2) Any inn, hotel, motel, sports arena, supermarket, transportation 
terminal, retail store, restaurant, or other commercial establishment 
which provides services or retail merchandise;
    (3) Any general office space and any portion of an industrial 
facility used primarily as office space;
    (4) Any building owned by a State or political subdivision thereof, 
including libraries, museums, schools, hospitals, auditoriums, sport 
arenas, and university buildings; and
    (5) Any public or private non-profit school or hospital.
    Public transportation means any scheduled or nonscheduled 
transportation service for public use.
    Regional Office Director means the director of a DOE Regional Office 
with responsibility for grants administration or any official to whom 
that function may be redelegated.
    Renewable energy means a non-depletable source of energy.
    Renewable energy measure means any capital investment that reduces 
energy costs in an amount sufficient to recover the total cost of 
purchasing and installing such measure over an appropriate period of 
time and that results in the use of renewable energy to replace the use 
of non-renewable energy.
    Residential building means any building which is constructed for 
residential occupancy.
    Secretary mean the Secretary of DOE.
    SEP means the State Energy Program under this part.
    Small business means a private firm that does not exceed the 
numerical size standard promulgated by the Small Business Administration 
under section 3(a) of the Small Business Act (15 U.S.C. 632) for the 
Standard Industrial Classification (SIC) codes designated by the 
Secretary of Energy.
    Start-up business means a small business which has been in existence 
for 5 years or less.
    State means a State, the District of Columbia, Puerto Rico, or any 
territory or possession of the United States.
    State or local government building means any building owned and 
primarily occupied by offices or agencies of a State; and any building 
of a unit of local government or a public care institution which could 
be covered by part H, title III, of the Energy Policy and Conservation 
Act, 42 U.S.C. 6372-6372i.
    Transit level of service means characteristics of transit service 
provided which indicate its quantity, geographic area of coverage, 
frequency and quality (comfort, travel, time, fare and image).
    Urban area traffic restriction means a setting aside of certain 
portions of an urban area as restricted zones where

[[Page 127]]

varying degrees of limitation are placed on general traffic usage and/or 
parking.
    Vanpool means a group of riders using a vehicle, with a seating 
capacity of not less than eight individuals and not more than fifteen 
individuals, for transportation to and from their residence or other 
designated locations and their place of employment, provided the vehicle 
is driven by one of the pool members.
    Variable working schedule means a flexible working schedule to 
facilitate activities such as carpools, vanpools, public transportation 
usage, and/or telecommuting.

[61 FR 35895, July 8, 1996, as amended at 62 FR 26726, May 14, 1997]



Sec.  420.3  Administration of financial assistance.

    (a) Financial assistance under this part shall comply with 
applicable laws and regulations including, but without limitation, the 
requirements of:
    (1) Executive Order 12372, Intergovernmental Review of Federal 
Programs, as implemented by 10 CFR part 1005.
    (2) DOE Financial Assistance Rules (10 CFR part 600); and
    (3) Other procedures which DOE may from time to time prescribe for 
the administration of financial assistance under this part.
    (b) The budget period(s) covered by the financial assistance 
provided to a State according to Sec.  420.11(b) or Sec.  420.33 shall 
be consistent with 10 CFR part 600.
    (c) Subawards are authorized under this part and are subject to the 
requirements of this part and 10 CFR part 600.



Sec.  420.4  Technical assistance.

    At the request of the Governor of any State to DOE and subject to 
the availability of personnel and funds, DOE will provide information 
and technical assistance to the State in connection with effectuating 
the purposes of this part.



Sec.  420.5  Reports.

    (a) Each State receiving financial assistance under this part shall 
submit to the cognizant Regional Office Director a quarterly program 
performance report and a quarterly financial status report.
    (b) Reports under this section shall contain such information as the 
Secretary may prescribe in order to monitor effectively the 
implementation of a State's activities under this part.
    (c) The reports shall be submitted within 30 days following the end 
of each calendar year quarter.



Sec.  420.6  Reference standards.

    (a) The following standards which are not otherwise set forth in 
this part are incorporated by reference and made a part of this part. 
The following standards have been approved for incorporation by 
reference by the Director of the Federal Register in accordance with 5 
U.S.C. 552(a) and 1 CFR part 51. A notice of any change in these 
materials will be published in the Federal Register. The standards 
incorporated by reference are available for inspection at the National 
Archives and Records Administration (NARA). For information on the 
availability of this material at NARA, call 202-741-6030, or go to: 
http://www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html.
    (b) The following standards are incorporated by reference in this 
part:
    (1) The American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE), 1791 Tullie Circle, N.E., Atlanta, 
Georgia 30329, (404) 636-8400/The Illuminating Engineering Society of 
North America (IESNA), 345 East 47th Street, New York, New York 10017, 
(212) 705-7913: (i) ASHRAE/IESNA 90.1-1989, entitled ``Energy Efficient 
Design of New Buildings Except Low-Rise Residential Buildings,'' with 
Addenda 90.1b-1992; Addenda 90.1d-1992; Addenda 90.1e-1992; Addenda 
90.1g-1993; and Addenda 90.1i-1993, IBR approved for Sec.  420.2 and 
Sec.  420.15.
    (2) The Council of American Building Officials (CABO), 5203 Leesburg 
Pike, Suite 708, Falls Church, Virginia 22041, (703) 931-4533: (i) The 
Model Energy Code, 1993, including Errata, IBR approved for Sec.  420.2 
and Sec.  420.15.

[61 FR 35895, July 8, 1996, as amended at 69 FR 18803, Apr. 9, 2004]

[[Page 128]]



                   Subpart B_Formula Grant Procedures



Sec.  420.10  Purpose.

    This subpart specifies the procedures that apply to the Formula 
Grant part of the State Energy Program, which allows States to apply for 
financial assistance to undertake a wide range of required and optional 
energy-related activities provided for under Sec.  420.15 and Sec.  
420.17. Funding for these activities is allocated to the States based on 
funds available for any fiscal year, as described under Sec.  420.11.



Sec.  420.11  Allocation of funds among the States.

    (a) The cognizant Regional Office Director shall provide financial 
assistance to each State having an approved annual application from 
funds available for any fiscal year to develop, modify, or implement a 
plan.
    (b) DOE shall allocate financial assistance to develop, implement or 
modify plans among the States from funds available for any fiscal year, 
as follows:
    (1) If the available funds equal $25.5 million, such funds shall be 
allocated to the States according to Table 1 of this section.
    (2) The base allocation for each State is listed in Table 1.

                    Table 1--Base Allocation by State
------------------------------------------------------------------------
                     State/Territory
------------------------------------------------------------------------
Alabama.................................................        $381,000
Alaska..................................................         180,000
Arizona.................................................         344,000
Arkansas................................................         307,000
California..............................................       1,602,000
Colorado................................................         399,000
Connecticut.............................................         397,000
Delaware................................................         164,000
District of Columbia....................................         158,000
Florida.................................................         831,000
Georgia.................................................         534,000
Hawaii..................................................         170,000
Idaho...................................................         190,000
Illinois................................................       1,150,000
Indiana.................................................         631,000
Iowa....................................................         373,000
Kansas..................................................         327,000
Kentucky................................................         411,000
Louisiana...............................................         446,000
Maine...................................................         231,000
Maryland................................................         486,000
Massachusetts...........................................         617,000
Michigan................................................         973,000
Minnesota...............................................         584,000
Mississippi.............................................         279,000
Missouri................................................         518,000
Montana.................................................         182,000
Nebraska................................................         246,000
Nevada..................................................         196,000
New Hampshire...........................................         216,000
New Jersey..............................................         783,000
New Mexico..............................................         219,000
New York................................................       1,633,000
North Carolina..........................................         564,000
North Dakota............................................         172,000
Ohio....................................................       1,073,000
Oklahoma................................................         352,000
Oregon..................................................         325,000
Pennsylvania............................................       1,090,000
Rhode Island............................................         199,000
South Carolina..........................................         340,000
South Dakota............................................         168,000
Tennessee...............................................         476,000
Texas...................................................       1,322,000
Utah....................................................         242,000
Vermont.................................................         172,000
Virginia................................................         571,000
Washington..............................................         438,000
West Virginia...........................................         286,000
Wisconsin...............................................         604,000
Wyoming.................................................         155,000
American Samoa..........................................         115,000
Guam....................................................         120,000
Northern Marianas.......................................         114,000
Puerto Rico.............................................         322,000
U.S. Virgin Islands.....................................         122,000
------------------------------------------------------------------------
      Total.............................................      25,500,000
------------------------------------------------------------------------

    (3) If the available funds for any fiscal year are less than $25.5 
million, then the base allocation for each State shall be reduced 
proportionally.
    (4) If the available funds exceed $25.5 million, $25.5 million shall 
be allocated as specified in Table 1 and any in excess of $25.5 million 
shall be allocated as follows:
    (i) One-third of the available funds is divided among the States 
equally;
    (ii) One-third of the available funds is divided on the basis of the 
population of the participating States as contained in the most recent 
reliable census data available from the Bureau of the Census, Department 
of Commerce, for all participating States at the time DOE needs to 
compute State formula shares; and
    (iii) One-third of the available funds is divided on the basis of 
the energy consumption of the participating States as contained in the 
most recent State Energy Data Report available from DOE's Energy 
Information Administration.
    (c) The budget period covered by the financial assistance provided 
to a State

[[Page 129]]

according to Sec.  420.11(b) shall be consistent with 10 CFR part 600.



Sec.  420.12  State matching contribution.

    (a) Each State shall provide cash, in kind contributions, or both 
for SEP activities in an amount totaling not less than 20 percent of the 
financial assistance allocated to the State under Sec.  420.11(b).
    (b) Cash and in-kind contributions used to meet this State matching 
requirement are subject to the limitations on expenditures described in 
Sec.  420.18(a), but are not subject to the 20 percent limitation in 
Sec.  420.18(b).
    (c) Nothing in this section shall be read to require a match for 
petroleum violation escrow funds used under this subpart.

[61 FR 35895, July 8, 1996, as amended at 64 FR 46114, Aug. 24, 1999]



Sec.  420.13  Annual State applications and amendments to State plans.

    (a) To be eligible for financial assistance under this subpart, a 
State shall submit to the cognizant Regional Office Director an original 
and two copies of the annual application executed by the Governor, 
including an amended State plan or any amendments to the State plan 
needed to reflect changes in the activities the State is planning to 
undertake for the fiscal year concerned. The date for submission of the 
annual State application shall be set by DOE.
    (b) An application shall include:
    (1) A face sheet containing basic identifying information, on 
Standard Form (SF) 424;
    (2) A description of the energy efficiency, renewable energy, and 
alternative transportation fuel goals to be achieved, including wherever 
practicable:
    (i) An estimate of the energy to be saved by implementation of the 
State plan;
    (ii) Why the goals were selected;
    (iii) How the attainment of the goals will be measured by the State; 
and
    (iv) How the program activities included in the State plan represent 
a strategy to achieve these goals;
    (3) With respect to financial assistance under this subpart, a goal, 
consisting of an improvement of 25 percent or more in the efficiency of 
use of energy in the State concerned in the calendar year 2012, as 
compared to the calendar year 1990, and may contain interim goals;
    (4) For the budget period for which financial assistance will be 
provided:
    (i) A total program budget with supporting justification, broken out 
by object category and by source of funding;
    (ii) The source and amount of State matching contribution;
    (iii) A narrative statement detailing the nature of State plan 
amendments and of new program activities.
    (iv) For each program activity, a budget and listing of milestones; 
and
    (v) An explanation of how the minimum criteria for required program 
activities prescribed in Sec.  420.15 have been implemented and are 
being maintained.
    (5) If any of the activities being undertaken by the State in its 
plan have environmental impacts, a detailed description of the increase 
or decrease in environmental residuals expected from implementation of a 
plan defined insofar as possible through the use of information to be 
provided by DOE and an indication of how these environmental factors 
were considered in the selection of program activities.
    (6) If a State is undertaking program activities involving purchase 
or installation of materials or equipment for weatherization of low-
income housing, an explanation of how these activities would supplement 
and not supplant the existing DOE program under 10 CFR part 440.
    (7) A reasonable assurance to DOE that it has established policies 
and procedures designed to assure that Federal financial assistance 
under this subpart will be used to supplement, and not to supplant, 
State and local funds, and to the extent practicable, to increase the 
amount of such funds that otherwise would be available, in the absence 
of such Federal financial assistance, for those activities set forth in 
the State Energy Program plan approved pursuant to this subpart;
    (8) An assurance that the State shall comply with all applicable 
statutes and regulations in effect with respect to the periods for which 
it receives grant funding; and

[[Page 130]]

    (9) For informational purposes only, and not subject to DOE review, 
an energy emergency plan for an energy supply disruption, as designed by 
the State consistent with applicable Federal and State law including an 
implementation strategy or strategies (including regional coordination) 
for dealing with energy emergencies.
    (c) The Governor may request an extension of the annual submission 
date by submitting a written request to the cognizant Regional Office 
Director not less than 15 days prior to the annual submission date. The 
extension shall be granted only if, in the cognizant Regional Office 
Director's judgment, acceptable and substantial justification is shown, 
and the extension would further objectives of the Act.
    (d) The Secretary, or a designee, shall, at least once every three 
years from the submission date of each State plan, invite the Governor 
of the State to review and, if necessary, revise the energy conservation 
plan of such State. Such reviews should consider the energy conservation 
plans of other States within the region, and identify opportunities and 
actions that may be carried out in pursuit of common energy conservation 
goals.

[61 FR 35895, July 8, 1996, as amended at 62 FR 26727, May 14, 1997; 64 
FR 46114, Aug. 24, 1999; 71 FR 57887, Oct. 2, 2006]



Sec.  420.14  Review and approval of annual State applications 
and amendments to State plans.

    (a) After receipt of an application for financial assistance under 
this subpart and for approval of an amendment, if any, to a State plan, 
the cognizant Regional Office Director may request the State to submit 
within a reasonable period of time any revisions necessary to make the 
application complete and to bring the application into compliance with 
the requirements of subparts A and B of this part. The cognizant 
Regional Office Director shall attempt to resolve any dispute over the 
application informally and to seek voluntary compliance. If a State 
fails to submit timely appropriate revisions to complete an application 
or to bring it into compliance, the cognizant Regional Office Director 
may reject the application in a written decision, including a statement 
of reasons, which shall be subject to administrative review under Sec.  
420.19 of subparts A and B of this part.
    (b) On or before 60 days from the date that a timely filed 
application is complete, the cognizant Regional Office Director shall--
    (1) Approve the application in whole or in part to the extent that--
    (i) The application conforms to the requirements of subparts A and B 
of this part;
    (ii) The proposed program activities are consistent with a State's 
achievement of its energy conservation goals in accordance with Sec.  
420.13; and
    (iii) The provisions of the application regarding program activities 
satisfy the minimum requirements prescribed by Sec.  420.15 and Sec.  
420.17 as applicable;
    (2) Approve the application in whole or in part subject to special 
conditions designed to ensure compliance with the requirements of 
subparts A and B of this part; or
    (3) Disapprove the application if it does not conform to the 
requirements of subparts A and B of this part.

[61 FR 35895, July 8, 1996, as amended at 62 FR 26727, May 14, 1997; 64 
FR 46114, Aug. 24, 1999]



Sec.  420.15  Minimum criteria for required program activities for plans.

    A plan shall satisfy all of the following minimum criteria for 
required program activities.
    (a) Mandatory lighting efficiency standards for public buildings 
shall:
    (1) Be implemented throughout the State, except that the standards 
shall be adopted by the State as a model code for those local 
governments of the State for which the State's constitution reserves the 
exclusive authority to adopt and implement building standards within 
their jurisdictions;
    (2) Apply to all public buildings (except for public buildings owned 
or leased by the United States), above a certain size, as determined by 
the State;
    (3) For new public buildings, be no less stringent than the 
provisions of ASHRAE/IESNA 90.1-1989, and should be updated by enactment 
of, or support for the enactment into local codes or standards, which, 
at a minimum, are comparable to provisions of ASHRAE/

[[Page 131]]

IESNA 90.1-1989 which is incorporated by reference in accordance with 5 
U.S.C. 552 (a) and 1 CFR part 51. The availability of this incorporation 
by reference is given in Sec.  420.6; and
    (4) For existing public buildings, contain the elements deemed 
appropriate by the State.
    (b) Program activities to promote the availability and use of 
carpools, vanpools, and public transportation shall:
    (1) Have at least one of the following actions under implementation 
in at least one urbanized area with a population of 50,000 or more 
within the State or in the largest urbanized area within the State if 
that State does not have an urbanized area with a population of 50,000 
or more:
    (i) A carpool/vanpool matching and promotion campaign;
    (ii) Park-and-ride lots;
    (iii) Preferential traffic control for carpoolers and public 
transportation patrons;
    (iv) Preferential parking for carpools and vanpools;
    (v) Variable working schedules;
    (vi) Improvement in transit level of service for public 
transportation;
    (vii) Exemption of carpools and vanpools from regulated carrier 
status;
    (viii) Parking taxes, parking fee regulations or surcharge on 
parking costs;
    (ix) Full-cost parking fees for State and/or local government 
employees;
    (x) Urban area traffic restrictions;
    (xi) Geographical or time restrictions on automobile use; or
    (xii) Area or facility tolls; and
    (2) Be coordinated with the relevant Metropolitan Planning 
Organization, unless no Metropolitan Planning Organization exists in the 
urbanized area, and not be inconsistent with any applicable Federal 
requirements.
    (c) Mandatory standards and policies affecting the procurement 
practices of the State and its political subdivisions to improve energy 
efficiency shall--
    (1) With respect to all State procurement and with respect to 
procurement of political subdivisions to the extent determined feasible 
by the State, be under implementation; and
    (2) Contain the elements deemed appropriate by the State to improve 
energy efficiency through the procurement practices of the State and its 
political subdivisions.
    (d) Mandatory thermal efficiency standards for new and renovated 
buildings shall--
    (1) Be implemented throughout the State, with respect to all 
buildings (other than buildings owned or leased by the United States, 
buildings whose peak design rate of energy usage for all purposes is 
less than one watt (3.4 Btu's per hour) per square foot of floor space 
for all purposes, or manufactured homes), except that the standards 
shall be adopted by the State as a model code for those local 
governments of the State for which the State's law reserves the 
exclusive authority to adopt and implement building standards within 
their jurisdictions;
    (2) Take into account the exterior envelope physical 
characteristics, HVAC system selection and configuration, HVAC equipment 
performance and service water heating design and equipment selection;
    (3) For all new commercial and multifamily high-rise buildings, be 
no less stringent than provisions of sections 7-12 of ASHRAE/IESNA 90.1-
1989, and should be updated by enactment of, or support for the 
enactment into local codes or standards, which, at a minimum, are 
comparable to provisions of ASHRAE/IESNA 90.1-1989; and
    (4) For all new single-family and multifamily low-rise residential 
buildings, be no less stringent than the Model Energy Code, 1993, and 
should be updated by enactment of, or support for the enactment into 
local codes or standards, which, at a minimum, are comparable to the 
Model Energy Code, 1993, which is incorporated by reference in 
accordance with 5 U.S.C. 552(a) and 1 CFR part 51. The availability of 
this incorporation by reference is given in Sec.  420.6;
    (5) For renovated buildings:
    (i) Apply to those buildings determined by the State to be renovated 
buildings; and
    (ii) Contain the elements deemed appropriate by the State regarding 
thermal efficiency standards for renovated buildings.
    (e) A traffic law or regulation which permits the operator of a 
motor vehicle

[[Page 132]]

to make a turn at a red light after stopping shall:
    (1) Be in a State's motor vehicle code and under implementation 
throughout all political subdivisions of the State;
    (2) Permit the operator of a motor vehicle to make a right turn 
(left turn with respect to the Virgin Islands) at a red traffic light 
after stopping except where specifically prohibited by a traffic sign 
for reasons of safety or except where generally prohibited in an urban 
enclave for reasons of safety; and
    (3) Permit the operator of a motor vehicle to make a left turn from 
a one-way street to a one-way street (right turn with respect to the 
Virgin Islands) at a red traffic light after stopping except where 
specifically prohibited by a traffic sign for reasons of safety or 
except where generally prohibited in an urban enclave for reasons of 
safety.
    (f) Procedures must exist for ensuring effective coordination among 
various local, State, and Federal energy efficiency, renewable energy 
and alternative transportation fuel programs within the State, including 
any program administered within the Office of Building Technology, State 
and Community Programs of the Department of Energy and the Low Income 
Home Energy Assistance Program administered by the Department of Health 
and Human Services.

[61 FR 35895, July 8, 1996, as amended at 62 FR 26727, May 14, 1997]



Sec.  420.16  Extensions for compliance with required program activities.

    An extension of time by which a required program activity must be 
ready for implementation may be granted if DOE determines that the 
extension is justified. A written request for an extension, with 
accompanying justification and an action plan acceptable to DOE for 
achieving compliance in the shortest reasonable time, shall be made to 
the cognizant Regional Office Director. Any extension shall be only for 
the shortest reasonable time that DOE determines necessary to achieve 
compliance. The action plan shall contain a schedule for full compliance 
and shall identify and make the most reasonable commitment possible to 
provision of the resources necessary for achieving the scheduled 
compliance.



Sec.  420.17  Optional elements of State Energy Program plans.

    (a) Other appropriate activities or programs may be included in the 
State plan. These activities may include, but are not limited to, the 
following:
    (1) Program activities of public education to promote energy 
efficiency, renewable energy, and alternative transportation fuels;
    (2) Program activities to increase transportation energy efficiency, 
including programs to accelerate the use of alternative transportation 
fuels for government vehicles, fleet vehicles, taxis, mass transit, and 
privately owned vehicles;
    (3) Program activities for financing energy efficiency measures and 
renewable energy measures--
    (i) Which may include loan programs and performance contracting 
programs for leveraging of additional public and private sector funds 
and program activities which allow rebates, grants, or other incentives 
for the purchase of energy efficiency measures and renewable energy 
measures; or
    (ii) In addition to or in lieu of program activities described in 
paragraph (a)(3)(i) of this section, which may be used in connection 
with public or nonprofit buildings owned and operated by a State, a 
political subdivision of a State or an agency or instrumentality of a 
State, or an organization exempt from taxation under section 501(c)(3) 
of the Internal Revenue Code of 1986 including public and private non-
profit schools and hospitals, and local government buildings;
    (4) Program activities for encouraging and for carrying out energy 
audits with respect to buildings and industrial facilities (including 
industrial processes) within the State;
    (5) Program activities to promote the adoption of integrated energy 
plans which provide for:
    (i) Periodic evaluation of a State's energy needs, available energy 
resources (including greater energy efficiency), and energy costs; and
    (ii) Utilization of adequate and reliable energy supplies, including 
greater energy efficiency, that meet applicable safety, environmental, 
and policy requirements at the lowest cost;

[[Page 133]]

    (6) Program activities to promote energy efficiency in residential 
housing, such as:
    (i) Program activities for development and promotion of energy 
efficiency rating systems for newly constructed housing and existing 
housing so that consumers can compare the energy efficiency of different 
housing; and
    (ii) Program activities for the adoption of incentives for builders, 
utilities, and mortgage lenders to build, service, or finance energy 
efficient housing;
    (7) Program activities to identify unfair or deceptive acts or 
practices which relate to the implementation of energy efficiency 
measures and renewable energy measures and to educate consumers 
concerning such acts or practices;
    (8) Program activities to modify patterns of energy consumption so 
as to reduce peak demands for energy and improve the efficiency of 
energy supply systems, including electricity supply systems;
    (9) Program activities to promote energy efficiency as an integral 
component of economic development planning conducted by State, local, or 
other governmental entities or by energy utilities;
    (10) Program activities (enlisting appropriate trade and 
professional organizations in the development and financing of such 
programs) to provide training and education (including, if appropriate, 
training workshops, practice manuals, and testing for each area of 
energy efficiency technology) to building designers and contractors 
involved in building design and construction or in the sale, 
installation, and maintenance of energy systems and equipment to promote 
building energy efficiency;
    (11) Program activities for the development of building retrofit 
standards and regulations, including retrofit ordinances enforced at the 
time of the sale of a building;
    (12) Program activities to provide support for prefeasibility and 
feasibility studies for projects that utilize renewable energy and 
energy efficiency resource technologies in order to facilitate access to 
capital and credit for such projects;
    (13) Program activities to facilitate and encourage the voluntary 
use of renewable energy technologies for eligible participants in 
Federal agency programs, including the Rural Electrification 
Administration and the Farmers Home Administration; and
    (14) In accordance with paragraph (b) of this section, program 
activities to implement the Energy Technology Commercialization Services 
Program.
    (b) This section prescribes requirements for establishing State-
level Energy Technology Commercialization Services Program as an 
optional element of State plans.
    (1) The program activities to implement the functions of the Energy 
Technology Commercialization Services Program shall:
    (i) Aid small and start-up businesses in discovering useful and 
practical information relating to manufacturing and commercial 
production techniques and costs associated with new energy technologies;
    (ii) Encourage the application of such information in order to solve 
energy technology product development and manufacturing problems;
    (iii) Establish an Energy Technology Commercialization Services 
Program affiliated with an existing entity in each State;
    (iv) Coordinate engineers and manufacturers to aid small and start-
up businesses in solving specific technical problems and improving the 
cost effectiveness of methods for manufacturing new energy technologies;
    (v) Assist small and start-up businesses in preparing the technical 
portions of proposals seeking financial assistance for new energy 
technology commercialization; and
    (vi) Facilitate contract research between university faculty and 
students and small start-up businesses, in order to improve energy 
technology product development and independent quality control testing.
    (2) Each State Energy Technology Commercialization Services Program 
shall develop and maintain a data base of engineering and scientific 
experts in

[[Page 134]]

energy technologies and product commercialization interested in 
participating in the service. Such data base shall, at a minimum, 
include faculty of institutions of higher education, retired 
manufacturing experts, and National Laboratory personnel.
    (3) The services provided by the Energy Technology Commercialization 
Services Program established under this subpart shall be available to 
any small or start-up business. Such service programs shall charge fees 
which are affordable to a party eligible for assistance, which shall be 
determined by examining factors, including the following: the costs of 
the services received; the need of the recipient for the services; and 
the ability of the recipient to pay for the services.

[61 FR 35895, July 8, 1996, as amended at 62 FR 26727, May 14, 1997; 64 
FR 46114, Aug. 24, 1999]



Sec.  420.18  Expenditure prohibitions and limitations.

    (a) No financial assistance provided to a State under this subpart 
shall be used:
    (1) For construction, such as construction of mass transit systems 
and exclusive bus lanes, or for construction or repair of buildings or 
structures;
    (2) To purchase land, a building or structure or any interest 
therein;
    (3) To subsidize fares for public transportation;
    (4) To subsidize utility rate demonstrations or State tax credits 
for energy conservation measures or renewable energy measures; or
    (5) To conduct, or purchase equipment to conduct, research, 
development or demonstration of energy efficiency or renewable energy 
techniques and technologies not commercially available.
    (b) No more than 20 percent of the financial assistance awarded to 
the State for this program shall be used to purchase office supplies, 
library materials, or other equipment whose purchase is not otherwise 
prohibited by this section. Nothing in this paragraph shall be read to 
apply this 20 percent limitation to petroleum violation escrow funds 
used under this subpart.
    (c) Demonstrations of commercially available energy efficiency or 
renewable energy techniques and technologies are permitted, and are not 
subject to the prohibitions of Sec.  420.18(a)(1), or to the limitation 
on equipment purchases of Sec.  420.18(b).
    (d) A State may use regular or revolving loan mechanisms to fund SEP 
services which are consistent with this subpart and which are included 
in the State's approved SEP plan. The State may use loan repayments and 
any interest on the loan funds only for activities which are consistent 
with this subpart and which are included in the State's approved SEP 
plan.
    (e) A State may use funds under this subpart for the purchase and 
installation of equipment and materials for energy efficiency measures 
and renewable energy measures, including reasonable design costs, 
subject to the following terms and conditions:
    (1) Such use must be included in the State's approved plan and, if 
funded by petroleum violation escrow funds, must be consistent with any 
judicial or administrative terms and conditions imposed upon State use 
of such funds;
    (2) A State may use for these purposes no more than 50 percent of 
all funds allocated by the State to SEP in a given year, regardless of 
source, except that this limitation shall not include regular and 
revolving loan programs funded with petroleum violation escrow funds, 
and is subject to waiver by DOE for good cause. Loan documents shall 
ensure repayment of principal and interest within a reasonable period of 
time, and shall not include provisions of loan forgiveness.
    (3) Buildings owned or leased by the United States are not eligible 
for energy efficiency measures or renewable energy measures under 
paragraph (e) of this section;
    (4) Funds must be used to supplement and no funds may be used to 
supplant weatherization activities under the Weatherization Assistance 
Program for Low-Income Persons, under 10 CFR part 440;
    (5) Subject to paragraph (f) of this section, a State may use a 
variety of financial incentives to fund purchases and installation of 
materials and equipment under paragraph (e) of this section including, 
but not limited to, regular loans, revolving loans, loan

[[Page 135]]

buy-downs, performance contracting, rebates and grants.
    (f) The following mechanisms are not allowed for funding the 
purchase and installation of materials and equipment under paragraph (e) 
of this section:
    (1) Rebates for more than 50 percent of the total cost of purchasing 
and installing materials and equipment (States shall set appropriate 
restrictions and limits to insure the most efficient use of rebates); 
and
    (2) Loan guarantees.

[61 FR 35895, July 8, 1996, as amended at 62 FR 26727, May 14, 1997; 64 
FR 46114, Aug. 24, 1999]



Sec.  420.19  Administrative review.

    (a) A State shall have 20 days from the date of receipt of a 
decision under Sec.  420.14 to file a notice requesting administrative 
review in accordance with paragraph (b) of this section. If an applicant 
does not timely file such a notice, the decision under Sec.  420.14 
shall become final for DOE.
    (b) A notice requesting administrative review shall be filed with 
the cognizant Regional Office Director and shall be accompanied by a 
written statement containing supporting arguments. If the cognizant 
Regional Office Director has disapproved an entire application for 
financial assistance, the State may request a public hearing.
    (c) A notice or any other document shall be deemed filed under this 
section upon receipt.
    (d) On or before 15 days from receipt of a notice requesting 
administrative review which is timely filed, the cognizant Regional 
Office Director shall forward to the Deputy Assistant Secretary, the 
notice requesting administrative review, the decision under Sec.  420.14 
as to which administrative review is sought, a draft recommended final 
decision for concurrence, and any other relevant material.
    (e) If the State requests a public hearing on the disapproval of an 
entire application for financial assistance under this subpart, the 
Deputy Assistant Secretary, within 15 days, shall give actual notice to 
the State and Federal Register notice of the date, place, time, and 
procedures which shall apply to the public hearing. Any public hearing 
under this section shall be informal and legislative in nature.
    (f) On or before 45 days from receipt of documents under paragraph 
(d) of this section or the conclusion of the public hearing, whichever 
is later, the Deputy Assistant Secretary shall concur in, concur in as 
modified, or issue a substitute for the recommended decision of the 
cognizant Regional Office Director.
    (g) On or before 15 days from the date of receipt of the 
determination under paragraph (f) of this section, the Governor may file 
an application for discretionary review by the Assistant Secretary. On 
or before 15 days from filing, the Assistant Secretary shall send a 
notice to the Governor stating whether the Deputy Assistant Secretary's 
determination will be reviewed. If the Assistant Secretary grants a 
review, a decision shall be issued no later than 60 days from the date 
review is granted. The Assistant Secretary may not issue a notice or 
decision under this paragraph without the concurrence of the DOE Office 
of General Counsel.
    (h) A decision under paragraph (f) of this section shall be final 
for DOE if there is no review under paragraph (g) of this section. If 
there is review under paragraph (g) of this section, the decision 
thereunder shall be final for DOE and no appeal shall lie elsewhere in 
DOE.
    (i) Prior to the effective date of the termination or suspension of 
a grant award for failure to implement an approved State plan in 
compliance with the requirements of this subpart, a grantee shall have 
the right to written notice of the basis for the enforcement action and 
of the opportunity for public hearing before the DOE Financial 
Assistance Appeals Board notwithstanding any provisions to the contrary 
of 10 CFR 600.22, 600.24, 600.25, and 600.243. To obtain a public 
hearing, the grantee must request an evidentiary hearing, with prior 
Federal Register notice, in the election letter submitted under Rule 2 
of 10 CFR 1024.4 and the request shall be granted notwithstanding any 
provisions to the contrary of Rule 2.

[61 FR 35895, July 8, 1996, as amended at 64 FR 46114, Aug. 24, 1999]

[[Page 136]]



    Subpart C_Implementation of Special Projects Financial Assistance



Sec.  420.30  Purpose and scope.

    (a) This subpart sets forth DOE's policies and procedures for 
implementing special projects financial assistance under this part.
    (b) For years in which such funding is available, States may apply 
for financial assistance to undertake a variety of State-oriented 
energy-related special projects activities in addition to the funds 
provided under the regular SEP grants.
    (c) The types of funded activities may vary from year to year, and 
from State to State, depending upon funds available for each type of 
activity and DOE and State priorities.
    (d) A number of end-use sector programs in the Office of Energy 
Efficiency and Renewable Energy participate in the funding of these 
activities, and the projects must meet the requirements of those 
programs.
    (e) The purposes of the special project activities are:
    (1) To utilize States to accelerate deployment of energy efficiency, 
renewable energy, and alternative transportation fuel technologies;
    (2) To facilitate the commercialization of emerging and 
underutilized energy efficiency and renewable energy technologies; and
    (3) To increase the responsiveness of Federally funded technology 
development efforts to the needs of the marketplace.



Sec.  420.31  Notice of availability.

    (a) If in any fiscal year DOE has funds available for special 
projects, DOE shall publish in the Federal Register one or more 
notice(s) of availability of SEP special projects financial assistance.
    (b) Each notice of availability shall cite this part and shall 
include:
    (1) Brief descriptions of the activities for which funding is 
available;
    (2) The amount of money DOE has available or estimates it will have 
available for award for each type of activity, and the total amount 
available;
    (3) The program official to contact for additional information, 
application forms, and the program guidance/solicitation document; and
    (4) The dates when:
    (i) The program guidance/solicitation will be available; and
    (ii) The applications for financial assistance must be received by 
DOE.



Sec.  420.32  Program guidance/solicitation.

    After the publication of the notice of availability in the Federal 
Register, DOE shall, upon request, provide States interested in applying 
for one or more project(s) under the special projects financial 
assistance with a detailed program guidance/solicitation that will 
include:
    (a) The control number of the program;
    (b) The expected duration of DOE support or period of performance;
    (c) An application form or the format to be used, location for 
application submission, and number of copies required;
    (d) The name of the DOE program office contact from whom to seek 
additional information;
    (e) Detailed descriptions of each type of program activity for which 
financial assistance is being offered;
    (f) The amount of money available for award, together with any 
limitations as to maximum or minimum amounts expected to be awarded;
    (g) Deadlines for submitting applications;
    (h) Evaluation criteria that DOE will apply in the selection and 
ranking process for applications for each program activity;
    (i) The evaluation process to be applied to each type of program 
activity;
    (j) A listing of program policy factors if any that DOE may use in 
the final selection process, in addition to the results of the 
evaluations, including:
    (1) The importance and relevance of the proposed applications to SEP 
and the participating programs in the Office of Energy Efficiency and 
Renewable Energy; and
    (2) Geographical diversity;
    (k) Reporting requirements;
    (l) References to:
    (1) Statutory authority for the program;
    (2) Applicable rules; and

[[Page 137]]

    (3) Other terms and conditions applicable to awards made under the 
program guidance/solicitation; and
    (m) A statement that DOE reserves the right to fund in whole or in 
part, any, all, or none of the applications submitted.



Sec.  420.33  Application requirements.

    (a) Consistent with Sec.  420.32 of this part, DOE shall set forth 
general and special project activity-specific requirements for 
applications for special projects financial assistance in the program 
guidance/solicitation.
    (b) In addition to any other requirements, all applications shall 
provide:
    (1) A detailed description of the proposed project, including the 
objectives of the project in relationship to DOE's program and the 
State's plan for carrying it out;
    (2) A detailed budget for the entire proposed period of support, 
with written justification sufficient to evaluate the itemized list of 
costs provided on the entire project; and
    (3) An implementation schedule for carrying out the project.
    (c) DOE may, subsequent to receipt of an application, request 
additional budgetary information from a State when necessary for 
clarification or to make informed preaward determinations.
    (d) DOE may return an application which does not include all 
information and documentation required by this subpart, 10 CFR part 600, 
or the program guidance/solicitation, when the nature of the omission 
precludes review of the application.

[61 FR 35895, July 8, 1996, as amended at 64 FR 46114, Aug. 24, 1999]



Sec.  420.34  Matching contributions or cost-sharing.

    DOE may require (as set forth in the program guidance/solicitation) 
States to provide either:
    (a) A matching contribution of at least a specified percentage of 
the Federal financial assistance award; or
    (b) A specified share of the total cost of the project for which 
financial assistance is provided.



Sec.  420.35  Application evaluation.

    (a) DOE staff at the cognizant Regional Office shall perform an 
initial review of all applications to ensure that the State has provided 
the information required by this subpart, 10 CFR part 600, and the 
program guidance/solicitation.
    (b) DOE shall group, and technically evaluate according to program 
activity, all applications determined to be complete and satisfactory.
    (c) DOE shall select evaluators on the basis of their professional 
qualifications and expertise relating to the particular program activity 
being evaluated.
    (1) DOE anticipates that evaluators will primarily be DOE employees; 
but
    (2) If DOE uses non-DOE evaluators, DOE shall require them to comply 
with all applicable DOE rules or directives concerning the use of 
outside evaluators.

[61 FR 35895, July 8, 1996, as amended at 64 FR 46114, Aug. 24, 1999]



Sec.  420.36  Evaluation criteria.

    The evaluation criteria, including program activity-specific 
criteria, will be set forth in the program guidance/solicitation 
document.



Sec.  420.37  Selection.

    (a) DOE may make selection of applications for award based on:
    (1) The findings of the technical evaluations;
    (2) The priorities of DOE, SEP, and the participating program 
offices;
    (3) The availability of funds for the various special project 
activities; and
    (4) Any program policy factors set forth in the program guidance/
solicitation.
    (b) The Director, Office of State and Community Programs makes the 
final selections of projects to be awarded financial assistance.



Sec.  420.38  Special projects expenditure prohibitions and limitations.

    (a) Expenditures under the special projects are subject to 10 CFR 
part 600 and to any prohibitions and limitations required by the DOE 
programs that are providing the special projects funding.

[[Page 138]]

    (b) DOE must state any expenditure prohibitions or limitations 
specific to a particular category of special projects in the annual SEP 
special projects solicitation/guidance.

[64 FR 46114, Aug. 24, 1999]



PART 429_CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS 
AND COMMERCIAL AND INDUSTRIAL EQUIPMENT--Table of Contents



                      Subpart A_General Provisions

Sec.
429.1 Purpose and scope.
429.2 Definitions.
429.4 Materials incorporated by reference.
429.5 Imported products.
429.6 Exported products.
429.7 Confidentiality.
429.8 Subpoenas.

                         Subpart B_Certification

429.10 Purpose and scope.
429.11 General requirements applicable to units to be tested.
429.12 General requirements applicable to certification reports.
429.13 Testing requirements.
429.14 Consumer refrigerators, refrigerator-freezers and freezers.
429.15 Room air conditioners.
429.16 Central air conditioners and central air conditioning heat pumps.
429.17 Water heaters.
429.18 Residential furnaces.
429.19 Dishwashers.
429.20 Residential clothes washers.
429.21 Residential clothes dryers.
429.22 Direct heating equipment.
429.23 Cooking products.
429.24 Pool heaters.
429.25 Television sets.
429.26 Fluorescent lamp ballasts.
429.27 General service fluorescent lamps, general service incandescent 
          lamps, and incandescent reflector lamps.
429.28 Faucets.
429.29 Showerheads.
429.30 Water closets.
429.31 Urinals.
429.32 Ceiling fans.
429.33 Ceiling fan light kits.
429.34 Torchieres.
429.35 Compact fluorescent lamps.
429.36 Dehumidifiers.
429.37 External power supplies.
429.38 Non-class A external power supplies. [Reserved]
429.39 Battery chargers.
429.40 Candelabra base incandescent lamps and intermediate base 
          incandescent lamps.
429.41 Commercial warm air furnaces.
429.42 Commercial refrigerators, freezers, and refrigerator-freezers.
429.43 Commercial heating, ventilating, air-conditioning (HVAC) 
          equipment.
429.44 Commercial water heating (WH) equipment.
429.45 Automatic commercial ice makers.
429.46 Commercial clothes washers.
429.47 Distribution transformers.
429.48 Illuminated exit signs.
429.49 Traffic signal modules and pedestrian modules.
429.50 Commercial unit heaters.
429.51 Commercial pre-rinse spray valves.
429.52 Refrigerated bottled or canned beverage vending machines.
429.53 Walk-in coolers and walk-in freezers.
429.54 Metal halide lamp ballasts and fixtures.
429.56 Integrated light-emitting diode lamps.
429.57 General service lamps.
429.58 Furnace fans.
429.59 Pumps.
429.60 Commercial packaged boilers.
429.61 Consumer miscellaneous refrigeration products.
429.62 Portable air conditioners.
429.63 Compressors.
429.70 Alternative methods for determining energy efficiency and energy 
          use.
429.71 Maintenance of records.
429.72 Alternative methods for determining non-energy ratings.

Appendix A to Subpart B of Part 429--Student's t-Distribution Values for 
          Certification Testing

                          Subpart C_Enforcement

429.100 Purpose and scope.
429.102 Prohibited acts subjecting persons to enforcement action.
429.104 Assessment testing.
429.106 Investigation of compliance.
429.110 Enforcement testing.
429.114 Notice of noncompliance determination to cease distribution of a 
          basic model.
429.116 Additional certification testing requirements.
429.118 Injunctions.
429.120 Maximum civil penalty.
429.122 Notice of proposed civil penalty.
429.124 Election of procedures.
429.126 Administrative law judge hearing and appeal.
429.128 Immediate issuance of order assessing civil penalty.
429.130 Collection of civil penalties.
429.132 Compromise and settlement.
429.134 Product-specific enforcement provisions.

[[Page 139]]

                Regional Standards Enforcement Procedures

429.140 Regional standards enforcement procedures.
429.142 Records retention.
429.144 Records request.
429.146 Notice of violation.
429.148 Routine violator.
429.150 Appealing a finding of routine violation.
429.152 Removal of finding of ``routine violator''.
429.154 Remediation.
429.156 Manufacturer and private labeler liability.
429.158 Product determined noncompliant with regional standards.

Appendix A to Subpart C of Part 429--Sampling Plan for Enforcement 
          Testing of Covered Products and Certain High-Volume Covered 
          Equipment
Appendix B to Subpart C of Part 429--Sampling Plan for Enforcement 
          Testing of Covered Commercial Equipment and Certain Low-Volume 
          Covered Products
Appendix C to Subpart C of Part 429--Sampling Plan for Enforcement 
          Testing of Distribution Transformers
Appendix D to Subpart C of Part 429--Sampling Plan for Enforcement 
          Testing of Uninterruptible Power Supplies

    Authority: 42 U.S.C. 6291-6317; 28 U.S.C. 2461 note.

    Source: 76 FR 12451, Mar. 7, 2011, unless otherwise noted.



                      Subpart A_General Provisions



Sec.  429.1  Purpose and scope.

    This part sets forth the procedures to be followed for 
certification, determination and enforcement of compliance of covered 
products and covered equipment with the applicable conservation 
standards set forth in parts 430 and 431 of this subchapter. This part 
does not cover motors or electric motors as defined in Sec.  431.12, and 
all references to ``covered equipment'' in this part exclude such 
motors.



Sec.  429.2  Definitions.

    (a) The definitions found in Sec. Sec.  430.2, 431.2, 431.62, 
431.72, 431.82, 431.92, 431.102, 431.132, 431.152, 431.192, 431.202, 
431.222, 431.242, 431.262, 431.282, 431.292, 431.302, 431.322, 431.342, 
431.442, and 431.462 of this chapter apply for purposes of this part.
    (b) The following definitions apply for the purposes of this part. 
Any words or terms defined in this section or elsewhere in this part 
shall be defined as provided in sections 321 and 340 of the Energy 
Policy Conservation Act, as amended, hereinafter referred to as ``the 
Act.''
    Energy conservation standard means any standards meeting the 
definitions of that term in 42 U.S.C. 6291(6) and 42 U.S.C. 6311(18) as 
well as any other water conservation standards and design requirements 
found in this part or parts 430 or 431.
    Engineered-to-order means a basic model of commercial water heating 
equipment, commercial packaged boiler, commercial heating, ventilation, 
and air conditioning (HVAC) equipment, or commercial refrigeration 
equipment that is: Not listed in any catalogs or marketing literature 
and designed and built to specific customer requirements. A unit of an 
engineered-to-order basic model is not offered as a set of options 
(e.g., configure-to-order, menu-system).
    Manufacturer's model number means the identifier used by a 
manufacturer to uniquely identify the group of identical or essentially 
identical covered products or covered equipment to which a particular 
unit belongs. The manufacturer's model number typically appears on the 
product nameplates, in product catalogs and in other product advertising 
literature.

[76 FR 12451, Mar. 7, 2011, as amended at 79 FR 25499, May 5, 2014; 81 
FR 4144, Jan. 25, 2016; 82 FR 1099, Jan. 4, 2017]



Sec.  429.4  Materials incorporated by reference.

    (a) General. We incorporate by reference the following standards 
into part 429. The material listed has been approved for incorporation 
by reference by the Director of the Federal Register in accordance with 
5 U.S.C. 552(a) and 1 CFR part 51. Any subsequent amendment to a 
standard by the standard-setting organization will not affect the DOE 
regulations unless and until amended by DOE. Material is incorporated as 
it exists on the date of the approval and a notice of any change in the 
material will be published in the Federal Register. All approved 
material is available for inspection at the National Archives and

[[Page 140]]

Records Administration (NARA). For information on the availability of 
this material at NARA, call 202-741-6030, or go to: http://
www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html. Also, this material is available for inspection at 
U.S. Department of Energy, Office of Energy Efficiency and Renewable 
Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza, 
SW., Washington, DC 20024, (202) 586-2945, or go to: http://
www1.eere.energy.gov/buildings/appliance_standards/. Standards can be 
obtained from the sources below.
    (b) AHAM. Association of Home Appliance Manufacturers, 1111 19th 
Street, NW., Suite 402, Washington, DC 20036, 202-872-5955, or go to 
http://www.aham.org.
    (1) ANSI/AHAM DW-1-2010, Household Electric Dishwashers, (ANSI 
approved September 18, 2010), IBR approved for Sec.  429.19.
    (2) ANSI/AHAM PAC-1-2015 (``ANSI/AHAM PAC-1-2015''), Portable Air 
Conditioners, June 19, 2015, IBR approved for Sec.  429.62.
    (c) AHRI. Air-Conditioning, Heating, and Refrigeration Institute, 
2111 Wilson Blvd., Suite 500, Arlington, VA 22201, (703) 524-8800, or go 
to: http://www.ahrinet.org.
    (1) ANSI/AHRI Standard 340/360-2007, (``AHRI-340/360-2007''), 2007 
Standard for Performance Rating of Commercial and Industrial Unitary 
Air-Conditioning and Heat Pump Equipment, with Addenda 1 and 2, ANSI 
approved October 27, 2011, IBR approved for Sec.  429.43.
    (2) AHRI Standard 1500-2015, (``ANSI/AHRI Standard 1500-2015''), 
``2015 Standard for Performance Rating of Commercial Space Heating 
Boilers,'' ANSI approved November 28, 2014: Figure C9, Suggested Piping 
Arrangement for Hot Water Boilers; IBR approved for Sec.  429.60.
    (d) HI. Hydraulic Institute, 6 Campus Drive, First Floor North, 
Parsippany, NJ 07054-4406, 973-267-9700. www.Pumps.org.
    (1) HI 40.6-2014, (``HI 40.6-2014-B''), ``Methods for Rotodynamic 
Pump Efficiency Testing,'', (except for sections 40.6.4.1 ``Vertically 
suspended pumps'', 40.6.4.2 ``Submersible pumps'',40.6.5.3 ``Test 
report'', 40.6.5.5 ``Test conditions'', 40.6.5.5.2 ``Speed of rotation 
during testing'', and 40.6.6.1 ``Translation of test results to rated 
speed of rotation'', and Appendix A ``Testing arrangements 
(normative)'': A.7 ``Testing at temperatures exceeding 30 [deg]C 
(86[emsp14] [deg]F)'', and Appendix B ``Reporting of test results 
(normative)''), copyright 2014, IBR approved for Sec.  429.134.
    (2) [Reserved]
    (e) ISO. International Organization for Standardization, ch. de la 
Voie-Creuse CP 56 CH-1211 Geneva 20 Switzerland, telephone + 41 22 749 
01 11, or go to http://www.iso.org/iso.
    (1) International Organization for Standardization (ISO)/
International Electrotechnical Commission, (``ISO/IEC 17025:2005(E)''), 
``General requirements for the competence of testing and calibration 
laboratories'', Second edition, May 15, 2005, IBR approved for Sec.  
429.110.
    (2) [Reserved]
    (f) NSF. NSF International. 789 N. Dixboro Road, Ann Arbor, MI 
48105, (743) 769-8010. www.nsf.org.
    (1) NSF/ANSI 50-2015, ``Equipment for Swimming Pools, Spas, Hot Tubs 
and Other Recreational Water Facilities,'' Annex C--``Test methods for 
the evaluation of centrifugal pumps,'' Section C.3, ``self-priming 
capability,'' ANSI approved January 26, 2015, IBR approved for 
Sec. Sec.  429.59 and 429.134.
    (2) [Reserved]

[76 FR 12451, Mar. 7, 2011, as amended at 77 FR 65977, Oct. 31, 2012; 80 
FR 79668, Dec. 23, 2015; 81 FR 35264, June 1, 2016; 81 FR 89303, Dec. 9, 
2016; 81 FR 90118, Dec. 13, 2016; 82 FR 36917, Aug. 7, 2017]



Sec.  429.5  Imported products.

    (a) Any person importing any covered product or covered equipment 
into the United States shall comply with the provisions of this part, 
and parts 430 and 431, and is subject to the remedies of this part.
    (b) Any covered product or covered equipment offered for importation 
in violation of this part, or part 430 or 431, shall be refused 
admission into the customs territory of the United States under rules 
issued by the U.S. Customs and Border Protection (CBP) and subject to 
further remedies as provided by law, except that CBP may, by such

[[Page 141]]

rules, authorize the importation of such covered product or covered 
equipment upon such terms and conditions (including the furnishing of a 
bond) as may appear to CBP appropriate to ensure that such covered 
product or covered equipment will not violate this part, or part 430 or 
431, or will be exported or abandoned to the United States.



Sec.  429.6  Exported products.

    This part, and parts 430 and 431, shall not apply to any covered 
product or covered equipment if:
    (a) Such covered product or covered equipment is manufactured, sold, 
or held for sale for export from the United States or is imported for 
export;
    (b) Such covered product or covered equipment or any container in 
which it is enclosed, when distributed in commerce, bears a stamp or 
label stating ``NOT FOR SALE FOR USE IN THE UNITED STATES''; and
    (c) Such product is, in fact, not distributed in commerce for use in 
the United States.



Sec.  429.7  Confidentiality.

    (a) The following records are not exempt from public disclosure: 
Product or equipment type; product or equipment class; private labeler 
name; brand name; applicable model number(s) unless that information 
meets the criteria specified in paragraph (b) of this section; energy or 
water ratings submitted by manufacturers to DOE pursuant to Sec.  
429.12(b)(13); whether the certification was based on a test procedure 
waiver and the date of such waiver; and whether the certification was 
based on exception relief from the Office of Hearing and Appeals and the 
date of such relief.
    (b) An individual, manufacturer model number is public information 
unless:
    (1) The individual, manufacturer model number is a unique model 
number of a commercial packaged boiler, commercial water heating 
equipment, commercial HVAC equipment or commercial refrigeration 
equipment that was developed for an individual customer,
    (2) The individual, manufacturer model number is not displayed on 
product literature, and
    (3) Disclosure of the individual, manufacturer model number would 
reveal confidential business information as described at Sec.  1004.11 
of this title--in which case, under these limited circumstances, a 
manufacturer may identify the individual manufacturer model number as a 
private model number on a certification report submitted pursuant to 
Sec.  429.12(b)(6).
    (c) Pursuant to the provisions of 10 CFR 1004.11(e), any person 
submitting information or data which the person believes to be 
confidential and exempt by law from public disclosure should--at the 
time of submission--submit:
    (1) One complete copy, and one copy from which the information 
believed to be confidential has been deleted.
    (2) A request for confidentiality containing the submitter's views 
on the reasons for withholding the information from disclosure, 
including:
    (i) A description of the items sought to be withheld from public 
disclosure,
    (ii) Whether and why such items are customarily treated as 
confidential within the industry,
    (iii) Whether the information is generally known by or available 
from other sources,
    (iv) Whether the information has previously been made available to 
others without obligation concerning its confidentiality,
    (v) An explanation of the competitive injury to the submitting 
person which would result from public disclosure,
    (vi) A date upon which such information might lose its confidential 
nature due to the passage of time, and
    (vii) Why disclosure of the information would be contrary to the 
public interest.
    (d) In accordance with the procedures established in 10 CFR 
1004.11(e), DOE shall make its own determination with regard to any 
claim that information submitted be exempt from public disclosure.

[76 FR 12451, Mar. 7, 2011, as amended at 79 FR 25499, May 5, 2014; 80 
FR 151, Jan. 5, 2015]



Sec.  429.8  Subpoena.

    For purposes of carrying out parts 429, 430, and 431, the General 
Counsel

[[Page 142]]

(or delegee), may sign and issue subpoenas for the attendance and 
testimony of witnesses and the production of relevant books, records, 
papers, and other documents, and administer oaths. Witnesses summoned 
under the provisions of this section shall be paid the same fees and 
mileage as are paid to witnesses in the courts of the United States. In 
case of contumacy by, or refusal to obey a subpoena served, upon any 
persons subject to parts 429, 430, or 431, the General Counsel (or 
delegee) may seek an order from the District Court of the United States 
for any District in which such person is found or resides or transacts 
business requiring such person to appear and give testimony, or to 
appear and produce documents. Failure to obey such order is punishable 
by such court as contempt thereof.



                         Subpart B_Certification



Sec.  429.10  Purpose and scope.

    This subpart sets forth the procedures for manufacturers to certify 
that their covered products and covered equipment comply with the 
applicable energy conservation standards.



Sec.  429.11  General sampling requirements for selecting units to be tested.

    (a) When testing of covered products or covered equipment is 
required to comply with section 323(c) of the Act, or to comply with 
rules prescribed under section 324, 325, or 342, 344, 345 or 346 of the 
Act, a sample comprised of production units (or units representative of 
production units) of the basic model being tested must be selected at 
random and tested, and must meet the criteria found in Sec. Sec.  429.14 
through 429.62 of this subpart. Components of similar design may be 
substituted without additional testing if the substitution does not 
affect energy or water consumption. Any represented values of measures 
of energy efficiency, water efficiency, energy consumption, or water 
consumption for all individual models represented by a given basic model 
must be the same, except for central air conditioners and central air 
conditioning heat pumps, as specified in Sec.  429.16 of this subpart.
    (b) The minimum number of units tested shall be no less than two, 
except where:
    (1) A different minimum limit is specified in Sec. Sec.  429.14 
through 429.65 of this subpart; or
    (2) Only one unit of the basic model is produced, in which case, 
that unit must be tested and the test results must demonstrate that the 
basic model performs at or better than the applicable standard(s). If 
one or more units of the basic model are manufactured subsequently, 
compliance with the default sampling and representations provisions is 
required.

[76 FR 12451, Mar. 7, 2011, as amended at 81 FR 4144, Jan. 25, 2016; 81 
FR 89303, Dec. 9, 2016; 82 FR 1468, Jan. 5, 2017]



Sec.  429.12  General requirements applicable to certification reports.

    (a) Certification. Each manufacturer, before distributing in 
commerce any basic model of a covered product or covered equipment 
subject to an applicable energy conservation standard set forth in parts 
430 or 431, and annually thereafter on or before the dates provided in 
paragraph (d) of this section, shall submit a certification report to 
DOE certifying that each basic model meets the applicable energy 
conservation standard(s). The certification report(s) must be submitted 
to DOE in accordance with the submission procedures of paragraph (h) of 
this section.
    (b) Certification report. A certification report shall include a 
compliance statement (see paragraph (c) of this section), and for each 
basic model, the information listed in this paragraph (b).
    (1) Product or equipment type;
    (2) Product or equipment class (as denoted in the provisions of part 
430 or 431 of this chapter containing the applicable energy conservation 
standard);
    (3) Manufacturer's name and address;
    (4) Private labeler's name(s) and address(es) (if applicable);
    (5) Brand name;
    (6) For each brand, the basic model number and the manufacturer's 
individual model number(s) in that basic model with the following 
exceptions: For external power supplies that are certified based on 
design families, the design family model number and the

[[Page 143]]

individual manufacturer's model numbers covered by that design family 
must be submitted for each brand. For distribution transformers, the 
basic model number or kVA grouping model number (depending on the 
certification method) for each brand must be submitted. For commercial 
HVAC, WH, and refrigeration equipment, an individual manufacturer model 
number may be identified as a ``private model number'' if it meets the 
requirements of Sec.  429.7(b).
    (7) Whether the submission is for a new model, a discontinued model, 
a correction to a previously submitted model, data on a carryover model, 
or a model that has been found in violation of a voluntary industry 
certification program;
    (8) The test sample size (i.e., number of units tested for the basic 
model, or in the case of single-split system or single-package central 
air conditioners and central air conditioning heat pumps, or multi-
split, multi-circuit, or multi-head mini-split systems other than the 
``tested combination,'' for each individual combination or individual 
model). Enter ``0'' if an AEDM was used in lieu of testing (and in the 
case of central air conditioners and central air conditioning heat 
pumps, this must be indicated separately for each metric);
    (9) The certifying party's U.S. Customs and Border Protection (CBP) 
importer identification numbers assigned by CBP pursuant to 19 CFR 24.5, 
if applicable;
    (10) Whether certification is based upon any waiver of test 
procedure requirements under Sec.  430.27 or Sec.  431.401 of this 
chapter and the date(s) of such waiver(s);
    (11) Whether certification is based upon any exception relief from 
an applicable energy conservation standard and the date such relief was 
issued by DOE's Office of Hearings and Appeals;
    (12) If the test sample size is listed as ``0'' to indicate the 
certification is based upon the use of an alternate way of determining 
measures of energy conservation, identify the method used for 
determining measures of energy conservation (such as ``AEDM,'' or linear 
interpolation). Manufacturers of commercial packaged boilers, commercial 
water heating equipment, commercial refrigeration equipment, commercial 
HVAC equipment, and central air conditioners and central air 
conditioning heat pumps must provide the manufacturer's designation 
(name or other identifier) of the AEDM used; and
    (13) Product specific information listed in Sec. Sec.  429.14 
through 429.63 of this chapter.
    (c) Compliance statement. The compliance statement required by 
paragraph (b) of this section shall include the date, the name of the 
company official signing the statement, and his or her signature, title, 
address, telephone number, and facsimile number and shall certify that:
    (1) The basic model(s) complies with the applicable energy 
conservation standard(s);
    (2) All required testing has been conducted in conformance with the 
applicable test requirements prescribed in parts 429, 430 and 431, as 
appropriate, or in accordance with the terms of an applicable test 
procedure waiver;
    (3) All information reported in the certification report is true, 
accurate, and complete; and
    (4) The manufacturer is aware of the penalties associated with 
violations of the Act, the regulations thereunder, and 18 U.S.C. 1001 
which prohibits knowingly making false statements to the Federal 
Government.
    (d) Annual filing. All data required by paragraphs (a) through (c) 
of this section shall be submitted to DOE annually, on or before the 
following dates:

------------------------------------------------------------------------
                                                   Deadline for data
              Product category                        submission
------------------------------------------------------------------------
Fluorescent lamp ballasts, Medium base        Mar. 1.
 compact fluorescent lamps, Incandescent
 reflector lamps, General service
 fluorescent lamps, General service
 incandescent lamps, Intermediate base
 incandescent lamps, Candelabra base
 incandescent lamps, Residential ceiling
 fans, Residential ceiling fan light kits,
 Residential showerheads, Residential
 faucets, Residential water closets, and
 Residential urinals.
Residential water heater, Residential         May 1.
 furnaces, Residential boilers, Residential
 pool heaters, Commercial water heaters,
 Commercial hot water supply boilers,
 Commercial unfired hot water storage tanks,
 Commercial packaged boilers, Commercial
 warm air furnaces, Commercial unit heaters
 and Residential furnace fans.

[[Page 144]]

 
Residential dishwashers, Commercial prerinse  June 1.
 spray valves, Illuminated exit signs,
 Traffic signal modules, Pedestrian modules,
 and Distribution transformers.
Room air conditioners, Residential central    July 1.
 air conditioners, Residential central heat
 pumps, Small duct high velocity system,
 Space constrained products, Commercial
 package air-conditioning and heating
 equipment, Packaged terminal air
 conditioners, Packaged terminal heat pumps,
 and Single package vertical units.
Residential refrigerators, Residential        Aug. 1.
 refrigerators-freezers, Residential
 freezers, Commercial refrigerator, freezer,
 and refrigerator-freezer, Automatic
 commercial automatic ice makers,
 Refrigerated bottled or canned beverage
 vending machine, Walk-in coolers, Walk-in
 freezers, and Miscellaneous refrigeration
 products.
Torchieres, Residential dehumidifiers, Metal  Sept. 1.
 halide lamp fixtures, External power
 supplies, and Pumps.
Residential clothes washers, Residential      Oct. 1.
 clothes dryers, Residential direct heating
 equipment, Residential cooking products,
 and Commercial clothes washers.
Portable air conditioners...................  February 1.
------------------------------------------------------------------------

    (e) New model filing. (1) In addition to the annual filing schedule 
in paragraph (d) of this section, any new basic models must be certified 
pursuant to paragraph (a) of this section before distribution in 
commerce. A modification to a model that increases the model's energy or 
water consumption or decreases its efficiency resulting in re-rating 
must be certified as a new basic model pursuant to paragraph (a) of this 
section.
    (2) For general service fluorescent lamps or incandescent reflector 
lamps: Prior to or concurrent with the distribution of a new basic model 
each manufacturer shall submit an initial certification report listing 
the basic model number, lamp wattage, and date of first manufacture 
(i.e., production date) for that basic model. The certification report 
must also state how the manufacturer determined that the lamp meets or 
exceeds the energy conservation standards, including a description of 
any testing or analysis the manufacturer performed. Manufacturers of 
general service fluorescent lamps and incandescent reflector lamps shall 
submit the certification report required by paragraph (b) of this 
section within one year after the first date of new model manufacture.
    (3) For distribution transformers, the manufacturer shall submit all 
information required in paragraphs (b) and (c) of this section for the 
new basic model, unless the manufacturer has previously submitted to the 
Department a certification report for a basic model of distribution 
transformer that is in the same kVA grouping as the new basic model.
    (f) Discontinued model filing. When production of a basic model has 
ceased and it is no longer being sold or offered for sale by the 
manufacturer or private labeler, the manufacturer must report this 
discontinued status to DOE as part of the next annual certification 
report following such cessation. For each basic model, the report must 
include the information specified in paragraphs (b)(1) through (7) of 
this section, except that for integrated light-emitting diode lamps and 
for compact fluorescent lamps, the manufacturer must submit a full 
certification report, including all of the information required by 
paragraph (b) of this section and the product-specific information 
required by Sec.  429.56(b)(2) or Sec.  429.35(b)(2), respectively.
    (g) Third party submitters. A manufacturer may elect to use a third 
party to submit the certification report to DOE (for example, a trade 
association, independent test lab, or other authorized representative, 
including a private labeler acting as a third party submitter on behalf 
of a manufacturer); however, the manufacturer is responsible for 
submission of the certification report to DOE. DOE may refuse to accept 
certification reports from third party submitters who have failed to 
submit reports in accordance with the rules of this part. The third 
party submitter must complete the compliance statement as part of the 
certification report. Each manufacturer using a third party submitter 
must have an authorization form on file with DOE. The authorization form 
includes a compliance statement, specifies the third party authorized to 
submit certification reports on the manufacturer's behalf and provides 
the contact information and signature of a company official.

[[Page 145]]

    (h) Method of submission. Reports required by this section must be 
submitted to DOE electronically at http://www.regulations.doe.gov/ccms 
(CCMS). A manufacturer or third party submitter can find product-
specific templates for each covered product or covered equipment with 
certification requirements online at https://www.regulations.doe.gov/
ccms/templates.html. Manufacturers and third party submitters must 
submit a registration form, signed by an officer of the company, in 
order to obtain access to CCMS.
    (i) Compliance dates. For any product subject to an applicable 
energy conservation standard for which the compliance date has not yet 
occurred, a certification report must be submitted not later than the 
compliance date for the applicable energy conservation standard. The 
covered products enumerated below are subject to the stated compliance 
dates for initial certification:
    (1) Commercial warm air furnaces, packaged terminal air 
conditioners, and packaged terminal heat pumps, July 1, 2014;
    (2) Commercial gas-fired and oil-fired instantaneous water heaters 
less than 10 gallons and commercial gas-fired and oil-fired hot water 
supply boilers less than 10 gallons, October 1, 2014;
    (3) All other types of covered commercial water heaters except those 
specified in paragraph (i)(2) of this section, commercial packaged 
boilers with input capacities less than or equal to 2.5 million Btu/h, 
and self-contained commercial refrigeration equipment with solid or 
transparent doors, December 31, 2014;
    (4) Variable refrigerant flow air conditioners and heat pumps, March 
31, 2015;
    (5) Small, large, or very large air-cooled, water-cooled, 
evaporatively-cooled, and water-source commercial air conditioning and 
heating equipment, single package vertical units, computer room air 
conditioners, commercial packaged boilers with input capacities greater 
than 2.5 million Btu/h, and all other types of commercial refrigeration 
equipment except those specified in paragraph (i)(3) of this section, 
July 1, 2015.

[76 FR 12451, Mar. 7, 2011; 76 FR 24762, May 2, 2011, as amended at 76 
FR 38292, June 30, 2011; 76 FR 65365, Oct. 21, 2011; 77 FR 76830, Dec. 
31, 2012; 78 FR 79593, Dec. 31, 2013; 79 FR 25500, May 5, 2014; 79 FR 
38208, July 3, 2014; 81 FR 4430, Jan. 26, 2016; 81 FR 37049, June 8, 
2016; 81 FR 43425, July 1, 2016; 81 FR 46789, July 18, 2016; 81 FR 
59415, Aug. 29, 2016; 81 FR 95798, Dec. 28, 2016; 85 FR 1446, 1591, Jan. 
10, 2020]



Sec.  429.13  Testing requirements.

    (a) The determination that a basic model complies with an applicable 
energy conservation standard shall be determined from the values derived 
pursuant to the applicable testing and sampling requirements set forth 
in parts 429, 430 and 431. The determination that a basic model complies 
with the applicable design standard shall be based upon the 
incorporation of specific design requirements in parts 430 and 431 or as 
specified in section 325 and 342 of the Act.
    (b) Where DOE has determined a particular entity is in noncompliance 
with an applicable standard or certification requirement, DOE may impose 
additional testing requirements as a remedial measure.



Sec.  429.14  Consumer refrigerators, refrigerator-freezers and freezers.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to residential 
refrigerators, refrigerator-freezers and freezers; and
    (2) For each basic model of residential refrigerators, refrigerator-
freezers, and freezers, a sample of sufficient size shall be randomly 
selected and tested to ensure that--
    (i) Any represented value of estimated annual operating cost, energy 
consumption, or other measure of energy consumption of a basic model for 
which consumers would favor lower values shall be greater than or equal 
to the higher of:
    (A) The mean of the sample, where:

[[Page 146]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.003


or,

    (B) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.10, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.026


and

    (ii) Any represented value of the energy factor or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.005
    

or,

    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.90, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.027

    (3) The value of total refrigerated volume of a basic model reported 
in accordance with paragraph (b)(2) of this section shall be the mean of 
the total refrigerated volumes measured for each tested unit of the 
basic model or the total refrigerated volume of the basic model as 
calculated in accordance with Sec.  429.72(c). The value of adjusted 
total volume of a basic model reported in accordance with paragraph 
(b)(2) of this

[[Page 147]]

section shall be the mean of the adjusted total volumes measured for 
each tested unit of the basic model or the adjusted total volume of the 
basic model as calculated in accordance with Sec.  429.72(c).
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to residential refrigerators, refrigerator-freezers and 
freezers; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The annual 
energy use in kilowatt hours per year (kWh/yr); the total refrigerated 
volume in cubic feet (ft\3\); and the adjusted total volume in cubic 
feet (ft\3\).
    (3) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following additional product-specific information: whether 
the basic model has variable defrost control (in which case, 
manufacturers must also report the values, if any, of CTL and 
CTM (For an example, see section 5.2.1.3 in appendix A to 
subpart B of 10 CFR part 430) used in the calculation of energy 
consumption), whether the basic model has variable anti-sweat heater 
control (in which case, manufacturers must also report the values of 
heater Watts at the ten humidity levels (5%, 15%, 25%, 35%, 45%, 55%, 
65%, 75%, 85%, and 95%) used to calculate the variable anti-sweat heater 
``Correction Factor''), and whether testing has been conducted with 
modifications to the standard temperature sensor locations specified by 
the figures referenced in section 5.1 of appendices A1, B1, A, and B to 
subpart B of 10 CFR part 430.
    (c) Rounding requirements for representative values, including 
certified and rated values. (1) The represented value of annual energy 
use must be rounded to the nearest kilowatt hour per year.
    (2) The represented value of total refrigerated volume must be 
rounded to the nearest 0.1 cubic foot.
    (3) The represented value of adjusted total volume must be rounded 
to the nearest 0.1 cubic foot.
    (d) Product category determination. Each basic model shall be 
certified according to the appropriate product category as defined in 
Sec.  430.2 based on compartment volumes and compartment temperatures.
    (1) Compartment volumes used to determine product category shall be 
the mean of the measured compartment volumes for each tested unit of the 
basic model according to the provisions in section 5.3 of appendix A of 
subpart B of part 430 of this chapter for refrigerators and 
refrigerator-freezers and section 5.3 of appendix B of subpart B of part 
430 of this chapter for freezers, or the compartment volumes of the 
basic model as calculated in accordance with Sec.  429.72(d); and
    (2) Compartment temperatures used to determine product category 
shall be the mean of the measured compartment temperatures at the 
coldest setting for each tested unit of the basic model according to the 
provisions section 5.1 of appendix A of subpart B of part 430 of this 
chapter for refrigerators and refrigerator-freezers and section 5.1 of 
appendix B of subpart B of part 430 of this chapter for freezers.

[76 FR 12451, Mar. 7, 2011; 76 FR 24762, May 2, 2011, as amended at 79 
FR 22348, Apr. 21, 2014; 81 FR 46789, July 18, 2016]

    Effective Date Note: At 81 FR 46789, July 18, 2016, Sec.  
429.14(c)(2) and (c)(3) were stayed indefinitely.



Sec.  429.15  Room air conditioners.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to room air conditioners; 
and
    (2) For each basic model of room air conditioners, a sample of 
sufficient size shall be randomly selected and tested to ensure that--
    (i) Any represented value of estimated annual operating cost, energy 
consumption or other measure of energy consumption of a basic model for 
which consumers would favor lower values shall be greater than or equal 
to the higher of:
    (A) The mean of the sample, where:

[[Page 148]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.007


or,

    (B) The upper 97\1/2\ percent confidence limit (UCL) of the true 
mean divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.028


and

    (ii) Any represented value of the energy efficiency ratio or other 
measure of energy consumption of a basic model for which consumers would 
favor higher values shall be less than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.009
    

or,

    (B) The lower 97\1/2\ percent confidence limit (LCL) of the true 
mean divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.029

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to room air conditioners; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The energy 
efficiency ratio (EER in British thermal units per Watt-hour (Btu/W-h)), 
cooling capacity in British

[[Page 149]]

thermal units per hour (Btu/h), and the electrical power input in watts 
(W).

[76 FR 12451, Mar. 7, 2011; 76 FR 24763, May 2, 2011]



Sec.  429.16  Central air conditioners and central air conditioning heat pumps.

    (a) Determination of Represented Value--(1) Required represented 
values. Determine the represented values (including SEER, EER, HSPF, 
SEER2, EER2, HSPF2, PW,OFF, cooling capacity, and heating 
capacity, as applicable) for the individual models/combinations (or 
``tested combinations'') specified in the following table.

------------------------------------------------------------------------
                                    Equipment       Required represented
           Category                subcategory             values
------------------------------------------------------------------------
Single-Package unit...........  Single-Package AC  Every individual
                                 (including Space-  model distributed in
                                 Constrained).      commerce.
                                Single-Package HP
                                 (including Space-
                                 Constrained).
Outdoor Unit and Indoor Unit    Single-Split-      Every individual
 (Distributed in Commerce by     System AC with     combination
 OUM).                           Single-Stage or    distributed in
                                 Two-Stage          commerce must be
                                 Compressor         rated as a coil-only
                                 (including Space-  combination. For
                                 Constrained and    each model of
                                 Small-Duct, High   outdoor unit, this
                                 Velocity Systems   must include at
                                 (SDHV)).           least one coil-only
                                                    value that is
                                                    representative of
                                                    the least efficient
                                                    combination
                                                    distributed in
                                                    commerce with that
                                                    particular model of
                                                    outdoor unit.
                                                    Additional blower-
                                                    coil representations
                                                    are allowed for any
                                                    applicable
                                                    individual
                                                    combinations, if
                                                    distributed in
                                                    commerce.
                                Single-Split-      Every individual
                                 System AC with     combination
                                 Other Than         distributed in
                                 Single-Stage or    commerce, including
                                 Two-Stage          all coil-only and
                                 Compressor         blower coil
                                 (including Space-  combinations.
                                 Constrained and
                                 SDHV).
                                Single-Split-      Every individual
                                 System HP          combination
                                 (including Space-  distributed in
                                 Constrained and    commerce.
                                 SDHV).
                                Multi-Split,       For each model of
                                 Multi-Circuit,     outdoor unit, at a
                                 or Multi-Head      minimum, a non-
                                 Mini-Split Split   ducted ``tested
                                 System--non-SDHV   combination.'' For
                                 (including Space-  any model of outdoor
                                 Constrained).      unit also sold with
                                                    models of ducted
                                                    indoor units, a
                                                    ducted ``tested
                                                    combination.'' When
                                                    determining
                                                    represented values
                                                    on or after January
                                                    1, 2023, the ducted
                                                    ``tested
                                                    combination'' must
                                                    comprise the highest
                                                    static variety of
                                                    ducted indoor unit
                                                    distributed in
                                                    commerce (i.e.,
                                                    conventional, mid-
                                                    static, or low-
                                                    static). Additional
                                                    representations are
                                                    allowed, as
                                                    described in
                                                    paragraph (c)(3)(i)
                                                    of this section.
                                Multi-Split,       For each model of
                                 Multi-Circuit,     outdoor unit, an
                                 or Multi-Head      SDHV ``tested
                                 Mini-Split Split   combination.''
                                 System--SDHV.      Additional
                                                    representations are
                                                    allowed, as
                                                    described in
                                                    paragraph (c)(3)(ii)
                                                    of this section.
Indoor Unit Only Distributed    Single-Split-      Every individual
 in Commerce by ICM).            System Air         combination
                                 Conditioner        distributed in
                                 (including Space-  commerce.
                                 Constrained and
                                 SDHV).
                                Single-Split-
                                 System Heat Pump
                                 (including Space-
                                 Constrained and
                                 SDHV).
                                Multi-Split,       For a model of indoor
                                 Multi-Circuit,     unit within each
                                 or Multi-Head      basic model, an SDHV
                                 Mini-Split Split   ``tested
                                 System--SDHV.      combination.''
                                                    Additional
                                                    representations are
                                                    allowed, as
                                                    described in section
                                                    (c)(3)(ii) of this
                                                    section.
------------------------------------------------------------------------
Outdoor Unit with no Match.......................  Every model of
                                                    outdoor unit
                                                    distributed in
                                                    commerce (tested
                                                    with a model of coil-
                                                    only indoor unit as
                                                    specified in
                                                    paragraph (b)(2)(i)
                                                    of this section).
------------------------------------------------------------------------

    (2) PW,OFF. If individual models of single-package 
systems or individual combinations (or ``tested combinations'') of split 
systems that are otherwise identical are offered with multiple options 
for off mode-related components, determine the represented value for the 
individual model/combination with the crankcase heater and controls that 
are the most consumptive. A manufacturer may also determine represented 
values for individual models/combinations with less consumptive off mode 
options; however, all such options must be identified with different 
model numbers for single-package systems or for outdoor units (in the 
case of split systems).
    (3) Refrigerants. (i) If a model of outdoor unit (used in a single-
split, multi-split, multi-circuit, multi-head mini-split, and/or outdoor 
unit with no

[[Page 150]]

match system) is distributed in commerce and approved for use with 
multiple refrigerants, a manufacturer must determine all represented 
values for that model using each refrigerant that can be used in an 
individual combination of the basic model (including outdoor units with 
no match or ``tested combinations''). This requirement may apply across 
the listed categories in the table in paragraph (a)(1) of this section. 
A refrigerant is considered approved for use if it is listed on the 
nameplate of the outdoor unit. If any of the refrigerants approved for 
use is HCFC-22 or has a 95 [deg]F midpoint saturation absolute pressure 
that is  18 percent of the 95 [deg]F saturation 
absolute pressure for HCFC-22, or if there are no refrigerants 
designated as approved for use, a manufacturer must determine 
represented values (including SEER, EER, HSPF, SEER2, EER2, HSPF2, 
PW,OFF, cooling capacity, and heating capacity, as 
applicable) for, at a minimum, an outdoor unit with no match. If a model 
of outdoor unit is not charged with a specified refrigerant from the 
point of manufacture or if the unit is shipped requiring the addition of 
more than two pounds of refrigerant to meet the charge required for 
testing per section 2.2.5 of appendix M or appendix M1 (unless either 
(a) the factory charge is equal to or greater than 70% of the outdoor 
unit internal volume times the liquid density of refrigerant at 95 
[deg]F or (b) an A2L refrigerant is approved for use and listed in the 
certification report), a manufacturer must determine represented values 
(including SEER, EER, HSPF, SEER2, EER2, HSPF2, PW,OFF, 
cooling capacity, and heating capacity, as applicable) for, at a 
minimum, an outdoor unit with no match.
    (ii) If a model is approved for use with multiple refrigerants, a 
manufacturer may make multiple separate representations for the 
performance of that model (all within the same individual combination or 
outdoor unit with no match) using the multiple approved refrigerants. In 
the alternative, manufacturers may certify the model (all within the 
same individual combination or outdoor unit with no match) with a single 
representation, provided that the represented value is no more efficient 
than its performance using the least-efficient refrigerant. If a 
manufacturer certifies a single model with multiple representations for 
the different approved refrigerants, it may use an AEDM to determine the 
represented values for all other refrigerants besides the refrigerant 
used for testing. A single representation made for multiple refrigerants 
may not include equipment in multiple categories or equipment 
subcategories listed in the table in paragraph (a)(1) of this section.
    (4) Limitations for represented values of individual combinations. 
The following paragraphs explains the limitations for represented values 
of individual combinations (or ``tested combinations'').
    (i) Regional. A basic model may only be certified as compliant with 
a regional standard if all individual combinations within that basic 
model meet the regional standard for which it is certified. A model of 
outdoor unit that is certified below a regional standard can only be 
rated and certified as compliant with a regional standard if the model 
of outdoor unit has a unique model number and has been certified as a 
different basic model for distribution in each region. An ICM cannot 
certify an individual combination with a rating that is compliant with a 
regional standard if the individual combination includes a model of 
outdoor unit that the OUM has certified with a rating that is not 
compliant with a regional standard. Conversely, an ICM cannot certify an 
individual combination with a rating that is not compliant with a 
regional standard if the individual combination includes a model of 
outdoor unit that an OUM has certified with a rating that is compliant 
with a regional standard.
    (ii) Multiple product classes. Models of outdoor units that are 
rated and distributed in individual combinations that span multiple 
product classes must be tested, rated, and certified pursuant to 
paragraph (a) of this section as compliant with the applicable standard 
for each product class. This includes multi-split systems, multi-circuit 
systems, and multi-head mini-split systems with a represented value for 
a mixed combination including

[[Page 151]]

both SDHV and either non-ducted or ducted indoor units.
    (5) Requirements. All represented values under paragraph (a) of this 
section must be based on testing in accordance with the requirements in 
paragraph (b) of this section or the application of an AEDM or other 
methodology as allowed in paragraph (c) of this section.
    (b) Units tested--(1) General. The general requirements of Sec.  
429.11 apply to central air conditioners and heat pumps; and
    (2) Individual model/combination selection for testing. (i) The 
table identifies the minimum testing requirements for each basic model 
that includes multiple individual models/combinations; if a basic model 
spans multiple categories or subcategories listed in the table, multiple 
testing requirements apply. For each basic model that includes only one 
individual model/combination, test that individual model/combination. 
For single-split-system non-space-constrained air conditioners and heat 
pumps, when testing is required in accordance with 10 CFR part 430, 
subpart B, appendix M1, these requirements do not apply until July 1, 
2024, provided that the manufacturer is certifying compliance of all 
basic models using an AEDM in accordance with paragraph (c)(1)(i)(B) of 
this section and paragraph (e)(2)(i)(A) of Sec.  429.70.

----------------------------------------------------------------------------------------------------------------
              Category                Equipment subcategory        Must test:                   With:
----------------------------------------------------------------------------------------------------------------
Single-Package Unit................  Single-Package AC       The individual model    N/A.
                                      (including Space-       with the lowest SEER
                                      Constrained).           (when testing in
                                                              accordance with
                                                              appendix M to subpart
                                                              B of part 430) or
                                                              SEER2 (when testing
                                                              in accordance with
                                                              appendix M1 to
                                                              subpart B of part
                                                              430).
                                     Single-Package HP
                                      (including Space-
                                      Constrained).
Outdoor Unit and Indoor Unit         Single-Split-System AC  The model of outdoor    A model of coil-only indoor
 (Distributed in Commerce by OUM).    with Single-Stage or    unit.                   unit.
                                      Two-Stage Compressor
                                      (including Space-
                                      Constrained and Small-
                                       Duct, High Velocity
                                      Systems (SDHV)).
                                     Single-Split-System AC  The model of outdoor    A model of indoor unit.
                                      with Other Than         unit.
                                      Single-Stage or Two-
                                      Stage Compressor
                                      (including Space-
                                      Constrained and SDHV).
                                     Single-Split-System HP
                                      (including Space-
                                      Constrained and SDHV).
                                     Multi-Split, Multi-     The model of outdoor    At a minimum, a ``tested
                                      Circuit, or Multi-      unit.                   combination'' composed
                                      Head Mini-Split Split                           entirely of non-ducted
                                      System--non-SDHV                                indoor units. For any
                                      (including Space-                               models of outdoor units
                                      Constrained).                                   also sold with models of
                                                                                      ducted indoor units, test
                                                                                      a second ``tested
                                                                                      combination'' composed
                                                                                      entirely of ducted indoor
                                                                                      units (in addition to the
                                                                                      non-ducted combination).
                                                                                      If testing under appendix
                                                                                      M1 to subpart B of part
                                                                                      430, the ducted ``tested
                                                                                      combination'' must
                                                                                      comprise the highest
                                                                                      static variety of ducted
                                                                                      indoor unit distributed in
                                                                                      commerce (i.e.,
                                                                                      conventional, mid-static,
                                                                                      or low-static).
                                     Multi-Split, Multi-     The model of outdoor    A ``tested combination''
                                      Circuit, or Multi-      unit.                   composed entirely of SDHV
                                      Head Mini-Split Split                           indoor units.
                                      System--SDHV.

[[Page 152]]

 
Indoor Unit Only (Distributed in     Single-Split-System     A model of indoor unit  The least efficient model
 Commerce by ICM).                    Air Conditioner                                 of outdoor unit with which
                                      (including Space-                               it will be paired where
                                      Constrained and SDHV).                          the least efficient model
                                                                                      of outdoor unit is the
                                                                                      model of outdoor unit in
                                                                                      the lowest SEER
                                                                                      combination (when testing
                                                                                      under appendix M to
                                                                                      subpart B of part 430) or
                                                                                      SEER2 combination (when
                                                                                      testing under appendix M1
                                                                                      to subpart B of part 430)
                                                                                      as certified by the OUM.
                                                                                      If there are multiple
                                                                                      models of outdoor unit
                                                                                      with the same lowest SEER
                                                                                      (when testing under
                                                                                      appendix M to subpart B of
                                                                                      part 430) or SEER2 (when
                                                                                      testing under appendix M1
                                                                                      to subpart B of part 430)
                                                                                      represented value, the ICM
                                                                                      may select one for testing
                                                                                      purposes.
                                     Single-Split-System     Nothing, as long as an
                                      Heat Pump (including    equivalent air
                                      Space-Constrained and   conditioner basic
                                      SDHV).                  model has been tested.
                                                             If an equivalent air
                                                              conditioner basic
                                                              model has not been
                                                              tested, must test a
                                                              model of indoor unit.
                                     Multi-Split, Multi-     A model of indoor unit  A ``tested combination''
                                      Circuit, or Multi-                              composed entirely of SDHV
                                      Head Mini-Split Split                           indoor units, where the
                                      System--SDHV.                                   outdoor unit is the least
                                                                                      efficient model of outdoor
                                                                                      unit with which the SDHV
                                                                                      indoor unit will be
                                                                                      paired. The least
                                                                                      efficient model of outdoor
                                                                                      unit is the model of
                                                                                      outdoor unit in the lowest
                                                                                      SEER combination (when
                                                                                      testing under appendix M
                                                                                      to subpart B of part 430)
                                                                                      or SEER2 combination (when
                                                                                      testing under appendix M1
                                                                                      to subpart B of part 430)
                                                                                      as certified by the OUM.
                                                                                      If there are multiple
                                                                                      models of outdoor unit
                                                                                      with the same lowest SEER
                                                                                      represented value (when
                                                                                      testing under appendix M
                                                                                      to subpart B of part 430)
                                                                                      or SEER2 represented value
                                                                                      (when testing under
                                                                                      appendix M1 to subpart B
                                                                                      of part 430), the ICM may
                                                                                      select one for testing
                                                                                      purposes.
Outdoor Unit with No Match.........  ......................  The model of outdoor    A model of coil-only indoor
                                                              unit.                   unit meeting the
                                                                                      requirements of section
                                                                                      2.2e of appendix M or M1
                                                                                      to subpart B of part 430.
----------------------------------------------------------------------------------------------------------------

    (ii) Each individual model/combination (or ``tested combination'') 
identified in paragraph (b)(2)(i) of this section is not required to be 
tested for PW,OFF. Instead, at a minimum, among individual 
models/combinations with similar off-mode construction (even spanning 
different models of outdoor units), a manufacturer must test at least 
one individual model/combination for PW,OFF.
    (3) Sampling plans and represented values. For individual models 
(for single-package systems) or individual combinations (for split-
systems, including ``tested combinations'' for multi-split, multi-
circuit, and multi-head mini-split systems) with represented values 
determined through testing, each individual model/combination (or 
``tested combination'') must have a sample of sufficient size tested in 
accordance with the applicable provisions of this subpart. For heat 
pumps (other than heating-only heat pumps), all units of the sample 
population must be tested in both the cooling and heating modes and the 
results used for determining all representations. The represented values 
for any individual model/combination must be assigned such that:
    (i) Off-Mode. Any represented value of power consumption or other 
measure of energy consumption for which consumers would favor lower 
values must be greater than or equal to the higher of:
    (A) The mean of the sample, where:

[[Page 153]]

[GRAPHIC] [TIFF OMITTED] TR08JN16.000


and, x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample; Or,
    (B) The upper 90 percent confidence limit (UCL) of the true mean 
divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR08JN16.001


And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.90 is the t statistic for a 90 
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix D). Round represented values of off-mode power consumption to 
the nearest watt.
    (ii) SEER, EER, HSPF, SEER2, EER2, and HSPF2. Any represented value 
of the energy efficiency or other measure of energy consumption for 
which consumers would favor higher values shall be less than or equal to 
the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR05JA17.000
    

and, x is the sample mean; n is the number of samples; and xi is the ith 
sample; or,
    (B) The lower 90 percent confidence limit (LCL) of the true mean 
divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.001


And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.90 is the t statistic for a 90 
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix D). Round represented values of EER, SEER, HSPF, EER2, SEER2, 
and HSPF2 to the nearest 0.05.
    (iii) Cooling Capacity and Heating Capacity. The represented values 
of cooling capacity and heating capacity must each be a self-declared 
value that is:
    (A) Less than or equal to the lower of:
    (1) The mean of the sample, where:

[[Page 154]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.002


and, x is the sample mean; n is the number of samples; and xi is the ith 
sample; or,
    (2) The lower 90 percent confidence limit (LCL) of the true mean 
divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.003


And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.90 is the t statistic for a 90 
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix D).
    (B) Rounded according to:
    (1) To the nearest 100 Btu/h if cooling capacity or heating capacity 
is less than 20,000 Btu/h,
    (2) To the nearest 200 Btu/h if cooling capacity or heating capacity 
is greater than or equal to 20,000 Btu/h but less than 38,000 Btu/h, and
    (3) To the nearest 500 Btu/h if cooling capacity or heating capacity 
is greater than or equal to 38,000 Btu/h and less than 65,000 Btu/h.
    (c) Determination of represented values for all other individual 
models/combinations besides those specified in paragraph (b)(2) of this 
section--(1) All basic models except outdoor units with no match and 
multi-split systems, multi-circuit systems, and multi-head mini-split 
systems. (i) For every individual model/combination within a basic model 
other than the individual model/combination required to be tested 
pursuant to paragraph (b)(2) of this section, either--
    (A) A sample of sufficient size, comprised of production units or 
representing production units, must be tested as complete systems with 
the resulting represented values for the individual model/combination 
obtained in accordance with paragraphs (b)(1) and (3) of this section; 
or
    (B) The represented values of the measures of energy efficiency or 
energy consumption through the application of an AEDM in accordance with 
paragraph (d) of this section and Sec.  429.70. An AEDM may only be used 
to determine represented values for individual models or combinations in 
a basic model (or separate approved refrigerants within an individual 
combination) other than the individual model or combination(s) required 
for mandatory testing under paragraph (b)(2) of this section, except 
that, for single-split, non-space-constrained systems, when testing is 
required in accordance with 10 CFR part 430, subpart B, appendix M1, an 
AEDM may be used to rate the individual model or combination(s) required 
for mandatory testing under paragraph (b)(2) of this section until July 
1, 2024, in accordance with paragraph (e)(2)(i)(A) of Sec.  429.70.
    (ii) For every individual model/combination within a basic model 
tested pursuant to paragraph (b)(2) of this section, but for which 
PW,OFF testing was not conducted, the represented value of 
PW,OFF may be assigned through, either:
    (A) The testing result from an individual model/combination of 
similar off-mode construction, or
    (B) The application of an AEDM in accordance with paragraph (d) of 
this section and Sec.  429.70.
    (2) Outdoor units with no match. All models of outdoor units with no 
match within a basic model must be tested. No model of outdoor unit with 
no match may be rated with an AEDM, other than to determine the 
represented values for models using approved refrigerants other than the 
one used in testing.

[[Page 155]]

    (3) For multi-split systems, multi-circuit systems, and multi-head 
mini-split systems. The following applies:
    (i) When testing in accordance with 10 CFR part 430, subpart B, 
appendix M1, for basic models that include additional varieties of 
ducted indoor units (i.e., conventional, low-static, or mid-static) 
other than the one for which representation is required in paragraph 
(a)(1) of this section, if a manufacturer chooses to make a 
representation, the manufacturer must conduct testing of a tested 
combination according to the requirements in paragraph (b)(3) of this 
section.
    (ii) When testing in accordance with 10 CFR part 430, subpart B, 
appendix M, for basic models composed of both non-ducted and ducted 
combinations, the represented value for the mixed non-ducted/ducted 
combination is the mean of the represented values for the non-ducted and 
ducted combinations as determined in accordance with paragraph (b)(3) of 
this section. When testing in accordance with 10 CFR part 430, subpart 
B, appendix M1, for basic models that include mixed combinations of 
indoor units (any two kinds of non-ducted, low-static, mid-static, and 
conventional ducted indoor units), the represented value for the mixed 
combination is the mean of the represented values for the individual 
component combinations as determined in accordance with paragraph (b)(3) 
of this section.
    (iii) When testing in accordance with 10 CFR part 430, subpart B, 
appendix M, for basic models composed of both SDHV and non-ducted or 
ducted combinations, the represented value for the mixed SDHV/non-ducted 
or SDHV/ducted combination is the mean of the represented values for the 
SDHV, non-ducted, or ducted combinations, as applicable, as determined 
in accordance with paragraph (b)(3) of this section. When testing in 
accordance with 10 CFR part 430, subpart B, appendix M1, for basic 
models including mixed combinations of SDHV and another kind of indoor 
unit (any of non-ducted, low-static, mid-static, and conventional 
ducted), the represented value for the mixed SDHV/other combination is 
the mean of the represented values for the SDHV and other tested 
combination as determined in accordance with paragraph (b)(3) of this 
section.
    (iv) All other individual combinations of models of indoor units for 
the same model of outdoor unit for which the manufacturer chooses to 
make representations must be rated as separate basic models, and the 
provisions of paragraphs (b)(1) through (3) and (c)(3)(i) through (iii) 
of this section apply.
    (v) With respect to PW,OFF only, for every individual 
combination (or ``tested combination'') within a basic model tested 
pursuant to paragraph (b)(2) of this section, but for which 
PW,OFF testing was not conducted, the representative values 
of PW,OFF may be assigned through either:
    (A) The testing result from an individual model or combination of 
similar off-mode construction, or
    (B) Application of an AEDM in accordance with paragraph (d) of this 
section and Sec.  429.70.
    (d) Alternative efficiency determination methods. In lieu of 
testing, represented values of efficiency or consumption may be 
determined through the application of an AEDM pursuant to the 
requirements of Sec.  429.70(e) and the provisions of this section.
    (1) Power or energy consumption. Any represented value of the 
average off mode power consumption or other measure of energy 
consumption of an individual model/combination for which consumers would 
favor lower values must be greater than or equal to the output of the 
AEDM but no greater than the standard.
    (2) Energy efficiency. Any represented value of the SEER, EER, HSPF, 
SEER2, EER2, HSPF2 or other measure of energy efficiency of an 
individual model/combination for which consumers would favor higher 
values must be less than or equal to the output of the AEDM but no less 
than the standard.
    (3) Cooling capacity. The represented value of cooling capacity of 
an individual model/combination must be no greater than the cooling 
capacity output simulated by the AEDM.
    (4) Heating capacity. The represented value of heating capacity of 
an individual model/combination must be no

[[Page 156]]

greater than the heating capacity output simulated by the AEDM.
    (e) Certification reports. This paragraph specifies the information 
that must be included in a certification report.
    (1) General. The requirements of Sec.  429.12 apply to central air 
conditioners and heat pumps.
    (2) Public product-specific information. Pursuant to Sec.  
429.12(b)(13), for each individual model (for single-package systems) or 
individual combination (for split-systems, including outdoor units with 
no match and ``tested combinations'' for multi-split, multi-circuit, and 
multi-head mini-split systems), a certification report must include the 
following public product-specific information: When certifying 
compliance with January 1, 2015, energy conservation standards, the 
seasonal energy efficiency ratio (SEER in British thermal units per 
Watt-hour (Btu/W-h)) or when certifying compliance with January 1, 2023, 
energy conservation standards, seasonal energy efficiency ratio 2 (SEER2 
in British thermal units per Watt-hour (Btu/W-h)); the average off mode 
power consumption (PW,OFF in Watts); the cooling capacity in 
British thermal units per hour (Btu/h); the region(s) in which the basic 
model can be sold; when certifying compliance with January 1, 2023, 
energy conservation standards, the kind(s) of air conditioner or heat 
pump associated with the minimum external static pressure used in 
testing or rating (ceiling-mount, wall-mount, mobile home, low-static, 
mid-static, small duct high velocity, space-constrained, or 
conventional/not otherwise listed); and
    (i) For heat pumps, when certifying compliance with January 1, 2015, 
energy conservation standards, the heating seasonal performance factor 
(HSPF in British thermal units per Watt-hour (Btu/W-h)) or, when 
certifying compliance with January 1, 2023, energy conservation 
standards, heating seasonal performance factor 2 (HSPF2 in British 
thermal units per Watt-hour (Btu/W-h));
    (ii) For central air conditioners (excluding space-constrained 
products), when certifying compliance with January 1, 2015, energy 
conservation standards, the energy efficiency ratio (EER in British 
thermal units per Watt-hour (Btu/W-h)) from the A or A2 test, 
whichever applies, or when certifying compliance with January 1, 2023, 
energy conservation standards, the energy efficiency ratio 2 (EER2 in 
Btu/W-h);
    (iii) For single-split-systems, whether the represented value is for 
a coil-only or blower coil system;
    (iv) For multi-split, multiple-circuit, and multi-head mini-split 
systems (including VRF and SDHV), when certifying compliance with 
January 1, 2015, energy conservation standards, whether the represented 
value is for a non-ducted, ducted, mixed non-ducted/ducted system, SDHV, 
mixed non-ducted/SDHV system, or mixed ducted/SDHV system;
    (v) For all split systems including outdoor units with no match, the 
refrigerant.
    (3) Basic and individual model numbers. The basic model number and 
individual model number(s) required to be reported under Sec.  
429.12(b)(6) must consist of the following:

----------------------------------------------------------------------------------------------------------------
                                                                      Individual model number(s)
         Equipment type           Basic model number -----------------------------------------------------------
                                                               1                   2                   3
----------------------------------------------------------------------------------------------------------------
Single-Package (including Space-  Number unique to    Package...........  N/A...............  N/A.
 Constrained).                     the basic model.
Single-Split System (including    Number unique to    Outdoor Unit......  Indoor Unit.......  If applicable--Air
 Space-Constrained and SDHV).      the basic model.                                            Mover (could be
                                                                                               same as indoor
                                                                                               unit if fan is
                                                                                               part of indoor
                                                                                               unit model
                                                                                               number).

[[Page 157]]

 
Multi-Split, Multi-Circuit, and   Number unique to    Outdoor Unit......  When certifying a   If applicable--
 Multi-Head Mini-Split System      the basic model.                        basic model based   When certifying a
 (including Space-Constrained                                              on tested           basic model based
 and SDHV).                                                                combination(s): *   on tested
                                                                           * *.                combination(s): *
                                                                          When certifying an   * *.
                                                                           individual         When certifying an
                                                                           combination:        individual
                                                                           Indoor Unit(s).     combination: Air
                                                                                               Mover(s).
Outdoor Unit with No Match......  Number unique to    Outdoor Unit......  N/A...............  N/A.
                                   the basic model.
----------------------------------------------------------------------------------------------------------------

    (4) Additional product-specific information. Pursuant to Sec.  
429.12(b)(13), for each individual model/combination (including outdoor 
units with no match and ``tested combinations''), a certification report 
must include the following additional product-specific information: The 
cooling full load air volume rate for the system or for each indoor unit 
as applicable (in cubic feet per minute of standard air (scfm)); the air 
volume rates that represent normal operation for other test conditions 
including minimum cooling air volume rate, intermediate cooling air 
volume rate, full load heating air volume rate, minimum heating air 
volume rate, intermediate heating air volume rate, and nominal heating 
air volume rate (scfm) for the system or for each indoor unit as 
applicable, if different from the cooling full load air volume rate; 
whether the individual model uses a fixed orifice, thermostatic 
expansion valve, electronic expansion valve, or other type of metering 
device; the duration of the compressor break-in period, if used; whether 
the optional tests were conducted to determine the CDc value used to 
represent cooling mode cycling losses or whether the default value was 
used; the temperature at which the crankcase heater with controls is 
designed to turn on, if applicable; whether an inlet plenum was 
installed during testing; the duration of the indoor fan time delay, if 
used; and
    (i) For heat pumps, whether the optional tests were conducted to 
determine the CDh value or whether the default value was used; and the 
maximum time between defrosts as allowed by the controls (in hours);
    (ii) For multi-split, multiple-circuit, and multi-head mini-split 
systems, the number of indoor units tested with the outdoor unit; the 
nominal cooling capacity of each indoor unit and outdoor unit in the 
combination; and the indoor units that are not providing heating or 
cooling for part-load tests;
    (iii) For ducted systems having multiple indoor fans within a single 
indoor unit, the number of indoor fans; the nominal cooling capacity of 
the indoor unit and outdoor unit; which fan(s) operate to attain the 
full-load air volume rate when controls limit the simultaneous operation 
of all fans within the single indoor unit; and the allocation of the 
full-load air volume rate to each operational fan when different 
capacity blowers are connected to the common duct;
    (iv) For blower coil systems, the airflow-control settings 
associated with full load cooling operation; and the airflow-control 
settings or alternative instructions for setting fan speed to the speed 
upon which the rating is based;
    (v) For models with time-adaptive defrost control, the frosting 
interval to be used during Frost Accumulation tests and the procedure 
for manually initiating the defrost at the specified time;
    (vi) For models of indoor units designed for both horizontal and 
vertical installation or for both up-flow and down-flow vertical 
installations, the orientation used for testing;
    (vii) For variable-speed models, the compressor frequency set 
points, and the required dip switch/control settings for step or 
variable components;
    (viii) For variable-speed heat pumps, whether the H1N or 
H12 test speed is the same as the H32 test speed; 
the compressor frequency that corresponds to maximum speed at which the 
system controls would operate the compressor in normal operation in a 17 
[deg]F ambient

[[Page 158]]

temperature; and when certifying compliance with January 1, 2023, energy 
conservation standards, whether the optional 5 [deg]F very low 
temperature heating mode test was used to characterize performance at 
temperatures below 17 [deg]F (except for triple-capacity northern heat 
pumps, for which the very low temperature test is required,) and whether 
the alternative test required for minimum-speed-limiting variable-speed 
heat pumps was used;
    (ix) For models of outdoor units with no match, the following 
characteristics of the indoor coil: The face area, the coil depth in the 
direction of airflow, the fin density (fins per inch), the fin material, 
the fin style, the tube diameter, the tube material, and the numbers of 
tubes high and deep; and
    (x) For central air conditioners and heat pumps that have two-
capacity compressors that lock out low capacity operation for cooling at 
higher outdoor temperatures and/or heating at lower outdoor 
temperatures, the outdoor temperature(s) at which the unit locks out low 
capacity operation.
    (f) Represented values for the Federal Trade Commission. Use the 
following represented value determinations to meet the requirements of 
the Federal Trade Commission.
    (1) Annual Operating Cost--Cooling. Determine the represented value 
of estimated annual operating cost for cooling-only units or the cooling 
portion of the estimated annual operating cost for air-source heat pumps 
that provide both heating and cooling by calculating the product of:
    (i) The value determined in paragraph (f)(1)(i)(A) of this section 
if using appendix M to subpart B of part 430 or the value determined in 
paragraph (f)(1)(i)(B) of this section if using appendix M1 to subpart B 
of part 430;
    (A) The quotient of the represented value of cooling capacity, in 
Btu's per hour as determined in paragraph (b)(3)(iii) of this section, 
divided by the represented value of SEER, in Btu's per watt-hour, as 
determined in paragraph (b)(3)(ii) of this section;
    (B) The quotient of the represented value of cooling capacity, in 
Btu's per hour as determined in paragraph (b)(3)(i)(C) of this section, 
and multiplied by 0.93 for variable-speed heat pumps only, divided by 
the represented value of SEER2, in Btu's per watt-hour, as determined in 
paragraph (b)(3)(i)(B) of this section.
    (ii) The representative average use cycle for cooling of 1,000 hours 
per year;
    (iii) A conversion factor of 0.001 kilowatt per watt; and
    (iv) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act.
    (2) Annual Operating Cost--Heating. Determine the represented value 
of estimated annual operating cost for air-source heat pumps that 
provide only heating or for the heating portion of the estimated annual 
operating cost for air-source heat pumps that provide both heating and 
cooling, as follows:
    (i) When using appendix M to subpart B of part 430, the product of:
    (A) The quotient of the mean of the standardized design heating 
requirement for the sample, in Btu's per hour, nearest to the Region IV 
minimum design heating requirement, determined for each unit in the 
sample in section 4.2 of appendix M to subpart B of part 430, divided by 
the represented value of heating seasonal performance factor (HSPF), in 
Btu's per watt-hour, calculated for Region IV corresponding to the 
above-mentioned standardized design heating requirement, as determined 
in paragraph (b)(3)(ii) of this section;
    (B) The representative average use cycle for heating of 2,080 hours 
per year;
    (C) The adjustment factor of 0.77, which serves to adjust the 
calculated design heating requirement and heating load hours to the 
actual load experienced by a heating system;
    (D) A conversion factor of 0.001 kilowatt per watt; and
    (E) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act;
    (ii) When using appendix M1 to subpart B of part 430, the product 
of:
    (A) The quotient of the represented value of cooling capacity (for 
air-source heat pumps that provide both cooling and heating) in Btu's 
per hour, as determined in paragraph (b)(3)(i)(C)

[[Page 159]]

of this section, or the represented value of heating capacity (for air-
source heat pumps that provide only heating), as determined in paragraph 
(b)(3)(i)(D) of this section, divided by the represented value of 
heating seasonal performance factor 2 (HSPF2), in Btu's per watt-hour, 
calculated for Region IV, as determined in paragraph (b)(3)(i)(B) of 
this section;
    (B) The representative average use cycle for heating of 1,572 hours 
per year;
    (C) The adjustment factor of 1.15 (for heat pumps that are not 
variable-speed) or 1.07 (for heat pumps that are variable-speed), which 
serves to adjust the calculated design heating requirement and heating 
load hours to the actual load experienced by a heating system;
    (D) A conversion factor of 0.001 kilowatt per watt; and
    (E) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act;
    (3) Annual Operating Cost--Total. Determine the represented value of 
estimated annual operating cost for air-source heat pumps that provide 
both heating and cooling by calculating the sum of the quantity 
determined in paragraph (f)(1) of this section added to the quantity 
determined in paragraph (f)(2) of this section.
    (4) Regional Annual Operating Cost--Cooling. Determine the 
represented value of estimated regional annual operating cost for 
cooling-only units or the cooling portion of the estimated regional 
annual operating cost for air-source heat pumps that provide both 
heating and cooling by calculating the product of:
    (i) The value determined in paragraph (f)(4)(i)(A) of this section 
if using appendix M to subpart B of part 430 or the value determined in 
paragraph (f)(4)(i)(B) of this section if using appendix M1 to subpart B 
of part 430;
    (A) The quotient of the represented value of cooling capacity, in 
Btu's per hour as determined in paragraph (b)(3)(iii) of this section, 
divided by the represented value of SEER, in Btu's per watt-hour, as 
determined in paragraph (b)(3)(ii) of this section;
    (B) The quotient of the represented value of cooling capacity, in 
Btu's per hour as determined in paragraph (b)(3)(i)(C) of this section, 
and multiplied by 0.93 for variable-speed heat pumps only, divided by 
the represented value of SEER2, in Btu's per watt-hour, as determined in 
paragraph (b)(3)(i)(B) of this section;
    (ii) The value determined in paragraph (f)(4)(ii)(A) of this section 
if using appendix M to subpart B of part 430 or the value determined in 
paragraph (f)(4)(ii)(B) of this section if using appendix M1 to subpart 
B of part 430;
    (A) The estimated number of regional cooling load hours per year 
determined from Table 22 in section 4.4 of appendix M to subpart B of 
part 430;
    (B) The estimated number of regional cooling load hours per year 
determined from Table 21 in section 4.4 of appendix M1 to subpart B of 
part 430;
    (iii) A conversion factor of 0.001 kilowatts per watt; and
    (iv) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act.
    (5) Regional Annual Operating Cost--Heating. Determine the 
represented value of estimated regional annual operating cost for air-
source heat pumps that provide only heating or for the heating portion 
of the estimated regional annual operating cost for air-source heat 
pumps that provide both heating and cooling as follows:
    (i) When using appendix M to subpart B of part 430, the product of:
    (A) The estimated number of regional heating load hours per year 
determined from Table 22 in section 4.4 of appendix M to subpart B of 
part 430;
    (B) The quotient of the mean of the standardized design heating 
requirement for the sample, in Btu's per hour, for the appropriate 
generalized climatic region of interest (i.e., corresponding to the 
regional heating load hours from ``A'') and determined for each unit in 
the sample in section 4.2 of appendix M to subpart B of part 430, 
divided by the represented value of HSPF, in Btu's per watt-hour, 
calculated for the appropriate generalized climatic region of interest 
and corresponding to the above-mentioned

[[Page 160]]

standardized design heating requirement, and determined in paragraph 
(b)(3)(ii);
    (C) The adjustment factor of 0.77; which serves to adjust the 
calculated design heating requirement and heating load hours to the 
actual load experienced by a heating system;
    (D) A conversion factor of 0.001 kilowatts per watt; and
    (E) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act.
    (ii) When using appendix M1 to subpart B of part 430, the product 
of:
    (A) The estimated number of regional heating load hours per year 
determined from Table 21 in section 4.4 of appendix M1 to subpart B of 
part 430;
    (B) The quotient of the represented value of cooling capacity (for 
air-source heat pumps that provide both cooling and heating) in Btu's 
per hour, as determined in paragraph (b)(3)(i)(C) of this section, or 
the represented value of heating capacity (for air-source heat pumps 
that provide only heating), as determined in paragraph (b)(3)(i)(D) of 
this section, divided by the represented value of HSPF2, in Btu's per 
watt-hour, calculated for the appropriate generalized climatic region of 
interest, and determined in paragraph (b)(3)(i)(B) of this section;
    (C) The adjustment factor of 1.15 (for heat pumps that are not 
variable-speed) or 1.07 (for heat pumps that are variable-speed), which 
serves to adjust the calculated design heating requirement and heating 
load hours to the actual load experienced by a heating system;
    (D) A conversion factor of 0.001 kilowatts per watt; and
    (E) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act.
    (6) Regional Annual Operating Cost--Total. For air-source heat pumps 
that provide both heating and cooling, the estimated regional annual 
operating cost is the sum of the quantity determined in paragraph (f)(4) 
of this section added to the quantity determined in paragraph (f)(5) of 
this section.
    (7) Annual Operating Cost--Rounding. Round any represented values of 
estimated annual operating cost determined in paragraphs (f)(1) through 
(6) of this section to the nearest dollar per year.

[81 FR 37049, June 8, 2016, as amended by T.D. 9782, 81 FR 55112, Aug. 
18, 2016; 82 FR 1468, Jan. 5, 2017]



Sec.  429.17  Water heaters.

    (a) Determination of represented value. (1) Manufacturers must 
determine the represented value for each water heater by applying an 
AEDM in accordance with 10 CFR 429.70 or by testing for the uniform 
energy factor, in conjunction with the applicable sampling provisions as 
follows:
    (i) If the represented value is determined through testing, the 
general requirements of 10 CFR 429.11 are applicable; and
    (ii) For each basic model selected for testing, a sample of 
sufficient size shall be randomly selected and tested to ensure that--
    (A) Any represented value of the estimated annual operating cost or 
other measure of energy consumption of a basic model for which consumers 
would favor lower values shall be greater than or equal to the higher 
of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR29DE16.013
    

and, x is the sample mean; n is the number of samples; and xi 
is the ith sample;


Or,


[[Page 161]]


    (2) The upper 95-percent confidence limit (UCL) of the true mean 
divided by 1.10, where:
[GRAPHIC] [TIFF OMITTED] TR29DE16.014

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95-
percent one-tailed confidence interval with n-1 degrees of freedom (from 
Appendix A).
    (B) Any represented value of the uniform energy factor, or other 
measure of energy consumption of a basic model for which consumers would 
favor higher values shall be less than or equal to the lower of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR29DE16.015
    

and, x is the sample mean; n is the number of samples; and xi 
is the ith sample;


Or,

    (2) The lower 95-percent confidence limit (LCL) of the true mean 
divided by 0.90, where:
[GRAPHIC] [TIFF OMITTED] TR29DE16.016

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95-
percent one-tailed confidence interval with n-1 degrees of freedom (from 
Appendix A).
    (C) Any represented value of the rated storage volume must be equal 
to the mean of the measured storage volumes of all the units within the 
sample.
    (D) Any represented value of first-hour rating or maximum gallons 
per minute (GPM) must be equal to the mean of the measured first-hour 
ratings or measured maximum GPM ratings, respectively, of all the units 
within the sample.
    (b) Certification reports. (1) The requirements of 10 CFR 429.12 are 
applicable to water heaters; and
    (2) Pursuant to 10 CFR 429.12(b)(13), a certification report shall 
include the following public, product-specific information:
    (i) For storage-type water heater basic models: The uniform energy 
factor (UEF, rounded to the nearest 0.01), the rated storage volume in 
gallons (rounded to the nearest 1 gal), the first-hour rating in gallons 
(gal, rounded to the nearest 1 gal), and the recovery efficiency in 
percent (%, rounded to the nearest 1%);
    (ii) For instantaneous-type water heater basic models: The uniform 
energy factor (UEF, rounded to the nearest 0.01), the rated storage 
volume in gallons (gal, rounded to the nearest 1 gal), the maximum 
gallons per minute (gpm, rounded to the nearest 0.1 gpm),

[[Page 162]]

and the recovery efficiency in percent (%, rounded to the nearest 1%); 
and
    (iii) For grid-enabled water heater basic models: The uniform energy 
factor (UEF, rounded to the nearest 0.01), the rated storage volume in 
gallons (gal, rounded to the nearest 1 gal), the first-hour rating in 
gallons (gal, rounded to the nearest 1 gal), the recovery efficiency in 
percent (%, rounded to the nearest 1%), a declaration that the model is 
a grid-enabled water heater, whether it is equipped at the point of 
manufacture with an activation lock, and whether it bears a permanent 
label applied by the manufacturer that advises purchasers and end-users 
of the intended and appropriate use of the product.

[81 FR 96235, Dec. 29, 2016]



Sec.  429.18  Residential furnaces.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to residential furnaces; and
    (2) (i) For each basic model of furnaces, other than basic models of 
those sectional cast-iron boilers (which may be aggregated into groups 
having identical intermediate sections and combustion chambers) a sample 
of sufficient size shall be randomly selected and tested to ensure 
that--
    (A) Any represented value of estimated annual operating cost, energy 
consumption or other measure of energy consumption of a basic model for 
which consumers would favor lower values shall be greater than or equal 
to the higher of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.019
    
    Or,
    (2) The upper 97\1/2\ percent confidence limit (UCL) of the true 
mean divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR07MR11.020

    and

    (B) Any represented value of the annual fuel utilization efficiency 
or other measure of energy consumption of a basic model for which 
consumers would favor higher values shall be less than or equal to the 
lower of:
    (1) The mean of the sample, where:

[[Page 163]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.021

    Or,
    (2) The lower 97\1/2\ percent confidence limit (LCL) of the true 
mean divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.034

    (ii) For the lowest capacity basic model of a group of basic models 
of those sectional cast-iron boilers having identical intermediate 
sections and combustion chambers, a sample of sufficient size shall be 
randomly selected and tested to ensure that--
    (A) Any represented value of estimated annual operating cost, energy 
consumption or other measure of energy consumption of a basic model for 
which consumers would favor lower values shall be greater than or equal 
to the higher of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.023
    
    Or,
    (2) The upper 97\1/2\ percent confidence limit (UCL) of the true 
mean divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.035


and

    (B) Any represented value of the fuel utilization efficiency or 
other measure of energy consumption of a basic model

[[Page 164]]

for which consumers would favor higher values shall be less than or 
equal to the lower of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.025
    
    Or,
    (2) The lower 97\1/2\ percent confidence limit (LCL) of the true 
mean divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.036

    (iii) For the highest capacity basic model of a group of basic 
models of those sectional cast-iron boilers having identical 
intermediate sections and combustion chambers, a sample of sufficient 
size shall be randomly selected and tested to ensure that--
    (A) Any represented value of estimated annual operating cost, energy 
consumption or other measure of energy consumption of a basic model for 
which consumers would favor lower values shall be greater than or equal 
to the higher of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.027
    
    Or,
    (2) The upper 97\1/2\ percent confidence limit (UCL) of the true 
mean divided by 1.05, where:

[[Page 165]]

[GRAPHIC] [TIFF OMITTED] TR02MY11.037


and
    (B) Any represented value of the fuel utilization efficiency or 
other measure of energy consumption of a basic model for which consumers 
would favor higher values shall be less than or equal to the lower of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.029
    
    Or,
    (2) The lower 97\1/2\ percent confidence limit (LCL) of the true 
mean divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.038

    (iv) For each basic model or capacity other than the highest or 
lowest of the group of basic models of sectional cast-iron boilers 
having identical intermediate sections and combustion chambers, 
represented values of measures of energy consumption shall be determined 
by either--
    (A) A linear interpolation of data obtained for the smallest and 
largest capacity units of the family, or
    (B) Testing a sample of sufficient size to ensure that:
    (1) Any represented value of estimated annual operating cost, energy 
consumption or other measure of energy consumption of a basic model for 
which consumers would favor lower values shall be greater than or equal 
to the higher of:
    (i) The mean of the sample, where:

[[Page 166]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.031

    Or,
    (ii) The upper 97\1/2\ percent confidence limit (UCL) of the true 
mean divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.039


and
    (2) Any represented value of the energy factor or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the lower of:
    (i) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.033
    
    Or,
    (ii) The lower 97\1/2\ percent confidence limit (LCL) of the true 
mean divided by 0.95, where:

[[Page 167]]

[GRAPHIC] [TIFF OMITTED] TR02MY11.040

    (v) Whenever measures of energy consumption determined by linear 
interpolation do not agree with measures of energy consumption 
determined by actual testing, the values determined by testing must be 
used for certification.
    (vi) In calculating the measures of energy consumption for each unit 
tested, use the design heating requirement corresponding to the mean of 
the capacities of the units of the sample.
    (vii) Reported values. The represented value of annual fuel 
utilization efficiency must be truncated to the one-tenth of a 
percentage point.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to residential furnaces; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information:
    (i) Residential furnaces and boilers: The annual fuel utilization 
efficiency (AFUE) in percent (%) and the input capacity in British 
thermal units per hour (Btu/h).
    (ii) For cast-iron sectional boilers: The type of ignition system 
for gas-fired steam and hot water boilers.
    (3) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following additional product-specific information: For cast-
iron sectional boilers: a declaration of whether certification is based 
on linear interpolation or testing. For hot water boilers, a declaration 
that the manufacturer has incorporated the applicable design 
requirements.
    (4) For multi-position furnaces, the annual fuel utilization 
efficiency (AFUE) reported for each basic model must be based on testing 
in the least efficient configuration. Manufacturers may also report and 
make representations of additional AFUE values based on testing in other 
configurations.

[76 FR 12451, Mar. 7, 2011; 76 FR 24765, May 2, 2011, as amended at 76 
FR 38292, June 30, 2011; 81 FR 2646, Jan. 15, 2016]



Sec.  429.19  Dishwashers.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to dishwashers; and
    (2) For each basic model of dishwashers, a sample of sufficient size 
shall be randomly selected and tested to ensure that--
    (i) Any represented value of estimated annual operating cost, energy 
or water consumption or other measure of energy or water consumption of 
a basic model for which consumers would favor lower values shall be 
greater than or equal to the higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.035
    
    Or,

[[Page 168]]

    (B) The upper 97\1/2\ percent confidence limit (UCL) of the true 
mean divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.041


and
    (ii) Any represented value of the energy or water factor or other 
measure of energy or water consumption of a basic model for which 
consumers would favor higher values shall be less than or equal to the 
lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.037
    
    Or,
    (B) The lower 97\1/2\ percent confidence limit (LCL) of the true 
mean divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.042

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to dishwashers; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The estimated 
annual energy use in kilowatt hours per year (kWh/yr) and the water 
consumption in gallons per cycle.
    (3) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following additional product-specific information the 
capacity in number of place settings as specified in ANSI/AHAM DW-1-2010 
(incorporated by reference, see Sec.  429.4), presence of a soil sensor 
(if yes, the number of cycles required to reach calibration), the water 
inlet temperature used for testing in degrees Fahrenheit ( [deg]F), the 
cycle selected for energy testing and whether that cycle is soil-
sensing, the options selected for the energy test, and presence of a 
built-in water softening system (if yes, the energy use in kilowatt-

[[Page 169]]

hours and the water use in gallons required for each regeneration of the 
water softening system, the number of regeneration cycles per year, and 
data and calculations used to derive these values).

[76 FR 12451, Mar. 7, 2011; 76 FR 24766, May 2, 2011, as amended at 77 
FR 31962, May 30, 2012; 77 FR 65977, Oct. 31, 2012; 81 FR 90118, Dec. 
13, 2016]



Sec.  429.20  Residential clothes washers.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to residential clothes 
washers; and
    (2) For each basic model of residential clothes washers, a sample of 
sufficient size shall be randomly selected and tested to ensure that--
    (i) Any represented value of the water factor, integrated water 
factor, the estimated annual operating cost, the energy or water 
consumption, or other measure of energy or water consumption of a basic 
model for which consumers would favor lower values shall be greater than 
or equal to the higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.039
    
    Or,
    (B) The upper 97\1/2\ percent confidence limit (UCL) of the true 
mean divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.043


and
    (ii) Any represented value of the modified energy factor, integrated 
modified energy factor, or other measure of energy or water consumption 
of a basic model for which consumers would favor higher values shall be 
less than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.041
    
    Or,
    (B) The lower 97\1/2\ percent confidence limit (LCL) of the true 
mean divided by 0.95, where:

[[Page 170]]

[GRAPHIC] [TIFF OMITTED] TR02MY11.044

    (3) The capacity of a basic model reported in accordance with 
paragraph (b)(2) of this section shall be the mean of the measured 
clothes container capacity, C, of all tested units of the basic model.
    (4) The remaining moisture content (RMC) of a basic model reported 
in accordance with paragraph (b)(2) of this section shall be the mean of 
the final RMC value measured for all tested units of the basic model.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to residential clothes washers; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information:
    (i) For residential clothes washers tested in accordance with 
Appendix J1: The modified energy factor (MEF) in cubic feet per kilowatt 
hour per cycle (cu ft/kWh/cycle), the capacity in cubic feet (cu ft), 
the corrected remaining moisture content (RMC) expressed as a 
percentage, and, for standard-size residential clothes washers, a water 
factor (WF) in gallons per cycle per cubic foot (gal/cycle/cu ft).
    (ii) For residential clothes washers tested in accordance with 
Appendix J2: The integrated modified energy factor (IMEF) in cu ft/kWh/
cycle, the integrated water factor (IWF) in gal/cycle/cu ft, the 
capacity in cu ft, the corrected remaining moisture content (RMC) 
expressed as a percentage, and the type of loading (top-loading or 
front-loading).
    (3) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following additional product-specific information: A list of 
all cycle selections comprising the complete energy test cycle for each 
basic model.
    (c) Reported values. Values reported pursuant to this subsection 
must be rounded as follows: MEF and IMEF to the nearest 0.01 cu ft/kWh/
cycle, WF and IWF to the nearest 0.1 gal/cycle/cu ft, RMC to the nearest 
0.1 percentage point, and clothes container capacity to the nearest 0.1 
cu ft.

[76 FR 12451, Mar. 7, 2011; 76 FR 24767, May 2, 2011, as amended at 77 
FR 13936, Mar. 7, 2012; 77 FR 32379, May 31, 2012; 80 FR 46760, Aug. 5, 
2015]



Sec.  429.21  Residential clothes dryers.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to clothes dryers; and
    (2) For each basic model of clothes dryers a sample of sufficient 
size shall be randomly selected and tested to ensure that--
    (i) Any represented value of estimated annual operating cost, energy 
consumption or other measure of energy consumption of a basic model for 
which consumers would favor lower values shall be greater than or equal 
to the higher of:
    (A) The mean of the sample, where:

[[Page 171]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.043

    Or,
    (B) The upper 97\1/2\ percent confidence limit (UCL) of the true 
mean divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.045


and
    (ii) Any represented value of the energy factor, combined energy 
factor, or other measure of energy consumption of a basic model for 
which consumers would favor higher values shall be less than or equal to 
the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.045
    
    Or,
    (B) The lower 97\1/2\ percent confidence limit (LCL) of the true 
mean divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.046

    (3) The capacity of a basic model reported in accordance with 
paragraph (b)(2) of this section shall be the mean of the capacities 
measured for each tested unit of the basic model.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to clothes dryers; and

[[Page 172]]

    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: When using 
appendix D, the energy factor in pounds per kilowatt hours (lb/kWh), the 
capacity in cubic feet (cu ft), the voltage in volts (V) (for electric 
dryers only), an indication if the dryer has automatic termination 
controls, and the hourly British thermal unit (Btu) rating of the burner 
(for gas dryers only); when using appendix D1, the combined energy 
factor in pounds per kilowatt hours (lb/kWh), the capacity in cubic feet 
(cu ft), the voltage in volts (V) (for electric dryers only), an 
indication if the dryer has automatic termination controls, and the 
hourly Btu rating of the burner (for gas dryers only); when using 
appendix D2, the combined energy factor in pounds per kilowatt hours 
(lb/kWh), the capacity in cubic feet (cu ft), the voltage in volts (V) 
(for electric dryers only), an indication if the dryer has automatic 
termination controls, the hourly Btu rating of the burner (for gas 
dryers only), and a list of the cycle setting selections for the energy 
test cycle as recorded in section 3.4.7 of appendix D2 to Subpart B of 
Part 430.

[76 FR 12451, Mar. 7, 2011; 76 FR 24767, May 2, 2011, as amended at 78 
FR 49644, Aug. 14, 2013]



Sec.  429.22  Direct heating equipment.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to direct heating equipment; 
and
    (2) (i) For each basic model of direct heating equipment (not 
including furnaces) a sample of sufficient size shall be randomly 
selected and tested to ensure that--
    (A) Any represented value of estimated annual operating cost, energy 
consumption or other measure of energy consumption of a basic model for 
which consumers would favor lower values shall be greater than or equal 
to the higher of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.047
    
    Or,
    (2) The upper 97\1/2\ percent confidence limit (UCL) of the true 
mean divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.047


and
    (B) Any represented value of the fuel utilization efficiency or 
other measure of energy consumption of a basic model for which consumers 
would favor higher values shall be less than or equal to the lower of:
    (1) The mean of the sample, where:

[[Page 173]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.049

    Or,
    (2) The lower 97\1/2\ percent confidence limit (LCL) of the true 
mean divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.048

    (ii) In calculating the measures of energy consumption for each unit 
tested, use the design heating requirement corresponding to the mean of 
the capacities of the units of the sample.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to direct heating equipment; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: Direct 
heating equipment, the annual fuel utilization efficiency (AFUE) in 
percent (%), the mean input capacity in British thermal units per hour 
(Btu/h), and the mean output capacity in British thermal units per hour 
(Btu/h).

[76 FR 12451, Mar. 7, 2011; 76 FR 24768, May 2, 2011, as amended at 76 
FR 38292, June 30, 2011]



Sec.  429.23  Cooking products.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to cooking products; and
    (2) For each basic model of cooking products a sample of sufficient 
size shall be randomly selected and tested to ensure that any 
represented value of estimated annual operating cost, standby mode power 
consumption, off mode power consumption, annual energy consumption, 
integrated annual energy consumption, or other measure of energy 
consumption of a basic model for which consumers would favor lower 
values shall be greater than or equal to the higher of:
    (i) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR16DE16.028
    

and x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample;
    Or,
    (ii) The upper 97\1/2\ percent confidence limit (UCL) of the true 
mean divided by 1.05, where:

[[Page 174]]

[GRAPHIC] [TIFF OMITTED] TR16DE16.041


And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.975 is the t statistic for a 97.5% 
one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A).
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to conventional cooking tops, conventional ovens and 
microwave ovens; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: For 
conventional cooking tops and conventional ovens: the type of pilot 
light and a declaration that the manufacturer has incorporated the 
applicable design requirements. For microwave ovens, the average standby 
power in watts.

[76 FR 12451, Mar. 7, 2011; 76 FR 24769, May 2, 2011, as amended at 77 
FR 65977, Oct. 31, 2012; 78 FR 4025, Jan. 18, 2013; 78 FR 36368, June 
17, 2013; 81 FR 91445, Dec. 16, 2016]



Sec.  429.24  Pool heaters.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to pool heaters; and
    (2) For each basic model of pool heater a sample of sufficient size 
shall be randomly selected and tested to ensure that any represented 
value of the thermal efficiency or other measure of energy consumption 
of a basic model for which consumers would favor higher values shall be 
less than or equal to the lower of:
[GRAPHIC] [TIFF OMITTED] TR07MR11.055

    (i) The mean of the sample, where:
    Or,
    (ii) The lower 97\1/2\ percent confidence limit (LCL) of the true 
mean divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.051

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to pool heaters; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The thermal 
efficiency in percent

[[Page 175]]

(%) and the input capacity in British thermal units per hour (Btu/h).

[76 FR 12451, Mar. 7, 2011; 76 FR 24769, May 2, 2011]



Sec.  429.25  Television sets.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to televisions; and
    (2) For each basic model of television, samples shall be randomly 
selected and tested to ensure that--
    (i) Any represented value of power consumption of a basic model for 
which consumers would favor lower values shall be greater than or equal 
to the higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR25OC13.007
    
and x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample;

Or,

    (B) For on mode power consumption, the upper 95 percent confidence 
limit (UCL) of the true mean divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR25OC13.008

and x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.95 is the t-statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A of this subpart).

And

    (C) For standby mode power consumption and power consumption 
measurements in modes other than on mode, the upper 90 percent 
confidence limit (UCL) of the true mean divided by 1.10, where:
[GRAPHIC] [TIFF OMITTED] TR25OC13.009

and x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.90 is the t-statistic for a 90% 
one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A of this subpart).

    (ii) Any represented annual energy consumption of a basic model 
shall be determined by applying the AEC calculation in section 8.2 of 
Appendix H to subpart B of 10 CFR Part 430 to the represented values of 
power consumption as calculated pursuant to paragraph (a)(2)(i) of this 
section.
    (iii) Rounding requirements. The represented value of power 
consumption and the represented annual energy consumption shall be 
rounded as follows:
    (A) For power consumption in the on, standby, and off modes, the 
represented value shall be rounded according to the accuracy 
requirements specified in section 3.3.3 of Appendix H to subpart B of 10 
CFR Part 430.
    (B) For annual energy consumption, the represented value shall be 
rounded according to the rounding requirements specified in section 8.3 
of Appendix H to subpart B of 10 CFR Part 430.
    (b) [Reserved]

[78 FR 63840, Oct. 25, 2013]



Sec.  429.26  Fluorescent lamp ballasts.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to fluorescent lamp 
ballasts; and
    (2) For each basic model of fluorescent lamp ballasts, a sample of 
sufficient size, not less than four, shall be randomly selected and 
tested to ensure that--
    (i) Any represented value of the energy consumption of a basic model 
for which consumers would favor lower values shall be greater than or 
equal to the higher of:
    (A) The mean of the sample, where:

[[Page 176]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.057

    Or,
    (B) The upper 99 percent confidence limit (UCL) of the true mean 
divided by 1.01, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.052


and
    (ii) Any represented value of the ballast luminous efficiency, power 
factor, or other measure of the energy efficiency or energy consumption 
of a basic model for which consumers would favor a higher value must be 
less than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.059
    

Or,

    (B) The lower 99 percent confidence limit (LCL) of the true mean 
divided by 0.99, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.053

    (iii) The represented value of average total lamp arc power must be 
equal to the mean of the sample,

[[Page 177]]

[GRAPHIC] [TIFF OMITTED] TR14SE20.005

Where:

    x is the sample mean;
    n is the number of units in the sample; and
    xi is the ith unit.

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to fluorescent lamp ballasts; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following public product-specific information: The ballast 
luminous efficiency, the average total lamp arc power, the power factor, 
the number of lamps operated by the ballast, and the type of lamps 
operated by the ballast (i.e., wattage, base, shape, diameter, and 
length).
    (c) Rounding requirements. (1) Round ballast luminous efficiency to 
the nearest thousandths place.
    (2) Round power factor to the nearest hundredths place.
    (3) Round average total lamp arc power to the nearest tenth of a 
watt.

[76 FR 12451, Mar. 7, 2011; 76 FR 24769, May 2, 2011, as amended at 81 
FR 25600, Apr. 29, 2016; 85 FR 56493, Sept. 14, 2020]



Sec.  429.27  General service fluorescent lamps, general service 
incandescent lamps, and incandescent reflector lamps.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to general service 
fluorescent lamps, general service incandescent lamps and incandescent 
reflector lamps; and
    (2)(i) For each basic model of general service fluorescent lamp and 
incandescent reflector lamp, samples of production lamps shall be 
obtained from a 12-month period, tested, and the results averaged. A 
minimum sample of 21 lamps shall be tested. The manufacturer shall 
randomly select a minimum of three lamps from each month of production 
for a minimum of 7 out of the 12-month period. In the instance where 
production occurs during fewer than 7 of such 12 months, the 
manufacturer shall randomly select 3 or more lamps from each month of 
production, where the number of lamps selected for each month shall be 
distributed as evenly as practicable among the months of production to 
attain a minimum sample of 21 lamps. Any represented value of lamp 
efficacy of a basic model shall be based on the sample and shall be less 
than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.061
    
    Or,
    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by .97, where:

[[Page 178]]

[GRAPHIC] [TIFF OMITTED] TR02MY11.054

    (ii) For each basic model of general service fluorescent lamp and 
general service incandescent lamp, the color rendering index (CRI) shall 
be measured from the same lamps selected for the lumen output and watts 
input measurements in paragraphs (a)(2)(i) and (a)(2)(iii) of this 
section, i.e., the manufacturer shall measure all lamps for lumens, 
watts input, and CRI. The CRI shall be represented as the average of a 
minimum sample of 21 lamps and shall be less than or equal to the lower 
of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.063
    
    Or,
    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by .97, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.055

    (iii) For each basic model of general service incandescent lamp, for 
measurements of rated wattage and rated lumen output, samples of 
production lamps shall be obtained from a 12-month period, tested, and 
the results averaged. A minimum sample of 21 lamps shall be tested. The 
manufacturer shall randomly select a minimum of three lamps from each 
month of production for a minimum of 7 out of the 12-month period. In 
the instance where production occurs during fewer than 7 of such 12 
months, the manufacturer shall randomly select 3 or more lamps from each 
month of production, where the number of lamps selected for each month 
shall be distributed as evenly as practicable among the months of 
production to attain a minimum sample of 21 lamps. Any represented value 
of rated wattage of a basic model shall be based on the sample and shall 
be greater than or equal to the higher of:
    (A) The mean of the sample, where:

[[Page 179]]

[GRAPHIC] [TIFF OMITTED] TR27JA12.003


and, x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample; Or,
    (B) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.03, where:
[GRAPHIC] [TIFF OMITTED] TR27JA12.004


and x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.95 is the t statistic for a 95% 
two-tailed confidence interval with n-1 degrees of freedom (from 
Appendix A to this subpart).
    (iv) For each basic model of general service incandescent lamp, for 
measurements of rated lifetime, a minimum sample of 21 lamps shall be 
tested. The manufacturer shall randomly select a minimum of three lamps 
from each month of production for a minimum of 7 out of the 12-month 
period. In the instance where production occurs during fewer than 7 of 
such 12 months, the manufacturer shall randomly select three or more 
lamps from each month of production, where the number of lamps selected 
for each month shall be distributed as evenly as practicable among the 
months of production to attain a minimum sample of 21 lamps. The 
lifetime shall be represented as the length of operating time between 
first use and failure of 50 percent of the sample size, in accordance 
with test procedures described in section 4.2 of Appendix R to subpart B 
of part 430 of this chapter. Compliance will be determined by the 
percentage of sample size that meets the minimum rated lifetime.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to general service fluorescent lamps, general service 
incandescent lamps and incandescent reflector lamps; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information:
    (i) General service fluorescent lamps: The testing laboratory's ILAC 
accreditation body's identification number or other approved 
identification assigned by the ILAC accreditation body, production dates 
of the units tested, the 12-month average lamp efficacy in lumens per 
watt (lm/W), lamp wattage (W), correlated color temperature in Kelvin 
(K), and the 12-month average Color Rendering Index (CRI).
    (ii) Incandescent reflector lamps: The testing laboratory's ILAC 
accreditation body's identification number or other approved 
identification assigned by the ILAC accreditation body, production dates 
of the units tested, the 12-month average lamp efficacy in lumens per 
watt (lm/W), and lamp wattage (W).
    (iii) General service incandescent lamps: The testing laboratory's 
ILAC accreditation body's identification number or other approved 
identification assigned by the ILAC accreditation body, production dates 
of the units tested, the 12-month average maximum rate wattage in watts 
(W), the 12-month average minimum rated lifetime (hours), and the 12-
month average Color Rendering Index (CRI).
    (c) Test data. Manufacturers must include the production date codes 
and the accompanying decoding scheme corresponding to all of the units 
tested for a given basic model in the detailed test records maintained 
under Sec.  429.71.

[76 FR 12451, Mar. 7, 2011; 76 FR 24770, May 2, 2011, as amended at 76 
FR 38292, June 30, 2011; 77 FR 4215, Jan. 27, 2012; 81 FR 72503, Oct. 
20, 2016]

[[Page 180]]



Sec.  429.28  Faucets.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to faucets; and
    (2) For each basic model of faucet, a sample of sufficient size 
shall be randomly selected and tested to ensure that any represented 
value of water consumption of a basic model for which consumers favor 
lower values shall be no less than the higher of the higher of:
    (i) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.065
    
    Or,
    (ii) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.056

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to faucets; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: For non-
metering faucets, the maximum water use in gallons per minute (gpm) 
rounded to the nearest 0.1 gallon; for metering faucets, the maximum 
water use in gallons per cycle (gal/cycle) rounded to the nearest 0.01 
gallon; and for all faucet types, the flow water pressure in pounds per 
square inch (psi).

[76 FR 12451, Mar. 7, 2011; 76 FR 24771, May 2, 2011, as amended at 78 
FR 62985, Oct. 23, 2013]



Sec.  429.29  Showerheads.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to showerheads; and
    (2) For each basic model of a showerhead, a sample of sufficient 
size shall be randomly selected and tested to ensure that any 
represented value of water consumption of a basic model for which 
consumers favor lower values shall be greater than or equal to the 
higher of:
    (i) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.067
    
    Or,

[[Page 181]]

    (ii) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.057

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to showerheads; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The maximum 
water use in gallons per minute (gpm) rounded to the nearest 0.1 gallon, 
the maximum flow water pressure in pounds per square inch (psi), and a 
declaration that the showerhead meets the requirements of Sec.  
430.32(p) pertaining to mechanical retention of the flow-restricting 
insert, if applicable.

[76 FR 12451, Mar. 7, 2011; 76 FR 24771, May 2, 2011, as amended at 78 
FR 62985, Oct. 23, 2013]



Sec.  429.30  Water closets.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to water closets; and
    (2) For each basic model of water closet, a sample of sufficient 
size shall be randomly selected and tested to ensure that any 
represented value of water consumption of a basic model for which 
consumers favor lower values shall be greater than or equal to the 
higher of:
    (i) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.069
    
    Or,
    (ii) The upper 90 percent confidence limit (UCL) of the true mean 
divided by 1.1, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.058


[[Page 182]]


    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to water closets; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The maximum 
water use in gallons per flush (gpf), rounded to the nearest 0.01 
gallon. For dual-flush water closets, the maximum water use to be 
reported is the flush volume observed when tested in the full-flush 
mode.

[76 FR 12451, Mar. 7, 2011; 76 FR 24771, May 2, 2011, as amended at 78 
FR 62986, Oct. 23, 2013]



Sec.  429.31  Urinals.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to urinals; and
    (2) For each basic model of urinal, a sample of sufficient size 
shall be randomly selected and tested to ensure that any represented 
value of water consumption of a basic model for which consumers favor 
lower values shall be greater than or equal to the higher of:
    (i) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.071
    
    Or,
    (ii) The upper 90 percent confidence limit (UCL) of the true mean 
divided by 1.1, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.059

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to urinals; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The maximum 
water use in gallons per flush (gpf), rounded to the nearest 0.01 
gallon, and for trough-type urinals, the maximum flow rate in gallons 
per minute (gpm), rounded to the nearest 0.01 gallon, and the length of 
the trough in inches (in).

[76 FR 12451, Mar. 7, 2011; 76 FR 24771, May 2, 2011, as amended at 78 
FR 62986, Oct. 23, 2013]



Sec.  429.32  Ceiling fans.

    (a) Determination of represented value. Manufacturers must determine 
the represented value, which includes the certified rating, for each 
basic model of ceiling fan by testing, in conjunction with the following 
sampling provisions:
    (1) The requirements of Sec.  429.11 are applicable to ceiling fans; 
and
    (2) For each basic model of ceiling fan selected for testing, a 
sample of sufficient size must be randomly selected and tested to ensure 
that--
    (i) Any represented value of the efficiency or airflow is less than 
or equal to the lower of:
    (A) The mean of the sample, where:

[[Page 183]]

[GRAPHIC] [TIFF OMITTED] TR25JY16.001

    And x is the sample mean; n is the number of samples; and 
xi is the i\th\ sample; or
    (B) The lower 90 percent confidence limit (LCL) of the true mean 
divided by 0.9, where:
[GRAPHIC] [TIFF OMITTED] TR25JY16.002

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.90 is the t statistic for a 90% 
one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A to subpart B); and
    (ii) Any represented value of the wattage is greater than or equal 
to the higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR25JY16.003
    
    And x is the sample mean; n is the number of samples; and 
xi is the i\th\ sample; or
    (B) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.1, where:
[GRAPHIC] [TIFF OMITTED] TR25JY16.004

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A to this subpart).
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to ceiling fans; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The number of 
speeds within the ceiling fan controls and a declaration that the 
manufacturer has incorporated the applicable design requirements.

[76 FR 12451, Mar. 7, 2011, as amended at 81 FR 48639, July 25, 2016]



Sec.  429.33  Ceiling fan light kits.

    (a) Determination of represented value. Manufacturers must determine 
represented values, which includes certified ratings, for each basic 
model of ceiling fan light kit in accordance with following sampling 
provisions.
    (1) The requirements of Sec.  429.11 are applicable to ceiling fan 
light kits, and
    (2) For each basic model of ceiling fan light kit, the following 
sample size

[[Page 184]]

requirements are applicable to demonstrate compliance with the January 
1, 2007 energy conservation standards:
    (i) For ceiling fan light kits with medium screw base sockets that 
are packaged with compact fluorescent lamps, determine the represented 
values of each basic model of lamp packaged with the ceiling fan light 
kit in accordance with Sec.  429.35.
    (ii) For ceiling fan light kits with medium screw base sockets that 
are packaged with integrated light-emitting diode lamps, determine the 
represented values of each basic model of lamp packaged with the ceiling 
fan light kit in accordance with Sec.  429.56.
    (iii) For ceiling fan light kits with pin-based sockets that are 
packaged with fluorescent lamps, determine the represented values of 
each basic model of lamp packaged with the ceiling fan light kit in 
accordance with the sampling requirements in Sec.  429.35.
    (iv) For ceiling fan light kits with medium screw base sockets that 
are packaged with incandescent lamps, determine the represented values 
of each basic model of lamp packaged with the ceiling fan light kit in 
accordance with Sec.  429.27.
    (v) For ceiling fan light kits with sockets or packaged with lamps 
other than those described in paragraphs (a)(2)(i), (ii), (iii), or (iv) 
of this section, each unit must comply with the applicable design 
standard in Sec.  430.32(s)(5) of this chapter.
    (3) For ceiling fan light kits that require compliance with the 
January 21, 2020 energy conservation standards:
    (i) Determine the represented values of each basic model of lamp 
packaged with each basic model of ceiling fan light kit, in accordance 
with the specified section:
    (A) For compact fluorescent lamps, Sec.  429.35;
    (B) For general service fluorescent lamps, Sec.  429.27;
    (C) For incandescent lamps, Sec.  429.27;
    (D) For integrated LED lamps, Sec.  429.56.
    (E) For other fluorescent lamps (not compact fluorescent lamps or 
general service fluorescent lamps), Sec.  429.35; and
    (F) For other SSL lamps (not integrated LED lamps), Sec.  429.56.
    (ii) Determine the represented value of each basic model of 
integrated SSL circuitry that is incorporated into each basic model of 
ceiling fan light kit by randomly selecting a sample of sufficient size 
and testing to ensure that any represented value of the energy 
efficiency of the integrated SSL circuitry basic model is less than or 
equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR24DE15.000
    
    and, x is the sample mean; n is the number of samples; and 
xi is the i\th\ sample; Or,
    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.90, where:
[GRAPHIC] [TIFF OMITTED] TR24DE15.001

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A to subpart B).
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to ceiling fan light kits; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information:

[[Page 185]]

    (i) Ceiling fan light kits with sockets for medium screw base lamps: 
the rated wattage in watts (W) and the system's efficacy in lumens per 
watt (lm/W).
    (ii) Ceiling fan light kits with pin-based sockets for fluorescent 
lamps: the rated wattage in watts (W), the system's efficacy in lumens 
per watt (lm/W), and the length of the lamp in inches (in).
    (iii) Ceiling fan light kits with any other socket type: the rated 
wattage in watts (W) and the number of individual sockets.
    (3) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following additional product-specific information: Ceiling 
fan light kits with any other socket type: a declaration that the basic 
model meets the applicable design requirement and the features that have 
been incorporated into the ceiling fan light kit to meet the applicable 
design requirement (e.g., circuit breaker, fuse, ballast).
    (c) Rounding requirements. Any represented value of initial lamp 
efficacy of CFLKs as described in paragraph (a)(3)(i)(E); system 
efficacy of CFLKs as described in paragraph (a)(2)(iii); luminaire 
efficacy of CFLKs as described in paragraph (a)(3)(ii) of this section 
must be expressed in lumens per watt and rounded to the nearest tenth of 
a lumen per watt.

[76 FR 12451, Mar. 7, 2011; 76 FR 24772, May 2, 2011, as amended at 80 
FR 80225, Dec. 24, 2015; 81 FR 632, Jan. 6, 2016; 81 FR 43425, July 1, 
2016; 84 FR 8413, Mar. 8, 2019]



Sec.  429.34  Torchieres.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to torchieres; and
    (2) Reserved
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to torchieres; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following additional product-specific information: A 
declaration that the basic model meets the applicable design requirement 
and the features that have been incorporated into the torchiere to meet 
the applicable design requirement (e.g., circuit breaker, fuse, 
ballast).



Sec.  429.35  Compact fluorescent lamps.

    (a) Determination of Represented Value. Manufacturers must determine 
represented values, which include the certified ratings, for each basic 
model of compact fluorescent lamp by testing, in conjunction with the 
following sampling provisions:
    (1) Units to be tested. (i) The requirements of Sec.  429.11(a) are 
applicable except that the sample must be comprised of production units; 
and
    (ii)(A) For each basic model of integrated compact fluorescent lamp, 
the minimum number of units tested shall be no less than 10 units when 
testing for the initial lumen output, input power, initial lamp 
efficacy, lumen maintenance at 1,000 hours, lumen maintenance at 40 
percent of lifetime, lifetime, CCT, CRI, power factor, and standby mode 
power. If more than 10 units are tested as part of the sample, the total 
number of units must be a multiple of 2. The same sample of units must 
be used as the basis for representations for initial lumen output, input 
power, initial lamp efficacy, lumen maintenance at 1,000 hours, lumen 
maintenance at 40 percent of lifetime, lifetime, CCT, CRI, power factor, 
and standby mode power. No less than three units from the same sample of 
units must be used when testing for the start time. Exactly six unique 
units (i.e., units that have not previously been tested under this 
paragraph (a)(1)(ii) but are representative of the same basic model 
tested under this paragraph (a)(1)(ii)) must be used for rapid cycle 
stress testing.
    (B) For each basic model of non-integrated compact fluorescent lamp, 
the minimum number of units tested shall be no less than 10 units when 
testing for the initial lumen output, input power, initial lamp 
efficacy, lumen maintenance at 40 percent of lifetime, lifetime, CCT, 
and CRI. If more than 10 units are tested as part of the sample, the 
total number of units must be a multiple of 2. The same sample of units 
must be used as the basis for representations for initial lumen output, 
input power, initial lamp efficacy, lumen maintenance at 40 percent of 
lifetime, lifetime, CCT, and CRI.

[[Page 186]]

    (iii) For each basic model, a sample of sufficient size shall be 
randomly selected and tested to ensure that:
    (A) Represented values of initial lumen output, initial lamp 
efficacy, lumen maintenance at 1,000 hours, lumen maintenance at 40 
percent of lifetime, CRI, power factor, or other measure of energy 
consumption of a basic model for which consumers would favor higher 
values must be less than or equal to the lower of:
    (1) The mean of the sample,
    [GRAPHIC] [TIFF OMITTED] TR29AU16.014
    
Where:

x is the sample mean,
n is the number of units in the sample, and
xi is the i\th\ unit;

    Or,
    (2) The lower 97.5-percent confidence limit (LCL) of the true mean 
divided by 0.95,
[GRAPHIC] [TIFF OMITTED] TR29AU16.015

Where:

x is the sample mean of the characteristic value;
s is the sample standard deviation;
n is the number of units in the sample, and
tg0.975 is the t statistic for a 97.5% one-tailed confidence 
          interval with n-1 degrees of freedom (from appendix A of this 
          subpart).

    (B) Represented values of input power, standby mode power, start 
time or other measure of energy consumption of a basic model for which 
consumers would favor lower values must be greater than or equal to the 
higher of:
    (1) The mean of the sample,
    [GRAPHIC] [TIFF OMITTED] TR29AU16.016
    
Where:

x is the sample mean,
ng is the number of units in the sample, and
xgi is the i\th\ unit;

    Or,
    (2) The upper 97.5-percent confidence limit (UCL) of the true mean 
divided by 1.05,
[GRAPHIC] [TIFF OMITTED] TR29AU16.017

Where:

x is the sample mean of the characteristic value;
sg is the sample standard deviation;
ng is the number of units in the sample, and

[[Page 187]]

tg0.975 is the t statistic for a 97.5% one-tailed confidence 
          interval with n-1 degrees of freedom (from appendix A of this 
          subpart).

    (C) The represented value of CCT must be equal to the mean of the 
sample,
[GRAPHIC] [TIFF OMITTED] TR29AU16.018

Where:

x is the sample mean,
ng is the number of units in the sample, and
xgi is the i\th\ unit.

    (D) The represented value of lifetime must be equal to or less than 
the median time to failure of the sample (calculated as the arithmetic 
mean of the time to failure of the two middle sample units when the 
numbers are sorted in value order).
    (E) The represented value of the results of rapid cycle stress 
testing must be
    (1) Expressed in the number of surviving units and
    (2) Based on a lifetime value that is equal to or greater than the 
represented value of lifetime.
    (2) The represented value of life (in years) of a compact 
fluorescent lamp must be calculated by dividing the represented lifetime 
of a compact fluorescent lamp as determined in (a)(1) of this section by 
the estimated annual operating hours as specified in 16 CFR 
305.15(b)(3)(iii).
    (3) The represented value of the estimated annual energy cost for a 
compact fluorescent lamp, expressed in dollars per year, must be the 
product of the input power in kilowatts, an electricity cost rate as 
specified in 16 CFR 305.15(b)(1)(ii), and an estimated average annual 
use as specified in 16 CFR 305.15(b)(1)(ii).
    (4) For compliance with standards specified in Sec.  430.32(u) as it 
appeared in 10 CFR parts 200-499 edition revised as of January 1, 2016, 
initial lamp efficacy may include a 3 percent tolerance added to the 
value determined in accordance with paragraph (a)(1)(iii)(A) of this 
section.
    (5) The represented value of lumen maintenance at 40 percent of 
lifetime must be based on a lifetime value that is equal to or greater 
than the represented value of lifetime.
    (6) Estimated values may be used for representations when initially 
testing a new basic model or when new/additional testing is required.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to compact fluorescent lamps; and
    (2) Values reported in certification reports are represented values. 
Pursuant to Sec.  429.12(b)(13), a certification report shall include 
the following public product-specific information:
    (i) For each basic model of medium base CFL when certifying 
compliance to the standards in Sec.  430.32(u) as it appeared in 10 CFR 
parts 200-499 edition revised as of January 1, 2016, the testing 
laboratory's ILAC accreditation body's identification number or other 
approved identification assigned by the ILAC accreditation body, the 
date of first manufacture, the seasoning time in hours (h), the initial 
lumen output in lumens (lm), the input power in watts (W), the initial 
lamp efficacy in lumens per watt (lm/W), the number of sample units 
replaced during the seasoning period within each unique sample set used 
in determining the represented value, the lumen maintenance at 40 
percent of lifetime in percent (%) (and whether value is estimated), the 
lifetime in hours (h) (and whether value is estimated), life in years 
(and whether value is estimated), the lumen maintenance at 1,000 hours 
in percent (%), and the results of rapid cycle stress testing in number 
of units passed. or the initial certification of new basic models or any 
subsequent certification based on new testing, estimates of lifetime, 
life, lumen maintenance at 40 percent of lifetime, and rapid cycle 
stress test surviving units may be reported (if indicated in the

[[Page 188]]

certification report) until testing is complete. When reporting 
estimated values, the certification report must specifically describe 
the prediction method, which must be generally representative of the 
methods specified in appendix W. Manufacturers are required to maintain 
records in accordance with Sec.  429.71 of the development of all 
estimated values and any associated initial test data.
    (ii) For each basic model of integrated CFL when certifying 
compliance with general service lamp energy conservation standards, the 
testing laboratory's ILAC accreditation body's identification number or 
other identification assigned by the ILAC accreditation body, the date 
of first manufacture, a statement that the compact fluorescent lamp is 
integrated, the seasoning time in hours (h), the initial lumen output in 
lumens (lm), the input power in watts (W), the initial lamp efficacy in 
lumens per watt (lm/W), the CCT in kelvin (K), CRI, the lumen 
maintenance at 1,000 hours in percent (%), the lumen maintenance at 40 
percent of lifetime in percent (%) (and whether value is estimated), 
start time in milliseconds, power factor, standby mode energy 
consumption in watts (W), the results of rapid cycle stress testing in 
number of units passed, the lifetime in hours (h) (and whether value is 
estimated), life in years (and whether value is estimated), and the 
number of sample units replaced during the seasoning period within the 
sample set used in determining the represented value. Estimates of 
lifetime, life, lumen maintenance at 40 percent of lifetime, and rapid 
cycle stress test surviving units may be reported (if indicated in the 
certification report) until testing is complete. When reporting 
estimated values, the certification report must specifically describe 
the prediction method, which must be generally representative of the 
methods specified in appendix W. Manufacturers are required to maintain 
records in accordance with Sec.  429.71 of the development of all 
estimated values and any associated initial test data.
    (iii) For each basic model of non-integrated CFL when certifying 
compliance with general service lamp energy conservation standards, the 
testing laboratory's ILAC accreditation body's identification number or 
other identification assigned by the ILAC accreditation body, the date 
of first manufacture, a statement that the compact fluorescent lamp is 
non-integrated, the initial lumen output in lumens (lm), the input power 
in watts (W), the initial lamp efficacy in lumens per watt (lm/W), the 
CCT in kelvin (K), CRI, the lumen maintenance at 40 percent of lifetime 
in percent (%) (and whether value is estimated), the lifetime in hours 
(h) (and whether value is estimated), and the number of sample units 
replaced during the seasoning period within each unique sample set used 
in determining the represented value. Estimates of lifetime and lumen 
maintenance at 40 percent of lifetime may be reported (if indicated in 
the certification report) until testing is complete. When reporting 
estimated values, the certification report must specifically describe 
the prediction method, which must be generally representative of the 
methods specified in appendix W. Manufacturers are required to maintain 
records in accordance with Sec.  429.71 of the development of all 
estimated values and any associated initial test data.
    (c) Rounding requirements. For represented values,
    (1) Round input power to the nearest tenth of a watt.
    (2) Round lumen output to three significant digits.
    (3) Round initial lamp efficacy to the nearest tenth of a lumen per 
watt.
    (4) Round lumen maintenance at 1,000 hours to the nearest tenth of a 
percent.
    (5) Round lumen maintenance at 40 percent of lifetime to the nearest 
tenth of a percent.
    (6) Round CRI to the nearest whole number.
    (7) Round power factor to the nearest hundredths place.
    (8) Round lifetime to the nearest whole hour.
    (9) Round CCT to the nearest 100 kelvin (K).
    (10) Round standby mode power to the nearest tenth of a watt; and
    (11) Round start time to the nearest whole millisecond.

[81 FR 59415, Aug. 29, 2016]

[[Page 189]]



Sec.  429.36  Dehumidifiers.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to dehumidifiers; and
    (2) For each basic model of dehumidifier selected for testing, a 
sample of sufficient size shall be randomly selected and tested to 
ensure that--
    (i) Any represented value of energy consumption or other measure of 
energy consumption of a basic model for which consumers would favor 
lower values shall be greater than or equal to the higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.079
    

Or,

    (B) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.10, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.063


and

    (ii) Any represented value of the energy factor, integrated energy 
factor, or other measure of energy consumption of a basic model for 
which consumers would favor higher values shall be less than or equal to 
the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.081
    

Or,

    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.90, where:

[[Page 190]]

[GRAPHIC] [TIFF OMITTED] TR02MY11.064

    (3) The capacity of a basic model is the mean of the measured 
capacities for each tested unit of the basic model. Round the mean 
capacity value to two decimal places.
    (4) For whole-home dehumidifiers, the case volume of a basic model 
is the mean of the measured case volumes for each tested unit of the 
basic model. Round the mean case volume value to one decimal place.
    (5) Round the value of energy factor or integrated energy factor for 
a basic model to two decimal places.
    (6) Dehumidifiers distributed in commerce by the manufacturer with 
the ability to operate as both a portable and whole-home dehumidifier by 
means of installation or removal of an optional ducting kit, must be 
rated and certified under both configurations.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to dehumidifiers; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following public product-specific information:
    (i) For dehumidifiers tested in accordance with appendix X: The 
energy factor in liters per kilowatt hour (liters/kWh) and capacity in 
pints per day.
    (ii) For dehumidifiers tested in accordance with appendix X1: The 
integrated energy factor in liters per kilowatt hour (liters/kWh), 
capacity in pints per day, and for whole-home dehumidifiers, case volume 
in cubic feet.

[76 FR 12451, Mar. 7, 2011; 76 FR 24773, May 2, 2011, as amended at 77 
FR 65977, Oct. 31, 2012; 80 FR 45824, July 31, 2015; 81 FR 38395, June 
13, 2016]



Sec.  429.37  External power supplies.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to external power supplies; 
and
    (2) For each basic model of external power supply selected for 
testing, a sample of sufficient size shall be randomly selected and 
tested to ensure that--
    (i) Any represented value of the estimated energy consumption of a 
basic model for which consumers would favor lower values shall be 
greater than or equal to the higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.083
    

Or,

    (B) The upper 97.5 percent confidence limit (UCL) of the true mean 
divided by 1.05, where:

[[Page 191]]

[GRAPHIC] [TIFF OMITTED] TR02MY11.065


and

    (ii) Any represented value of the estimated energy consumption of a 
basic model for which consumers would favor higher values shall be less 
than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.085
    

Or,

    (B) The lower 97.5 percent confidence limit (LCL) of the true mean 
divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.066

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to external power supplies except that required information 
may be reported on the basis of a basic model or a design family. If 
certifying using a design family, for Sec.  429.12(b)(6), report the 
individual manufacturer's model numbers covered by the design family.
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information:
    (i) External power supplies: The average active mode efficiency as a 
percentage (%), no-load mode power consumption in watts (W), nameplate 
output power in watts (W), and, if missing from the nameplate, the 
output current in amperes (A) of the basic model or the output current 
in amperes (A) of the highest- and lowest-voltage models within the 
external power supply design family.
    (ii) Switch-selectable single-voltage external power supplies: The 
average active mode efficiency as a percentage (%) value, no-load mode 
power consumption in watts (W) using the lowest and highest selectable 
output voltages, nameplate output power in watts (W),

[[Page 192]]

and, if missing from the nameplate, the output current in amperes (A).
    (iii) Adaptive single-voltage external power supplies: The average 
active-mode efficiency as a percentage (%) at the highest and lowest 
nameplate output voltages, no-load mode power consumption in watts (W), 
nameplate output power in watts (W) at the highest and lowest nameplate 
output voltages, and, if missing from the nameplate, the output current 
in amperes (A) at the highest and lowest nameplate output voltages.
    (iv) External power supplies that are exempt from no-load mode 
requirements under Sec.  430.32(w)(5) of this chapter: A statement that 
the product is designed to be connected to a security or life safety 
alarm or surveillance system component, the average active-mode 
efficiency as a percentage (%), the nameplate output power in watts (W), 
and if missing from the nameplate, the certification report must also 
include the output current in amperes (A) of the basic model or the 
output current in amperes (A) of the highest- and lowest-voltage models 
within the external power supply design family.
    (3) Pursuant to Sec.  429.12(b)(13), a certification report for 
external power supplies that are exempt from the energy conservation 
standards at Sec.  430.32(w)(1)(ii) pursuant to Sec.  430.32(w)(2) of 
this chapter must include the following additional information if, in 
aggregate, the total number of exempt EPSs sold as spare and service 
parts by the certifier exceeds 1,000 units across all models: The total 
number of units of exempt external power supplies sold during the most 
recent 12-calendar-month period ending on July 31, starting with the 
annual report due on September 1, 2017.
    (c) Exempt external power supplies. (1) For external power supplies 
that are exempt from energy conservation standards pursuant to Sec.  
430.32(w)(2) of this chapter and are not required to be certified 
pursuant to Sec.  429.12(a) as compliant with an applicable standard, 
the importer or domestic manufacturer must, no later than September 1, 
2017, and annually by each September 1st thereafter, submit a report 
providing the following information if, in aggregate, the total number 
of exempt EPSs sold as spare and service parts by the importer or 
manufacturer exceeds 1,000 units across all models:
    (i) The importer or domestic manufacturer's name and address;
    (ii) The brand name; and
    (iii) The number of units sold during the most recent 12-calendar-
month period ending on July 31.
    (2) The report must be submitted to DOE in accordance with the 
submission procedures set forth in Sec.  429.12(h).

[76 FR 12451, Mar. 7, 2011; 76 FR 24773, May 2, 2011, as amended at 76 
FR 57899, Sept. 19, 2011; 80 FR 51440, Aug. 25, 2015; 81 FR 30163, May 
16, 2016; 84 FR 442, Jan. 29, 2019]



Sec.  429.38  Non-class A external power supplies. [Reserved]



Sec.  429.39  Battery chargers.

    (a) Determination of represented value. Manufacturers must determine 
represented values, which include certified ratings, for each basic 
model of battery charger in accordance with the following sampling 
provisions.
    (1) Represented values include: The unit energy consumption (UEC) in 
kilowatt-hours per year (kWh/yr), battery discharge energy 
(Ebatt) in watt hours (Wh), 24-hour energy consumption 
(E24) in watt hours (Wh), maintenance mode power 
(Pm) in watts (W), standby mode power (Psb) in 
watts (W), off mode power (Poff) in watts (W), and duration 
of the charge and maintenance mode test (tcd) in hours (hrs) 
for all battery chargers other than uninterruptible power supplies 
(UPSs); and average load adjusted efficiency (Effavg) for 
UPSs.
    (2) Units to be tested. (i) The general requirements of Sec.  429.11 
are applicable to all battery chargers; and
    (ii) For each basic model of battery chargers other than UPSs, a 
sample of sufficient size must be randomly selected and tested to ensure 
that the represented value of UEC is greater than or equal to the higher 
of:
    (A) The mean of the sample, where:

[[Page 193]]

[GRAPHIC] [TIFF OMITTED] TR12DE16.015


and, x is the sample mean; n is the number of samples; and xi 
is the UEC of the ith sample; or,
    (B) The upper 97.5-percent confidence limit (UCL) of the true mean 
divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR12DE16.016


and x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.975 is the t-statistic for a 97.5-
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A of this subpart).
    (iii) For each basic model of battery chargers other than UPSs, 
using the sample from paragraph (a)(2)(ii) of this section, calculate 
the represented values of each metric (i.e., maintenance mode power 
(Pm), standby power (Psb), off mode power 
(Poff), battery discharge energy (EBatt), 24-hour 
energy consumption (E24), and duration of the charge and 
maintenance mode test (tcd)), where the represented value of 
the metric is:
[GRAPHIC] [TIFF OMITTED] TR12DE16.017


and, x is the sample mean, n is the number of samples, and xi 
is the measured value of the ith sample for the metric.
    (iv) For each basic model of UPSs, the represented value of 
Effavg must be calculated using one of the following two 
methods:
    (A) A sample of sufficient size must be randomly selected and tested 
to ensure that the represented value of Effavg is less than 
or equal to the lower of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR12DE16.018
    

and, x is the sample mean; n is the number of samples; and xi 
is the Effavg of the ith sample; or,
    (2) The lower 97.5-percent confidence limit (LCL) of the true mean 
divided by 0.95, where:

[[Page 194]]

[GRAPHIC] [TIFF OMITTED] TR12DE16.019


and x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.975 is the t-statistic for a 97.5-
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A of this subpart).
    (B) The represented value of Effavg is equal to the 
Effavg of the single unit tested.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to all battery chargers.
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following product-specific information for all battery 
chargers other than UPSs: The nameplate battery voltage of the test 
battery in volts (V), the nameplate battery charge capacity of the test 
battery in ampere-hours (Ah), and the nameplate battery energy capacity 
of the test battery in watt-hours (Wh). A certification report must also 
include the represented values, as determined in paragraph (a) of this 
section for the maintenance mode power (Pm), standby mode 
power (Psb), off mode power (Poff), battery 
discharge energy (Ebatt), 24-hour energy consumption 
(E24), duration of the charge and maintenance mode test 
(tcd), and unit energy consumption (UEC).
    (3) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following product-specific information for all battery 
chargers other than UPSs: The manufacturer and model of the test 
battery, and the manufacturer and model, when applicable, of the 
external power supply.
    (4) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following product-specific information for all UPSs: 
Supported input dependency mode(s); active power in watts (W); apparent 
power in volt-amperes (VA); rated input and output voltages in volts 
(V); efficiencies at 25 percent, 50 percent, 75 percent and 100 percent 
of the reference test load; and average load adjusted efficiency of the 
lowest and highest input dependency modes.

[81 FR 89821, Dec. 12, 2016]



Sec.  429.40  Candelabra base incandescent lamps and intermediate base 
incandescent lamps.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to candelabra base 
incandescent lamps; and
    (2) For each basic model of candelabra base incandescent lamp and 
intermediate base incandescent lamp, a minimum sample of 21 lamps shall 
be randomly selected and tested. Any represented value of lamp wattage 
of a basic model shall be based on the sample and shall be less than or 
equal to the lower of:
    (i) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.091
    

Or,

    (ii) The lower 97.5 percent confidence limit (LCL) of the true mean 
divided by 0.95, where:

[[Page 195]]

[GRAPHIC] [TIFF OMITTED] TR02MY11.069

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to candelabra base and intermediate base incandescent lamps; 
and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information:
    (i) Candelabra base incandescent lamp: The rated wattage in watts 
(W).
    (ii) Intermediate base incandescent lamp: The rated wattage in watts 
(W).

[76 FR 12451, Mar. 7, 2011; 76 FR 24774, May 2, 2011]



Sec.  429.41  Commercial warm air furnaces.

    (a) Determination of represented value. Manufacturers must determine 
the represented value, which includes the certified rating, for each 
basic model of commercial warm air furnace either by testing, in 
conjunction with the applicable sampling provisions, or by applying an 
AEDM.
    (1) Units to be tested. (i) If the represented value is determined 
through testing, the general requirements of Sec.  429.11 are 
applicable; and
    (ii) For each basic model selected for testing, a sample of 
sufficient size shall be randomly selected and tested to ensure that--
    (A) Any represented value of energy consumption or other measure of 
energy use of a basic model for which consumers would favor lower values 
shall be greater than or equal to the higher of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR05MY14.000
    

and, x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample; Or,
    (2) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR05MY14.001


And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
Appendix A to subpart B of part 429). And,
    (B) Any represented value of energy efficiency or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the lower of:
    (1) The mean of the sample, where:

[[Page 196]]

[GRAPHIC] [TIFF OMITTED] TR05MY14.002


and, x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample; Or,
    (2) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR05MY14.003


And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
Appendix A to subpart B of part 429).
    (2) Alternative efficiency determination methods. In lieu of 
testing, a represented value of efficiency or consumption for a basic 
model of commercial warm air furnace must be determined through the 
application of an AEDM pursuant to the requirements of Sec.  429.70 and 
the provisions of this section, where:
    (i) Any represented value of energy consumption or other measure of 
energy use of a basic model for which consumers would favor lower values 
shall be greater than or equal to the output of the AEDM and less than 
or equal to the Federal standard for that basic model; and
    (ii) Any represented value of energy efficiency or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the output of the AEDM and 
greater than or equal to the Federal standard for that basic model.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to commercial warm air furnaces; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following public, equipment-specific information: The 
thermal efficiency in percent (%), and the maximum rated input capacity 
in British thermal units per hour (Btu/h).
    (3) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following additional equipment-specific information:
    (i) Whether the basic model is engineered-to-order; and
    (ii) For any basic model rated with an AEDM, whether the 
manufacturer elects the witness test option for verification testing. 
(See Sec.  429.70(c)(5)(iii) for options). However, the manufacturer may 
not select more than 10% of AEDM-rated basic models.
    (4) Pursuant to Sec.  429.12(b)(13), a certification report may 
include supplemental testing instructions in PDF format. If necessary to 
run a valid test, the equipment-specific, supplemental information must 
include any additional testing and testing set up instructions (e.g., 
specific operational or control codes or settings), which would be 
necessary to operate the basic model under the required conditions 
specified by the relevant test procedure. A manufacturer may also 
include with a certification report other supplementary items in PDF 
format (e.g., manuals) for DOE consideration in performing testing under 
subpart C of this part.

[79 FR 25500, May 5, 2014, as amended at 80 FR 151, Jan. 5, 2015]



Sec.  429.42  Commercial refrigerators, freezers, and refrigerator-freezers.

    (a) Determination of represented value. Manufacturers must determine 
the represented value, which includes the certified rating, for each 
basic model of commercial refrigerator, freezer, or refrigerator-freezer 
either by testing, in

[[Page 197]]

conjunction with the applicable sampling provisions, or by applying an 
AEDM.
    (1) Units to be tested. (i) If the represented value for a given 
basic model is determined through testing, the general requirements of 
Sec.  429.11 are applicable; and
    (ii) For each basic model selected for testing, a sample of 
sufficient size shall be randomly selected and tested to ensure that--
    (A) Any represented value of energy consumption or other measure of 
energy use of a basic model for which consumers would favor lower values 
shall be greater than or equal to the higher of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR31DE13.157
    

And x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample; or,

    (2) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.10, where:
[GRAPHIC] [TIFF OMITTED] TR31DE13.158


And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
Appendix A to subpart B of part 429); And,

    (B) Any represented value of the energy efficiency or other measure 
of energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the lower of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR31DE13.159
    

And, x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample; or,
    (2) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.90, where:
[GRAPHIC] [TIFF OMITTED] TR31DE13.160


And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
Appendix A to subpart B of part 429).

[[Page 198]]

    (2) Alternative efficiency determination methods. In lieu of 
testing, a represented value of efficiency or consumption for a basic 
model of commercial refrigerator, freezer or refrigerator-freezer must 
be determined through the application of an AEDM pursuant to the 
requirements of Sec.  429.70 and the provisions of this section, where:
    (i) Any represented value of energy consumption or other measure of 
energy use of a basic model for which consumers would favor lower values 
shall be greater than or equal to the output of the AEDM and less than 
or equal to the Federal standard for that basic model; and
    (ii) Any represented value of energy efficiency or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the output of the AEDM and 
greater than or equal to the Federal standard for that basic model.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to commercial refrigerators, freezers, and refrigerator-
freezers; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following public, equipment-specific information:
    (i) The daily energy consumption in kilowatt hours per day (kWh/
day);
    (ii) The rating temperature (e.g. lowest product application 
temperature, if applicable) in degrees Fahrenheit ( [deg]F); and
    (iii) The chilled or frozen compartment volume in cubic feet 
(ft\3\), the adjusted volume in cubic feet (ft\3\), or the total display 
area (TDA) in feet squared (ft\2\) (as appropriate for the equipment 
class).
    (3) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following additional, equipment-specific information:
    (i) Whether the basic model is engineered-to-order; and
    (ii) For any basic model rated with an AEDM, whether the 
manufacturer elects the witness test option for verification testing. 
(See Sec.  429.70(c)(5)(iii) for options). However, the manufacturer may 
not select more than 10% of AEDM-rated basic models.
    (4) Pursuant to Sec.  429.12(b)(13), a certification report must 
include supplemental information submitted in PDF format. The equipment-
specific, supplemental information must include any additional testing 
and testing set up instructions (e.g., charging instructions) for the 
basic model; identification of all special features that were included 
in rating the basic model; and all other information (e.g., any specific 
settings or controls) necessary to operate the basic model under the 
required conditions specified by the relevant test procedure. A 
manufacturer may also include with a certification report other 
supplementary items in PDF format (e.g., manuals) for DOE to consider 
when performing testing under subpart C of this part.

[76 FR 12451, Mar. 7, 2011; 76 FR 24775, May 2, 2011, as amended at 76 
FR 38292, June 30, 2011; 78 FR 79593, Dec. 31, 2013; 79 FR 22307, Apr. 
21, 2014; 79 FR 25501, May 5, 2014; 80 FR 151, Jan. 5, 2015]



Sec.  429.43  Commercial heating, ventilating, 
air conditioning (HVAC) equipment.

    (a) Determination of represented value. Manufacturers must determine 
the represented value, which includes the certified rating, for each 
basic model of commercial HVAC equipment either by testing, in 
conjunction with the applicable sampling provisions, or by applying an 
AEDM.
    (1) Units to be tested. (i) If the represented value is determined 
through testing, the general requirements of Sec.  429.11 are 
applicable; and
    (ii) For each basic model selected for testing, a sample of 
sufficient size shall be randomly selected and tested to ensure that--
    (A) Any represented value of energy consumption or other measure of 
energy use of a basic model for which consumers would favor lower values 
shall be greater than or equal to the higher of:
    (1) The mean of the sample, where:

[[Page 199]]

[GRAPHIC] [TIFF OMITTED] TR31DE13.161


And, x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample; or,
    (2) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR31DE13.162


And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
Appendix A to subpart B of part 429). And,
    (B) Any represented value of energy efficiency or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the lower of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR31DE13.163
    

And, x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample; or,

    (2) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR31DE13.164


And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
Appendix A to subpart B of part 429).

    (iii) For packaged terminal air conditioners and packaged terminal 
heat pumps, the represented value of cooling capacity shall be the 
average of the capacities measured for the sample selected as described 
in (a)(1)(ii) of this section, rounded to the nearest 100 Btu/h.
    (iv) For air-cooled commercial package air-conditioning and heating 
equipment, the represented value of cooling capacity must be a self-
declared value corresponding to the nearest appropriate Btu/h multiple 
according to Table 4 of ANSI/AHRI 340/360-2007 (incorporated by 
reference; see Sec.  429.4) that is no less than 95 percent of the mean 
of the capacities measured for the units in the sample selected as 
described in paragraph (a)(1)(ii) of this section.
    (2) Alternative efficiency determination methods. (i) In lieu of 
testing, a represented value of efficiency or consumption for a basic 
model of commercial HVAC equipment must be determined through the 
application of an AEDM pursuant to the requirements of

[[Page 200]]

Sec.  429.70 and the provisions of this section, where:
    (A) Any represented value of energy consumption or other measure of 
energy use of a basic model for which consumers would favor lower values 
shall be greater than or equal to the output of the AEDM and less than 
or equal to the Federal standard for that basic model; and
    (B) Any represented value of energy efficiency or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the output of the AEDM and 
greater than or equal to the Federal standard for that basic model.
    (ii) For air-cooled commercial package air-conditioning and heating 
equipment, the represented value of cooling capacity must be the cooling 
capacity output simulated by the AEDM as described in paragraph (a)(2) 
of this section.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to commercial HVAC equipment; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following public equipment-specific information:
    (i) Commercial package air-conditioning equipment (except commercial 
package air conditioning equipment that is air-cooled with a cooling 
capacity less than 65,000 Btu/h):
    (A) When certifying compliance with an EER standard: the energy 
efficiency ratio (EER in British thermal units per Watt-hour (Btu/Wh)), 
the rated cooling capacity in British thermal units per hour (Btu/h), 
and the type(s) of heating used by the basic model (e.g., electric, gas, 
hydronic, none).
    (B) When certifying compliance with an IEER standard: the integrated 
energy efficiency ratio (IEER in British thermal units per Watt-hour 
(Btu/Wh)), the rated cooling capacity in British thermal units per hour 
(Btu/h), and the type(s) of heating used by the basic model (e.g., 
electric, gas, hydronic, none).
    (ii) Commercial package heating equipment (except commercial package 
heating equipment that is air-cooled with a cooling capacity less than 
65,000 Btu/h):
    (A) When certifying compliance with an EER standard: the energy 
efficiency ratio (EER in British thermal units per Watt-hour (Btu/Wh)), 
the coefficient of performance (COP), the rated cooling capacity in 
British thermal units per hour (Btu/h), and the type(s) of heating used 
by the basic model (e.g., electric, gas, hydronic, none).
    (B) When certifying compliance an IEER standard: the integrated 
energy efficiency ratio (IEER in British thermal units per Watt-hour 
(Btu/Wh)), the coefficient of performance (COP), the rated cooling 
capacity in British thermal units per hour (Btu/h), and the type(s) of 
heating used by the basic model (e.g., electric, gas, hydronic, none).
    (iii) Commercial package air conditioning equipment that is air-
cooled with a cooling capacity less than 65,000 Btu/h (3-Phase): The 
seasonal energy efficiency ratio (SEER in British thermal units per 
Watt-hour (Btu/Wh)), and the rated cooling capacity in British thermal 
units per hour (Btu/h).
    (iv) Commercial package heating equipment that is air-cooled with a 
cooling capacity less than 65,000 Btu/h (3-Phase): The seasonal energy 
efficiency ratio (SEER in British thermal units per Watt-hour (Btu/Wh)), 
the heating seasonal performance factor (HSPF in British thermal units 
per Watt-hour (Btu/Wh)), and the rated cooling capacity in British 
thermal units per hour (Btu/h).
    (v) Packaged terminal air conditioners: The energy efficiency ratio 
(EER in British thermal units per Watt-hour (Btu/Wh)), the rated cooling 
capacity in British thermal units per hour (Btu/h), the wall sleeve 
dimensions in inches (in), and the duration of the break-in period 
(hours).
    (vi) Packaged terminal heat pumps: The energy efficiency ratio (EER 
in British thermal units per Watt-hour (Btu/W-h)), the coefficient of 
performance (COP), the rated cooling capacity in British thermal units 
per hour (Btu/h), the wall sleeve dimensions in inches (in), and the 
duration of the break-in period (hours).
    (vii) Single package vertical air conditioners: The energy 
efficiency ratio (EER in British thermal units per Watt-hour (Btu/Wh)) 
and the rated

[[Page 201]]

cooling capacity in British thermal units per hour (Btu/h).
    (viii) Single package vertical heat pumps: The energy efficiency 
ratio (EER in British thermal units per Watt-hour (Btu/Wh)), the 
coefficient of performance (COP), and the rated cooling capacity in 
British thermal units per hour (Btu/h).
    (ix) Variable refrigerant flow multi-split air conditioners with 
rated cooling capacity less than 65,000 Btu/h (3-Phase): The seasonal 
energy efficiency ratio (SEER in British thermal units per Watt-hour 
(Btu/Wh)) and rated cooling capacity in British thermal units per hour 
(Btu/h).
    (x) Variable refrigerant flow multi-split heat pumps with rated 
cooling capacity less than 65,000 Btu/h (3-Phase): The seasonal energy 
efficiency ratio (SEER in British thermal units per Watt-hour (Btu/Wh)), 
the heating seasonal performance factor (HSPF in British thermal units 
per Watt-hour (Btu/Wh)), and rated cooling capacity in British thermal 
units per hour (Btu/h).
    (xi) Variable refrigerant flow multi-split air conditioners with 
rated cooling capacity greater than or equal to 65,000 Btu/h: The energy 
efficiency ratio (EER in British thermal units per Watt-hour (Btu/Wh)), 
rated cooling capacity in British thermal units per hour (Btu/h), and 
the type(s) of heating used by the basic model (e.g., electric, gas, 
hydronic, none).
    (xii) Variable refrigerant flow multi-split heat pumps with rated 
cooling capacity greater than or equal to 65,000 Btu/h: The energy 
efficiency ratio (EER in British thermal units per Watt-hour (Btu/Wh)), 
the coefficient of performance (COP), rated cooling capacity in British 
thermal units per hour (Btu/h), and the type(s) of heating used by the 
basic model (e.g., electric, gas, hydronic, none).
    (xiii) Water source variable refrigerant flow heat pumps (all rated 
cooling capacities): The energy efficiency ratio (EER in British thermal 
units per Watt-hour (Btu/Wh)), the coefficient of performance (COP), 
rated cooling capacity in British thermal units per hour (Btu/h), and 
the type(s) of heating used by the basic model (e.g., electric, gas, 
hydronic, none).
    (xiv) Computer room air-conditioners: The net sensible cooling 
capacity in British thermal units per hour (Btu/h), the net cooling 
capacity in British thermal units per hour (Btu/h), the configuration 
(upflow/downflow), economizer presence (yes or no), condenser medium 
(air, water, or glycol-cooled), sensible coefficient of performance 
(SCOP), and rated airflow in standard cubic feet per minute (SCFM).
    (xv) Water source heat pumps (other than variable refrigerant flow): 
The energy efficiency ratio (EER in British thermal units per Watt-hour 
(Btu/Wh)), the coefficient of performance (COP), the rated cooling 
capacity in British thermal units per hour (Btu/h), and the type(s) of 
heating used by the basic model (e.g., electric, gas, hydronic, none).
    (3) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following additional equipment-specific information:
    (i) Whether the basic model is engineered-to-order; and
    (ii) For any basic model rated with an AEDM, whether the 
manufacturer elects the witness test option for verification testing. 
(See Sec.  429.70(c)(5)(iii) for options). However, the manufacturer may 
not select more than 10% of AEDM-rated basic models.
    (4) Pursuant to Sec.  429.12(b)(13), a certification report must 
include supplemental information submitted in PDF format. The equipment-
specific, supplemental information must include any additional testing 
and testing set up instructions (e.g., charging instructions) for the 
basic model; identification of all special features that were included 
in rating the basic model; and all other information (e.g., operational 
codes or component settings) necessary to operate the basic model under 
the required conditions specified by the relevant test procedure. A 
manufacturer may also include with a certification report other 
supplementary items in PDF format (e.g., manuals) for DOE consideration 
in performing testing under subpart C of this part. The equipment-
specific, supplemental information must include at least the following:
    (i) Commercial package air-conditioning equipment (except commercial

[[Page 202]]

package air conditioning equipment that is air-cooled with a cooling 
capacity less than 65,000 Btu/h): rated indoor airflow in standard cubic 
feet per minute (SCFM) for each fan coil; water flow rate in gallons per 
minute (gpm) for water-cooled units only; rated external static pressure 
in inches of water; frequency or control set points for variable speed 
components (e.g., compressors, VFDs); required dip switch/control 
settings for step or variable components; a statement whether the model 
will operate at test conditions without manufacturer programming; any 
additional testing instructions, if applicable; and if a variety of 
motors/drive kits are offered for sale as options in the basic model to 
account for varying installation requirements, the model number and 
specifications of the motor (to include efficiency, horsepower, open/
closed, and number of poles) and the drive kit, including settings, 
associated with that specific motor that were used to determine the 
certified rating. When certifying compliance with an IEER standard, 
rated indoor airflow in SCFM for each part-load point used in the IEER 
calculation and any special instructions required to obtain operation at 
each part-load point, such as frequency or control set points for 
variable speed components (e.g., compressors, VFDs), dip switch/control 
settings for step or variable components, or any additional applicable 
testing instructions, are also required.
    (ii) Commercial package heating equipment (except commercial package 
heating equipment that is air-cooled with a cooling capacity less than 
65,000 Btu/h): The rated heating capacity in British thermal units per 
hour (Btu/h); rated indoor airflow in standard cubic feet per minute 
(SCFM) for each fan coil (in cooling mode); rated airflow in SCFM for 
each fan coil in heating mode if the unit is designed to operate with 
different airflow rates for cooling and heating mode; water flow rate in 
gallons per minute (gpm) for water cooled units only; rated external 
static pressure in inches of water; frequency or control set points for 
variable speed components (e.g., compressors, VFDs); required dip 
switch/control settings for step or variable components; a statement 
whether the model will operate at test conditions without manufacturer 
programming; any additional testing instructions, if applicable; and if 
a variety of motors/drive kits are offered for sale as options in the 
basic model to account for varying installation requirements, the model 
number and specifications of the motor (to include efficiency, 
horsepower, open/closed, and number of poles) and the drive kit, 
including settings, associated with that specific motor that were used 
to determine the certified rating. When certifying compliance with an 
IEER standard, rated indoor airflow in SCFM for each part-load point 
used in the IEER calculation and any special instructions required to 
obtain operation at each part-load point, such as frequency or control 
set points for variable speed components (e.g., compressors, VFDs), dip 
switch/control settings for step or variable components, or any 
additional applicable testing instructions, are also required.
    (iii) Commercial package air conditioning equipment that is air-
cooled with a cooling capacity less than 65,000 Btu/h (3-phase): The 
nominal cooling capacity in British thermal units per hour (Btu/h); 
rated airflow in standard cubic feet per minute (SCFM) for each fan 
coil; rated static pressure in inches of water; refrigeration charging 
instructions (e.g., refrigerant charge, superheat and/or subcooling 
temperatures); frequency or control set points for variable speed 
components (e.g., compressors, VFDs); required dip switch/control 
settings for step or variable components; a statement whether the model 
will operate at test conditions without manufacturer programming; any 
additional testing instructions, if applicable; if a variety of motors/
drive kits are offered for sale as options in the basic model to account 
for varying installation requirements, the model number and 
specifications of the motor (to include efficiency, horsepower, open/
closed, and number of poles) and the drive kit, including settings, 
associated with that specific motor that were used to determine the 
certified rating; and which, if any, special features were included in 
rating the basic model.

[[Page 203]]

    (iv) Commercial package heating equipment that is air-cooled with a 
cooling capacity less than 65,000 Btu/h (3-phase): The nominal cooling 
capacity in British thermal units per hour (Btu/h); rated heating 
capacity in British thermal units per hour (Btu/h); rated airflow in 
standard cubic feet per minute (SCFM) for each fan coil; rated static 
pressure in inches of water; refrigeration charging instructions (e.g., 
refrigerant charge, superheat and/or subcooling temperatures); frequency 
or control set points for variable speed components (e.g., compressors, 
VFDs); required dip switch/control settings for step or variable 
components; a statement whether the model will operate at test 
conditions without manufacturer programming; any additional testing 
instructions, if applicable; if a variety of motors/drive kits are 
offered for sale as options in the basic model to account for varying 
installation requirements, the model number and specifications of the 
motor (to include efficiency, horsepower, open/closed, and number of 
poles) and the drive kit, including settings, associated with that 
specific motor that were used to determine the certified rating; and 
which, if any, special features were included in rating the basic model.
    (v) Variable refrigerant flow multi-split air conditioners with 
cooling capacity less than 65,000 Btu/h (3-phase): The nominal cooling 
capacity in British thermal units per hour (Btu/h); outdoor unit(s) and 
indoor units identified in the tested combination; components needed for 
heat recovery, if applicable; rated airflow in standard cubic feet per 
minute (SCFM) for each indoor unit; water flow rate in gallons per 
minute (gpm) for water-cooled units only; rated static pressure in 
inches of water; compressor frequency set points; required dip switch/
control settings for step or variable components; a statement whether 
the model will operate at test conditions without manufacturer 
programming; any additional testing instructions, if applicable; if a 
variety of motors/drive kits are offered for sale as options in the 
basic model to account for varying installation requirements, the model 
number and specifications of the motor (to include efficiency, 
horsepower, open/closed, and number of poles) and the drive kit, 
including settings, associated with that specific motor that were used 
to determine the certified rating; and which, if any, special features 
were included in rating the basic model. Additionally, upon DOE request, 
the manufacturer must provide a layout of the system set-up for testing 
including charging instructions consistent with the installation manual.
    (vi) Variable refrigerant flow multi-split heat pumps with cooling 
capacity less than 65,000 Btu/h (3-phase): The nominal cooling capacity 
in British thermal units per hour (Btu/h); rated heating capacity in 
British thermal units per hour (Btu/h); outdoor unit(s) and indoor units 
identified in the tested combination; components needed for heat 
recovery, if applicable; rated airflow in standard cubic feet per minute 
(SCFM) for each indoor unit; water flow rate in gallons per minute (gpm) 
for water-cooled units only; rated static pressure in inches of water; 
compressor frequency set points; required dip switch/control settings 
for step or variable components; a statement whether the model will 
operate at test conditions without manufacturer programming; any 
additional testing instructions, if applicable; if a variety of motors/
drive kits are offered for sale as options in the basic model to account 
for varying installation requirements, the model number and 
specifications of the motor (to include efficiency, horsepower, open/
closed, and number of poles) and the drive kit, including settings, 
associated with that specific motor that were used to determine the 
certified rating; and which, if any, special features were included in 
rating the basic model. Additionally, upon DOE request, the manufacturer 
must provide a layout of the system set-up for testing including 
charging instructions consistent with the installation manual.
    (vii) Variable refrigerant flow multi-split air conditioners with 
cooling capacity greater than or equal to 65,000 Btu/h: The nominal 
cooling capacity in British thermal units per hour (Btu/h); outdoor 
unit(s) and indoor units identified in the tested combination; 
components needed for heat recovery, if applicable; rated airflow in 
standard

[[Page 204]]

cubic feet per minute (SCFM) for each indoor unit; water flow rate in 
gallons per minute (gpm) for water-cooled units only; rated static 
pressure in inches of water; compressor frequency set points; required 
dip switch/control settings for step or variable components; a statement 
whether the model will operate at test conditions without manufacturer 
programming; any additional testing instructions if applicable; if a 
variety of motors/drive kits are offered for sale as options in the 
basic model to account for varying installation requirements, the model 
number and specifications of the motor (to include efficiency, 
horsepower, open/closed, and number of poles) and the drive kit, 
including settings, associated with that specific motor that were used 
to determine the certified rating; and which, if any, special features 
were included in rating the basic model. Additionally, upon DOE request, 
the manufacturer must provide a layout of the system set-up for testing 
including charging instructions consistent with the installation manual.
    (viii) Variable refrigerant flow multi-split heat pumps with cooling 
capacity greater than or equal to 65,000 Btu/h: The nominal cooling 
capacity in British thermal units per hour (Btu/h); rated heating 
capacity in British thermal units per hour (Btu/h); outdoor unit(s) and 
indoor units identified in the tested combination; components needed for 
heat recovery, if applicable; rated airflow in standard cubic feet per 
minute (SCFM) for each indoor unit; water flow rate in gallons per 
minute (gpm) for water-cooled units only; rated static pressure in 
inches of water; compressor frequency set points; required dip switch/
control settings for step or variable components; a statement whether 
the model will operate at test conditions without manufacturer 
programming; any additional testing instructions if applicable; if a 
variety of motors/drive kits are offered for sale as options in the 
basic model to account for varying installation requirements, the model 
number and specifications of the motor (to include efficiency, 
horsepower, open/closed, and number of poles) and the drive kit, 
including settings, associated with that specific motor that were used 
to determine the certified rating; and which, if any, special features 
were included in rating the basic model. Additionally, upon DOE request, 
the manufacturer must provide a layout of the system set-up for testing 
including charging instructions consistent with the installation manual.
    (ix) Water source variable refrigerant flow heat pumps: The nominal 
cooling capacity in British thermal units per hour (Btu/h); rated 
heating capacity in British thermal units per hour (Btu/h); rated 
airflow in standard cubic feet per minute (SCFM) for each indoor unit; 
water flow rate in gallons per minute (gpm); rated static pressure in 
inches of water; refrigeration charging instructions (e.g., refrigerant 
charge, superheat and/or subcooling temperatures); frequency set points 
for variable speed components (e.g., compressors, VFDs), including the 
required dip switch/control settings for step or variable components; a 
statement whether the model will operate at test conditions without 
manufacturer programming; any additional testing instructions if 
applicable; if a variety of motors/drive kits are offered for sale as 
options in the basic model to account for varying installation 
requirements, the model number and specifications of the motor (to 
include efficiency, horsepower, open/closed, and number of poles) and 
the drive kit, including settings, associated with that specific motor 
that were used to determine the certified rating; and which, if any, 
special features were included in rating the basic model. Additionally, 
upon DOE request, the manufacturer must provide a layout of the system 
set-up for testing including charging instructions consistent with the 
installation manual.
    (x) Water source heat pumps: The nominal cooling capacity in British 
thermal units per hour (Btu/h); rated heating capacity in British 
thermal units per hour (Btu/h); rated airflow in standard cubic feet per 
minute (SCFM) for each indoor unit; water flow rate in gallons per 
minute (gpm); rated static pressure in inches of water; refrigerant 
charging instructions, (e.g., refrigerant charge, superheat and/or 
subcooling temperatures); frequency set points for

[[Page 205]]

variable speed components (e.g., compressors, VFDs), including the 
required dip switch/control settings for step or variable components; a 
statement whether the model will operate at test conditions without 
manufacturer programming; any additional testing instructions if 
applicable; if a variety of motors/drive kits are offered for sale as 
options in the basic model to account for varying installation 
requirements, the model number and specifications of the motor (to 
include efficiency, horsepower, open/closed, and number of poles) and 
the drive kit, including settings, associated with that specific motor 
that were used to determine the certified rating; and which, if any, 
special features were included in rating the basic model.
    (xi) Single package vertical air conditioners: Any additional 
testing instructions, if applicable; if a variety of motors/drive kits 
are offered for sale as options in the basic model to account for 
varying installation requirements, the model number and specifications 
of the motor (to include efficiency, horsepower, open/closed, and number 
of poles) and the drive kit, including settings, associated with that 
specific motor that were used to determine the certified rating; and 
which, if any, special features were included in rating the basic model.
    (xii) Single package vertical heat pumps: Any additional testing 
instructions, if applicable; if a variety of motors/drive kits are 
offered for sale as options in the basic model to account for varying 
installation requirements, the model number and specifications of the 
motor (to include efficiency, horsepower, open/closed, and number of 
poles) and the drive kit, including settings, associated with that 
specific motor that were used to determine the certified rating; and 
which, if any, special features were included in rating the basic model.
    (xiii) Computer room air-conditioners: Any additional testing 
instructions, if applicable; and which, if any, special features were 
included in rating the basic model.
    (xiv) Package terminal air conditioners and package terminal heat 
pumps: Any additional testing instructions, if applicable.
    (c) Alternative methods for determining efficiency or energy use for 
commercial HVAC equipment can be found in Sec.  429.70 of this subpart.

[76 FR 12451, Mar. 7, 2011; 76 FR 24775, May 2, 2011, as amended at 78 
FR 79594, Dec. 31, 2013; 79 FR 25501, May 5, 2014; 80 FR 151, Jan. 5, 
2015; 80 FR 37147, June 30, 2015; 80 FR 79668, Dec. 23, 2015]



Sec.  429.44  Commercial water heating equipment.

    (a) For residential-duty commercial water heaters, all represented 
values must be determined in accordance with Sec.  429.17.
    (b) Determination of represented values for all types of commercial 
water heaters except residential-duty commercial water heaters. 
Manufacturers must determine the represented values, which includes the 
certified ratings, for each basic model of commercial water heating 
equipment except residential-duty commercial water heaters, either by 
testing, in conjunction with the applicable sampling provisions, or by 
applying an AEDM as set forth in Sec.  429.70.
    (1) Units to be tested. If the represented value for a given basic 
model is determined through testing:
    (i) The general requirements of Sec.  429.11 apply; and
    (ii) A sample of sufficient size must be randomly selected and 
tested to ensure that:
    (A) Any represented value of energy consumption or other measure of 
energy use of a basic model for which consumers would favor lower values 
must be greater than or equal to the higher of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR10NO16.008
    

[[Page 206]]


    And, x is the sample mean; n is the number of samples; and 
xi is the ith sample; or,
    (2) The upper 95-percent confidence limit (UCL) of the true mean 
divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR10NO16.009

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95-
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A to subpart B of this part). And,
    (B) Any represented value of energy efficiency or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values must be less than or equal to the lower of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR10NO16.010
    
    And, x is the sample mean; n is the number of samples; and 
xi is the ith sample; or,
    (2) The lower 95-percent confidence limit (LCL) of the true mean 
divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR10NO16.011

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95-
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A to subpart B of this part).
    (2) Alternative efficiency determination methods. In lieu of 
testing, a represented value of efficiency or consumption for a basic 
model must be determined through the application of an AEDM pursuant to 
the requirements of Sec.  429.70 and the provisions of this section, 
where:
    (i) Any represented value of energy consumption or other measure of 
energy use of a basic model for which consumers would favor lower values 
must be greater than or equal to the output of the AEDM and less than or 
equal to the Federal standard for that basic model; and
    (ii) Any represented value of energy efficiency or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values must be less than or equal to the output of the AEDM and 
greater than or equal to the Federal standard for that basic model.
    (3) Rated input. The rated input for a basic model reported in 
accordance with paragraph (c)(2) of this section must be the maximum 
rated input listed on the nameplate for that basic model.
    (c) Certification reports. For commercial water heating equipment 
other than residential-duty commercial water heaters:
    (1) The requirements of Sec.  429.12 apply; and

[[Page 207]]

    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following public equipment-specific information:
    (i) Commercial electric storage water heaters with storage capacity 
less than or equal to 140 gallons: The standby loss in percent per hour 
(%/h) and the measured storage volume in gallons (gal).
    (ii) Commercial gas-fired and oil-fired storage water heaters with 
storage capacity less than or equal to 140 gallons: The thermal 
efficiency in percent (%), the standby loss in British thermal units per 
hour (Btu/h), the rated storage volume in gallons (gal), and the rated 
input in British thermal units per hour (Btu/h).
    (iii) Commercial water heaters and hot water supply boilers with 
storage capacity greater than 140 gallons: The thermal efficiency in 
percent (%); whether the storage volume is greater than 140 gallons 
(Yes/No); whether the tank surface area is insulated with at least R-
12.5 (Yes/No); whether a standing pilot light is used (Yes/No); for gas 
or oil-fired water heaters, whether the basic model has a fire damper or 
fan-assisted combustion (Yes/No); and, if applicable, pursuant to Sec.  
431.110 of this chapter, the standby loss in British thermal units per 
hour (Btu/h); the measured storage volume in gallons (gal); and the 
rated input in British thermal units per hour (Btu/h).
    (iv) Commercial gas-fired and oil-fired instantaneous water heaters 
with storage capacity greater than or equal to 10 gallons and gas-fired 
and oil-fired hot water supply boilers with storage capacity greater 
than or equal to 10 gallons: The thermal efficiency in percent (%); the 
standby loss in British thermal units per hour (Btu/h); the rated 
storage volume in gallons (gal); the rated input in British thermal 
units per hour (Btu/h); whether the water heater includes a storage tank 
with a storage volume greater than or equal to 10 gallons (Yes/No). For 
equipment that does not meet the definition of storage-type 
instantaneous water heaters (as set forth in 10 CFR 431.102), in 
addition to the requirements discussed previously in this paragraph 
(c)(2)(iv), the following must also be included in the certification 
report: whether the measured storage volume is determined using weight-
based test in accordance with Sec.  431.106 of this chapter or the 
calculation-based method in accordance with Sec.  429.72; whether the 
water heater will initiate main burner operation based on a temperature-
controlled call for heating that is internal to the water heater (Yes/
No); whether the water heater is equipped with an integral pump purge 
functionality (Yes/No); if the water heater is equipped with integral 
pump purge, the default duration of the pump off delay (minutes).
    (v) Commercial gas-fired and oil-fired instantaneous water heaters 
with storage capacity less than 10 gallons and gas-fired and oil-fired 
hot water supply boilers with storage capacity less than 10 gallons: The 
thermal efficiency in percent (%); the rated storage volume in gallons 
(gal), the rated input in British thermal units per hour (Btu/h); and 
whether the measured storage volume is determined using weight-based 
test in accordance with Sec.  431.106 of this chapter or the 
calculation-based method in accordance with Sec.  429.72.
    (vi) Commercial unfired hot water storage tanks: The thermal 
insulation (i.e., R-value) and stored volume in gallons (gal).
    (3) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following additional, equipment-specific information:
    (i) Whether the basic model is engineered-to-order; and
    (ii) For any basic model rated with an AEDM, whether the 
manufacturer elects the witness test option for verification testing. 
(See Sec.  429.70(c)(5)(iii) for options.) However, the manufacturer may 
not select more than 10 percent of AEDM-rated basic models to be 
eligible for witness testing.
    (4) Pursuant to Sec.  429.12(b)(13), a certification report may 
include supplemental testing instructions in PDF format. If necessary to 
run a valid test, the equipment-specific, supplemental information must 
include any additional testing and testing set-up instructions (e.g., 
whether a bypass loop was used for testing) for the basic model and all 
other information (e.g., operational codes or overrides for the

[[Page 208]]

control settings) necessary to operate the basic model under the 
required conditions specified by the relevant test procedure. A 
manufacturer may also include with a certification report other 
supplementary items in PDF format for DOE's consideration in performing 
testing under subpart C of this part. For example, for oil-fired 
commercial water heating equipment (other than residential-duty 
commercial water heaters): The allowable range for CO2 
reading in percent (%) and the fuel pump pressure in pounds per square 
inch gauge (psig).
    (d) Certification reports for residential-duty commercial water 
heaters. (1) The requirements of Sec.  429.12 apply; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report for 
equipment must include the following public, equipment-specific 
information:
    (i) Residential-duty commercial gas-fired and oil-fired storage 
water heaters: The uniform energy factor (UEF, rounded to the nearest 
0.01), the rated storage volume in gallons (gal, rounded to the nearest 
1 gal), the first-hour rating in gallons (gal, rounded to the nearest 1 
gal), and the recovery efficiency in percent (%, rounded to the nearest 
1%).
    (ii) Residential-duty commercial electric instantaneous water 
heaters: The uniform energy factor (UEF, rounded to the nearest 0.01), 
the rated storage volume in gallons (gal, rounded to the nearest 1 gal), 
the maximum gallons per minute (gpm, rounded to the nearest 0.1 gpm), 
and the recovery efficiency in percent (%, rounded to the nearest 1%).
    (e) Alternative methods for determining efficiency or energy use for 
commercial water heating equipment can be found in Sec.  429.70 of this 
subpart.

[76 FR 12451, Mar. 7, 2011; 76 FR 24776, May 2, 2011, as amended at 78 
FR 79594, Dec. 31, 2013; 79 FR 25504, May 5, 2014; 80 FR 151, Jan. 5, 
2015; 79 FR 40565, July 11, 2014; 81 FR 79318, Nov. 10, 2016; 81 FR 
96236, Dec. 29, 2016; 81 FR 96236, Dec. 29, 2016]



Sec.  429.45  Automatic commercial ice makers.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to automatic commercial ice 
makers; and
    (2) For each basic model of automatic commercial ice maker selected 
for testing, a sample of sufficient size shall be randomly selected and 
tested to ensure that--
    (i) Any represented value of maximum energy use or other measure of 
energy consumption of a basic model for which consumers would favor 
lower values shall be greater than or equal to the higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.105
    

Or,
    (B) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.10, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.076


[[Page 209]]



and
    (ii) Any represented value of the energy efficiency or other measure 
of energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.107
    

Or,
    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.90, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.077

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to automatic commercial ice makers; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The maximum 
energy use in kilowatt hours per 100 pounds of ice (kWh/100 lbs ice), 
the maximum condenser water use in gallons per 100 pounds of ice (gal/
100 lbs ice), the harvest rate in pounds of ice per 24 hours (lbs ice/24 
hours), the type of cooling, and the equipment type.

[76 FR 12451, Mar. 7, 2011; 76 FR 24776, May 2, 2011]



Sec.  429.46  Commercial clothes washers.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to commercial clothes 
washers; and
    (2) For each basic model of commercial clothes washers, a sample of 
sufficient size shall be randomly selected and tested to ensure that--
    (i) Any represented value of the water factor or other measure of 
energy or water consumption of a basic model for which consumers would 
favor lower values shall be greater than or equal to the higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.109
    
    Or,
    (B) The upper 97\1/2\ percent confidence limit (UCL) of the true 
mean divided by 1.05, where:

[[Page 210]]

[GRAPHIC] [TIFF OMITTED] TR02MY11.078


and
    (ii) Any represented value of the modified energy factor or other 
measure of energy or water consumption of a basic model for which 
consumers would favor higher values shall be greater than or equal to 
the higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.111
    
    Or,
    (B) The lower 97\1/2\ percent confidence limit (LCL) of the true 
mean divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.079

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to commercial clothes washers; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information:
    (i) If testing was conducted using Appendix J1 to subpart B of part 
430 of this chapter: The modified energy factor (MEF) in cubic feet per 
kilowatt hour per cycle (cu ft/kWh/cycle); and the water factor (WF) in 
gallons per cubic feet per cycle (gal/cu ft/cycle);
    (ii) If testing was conducted using Appendix J2 to subpart B of part 
430 of this chapter: The modified energy factor (MEFJ2) in cu 
ft/kWh/cycle and the integrated water factor (IWF) in gal/cu ft/cycle.

[76 FR 12451, Mar. 7, 2011; 76 FR 24777, May 2, 2011, as amended at 79 
FR 71630, Dec. 3, 2014]



Sec.  429.47  Distribution transformers.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to distribution 
transformers; and
    (2) For each basic model of distribution transformer, efficiency 
must be

[[Page 211]]

determined either by testing, in accordance with Sec.  431.193 and the 
provisions of this section, or by application of an AEDM that meets the 
requirements of Sec.  429.70 and the provisions of this section.
    (i) For each basic model selected for testing:
    (A) If the manufacturer produces five or fewer units of a basic 
model over 6 months, each unit must be tested. A manufacturer may not 
use a basic model with a sample size of fewer than five units to 
substantiate an AEDM pursuant to Sec.  429.70.
    (B) If the manufacturer produces more than five units over 6 months, 
a sample of at least five units must be selected and tested.
    (ii) Any represented value of efficiency of a basic model must 
satisfy the condition:
[GRAPHIC] [TIFF OMITTED] TR07MR11.113

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to distribution transformers except that required information 
in paragraph (b) of this section may be reported by kVA grouping instead 
of by basic model and paragraph (b)(6) of this section does not apply; 
and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: For the most 
and least efficient basic models within each ``kVA grouping'' for which 
part 431 prescribes an efficiency standard, the kVA rating, the 
insulation type (i.e., low-voltage dry-type, medium-voltage dry-type or 
liquid-immersed), the number of phases (i.e., single-phase or three-
phase), and the basic impulse insulation level (BIL) group rating (for 
medium-voltage dry-types).
    (c) Alternative methods for determining efficiency or energy use for 
distribution transformers can be found in Sec.  429.70 of this subpart.
    (d) Kilovolt ampere (kVA) grouping. As used in this section, a ``kVA 
grouping'' is a group of basic models which all have the same kVA 
rating, have the same insulation type (i.e., low-voltage dry-type, 
medium-voltage dry-type or liquid-immersed), have the same number of 
phases (i.e., single-phase or three-phase), and, for medium-voltage dry-
types, have the same BIL group rating (i.e., 20-45 kV BIL, 46-95 kV BIL 
or greater than or equal to96 kV BIL).



Sec.  429.48  Illuminated exit signs.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to illuminated exit signs; 
and
    (2) For each basic model of illuminated exit sign selected for 
testing, a sample of sufficient size shall be randomly selected and 
tested to ensure that--
    (i) Any represented value of input power demand or other measure of 
energy consumption of a basic model for which consumers would favor 
lower values shall be greater than or equal to the higher of:
    (A) The mean of the sample, where:

[[Page 212]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.114


Or,

    (B) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.10, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.080


and

    (ii) Any represented value of the energy efficiency or other measure 
of energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.116
    

Or,

    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.90, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.081

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to illuminated exit signs; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The input 
power demand in watts (W) and the number of faces.

[76 FR 12451, Mar. 7, 2011; 76 FR 24778, May 2, 2011]

[[Page 213]]



Sec.  429.49  Traffic signal modules and pedestrian modules.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to traffic signal modules 
and pedestrian modules; and
    (2) For each basic model of traffic signal module or pedestrian 
module selected for testing, a sample of sufficient size shall be 
randomly selected and tested to ensure that--
    (i) Any represented value of estimated maximum and nominal wattage 
or other measure of energy consumption of a basic model for which 
consumers would favor lower values shall be greater than or equal to the 
higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.118
    

Or,

    (B) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.10, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.082


and

    (ii) Any represented value of the energy efficiency or other measure 
of energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.120
    

Or,

    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.90, where:

[[Page 214]]

[GRAPHIC] [TIFF OMITTED] TR02MY11.083

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to traffic signal modules and pedestrian modules; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The maximum 
wattage at 74 degrees Celsius ([deg]C) in watts (W), the nominal wattage 
at 25 degrees Celsius ([deg]C) in watts (W), and the signal type.

[76 FR 12451, Mar. 7, 2011; 76 FR 24778, May 2, 2011]



Sec.  429.50  Commercial unit heaters.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to commercial unit heaters; 
and
    (2) [Reserved]
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to commercial unit heaters; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The type of 
ignition system and a declaration that the manufacturer has incorporated 
the applicable design requirements.



Sec.  429.51  Commercial pre-rinse spray valves.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 apply to commercial prerinse spray valves; 
and
    (2) For each basic model of commercial prerinse spray valve, a 
sample of sufficient size must be randomly selected and tested to ensure 
that any represented value of flow rate must be greater than or equal to 
the higher of:
    (i) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR30DE15.002
    
and, x is the sample mean;
n is the number of samples; and
xi is the i\th\ sample; Or,

    (ii) The upper 95-percent confidence limit (UCL) of the true mean 
divided by 1.10, where:
[GRAPHIC] [TIFF OMITTED] TR30DE15.003

and, x is the sample mean;
s is the sample standard deviation;
n is the number of samples; and
t0.95 is the t statistic for a 95-percent two-tailed 
          confidence interval with n-1 degrees of freedom (from Appendix 
          A of this subpart).

[[Page 215]]

    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to commercial prerinse spray valves; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following public product-specific information: The flow 
rate, in gallons per minute (gpm), rounded to the nearest 0.01 gpm, and 
the corresponding spray force, in ounce-force (ozf), rounded to the 
nearest 0.1 ozf.

[76 FR 12451, Mar. 7, 2011; 76 FR 24779, May 2, 2011, as amended at 78 
FR 62986, Oct. 23, 2013; 80 FR 81453, Dec. 30, 2015; 81 FR 4801, Jan. 
27, 2016]



Sec.  429.52  Refrigerated bottled or canned beverage vending machines.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to refrigerated bottled or 
canned beverage vending machine; and
    (2) For each basic model of refrigerated bottled or canned beverage 
vending machine selected for testing, a sample of sufficient size shall 
be randomly selected and tested to ensure that--
    (i) Any represented value of energy consumption or other measure of 
energy consumption of a basic model for which consumers would favor 
lower values shall be greater than or equal to the higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.126
    

Or,

    (B) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.10, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.086


and

    (ii) Any represented value of the energy efficiency or other measure 
of energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.128
    

[[Page 216]]



Or,

    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.90, where:
[GRAPHIC] [TIFF OMITTED] TR02MY11.087

    (3) The representative value of refrigerated volume of a basic model 
reported in accordance with paragraph (b)(2) of this section shall be 
the mean of the refrigerated volumes measured for each tested unit of 
the basic model and determined in accordance with the test procedure in 
Sec.  431.296.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to refrigerated bottled or canned beverage vending machine; 
and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following additional public, equipment-specific information:
    (i) When using appendix A of subpart Q of part 431of this chapter, 
the daily energy consumption in kilowatt hours per day (kWh/day), the 
refrigerated volume (V) in cubic feet (ft\3\), whether testing was 
conducted with payment mechanism in place and operational, and, if 
applicable, the lowest application product temperature in degrees 
Fahrenheit ( [deg]F), if applicable.
    (ii) When using appendix B of subpart Q of part 431of this chapter, 
the daily energy consumption in kilowatt hours per day (kWh/day), the 
refrigerated volume (V) in cubic feet (ft\3\), whether testing was 
conducted with payment mechanism in place and operational, whether 
testing was conducted using an accessory low power mode, whether rating 
was based on the presence of a refrigeration low power mode, and, if 
applicable, the lowest application product temperature in degrees 
Fahrenheit ( [deg]F).

[76 FR 12451, Mar. 7, 2011; 76 FR 24779, May 2, 2011, as amended at 76 
FR 38292, June 30, 2011; 80 FR 45792, July 31, 2015; 81 FR 1112, Jan. 8, 
2016]



Sec.  429.53  Walk-in coolers and walk-in freezers.

    (a) Determination of represented value. (1) The requirements of 
Sec.  429.11 apply to walk-in coolers and walk-in freezers; and
    (2) For each basic model of walk-in cooler and walk-in freezer 
refrigeration system, the annual walk-in energy factor (AWEF) must be 
determined either by testing, in accordance with Sec.  431.304 of this 
chapter and the provisions of this section, or by application of an AEDM 
that meets the requirements of Sec.  429.70 and the provisions of this 
section.
    (i) Applicable test procedure. If the AWEF is determined by testing, 
refer to the following for the appropriate test procedure to use:
    (A) Unit cooler test procedure. For unit coolers tested alone, use 
the test procedure in 10 CFR part 431, subpart R, appendix C. Follow the 
general testing provisions in appendix C, sections 3.1 and 3.2, and the 
equipment-specific provisions in appendix C, section 3.3.
    (B) Dedicated condensing unit test procedure. For dedicated 
condensing units tested alone, use the test procedure in 10 CFR part 
431, subpart R, appendix C. Follow the general testing provisions in 
appendix C, sections 3.1 and 3.2, and the product-specific provisions in 
appendix C, section 3.4. Outdoor dedicated

[[Page 217]]

condensing refrigeration systems that are also designated for use in 
indoor applications must be tested and certified as both an outdoor 
dedicated condensing refrigeration system and indoor dedicated 
condensing refrigeration system.
    (C) Single-Package dedicated system test procedure. For single-
package dedicated systems, use the test procedure in 10 CFR part 431, 
subpart R, appendix C. Follow the general testing provisions in appendix 
C, sections 3.1 and 3.2, and the product-specific provisions in appendix 
C, section 3.3.
    (D) Matched refrigeration system test procedure. For matched 
refrigeration systems, use the test procedure in 10 CFR part 431, 
subpart R, appendix C. Follow the general testing provisions in appendix 
C, sections 3.1 and 3.2, and the product-specific provisions in appendix 
C, section 3.3. It is not necessary to rate a matched refrigeration 
system if the constituent unit cooler(s) and dedicated condensing unit 
have been tested and rated as specified paragraphs (a)(2)(i)(A) and (B) 
of this section, respectively. However, if a manufacturer wishes to 
represent the efficiency of the matched refrigeration system as distinct 
from the efficiency of either constituent component, or if the 
manufacturer cannot rate one or both of the constituent components using 
the specified method, the manufacturer must test and certify the matched 
refrigeration system as specified in this paragraph (a)(2)(i)(D).
    (ii) Units to be tested. (A) If the represented value for a given 
refrigeration system basic model is determined through testing, the 
general requirements of Sec.  429.11 apply; and
    (B) For each basic model, a sample of sufficient size shall be 
randomly selected and tested to ensure that any represented value of 
AWEF or other measure of energy efficiency of a basic model for which 
consumers would favor higher values shall be less than or equal to the 
lower of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR28DE16.000
    
    And x is the sample mean; n is the number of samples; and 
xi is the i\th\ sample, or,
    (2) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR28DE16.001

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A to subpart B).
    (C) The represented value of net capacity shall be the average of 
the capacities measured for the sample selected.
    (iii) Alternative efficiency determination methods. In lieu of 
testing, pursuant to the requirements of Sec.  429.70 and the provisions 
of this section, a represented value of AWEF for a basic model of a 
walk-in cooler or walk-in freezer refrigeration system may be determined 
through the application of an AEDM, where:
    (A) Any represented value of AWEF or other measure of energy 
efficiency of a basic model for which consumers would favor higher 
values shall be less than or equal to the output of the

[[Page 218]]

AEDM and greater than or equal to the Federal standard for that basic 
model.
    (B) The represented value of net capacity must be the net capacity 
simulated by the AEDM.
    (3) For each basic model of walk-in cooler and walk-in freezer 
panel, display door, and non-display door, the R-value and/or energy 
consumption must be determined by testing, in accordance with Sec.  
431.304 of this chapter and the provisions of this section.
    (i) Applicable test procedure. Refer to the following for the 
appropriate test procedure:
    (A) Display door test procedure. For determining the energy 
consumption and rated surface area in square feet, use the test 
procedure in 10 CFR part 431, subpart R, appendix A.
    (B) Non-display door test procedure. For determining the energy 
consumption and rated surface area in square feet, use the test 
procedure in 10 CFR part 431, subpart R, appendix A. For determining the 
R-value, use the test procedure in 10 CFR part 431, subpart R, appendix 
B.
    (C) Panel test procedure. For determining the R-value, use the test 
procedure in 10 CFR part 431, subpart R, appendix B.
    (ii) Units to be tested. (A) The general requirements of Sec.  
429.11 apply; and
    (B) For each basic model, a sample of sufficient size shall be 
randomly selected and tested to ensure that--
    (1) Any represented value of door energy consumption or other 
measure of energy use of a basic model for which consumers would favor 
lower values shall be greater than or equal to the higher of:
    (i) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR28DE16.002
    
    And x is the sample mean; n is the number of samples; and 
xi is the i\th\ sample, or,
    (ii) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR28DE16.003

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A to subpart B).
    (2) Any represented R-value or other measure of energy efficiency of 
a basic model for which consumers would favor higher values shall be 
less than or equal to the lower of:
    (i) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR28DE16.004
    

[[Page 219]]


    And x is the sample mean; n is the number of samples; and 
xi is the i\th\ sample, or,
    (ii) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR28DE16.005

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t 0.95 is the statistic for a 95% 
one-tailed confidence interval with n-1 degree of freedom (from appendix 
A to subpart B).
    (b) Certification reports. (1) The requirements of Sec.  429.12 
apply to manufacturers of walk-in cooler and walk-in freezer panels, 
doors, and refrigeration systems, and;
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following public product-specific information:
    (i) For doors: The door type, R-value of the door insulation, and a 
declaration that the manufacturer has incorporated the applicable design 
requirements. In addition, for those walk-in coolers and walk-in 
freezers with transparent reach-in doors and windows, the glass type of 
the doors and windows (e.g., double-pane with heat reflective treatment, 
triple-pane glass with gas fill), and the power draw of the antisweat 
heater in watts per square foot of door opening must also be included.
    (ii) For walk-in cooler and walk-in freezer panels: The R-value of 
the insulation.
    (iii) For walk-in cooler and walk-in freezer refrigeration systems: 
The installed motor's functional purpose (i.e., evaporator fan motor or 
condenser fan motor), its rated horsepower, and a declaration that the 
manufacturer has incorporated the applicable walk-in-specific design 
requirements into the motor.
    (3) Pursuant to Sec.  429.12(b)(13), starting on June 5, 2017, a 
certification report must include the following public product-specific 
information in addition to the information listed in paragraph (b)(2) of 
this section:
    (i) For walk-in cooler and walk-in freezer doors: The door energy 
consumption and rated surface area in square feet.
    (ii) For refrigeration systems that are medium-temperature dedicated 
condensing units, medium-temperature single-package dedicated systems, 
or medium-temperature matched systems: The refrigeration system AWEF, 
net capacity, the configuration tested for certification (e.g., 
condensing unit only, unit cooler only, single-package dedicated system, 
or matched-pair), and if an indoor dedicated condensing unit is also 
certified as an outdoor dedicated condensing unit and, if so, the basic 
model number for the outdoor dedicated condensing unit.
    (4) Pursuant to Sec.  429.12(b)(13), starting on June 5, 2017, a 
certification report must include the following product-specific 
information in addition to the information listed in paragraphs (b)(2) 
and (3) of this section:
    (i) For walk-in cooler and walk-in freezer doors: the rated power of 
each light, heater wire, and/or other electricity consuming device 
associated with each basic model of display and non-display door; and 
whether such device(s) has a timer, control system, or other demand-
based control reducing the device's power consumption.
    (5) When certifying compliance to the AWEF refrigeration standards 
for WICF refrigeration systems except those specified in (b)(3)(ii) of 
this section, a certification report must include the following public 
product-specific information in addition to the information listed in 
paragraph (b)(2) of this section: For refrigeration systems that are 
low-temperature dedicated condensing units, low-temperature matched 
systems, low-temperature single-package dedicated systems, or medium and 
low-temperature unit coolers: The refrigeration system AWEF, net 
capacity, the configuration tested for certification (e.g., condensing 
unit

[[Page 220]]

only, unit cooler only, single-package dedicated system, or matched-
pair), and if an indoor dedicated condensing unit is also certified as 
an outdoor dedicated condensing unit and, if so, the basic model number 
for the outdoor dedicated condensing unit.

[81 FR 95799, Dec. 28, 2016]



Sec.  429.54  Metal halide lamp ballasts and fixtures.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to metal halide lamp 
ballasts; and
    (2) For each basic model of metal halide lamp ballast selected for 
testing, a sample of sufficient size, not less than four, shall be 
selected at random and tested to ensure that:
    (i) Any represented value of estimated energy efficiency calculated 
as the measured output power to the lamp divided by the measured input 
power to the ballast (Pout/Pin), of a basic model 
is less than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07MR11.130
    

Or,

    (B) The lower 99-percent confidence limit (LCL) of the true mean 
divided by 0.99.
[GRAPHIC] [TIFF OMITTED] TR02AU11.090

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.99 is the t statistic for a 99% 
two-tailed confidence interval with n-1 degrees of freedom (from 
appendix A).
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to metal halide lamp ballasts; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The minimum 
ballast efficiency in percent (%), the lamp wattage in watts (W), and 
the type of ballast (e.g., pulse-start, magnetic probe-start, and non-
pulse start electronic).

[76 FR 12451, Mar. 7, 2011; 76 FR 24780, May 2, 2011; 76 FR 46202, Aug. 
2, 2011]



Sec.  429.56  Integrated light-emitting diode lamps.

    (a) Determination of Represented Value. Manufacturers must determine 
the represented value, which includes the certified rating, for each 
basic model of integrated light-emitting diode lamps by testing, in 
conjunction with the sampling provisions in this section.
    (1) Units to be tested.
    (i) The general requirements of Sec.  429.11 (a) are applicable 
except that the sample must be comprised of production units; and
    (ii) For each basic model of integrated light-emitting diode lamp, 
the minimum number of units tested must be no less than 10 and the same 
sample comprised of the same units must be used for testing all metrics. 
If more than 10 units are tested as part of the sample, the total number 
of units must be a multiple of two. For each basic model, a sample of 
sufficient size must be randomly selected and tested to ensure that:
    (A) Represented values of initial lumen output, lamp efficacy, color 
rendering index (CRI), power factor, or other measure of energy 
consumption of a basic model for which consumers would favor higher 
values are less than or equal to the lower of:
    (1) The mean of the sample, where:

[[Page 221]]

[GRAPHIC] [TIFF OMITTED] TR01JY16.009


and, x is the sample mean; n is the number of units; and xi 
is the measured value for the i\th\ unit; Or,
    (2) The lower 99 percent confidence limit (LCL) of the true mean 
divided by 0.96; or the lower 99 percent confidence limit (LCL) of the 
true mean divided by 0.98 for CRI and power factor, where:
[GRAPHIC] [TIFF OMITTED] TR01JY16.010


and, x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.99 is the t statistic for a 99 
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A to this subpart).
    (B) Represented values of input power, standby mode power or other 
measure of energy consumption of a basic model for which consumers would 
favor lower values are greater than or equal to the higher of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR01JY16.011
    

and, x is the sample mean; n is the number of units; and xi 
is the measured value for the i\th\ unit;

Or,
    (2) The upper 99 percent confidence limit (UCL) of the true mean 
divided by 1.02, where:
[GRAPHIC] [TIFF OMITTED] TR01JY16.012


and, x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.99 is the t statistic for a 99 
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A to this subpart);

    (C) Represented values of correlated color temperature (CCT) of a 
basic model must be equal to the mean of the sample, where:
[GRAPHIC] [TIFF OMITTED] TR01JY16.013


[[Page 222]]



and, x is the sample mean; n is the number of units in the sample; and 
xi is the measured CCT for the i\th\ unit.

    (D) The represented value of lifetime of an integrated light-
emitting diode lamp must be equal to or less than the median time to 
failure of the sample (calculated as the arithmetic mean of the time to 
failure of the two middle sample units when the numbers are sorted in 
value order) rounded to the nearest hour.
    (2) The represented value of life (in years) of an integrated light-
emitting diode lamp must be calculated by dividing the lifetime of an 
integrated light-emitting diode lamp by the estimated annual operating 
hours as specified in 16 CFR 305.15(b)(3)(iii).
    (3) The represented value of estimated annual energy cost for an 
integrated light-emitting diode lamp, expressed in dollars per year, 
must be the product of the input power in kilowatts, an electricity cost 
rate as specified in 16 CFR 305.15(b)(1)(ii), and an estimated average 
annual use as specified in 16 CFR 305.15(b)(1)(ii).
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to integrated light-emitting diode lamps;
    (2) Values reported in certification reports are represented values. 
Pursuant to Sec.  429.12(b)(13), a certification report must include the 
following public product-specific information: The testing laboratory's 
NVLAP identification number or other NVLAP-approved accreditation 
identification, the date of manufacture, initial lumen output in lumens 
(lm), input power in watts (W), lamp efficacy in lumens per watt (lm/W), 
CCT in kelvin (K), power factor, lifetime in years (and whether value is 
estimated), and life (and whether value is estimated). For lamps with 
multiple modes of operation (such as variable CCT or CRI), the 
certification report must also list which mode was selected for testing 
and include detail such that another laboratory could operate the lamp 
in the same mode. Lifetime and life are estimated values until testing 
is complete. When reporting estimated values, the certification report 
must specifically describe the prediction method, which must be 
generally representative of the methods specified in appendix BB. 
Manufacturers are required to maintain records per Sec.  429.71 of the 
development of all estimated values and any associated initial test 
data.
    (c) Rounding requirements. (1) Round input power to the nearest 
tenth of a watt.
    (2) Round lumen output to three significant digits.
    (3) Round lamp efficacy to the nearest tenth of a lumen per watt.
    (4) Round correlated color temperature to the nearest 100 Kelvin.
    (5) Round color rendering index to the nearest whole number.
    (6) Round power factor to the nearest hundredths place.
    (7) Round lifetime to the nearest whole hour.
    (8) Round standby mode power to the nearest tenth of a watt.

[81 FR 43425, July 1, 2016]



Sec.  429.57  General service lamps.

    (a) Determination of represented value. Manufacturers must determine 
represented values, which includes certified ratings, for each basic 
model of general service lamp in accordance with following sampling 
provisions.
    (1) The requirements of Sec.  429.11 are applicable to general 
service lamps, and
    (2) For general service incandescent lamps, use Sec.  429.27(a);
    (3) For compact fluorescent lamps, use Sec.  429.35(a);
    (4) For integrated LED lamps, use Sec.  429.56(a);
    (5) For other incandescent lamps, use Sec.  429.27(a);
    (6) For other fluorescent lamps, use Sec.  429.35(a); and
    (7) For OLED lamps and non-integrated LED lamps, use Sec.  
429.56(a).
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to general service lamps;
    (2) Values reported in certification reports are represented values;
    (3) For general service incandescent lamps, use Sec.  429.27(b);
    (4) For compact fluorescent lamps, use Sec.  429.35(b);
    (5) For integrated LED lamps, use Sec.  429.56(b); and
    (6) For other incandescent lamps, for other fluorescent lamps, for 
OLED lamps and non-integrated LED lamps,

[[Page 223]]

pursuant to Sec.  429.12(b)(13), a certification report must include the 
following public product-specific information: The testing laboratory's 
ILAC accreditation body's identification number or other approved 
identification assigned by the ILAC accreditation body, initial lumen 
output, input power, lamp efficacy, and power factor. For non-integrated 
LED lamps, the certification report must also include the input voltage 
and current used for testing.
    (c) Rounding requirements. (1) Round input power to the nearest 
tenth of a watt.
    (2) Round initial lumen output to three significant digits.
    (3) Round lamp efficacy to the nearest tenth of a lumen per watt.
    (4) Round power factor to the nearest hundredths place.
    (5) Round standby mode power to the nearest tenth of a watt.

[81 FR 72503, Oct. 20, 2016]



Sec.  429.58  Furnace fans.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to furnace fans; and
    (2) For each basic model of furnace fan within the scope of appendix 
AA of subpart B of part 430, a sample of sufficient size shall be 
randomly selected and tested to ensure that any represented value of fan 
energy rating (FER), rounded to the nearest integer, shall be greater 
than or equal to the higher of:
    (i) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR03JA14.005
    
    And, x is the sample mean; n is the number of samples; and xi is the 
measured value for the i\th\ sample; Or,
    (ii) The upper 90 percent confidence limit (UCL) of the true mean 
divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR03JA14.006

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.90 is the t statistic for a 90% one-tailed 
confidence interval with n-1 degrees of freedom (from Appendix A).
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to residential furnace fans; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The fan 
energy rating (FER) in watts per thousand cubic feet per minute (W/1000 
cfm); the calculated maximum airflow at the reference system external 
static pressure (ESP) in cubic feet per minute (cfm); the control system 
configuration for achieving the heating and constant-circulation 
airflow-control settings required for determining FER as specified in 
the furnace fan test procedure (10 CFR part 430, subpart B, appendix 
AA); the measured steady-state gas, oil, or electric heat input rate 
(QIN) in the heating setting required for determining FER; 
and for modular blowers, the manufacturer and model number of the 
electric heat resistance kit with which it is equipped for certification 
testing.

[79 FR 520, Jan. 3, 2014, as amended at 79 FR 38208, July 3, 2014]

[[Page 224]]



Sec.  429.59  Pumps.

    (a) Determination of represented value. Manufacturers must determine 
the represented value, which includes the certified rating, for each 
basic model by testing (which includes the calculation-based methods in 
the test procedure), in conjunction with the following sampling 
provisions. Manufacturers must update represented values to account for 
any change in the applicable motor standards in Sec.  431.25 of this 
chapter and certify amended values as of the next annual certification.
    (1) Units to be tested. The requirements of Sec.  429.11 are 
applicable to pumps; and for each basic model, a sample of sufficient 
size shall be randomly selected and tested to ensure that--
    (i) Any value of the constant or variable load pump energy index or 
other measure of energy consumption must be greater than or equal to the 
higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR25JA16.025
    
    and x is the sample mean; n is the number of samples; and 
xi is the maximum of the i\th\ sample;
    Or,
    (B) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR25JA16.026

    and x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95 
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A to subpart B of part 429);
    and
    (ii) Any representation of weighted energy factor of a basic model 
must be less than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR07AU17.008
    
    And x is the sample mean; n is the number of samples; and 
xi is the maximum of the ith sample; or,
    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR07AU17.009


[[Page 225]]


    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95 
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A of this subpart).
    (2) Other representations--(i) Rated hydraulic horsepower. The 
representative value of rated hydraulic horsepower of a basic model of 
dedicated-purpose pool pump must be the mean of the rated hydraulic 
horsepower for each tested unit.
    (ii) Dedicated-purpose pool pump motor total horsepower. The 
representative value of dedicated-purpose pool pump motor total 
horsepower of a basic model of dedicated-purpose pool pump must be the 
mean of the dedicated-purpose pool pump motor total horsepower for each 
tested unit.
    (iii) True power factor (PFi). The representative value 
of true power factor at each load point i of a basic model of dedicated-
purpose pool pump must be the mean of the true power factors at that 
load point for each tested unit of dedicated-purpose pool pump.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to pumps; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following public product-specific information:
    (i) For a pump subject to the test methods prescribed in section III 
of appendix A to subpart Y of part 431 of this chapter: 
PEICL; pump total head in feet (ft.) at BEP and nominal 
speed; volume per unit time (flow rate) in gallons per minute (gpm) at 
BEP and nominal speed; the nominal speed of rotation in revolutions per 
minute (rpm); calculated driver power input at each load point i (Pini), 
corrected to nominal speed, in horsepower (hp); full impeller diameter 
in inches (in.); and for RSV and ST pumps, the number of stages tested.
    (ii) For a pump subject to the test methods prescribed in section IV 
or V of appendix A to subpart Y of part 431 of this chapter: 
PEICL; pump total head in feet (ft.) at BEP and nominal 
speed; volume per unit time (flow rate) in gallons per minute (gpm) at 
BEP and nominal speed; the nominal speed of rotation in revolutions per 
minute (rpm); driver power input at each load point i (Pini), corrected 
to nominal speed, in horsepower (hp); full impeller diameter in inches 
(in.); whether the PEICL is calculated or tested; and for RSV 
and ST pumps, number of stages tested.
    (iii) For a pump subject to the test methods prescribed in section 
VI or VII of appendix A to subpart Y of part 431 of this chapter: 
PEIVL; pump total head in feet (ft.) at BEP and nominal 
speed; volume per unit time (flow rate) in gallons per minute (gpm) at 
BEP and nominal speed; the nominal speed of rotation in revolutions per 
minute (rpm); driver power input (measured as the input power to the 
driver and controls) at each load point i (Pini), corrected to nominal 
speed, in horsepower (hp); full impeller diameter in inches (in.); 
whether the PEIVL is calculated or tested; and for RSV and ST 
pumps, the number of stages tested.
    (iv) For a dedicated-purpose pool pump subject to the test methods 
prescribed in Sec.  431.464(b) of this chapter: weighted energy factor 
(WEF) in kilogallons per kilowatt-hour (kgal/kWh); rated hydraulic 
horsepower in horsepower (hp); the speed configuration for which the 
pump is being rated (i.e., single-speed, two-speed, multi-speed, or 
variable-speed); true power factor at all applicable test procedure load 
points i (dimensionless), as specified in Table 1 of appendix B or C to 
subpart Y of part 431 of this chapter, as applicable; dedicated-purpose 
pool pump nominal motor horsepower in horsepower (hp); dedicated-purpose 
pool pump motor total horsepower in horsepower (hp); dedicated-purpose 
pool pump service factor (dimensionless); for self-priming pool filter 
pumps, non-self-priming pool filter pumps, and waterfall pumps: The 
maximum head (in feet) which is based on the mean of the units in the 
tested sample; a statement regarding whether freeze protection is 
shipped enabled or disabled; for dedicated-purpose pool pumps 
distributed in commerce with freeze protection controls enabled: The 
default dry-bulb air temperature setting (in [deg]F), default run time 
setting (in minutes), and default motor speed (in rpm); for self-priming 
pool filter

[[Page 226]]

pumps a statement regarding whether the pump is certified with NSF/ANSI 
50-2015 (incorporated by reference, see Sec.  429.4) as self-priming; 
and, for self-priming pool filter pumps that are not certified with NSF/
ANSI 50-2015 as self-priming: The vertical lift (in feet) and true 
priming time (in minutes) for the DPPP model.
    (v) For integral cartridge-filter and sand-filter pool pumps, the 
maximum run-time (in hours) of the pool pump control with which the 
integral cartridge-filter or sand-filter pump is distributed in 
commerce.
    (3) Pursuant to Sec.  429.12(b)(13), a certification report may 
include the following public product-specific information:
    (i) For a pump subject to the test methods prescribed in section III 
of appendix A to subpart Y of part 431 of this chapter: Pump efficiency 
at BEP in percent (%) and PERCL.
    (ii) For a pump subject to the test methods prescribed in section IV 
or V of appendix A to subpart Y of part 431 of this chapter: Pump 
efficiency at BEP in percent (%) and PERCL.
    (iii) For a pump subject to the test methods prescribed in section 
VI or VII of appendix A to subpart Y of part 431 of this chapter: Pump 
efficiency at BEP in percent (%) and PERVL.
    (iv) For a dedicated-purpose pool pump subject to the test methods 
prescribed in Sec.  431.464(b) of this chapter: Calculated driver power 
input and flow rate at each load point i (Pi and 
Qi), in horsepower (hp) and gallons per minute (gpm), 
respectively.
    (4) Pursuant to Sec.  429.12(b)(13), a certification report will 
include the following product-specific information:
    (i) For a pump subject to the test methods prescribed in section III 
of appendix A to subpart Y of part 431 of this chapter: The pump 
configuration (i.e., bare pump); and for ST pumps, the bowl diameter in 
inches (in.).
    (ii) For a pump subject to the test methods prescribed in section IV 
or V of appendix A to subpart Y of part 431 of this chapter: The pump 
configuration (i.e., pump sold with an electric motor); for pumps sold 
with electric motors regulated by DOE's energy conservation standards 
for electric motors at Sec.  431.25, the nominal motor efficiency in 
percent (%) and the motor horsepower (hp) for the motor with which the 
pump is being rated; and for ST pumps, the bowl diameter in inches 
(in.).
    (iii) For a pump subject to the test methods prescribed in section 
VI or VII of appendix A to subpart Y of part 431 of this chapter: The 
pump configuration (i.e., pump sold with a motor and continuous or non-
continuous controls); for pumps sold with electric motors regulated by 
DOE's energy conservation standards for electric motors at Sec.  431.25, 
the nominal motor efficiency in percent (%) and the motor horsepower 
(hp) for the motor with which the pump is being rated; and for ST pumps, 
the bowl diameter in inches (in.).
    (c) Individual model numbers. (1) For a pump subject to the test 
methods prescribed in appendix A to subpart Y of part 431 of this 
chapter, each individual model number required to be reported pursuant 
to Sec.  429.12(b)(6) must consist of the following:

----------------------------------------------------------------------------------------------------------------
                                                                          Individual model number(s)
    Equipment configuration (as        Basic model number   ----------------------------------------------------
      distributed in commerce)                                        1                 2                3
----------------------------------------------------------------------------------------------------------------
Bare pump..........................  Number unique to the    Bare pump.........  N/A............  N/A.
                                      basic model.
Bare pump with driver..............  Number unique to the    Bare pump.........  Driver.........  N/A.
                                      basic model.
Bare pump with driver and controls.  Number unique to the    Bare pump.........  Driver.........  Controls.
                                      basic model.
----------------------------------------------------------------------------------------------------------------

    (2) Or must otherwise provide sufficient information to identify the 
specific driver model and/or controls model(s) with which a bare pump is 
distributed.

[81 FR 4144, Jan. 25, 2016, as amended at 81 FR 4430, Jan. 26, 2016; 82 
FR 36918, Aug. 7, 2017]

[[Page 227]]



Sec.  429.60  Commercial packaged boilers.

    (a) Determination of represented value. Manufacturers must determine 
the represented value, which includes the certified rating, for each 
basic model of commercial packaged boilers either by testing in 
accordance with Sec.  431.86 of this chapter, in conjunction with the 
applicable sampling provisions, or by applying an AEDM.
    (1) Units to be tested. (i) If the represented value is determined 
through testing, the general requirements of Sec.  429.11 are 
applicable, except that, if the represented value is determined through 
testing pursuant to Sec.  431.86(c) of this chapter, the number of units 
selected for testing may be one; and
    (ii) For each basic model selected for testing, a sample of 
sufficient size shall be randomly selected and tested to ensure that--
    (A) Any represented value of energy consumption or other measure of 
energy use of a basic model for which consumers would favor lower values 
shall be greater than or equal to the higher of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR05MY14.004
    

and, x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample; Or,
    (2) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.05, where:
[GRAPHIC] [TIFF OMITTED] TR05MY14.005


And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
Appendix A to subpart B of part 429). And,
    (B) Any represented value of energy efficiency or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the lower of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR05MY14.006
    

and, x is the sample mean; n is the number of samples; and xi 
is the i\th\ sample; Or,
    (2) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR05MY14.007


[[Page 228]]



And x is the sample mean; s is the sample standard deviation; n is the 
number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
Appendix A to subpart B of part 429).
    (2) Alternative efficiency determination methods. In lieu of 
testing, a represented value of efficiency or consumption for a basic 
model of commercial packaged boiler must be determined through the 
application of an AEDM pursuant to the requirements of Sec.  429.70 and 
the provisions of this section, where:
    (i) Any represented value of energy consumption or other measure of 
energy use of a basic model for which consumers would favor lower values 
shall be greater than or equal to the output of the AEDM and less than 
or equal to the Federal standard for that basic model; and
    (ii) Any represented value of energy efficiency or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the output of the AEDM and 
greater than or equal to the Federal standard for that basic model.
    (3) The rated input for a basic model reported in accordance with 
paragraph (b)(2) of this section must be the maximum rated input listed 
on the nameplate and in manufacturer literature for the commercial 
packaged boiler basic model. In the case where the nameplate and the 
manufacturer literature are not identical, DOE will use the nameplate on 
the unit for determining the rated input.
    (4) For a model of commercial packaged boiler capable of supplying 
either steam or hot water, representative values for steam mode must be 
based on efficiency in steam mode and representative values for hot 
water mode must be based on either the efficiency in hot water mode or 
steam mode in accordance with the test procedure in Sec.  431.86 of this 
chapter and the provisions of this section.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to commercial packaged boilers; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following public, equipment-specific information:
    (i) If oil-fired, the manufacturer (including brand, if applicable) 
and model number of the burner;
    (ii) The rated input in British thermal units per hour (Btu/h);
    (iii) The combustion efficiency in percent (%) to the nearest tenth 
of one percent or thermal efficiency in percent (%) to the nearest one 
tenth of one percent, as specified in Sec.  431.87 of this chapter; and
    (iv) For a basic model of commercial packaged boiler that cannot be 
tested using the standard inlet temperatures required in appendix A to 
subpart E of part 431, the average inlet water temperature measured at 
Point B in Figure C9 of ANSI/AHRI Standard 1500-2015 (incorporated by 
reference, see Sec.  429.4) at which the model was tested.
    (3) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following additional equipment-specific information:
    (i) Whether the basic model is engineered-to-order; and
    (ii) For any basic model rated with an AEDM, whether the 
manufacturer elects the witness test option for verification testing. 
(See Sec.  429.70(c)(5)(iii) for options). However, the manufacturer may 
not select more than 10% of AEDM-rated basic models to be eligible for 
witness testing.
    (iii) For basic models of commercial packaged boilers that have a 
rated input greater than 5,000,000 Btu/h, a declaration about whether 
the certified efficiency rating is based on testing conducted pursuant 
to Sec.  431.86(c) of this chapter.
    (4) Pursuant to Sec.  429.12(b)(13), a certification report may 
include supplemental testing instructions in PDF format. If necessary to 
run a valid test, the equipment-specific, supplemental information must 
include any additional testing and testing set up instructions (e.g., 
specific operational or control codes or settings), which would be 
necessary to operate the basic model under the required conditions 
specified by the relevant test procedure. A manufacturer may also 
include with a certification report other supplementary items in PDF 
format (e.g., manuals) for

[[Page 229]]

DOE consideration in performing testing under subpart C of this part.
    (5) Any field tested pursuant to Sec.  431.86(c) of this chapter 
basic model of a commercial packaged boiler that has not been previously 
certified through testing or an AEDM must be certified within 15 days of 
commissioning.
    (c) Alternative methods for determining efficiency or energy use for 
commercial packaged boilers can be found in Sec.  429.70.

[79 FR 25504, May 5, 2014, as amended at 80 FR 151, Jan. 5, 2015; 81 FR 
89303, Dec. 9, 2016]



Sec.  429.61  Consumer miscellaneous refrigeration products.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to miscellaneous 
refrigeration products; and
    (2) For each basic model of miscellaneous refrigeration product, a 
sample of sufficient size shall be randomly selected and tested to 
ensure that--
    (i) Any represented value of estimated annual operating cost, energy 
consumption, or other measure of energy consumption of a basic model for 
which consumers would favor lower values shall be greater than or equal 
to the higher of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR18JY16.000
    
    And, x is the sample mean; n is the number of samples; and 
xi is the ith sample; or
    (B) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.10, where:
[GRAPHIC] [TIFF OMITTED] TR18JY16.001

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A of this subpart).

and
    (ii) Any represented value of the energy factor or other measure of 
energy consumption of a basic model for which consumers would favor 
higher values shall be less than or equal to the lower of:
    (A) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR18JY16.002
    
    And, x is the sample mean; n is the number of samples; and 
xi is the ith sample; or
    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.90, where:

[[Page 230]]

[GRAPHIC] [TIFF OMITTED] TR18JY16.003

    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95% 
one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A of this subpart).
    (3) The value of total refrigerated volume of a basic model reported 
in accordance with paragraph (b)(2) of this section shall be the mean of 
the total refrigerated volumes measured for each tested unit of the 
basic model or the total refrigerated volume of the basic model as 
calculated in accordance with Sec.  429.72(d). The value of adjusted 
total volume of a basic model reported in accordance with paragraph 
(b)(2) of this section shall be the mean of the adjusted total volumes 
measured for each tested unit of the basic model or the adjusted total 
volume of the basic model as calculated in accordance with Sec.  
429.72(d).
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to miscellaneous refrigeration products; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report must 
include the following public product-specific information: The annual 
energy use in kilowatt hours per year (kWh/yr); the total refrigerated 
volume in cubic feet (cu ft) and the total adjusted volume in cubic feet 
(cu ft).
    (3) Pursuant to Sec.  429.12(b)(13), a certification report coolers 
or combination cooler refrigeration products shall include the following 
additional product-specific information: Whether the basic model has 
variable defrost control (in which case, manufacturers must also report 
the values, if any, of CTL and CTM (for an 
example, see section 5.2.1.3 in appendix A to subpart B of part 430 of 
this chapter) used in the calculation of energy consumption), whether 
the basic model has variable anti-sweat heater control (in which case, 
manufacturers must also report the values of heater Watts at the ten 
humidity levels 5%, 15%, through 95% used to calculate the variable 
anti-sweat heater ``Correction Factor''), and whether testing has been 
conducted with modifications to the standard temperature sensor 
locations specified by the figures referenced in section 5.1 of appendix 
A to subpart B of part 430 of this chapter.
    (c) Rounding requirements for representative values, including 
certified and rated values. (1) The represented value of annual energy 
use must be rounded to the nearest kilowatt hour per year.
    (2) The represented value of total refrigerated volume must be 
rounded to the nearest 0.1 cubic foot.
    (3) The represented value of adjusted total volume must be rounded 
to the nearest 0.1 cubic foot.
    (d) Product category determination. Each basic model of 
miscellaneous refrigeration product must be certified according to the 
appropriate product category as defined in Sec.  430.2 based on 
compartment volumes and compartment temperatures.
    (1) Compartment volumes used to determine product category shall be 
the mean of the measured compartment volumes for each tested unit of the 
basic model according to the provisions in section 5.3 of appendix A to 
subpart B of part 430 of this chapter, or the compartment volumes of the 
basic model as calculated in accordance with Sec.  429.72(d); and
    (2) Compartment temperatures used to determine product category 
shall be the mean of the measured compartment temperatures at the 
coldest setting for each tested unit of the basic model according to the 
provisions section 5.1 of appendix A to subpart B of part 430 of this 
chapter. For cooler compartments with temperatures below 39 [deg]F (3.9 
[deg]C) but no lower than 37 [deg]F (2.8 [deg]C), the compartment 
temperatures used to determine product category shall also include the 
mean of the measured compartment temperatures at the warmest setting for 
each

[[Page 231]]

tested unit of the basic model according to the provisions section 5.1 
of appendix A to subpart B of part 430 of this chapter.

[81 FR 46790, July 18, 2016]



Sec.  429.62  Portable air conditioners.

    (a) Sampling plan for selection of units for testing. (1) The 
requirements of Sec.  429.11 are applicable to portable air 
conditioners; and
    (2) For each basic model of portable air conditioner, a sample of 
sufficient size must be randomly selected and tested to ensure that--
    (i) Any represented value of energy consumption or other measure of 
energy consumption of a basic model for which consumers would favor 
lower values is greater than or equal to the higher of:
    (A) The mean of the sample:
    [GRAPHIC] [TIFF OMITTED] TR01JN16.001
    
Where:

x is the sample mean;
xi is the ith sample; and
n is the number of units in the test sample.

    Or,
    (B) The upper 95 percent confidence limit (UCL) of the true mean 
divided by 1.10:
[GRAPHIC] [TIFF OMITTED] TR01JN16.002

Where:

x is the sample mean;
s is the sample standard deviation;
n is the number of units in the test sample; and
t0.95 is the t statistic for a 95% one-tailed confidence 
          interval with n-1 degrees of freedom.

    And,
    (ii) Any represented value of the combined energy efficiency ratio 
or other measure of energy consumption of a basic model for which 
consumers would favor higher values is less than or equal to the lower 
of:
    (A) The mean of the sample:
    [GRAPHIC] [TIFF OMITTED] TR01JN16.003
    
Where:

x is the sample mean;
xi is the ith sample; and
n is the number of units in the test sample.

    Or,
    (B) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.90:
[GRAPHIC] [TIFF OMITTED] TR01JN16.004

Where:

x is the sample mean;
s is the sample standard deviation;

[[Page 232]]

n is the number of units in the test sample; and
t0.95 is the t statistic for a 95% one-tailed confidence 
          interval with n-1 degrees of freedom.

    And,
    (3) The value of seasonally adjusted cooling capacity of a basic 
model must be the mean of the seasonally adjusted cooling capacities for 
each tested unit of the basic model. Round the mean seasonally adjusted 
cooling capacity value to the nearest 50, 100, 200, or 500 Btu/h, 
depending on the magnitude of the calculated seasonally adjusted cooling 
capacity, in accordance with Table 1 of ANSI/AHAM PAC-1-2015, 
(incorporated by reference, see Sec.  429.4), ``Multiples for reporting 
Dual Duct Cooling Capacity, Single Duct Cooling Capacity, Spot Cooling 
Capacity, Water Cooled Condenser Capacity and Power Input Ratings.''
    (4) Round the value of combined energy efficiency ratio of a basic 
model to the nearest 0.1 Btu/Wh.
    (5) Single-duct and dual-duct portable air conditioners distributed 
in commerce by the manufacturer with multiple duct configuration options 
that meet DOE's definitions for single-duct portable AC and dual-duct 
portable AC, must be rated and certified under both applicable duct 
configurations.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to single-duct and dual-duct portable air conditioners; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report shall 
include the following public product-specific information: The combined 
energy efficiency ratio (CEER in British thermal units per Watt-hour 
(Btu/Wh)), the seasonally adjusted cooling capacity in British thermal 
units per hour (Btu/h), the duct configuration (single-duct, dual-duct, 
or ability to operate in both configurations), presence of heating 
function, and primary condensate removal feature (auto-evaporation, 
gravity drain, removable internal collection bucket, or condensate 
pump).

[81 FR 35264, June 1, 2016, as amended at 85 FR 1446, Jan. 10, 2020]



Sec.  429.63  Compressors.

    (a) Determination of represented value. Manufacturers must determine 
the represented value, which includes the certified rating, for each 
basic model of compressor either by testing in conjunction with the 
applicable sampling provisions or by applying an AEDM.
    (1) Units to be tested. (i) If the represented value is determined 
through testing, the general requirements of Sec.  429.11 apply; and
    (ii) For each basic model selected for testing, a sample of 
sufficient size must be randomly selected and tested to ensure that--
    (A) Measures of energy efficiency. Any represented value of the 
full- or part-load package isentropic efficiency or other measure of 
energy efficiency of a basic model for which customers would favor 
higher values is less than or equal to the lower of:
    (1) The mean of the sample, where:
    [GRAPHIC] [TIFF OMITTED] TR04JA17.007
    
    And x is the sample mean; n is the number of samples; and 
xi is the measured value for the i\th\ sample; or,
    (2) The lower 95 percent confidence limit (LCL) of the true mean 
divided by 0.95, where:
[GRAPHIC] [TIFF OMITTED] TR04JA17.008


[[Page 233]]


    And x is the sample mean; s is the sample standard deviation; n is 
the number of samples; and t0.95 is the t statistic for a 95 
percent one-tailed confidence interval with n-1 degrees of freedom (from 
appendix A of this subpart); and
    (B) Package specific power. The representative value(s) of package 
specific power of a basic model must be the mean of the package specific 
power measurement(s) for each tested unit of the basic model.
    (2) Alternative efficiency determination methods. In lieu of 
testing, any represented value of efficiency, consumption, or other non-
energy metrics listed in paragraph (a)(3) of this section for a basic 
model may be determined through the application of an AEDM pursuant to 
the requirements of Sec.  429.70 and the provisions of this section, 
where:
    (i) Any represented values of package isentropic efficiency or other 
measure of energy consumption of a basic model for which customers would 
favor higher values must be less than or equal to the output of the 
AEDM; and
    (ii) Any represented values of package specific power, pressure 
ratio at full-load operating pressure, full-load actual volume flow 
rate, or full-load operating pressure must be the output of the AEDM 
corresponding to the represented value of package isentropic efficiency 
determined in paragraph (a)(2)(i) of this section.
    (3) Representations of non-energy metrics--(i) Full-load actual 
volume flow rate. The representative value of full-load actual volume 
flow rate of a basic model must be either--
    (A) The mean of the full-load actual volume flow rate for the units 
in the sample; or
    (B) As determined through the application of an AEDM pursuant to the 
requirements of Sec.  429.70.
    (ii) Full-load operating pressure. The representative value of full-
load operating pressure of a basic model must be less than or equal to 
the maximum full-flow operating pressure and greater than or equal to 
the lesser of--
    (A) 90 percent of the maximum full-flow operating pressure; or
    (B) 10 psig less than the maximum full-flow operating pressure, 
where the maximum full-flow operating pressure must either be determined 
as the mean of the maximum full-flow operating pressure values for the 
units in the sample or through the application of an AEDM pursuant to 
the requirements of Sec.  429.70.
    (iii) Pressure ratio at full-load operating pressure. The 
representative value of pressure ratio at full-load operating pressure 
of a basic model must be either be determined as the mean of the 
pressure ratio at full-load operating pressure for the units in the 
sample or through the application of an AEDM pursuant to the 
requirements of Sec.  429.70.
    (b) Certification reports. (1) The requirements of Sec.  429.12 are 
applicable to compressors; and
    (2) Pursuant to Sec.  429.12(b)(13), a certification report will 
include the following public product-specific information:
    (i) Full-load package isentropic efficiency or part-load package 
isentropic efficiency, as applicable (dimensionless).
    (ii) Full-load actual volume flow rate (in cubic feet per minute).
    (iii) Compressor motor nominal horsepower (in horsepower).
    (iv) Full-load operating pressure (in pounds per square inch, 
gauge).
    (v) Maximum full-flow operating pressure (in pounds per square inch, 
gauge).
    (vi) Pressure ratio at full-load operating pressure (dimensionless).
    (vii) For any ancillary equipment that is installed for test, but is 
not part of the compressor package as distributed in commerce (per the 
requirements of 10 CFR part 431, subpart T, appendix A, section 
I(B)(4)), the following must be reported:
    (A) A general description of the ancillary equipment, based on the 
list provided in the first column of Table 1 of 10 CFR part 431, subpart 
T, appendix A, section I(B)(4).
    (B) The manufacturer of the ancillary equipment.
    (C) The brand of the ancillary equipment (if different from the 
manufacturer).
    (D) The model number of the ancillary equipment.

[[Page 234]]

    (E) The serial number of the ancillary equipment (if applicable).
    (F) The following electrical characteristics, if applicable:
    (1) Input Voltage.
    (2) Number of Phases.
    (3) Input Frequency.
    (G) The following mechanical characteristics, if applicable:
    (1) Size of any connections.
    (2) Type of any connections.
    (H) Installation instructions for the ancillary equipment, 
accompanied by photos that clearly illustrate the ancillary equipment, 
as installed on compresssor package. Instructions and photo(s) to be 
provided in portable document format (i.e., a PDF file).

[82 FR 1099, Jan. 4, 2017, as amended at 85 FR 1591, Jan. 10, 2020]



Sec.  429.70  Alternative methods for determining energy efficiency 
and energy use.

    (a) General applicability of an AEDM. A manufacturer of covered 
products or covered equipment explicitly authorized to use an AEDM in 
Sec. Sec.  429.14 through 429.62 may not distribute any basic model of 
such equipment in commerce unless the manufacturer has determined the 
energy efficiency of the basic model, either from testing the basic 
model in conjunction with DOE's certification sampling plans and 
statistics or from applying an alternative method for determining energy 
efficiency or energy use (AEDM) to the basic model, in accordance with 
the requirements of this section. In instances where a manufacturer has 
tested a basic model, the manufacturer may not knowingly use an AEDM to 
overrate the efficiency (or underrate the consumption) of the model.
    (b) Testing. Testing for each covered product or covered equipment 
must be done in accordance with the sampling plan provisions established 
in Sec.  429.11 and the testing procedures in parts 430 and 431 of this 
chapter.
    (c) Alternative efficiency determination method (AEDM) for 
commercial HVAC (includes commercial warm air furnaces and commercial 
packaged boilers), WH, and refrigeration equipment--(1) Criteria an AEDM 
must satisfy. A manufacturer may not apply an AEDM to a basic model to 
determine its efficiency pursuant to this section unless:
    (i) The AEDM is derived from a mathematical model that estimates the 
energy efficiency or energy consumption characteristics of the basic 
model as measured by the applicable DOE test procedure;
    (ii) The AEDM is based on engineering or statistical analysis, 
computer simulation or modeling, or other analytic evaluation of 
performance data; and
    (iii) The manufacturer has validated the AEDM, in accordance with 
paragraph (c)(2) of this section with basic models that meet the current 
Federal energy conservation standards.
    (2) Validation of an AEDM. Before using an AEDM, the manufacturer 
must validate the AEDM's accuracy and reliability as follows:
    (i) The manufacturer must select at least the minimum number of 
basic models for each validation class specified in paragraph (c)(2)(iv) 
of this section to which the particular AEDM applies. Using the AEDM, 
calculate the energy use or efficiency for each of the selected basic 
models. Test a single unit of each selected basic model in accordance 
with paragraph (c)(2)(iii) of this section. Compare the results from the 
single unit test and the AEDM energy use or efficiency output according 
to paragraph (c)(2)(ii) of this section. The manufacturer is responsible 
for ensuring the accuracy and reliability of the AEDM.
    (ii) Individual model tolerances. (A) For those covered products 
with an energy-efficiency metric, the predicted efficiency for each 
model calculated by applying the AEDM may not be more than five percent 
greater than the efficiency determined from the corresponding test of 
the model.
    (B) For those covered products with an energy-consumption metric, 
the predicted energy consumption for each model, calculated by applying 
the AEDM, may not be more than five percent less than the energy 
consumption determined from the corresponding test of the model.
    (C) For all covered products, the predicted energy efficiency or 
consumption for each model calculated by applying the AEDM must meet or 
exceed

[[Page 235]]

the applicable federal energy conservation performance standard.
    (D) An AEDM that is validated based on test results obtained from 
one or more field tests (pursuant to Sec.  431.86(c)) can only be used 
to certify the performance of basic models of commercial packaged 
boilers with a certified rated input greater than 5,000,000 Btu/h.
    (iii) Additional test unit requirements. (A) Each AEDM must be 
supported by test data obtained from physical tests of current models; 
and
    (B) Test results used to validate the AEDM must meet or exceed 
current, applicable Federal standards as specified in part 431 of this 
chapter; and
    (C) Each test must have been performed in accordance with the DOE 
test procedure specified in parts 430 or 431 of this chapter or test 
procedure waiver for which compliance is required at the time the basic 
model is distributed in commerce.
    (iv) Validation classes.

------------------------------------------------------------------------
                                       Minimum number of distinct models
          Validation class               that must be tested per AEDM
------------------------------------------------------------------------
Air-Cooled, Split and Packaged Air    2 Basic Models.
 Conditioners (ACs) and Heat Pumps
 (HPs) less than 65,000 Btu/h
 Cooling Capacity (3-Phase).
------------------------------------------------------------------------
                 (A) Commercial HVAC validation classes
------------------------------------------------------------------------
Air-Cooled, Split and Packaged ACs    2 Basic Models.
 and HPs greater than or equal to
 65,000 Btu/h Cooling Capacity and
 Less than 760,000 Btu/h Cooling
 Capacity.
Water-Cooled, Split and Packaged ACs  2 Basic Models.
 and HPs, All Cooling Capacities.
Evaporatively-Cooled, Split and       2 Basic Models.
 Packaged ACs and HPs, All
 Capacities.
Water-Source HPs, All Capacities....  2 Basic Models.
Single Package Vertical ACs and HPs.  2 Basic Models.
Packaged Terminal ACs and HPs.......  2 Basic Models.
Air-Cooled, Variable Refrigerant      2 Basic Models.
 Flow ACs and HPs.
Water-Cooled, Variable Refrigerant    2 Basic Models.
 Flow ACs and HPs.
Computer Room Air Conditioners, Air   2 Basic Models.
 Cooled.
Computer Room Air Conditioners,       2 Basic Models.
 Water-Cooled.
------------------------------------------------------------------------
             (B) Commercial water heater validation classes
------------------------------------------------------------------------
Gas-fired Water Heaters and Hot       2 Basic Models.
 Water Supply Boilers Less than 10
 Gallons.
Gas-fired Water Heaters and Hot       2 Basic Models.
 Water Supply Boilers Greater than
 or Equal to 10 Gallons.
Oil-fired Water Heaters and Hot       2 Basic Models.
 Water Supply Boilers Less than 10
 Gallons.
Oil-fired Water Heaters and Hot       2 Basic Models.
 Water Supply Boilers Greater than
 or Equal to 10 Gallons.
Electric Water Heaters..............  2 Basic Models.
Heat Pump Water Heaters.............  2 Basic Models.
Unfired Hot Water Storage Tanks.....  2 Basic Models.
------------------------------------------------------------------------
           (C) Commercial packaged boilers validation classes
------------------------------------------------------------------------
Gas-fired, Hot Water Only Commercial  2 Basic Models.
 Packaged Boilers.
Gas-fired, Steam Only Commercial      2 Basic Models.
 Packaged Boilers.
Gas-fired Hot Water/Steam Commercial  2 Basic Models.
 Packaged Boilers.
Oil-fired, Hot Water Only Commercial  2 Basic Models.
 Packaged Boilers.
Oil-fired, Steam Only Commercial      2 Basic Models.
 Packaged Boilers.
Oil-fired Hot Water/Steam Commercial  2 Basic Models.
 Packaged Boilers.
------------------------------------------------------------------------
                (D) Commercial furnace validation classes
------------------------------------------------------------------------
Gas-fired Furnaces..................  2 Basic Models.
Oil-fired Furnaces..................  2 Basic Models.
------------------------------------------------------------------------
        (E) Commercial refrigeration equipment validation classes
------------------------------------------------------------------------
Self-Contained Open Refrigerators...  2 Basic Models.
Self-Contained Open Freezers........  2 Basic Models.
Remote Condensing Open Refrigerators  2 Basic Models.
Remote Condensing Open Freezers.....  2 Basic Models.
Self-Contained Closed Refrigerators.  2 Basic Models.
Self-Contained Closed Freezers......  2 Basic Models.
Remote Condensing Closed              2 Basic Models.
 Refrigerators.
Remote Condensing Closed Freezers...  2 Basic Models.
------------------------------------------------------------------------
\1\ The minimum number of tests indicated above must be comprised of a
  transparent model, a solid model, a vertical model, a semi-vertical
  model, a horizontal model, and a service-over-the counter model, as
  applicable based on the equipment offering. However, manufacturers do
  not need to include all types of these models if it will increase the
  minimum number of tests that need to be conducted.


[[Page 236]]

    (3) AEDM records retention requirements. If a manufacturer has used 
an AEDM to determine representative values pursuant to this section, the 
manufacturer must have available upon request for inspection by the 
Department records showing:
    (i) The AEDM, including the mathematical model, the engineering or 
statistical analysis, and/or computer simulation or modeling that is the 
basis of the AEDM;
    (ii) Product information, complete test data, AEDM calculations, and 
the statistical comparisons from the units tested that were used to 
validate the AEDM pursuant to paragraph (c)(2) of this section; and
    (iii) Product information and AEDM calculations for each basic model 
to which the AEDM has been applied.
    (4) Additional AEDM requirements. If requested by the Department and 
at DOE's discretion, the manufacturer must perform at least one of the 
following:
    (i) Conduct simulations before representatives of the Department to 
predict the performance of particular basic models of the product to 
which the AEDM was applied;
    (ii) Provide analyses of previous simulations conducted by the 
manufacturer; or
    (iii) Conduct certification testing of basic models selected by the 
Department.
    (5) AEDM verification testing. DOE may use the test data for a given 
individual model generated pursuant to Sec.  429.104 to verify the 
certified rating determined by an AEDM as long as the following process 
is followed:
    (i) Selection of units. DOE will obtain units for test from retail, 
where available. If units cannot be obtained from retail, DOE will 
request that a unit be provided by the manufacturer;
    (ii) Lab requirements. DOE will conduct testing at an independent, 
third-party testing facility of its choosing. In cases where no third-
party laboratory is capable of testing the equipment, it may be tested 
at a manufacturer's facility upon DOE's request.
    (iii) Manufacturer participation. (A) Except when testing variable 
refrigerant flow systems (which are governed by the rules found at Sec.  
431.96(f)), testing will be completed without a manufacturer 
representative on-site. In limited instances further described in 
paragraph (c)(5)(iii)(B) of this section, a manufacturer and DOE 
representative may be present to witness the test set-up.
    (B) A manufacturer's representative may request to be on-site to 
witness the test set-up if:
    (1) The installation manual for the basic model specifically 
requires it to be started only by a factory-trained installer; or
    (2) The manufacturer has elected, as part of the certification of 
that basic model, to have the opportunity to witness the test set-up. A 
manufacturer may elect to witness the test set-up for the initial 
verification test for no more than 10 percent of the manufacturer's 
basic models submitted for certification and rated with an AEDM per 
validation class specified in section (c)(2)(iv) of this paragraph. The 
10-percent limit applies to all of the eligible basic models submitted 
for certification by a given manufacturer no matter how many AEDMs a 
manufacturer has used to develop its ratings. The 10-percent limit is 
determined by first calculating 10 percent of the total number of basic 
models rated with an AEDM per validation class, and then truncating the 
resulting product. Manufacturers who have submitted fewer than 10 basic 
models rated with an AEDM for certification may elect to have the 
opportunity to witness the test set-up of one basic model. A 
manufacturer must identify the basic models it wishes to witness as part 
of its certification report(s) prior to the basic model being selected 
for verification testing.
    (3) In those instances in which a manufacturer has not provided the 
required information as specified in Sec.  429.12(b)(13) for a given 
basic model that has been rated and certified as compliant with the 
applicable standards, a manufacturer is precluded from witnessing the 
testing set up for that basic model.
    (C) A DOE representative will be present for the test set-up in all 
cases where a manufacturer representative requests to be on-site for the 
test set-up. The manufacturer's representative

[[Page 237]]

cannot communicate with a lab representative outside of the DOE 
representative's presence.
    (D) If DOE has obtained through retail channels a unit for test that 
meets either of the conditions in paragraph (c)(5)(iii)(B) of this 
section, DOE will notify the manufacturer that the basic model was 
selected for testing and that the manufacturer may have a representative 
present for the test set-up. If the manufacturer does not respond within 
five calendar days of receipt of that notification, the manufacturer 
waives the option to be present for test set-up, and DOE will proceed 
with the test set-up without a manufacturer's representative present.
    (E) If DOE has obtained directly from the manufacturer a unit for 
test that meets either of the conditions in paragraph (c)(5)(iii)(B) of 
this section, DOE will notify the manufacturer of the option to be 
present for the test set-up at the time the unit is purchased. DOE will 
specify the date (not less than five calendar days) by which the 
manufacturer must notify DOE whether a manufacturer's representative 
will be present. If the manufacturer does not notify DOE by the date 
specified, the manufacturer waives the option to be present for the test 
set-up, and DOE will proceed with the test set-up without a 
manufacturer's representative present.
    (F) DOE will review the certification submissions from the 
manufacturer that were on file as of the date DOE purchased a basic 
model (under paragraph (c)(5)(iii)(D) of this section) or the date DOE 
notifies the manufacturer that the basic model has been selected for 
testing (under paragraph (c)(5)(iii)(E) of this section) to determine if 
the manufacturer has indicated that it intends to witness the test set-
up of the selected basic model. DOE will also verify that the 
manufacturer has not exceeded the allowable limit of witness testing 
selections as specified in paragraph (c)(5)(iii)(B)(2) of this section. 
If DOE discovers that the manufacturer exceeded the limits specified in 
paragraph (c)(5)(iii)(B)(2), DOE will notify the manufacturer of this 
fact and deny its request to be present for the test set-up of the 
selected basic model. The manufacturer must update its certification 
submission to ensure it has not exceeded the allowable limit of witness 
testing selections as specified in paragraph (c)(5)(iii)(B)(2) to be 
present at set-up for future selections. At this time DOE will also 
review the supplemental PDF submission(s) for the selected basic model 
to determine that all necessary information has been provided to the 
Department.
    (G) If DOE determines, pursuant to paragraph (c)(5)(ii) of this 
section, that the model should be tested at the manufacturer's facility, 
a DOE representative will be present on site to observe the test set-up 
and testing with the manufacturer's representative. All testing will be 
conducted at DOE's direction, which may include DOE-contracted personnel 
from a third-party lab, as well as the manufacturer's technicians.
    (H) As further explained in paragraph (c)(5)(v)(B) of this section, 
if a manufacturer's representative is present for the initial test set-
up for any reason, the manufacturer forfeits any opportunity to request 
a retest of the basic model. Furthermore, if the manufacturer requests 
to be on-site for test set-up pursuant to paragraph (c)(5)(iii)(B) of 
this section but is not present on site, the manufacturer forfeits any 
opportunity to request a retest of the basic model.
    (iv) Testing. At no time during verification testing may the lab and 
the manufacturer communicate without DOE authorization. All verification 
testing will be conducted in accordance with the applicable DOE test 
procedure, as well as each of the following to the extent that they 
apply:
    (A) Any active test procedure waivers that have been granted for the 
basic model;
    (B) Any test procedure guidance that has been issued by DOE;
    (C) The installation and operations manual that is shipped with the 
unit;
    (D) Any additional information that was provided by the manufacturer 
at the time of certification (prior to DOE obtaining the unit for test); 
and
    (E) If during test set-up or testing, the lab indicates to DOE that 
it needs additional information regarding a given basic model in order 
to test in accordance with the applicable DOE

[[Page 238]]

test procedure, DOE may organize a meeting between DOE, the manufacturer 
and the lab to provide such information.
    (v) Failure to meet certified rating. If a model tests worse than 
its certified rating by an amount exceeding the tolerance prescribed in 
paragraph (c)(5)(vi) of this section, DOE will notify the manufacturer. 
DOE will provide the manufacturer with all documentation related to the 
test set up, test conditions, and test results for the unit. Within the 
timeframe allotted by DOE, the manufacturer may then:
    (A) Present all claims regarding testing validity; and
    (B) If the manufacturer was not on site for the initial test set-up, 
request a retest of the previously tested unit with manufacturer and DOE 
representatives on-site for the test set-up. DOE will not conduct the 
retest using a different unit of the same basic model unless DOE and the 
manufacturer determine it is necessary based on the test results, claims 
presented, and DOE regulations.
    (vi) Tolerances. (A) For consumption metrics, the result from a DOE 
verification test must be less than or equal to the certified rating x 
(1 + the applicable tolerance).
    (B) For efficiency metrics, the result from a DOE verification test 
must be greater than or equal to the certified rating x (1 - the 
applicable tolerance).

------------------------------------------------------------------------
                                                              Applicable
             Equipment                       Metric           tolerance
------------------------------------------------------------------------
Commercial Packaged Boilers........  Combustion Efficiency.    5% (0.05)
                                     Thermal Efficiency....    5% (0.05)
Commercial Water Heaters or Hot      Thermal Efficiency....    5% (0.05)
 Water Supply Boilers.               Standby Loss..........    10% (0.1)
Unfired Storage Tanks..............  R-Value...............    10% (0.1)
Air-Cooled, Split and Packaged ACs   Seasonal Energy-          5% (0.05)
 and HPs less than 65,000 Btu/h.      Efficiency Ratio.
Cooling Capacity (3-Phase).........  Heating Season            5% (0.05)
                                      Performance Factor.      10% (0.1)
                                     Energy Efficiency
                                      Ratio.
Air-Cooled, Split and Packaged ACs   Energy Efficiency         5% (0.05)
 and HPs greater than or equal to     Ratio.                   5% (0.05)
 65,000 Btu/h Cooling Capacity and   Coefficient of            10% (0.1)
 Less than 760,000 Btu/h Cooling      Performance.
 Capacity.                           Integrated Energy
                                      Efficiency Ratio.
Water-Cooled, Split and Packaged     Energy Efficiency         5% (0.05)
 ACs and HPs, All Cooling             Ratio.                   5% (0.05)
 Capacities.                         Coefficient of            10% (0.1)
                                      Performance.
                                     Integrated Energy
                                      Efficiency Ratio.
Evaporatively-Cooled, Split and      Energy Efficiency         5% (0.05)
 Packaged ACs and HPs, All            Ratio.                   5% (0.05)
 Capacities.                         Coefficient of            10% (0.1)
                                      Performance.
                                     Integrated Energy
                                      Efficiency Ratio.
Water-Source HPs, All Capacities...  Energy Efficiency         5% (0.05)
                                      Ratio.                   5% (0.05)
                                     Coefficient of            10% (0.1)
                                      Performance.
                                     Integrated Energy
                                      Efficiency Ratio.
Single Package Vertical ACs and HPs  Energy Efficiency         5% (0.05)
                                      Ratio.                   5% (0.05)
                                     Coefficient of
                                      Performance.
Packaged Terminal ACs and HPs......  Energy Efficiency         5% (0.05)
                                      Ratio.                   5% (0.05)
                                     Coefficient of
                                      Performance.
Variable Refrigerant Flow ACs and    Energy Efficiency         5% (0.05)
 HPs.                                 Ratio.                   5% (0.05)
                                     Coefficient of            10% (0.1)
                                      Performance.
                                     Integrated Energy
                                      Efficiency Ratio.
Computer Room Air Conditioners.....  Sensible Coefficient      5% (0.05)
                                      of Performance.
Commercial Warm-Air Furnaces.......  Thermal Efficiency....    5% (0.05)
Commercial Refrigeration Equipment.  Daily Energy              5% (0.05)
                                      Consumption.
------------------------------------------------------------------------

    (vii) Invalid rating. If, following discussions with the 
manufacturer and a retest where applicable, DOE determines that the 
verification testing was conducted appropriately in accordance with the 
DOE test procedure, DOE will issue a determination that the rating for 
the model is invalid. The manufacturer must elect, within 15 days, one 
of the following to be completed in a time frame specified by DOE, which 
is never to exceed 180 days:
    (A) Re-rate and re-certify the model based on DOE's test data alone; 
or
    (B) Discontinue the model through the certification process; or
    (C) Conduct additional testing and re-rate and re-certify the basic 
model based on all test data collected, including DOE's test data.

[[Page 239]]

    (viii) AEDM use. (A) If DOE has determined that a manufacturer made 
invalid ratings on two or more models rated using the same AEDM within a 
24 month period, the manufacturer must take the action listed in the 
table corresponding to the number of invalid certified ratings. The 
twenty-four month period begins with a DOE determination that a rating 
is invalid through the process outlined above. Additional invalid 
ratings apply for the purposes of determining the appropriate 
consequences if the subsequent determination(s) is based on selection of 
a unit for testing within the twenty-four month period (i.e., subsequent 
determinations need not be made within 24 months).

------------------------------------------------------------------------
  Number of invalid certified
ratings from the same AEDM \2\
   within a rolling 24 month          Required manufacturer actions
          period \3\
------------------------------------------------------------------------
2.............................  Submit different test data and reports
                                 from testing to validate that AEDM
                                 within the validation classes to which
                                 it is applied.\1\ Adjust the ratings as
                                 appropriate.
4.............................  Conduct double the minimum number of
                                 validation tests for the validation
                                 classes to which the AEDM is applied.
                                 Note, the tests required under this
                                 paragraph (c)(5)(viii) must be
                                 performed on different models than the
                                 original tests required under paragraph
                                 (c)(2) of this section.
6.............................  Conduct the minimum number of validation
                                 tests for the validation classes to
                                 which the AEDM is applied at a third-
                                 part test facility; And
                                Conduct addition testing, which is equal
                                 to \1/2\ the minimum number of
                                 validation tests for the validation
                                 classes to which the AEDM is applied ,
                                 at either the manufacturer's facility
                                 or a third-party test facility, at the
                                 manufacturer's discretion.
                                Note, the tests required under this
                                 paragraph (c)(5)(viii) must be
                                 performed on different models than the
                                 original tests performed under
                                 paragraph (c)(2) of this section.
 = 8...............  Manufacturer has lost privilege to use
                                 AEDM. All ratings for models within the
                                 validation classes to which the AEDM
                                 applied should be rated via testing.
                                 Distribution cannot continue until
                                 certification(s) are corrected to
                                 reflect actual test data.
------------------------------------------------------------------------
\1\ A manufacturer may discuss with DOE's Office of Enforcement whether
  existing test data on different basic models within the validation
  classes to which that specific AEDM was applied may be used to meet
  this requirement.
\2\ The ``same AEDM'' means a computer simulation or mathematical model
  that is identified by the manufacturer at the time of certification as
  having been used to rate a model or group of models.
\3\ The twenty-four month period begins with a DOE determination that a
  rating is invalid through the process outlined above. Additional
  invalid ratings apply for the purposes of determining the appropriate
  consequences if the subsequent determination(s) is based on testing of
  a unit that was selected for testing within the twenty-four month
  period (i.e., subsequent determinations need not be made within 24
  months).

    (B) If, as a result of eight or more invalid ratings, a manufacturer 
has lost the privilege of using an AEDM for rating, the manufacturer may 
regain the ability to use an AEDM by:
    (1) Investigating and identifying cause(s) for failures;
    (2) Taking corrective action to address cause(s);
    (3) Performing six new tests per validation class, a minimum of two 
of which must be performed by an independent, third-party laboratory to 
validate the AEDM; and
    (4) Obtaining DOE authorization to resume use of the AEDM.
    (d) Alternative efficiency determination method for distribution 
transformers--A manufacturer may use an AEDM to determine the efficiency 
of one or more of its untested basic models only if it determines the 
efficiency of at least five of its other basic models (selected in 
accordance with paragraph (d)(3) of this section) through actual 
testing.
    (1) Criteria an AEDM must satisfy.
    (i) The AEDM has been derived from a mathematical model that 
represents the electrical characteristics of that basic model;
    (ii) The AEDM is based on engineering and statistical analysis, 
computer simulation or modeling, or other analytic evaluation of 
performance data; and
    (iii) The manufacturer has substantiated the AEDM, in accordance 
with paragraph (d)(2) of this section, by applying it to, and testing, 
at least five other basic models of the same type, i.e., low-voltage 
dry-type distribution transformers, medium-voltage dry-type distribution 
transformers, or liquid-immersed distribution transformers.
    (2) Substantiation of an AEDM. Before using an AEDM, the 
manufacturer

[[Page 240]]

must substantiate the AEDM's accuracy and reliability as follows:
    (i) Apply the AEDM to at least five of the manufacturer's basic 
models that have been selected for testing in accordance with paragraph 
(d)(3) of this section, and calculate the power loss for each of these 
basic models;
    (ii) Test at least five units of each of these basic models in 
accordance with the applicable test procedure and Sec.  429.47, and 
determine the power loss for each of these basic models;
    (iii) The predicted total power loss for each of these basic models, 
calculated by applying the AEDM pursuant to paragraph (d)(2)(i) of this 
section, must be within plus or minus five percent of the mean total 
power loss determined from the testing of that basic model pursuant to 
paragraph (d)(2)(ii) of this section; and
    (iv) Calculate for each of these basic models the percentage that 
its power loss calculated pursuant to paragraph (d)(2)(i) of this 
section is of its power loss determined from testing pursuant to 
paragraph (d)(2)(ii) of this section, compute the average of these 
percentages, and that calculated average power loss, expressed as a 
percentage of the average power loss determined from testing, must be no 
less than 97 percent and no greater than 103 percent.
    (3) Additional testing requirements. (i) A manufacturer must select 
basic models for testing in accordance with the following criteria:
    (A) Two of the basic models must be among the five basic models with 
the highest unit volumes of production by the manufacturer in the prior 
year, or during the prior 12-calendar-month period beginning in 2003,\1\ 
whichever is later;
---------------------------------------------------------------------------

    \1\ When identifying these five basic models, any basic model that 
does not comply with Federal energy conservation standards for 
distribution transformers that may be in effect shall be excluded from 
consideration.
---------------------------------------------------------------------------

    (B) No two basic models should have the same combination of power 
and voltage ratings; and
    (C) At least one basic model should be single-phase and at least one 
should be three-phase.
    (ii) In any instance where it is impossible for a manufacturer to 
select basic models for testing in accordance with all of these 
criteria, the criteria shall be given priority in the order in which 
they are listed. Within the limits imposed by the criteria, basic models 
shall be selected randomly.
    (4) Subsequent verification of an AEDM. (i) Each manufacturer that 
has used an AEDM under this section shall have available for inspection 
by the Department of Energy records showing:
    (A) The method or methods used;
    (B) The mathematical model, the engineering or statistical analysis, 
computer simulation or modeling, and other analytic evaluation of 
performance data on which the AEDM is based;
    (C) Complete test data, product information, and related information 
that the manufacturer has generated or acquired pursuant to paragraph 
(d)(4) of this section; and
    (D) The calculations used to determine the efficiency and total 
power losses of each basic model to which the AEDM was applied.
    (ii) If requested by the Department, the manufacturer must perform 
at least one of the following:
    (A) Conduct simulations to predict the performance of particular 
basic models of distribution transformers specified by the Department;
    (B) Provide analyses of previous simulations conducted by the 
manufacturer;
    (C) Conduct sample testing of basic models selected by the 
Department; or
    (D) Conduct a combination of these.
    (e) Alternate Efficiency Determination Method (AEDM) for central air 
conditioners and heat pumps. This paragraph (e) sets forth the 
requirements for a manufacturer to use an AEDM to rate central air 
conditioners and heat pumps.
    (1) Criteria an AEDM must satisfy. A manufacturer may not apply an 
AEDM to an individual model/combination to determine its represented 
values (SEER, EER, HSPF, SEER2, EER2, HSPF2, and/or PW,OFF) 
pursuant to this section unless authorized pursuant to Sec.  429.16(d) 
and:
    (i) The AEDM is derived from a mathematical model that estimates the 
energy efficiency or energy consumption characteristics of the 
individual model or combination (SEER,

[[Page 241]]

EER, HSPF, SEER2, EER2, HSPF2, and/or PW,OFF) as measured by 
the applicable DOE test procedure; and
    (ii) The manufacturer has validated the AEDM in accordance with 
paragraph (e)(2) of this section.
    (2) Validation of an AEDM. Before using an AEDM, the manufacturer 
must validate the AEDM's accuracy and reliability as follows:
    (i) Follow paragraph (e)(2)(i)(A) of this section for requirements 
on minimum testing. Follow paragraph (e)(2)(i)(B) of this section for 
requirements on ensuring the accuracy and reliability of the AEDM.
    (A) Minimum testing. (1) For non-space-constrained single-split 
system air conditioners and heat pumps rated based on testing in 
accordance with appendix M to subpart B of part 430, the manufacturer 
must test each basic model as required under Sec.  429.16(b)(2). Until 
July 1, 2024, for non-space-constrained single-split-system air 
conditioners and heat pumps rated based on testing in accordance with 
appendix M1 to subpart B of part 430, the manufacturer must test a 
single-unit sample from 20 percent of the basic models distributed in 
commerce to validate the AEDM. On or after July 1, 2024, for non-space-
constrained single-split-system air conditioners and heat pumps rated 
based on testing in accordance with appendix M1 to subpart B of part 
430, the manufacturer must complete testing of each basic model as 
required under Sec.  429.16(b)(2).
    (2) For other than non-space-constrained single-split-system air 
conditioners and heat pumps, the manufacturer must test each basic model 
as required under Sec.  429.16(b)(2).
    (B) Using the AEDM, calculate the energy use or efficiency for each 
of the tested individual models/combinations within each basic model. 
Compare the represented value based on testing and the AEDM energy use 
or efficiency output according to paragraph (e)(2)(ii) of this section. 
The manufacturer is responsible for ensuring the accuracy and 
reliability of the AEDM and that their representations are appropriate 
and the models being distributed in commerce meet the applicable 
standards, regardless of the amount of testing required in paragraphs 
(e)(2)(i)(A) and (e)(2)(i)(B) of this section.
    (ii) Individual model/combination tolerances. This paragraph 
(e)(2)(ii) provides the tolerances applicable to individual models/
combinations rated using an AEDM.
    (A) The predicted represented values for each individual model/
combination calculated by applying the AEDM may not be more than four 
percent greater (for measures of efficiency) or less (for measures of 
consumption) than the values determined from the corresponding test of 
the individual model/combination.
    (B) The predicted energy efficiency or consumption for each 
individual model/combination calculated by applying the AEDM must meet 
or exceed the applicable federal energy conservation standard.
    (iii) Additional test unit requirements. (A) Each AEDM must be 
supported by test data obtained from physical tests of current 
individual models/combinations; and
    (B) Test results used to validate the AEDM must meet or exceed 
current, applicable Federal standards as specified in part 430 of this 
chapter; and
    (C) Each test must have been performed in accordance with the 
applicable DOE test procedure with which compliance is required at the 
time the individual models/combinations used for validation are 
distributed in commerce.
    (3) AEDM records retention requirements. If a manufacturer has used 
an AEDM to determine representative values pursuant to this section, the 
manufacturer must have available upon request for inspection by the 
Department records showing:
    (i) The AEDM, including the mathematical model, the engineering or 
statistical analysis, and/or computer simulation or modeling that is the 
basis of the AEDM;
    (ii) Product information, complete test data, AEDM calculations, and 
the statistical comparisons from the units tested that were used to 
validate the AEDM pursuant to paragraph (e)(2) of this section; and
    (iii) Product information and AEDM calculations for each individual 
model/

[[Page 242]]

combination to which the AEDM has been applied.
    (4) Additional AEDM requirements. If requested by the Department, 
the manufacturer must:
    (i) Conduct simulations before representatives of the Department to 
predict the performance of particular individual models/combinations;
    (ii) Provide analyses of previous simulations conducted by the 
manufacturer; and/or
    (iii) Conduct certification testing of individual models or 
combinations selected by the Department.
    (5) AEDM verification testing. DOE may use the test data for a given 
individual model/combination generated pursuant to Sec.  429.104 to 
verify the represented value determined by an AEDM as long as the 
following process is followed:
    (i) Selection of units. DOE will obtain one or more units for test 
from retail, if available. If units cannot be obtained from retail, DOE 
will request that a unit be provided by the manufacturer;
    (ii) Lab requirements. DOE will conduct testing at an independent, 
third-party testing facility of its choosing. In cases where no third-
party laboratory is capable of testing the equipment, testing may be 
conducted at a manufacturer's facility upon DOE's request.
    (iii) Testing. At no time during verification testing may the lab 
and the manufacturer communicate without DOE authorization. If during 
test set-up or testing, the lab indicates to DOE that it needs 
additional information regarding a given individual model or combination 
in order to test in accordance with the applicable DOE test procedure, 
DOE may organize a meeting between DOE, the manufacturer and the lab to 
provide such information.
    (iv) Failure to meet certified value. If an individual model/
combination tests worse than its certified value (i.e., lower than the 
certified efficiency value or higher than the certified consumption 
value) by more than 5 percent, or the test results in cooling capacity 
that is lower than its certified cooling capacity, DOE will notify the 
manufacturer. DOE will provide the manufacturer with all documentation 
related to the test set up, test conditions, and test results for the 
unit. Within the timeframe allotted by DOE, the manufacturer may present 
any and all claims regarding testing validity.
    (v) Tolerances. This paragraph specifies the tolerances DOE will 
permit when conducting verification testing.
    (A) For consumption metrics, the result from a DOE verification test 
must be less than or equal to 1.05 multiplied by the certified 
represented value.
    (B) For efficiency metrics, the result from a DOE verification test 
must be greater than or equal to 0.95 multiplied by the certified 
represented value.
    (vi) Invalid represented value. If, following discussions with the 
manufacturer and a retest where applicable, DOE determines that the 
verification testing was conducted appropriately in accordance with the 
DOE test procedure, DOE will issue a determination that the represented 
values for the basic model are invalid. The manufacturer must conduct 
additional testing and re-rate and re-certify the individual models/
combinations within the basic model that were rated using the AEDM based 
on all test data collected, including DOE's test data.
    (vii) AEDM use. This paragraph (e)(5)(vii) specifies when a 
manufacturer's use of an AEDM may be restricted due to prior invalid 
represented values.
    (A) If DOE has determined that a manufacturer made invalid 
represented values on individual models/combinations within two or more 
basic models rated using the manufacturer's AEDM within a 24 month 
period, the manufacturer must test the least efficient and most 
efficient individual model/combination within each basic model in 
addition to the individual model/combination specified in Sec.  
429.16(b)(2). The twenty-four month period begins with a DOE 
determination that a represented value is invalid through the process 
outlined above.
    (B) If DOE has determined that a manufacturer made invalid 
represented values on more than four basic models rated using the 
manufacturer's AEDM within a 24-month period, the manufacturer may no 
longer use an AEDM.

[[Page 243]]

    (C) If a manufacturer has lost the privilege of using an AEDM, the 
manufacturer may regain the ability to use an AEDM by:
    (1) Investigating and identifying cause(s) for failures;
    (2) Taking corrective action to address cause(s);
    (3) Performing six new tests per basic model, a minimum of two of 
which must be performed by an independent, third-party laboratory from 
units obtained from retail to validate the AEDM; and
    (4) Obtaining DOE authorization to resume use of an AEDM.
    (f) Alternative efficiency determination method (AEDM) for walk-in 
refrigeration equipment--
    (1) Criteria an AEDM must satisfy. A manufacturer may not apply an 
AEDM to a basic model to determine its efficiency pursuant to this 
section unless:
    (i) The AEDM is derived from a mathematical model that estimates the 
energy efficiency or energy consumption characteristics of the basic 
model as measured by the applicable DOE test procedure;
    (ii) The AEDM is based on engineering or statistical analysis, 
computer simulation or modeling, or other analytical evaluation of 
performance data; and
    (iii) The manufacturer has validated the AEDM, in accordance with 
paragraph (f)(2) of this section.
    (2) Validation of an AEDM. Before using an AEDM, the manufacturer 
must validate the AEDM's accuracy and reliability as follows:
    (i) The manufacturer must select at least the minimum number of 
basic models for each validation class specified in paragraph (f)(2)(iv) 
of this section to which the particular AEDM applies. Test a single unit 
of each basic model in accordance with paragraph (f)(2)(iii) of this 
section. Using the AEDM, calculate the energy use or energy efficiency 
for each of the selected basic models. Compare the results from the 
single unit test and the AEDM output according to paragraph (f)(2)(ii) 
of this section. The manufacturer is responsible for ensuring the 
accuracy and repeatability of the AEDM.
    (ii) Individual model tolerances. (A) The predicted efficiency for 
each model calculated by applying the AEDM may not be more than five 
percent greater than the efficiency determined from the corresponding 
test of the model.
    (B) The predicted energy efficiency for each model calculated by 
applying the AEDM must meet or exceed the applicable federal energy 
conservation standard.
    (iii) Additional test unit requirements. (A) Each AEDM must be 
supported by test data obtained from physical tests of current models; 
and
    (B) Test results used to validate the AEDM must meet or exceed 
current, applicable Federal standards as specified in part 431 of this 
chapter;
    (C) Each test must have been performed in accordance with the 
applicable DOE test procedure with which compliance is required at the 
time the basic model is distributed in commerce; and
    (D) For rating WICF refrigeration system components, an AEDM may not 
simulate or model portions of the system that are not required to be 
tested by the DOE test procedure. That is, if the test results used to 
validate the AEDM are for either a unit cooler only or a condensing unit 
only, the AEDM must estimate the system rating using the nominal values 
specified in the DOE test procedure for the other part of the 
refrigeration system.
    (iv) WICF refrigeration validation classes.

------------------------------------------------------------------------
                                            Minimum number of distinct
            Validation class                models that must be tested
------------------------------------------------------------------------
Dedicated Condensing, Medium             2 Basic Models.
 Temperature, Indoor System.
Dedicated Condensing, Medium             2 Basic Models.
 Temperature, Outdoor System \1\.
Dedicated Condensing, Low Temperature,   2 Basic Models.
 Indoor System.
Dedicated Condensing, Low Temperature,   2 Basic Models.
 Outdoor System \2\.
Unit Cooler connected to a Multiplex     2 Basic Models.
 Condensing Unit, Medium Temperature.
Unit Cooler connected to a Multiplex     2 Basic Models.
 Condensing Unit, Low Temperature.
Medium Temperature, Indoor Condensing    2 Basic Models.
 Unit.
Medium Temperature, Outdoor Condensing   2 Basic Models.
 Unit \3\.
Low Temperature, Indoor Condensing Unit  2 Basic Models.

[[Page 244]]

 
Low Temperature, Outdoor Condensing      2 Basic Models.
 Unit \4\.
------------------------------------------------------------------------
\1\ AEDMs validated for dedicated condensing, medium temperature,
  outdoor systems may be used to determine representative values for
  dedicated condensing, medium temperature, indoor systems, and
  additional validation testing is not required. AEDMs validated for
  only dedicated condensing, medium temperature, indoor systems may not
  be used to determine representative values for dedicated condensing,
  medium temperature, outdoor systems.
\2\ AEDMs validated for dedicated condensing, low temperature, outdoor
  systems may be used to determine representative values for dedicated
  condensing, low temperature, indoor systems, and additional validation
  testing is not required. AEDMs validated for only dedicated
  condensing, low temperature, indoor systems may not be used to
  determine representative values for dedicated condensing, low
  temperature, outdoor systems.
\3\ AEDMs validated for medium temperature, outdoor condensing units may
  be used to determine representative values for medium temperature,
  indoor condensing units, and additional validation testing is not
  required. AEDMs validated for only medium temperature, indoor
  condensing units may not be used to determine representative values
  for medium temperature, outdoor condensing units.
\4\ AEDMs validated for low temperature, outdoor condensing units may be
  used to determine representative values for low temperature, indoor
  condensing units, and additional validation testing is not required.
  AEDMs validated for only low temperature, indoor condensing units may
  not be used to determine representative values for low temperature,
  outdoor condensing units.

    (3) AEDM records retention requirements. If a manufacturer has used 
an AEDM to determine representative values pursuant to this section, the 
manufacturer must have available upon request for inspection by the 
Department records showing:
    (i) The AEDM, including the mathematical model, the engineering or 
statistical analysis, and/or computer simulation or modeling that is the 
basis of the AEDM;
    (ii) Equipment information, complete test data, AEDM calculations, 
and the statistical comparisons from the units tested that were used to 
validate the AEDM pursuant to paragraph (f)(2) of this section; and
    (iii) Equipment information and AEDM calculations for each basic 
model to which the AEDM has been applied.
    (4) Additional AEDM requirements. If requested by the Department the 
manufacturer must perform at least one of the following:
    (i) Conduct simulations before representatives of the Department to 
predict the performance of particular basic models of the product to 
which the AEDM was applied;
    (ii) Provide analyses of previous simulations conducted by the 
manufacturer; or
    (iii) Conduct certification testing of basic models selected by the 
Department.
    (5) AEDM verification testing. DOE may use the test data for a given 
individual model generated pursuant to Sec.  429.104 to verify the 
certified rating determined by an AEDM as long as the following process 
is followed:
    (i) Selection of units. DOE will obtain units for test from retail, 
where available. If units cannot be obtained from retail, DOE will 
request that a unit be provided by the manufacturer.
    (ii) Lab requirements. DOE will conduct testing at an independent, 
third-party testing facility of its choosing. In cases where no third-
party laboratory is capable of testing the equipment, it may be tested 
at a manufacturer's facility upon DOE's request.
    (iii) Manufacturer participation. Testing will be performed without 
manufacturer representatives on-site.
    (iv) Testing. All verification testing will be conducted in 
accordance with the applicable DOE test procedure, as well as each of 
the following to the extent that they apply:
    (A) Any active test procedure waivers that have been granted for the 
basic model;
    (B) Any test procedure guidance that has been issued by DOE;
    (C) If during test set-up or testing, the lab indicates to DOE that 
it needs additional information regarding a given basic model in order 
to test in accordance with the applicable DOE test procedure, DOE may 
organize a meeting between DOE, the manufacturer and the lab to provide 
such information.
    (D) At no time during the process may the lab communicate directly 
with the manufacturer without DOE present.
    (v) Failure to meet certified rating. If a model tests worse than 
its certified rating by an amount exceeding the tolerance prescribed in 
paragraph (f)(5)(vi) of this section, DOE will notify the

[[Page 245]]

manufacturer. DOE will provide the manufacturer with all documentation 
related to the test set up, test conditions, and test results for the 
unit. Within the timeframe allotted by DOE, the manufacturer may then 
present all claims regarding testing validity.
    (vi) Tolerances. for efficiency metrics, the result from a DOE 
verification test must be greater than or equal to the certified rating 
x (1 - the applicable tolerance).

------------------------------------------------------------------------
                                                            Applicable
            Equipment                     Metric            tolerance
------------------------------------------------------------------------
Refrigeration systems (including   AWEF................              5%
 components).
------------------------------------------------------------------------

    (vii) Invalid rating. If, following discussions with the 
manufacturer and a retest where applicable, DOE determines that the 
testing was conducted appropriately in accordance with the DOE test 
procedure, the rating for the model will be considered invalid. Pursuant 
to 10 CFR 429.13(b), DOE may require a manufacturer to conduct 
additional testing as a remedial measure.
    (g) Alternative determination of ratings for untested basic models 
of residential water heaters and residential-duty commercial water 
heaters. For models of water heaters that differ only in fuel type or 
power input, ratings for untested basic models may be established in 
accordance with the following procedures in lieu of testing. This method 
allows only for the use of ratings identical to those of a tested basic 
model as provided below; simulations or other modeling predictions for 
ratings of the uniform energy factor, volume, first-hour rating, or 
maximum gallons per minute (GPM) are not permitted.
    (1) Gas Water Heaters. For untested basic models of gas-fired water 
heaters that differ from tested basic models only in whether the basic 
models use natural gas or propane gas, the represented value of uniform 
energy factor, first-hour rating, and maximum gallons per minute for an 
untested basic model is the same as that for a tested basic model, as 
long as the input ratings of the tested and untested basic models are 
within 10%, that is:
[GRAPHIC] [TIFF OMITTED] TR11JY14.066

    (2) Electric Storage Water Heaters. Rate an untested basic model of 
an electric storage type water heater using the first-hour rating and 
the uniform energy factor obtained from a tested basic model as a basis 
for ratings of basic models with other input ratings, provided that 
certain conditions are met:
    (i) For an untested basic model, the represented value of the first-
hour rating and the uniform energy factor is the same as that of a 
tested basic model, provided that each heating element of the untested 
basic model is rated at or above the input rating for the corresponding 
heating element of the tested basic model.
    (ii) For an untested basic model having any heating element with an 
input rating that is lower than that of the corresponding heating 
element in the tested basic model, the represented value of the first-
hour rating and the uniform energy factor is the same as that of a 
tested basic model, provided that the first-hour rating for the untested 
basic model results in the same draw pattern specified in Table I of 
appendix E for the simulated-use test as was applied to the tested basic 
model. To establish whether this condition is met, determine the first-
hour ratings for the tested and the untested basic models in accordance 
with the procedure described in section 5.3.3 of 10 CFR part 430, 
subpart B, appendix E, then compare the appropriate draw pattern 
specified in Table I of appendix E for the first-hour rating of the 
tested basic model with that for the untested basic model. If this 
condition is not met, then the untested basic model must be tested and 
the appropriate sampling provisions applied to determine its uniform 
energy factor in accordance with appendix E and this part.

[[Page 246]]

    (h) Alternative efficiency determination method (AEDM) for 
compressors--(1) Criteria an AEDM must satisfy. A manufacturer may not 
apply an AEDM to a basic model to determine its efficiency pursuant to 
this section, unless:
    (i) The AEDM is derived from a mathematical model that estimates the 
energy efficiency or energy consumption characteristics of the basic 
model as measured by the applicable DOE test procedure;
    (ii) The AEDM is based on engineering or statistical analysis, 
computer simulation or modeling, or other analytic evaluation of 
performance data; and
    (iii) The manufacturer has validated the AEDM, in accordance with 
paragraph (h)(2) of this section.
    (2) Validation of an AEDM. Before using an AEDM, the manufacturer 
must validate the AEDM's accuracy and reliability as follows:
    (i) AEDM overview. The manufacturer must select at least the minimum 
number of basic models for each validation class specified in paragraph 
(h)(2)(iv) of this section to which the particular AEDM applies. Using 
the AEDM, calculate the energy use or energy efficiency for each of the 
selected basic models. Test each basic model and determine the 
represented value(s) in accordance with Sec.  429.63(a). Compare the 
results from the testing and the AEDM output according to paragraph 
(h)(2)(ii) of this section. The manufacturer is responsible for ensuring 
the accuracy and repeatability of the AEDM.
    (ii) AEDM basic model tolerances. (A) The predicted representative 
values for each basic model calculated by applying the AEDM may not be 
more than five percent greater (for measures of efficiency) or less (for 
measures of consumption) than the represented values determined from the 
corresponding test of the model.
    (B) The predicted package isentropic efficiency for each basic model 
calculated by applying the AEDM must meet or exceed the applicable 
federal energy conservation standard.
    (iii) Additional test unit requirements. (A) Each AEDM must be 
supported by test data obtained from physical tests of current models; 
and
    (B) Test results used to validate the AEDM must meet or exceed 
current, applicable Federal standards as specified in part 431 of this 
chapter; and
    (C) Each test must have been performed in accordance with the 
applicable DOE test procedure with which compliance is required at the 
time the basic models used for validation are distributed in commerce.
    (iv) Compressor validation classes.

------------------------------------------------------------------------
                                            Minimum number of distinct
            Validation class                basic models that must be
                                                      tested
------------------------------------------------------------------------
Rotary, Fixed-speed....................  2 Basic Models.
Rotary, Variable-speed.................  2 Basic Models.
------------------------------------------------------------------------

    (3) AEDM Records Retention Requirements. If a manufacturer has used 
an AEDM to determine representative values pursuant to this section, the 
manufacturer must have available upon request for inspection by the 
Department records showing:
    (i) The AEDM, including the mathematical model, the engineering or 
statistical analysis, and/or computer simulation or modeling that is the 
basis of the AEDM;
    (ii) Equipment information, complete test data, AEDM calculations, 
and the statistical comparisons from the units tested that were used to 
validate the AEDM pursuant to paragraph (h)(2) of this section; and
    (iii) Equipment information and AEDM calculations for each basic 
model to which the AEDM was applied.
    (4) Additional AEDM requirements. If requested by the Department, 
the manufacturer must:
    (i) Conduct simulations before representatives of the Department to 
predict the performance of particular basic models of the equipment to 
which the AEDM was applied;
    (ii) Provide analyses of previous simulations conducted by the 
manufacturer; and/or
    (iii) Conduct certification testing of basic models selected by the 
Department.

[76 FR 12451, Mar. 7, 2011; 76 FR 24780, May 2, 2011, as amended at 78 
FR 79595, Dec. 31, 2013; 79 FR 25505, May 5, 2014; 79 FR 27410, May 13, 
2014; 80 FR 152, Jan. 5, 2015; 79 FR 40565, July 11, 2014; 81 FR 4145, 
Jan. 25, 2016; 81 FR 37054, June 8, 2016; 81 FR 89304, Dec. 9, 2016; 82 
FR 1100, Jan. 4, 2017; 82 FR 1475, Jan. 5, 2017]

[[Page 247]]



Sec.  429.71  Maintenance of records.

    (a) The manufacturer of any covered product or covered equipment 
shall establish, maintain, and retain the records of certification 
reports, of the underlying test data for all certification testing, and 
of any other testing conducted to satisfy the requirements of this part, 
part 430, and part 431. Any manufacturer who chooses to use an 
alternative method for determining energy efficiency or energy use in 
accordance with Sec.  429.70 must retain the records required by that 
section, any other records of any testing performed to support the use 
of the alternative method, and any certifications required by that 
section, on file for review by DOE for two years following the 
discontinuance of all models or combinations whose ratings were based on 
the alternative method.
    (b) Such records shall be organized and indexed in a fashion that 
makes them readily accessible for review by DOE upon request.
    (c) The records shall be retained by the manufacturer for a period 
of two years from the date that the manufacturer or third party 
submitter has notified DOE that the model has been discontinued in 
commerce.
    (d) When considering if a pump is subject to energy conservation 
standards under part 431 of this chapter, DOE may need to determine if a 
pump was designed and constructed to the requirements set forth in 
Military Specifications: MIL-P-17639F, MIL-P-17881D, MIL-P-17840C, MIL-
P-18682D, or MIL-P-18472G. In this case, a manufacturer must provide DOE 
with copies of the original design and test data that were submitted to 
appropriate design review agencies, as required by MIL-P-17639F, MIL-P-
17881D, MIL-P-17840C, MIL-P-18682D, or MIL-P-18472G. Military 
specifications and standards are available for review at http://
everyspec.com/MIL-SPECS.
    (e) When considering if a compressor is subject to energy 
conservation standards under part 431, DOE may need to determine if a 
compressors was designed and tested to the requirements set forth in the 
American Petroleum Institute standard 619, ``Rotary-Type Positive-
Displacement Compressors for Petroleum, Petrochemical, and Natural Gas 
Industries'' (API 619). In this case, DOE may request that a 
manufacturer provide DOE with copies of the original requirements and 
test data that were submitted to the purchaser of the compressor, in 
accordance with API 619.

[76 FR 12451, Mar. 7, 2011, as amended at 81 FR 4145, Jan. 25, 2016; 85 
FR 1591, Jan. 10, 2020]



Sec.  429.72  Alternative methods for determining non-energy ratings.

    (a) General. Where Sec.  429.14 through Sec.  429.562 authorize the 
use of an alternative method for determining a physical or operating 
characteristic other than the energy consumption or efficiency, such 
characteristics must be determined either by testing in accordance with 
the applicable test procedure and applying the specified sampling plan 
provisions established in those sections or as described in the 
appropriate product-specific paragraph below. In all cases, the 
computer-aided design (CAD) models, measurements, and calculations used 
to determine the rating for the physical or operating characteristic 
shall be retained as part of the test records underlying the 
certification of the basic model in accordance with Sec.  429.71.
    (b) Testing. [Reserved]
    (c) Residential refrigerators, refrigerator-freezers, and freezers. 
The total refrigerated volume of a basic model of refrigerator, 
refrigerator-freezer, or freezer may be determined by performing a 
calculation of the volume based upon computer-aided design (CAD) models 
of the basic model in lieu of physical measurements of a production unit 
of the basic model. Any value of total refrigerated volume of a basic 
model reported to DOE in a certification of compliance in accordance 
with Sec.  429.14(b)(2) must be calculated using the CAD-derived 
volume(s) and the applicable provisions in the test procedures in 10 CFR 
part 430 for measuring volume, and must be within two percent, or 0.5 
cubic feet (0.2 cubic feet for compact products), whichever is greater, 
of the volume of a production unit of the basic model measured in 
accordance with the applicable test procedure in 10 CFR part 430.

[[Page 248]]

    (d) Miscellaneous refrigeration products. The total refrigerated 
volume of a miscellaneous refrigeration product basic model may be 
determined by performing a calculation of the volume based upon 
computer-aided design (CAD) models of the basic model in lieu of 
physical measurements of a production unit of the basic model. Any value 
of total adjusted volume and value of total refrigerated volume of a 
basic model reported to DOE in a certification of compliance in 
accordance with Sec.  429.61(b)(2) must be calculated using the CAD-
derived volume(s) and the applicable provisions in the test procedures 
in part 430 of this chapter for measuring volume. The calculated value 
must be within two percent, or 0.5 cubic feet (0.2 cubic feet for 
products with total refrigerated volume less than 7.75 cubic feet (220 
liters)), whichever is greater, of the volume of a production unit of 
the basic model measured in accordance with the applicable test 
procedure in part 430 of this chapter.
    (e) Commercial gas-fired and oil-fired instantaneous water heaters 
and hot water supply boilers. The storage volume of a commercial gas-
fired or oil-fired instantaneous water heater or a commercial gas-fired 
or oil-fired hot water supply boiler basic model may be determined by 
performing a calculation of the stored water volume based upon design 
drawings (including computer-aided design (CAD) models) or physical 
dimensions of the basic model. Any value of storage volume of a basic 
model reported to DOE in a certification of compliance in accordance 
with Sec.  429.44(c)(2)(iv) and (v) must be calculated using the design 
drawings or physical dimensions, or measured as per the applicable 
provisions in the test procedures in 10 CFR 431.106. The storage volume 
determination must include all water contained within the water heater 
from the inlet connection to the outlet connection(s). The storage 
volume of water contained in the water heater must then be computed in 
gallons.

[79 FR 22348, Apr. 21, 2014, as amended at 81 FR 4145, Jan. 25, 2016; 81 
FR 46790, July 18, 2016; 81 FR 79320, Nov. 10, 2016]



   Sec. Appendix A to Subpart B of Part 429--Student's t-Distribution 
                    Values for Certification Testing

        Figure 1--t-Distribution Values for Certification Testing
                               [One-Sided]
------------------------------------------------------------------------
                                           Confidence Interval
   Degrees of freedom (from    -----------------------------------------
          Appendix A)             90%      95%       97.5%        99%
------------------------------------------------------------------------
1.............................    3.078    6.314      12.71       31.82
2.............................    1.886    2.920       4.303       6.965
3.............................    1.638    2.353       3.182       4.541
4.............................    1.533    2.132       2.776       3.747
5.............................    1.476    2.015       2.571       3.365
6.............................    1.440    1.943       2.447       3.143
7.............................    1.415    1.895       2.365       2.998
8.............................    1.397    1.860       2.306       2.896
9.............................    1.383    1.833       2.262       2.821
10............................    1.372    1.812       2.228       2.764
11............................    1.363    1.796       2.201       2.718
12............................    1.356    1.782       2.179       2.681
13............................    1.350    1.771       2.160       2.650
14............................    1.345    1.761       2.145       2.624
15............................    1.341    1.753       2.131       2.602
16............................    1.337    1.746       2.120       2.583
17............................    1.333    1.740       2.110       2.567
18............................    1.330    1.734       2.101       2.552
19............................    1.328    1.729       2.093       2.539
20............................    1.325    1.725       2.086       2.528
------------------------------------------------------------------------


[76 FR 12451, Mar. 7, 2011; 76 FR 24780, May 2, 2011]



                          Subpart C_Enforcement



Sec.  429.100  Purpose and scope.

    This subpart describes the enforcement authority of DOE to ensure 
compliance with the conservation standards and regulations.



Sec.  429.102  Prohibited acts subjecting persons to enforcement action.

    (a) Each of the following actions is prohibited:
    (1) Failure of a manufacturer to provide, maintain, permit access 
to, or copying of records required to be supplied under the Act and this 
part or failure to make reports or provide other information required to 
be supplied under the Act and this part, including but not limited to 
failure to properly certify covered products and covered equipment in 
accordance with Sec.  429.12 and Sec. Sec.  429.14 through 429.62;
    (2) Failure to test any covered product or covered equipment subject 
to an applicable energy conservation standard in conformance with the 
applicable

[[Page 249]]

test requirements prescribed in 10 CFR parts 430 or 431;
    (3) Deliberate use of controls or features in a covered product or 
covered equipment to circumvent the requirements of a test procedure and 
produce test results that are unrepresentative of a product's energy or 
water consumption if measured pursuant to DOE's required test procedure;
    (4) Failure of a manufacturer to supply at the manufacturer's 
expense a requested number of covered products or covered equipment to a 
designated test laboratory in accordance with a test notice issued by 
DOE;
    (5) Failure of a manufacturer to permit a DOE representative to 
observe any testing required by the Act and this part and inspect the 
results of such testing;
    (6) Distribution in commerce by a manufacturer or private labeler of 
any new covered product or covered equipment that is not in compliance 
with an applicable energy conservation standard prescribed under the 
Act;
    (7) Distribution in commerce by a manufacturer or private labeler of 
a basic model of covered product or covered equipment after a notice of 
noncompliance determination has been issued to the manufacturer or 
private labeler;
    (8) Knowing misrepresentation by a manufacturer or private labeler 
by certifying an energy use or efficiency rating of any covered product 
or covered equipment distributed in commerce in a manner that is not 
supported by test data;
    (9) For any manufacturer, distributor, retailer, or private labeler 
to distribute in commerce an adapter that--
    (i) Is designed to allow an incandescent lamp that does not have a 
medium screw base to be installed into a fixture or lamp holder with a 
medium screw base socket; and
    (ii) Is capable of being operated at a voltage range at least 
partially within 110 and 130 volts; or
    (10) For any manufacturer or private labeler to knowingly sell a 
product to a distributor, contractor, or dealer with knowledge that the 
entity routinely violates any regional standard applicable to the 
product.
    (b) When DOE has reason to believe that a manufacturer or private 
labeler has undertaken a prohibited act listed in paragraph (a) of this 
section, DOE may:
    (1) Issue a notice of noncompliance determination;
    (2) Impose additional certification testing requirements;
    (3) Seek injunctive relief;
    (4) Assess a civil penalty for knowing violations; or
    (5) Undertake any combination of the above.
    (c) Violations of regional standards. (1) It is a violation for a 
distributor to knowingly sell a product to a contractor or dealer with 
knowledge that the entity will sell and/or install the product in 
violation of any regional standard applicable to the product.
    (2) It is a violation for a distributor to knowingly sell a product 
to a contractor or dealer with knowledge that the entity routinely 
violates any regional standard applicable to the product.
    (3) It is a violation for a contractor or dealer to knowingly sell 
to and/or install for an end user a central air conditioner subject to 
regional standards with the knowledge that such product will be 
installed in violation of any regional standard applicable to the 
product.
    (4) A ``product installed in violation'' includes:
    (i) A complete central air conditioning system that is not certified 
as a complete system that meets the applicable standard. Combinations 
that were previously validly certified may be installed after the 
manufacturer has discontinued the combination, provided the combination 
meets the currently applicable standard.
    (ii) An outdoor unit with no match (i.e., that is not offered for 
sale with an indoor unit) that is not certified as part of a combination 
that meets the applicable standard.
    (iii) An outdoor unit that is part of a certified combination rated 
less than the standard applicable in the region in which it is 
installed.

[76 FR 12451, Mar. 7, 2011, as amended at 81 FR 4145, Jan. 25, 2016; 81 
FR 45402, July 14, 2016]

[[Page 250]]



Sec.  429.104  Assessment testing.

    DOE may, at any time, test a basic model to assess whether the basic 
model is in compliance with the applicable energy conservation 
standard(s).



Sec.  429.106  Investigation of compliance.

    (a) DOE may initiate an investigation that a basic model may not be 
compliant with an applicable conservation standard, certification 
requirement or other regulation at any time.
    (b) DOE may, at any time, request any information relevant to 
determining compliance with any requirement under parts 429, 430 and 
431, including the data underlying certification of a basic model. Such 
data may be used by DOE to make a determination of compliance or 
noncompliance with an applicable standard.



Sec.  429.110  Enforcement testing.

    (a) General provisions. (1) If DOE has reason to believe that a 
basic model is not in compliance it may test for enforcement.
    (2) DOE will select and test units pursuant to paragraphs (c) and 
(e) of this section.
    (3) Testing will be conducted at a laboratory accredited to the 
International Organization for Standardization (ISO)/International 
Electrotechnical Commission (IEC), ``General requirements for the 
competence of testing and calibration laboratories,'' ISO/IEC 
17025:2005(E) (incorporated by reference; see Sec.  429.4). If testing 
cannot be completed at an independent laboratory, DOE, at its 
discretion, may allow enforcement testing at a manufacturer's 
laboratory, so long as the lab is accredited to ISO/IEC 17025:2005(E) 
and DOE representatives witness the testing. In addition, for commercial 
packaged boilers with rated input greater than 5,000,000 Btu/h, DOE, at 
its discretion, may allow enforcement testing of a commissioned 
commercial packaged boiler in the location in which it was commissioned 
for use, pursuant to the test provisions at Sec.  431.86(c) of this 
chapter, for which accreditation to ISO/IEC 17025:2005(E) would not be 
required.
    (b) Test notice. (1) To obtain units for enforcement testing to 
determine compliance with an applicable standard, DOE will issue a test 
notice addressed to the manufacturer in accordance with the following 
requirements:
    (i) DOE will send the test notice to the manufacturer's certifying 
official or other company official.
    (ii) The test notice will specify the basic model that will be 
selected for testing, the method of selecting the test sample, the 
maximum size of the sample and the size of the initial test sample, the 
dates at which testing is scheduled to be started and completed, and the 
facility at which testing will be conducted. The test notice may also 
provide for situations in which the selected basic model is unavailable 
for testing and may include alternative models or basic models.
    (iii) DOE will state in the test notice that it will select the 
units of a basic model to be tested from the manufacturer, from one or 
more distributors, and/or from one or more retailers. If any unit is 
selected from a distributor or retailer, the manufacturer shall make 
arrangements with the distributor or retailer for compensation for or 
replacement of any such units.
    (iv) DOE may require in the test notice that the manufacturer of a 
basic model ship or cause to be shipped from a retailer or distributor 
at its expense the requested number of units of a basic model specified 
in such test notice to the testing laboratory specified in the test 
notice. The manufacturer shall ship the specified initial test unit(s) 
of the basic model to the testing laboratory within 5 working days from 
the time units are selected.
    (v) If DOE determines that the units identified are low-volume or 
built-to-order products, DOE will contact the manufacturer to develop a 
plan for enforcement testing in lieu of paragraphs (ii)-(iv) of this 
section.
    (2) [Reserved]
    (c) Test unit selection. (1) To select units for testing from a:
    (i) Manufacturer's warehouse, distributor, or other facility 
affiliated with the manufacturer. DOE will select a batch sample at 
random in accordance with the provisions in paragraph (e) of this 
section and the conditions specified in the test notice. DOE will 
randomly select an initial test sample

[[Page 251]]

of units from the batch sample for testing in accordance with appendices 
A through C of this subpart. DOE will make a determination whether an 
alternative sample size will be used in accordance with the provisions 
in paragraph (e)(1)(iv) of this section.
    (ii) Retailer or other facility not affiliated with the 
manufacturer. DOE will select an initial test sample of units at random 
that satisfies the minimum units necessary for testing in accordance 
with the provisions in appendices A through C of this subpart and the 
conditions specified in the test notice. Depending on the results of the 
testing, DOE may select additional units for testing from a retailer in 
accordance with appendices A through C of this subpart. If the full 
sample is not available from a retailer, DOE will make a determination 
whether an alternative sample size will be used in accordance with the 
provisions in paragraph (e)(1)(iv) of this section.
    (iii) Previously commissioned commercial packaged boilers with a 
rated input greater than 5,000,000 Btu/h. DOE may test a sample of at 
least one unit in the location in which it was commissioned for use.
    (2) Units tested in accordance with the applicable test procedure 
under this part by DOE or another Federal agency, pursuant to other 
provisions or programs, may count toward units in the test sample.
    (3) The resulting test data shall constitute official test data for 
the basic model. Such test data will be used by DOE to make a 
determination of compliance or noncompliance if a sufficient number of 
tests have been conducted to satisfy the requirements of paragraph (e) 
of this section and appendices A through C of this subpart.
    (d) Test unit preparation. (1) Prior to and during testing, a test 
unit selected for enforcement testing shall not be prepared, modified, 
or adjusted in any manner unless such preparation, modification, or 
adjustment is allowed by the applicable DOE test procedure. One test 
shall be conducted for each test unit in accordance with the applicable 
test procedures prescribed in parts 430 and 431.
    (2) No quality control, testing or assembly procedures shall be 
performed on a test unit, or any parts and subassemblies thereof, that 
is not performed during the production and assembly of all other units 
included in the basic model.
    (3) A test unit shall be considered defective if such unit is 
inoperative or is found to be in noncompliance due to failure of the 
unit to operate according to the manufacturer's design and operating 
instructions. Defective units, including those damaged due to shipping 
or handling, shall be reported immediately to DOE. DOE may authorize 
testing of an additional unit on a case-by-case basis.
    (e) Basic model compliance. DOE will evaluate whether a basic model 
complies with the applicable energy conservation standard(s) based on 
testing conducted in accordance with the applicable test procedures 
specified in parts 430 and 431 of this chapter, and with the following 
statistical sampling procedures:
    (1) For products with applicable energy conservation standard(s) in 
Sec.  430.32 of this chapter, and commercial prerinse spray valves, 
illuminated exit signs, traffic signal modules and pedestrian modules, 
commercial clothes washers, dedicated-purpose pool pumps, and metal 
halide lamp ballasts, DOE will use a sample size of not more than 21 
units and follow the sampling plans in appendix A of this subpart 
(Sampling for Enforcement Testing of Covered Consumer Products and 
Certain High-Volume Commercial Equipment).
    (2) For automatic commercial ice makers; commercial refrigerators, 
freezers, and refrigerator-freezers; refrigerated bottled or canned 
vending machines; commercial air conditioners and heat pumps; commercial 
packaged boilers; commercial warm air furnaces; commercial water heating 
equipment; and walk-in cooler and walk-in freezer refrigeration systems, 
DOE will use an initial sample size of not more than four units and 
follow the sampling plans in appendix B of this subpart (Sampling Plan 
for Enforcement Testing of Covered Equipment and Certain Low-Volume 
Covered Products).
    (3) If fewer than four units of a basic model are available for 
testing (under paragraphs (e)(1) or (2) of this section)

[[Page 252]]

when the manufacturer receives the notice, then:
    (i) DOE will test the available unit(s); or
    (ii) If one or more other units of the basic model are expected to 
become available within 30 calendar days, DOE may instead, at its 
discretion, test either:
    (A) The available unit(s) and one or more of the other units that 
subsequently become available (up to a maximum of four); or
    (B) Up to four of the other units that subsequently become 
available.
    (4) For distribution transformers, DOE will use an initial sample 
size of not more than five units and follow the sampling plans in 
appendix C of this subpart (Sampling Plan for Enforcement Testing of 
Distribution Transformers). If fewer than five units of a basic model 
are available for testing when the manufacturer receives the test 
notice, then:
    (i) DOE will test the available unit(s); or
    (ii) If one or more other units of the basic model are expected to 
become available within 30 calendar days, DOE may instead, at its 
discretion, test either:
    (A) The available unit(s) and one or more of the other units that 
subsequently become available (up to a maximum of five); or
    (B) Up to five of the other units that subsequently become 
available.
    (5) For pumps subject to the standards specified in Sec.  431.465(a) 
of this chapter, DOE will use an initial sample size of not more than 
four units and will determine compliance based on the arithmetic mean of 
the sample.
    (6) For uninterruptible power supplies, if a basic model is 
certified for compliance to the applicable energy conservation 
standard(s) in Sec.  430.32 of this chapter according to the sampling 
plan in Sec.  429.39(a)(2)(iv)(A) of this chapter, DOE will use a sample 
size of not more than 21 units and follow the sampling plan in appendix 
A of this subpart (Sampling for Enforcement Testing of Covered Consumer 
Products and Certain High-Volume Commercial Equipment). If a basic model 
is certified for compliance to the applicable energy conservation 
standard(s) in Sec.  430.32 of this chapter according to the sampling 
plan in Sec.  429.39(a)(2)(iv)(B) of this chapter, DOE will use a sample 
size of at least one unit and follow the sampling plan in appendix D of 
this subpart (Sampling for Enforcement Testing of Uninterruptible Power 
Supplies).
    (7) Notwithstanding paragraphs (e)(1) through (6) of this section, 
if testing of the available or subsequently available units of a basic 
model would be impractical, as for example when a basic model has 
unusual testing requirements or has limited production, DOE may in its 
discretion decide to base the determination of compliance on the testing 
of fewer than the otherwise required number of units.
    (8) When DOE makes a determination in accordance with paragraph 
(e)(7) of this section to test less than the number of units specified 
in paragraphs (e)(1) through (6) of this section, DOE will base the 
compliance determination on the results of such testing in accordance 
with appendix B of this subpart (Sampling Plan for Enforcement Testing 
of Covered Equipment and Certain Low-Volume Covered Products) using a 
sample size (n1) equal to the number of units tested.
    (9) For the purposes of this section, available units are those that 
are available for distribution in commerce within the United States.

[76 FR 12451, Mar. 7, 2011, as amended at 81 FR 4145, Jan. 25, 2016; 81 
FR 31841, May 20, 2016; 81 FR 89304, Dec. 9, 2016; 81 FR 89822, Dec. 12, 
2016; 81 FR 95800, Dec. 28, 2016; 82 FR 36918, Aug. 7, 2017]



Sec.  429.114  Notice of noncompliance and notice to cease distribution 
of a basic model.

    (a) In the event that DOE determines a basic model is noncompliant 
with an applicable energy conservation standard, or if a manufacturer or 
private labeler determines a basic model to be in noncompliance, DOE may 
issue a notice of noncompliance determination to the manufacturer or 
private labeler. This notice of noncompliance determination will notify 
the manufacturer or private labeler of its obligation to:
    (1) Immediately cease distribution in commerce of the basic model;

[[Page 253]]

    (2) Give immediate written notification of the determination of 
noncompliance to all persons to whom the manufacturer has distributed 
units of the basic model manufactured since the date of the last 
determination of compliance; and
    (3) Provide DOE, within 30 calendar days of the request, records, 
reports and other documentation pertaining to the acquisition, ordering, 
storage, shipment, or sale of a basic model determined to be in 
noncompliance.
    (b) In the event that DOE determines a manufacturer has failed to 
comply with an applicable certification requirement with respect to a 
particular basic model, DOE may issue a notice of noncompliance 
determination to the manufacturer or private labeler. This notice of 
noncompliance determination will notify the manufacturer or private 
labeler of its obligation to:
    (1) Immediately cease distribution in commerce of the basic model;
    (2) Immediately comply with the applicable certification 
requirement; and/or
    (3) Provide DOE within 30 days of the request, records, reports and 
other documentation pertaining to the acquisition, ordering, storage, 
shipment, or sale of the basic model.
    (c) If a manufacturer or private labeler fails to comply with the 
required actions in the notice of noncompliance determination as set 
forth in paragraphs (a) or (b) of this section, the General Counsel (or 
delegee) may seek, among other remedies, injunctive action and civil 
penalties, where appropriate.
    (d) The manufacturer may modify a basic model determined to be 
noncompliant with an applicable energy conservation standard in such 
manner as to make it comply with the applicable standard. Such modified 
basic model shall then be treated as a new basic model and must be 
certified in accordance with the provisions of this part; except that in 
addition to satisfying all requirements of this part, any models within 
the basic model must be assigned new model numbers and the manufacturer 
shall also maintain, and provide upon request to DOE, records that 
demonstrate that modifications have been made to all units of the new 
basic model prior to distribution in commerce.



Sec.  429.116  Additional certification testing requirements.

    Pursuant to Sec.  429.102(b)(2), if DOE determines that independent, 
third-party testing is necessary to ensure a manufacturer's compliance 
with the rules of this part, part 430, or part 431, a manufacturer must 
base its certification of a basic model under subpart B of this part on 
independent, third-party laboratory testing.



Sec.  429.118  Injunctions.

    If DOE has reason to seek an injunction under the Act:
    (a) DOE will notify the manufacturer, private labeler or any other 
person as required, of the prohibited act at issue and DOE's intent to 
seek a judicial order enjoining the prohibited act unless the 
manufacturer, private labeler or other person, delivers to DOE within 15 
calendar days a corrective action and compliance plan, satisfactory to 
DOE, of the steps it will take to ensure that the prohibited act ceases. 
DOE will monitor the implementation of such plan.
    (b) If the manufacturer, private labeler or any other person as 
required, fails to cease engaging in the prohibited act or fails to 
provide a satisfactory corrective action and compliance plan, DOE may 
seek an injunction.



Sec.  429.120  Maximum civil penalty.

    Any person who knowingly violates any provision of Sec.  429.102(a) 
may be subject to assessment of a civil penalty of no more than $468 for 
each violation. As to Sec.  429.102(a)(1) with respect to failure to 
certify, and as to Sec.  429.102(a)(2), (5) through (9), each unit of a 
covered product or covered equipment distributed in violation of such 
paragraph shall constitute a separate violation. For violations of Sec.  
429.102(a)(1), (3), and (4), each day of noncompliance shall constitute 
a separate violation for each basic model at issue.

[76 FR 12451, Mar. 7, 2011, as amended at 81 FR 41794, June 28, 2016; 81 
FR 96351, Dec. 30, 2016; 83 FR 1291, Jan. 11, 2018; 83 FR 66083, Dec. 
26, 2018; 85 FR 830, Jan. 8, 2020]

[[Page 254]]



Sec.  429.122  Notice of proposed civil penalty.

    (a) The General Counsel (or delegee) shall provide notice of any 
proposed civil penalty.
    (b) The notice of proposed penalty shall:
    (1) Include the amount of the proposed penalty;
    (2) Include a statement of the material facts constituting the 
alleged violation; and
    (3) Inform the person of the opportunity to elect in writing within 
30 calendar days of receipt of the notice to have the procedures of 
Sec.  429.128 (in lieu of those of Sec.  429.126) apply with respect to 
the penalty.



Sec.  429.124  Election of procedures.

    (a) In responding to a notice of proposed civil penalty, the 
respondent may request:
    (1) An administrative hearing before an Administrative Law Judge 
(ALJ) under Sec.  429.126 of this part; or
    (2) Elect to have the procedures of Sec.  429.128 apply.
    (b) Any election to have the procedures of Sec.  429.128 apply may 
not be revoked except with the consent of the General Counsel (or 
delegee).
    (c) If the respondent fails to respond to a notice issued under 
Sec.  429.120 or otherwise fails to indicate its election of procedures, 
DOE shall refer the civil penalty action to an ALJ for a hearing under 
Sec.  429.126.



Sec.  429.126  Administrative law judge hearing and appeal.

    (a) When elected pursuant to Sec.  429.124, DOE shall refer a civil 
penalty action brought under Sec.  429.122 of this part to an ALJ, who 
shall afford the respondent an opportunity for an agency hearing on the 
record.
    (b) After consideration of all matters of record in the proceeding, 
the ALJ will issue a recommended decision, if appropriate, recommending 
a civil penalty. The decision will include a statement of the findings 
and conclusions, and the reasons therefore, on all material issues of 
fact, law, and discretion.
    (c)(1) The General Counsel (or delegee) shall adopt, modify, or set 
aside the conclusions of law or discretion contained in the ALJ's 
recommended decision and shall set forth a final order assessing a civil 
penalty. The General Counsel (or delegee) shall include in the final 
order the ALJ's findings of fact and the reasons for the final agency 
actions.
    (2) Any person against whom a penalty is assessed under this section 
may, within 60 calendar days after the date of the final order assessing 
such penalty, institute an action in the United States Court of Appeals 
for the appropriate judicial circuit for judicial review of such order 
in accordance with chapter 7 of title 5, United States Code. The court 
shall have jurisdiction to enter a judgment affirming, modifying, or 
setting aside in whole or in part, the final order, or the court may 
remand the proceeding to the Department for such further action as the 
court may direct.



Sec.  429.128  Immediate issuance of order assessing civil penalty.

    (a) If the respondent elects to forgo an agency hearing pursuant to 
Sec.  429.124, the General Counsel (or delegee) shall issue an order 
assessing the civil penalty proposed in the notice of proposed penalty 
under Sec.  429.122, 30 calendar days after the respondent's receipt of 
the notice of proposed penalty.
    (b) If within 60 calendar days of receiving the assessment order in 
paragraph (a) of this section the respondent does not pay the civil 
penalty amount, DOE shall institute an action in the appropriate United 
States District Court for an order affirming the assessment of the civil 
penalty. The court shall have authority to review de novo the law and 
the facts involved and shall have jurisdiction to enter a judgment 
enforcing, modifying, and enforcing as so modified, or setting aside in 
whole or in part, such assessment.



Sec.  429.130  Collection of civil penalties.

    If any person fails to pay an assessment of a civil penalty after it 
has become a final and unappealable order under Sec.  429.126 or after 
the appropriate District Court has entered final judgment in favor of 
the Department under Sec.  429.128, the General Counsel (or delegee) 
shall institute an action to recover the amount of such penalty in any 
appropriate District Court of the

[[Page 255]]

United States. In such action, the validity and appropriateness of such 
final assessment order or judgment shall not be subject to review.



Sec.  429.132  Compromise and settlement.

    (a) DOE may compromise, modify, or remit, with or without 
conditions, any civil penalty (with leave of court if necessary).
    (b) In exercising its authority under paragraph (a) of this section, 
DOE may consider the nature and seriousness of the violation, the 
efforts of the respondent to remedy the violation in a timely manner, 
and other factors as justice may require.
    (c) DOE's authority to compromise, modify or remit a civil penalty 
may be exercised at any time prior to a final decision by the United 
States Court of Appeals if Sec.  429.126 procedures are utilized, or 
prior to a final decision by the United States District Court, if Sec.  
429.128 procedures are utilized.
    (d) Notwithstanding paragraph (a) of this section, DOE or the 
respondent may propose to settle the case. If a settlement is agreed to 
by the parties, the respondent is notified and the case is closed in 
accordance with the terms of the settlement.



Sec.  429.134  Product-specific enforcement provisions.

    (a) General. The following provisions apply to assessment and 
enforcement testing of the relevant products and equipment.
    (b) Refrigerators, refrigerator-freezers, and freezers-- (1) 
Verification of total refrigerated volume. The total refrigerated volume 
of the basic model will be measured pursuant to the test requirements of 
10 CFR part 430 for each unit tested. The results of the measurement(s) 
will be averaged and compared to the value of total refrigerated volume 
certified by the manufacturer. The certified total refrigerated volume 
will be considered valid only if:
    (i) The measurement is within two percent, or 0.5 cubic feet (0.2 
cubic feet for compact products), whichever is greater, of the certified 
total refrigerated volume, or
    (ii) The measurement is greater than the certified total 
refrigerated volume.
    (A) If the certified total refrigerated volume is found to be valid, 
the certified adjusted total volume will be used as the basis for 
calculation of maximum allowed energy use for the basic model.
    (B) If the certified total refrigerated volume is found to be 
invalid, the average measured adjusted total volume, rounded to the 
nearest 0.1 cubic foot, will serve as the basis for calculation of 
maximum allowed energy use for the tested basic model.
    (2) Test for models with two compartments, each having its own user-
operable temperature control. The test described in section 3.3 of the 
applicable test procedure for refrigerators or refrigerator-freezers in 
appendix A to subpart B of 10 CFR part 430 shall be used for all units 
of a tested basic model before DOE makes a determination of 
noncompliance with respect to the basic model.
    (c) Clothes washers. (1) Determination of Remaining Moisture 
Content. The procedure for determining remaining moisture content (RMC) 
will be performed once in its entirety, pursuant to the test 
requirements of section 3.8 of appendix J1 and appendix J2 to subpart B 
of part 430, for each unit tested.
    (i) The measured RMC value of a tested unit will be considered the 
tested unit's final RMC value if the measured RMC value is within two 
RMC percentage points of the certified RMC value of the basic model 
(expressed as a percentage), or is lower than the certified RMC value.
    (ii) If the measured RMC value of a tested unit is more than two RMC 
percentage points higher than the certified RMC value of the basic 
model, DOE will perform two additional replications of the RMC 
measurement procedure, each pursuant to the provisions of section 3.8.5 
of appendix J1 and appendix J2 to subpart B of part 430, for a total of 
three independent RMC measurements of the tested unit. The average of 
the three RMC measurements will be the tested unit's final RMC value and 
will be used as the basis for the calculation of per-cycle energy 
consumption for removal of moisture from the test load for that unit.
    (2) [Reserved]

[[Page 256]]

    (d) Residential Water Heaters and Residential-Duty Commercial Water 
Heaters--(1) Verification of first-hour rating and maximum GPM rating. 
The first-hour rating or maximum gallons per minute (GPM) rating of the 
basic model will be measured pursuant to the test requirements of 10 CFR 
part 430 for each unit tested. The mean of the measured values will be 
compared to the rated values of first-hour rating or maximum GPM rating 
as certified by the manufacturer. The certified rating will be 
considered valid only if the measurement is within five percent of the 
certified rating.
    (i) If the rated value of first-hour rating or maximum GPM rating is 
found to be within 5 percent of the mean of the measured values, then 
the rated value will be used as the basis for determining the applicable 
draw pattern pursuant to the test requirements of 10 CFR part 430 for 
each unit tested.
    (ii) If the rated value of first-hour rating or maximum GPM rating 
is found to vary more than 5 percent from the measured values, then the 
mean of the measured values will serve as the basis for determining the 
applicable draw pattern pursuant to the test requirements of 10 CFR part 
430 for each unit tested.
    (2) Verification of rated storage volume. The storage volume of the 
basic model will be measured pursuant to the test requirements of 
appendix E to subpart B of 10 CFR part 430 for each unit tested. The 
mean of the measured values will be compared to the rated storage volume 
as certified by the manufacturer. The rated value will be considered 
valid only if the measurement is within 3 percent of the certified 
rating.
    (i) If the rated storage volume is found to be within 3 percent of 
the mean of the measured value of storage volume, then the rated value 
will be used as the basis for calculation of the required uniform energy 
factor for the basic model.
    (ii) If the rated storage volume is found to vary more than 3 
percent from the mean of the measured values, then the mean of the 
measured values will be used as the basis for calculation of the 
required uniform energy factor for the basic model.
    (e) Packaged terminal air conditioners and packaged terminal heat 
pumps--(1) Verification of cooling capacity. The total cooling capacity 
of the basic model will be measured pursuant to the test requirements of 
10 CFR part 431 for each unit tested. The results of the measurement(s) 
will be averaged and compared to the value of cooling capacity certified 
by the manufacturer. The certified cooling capacity will be considered 
valid only if the average measured cooling capacity is within five 
percent of the certified cooling capacity.
    (i) If the certified cooling capacity is found to be valid, that 
cooling capacity will be used as the basis for calculation of minimum 
allowed EER (and minimum allowed COP for PTHP models) for the basic 
model.
    (ii) If the certified cooling capacity is found to be invalid, the 
average measured cooling capacity will serve as the basis for 
calculation of minimum allowed EER (and minimum allowed COP for PTHP 
models) for the tested basic model.
    (2) [Reserved]
    (f) Dehumidifiers--(1) Verification of capacity. The capacity will 
be measured pursuant to the test requirements of part 430 for each unit 
tested. The results of the measurement(s) will be averaged and compared 
to the value of capacity certified by the manufacturer for the basic 
model. The certified capacity will be considered valid only if the 
measurement is within five percent, or 1.00 pint per day, whichever is 
greater, of the certified capacity.
    (i) If the certified capacity is found to be valid, the certified 
capacity will be used as the basis for determining the minimum energy 
factor or integrated energy factor allowed for the basic model.
    (ii) If the certified capacity is found to be invalid, the average 
measured capacity of the units in the sample will be used as the basis 
for determining the minimum energy factor or integrated energy factor 
allowed for the basic model.
    (2) Verification of whole-home dehumidifier case volume. The case 
volume will be measured pursuant to the test requirements of part 430 
for each unit

[[Page 257]]

tested. The results of the measurement(s) will be averaged and compared 
to the value of case volume certified by the manufacturer for the basic 
model. The certified case volume will be considered valid only if the 
measurement is within two percent, or 0.2 cubic feet, whichever is 
greater, of the certified case volume.
    (i) If the certified case volume is found to be valid, the certified 
case volume will be used as the basis for determining the minimum 
integrated energy factor allowed for the basic model.
    (ii) If the certified case volume is found to be invalid, the 
average measured case volume of the units in the sample will be used as 
the basis for determining the minimum integrated energy factor allowed 
for the basic model.
    (g) Air-cooled small (=65,000 Btu/h and <135,000 Btu/h), 
large (=135,000 Btu/h and <240,000 Btu/h), and very large 
(=240,000 Btu/h and <760,000 Btu/h) commercial package air 
conditioning and heating equipment--verification of cooling capacity. 
The cooling capacity of each tested unit of the basic model will be 
measured pursuant to the test requirements of part 431 of this chapter. 
The mean of the measurement(s) will be used to determine the applicable 
standards for purposes of compliance.
    (h) Residential boilers--test protocols for functional verification 
of automatic means for adjusting water temperature. These tests are 
intended to verify the functionality of the design requirement that a 
boiler has an automatic means for adjusting water temperature for 
single-stage, two-stage, and modulating boilers. These test methods are 
intended to permit the functional testing of a range of control 
strategies used to fulfill this design requirement. Section 2, 
Definitions, and paragraph 6.1.a of appendix N to subpart B of part 430 
of this chapter apply for the purposes of this paragraph (h).
    (1) Test protocol for all products other than single-stage products 
employing burner delay. This test is intended to verify whether an 
automatic means for adjusting water temperature other than burner delay 
produces an incremental change in water supply temperature in response 
to an incremental change in inferred heat load.
    (i) Boiler setup--(A) Boiler installation. Boiler installation in 
the test room shall be in accordance with the setup and apparatus 
requirements of section 6 of appendix N to subpart B of 10 CFR part 430.
    (B) Establishing flow rate and temperature rise. Start the boiler 
without enabling the means for adjusting water temperature. Establish a 
water flow rate that allows for a water temperature rise of greater than 
or equal to 20 [deg]F at maximum input rate.
    (C) Temperature stabilization. Temperature stabilization is deemed 
to be obtained when the boiler supply water temperature does not vary by 
more than 3 [deg]F over a period of five minutes.
    (D) Adjust the inferential load controller. (1) Adjust the boiler 
controls (in accordance with the I&O manual) to the default setting that 
allows for activation of the means for adjusting water temperature. For 
boiler controls that do not allow for control adjustment during active 
mode operation, terminate call for heat and adjust the inferential load 
controller in accordance with the I&O manual and then reinitiate call 
for heat.
    (2) If the means for adjusting water temperature uses outdoor 
temperature reset, the maximum outdoor temperature setting (if equipped) 
should be set to a temperature high enough that the boiler operates 
continuously during the duration of this test (i.e., if the conditions 
in paragraph (h)(1)(ii)(A) of this section equal room ambient 
temperature, then the maximum outdoor temperature should be set at a 
temperature greater than the ambient air temperature during the test).
    (ii) Establish low inferred load conditions at minimum boiler supply 
water temperature--(A) Establish low inferred load conditions. (1) 
Establish the inferred load conditions (simulated using a controlling 
parameter, such as outdoor temperature, thermostat patterns, or boiler 
cycling) so that the supply water temperature is maintained at the 
minimum supply water temperature prescribed by the boiler manufacturer's 
temperature reset control strategy found in the I&O manual.

[[Page 258]]

    (2) The minimum supply water temperature of the default temperature 
reset curve is usually provided in the I&O manual. If there is no 
recommended minimum supply water temperature, set the minimum supply 
water temperature equal to 20 [deg]F less than the high supply water 
temperature specified in paragraph (h)(1)(iii)(A) of this section.
    (B) Supply water temperature stabilization at low inferred load. (1) 
Maintain the call for heat until the boiler supply water temperature has 
stabilized. Temperature stabilization is deemed to be obtained when the 
boiler supply water temperature does not vary by more than 3 [deg]F over a period of five minutes. The duration of 
time required to stabilize the supply water, following the procedure in 
paragraph (h)(1)(ii)(A) of this section, is dependent on the reset 
strategy and may vary from model to model.
    (2) Record the boiler supply water temperature while the temperature 
is stabilized.
    (iii) Establish high inferred load conditions at maximum boiler 
supply water temperature--(A) Establish high inferred load conditions. 
Establish the inferred load conditions so that the supply water 
temperature is set to the maximum allowable supply water temperature as 
prescribed in the I&O manual, or if there is no recommendation, set to a 
temperature greater than 170 [deg]F.
    (B) Supply water temperature stabilization at high inferred load. 
(1) Maintain the call for heat until the boiler supply water temperature 
has stabilized. Temperature stabilization is deemed to be obtained when 
the boiler supply water temperature does not vary by more than 3 [deg]F over a period of five minutes. The duration of 
time required to stabilize the supply water, following the procedure in 
paragraph (h)(1)(iii)(A) of this section, is dependent on the reset 
strategy and may vary from model to model.
    (2) Record the boiler supply water temperature while the temperature 
is stabilized.
    (3) Terminate the call for heat.
    (iv) [Reserved]
    (2) Test protocol for single-stage products employing burner delay. 
This test will be used in place of paragraph (h)(1) of this section for 
products manufacturers have certified to DOE under Sec.  429.18(b)(3) as 
employing a burner delay automatic means strategy. This test verifies 
whether the automatic means in single-stage boiler products establishes 
a burner delay upon a call for heat until the means has determined that 
the inferred heat load cannot be met by the residual heat of the water 
in the system.
    (i) Boiler setup--(A) Boiler installation. Boiler installation in 
the test room shall be in accordance with the setup and apparatus 
requirements by section 6.0 of appendix N to subpart B of 10 CFR part 
430.
    (B) Activation of controls. Adjust the boiler controls in accordance 
with the I&O manual at the default setting that allows for activation of 
the means for adjusting water temperature.
    (C) Adjustment of water flow and temperature. The flow and 
temperature of inlet water to the boiler shall be capable of being 
adjusted manually.
    (ii) Boiler heat-up--(A) Boiler start-up. Power up the boiler and 
initiate a call for heat.
    (B) Adjustment of firing rate. Adjust the boiler's firing rate to 
within 5% of its maximum rated input.
    (C) Establishing flow rate and temperature rise. Adjust the water 
flow through the boiler to achieve a [Delta]T of 20 [deg]F (2 [deg]F) or greater with an inlet water temperature 
equal to 140 [deg]F (2 [deg]F).
    (D) Terminate the call for heating. Terminate the call for heat, 
stop the flow of water through the boiler, and record the time at 
termination.
    (iii) Verify burner delay--(A) Reinitiate call for heat. Within 
three (3) minutes of termination (paragraph (h)(2)(ii)(D) of this 
section) and without adjusting the inlet water flow rate or temperature 
as specified in paragraph (h)(2)(ii)(C) of this section, reinitiate the 
call for heat and water flow and record the time.
    (B) Verify burner ignition. At 15-second intervals, record time and 
supply water temperature until the main burner ignites.
    (C) Terminate the call for heat.
    (iv) [Reserved]
    (i) Pumps--(1) General purpose pumps. (i) The volume rate of flow 
(flow rate) at BEP and nominal speed of rotation

[[Page 259]]

of each tested unit of the basic model will be measured pursuant to the 
test requirements of Sec.  431.464 of this chapter, where the value of 
volume rate of flow (flow rate) at BEP and nominal speed of rotation 
certified by the manufacturer will be treated as the expected BEP flow 
rate. The results of the measurement(s) will be compared to the value of 
volume rate of flow (flow rate) at BEP and nominal speed of rotation 
certified by the manufacturer. The certified volume rate of flow (flow 
rate) at BEP and nominal speed of rotation will be considered valid only 
if the measurement(s) (either the measured volume rate of flow (flow 
rate) at BEP and nominal speed of rotation for a single unit sample or 
the average of the measured flow rates for a multiple unit sample) is 
within five percent of the certified volume rate of flow (flow rate) at 
BEP and nominal speed of rotation.
    (A) If the representative value of volume rate of flow (flow rate) 
at BEP and nominal speed of rotation is found to be valid, the measured 
volume rate of flow (flow rate) at BEP and nominal speed of rotation 
will be used in subsequent calculations of constant load pump energy 
rating (PERCL) and constant load pump energy index 
(PEICL) or variable load pump energy rating 
(PERVL) and variable load pump energy index 
(PEIVL) for that basic model.
    (B) If the representative value of volume rate of flow (flow rate) 
at BEP and nominal speed of rotation is found to be invalid, the mean of 
all the measured volume rate of flow (flow rate) at BEP and nominal 
speed of rotation values determined from the tested unit(s) will serve 
as the new expected BEP flow rate and the unit(s) will be retested until 
such time as the measured rate of flow (flow rate) at BEP and nominal 
speed of rotation is within 5 percent of the expected BEP flow rate.
    (ii) DOE will test each pump unit according to the test method 
specified by the manufacturer in the certification report submitted 
pursuant to Sec.  429.59(b).
    (2) Dedicated-purpose pool pumps. (i) The rated hydraulic horsepower 
of each tested unit of the basic model of dedicated-purpose pool pump 
will be measured pursuant to the test requirements of Sec.  431.464(b) 
of this chapter and the result of the measurement(s) will be compared to 
the value of rated hydraulic horsepower certified by the manufacturer. 
The certified rated hydraulic horsepower will be considered valid only 
if the measurement(s) (either the measured rated hydraulic horsepower 
for a single unit sample or the average of the measured rated hydraulic 
horsepower values for a multiple unit sample) is within 5 percent of the 
certified rated hydraulic horsepower.
    (A) If the representative value of rated hydraulic horsepower is 
found to be valid, the value of rated hydraulic horsepower certified by 
the manufacturer will be used to determine the standard level for that 
basic model.
    (B) If the representative value of rated hydraulic horsepower is 
found to be invalid, the mean of all the measured rated hydraulic 
horsepower values determined from the tested unit(s) will be used to 
determine the standard level for that basic model.
    (ii) To verify the self-priming capability of non-self-priming pool 
filter pumps and of self-priming pool filter pumps that are not 
certified with NSF/ANSI 50-2015 (incorporated by reference, see Sec.  
429.4) as self-priming, the vertical lift and true priming time of each 
tested unit of the basic model of self-priming or non-self-priming pool 
filter pump will be measured pursuant to the test requirements of Sec.  
431.464(b) of this chapter.
    (A) For self-priming pool filter pumps that are not certified with 
NSF/ANSI 50-2015 as self-priming, at a vertical lift of 5.0 feet, the 
result of the true priming time measurement(s) will be compared to the 
value of true priming time certified by the manufacturer. The certified 
value of true priming time will be considered valid only if the 
measurement(s) (either the measured true priming time for a single unit 
sample or the average of true priming time values for a multiple unit 
sample) is within 5 percent of the certified value of true priming time.
    (1) If the representative value of true priming time is found to be 
valid, the value of true priming time certified by the manufacturer will 
be used to determine the appropriate equipment class

[[Page 260]]

and standard level for that basic model.
    (2) If the representative value of true priming time is found to be 
invalid, the mean of the values of true priming time determined from the 
tested unit(s) will be used to determine the appropriate equipment class 
and standard level for that basic model.
    (B) For non-self-priming pool filter pumps, at a vertical lift of 
5.0 feet, the result of the true priming time measurement(s) (either the 
measured true priming time for a single unit sample or the average of 
true priming time values, for a multiple unit sample) will be compared 
to the value of true priming time referenced in the definition of non-
self-priming pool filter pump at Sec.  431.462 (10.0 minutes).
    (1) If the measurement(s) of true priming time are greater than 95 
percent of the value of true priming time referenced in the definition 
of non-self-priming pool filter pump at Sec.  431.462 with a vertical 
lift of 5.0 feet, the DPPP model will be considered a non-self-priming 
pool filter pump for the purposes of determining the appropriate 
equipment class and standard level for that basic model.
    (2) If the conditions specified in paragraph (i)(2)(ii)(B)(1) of 
this section are not satisfied, then the DPPP model will be considered a 
self-priming pool filter pump for the purposes of determining the 
appropriate equipment class and standard level for that basic model.
    (iii) To verify the maximum head of self-priming pool filter pump, 
non-self-priming pool filter pumps, and waterfall pumps, the maximum 
head of each tested unit of the basic model of self-priming pool filter 
pump, non-self-priming pool filter pump, or waterfall pump will be 
measured pursuant to the test requirements of Sec.  431.464(b) of this 
chapter and the result of the measurement(s) will be compared to the 
value of maximum head certified by the manufacturer. The certified value 
of maximum head will be considered valid only if the measurement(s) 
(either the measured maximum head for a single unit sample or the 
average of the maximum head values for a multiple unit sample) is within 
5 percent of the certified values of maximum head.
    (A) If the representative value of maximum head is found to be 
valid, the value of maximum head certified by the manufacturer will be 
used to determine the appropriate equipment class and standard level for 
that basic model.
    (B) If the representative value of maximum head is found to be 
invalid, the measured value(s) of maximum head determined from the 
tested unit(s) will be used to determine the appropriate equipment class 
and standard level for that basic model.
    (iv) To verify that a DPPP model complies with the applicable freeze 
protection control design requirements, the initiation temperature, run-
time, and speed of rotation of the default control configuration of each 
tested unit of the basic model of dedicated-purpose pool pump will be 
evaluated according to the procedure specified in paragraph 
(i)(2)(iv)(A) of this section:
    (A)(1) Set up and configure the dedicated-purpose pool pump under 
test according to the manufacturer instructions, including any necessary 
initial priming, in a test apparatus as described in appendix A of HI 
40.6-2014-B (incorporated by reference, see Sec.  429.4), except that 
the ambient temperature registered by the freeze protection ambient 
temperature sensor will be able to be measured and controlled by, for 
example, exposing the freeze protection temperature sensor to a specific 
temperature by submerging the sensor in a water bath of known 
temperature, by adjusting the actual ambient air temperature of the test 
chamber and measuring the temperature at the freeze protection ambient 
temperature sensor location, or by other means that allows the ambient 
temperature registered by the freeze protection temperature sensor to be 
reliably simulated, varied, and measured. Do not adjust the default 
freeze protection control settings or enable the freeze protection 
control if it is shipped disabled.
    (2) Activate power to the pump with the flow rate set to zero (i.e., 
the pump is energized but not circulating water). Set the ambient 
temperature to 42.0  0.5[emsp14] [deg]F and allow 
the temperature to stabilize, where stability is determined in 
accordance with section 40.6.3.2.2 of

[[Page 261]]

HI 40.6-2014-B. After 5 minutes, decrease the temperature measured by 
the freeze protection temperature sensor by 1.0  
0.5[emsp14] [deg]F and allow the temperature to stabilize. After each 
reduction in ambient temperature and subsequent stabilization, record 
the DPPP rotating speed, if any, and freeze protection ambient 
temperature reading, where the ``freeze protection ambient temperature 
reading'' is representative of the temperature measured by the freeze 
protection ambient temperature sensor, which may be recorded by a 
variety of means depending on how the temperature is being simulated and 
controlled. If no flow is initiated, record zero rpm or no flow. 
Continue decreasing the temperature measured by the freeze protection 
temperature sensor by 1.0  0.5[emsp14] [deg]F 
after 5.0 minutes of stable operation at the previous temperature 
reading until the pump freeze protection initiates water circulation or 
until the ambient temperature of 38.0  0.5[emsp14] 
[deg]F has been evaluated (i.e., the end of the 5.0 minute interval of 
38.0[emsp14] [deg]F), whichever occurs first.
    (3) If and when the DPPP freeze protection controls initiate water 
circulation, increase the ambient temperature reading registered by the 
freeze protection temperature sensor to a temperature of 42.0  0.5[emsp14] [deg]F and maintain that temperature for 
60.0 minutes. Do not modify or interfere with the operation of the DPPP 
freeze protection operating cycle. After 60.0 minutes, record the freeze 
protection ambient temperature and rotating speed, if any, of the 
dedicated-purpose pool pump under test.
    (B) If the dedicated-purpose pool pump initiates water circulation 
at a temperature greater than 40.0[emsp14] [deg]F; if the dedicated-
purpose pool pump was still circulating water after 60.0 minutes of 
operation at 42.0  0.5[emsp14] [deg]F; or if 
rotating speed measured at any point during the DPPP freeze protection 
control test in paragraph (i)(2)(iii)(A) of this section was greater 
than one-half of the maximum rotating speed of the DPPP model certified 
by the manufacturer, that DPPP model is deemed to not comply with the 
design requirement for freeze protection controls.
    (C) If none of the conditions specified in paragraph (i)(2)(iv)(B) 
of this section are met, including if the DPPP freeze protection control 
does not initiate water circulation at all during the test, the 
dedicated-purpose pool pump under test is deemed compliant with the 
design requirement for freeze protection controls.
    (j) Refrigerated bottled or canned beverage vending machines--(1) 
Verification of refrigerated volume. The refrigerated volume (V) of each 
tested unit of the basic model will be measured pursuant to the test 
requirements of 10 CFR 431.296. The results of the measurement(s) will 
be compared to the representative value of refrigerated volume certified 
by the manufacturer. The certified refrigerated volume will be 
considered valid only if the measurement(s) (either the measured 
refrigerated volume for a single unit sample or the average of the 
measured refrigerated volumes for a multiple unit sample) is within five 
percent of the certified refrigerated volume.
    (i) If the representative value of refrigerated volume is found to 
be valid, the certified refrigerated volume will be used as the basis 
for calculation of maximum daily energy consumption for the basic model.
    (ii) If the representative value of refrigerated volume is found to 
be invalid, the average measured refrigerated volume determined from the 
tested unit(s) will serve as the basis for calculation of maximum daily 
energy consumption for the tested basic model.
    (2) Verification of surface area, transparent, and non-transparent 
areas. The percent transparent surface area on the front side of the 
basic model will be measured pursuant to these requirements for the 
purposes of determining whether a given basic model meets the definition 
of Class A or Combination A, as presented at 10 CFR 431.292. The 
transparent and non-transparent surface areas shall be determined on the 
front side of the beverage vending machine at the outermost surfaces of 
the beverage vending machine cabinet, from edge to edge, excluding any 
legs or other protrusions that extend beyond the dimensions of the 
primary cabinet. Determine the transparent and non-transparent areas on 
each side

[[Page 262]]

of a beverage vending machine as described in paragraphs (j)(2)(i) and 
(ii) of this section. For combination vending machines, disregard the 
surface area surrounding any refrigerated compartments that are not 
designed to be refrigerated (as demonstrated by the presence of 
temperature controls), whether or not it is transparent. Determine the 
percent transparent surface area on the front side of the beverage 
vending machine as a ratio of the measured transparent area on that side 
divided by the sum of the measured transparent and non-transparent 
areas, multiplying the result by 100.
    (i) Determination of transparent area. Determine the total surface 
area that is transparent as the sum of all surface areas on the front 
side of a beverage vending machine that meet the definition of 
transparent at 10 CFR 431.292. When determining whether or not a 
particular wall segment is transparent, transparency should be 
determined for the aggregate performance of all the materials between 
the refrigerated volume and the ambient environment; the composite 
performance of all those materials in a particular wall segment must 
meet the definition of transparent for that area be treated as 
transparent.
    (ii) Determination of non-transparent area. Determine the total 
surface area that is not transparent as the sum of all surface areas on 
the front side of a beverage vending machine that are not considered 
part of the transparent area, as determined in accordance with paragraph 
(j)(2)(i) of this section.
    (k) Central air conditioners and heat pumps--(1) Verification of 
cooling capacity. The cooling capacity of each tested unit of the 
individual model (for single-package systems) or individual combination 
(for split systems) will be measured pursuant to the test requirements 
of Sec.  430.23(m) of this chapter. The mean of the measurement(s) 
(either the measured cooling capacity for a single unit sample or the 
average of the measured cooling capacities for a multiple unit sample) 
will be used to determine the applicable standards for purposes of 
compliance.
    (2) Verification of CD value. (i) For central air 
conditioners and heat pumps other than models of outdoor units with no 
match, if manufacturers certify that they did not conduct the optional 
tests to determine the Cc and/or Ch value for an individual model (for 
single-package systems) or individual combination (for split systems), 
as applicable, the default Cc and/or Ch value will be used as the basis 
for calculation of SEER or HSPF for each unit tested. If manufacturers 
certify that they conducted the optional tests to determine the Cc and/
or Ch value for an individual model (for single-package systems) or 
individual combination (for split systems), as applicable, the Cc and/or 
Ch value will be measured pursuant to the test requirements of Sec.  
430.23(m) of this chapter for each unit tested and the result for each 
unit tested (either the tested value or the default value, as selected 
according to the criteria for the cyclic test in 10 CFR part 430, 
subpart B, appendix M, section 3.5e) used as the basis for calculation 
of SEER or HSPF for that unit.
    (ii) For models of outdoor units with no match, DOE will use the 
default Cc and/or Ch value pursuant to 10 CFR part 430.
    (l) Miscellaneous refrigeration products--(1) Verification of total 
refrigerated volume. For all miscellaneous refrigeration products, the 
total refrigerated volume of the basic model will be measured pursuant 
to the test requirements of part 430 of this chapter for each unit 
tested. The results of the measurement(s) will be averaged and compared 
to the value of total refrigerated volume certified by the manufacturer. 
The certified total refrigerated volume will be considered valid only 
if:
    (i) The measurement is within two percent, or 0.5 cubic feet (0.2 
cubic feet for products with total refrigerated volume less than 7.75 
cubic feet (220 liters)), whichever is greater, of the certified total 
refrigerated volume; or
    (ii) The measurement is greater than the certified total 
refrigerated volume.
    (A) If the certified total refrigerated volume is found to be valid, 
the certified adjusted total volume will be used as the basis for 
calculating the maximum allowed energy use for the tested basic model.

[[Page 263]]

    (B) If the certified total refrigerated volume is found to be 
invalid, the average measured adjusted total volume, rounded to the 
nearest 0.1 cubic foot, will serve as the basis for calculating the 
maximum allowed energy use for the tested basic model.
    (2) Test for models with two compartments, each having its own user-
operable temperature control. The test described in section 3.3 of the 
applicable test procedure in appendix A to subpart B part 430 of this 
chapter shall be used for all units of a tested basic model before DOE 
makes a determination of noncompliance with respect to the basic model.
    (m) Commercial packaged boilers--(1) Verification of fuel input 
rate. The fuel input rate of each tested unit will be measured pursuant 
to the test requirements of Sec.  431.86 of this chapter. The results of 
the measurement(s) will be compared to the value of rated input 
certified by the manufacturer. The certified rated input will be 
considered valid only if the measurement(s) (either the measured fuel 
input rate for a single unit sample or the average of the measured fuel 
input rates for a multiple unit sample) is within two percent of the 
certified rated input.
    (i) If the measured fuel input rate is within two-percent of the 
certified rated input, the certified rated input will serve as the basis 
for determination of the appropriate equipment class(es) and the mean 
measured fuel input rate will be used as the basis for calculation of 
combustion and/or thermal efficiency for the basic model.
    (ii) If the measured fuel input rate for a gas-fired commercial 
packaged boiler is not within two-percent of the certified rated input, 
DOE will first attempt to increase or decrease the gas manifold pressure 
within the range specified in manufacturer's installation and operation 
manual shipped with the commercial packaged boiler being tested (or, if 
not provided in the manual, in supplemental instructions provided by the 
manufacturer pursuant to Sec.  429.60(b)(4) of this chapter) to achieve 
the certified rated input (within two-percent). If the fuel input rate 
is still not within two-percent of the certified rated input, DOE will 
attempt to increase or decrease the gas inlet pressure within the range 
specified in manufacturer's installation and operation manual shipped 
with the commercial packaged boiler being tested (or, if not provided in 
the manual, in supplemental instructions provided by the manufacturer 
pursuant to Sec.  429.60(b)(4)) to achieve the certified rated input 
(within two-percent). If the fuel input rate is still not within two-
percent of the certified rated input, DOE will attempt to modify the gas 
inlet orifice if the unit is equipped with one. If the fuel input rate 
still is not within two percent of the certified rated input, the mean 
measured fuel input rate (either for a single unit sample or the average 
of the measured fuel input rates for a multiple unit sample) will serve 
as the basis for determination of the appropriate equipment class(es) 
and calculation of combustion and/or thermal efficiency for the basic 
model.
    (iii) If the measured fuel input rate for an oil-fired commercial 
packaged boiler is not within two-percent of the certified rated input, 
the mean measured fuel input rate (either for a single unit sample or 
the average of the measured fuel input rates for a multiple unit sample) 
will serve as the basis for determination of the appropriate equipment 
class(es) and calculation of combustion and/or thermal efficiency for 
the basic model.
    (2) Models capable of producing both hot water and steam. For a 
model of commercial packaged boiler that is capable of producing both 
hot water and steam, DOE may measure the thermal or combustion 
efficiency as applicable (see Sec.  431.87 of this chapter) for steam 
and/or hot water modes. DOE will evaluate compliance based on the 
measured thermal or combustion efficiency in steam and hot water modes, 
independently.
    (n) Commercial water heating equipment other than residential-duty 
commercial water heaters--(1) Verification of fuel input rate. The fuel 
input rate of each tested unit of the basic model will be measured 
pursuant to the test requirements of Sec.  431.106 of this chapter. The 
measured fuel input rate (either the measured fuel input rate for a 
single unit sample or the average of the measured fuel input rates for a 
multiple unit sample) will be compared to the

[[Page 264]]

rated input certified by the manufacturer. The certified rated input 
will be considered valid only if the measured fuel input rate is within 
two percent of the certified rated input.
    (i) If the certified rated input is found to be valid, then the 
certified rated input will serve as the basis for determination of the 
appropriate equipment class and calculation of the standby loss standard 
(as applicable).
    (ii) If the measured fuel input rate for gas-fired commercial water 
heating equipment is not within two percent of the certified rated 
input, DOE will first attempt to increase or decrease the gas outlet 
pressure within 10 percent of the value specified on the nameplate of 
the model of commercial water heating equipment being tested to achieve 
the certified rated input (within 2 percent). If the fuel input rate is 
still not within two percent of the certified rated input, DOE will 
attempt to increase or decrease the gas supply pressure within the range 
specified on the nameplate of the model of commercial water heating 
equipment being tested. If the measured fuel input rate is still not 
within two percent of the certified rated input, DOE will attempt to 
modify the gas inlet orifice, if the unit is equipped with one. If the 
measured fuel input rate still is not within two percent of the 
certified rated input, the measured fuel input rate will serve as the 
basis for determination of the appropriate equipment class and 
calculation of the standby loss standard (as applicable).
    (iii) If the measured fuel input rate for oil-fired commercial water 
heating equipment is not within two percent of the certified rated 
input, the measured fuel input rate will serve as the basis for 
determination of the appropriate equipment class and calculation of the 
standby loss standard (as applicable).
    (2) [Reserved]
    (o) Uninterruptible power supplies. (1) Determine the UPS 
architecture by performing the tests specified in the definitions of VI, 
VFD, and VFI in sections 2.28.1 through 2.28.3 of appendix Y to subpart 
B of 10 CFR part 430.
    (2) [Reserved]
    (p) Compressors--(1) Verification of full-load operating pressure. 
(i) The maximum full-flow operating pressure of each tested unit of the 
basic model will be measured pursuant to the test requirements of 
appendix A to subpart T of part 431 of this chapter, where 90 percent of 
the value of full-load operating pressure certified by the manufacturer 
will be the starting point of the test method prior to increasing 
discharge pressure. The measured maximum full-flow operating pressure 
(either the single measured value for a single unit sample or the mean 
of the measured maximum full-flow operating pressures for a multiple 
unit sample) will be compared to the certified rating for full-load 
operating pressure to determine if the certified rating is valid or not. 
The certified rating for full-load operating pressure will be considered 
valid only if the certified rating for full-load operating pressure is 
less than or equal to the measured maximum full-flow operating pressure 
and greater than or equal to the lesser of--
    (A) 90 percent of the measured maximum full-flow operating pressure; 
or
    (B) 10 psig less than the measured maximum full-flow operating 
pressure.
    (ii) If the certified full-load operating pressure is found to be 
valid, then the certified value will be used as the full-load operating 
pressure and will be the basis for determination of full-load actual 
volume flow rate, pressure ratio at full-load operating pressure, 
specific power, and package isentropic efficiency.
    (iii) If the certified full-load operating pressure is found to be 
invalid, then the measured maximum full-flow operating pressure will be 
used as the full-load operating pressure and will be the basis for 
determination of full-load actual volume flow rate, pressure ratio at 
full-load operating pressure, specific power, and package isentropic 
efficiency.
    (2) Verification of full-load actual volume flow rate. The measured 
full-load actual volume flow rate will be measured, pursuant to the test 
requirements of appendix A to subpart T of part 431 of this chapter, at 
the full-load operating pressure determined in paragraph (p)(1) of this 
section. The certified full-load actual volume flow rate will be 
considered valid only if the measurement(s) (either the measured full-
load actual volume flow rate for a single unit sample or the mean of the

[[Page 265]]

measured values for a multiple unit sample) are within the percentage of 
the certified full-load actual volume flow rate specified in Table 1 of 
this section:

   Table 1 of Sec.   429.134--Allowable Percentage Deviation From the
               Certified Full-Load Actual Volume Flow Rate
------------------------------------------------------------------------
                                                             Allowable
                                                          percent of the
Manufacturer certified full-load actual volume flow rate  certified full-
                     (m\3\/s) x 10-3                        load actual
                                                            volume flow
                                                             rate (%)
------------------------------------------------------------------------
0 < and <= 8.3..........................................  7
8.3 < and <= 25.........................................  6
25 < and <= 250.........................................  5
 250.........................................  4
------------------------------------------------------------------------

    (i) If the certified value of full-load actual volume flow rate is 
found to be valid, the full-load actual volume flow rate certified by 
the manufacturer will be used as the basis for determination of the 
applicable standard.
    (ii) If the certified value of full-load actual volume flow rate is 
found to be invalid, the entire sample (one or multiple units) will be 
considered as failing the enforcement test.
    (3) Ancillary equipment. Prior to testing each compressor, DOE will 
install any required ancillary equipment specified by the manufacturer 
in the certification report submitted pursuant to Sec.  429.63(b).
    (q) Walk-in coolers and walk-in freezers. (1) If DOE determines that 
a basic model of a panel, door, or refrigeration system for walk-in 
coolers or walk-in freezers fails to meet an applicable energy 
conservation standard, then the manufacturer of that basic model is 
responsible for the noncompliance. If DOE determines that a complete 
walk-in cooler or walk-in freezer or component thereof fails to meet an 
applicable energy conservation standard, then the manufacturer of that 
walk-in cooler or walk-in freezer is responsible for the noncompliance 
with the applicable standard, except that the manufacturer of a complete 
walk-in cooler or walk-in freezer is not responsible for the use of 
components that were certified and labeled (in accordance with DOE 
labeling requirements) as compliant by another party and later found to 
be noncompliant with the applicable standard(s).
    (2) Verification of refrigeration system net capacity. The net 
capacity of the refrigeration system basic model will be measured 
pursuant to the test requirements of 10 CFR part 431, subpart R, 
appendix C for each unit tested. The results of the measurement(s) will 
be averaged and compared to the value of net capacity certified by the 
manufacturer. The certified net capacity will be considered valid only 
if the average measured net capacity is within plus or minus five 
percent of the certified net capacity.
    (i) If the certified net capacity is found to be valid, the 
certified net capacity will be used as the basis for calculating the 
AWEF of the basic model.
    (ii) If the certified net capacity is found to be invalid, the 
average measured net capacity will serve as the basis for calculating 
the annual energy consumption for the basic model.
    (3) Verification of door surface area. The surface area of a display 
door or non-display door basic model will be measured pursuant to the 
requirements of 10 CFR part 431, subpart R, appendix A for each unit 
tested. The results of the measurement(s) will be averaged and compared 
to the value of the surface area certified by the manufacturer. The 
certified surface area will be considered valid only if the average 
measured surface area is within plus or minus three percent of the 
certified surface area.
    (i) If the certified surface area is found to be valid, the 
certified surface area will be used as the basis for calculating the 
maximum energy consumption (kWh/day) of the basic model.
    (ii) If the certified surface area is found to be invalid, the 
average measured surface area will serve as the basis for calculating 
the maximum energy consumption (kWh/day) of the basic model.
    (4) For each basic model of walk-in cooler and walk-in freezer door, 
DOE will calculate the door's energy consumption using the power listed 
on the nameplate of each electricity consuming device shipped with the 
door. If an electricity consuming device shipped with a walk-in door 
does not have a nameplate or such nameplate does not list the device's 
power, then DOE will use the device's ``rated

[[Page 266]]

power'' included in the door's certification report.
    (r) Portable air conditioners. Verification of seasonally adjusted 
cooling capacity. The seasonally adjusted cooling capacity will be 
measured pursuant to the test requirements of 10 CFR part 430 for each 
unit tested. The results of the measurement(s) will be averaged and 
compared to the value of seasonally adjusted cooling capacity certified 
by the manufacturer. The certified seasonally adjusted cooling capacity 
will be considered valid only if the average measured seasonally 
adjusted cooling capacity is within five percent of the certified 
seasonally adjusted cooling capacity.
    (1) If the certified seasonally adjusted cooling capacity is found 
to be valid, the certified value will be used as the basis for 
determining the minimum allowed combined energy efficiency ratio for the 
basic model.
    (2) If the certified seasonally adjusted cooling capacity is found 
to be invalid, the average measured seasonally adjusted cooling capacity 
will be used to determine the minimum allowed combined energy efficiency 
ratio for the basic model.

[79 FR 22348, Apr. 21, 2014, as amended at 79 FR 40566, July 11, 2014; 
80 FR 37148, June 30, 2015; 80 FR 45824, July 31, 2015; 80 FR 46760, 
Aug. 5, 2015; 80 FR 79669, Dec. 23, 2015; 81 FR 2646, Jan. 15, 2016; 81 
FR 15426, Mar. 23, 2016; 81 FR 24009, Apr. 25, 2016; 81 FR 37055, June 
8, 2016; 81 FR 38395, June 13, 2016; 81 FR 46791, July 18, 2016; 81 FR 
79320, Nov. 10, 2016; 81 FR 96236, Dec. 29, 2016; 81 FR 89304, Dec. 9, 
2016; 81 FR 89822, Dec. 12, 2016; 81 FR 95800, Dec. 28, 2016; 82 FR 
1100, Jan. 4, 2017; 82 FR 36919, Aug. 7, 2017; 85 FR 1446, Jan. 10, 
2020]

                Regional Standards Enforcement Procedures



Sec.  429.140  Regional standards enforcement procedures.

    Sections 429.140 through 429.158 provide enforcement procedures 
specific to the violations enumerated in Sec.  429.102(c). These 
provisions explain the responsibilities of manufacturers, private 
labelers, distributors, contractors and dealers with respect to central 
air conditioners subject to regional standards; however, these 
provisions do not limit the responsibilities of parties otherwise 
subject to 10 CFR parts 429 and 430.

[81 FR 45402, July 14, 2016]



Sec.  429.142  Records retention.

    (a) Record retention. The following entities must maintain the 
specified records--(1) Contractors and dealers. (i) Contractors and 
dealers must retain the following records for at least 48 months from 
the date of installation of a central air conditioner in the states of 
Alabama, Arizona, Arkansas, California, Delaware, Florida, Georgia, 
Hawaii, Kentucky, Louisiana, Maryland, Mississippi, Nevada, New Mexico, 
North Carolina, Oklahoma, South Carolina, Tennessee, Texas, or Virginia 
or in the District of Columbia:
    (A) For split-system central air conditioner outdoor units: The 
manufacturer name, model number, serial number, location of installation 
(including street address, city, state, and zip code), date of 
installation, and party from whom the unit was purchased (including 
person's name, full address, and phone number); and
    (B) For split-system central air conditioner indoor units: The 
manufacturer name, model number, location of installation (including 
street address, city, state, and zip code), date of installation, and 
party from whom the unit was purchased (including person's name, full 
address, and phone number).
    (ii) Contractors and dealers must retain the following, additional 
records for at least 48 months from the date of installation of a 
central air conditioner in the states of Arizona, California, Nevada, 
and New Mexico:
    (A) For single-package central air conditioners: The manufacturer 
name, model number, serial number, location of installation (including 
street address, city, state, and zip code), date of installation, and 
party from whom the unit was purchased (including person's name, full 
address, and phone number).
    (B) [Reserved]
    (2) Distributors. Beginning July 1, 2016, all distributors must 
retain the following records for no less than 54 months from the date of 
sale:
    (i) For split-system central air conditioner outdoor units: The 
outdoor unit manufacturer, outdoor unit model number, outdoor unit 
serial number,

[[Page 267]]

date unit was purchased from manufacturer, party from whom the unit was 
purchased (including company or individual's name, full address, and 
phone number), date unit was sold to contractor or dealer, party to whom 
the unit was sold (including company or individual's name, full address, 
and phone number), and, if delivered, delivery address.
    (ii) For single-package air conditioners: The manufacturer, model 
number, serial number, date unit was purchased from manufacturer, party 
from whom the unit was purchased (including company or individual's 
name, full address, and phone number), date unit was sold to a 
contractor or dealer, party to whom the unit was sold (including company 
or individual's name, full address, and phone number), and, if 
delivered, delivery address.
    (3) Manufacturers and private labelers. All manufacturers and 
private labelers must retain the following records for no less than 60 
months from the date of sale:
    (i) For split system air conditioner outdoor units: The model 
number, serial number, date of manufacture, date of sale, and party to 
whom the unit was sold (including person's name, full address, and phone 
number);
    (ii) For split system central air conditioner indoor units: The 
model number, date of manufacture, date of sale, and party to whom the 
unit was sold (including person's name, full address, and phone number); 
and
    (iii) For single-package central air conditioners: The model number, 
serial number, date of manufacture, date of sale, and party to whom the 
unit was sold (including person's name, full address, and phone number).
    (b) [Reserved]

[81 FR 45402, July 14, 2016]



Sec.  429.144  Records request.

    (a) DOE must have reasonable belief a violation has occurred to 
request records specific to an on-going investigation of a violation of 
central air conditioner regional standards.
    (b) Upon request, the manufacturer, private labeler, distributor, 
dealer, or contractor must provide to DOE the relevant records within 30 
calendar days of the request.
    (1) DOE, at its discretion, may grant additional time for records 
production if the party from whom records have been requested has made a 
good faith effort to produce records.
    (2) To request additional time, the party from whom records have 
been requested must produce all records gathered in 30 days and provide 
to DOE a written explanation of the need for additional time with the 
requested date for completing the production of records.

[81 FR 45402, July 14, 2016]



Sec.  429.146  Notice of violation.

    (a) If DOE determines a party has committed a violation of regional 
standards, DOE will issue a Notice of Violation advising that party of 
DOE's determination.
    (b) If, however, DOE determines a noncompliant installation occurred 
in only one instance, the noncompliant installation is remediated prior 
to DOE issuing a Notice of Violation, and the party has no history of 
prior violations, DOE will not issue such notice.
    (c) If DOE does not find a violation of regional standards, DOE will 
notify the party under investigation.

[81 FR 45403, July 14, 2016]



Sec.  429.148  Routine violator.

    (a) DOE will consider, inter alia, the following factors in 
determining if a person is a routine violator: Number of violations in 
current and past cases, length of time over which violations occurred, 
ratio of compliant to noncompliant installations or sales, percentage of 
employees committing violations, evidence of intent, evidence of 
training or education provided, and subsequent remedial actions.
    (b) In the event that DOE determines a person to be a routine 
violator, DOE will issue a Notice of Finding of Routine Violation.
    (c) In making a finding of Routine Violation, DOE will consider 
whether the Routine Violation was limited to a specific location. If DOE 
finds that the routine violation was so limited, DOE may, in its 
discretion, in the Notice of Finding of Routine Violation limit the 
prohibition on manufacturer and/or

[[Page 268]]

private labeler sales to a particular contractor or distribution 
location.

[81 FR 45403, July 14, 2016]



Sec.  429.150  Appealing a finding of routine violation.

    (a) Any person found to be a routine violator may, within 30 
calendar days after the date of Notice of Finding of Routine Violation, 
request an administrative appeal to the Office of Hearings and Appeals.
    (b) The appeal must present information rebutting the finding of 
violation(s).
    (c) The Office of Hearings and Appeals will issue a decision on the 
appeal within 45 days of receipt of the appeal.
    (d) A routine violator must file a Notice of Intent to Appeal with 
the Office of Hearings and Appeals within three business days of the 
date of the Notice of Finding of Routine Violation, serving a copy on 
the Office of the Assistant General Counsel for Enforcement to retain 
the ability to buy central air conditioners during the pendency of the 
appeal.

[81 FR 45403, July 14, 2016]



Sec.  429.152  Removal of finding of ``routine violator''.

    (a) A routine violator may be removed from DOE's list of routine 
violators through completion of remediation in accordance with the 
requirements in Sec.  429.154.
    (b) A routine violator that wants to remediate must contact the 
Office of the Assistant General Counsel for Enforcement via the point of 
contact listed in the Notice of Finding of Routine Violation and 
identify the distributor(s), manufacturer(s), or private labeler(s) from 
whom it wishes to buy compliant replacement product.
    (c) DOE will contact the distributor(s), manufacturer(s), or private 
labeler(s) and authorize sale of central air conditioner units to the 
routine violator for purposes of remediation within 3 business days of 
receipt of the request for remediation. DOE will provide the 
manufacturer(s), distributor(s), and/or private labeler(s) with an 
official letter authorizing the sale of units for purposes of 
remediation.
    (d) DOE will contact routine violators that requested units for 
remediation within 30 days of sending the official letter to the 
manufacturer(s), distributor(s), and/or private labeler(s) to determine 
the status of the remediation.
    (e) If remediation is successfully completed, DOE will issue a 
Notice indicating a person is no longer considered to be a routine 
violator. The Notice will be issued no more than 30 days after DOE has 
received documentation demonstrating that remediation is complete.

[81 FR 45403, July 14, 2016]



Sec.  429.154  Remediation.

    (a) Any party found to be in violation of the regional standards may 
remediate by replacing the noncompliant unit at cost to the violator; 
the end user cannot be charged for any costs of remediation.
    (1) If a violator is unable to replace all noncompliant 
installations, then the Department may, in its discretion, consider the 
remediation complete if the violator satisfactorily demonstrates to the 
Department that it attempted to replace all noncompliant installations.
    (2) The Department will scrutinize any ``failed'' attempts at 
replacement to ensure that there was indeed a good faith effort to 
complete remediation of the noncompliant unit.
    (b) The violator must provide to DOE the serial number of any 
outdoor unit and/or indoor unit installed not in compliance with the 
applicable regional standard as well as the serial number(s) of the 
replacement unit(s) to be checked by the Department against warranty and 
other replacement claims.
    (c) If the remediation is approved by the Department, then DOE will 
issue a Notice of Remediation and the violation will not count towards a 
finding of ``routine violator''.

[81 FR 45403, July 14, 2016]



Sec.  429.156  Manufacturer and private labeler liability.

    (a) In accordance with Sec.  429.102, paragraphs (a)(10) and (c), 
manufacturers and private labelers are prohibited

[[Page 269]]

from selling central air conditioners and heat pumps to a routine 
violator.
    (1) To avoid financial penalties, manufacturers and/or private 
labelers must cease sales to a routine violator within 3 business days 
from the date of issuance of a Notice of Finding of Routine Violation.
    (2) If a Routine Violator files a Notice of Intent to Appeal 
pursuant to Sec.  429.150, then a manufacturer and/or private labeler 
may assume the risk of selling central air conditioners to the Routine 
Violator during the pendency of the appeal.
    (3) If the appeal of the Finding of Routine Violator is denied, then 
the manufacturer and/or private labeler may be fined in accordance with 
Sec.  429.120, for sale of any units to a routine violator during the 
pendency of the appeal that do not meet the applicable regional 
standard.
    (b) If a manufacturer and/or private labeler has knowledge of 
routine violation, then the manufacturer can be held liable for all 
sales that occurred after the date the manufacturer had knowledge of the 
routine violation. However, if the manufacturer and/or private labeler 
reports its suspicion of a routine violation to DOE within 15 days of 
receipt of such knowledge, then it will not be liable for product sold 
to the suspected routine violator prior to reporting the routine 
violation to DOE.

[81 FR 45403, July 14, 2016]



Sec.  429.158  Product determined noncompliant with regional standards.

    (a) If DOE determines a model of outdoor unit fails to meet the 
applicable regional standard(s) when tested in a combination certified 
by the same manufacturer, then the outdoor unit basic model will be 
deemed noncompliant with the regional standard(s). In accordance with 
Sec.  429.102(c), the outdoor unit manufacturer and/or private labeler 
is liable for distribution of noncompliant units in commerce.
    (b) If DOE determines a combination fails to meet the applicable 
regional standard(s) when tested in a combination certified by a 
manufacturer other than the outdoor unit manufacturer (e.g., ICM), then 
that combination is deemed noncompliant with the regional standard(s). 
In accordance with Sec.  429.102(c), the certifying manufacturer is 
liable for distribution of noncompliant units in commerce.
    (c) All such units manufactured and distributed in commerce are 
presumed to have been installed in a region where they would not comply 
with the applicable energy conservation standard; however, a 
manufacturer and/or private labeler may demonstrate through installer 
records that individual units were installed in a region where the unit 
is compliant with the applicable standards.

[81 FR 45404, July 14, 2016]



Sec. Appendix A to Subpart C of Part 429--Sampling Plan for Enforcement 
Testing of Covered Consumer Products and Certain High-Volume Commercial 
                                Equipment

    (a) The first sample size (n1) for enforcement testing 
must be four or more units, except as provided by Sec.  429.57(e)(1)(i).
    (b) Compute the mean of the measured energy performance 
(x1) for all tests as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.132

where xi is the measured energy or water efficiency or 
          consumption from test i, and n1 is the total number 
          of tests.

    (c) Compute the standard deviation (s1) of the measured 
energy performance from the n1 tests as follows:

[[Page 270]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.133

    (d) Compute the standard error (sx1) of the measured 
energy performance from the n1 tests as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.134

    (e)(1) Compute the upper control limit (UCL1) and lower 
control limit (LCL1) for the mean of the first sample using 
the applicable DOE energy efficiency standard (EES) as the desired mean 
and a probability level of 95 percent (two-tailed test) as follows:

LCL1 EES -- ts X1 X
[GRAPHIC] [TIFF OMITTED] TR07MR11.135

where t is the statistic based on a 95 percent two-tailed probability 
          level with degrees of freedom (n1-1).

    (2) For an energy efficiency or water efficiency standard, compare 
the mean of the first sample (x1) with the upper and lower 
control limits (UCL1 and LCL1) to determine one of 
the following:
    (i) If the mean of the first sample is below the lower control 
limit, then the basic model is in noncompliance and testing is at an 
end. (Do not go on to any of the steps below.)
    (ii) If the mean of the first sample is equal to or greater than the 
upper control limit, then the basic model is in compliance and testing 
is at an end. (Do not go on to any of the steps below.)
    (iii) If the sample mean is equal to or greater than the lower 
control limit but less than the upper control limit, then no 
determination of compliance or noncompliance can be made and a second 
sample size is determined by Step (e)(3).
    (3) For an energy efficiency or water efficiency standard, determine 
the second sample size (n2) as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.136

where s1 and t have the values used in equations 2 and 4, 
          respectively. The term ``0.05 EES'' is the difference between 
          the applicable energy efficiency or water efficiency standard 
          and 95 percent of the standard, where 95 percent of the 
          standard is taken as the lower control limit. This procedure 
          yields a sufficient combined sample size (n1 + 
          n2) to give an estimated 97.5 percent probability 
          of obtaining a determination of compliance when the true mean 
          efficiency is equal to the applicable standard. Given the 
          solution value of n2, determine one of the 
          following:


[[Page 271]]


    (i) If the value of n2 is less than or equal to zero and 
if the mean energy or water efficiency of the first sample 
(x1) is either equal to or greater than the lower control 
limit (LCL1) or equal to or greater than 95 percent of the 
applicable energy efficiency or water efficiency standard (EES), 
whichever is greater, i.e., if n2<=0 and 
x1=max (LCL1, 0.95 EES), the basic 
model is in compliance and testing is at an end.
    (ii) If the value of n2 is less than or equal to zero and 
the mean energy efficiency of the first sample (x1) is less 
than the lower control limit (LCL1) or less than 95 percent 
of the applicable energy or water efficiency standard (EES), whichever 
is greater, i.e., if n2<=0 and x1<=max 
(LCL1, 0.95 EES), the basic model is not in compliance and 
testing is at an end.
    (iii) If the value of n2 is greater than zero, then, the 
value of the second sample size is determined to be the smallest integer 
equal to or greater than the solution value of n2 for 
equation (6). If the value of n2 so calculated is greater 
than 21- n1, set n2 equal to 21- n1.
    (4) Compute the combined mean (x2) of the measured energy 
or water efficiency of the n1 and n2 units of the 
combined first and second samples as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.137

    (5) Compute the standard error (Sx2) of the measured 
energy or water performance of the n1 and n2 units 
in the combined first and second samples as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.138

    Note: s1 is the value obtained in Step (c).
    (6) For an energy efficiency standard (EES), compute the lower 
control limit (LCL2) for the mean of the combined first and 
second samples using the DOE EES as the desired mean and a one-tailed 
probability level of 97.5 percent (equivalent to the two-tailed 
probability level of 95 percent used in Step (e)(1)) as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.139

where the t-statistic has the value obtained in Step (e)(1) and 
sx2 is the value obtained in Step (e)(5).

    (7) For an energy efficiency standard (EES), compare the combined 
sample mean (x2) to the lower control limit (LCL2) 
to determine one of the following:
    (i) If the mean of the combined sample (x2) is less than 
the lower control limit (LCL2) or 95 percent of the 
applicable energy efficiency standard (EES), whichever is greater, i.e., 
if x22, 0.95 EES), the basic model is not 
compliant and testing is at an end.
    (iii) If the mean of the combined sample (x2) is equal to 
or greater than the lower control limit (LCL2) or 95 percent 
of the applicable energy efficiency standard (EES), whichever is 
greater, i.e., if x2=max (LCL2, 0.95 
EES), the basic model is in compliance and testing is at an end.
    (f)(1) Compute the upper control limit (UCL1) and lower 
control limit (LCL1) for the mean of the first sample using 
the applicable DOE energy consumption standard (ECS) as the desired mean 
and a probability level of 95 percent (two-tailed test) as follows:

[[Page 272]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.140

where t is the statistic based on a 95 percent two-tailed probability 
level with degrees of freedom (n1 - 1).

    (2) For an energy or water consumption standard, compare the mean of 
the first sample (x1) with the upper and lower control limits 
(UCL1 and LCL1) to determine one of the following:
    (i) If the mean of the first sample is above the upper control 
limit, then the basic model is in noncompliance and testing is at an 
end. (Do not go on to any of the steps below.)
    (ii) If the mean of the first sample is equal to or less than the 
lower control limit, then the basic model is in compliance and testing 
is at an end. (Do not go on to any of the steps below.)
    (iii) If the sample mean is equal to or less than the upper control 
limit but greater than the lower control limit, then no determination of 
compliance or noncompliance can be made and a second sample size is 
determined by Step (f)(3).
    (3) For an Energy or Water Consumption Standard, determine the 
second sample size (n2) as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.141

where s1and t have the values used in equations (2) and (10), 
respectively. The term ``0.05 ECS'' is the difference between the 
applicable energy or water consumption standard and 105 percent of the 
standard, where 105 percent of the standard is taken as the upper 
control limit. This procedure yields a sufficient combined sample size 
(n1 + n2) to give an estimated 97.5 percent 
probability of obtaining a determination of compliance when the true 
mean consumption is equal to the applicable standard. Given the solution 
value of n2, determine one of the following:

    (i) If the value of n2 is less than or equal to zero and 
if the mean energy or water consumption of the first sample 
(x1) is either equal to or less than the upper control limit 
(UCL1) or equal to or less than 105 percent of the applicable 
energy or water consumption standard (ECS), whichever is less, i.e., if 
n2 <=0 and x1 <=min (UCL1, 1.05 ECS), 
the basic model is in compliance and testing is at an end.
    (ii) If the value of n2 is less than or equal to zero and 
the mean energy or water consumption of the first sample (x1) 
is greater than the upper control limit (UCL1) or more than 
105 percent of the applicable energy or water consumption standard 
(ECS), whichever is less, i.e., if n2 <=0 and x1 
min (UCL1, 1.05 EPS), the basic model is not 
compliant and testing is at an end.
    (iii) If the value of n2 is greater than zero, then the 
value of the second sample size is determined to be the smallest integer 
equal to or greater than the solution value of n2 for 
equation (11). If the value of n2 so calculated is greater 
than 21-n1, set n2 equal to 21-n1.
    (4) Compute the combined mean (x2) of the measured energy 
or water consumption of the n1 and n2 units of the 
combined first and second samples as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.142

    (5) Compute the standard error (Sx2) of the measured 
energy or water consumption of the n1 and n2 units 
in the combined first and second samples as follows:

[[Page 273]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.143

    Note: s1 is the value obtained in Step (c).
    (6) For an energy or water consumption standard (ECS), compute the 
upper control limit (UCL2) for the mean of the combined first 
and second samples using the DOE ECS as the desired mean and a one-
tailed probability level of 97.5 percent (equivalent to the two-tailed 
probability level of 95 percent used in Step (f)(1)) as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.144

where the t-statistic has the value obtained in (f)(1).
    (7) For an energy or water consumption standard (ECS), compare the 
combined sample mean (x2) to the upper control limit 
(UCL2) to determine one of the following:
    (i) If the mean of the combined sample (x2) is greater 
than the upper control limit (UCL2) or 105 percent of the ECS 
whichever is less, i.e., if x2 min 
(UCL2, 1.05 ECS), the basic model is not compliant and 
testing is at an end.
    (ii) If the mean of the combined sample (x2) is equal to 
or less than the upper control limit (UCL2) or 105 percent of 
the applicable energy or water performance standard (ECS), whichever is 
less, i.e., if x 2<=min (UCL2, 1.05 ECS), the 
basic model is in compliance and testing is at an end.



Sec. Appendix B to Subpart C of Part 429--Sampling Plan for Enforcement 
  Testing of Covered Equipment and Certain Low-Volume Covered Products

    The Department will determine compliance as follows:
    (a) The first sample size (n1) must be four or more 
units, except as provided by Sec.  429.57(e)(1)(ii).
    (b) Compute the mean of the measured energy performance 
(x1) for all tests as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.145

where xi is the measured energy efficiency or consumption 
from test i, and n1 is the total number of tests.

    (c) Compute the standard deviation (s1) of the measured 
energy performance from the n1 tests as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.146

    (d) Compute the standard error (sx1) of the measured 
energy performance from the n1 tests as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.147


[[Page 274]]


    (e)(1) For an energy efficiency standard (EES), determine the 
appropriate lower control limit (LCL1) according to:
[GRAPHIC] [TIFF OMITTED] TR07MR11.148

    And use whichever is greater. Where EES is the energy efficiency 
standard and t is a statistic based on a 97.5 percent, one-sided 
confidence limit and a sample size of n1.
    (2) For an energy consumption standard (ECS), determine the 
appropriate upper control limit (UCL1) according to:
[GRAPHIC] [TIFF OMITTED] TR07MR11.149

    And use whichever is less, where ECS is the energy consumption 
standard and t is a statistic based on a 97.5 percent, one-sided 
confidence limit and a sample size of n1.
    (f)(1) Compare the sample mean to the control limit.
    (i) The basic model is in compliance and testing is at an end if:
    (A) For an energy or water efficiency standard, the sample mean is 
equal to or greater than the lower control limit, or
    (B) For an energy or water consumption standard, the sample mean is 
equal to or less than the upper control limit.



Sec. Appendix C to Subpart C of Part 429--Sampling Plan for Enforcement 
                  Testing of Distribution Transformers

    (a) When testing distribution transformers, the number of units in 
the sample (m1) shall be in accordance with Sec.  429.47(a) 
and DOE shall perform the following number of tests:
    (1) If DOE tests four or more units, it will test each unit once;
    (2) If DOE tests two or three units, it will test each unit twice; 
or
    (3) If DOE tests one unit, it will test that unit four times.
    (b) DOE shall determine compliance as follows:
    (1) Compute the mean (X1) of the measured energy 
performance of the n1 tests in the first sample as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.150


[[Page 275]]


where Xi is the measured efficiency of test i.
    (2) Compute the sample standard deviation (S1) of the 
measured efficiency of the n1 tests in the first sample as 
follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.151

    (3) Compute the standard error (SE(X1)) of the mean 
efficiency of the first sample as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.152

    (4) Compute the sample size discount (SSD(m1)) as 
follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.153

where m1 is the number of units in the sample, and RE is the 
applicable DOE efficiency when the test is to determine compliance with 
the applicable energy conservation standard, or is the labeled 
efficiency when the test is to determine compliance with the labeled 
efficiency value.

    (5) Compute the lower control limit (LCL1) for the mean 
of
[GRAPHIC] [TIFF OMITTED] TR02MY11.089


    (6) Compare the mean of the first sample (X1) with the 
lower control limit (LCL1) to determine one of the following:
    (i) If the mean of the first sample is below the lower control 
limit, then the basic model is not compliant and testing is at an end.
    (ii) If the mean is equal to or greater than the lower control 
limit, no final determination of compliance or noncompliance can be 
made; proceed to Step (7).
    (7) Determine the recommended sample size (n) as follows:

[[Page 276]]

[GRAPHIC] [TIFF OMITTED] TR07MR11.155

    Given the value of n, determine one of the following:
    (i) If the value of n is less than or equal to n1 and if 
the mean energy efficiency of the first sample (X1) is equal 
to or greater than the lower control limit (LCL1), the basic 
model is in compliance and testing is at an end.
    (ii) If the value of n is greater than n1, the basic 
model is not compliant. The size of a second sample n2 is 
determined to be the smallest integer equal to or greater than the 
difference n-n1. If the value of n2 so calculated 
is greater than 21-n1, set n2 equal to 21-
n1.
    (8) Compute the combined (X2) mean of the measured energy 
performance of the n1 and n2 units of the combined 
first and second samples as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.156

    (9) Compute the standard error (SE(X2)) of the mean full-
load efficiency of the n1 and n2 units in the 
combined first and second samples as follows:
[GRAPHIC] [TIFF OMITTED] TR07MR11.157

    (Note that S1 is the value obtained above in (2).)
    (10) Set the lower control limit (LCL2) to,
    [GRAPHIC] [TIFF OMITTED] TR07MR11.158
    
where t has the value obtained in (5) and SSD(m1) is sample 
size discount determined in (4), and compare the combined sample mean 
(X2) to the lower control limit (LCL2) to 
determine one of the following:

    (i) If the mean of the combined sample (X2) is less than 
the lower control limit (LCL2), the basic model is not 
compliant and testing is at an end.
    (ii) If the mean of the combined sample (X2) is equal to 
or greater than the lower control limit (LCL2), the basic 
model is in compliance and testing is at an end.

[76 FR 12451, Mar. 7, 2011; 76 FR 24781, May 2, 2011]



Sec. Appendix D to Subpart C of Part 429--Sampling Plan for Enforcement 
                Testing of Uninterruptible Power Supplies

    (a) The minimum sample size for enforcement testing will be one 
unit.
    (b) Compute the average load adjusted efficiency (Effavg) of the 
unit in the sample.
    (c) Determine the applicable DOE energy efficiency standard (EES).
    (d) If all Effavg are equal to or greater than EES, then the basic 
model is in compliance and testing is at an end.
    (e) If any Effavg is less than EES, then the basic model is in 
noncompliance and testing is at an end.

[81 FR 89822, Dec. 12, 2016]

[[Page 277]]



PART 430_ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS--Table of Contents



                      Subpart A_General Provisions

Sec.
430.1 Purpose and scope.
430.2 Definitions.
430.3 Materials incorporated by reference.
430.4 Sources for information and guidance.
430.5 Error correction procedures for energy conservation standards 
          rules.

                        Subpart B_Test Procedures

430.21 Purpose and scope.
430.23 Test procedures for the measurement of energy and water 
          consumption.
430.24 [Reserved]
430.25 Laboratory Accreditation Program.
430.27 Petitions for waiver and interim waiver.

Appendix A to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Refrigerators, Refrigerator-
          Freezers, and Miscellaneous Refrigeration Products
Appendix B to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Freezers
Appendix C1 to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Dishwashers
Appendix D to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Clothes Dryers
Appendix D1 to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Clothes Dryers
Appendix D2 to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Clothes Dryers
Appendix E to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Water Heaters
Appendix F to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Room Air Conditioners
Appendix G to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Unvented Home Heating Equipment
Appendix H to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Power Consumption of Television Sets
Appendix I to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Cooking Products
Appendix J1 to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Automatic and Semi-Automatic Clothes 
          Washers
Appendix J2 to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Automatic and Semi-automatic Clothes 
          Washers
Appendix J3 to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Moisture Absorption and Retention Characteristics of New 
          Energy Test Cloth Lots
Appendixes K-L to Subpart B of Part 430 [Reserved]
Appendix M to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Central Air Conditioners and Heat 
          Pumps
Appendix M1 to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Central Air Conditioners and Heat 
          Pumps
Appendix N to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Furnaces and Boilers
Appendix O to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Vented Home Heating Equipment
Appendix P to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Pool Heaters
Appendix Q to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Fluorescent Lamp Ballasts
Appendix R to Subpart B of Part 430--Uniform Test Method for Measuring 
          Average Lamp Efficacy (LE), Color Rendering Index (CRI), and 
          Correlated Color Temperature (CCT) of Electric Lamps
Appendix S to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Water Consumption of Faucets and Showerheads
Appendix T to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Water Consumption of Water Closets and Urinals
Appendix U to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Ceiling Fans
Appendix V to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Ceiling Fan Light Kits With Pin-
          Based Sockets for Fluorescent Lamps
Appendix V1 to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Ceiling Fan Light Kits Packaged With 
          Other Fluorescent Lamps (not Compact Fluorescent Lamps or 
          General Service Fluorescent Lamps), Packaged With Other SSL 
          Lamps (not Integrated LED

[[Page 278]]

          Lamps), or With Integrated SSL Circuitry
Appendix W to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Compact Fluorescent Lamps
Appendix X to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Dehumidifiers
Appendix X1 to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Dehumidifiers
Appendix Y to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Battery Chargers
Appendix Z to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of External Power Supplies
Appendix AA to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Furnace Fans
Appendix BB to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Input Power, Lumen Output, Lamp Efficacy, Correlated Color 
          Temperature (CCT), Color Rendering Index (CRI), Power Factor, 
          Time to Failure, and Standby Mode Power of Integrated Light-
          Emitting Diode (LED) Lamps
Appendix CC to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption of Portable Air Conditioners
Appendix DD to Subpart B of Part 430--Uniform Test Method for Measuring 
          the Energy Consumption and Energy Efficiency of General 
          Service Lamps That Are Not General Service Incandescent Lamps, 
          Compact Fluorescent Lamps, or Integrated LED Lamps

            Subpart C_Energy and Water Conservation Standards

430.31 Purpose and scope.
430.32 Energy and water conservation standards and their compliance 
          dates.
430.33 Preemption of State regulations.
430.34 Energy and water conservation standards amendments.
430.35 Petitions with respect to general service lamps.

Appendix A to Subpart C of Part 430--Procedures, Interpretations, and 
          Policies for Consideration of New or Revised Energy 
          Conservation Standards and Test Procedures for Consumer 
          Products and Certain Commercial/Industrial Equipment

    Subpart D_Petitions To Exempt State Regulation From Preemption; 
           Petitions To Withdraw Exemption of State Regulation

430.40 Purpose and scope.
430.41 Prescriptions of a rule.
430.42 Filing requirements.
430.43 Notice of petition.
430.44 Consolidation.
430.45 Hearing.
430.46 Disposition of petitions.
430.47 Effective dates of final rules.
430.48 Request for reconsideration.
430.49 Finality of decision.

                   Subpart E_Small Business Exemptions

430.50 Purpose and scope.
430.51 Eligibility.
430.52 Requirements for applications.
430.53 Processing of applications.
430.54 Referral to the Attorney General.
430.55 Evaluation of application.
430.56 Decision and order.
430.57 Duration of temporary exemption.

Subpart F [Reserved]

    Authority: 42 U.S.C. 6291-6309; 28 U.S.C. 2461 note.

    Source: 42 FR 27898, June 1, 1977, unless otherwise noted.



                      Subpart A_General Provisions



Sec.  430.1  Purpose and scope.

    This part establishes the regulations for the implementation of part 
B of title III (42 U.S.C. 6291-6309) of the Energy Policy and 
Conservation Act (Pub. L. 94-163), as amended by Pub. L. 95-619, Pub. L. 
100-12, Pub. L. 100-357, and Pub. L. 102-486 which establishes an energy 
conservation program for consumer products other than automobiles.

[62 FR 29237, May 29, 1997]



Sec.  430.2  Definitions.

    For purposes of this part, words shall be defined as provided for in 
section 321 of the Act and as follows--
    3-Way incandescent lamp means an incandescent lamp that--
    (1) Employs two filaments, operated separately and in combination, 
to provide three light levels; and

[[Page 279]]

    (2) Is designated on the lamp packaging and marketing materials as 
being a 3-way incandescent lamp.
    700 series fluorescent lamp means a fluorescent lamp with a color 
rendering index (measured according to the test procedures outlined in 
Appendix R to subpart B of this part) that is in the range (inclusive) 
of 70 to 79.
    Act means the Energy Policy and Conservation Act of 1975, as 
amended, 42 U.S.C. 6291-6316.
    Activation lock means a control mechanism (either by a physical 
device directly on the water heater or a control system integrated into 
the water heater) that is locked by default and contains a physical, 
software, or digital communication that must be activated with an 
activation key to enable to the product to operate at its designed 
specifications and capabilities and without which the activation of the 
product will provide not greater than 50 percent of the rated first hour 
delivery of hot water certified by the manufacturer.
    Active mode means the condition in which an energy-using product--
    (1) Is connected to a main power source;
    (2) Has been activated; and
    (3) Provides one or more main functions.
    Adaptive external power supply (EPS) means an external power supply 
that can alter its output voltage during active-mode based on an 
established digital communication protocol with the end-use application 
without any user-generated action.
    All-refrigerator means a refrigerator that does not include a 
compartment capable of maintaining compartment temperatures below 32 
[deg]F (0 [deg]C) as determined according to the provisions in Sec.  
429.14(d)(2) of this chapter. It may include a compartment of 0.50 
cubic-foot capacity (14.2 liters) or less for the freezing and storage 
of ice.
    Annual fuel utilization efficiency means the efficiency descriptor 
for furnaces and boilers, determined using test procedures prescribed 
under section 323 and based on the assumption that all--
    (1) Weatherized warm air furnaces or boilers are located out-of-
doors;
    (2) Warm air furnaces which are not weatherized are located indoors 
and all combustion and ventilation air is admitted through grill or 
ducts from the outdoors and does not communicate with air in the 
conditioned space;
    (3) Boilers which are not weatherized are located within the heated 
space.
    ANSI means the American National Standards Institute.
    Appliance lamp means any lamp that--
    (1) Is specifically designed to operate in a household appliance and 
has a maximum wattage of 40 watts (including an oven lamp, refrigerator 
lamp, and vacuum cleaner lamp); and
    (2) When sold at retail, is designated and marketed for the intended 
application, with
    (i) The designation on the lamp packaging; and
    (ii) Marketing materials that identify the lamp as being for 
appliance use.
    ASME means the American Society of Mechanical Engineers.
    Automatic clothes washer means a class of clothes washer which has a 
control system which is capable of scheduling a preselected combination 
of operations, such as regulation of water temperature, regulation of 
the water fill level, and performance of wash, rinse, drain, and spin 
functions without the need for user intervention subsequent to the 
initiation of machine operation. Some models may require user 
intervention to initiate these different segments of the cycle after the 
machine has begun operation, but they do not require the user to 
intervene to regulate the water temperature by adjusting the external 
water faucet valves.
    Back-up battery charger means a battery charger excluding UPSs:
    (1) That is embedded in a separate end-use product that is designed 
to continuously operate using mains power (including end-use products 
that use external power supplies); and
    (2) Whose sole purpose is to recharge a battery used to maintain 
continuity of power in order to provide normal or partial operation of a 
product in case of input power failure.

[[Page 280]]

    Ballast means a device used with an electric discharge lamp to 
obtain necessary circuit conditions (voltage, current, and waveform) for 
starting and operating.
    Ballast efficacy factor means the relative light output divided by 
the power input of a fluorescent lamp ballast, as measured under test 
conditions specified in ANSI Standard C82.2-1984.
    Ballast luminous efficiency means the total fluorescent lamp arc 
power divided by the fluorescent lamp ballast input power multiplied by 
the appropriate frequency adjustment factor, as defined in appendix Q of 
subpart B of this part.
    Baseboard electric heater means an electric heater which is intended 
to be recessed in or surface mounted on walls at floor level, which is 
characterized by long, low physical dimensions, and which transfers heat 
by natural convection and/or radiation.
    Basic model means all units of a given type of covered product (or 
class thereof) manufactured by one manufacturer; having the same primary 
energy source; and, which have essentially identical electrical, 
physical, and functional (or hydraulic) characteristics that affect 
energy consumption, energy efficiency, water consumption, or water 
efficiency; and
    (1) With respect to general service fluorescent lamps, general 
service incandescent lamps, and incandescent reflector lamps: Lamps that 
have essentially identical light output and electrical characteristics--
including lumens per watt (lm/W) and color rendering index (CRI).
    (2) With respect to faucets and showerheads: Have the identical flow 
control mechanism attached to or installed within the fixture fittings, 
or the identical water-passage design features that use the same path of 
water in the highest flow mode.
    (3) With respect to furnace fans: Are marketed and/or designed to be 
installed in the same type of installation; and
    (4) With respect to central air conditioners and central air 
conditioning heat pumps essentially identical electrical, physical, and 
functional (or hydraulic) characteristics means:
    (i) For split systems manufactured by outdoor unit manufacturers 
(OUMs): all individual combinations having the same model of outdoor 
unit, which means comparably performing compressor(s) [a variation of no 
more than five percent in displacement rate (volume per time) as rated 
by the compressor manufacturer, and no more than five percent in 
capacity and power input for the same operating conditions as rated by 
the compressor manufacturer], outdoor coil(s) [no more than five percent 
variation in face area and total fin surface area; same fin material; 
same tube material], and outdoor fan(s) [no more than ten percent 
variation in air flow and no more than twenty percent variation in power 
input];
    (ii) For split systems having indoor units manufactured by 
independent coil manufacturers (ICMs): all individual combinations 
having comparably performing indoor coil(s) [plus or minus one square 
foot face area, plus or minus one fin per inch fin density, and the same 
fin material, tube material, number of tube rows, tube pattern, and tube 
size]; and
    (iii) For single-package systems: all individual models having 
comparably performing compressor(s) [no more than five percent variation 
in displacement rate (volume per time) rated by the compressor 
manufacturer, and no more than five percent variations in capacity and 
power input rated by the compressor manufacturer corresponding to the 
same compressor rating conditions], outdoor coil(s) and indoor coil(s) 
[no more than five percent variation in face area and total fin surface 
area; same fin material; same tube material], outdoor fan(s) [no more 
than ten percent variation in outdoor air flow], and indoor blower(s) 
[no more than ten percent variation in indoor air flow, with no more 
than twenty percent variation in fan motor power input];
    (iv) Except that,
    (A) for single-package systems and single-split systems, 
manufacturers may instead choose to make each individual model/
combination its own basic model provided the testing and represented 
value requirements in 10 CFR 429.16 of this chapter are met; and

[[Page 281]]

    (B) For multi-split, multi-circuit, and multi-head mini-split 
combinations, a basic model may not include both individual small-duct, 
high velocity (SDHV) combinations and non-SDHV combinations even when 
they include the same model of outdoor unit. The manufacturer may choose 
to identify specific individual combinations as additional basic models.
    Basic-voltage external power supply means an external power supply 
that is not a low-voltage external power supply.
    Batch means a collection of production units of a basic model from 
which a batch sample is selected.
    Batch sample means the collection of units of the same basic model 
from which test units are selected.
    Batch sample size means the number of units in a batch sample.
    Batch size means the number of units in a batch.
    Battery charger means a device that charges batteries for consumer 
products, including battery chargers embedded in other consumer 
products.
    Blowout toilet means a water closet that uses a non-siphonic bowl 
with an integral flushing rim, a trap at the rear of the bowl, and a 
visible or concealed jet that operates with a blowout action.
    BPAR incandescent reflector lamp means a reflector lamp as shown in 
figure C78.21-278 on page 32 of ANSI C78.21-2003 (incorporated by 
reference; see Sec.  430.3).
    BR30 means a BR incandescent reflector lamp with a diameter of 30/
8ths of an inch.
    BR40 means a BR incandescent reflector lamp with a diameter of 40/
8ths of an inch.
    BR incandescent reflector lamp means a reflector lamp that has--
    (1) A bulged section below the major diameter of the bulb and above 
the approximate baseline of the bulb, as shown in figure 1 (RB) on page 
7 of ANSI C79.1-1994, (incorporated by reference, see Sec.  430.3); and
    (2) A finished size and shape shown in ANSI C78.21-1989 
(incorporated by reference; see Sec.  430.3), including the referenced 
reflective characteristics in part 7 of ANSI C78.21-1989.
    BR incandescent reflector lamp means a reflector lamp that has a 
bulged section below the bulb's major diameter and above its approximate 
base line as shown in Figure 1 (RB) on page 7 of ANSI C79.1-1994. A BR30 
lamp has a lamp wattage of 85 or less than 66 and a BR40 lamp has a lamp 
wattage of 120 or less.
    Btu means British thermal unit, which is the quantity of heat 
required to raise the temperature of one pound of water one degree 
Fahrenheit.
    Built-in compact cooler means any cooler with a total refrigerated 
volume less than 7.75 cubic feet and no more than 24 inches in depth, 
excluding doors, handles, and custom front panels, that is designed, 
intended, and marketed exclusively to be:
    (1) Installed totally encased by cabinetry or panels that are 
attached during installation;
    (2) Securely fastened to adjacent cabinetry, walls or floor;
    (3) Equipped with unfinished sides that are not visible after 
installation; and
    (4) Equipped with an integral factory-finished face or built to 
accept a custom front panel.
    Built-in cooler means any cooler with a total refrigerated volume of 
7.75 cubic feet or greater and no more than 24 inches in depth, 
excluding doors, handles, and custom front panels; that is designed, 
intended, and marketed exclusively to be:
    (1) Installed totally encased by cabinetry or panels that are 
attached during installation;
    (2) Securely fastened to adjacent cabinetry, walls or floor;
    (3) Equipped with unfinished sides that are not visible after 
installation; and
    (4) Equipped with an integral factory-finished face or built to 
accept a custom front panel.
    Built-in refrigerator/refrigerator-freezer/freezer means any 
refrigerator, refrigerator-freezer or freezer with 7.75 cubic feet or 
greater total volume and 24 inches or less depth not including doors, 
handles, and custom front panels; with sides which are not finished and 
not designed to be visible after installation; and that is designed, 
intended, and marketed exclusively (1)

[[Page 282]]

To be installed totally encased by cabinetry or panels that are attached 
during installation, (2) to be securely fastened to adjacent cabinetry, 
walls or floor, and (3) to either be equipped with an integral factory-
finished face or accept a custom front panel.
    Candelabra base incandescent lamp means a lamp that uses a 
candelabra screw base as described in ANSI C81.61, Specifications for 
Electric Bases, common designations E11 and E12 (incorporated by 
reference; see Sec.  430.3).
    Casement-only means a room air conditioner designed for mounting in 
a casement window with an encased assembly with a width of 14.8 inches 
or less and a height of 11.2 inches or less.
    Casement-slider means a room air conditioner with an encased 
assembly designed for mounting in a sliding or casement window with a 
width of 15.5 inches or less.
    Ceiling electric heater means an electric heater which is intended 
to be recessed in, surface mounted on, or hung from a ceiling, and which 
transfers heat by radiation and/or convection (either natural or 
forced).
    Ceiling fan means a nonportable device that is suspended from a 
ceiling for circulating air via the rotation of fan blades. For all 
other ceiling fan-related definitions, see appendix U to this subpart.
    Ceiling fan light kit means equipment designed to provide light from 
a ceiling fan that can be--
    (1) Integral, such that the equipment is attached to the ceiling fan 
prior to the time of retail sale; or
    (2) Attachable, such that at the time of retail sale the equipment 
is not physically attached to the ceiling fan, but may be included 
inside the ceiling fan at the time of sale or sold separately for 
subsequent attachment to the fan.
    Central air conditioner or central air conditioning heat pump means 
a product, other than a packaged terminal air conditioner or packaged 
terminal heat pump, which is powered by single phase electric current, 
air cooled, rated below 65,000 Btu per hour, not contained within the 
same cabinet as a furnace, the rated capacity of which is above 225,000 
Btu per hour, and is a heat pump or a cooling unit only. A central air 
conditioner or central air conditioning heat pump may consist of: A 
single-package unit; an outdoor unit and one or more indoor units; an 
indoor unit only; or an outdoor unit with no match. In the case of an 
indoor unit only or an outdoor unit with no match, the unit must be 
tested and rated as a system (combination of both an indoor and an 
outdoor unit). For all central air conditioner and central air 
conditioning heat pump-related definitions, see appendix M or M1 of 
subpart B of this part.
    Central system humidifier means a class of humidifier designed to 
add moisture into the air stream of a heating system.
    Class A external power supply--
    (1) Means a device that--
    (i) Is designed to convert line voltage AC input into lower voltage 
AC or DC output;
    (ii) Is able to convert to only one AC or DC output voltage at a 
time;
    (iii) Is sold with, or intended to be used with, a separate end-use 
product that constitutes the primary load;
    (iv) Is contained in a separate physical enclosure from the end-use 
product;
    (v) Is connected to the end-use product via a removable or hard-
wired male/female electrical connection, cable, cord, or other wiring; 
and
    (vi) Has nameplate output power that is less than or equal to 250 
watts;
    (2) But, does not include any device that--
    (i) Requires Federal Food and Drug Administration listing and 
approval as a medical device in accordance with section 513 of the 
Federal Food, Drug, and Cosmetic Act (21 U.S.C. 360(c)); or
    (ii) Powers the charger of a detachable battery pack or charges the 
battery of a product that is fully or primarily motor operated.
    Clothes washer means a consumer product designed to clean clothes, 
utilizing a water solution of soap and/or detergent and mechanical 
agitation or other movement, and must be one of the following classes: 
automatic clothes washers, semi-automatic clothes washers, and other 
clothes washers.
    Cold temperature fluorescent lamp means a fluorescent lamp 
specifically

[[Page 283]]

designed to start at -20 [deg]F when used with a ballast conforming to 
the requirements of ANSI C78.81 (incorporated by reference; see Sec.  
430.3) and ANSI C78.901 (incorporated by reference; see Sec.  430.3), 
and is expressly designated as a cold temperature lamp both in markings 
on the lamp and in marketing materials, including catalogs, sales 
literature, and promotional material.
    Colored fluorescent lamp means a fluorescent lamp designated and 
marketed as a colored lamp and not designed or marketed for general 
illumination applications with either of the following characteristics:
    (1) A CRI less than 40, as determined according to the method set 
forth in CIE Publication 13.3 (incorporated by reference; see Sec.  
430.3); or
    (2) A correlated color temperature less than 2,500K or greater than 
7,000K as determined according to the method set forth in IES LM-9 
(incorporated by reference; see Sec.  430.3).
    Colored incandescent lamp means an incandescent lamp designated and 
marketed as a colored lamp that has--
    (1) A color rendering index of less than 50, as determined according 
to the test method given in CIE 13.3 (incorporated by reference; see 
Sec.  430.3); or
    (2) A correlated color temperature of less than 2,500K, or greater 
than 4,600K, where correlated temperature is computed according to the 
``Computation of Correlated Color Temperature and Distribution 
Temperature,'' Journal of the Optical Society of America, (incorporated 
by reference; see Sec.  430.3).
    Color Rendering Index or CRI means the measured degree of color 
shift objects undergo when illuminated by a light source as compared 
with the color of those same objects when illuminated by a reference 
source of comparable color temperature.
    Combination cooler refrigeration product means any cooler-
refrigerator, cooler-refrigerator-freezer, or cooler-freezer.
    Compact fluorescent lamp (CFL) means an integrated or non-integrated 
single-base, low-pressure mercury, electric-discharge source in which a 
fluorescing coating transforms some of the ultraviolet energy generated 
by the mercury discharge into light; the term does not include circline 
or U-shaped lamps.
    Compact refrigerator/refrigerator-freezer/freezer means any 
refrigerator, refrigerator-freezer or freezer with a total refrigerated 
volume of less than 7.75 cubic feet (220 liters). (Total refrigerated 
volume shall be determined using the applicable test procedure appendix 
prescribed in subpart B of this part.)
    Component video means a video display interface as defined in the 
Consumer Electronics Association's (CEA) standard, CEA-770.3-D 
(incorporated by reference; see Sec.  430.3).
    Composite video means a video display interface that uses Radio 
Corporation of America (RCA) connections carrying a signal defined by 
the Society of Motion Picture and Television Engineers' (SMPTE) 
standard, SMPTE 170M-2004 (incorporated by reference; see Sec.  430.3) 
for regions that support a power frequency of 59.94 Hz or International 
Telecommunication Union's (ITU) standard, ITU-R BT 470-6 (incorporated 
by reference; see Sec.  430.3) for regions that support a power 
frequency of 50 Hz.
    Consumer product means any article (other than an automobile, as 
defined in Section 501(1) of the Motor Vehicle Information and Cost 
Savings Act):
    (1) Of a type--
    (i) Which in operation consumes, or is designed to consume, energy 
or, with respect to showerheads, faucets, water closets, and urinals, 
water; and
    (ii) Which, to any significant extent, is distributed in commerce 
for personal use or consumption by individuals;
    (2) Without regard to whether such article of such type is in fact 
distributed in commerce for personal use or consumption by an 
individual, except that such term includes fluorescent lamp ballasts, 
general service fluorescent lamps, incandescent reflector lamps, 
showerheads, faucets, water closets, and urinals distributed in commerce 
for personal or commercial use or consumption.
    Consumer refrigeration product means a refrigerator, refrigerator-
freezer, freezer, or miscellaneous refrigeration product.
    Contractor means a person (other than the manufacturer or 
distributor)

[[Page 284]]

who sells to and/or installs for an end user a central air conditioner 
subject to regional standards. The term ``end user'' means the entity 
that purchases or selects for purchase the central air conditioner. Some 
examples of typical ``end users'' are homeowners, building owners, 
building managers, and property developers.
    Controlling parameter means a measurable quantity or an algorithm 
(such as temperature or usage pattern) used for inferring heating load 
to a residential boiler, which would then result in incremental changes 
in boiler supply water temperature.
    Convection microwave oven means a microwave oven that incorporates 
convection features and any other means of cooking in a single 
compartment.
    Conventional cooking top means a category of cooking products which 
is a household cooking appliance consisting of a horizontal surface 
containing one or more surface units that utilize a gas flame, electric 
resistance heating, or electric inductive heating. This includes any 
conventional cooking top component of a combined cooking product.
    Conventional oven means a category of cooking products which is a 
household cooking appliance consisting of one or more compartments 
intended for the cooking or heating of food by means of either a gas 
flame or electric resistance heating. It does not include portable or 
countertop ovens which use electric resistance heating for the cooking 
or heating of food and are designed for an electrical supply of 
approximately 120 volts. This includes any conventional oven(s) 
component of a combined cooking product.
    Convertible cooking appliance means any kitchen range and oven which 
is a household cooking appliance designed by the manufacturer to be 
changed in service from use with natural gas to use with LP-gas, and 
vice versa, by incorporating in the appliance convertible orifices for 
the main gas burners and a convertible gas pressure regulator.
    Cooking products means consumer products that are used as the major 
household cooking appliances. They are designed to cook or heat 
different types of food by one or more of the following sources of heat: 
Gas, electricity, or microwave energy. Each product may consist of a 
horizontal cooking top containing one or more surface units and/or one 
or more heating compartments.
    Cooler means a cabinet, used with one or more doors, that has a 
source of refrigeration capable of operating on single-phase, 
alternating current and is capable of maintaining compartment 
temperatures either:
    (1) No lower than 39 [deg]F (3.9 [deg]C); or
    (2) In a range that extends no lower than 37 [deg]F (2.8 [deg]C) but 
at least as high as 60 [deg]F (15.6 [deg]C) as determined according to 
the applicable provisions in Sec.  429.61(d)(2) of this chapter.
    Cooler-all-refrigerator means a cooler-refrigerator that does not 
include a compartment capable of maintaining compartment temperatures 
below 32 [deg]F (0 [deg]C) as determined according to the provisions in 
Sec.  429.61(d)(2) of this chapter. It may include a compartment of 0.50 
cubic-foot capacity (14.2 liters) or less for the freezing and storage 
of ice.
    Cooler-freezer means a cabinet, used with one or more doors, that 
has a source of refrigeration that requires single-phase, alternating 
current electric energy input only, and consists of two or more 
compartments, including at least one cooler compartment as defined in 
appendix A of subpart B of this part, where the remaining compartment(s) 
are capable of maintaining compartment temperatures at 0 [deg]F (-17.8 
[deg]C) or below as determined according to the provisions in Sec.  
429.61(d)(2) of this chapter.
    Cooler-refrigerator means a cabinet, used with one or more doors, 
that has a source of refrigeration that requires single-phase, 
alternating current electric energy input only, and consists of two or 
more compartments, including at least one cooler compartment as defined 
in appendix A of subpart B of this part, where:
    (1) At least one of the remaining compartments is not a cooler 
compartment as defined in appendix A of subpart B of this part and is 
capable of maintaining compartment temperatures above 32 [deg]F (0 
[deg]C) and below 39 [deg]F (3.9 [deg]C) as determined according to 
Sec.  429.61(d)(2) of this chapter;

[[Page 285]]

    (2) The cabinet may also include a compartment capable of 
maintaining compartment temperatures below 32 [deg]F (0 [deg]C) as 
determined according to Sec.  429.61(d)(2) of this chapter; but
    (3) The cabinet does not provide a separate low temperature 
compartment capable of maintaining compartment temperatures below 8 
[deg]F (-13.3 [deg]C) as determined according to Sec.  429.61(d)(2) of 
this chapter.
    Cooler-refrigerator-freezer means a cabinet, used with one or more 
doors, that has a source of refrigeration that requires single-phase, 
alternating current electric energy input only, and consists of three or 
more compartments, including at least one cooler compartment as defined 
in appendix A of subpart B of this part, where:
    (1) At least one of the remaining compartments is not a cooler 
compartment as defined in appendix A of subpart B of this part and is 
capable of maintaining compartment temperatures above 32 [deg]F (0 
[deg]C) and below 39 [deg]F (3.9 [deg]C) as determined according to 
Sec.  429.61(d)(2) of this chapter; and
    (2) At least one other compartment is capable of maintaining 
compartment temperatures below 8 [deg]F (-13.3 [deg]C) and may be 
adjusted by the user to a temperature of 0 [deg]F (-17.8 [deg]C) or 
below as determined according to Sec.  429.61(d)(2) of this chapter.
    Correlated color temperature (CCT) means the absolute temperature of 
a blackbody whose chromaticity most nearly resembles that of the light 
source.
    Covered product means a consumer product--
    (1) Of a type specified in section 322 of the Act; or
    (2) That is a ceiling fan, ceiling fan light kit, medium base 
compact fluorescent lamp, dehumidifier, battery charger, external power 
supply, torchiere, portable air conditioner, or miscellaneous 
refrigeration product.
    Dealer means a type of contractor, generally with a relationship 
with one or more specific manufacturers.
    Dehumidifier means a product, other than a portable air conditioner, 
room air conditioner, or packaged terminal air conditioner, that is a 
self-contained, electrically operated, and mechanically encased assembly 
consisting of--
    (1) A refrigerated surface (evaporator) that condenses moisture from 
the atmosphere;
    (2) A refrigerating system, including an electric motor;
    (3) An air-circulating fan; and
    (4) A means for collecting or disposing of the condensate.
    Design voltage with respect to an incandescent lamp means:
    (1) The voltage marked as the intended operating voltage;
    (2) The mid-point of the voltage range if the lamp is marked with a 
voltage range; or
    (3) 120 V if the lamp is not marked with a voltage or voltage range.
    Designed and marketed means that the intended application of the 
lamp or ballast is clearly stated in all publicly available documents 
(e.g., product literature, catalogs, and packaging labels). This 
definition is applicable to terms related to the following covered 
lighting products: Fluorescent lamp ballasts; fluorescent lamps; general 
service fluorescent lamps; general service incandescent lamps; general 
service lamps; incandescent lamps; incandescent reflector lamps; medium 
base compact fluorescent lamps; and specialty application mercury vapor 
lamp ballasts.
    Detachable battery means a battery that is--
    (1) Contained in a separate enclosure from the product; and
    (2) Intended to be removed or disconnected from the product for 
recharging.
    Direct heating equipment means vented home heating equipment and 
unvented home heating equipment.
    Direct operation external power supply means an external power 
supply that can operate a consumer product that is not a battery charger 
without the assistance of a battery.
    Direct vent system means a system supplied by a manufacturer which 
provides outdoor air or air from an unheated space (such as an attic or 
crawl space) directly to a furnace or vented heater for combustion and 
for draft relief if the unit is equipped with a draft control device.
    Dishwasher means a cabinet-like appliance which with the aid of 
water and

[[Page 286]]

detergent, washes, rinses, and dries (when a drying process is included) 
dishware, glassware, eating utensils, and most cooking utensils by 
chemical, mechanical and/or electrical means and discharges to the 
plumbing drainage system.
    Distributor means a person (other than a manufacturer or retailer) 
to whom a consumer appliance product is delivered or sold for purposes 
of distribution in commerce.
    DOE means the Department of Energy.
    Dual-duct portable air conditioner means a portable air conditioner 
that draws some or all of the condenser inlet air from outside the 
conditioned space through a duct attached to an adjustable window 
bracket, may draw additional condenser inlet air from the conditioned 
space, and discharges the condenser outlet air outside the conditioned 
space by means of a separate duct attached to an adjustable window 
bracket.
    Dual-flush water closet means a water closet incorporating a feature 
that allows the user to flush the water closet with either a reduced or 
a full volume of water.
    Electric boiler means an electrically powered furnace designed to 
supply low pressure steam or hot water for space heating application. A 
low pressure steam boiler operates at or below 15 pounds per square inch 
gauge (psig) steam pressure; a hot water boiler operates at or below 160 
psig water pressure and 250 [deg]F. water temperature.
    Electric central furnace means a furnace designed to supply heat 
through a system of ducts with air as the heating medium, in which heat 
is generated by one or more electric resistance heating elements and the 
heated air is circulated by means of a fan or blower.
    Electric clothes dryer means a cabinet-like appliance designed to 
dry fabrics in a tumble-type drum with forced air circulation. The heat 
source is electricity and the drum and blower(s) are driven by an 
electric motor(s).
    Electric heater means an electric appliance in which heat is 
generated from electrical energy and dissipated by convection and 
radiation and includes baseboard electric heaters, ceiling electric 
heaters, floor electric heaters, portable electric heaters, and wall 
electric heaters.
    Electric instantaneous water heater means a water heater that uses 
electricity as the energy source, has a nameplate input rating of 12 kW 
or less, and contains no more than one gallon of water per 4,000 Btu per 
hour of input.
    Electric storage water heater means a water heater that uses 
electricity as the energy source, has a nameplate input rating of 12 kW 
or less, and contains more than one gallon of water per 4,000 Btu per 
hour of input.
    Electromechanical hydraulic toilet means any water closet that 
utilizes electrically operated devices, such as, but not limited to, air 
compressors, pumps, solenoids, motors, or macerators in place of or to 
aid gravity in evacuating waste from the toilet bowl.
    Electronic ballast means a device that uses semiconductors as the 
primary means to control lamp starting and operation.
    Energy conservation standard means any standards meeting the 
definitions of that term in 42 U.S.C. 6291(6) and 42 U.S.C. 6311(18) as 
well as any other water conservation standards and design requirements 
found in this part or parts 430 or 431.
    Energy use of a type of consumer product which is used by households 
means the energy consumed by such product within housing units occupied 
by households (such as energy for space heating and cooling, water 
heating, the operation of appliances, or other activities of the 
households), and includes energy consumed on any property that is 
contiguous with a housing unit and that is used primarily by the 
household occupying the housing unit (such as energy for exterior lights 
or heating a pool).
    ER incandescent reflector lamp means a reflector lamp that has--
    (1) An elliptical section below the major diameter of the bulb and 
above the approximate baseline of the bulb, as shown in figure 1 (RE) on 
page 7 of ANSI C79.1-1994, (incorporated by reference; see Sec.  430.3); 
and
    (2) A finished size and shape shown in ANSI C78.21-1989, 
(incorporated by reference; see Sec.  430.3).

[[Page 287]]

    ER30 means an ER incandescent reflector lamp with a diameter of 30/
8ths of an inch.
    ER40 means an ER incandescent reflector lamp with a diameter of 40/
8ths of an inch.
    Estimated annual operating cost means the aggregate retail cost of 
the energy which is likely to be consumed annually, and in the case of 
showerheads, faucets, water closets, and urinals, the aggregate retail 
cost of water and wastewater treatment services likely to be incurred 
annually, in representative use of a consumer product, determined in 
accordance with Section 323 of EPCA (42 U.S.C. 6293).
    External power supply means an external power supply circuit that is 
used to convert household electric current into DC current or lower-
voltage AC current to operate a consumer product. However, the term does 
not include a power supply circuit, driver, or device that is designed 
exclusively to be connected to, and power--
    (1) Light-emitting diodes providing illumination;
    (2) Organic light-emitting diodes providing illumination; or
    (3) Ceiling fans using direct current motors.
    External power supply design family means a set of external power 
supply basic models, produced by the same manufacturer, which share the 
same circuit layout, output power, and output cord resistance, but 
differ in output voltage.
    Faucet means a lavatory faucet, kitchen faucet, metering faucet, or 
replacement aerator for a lavatory or kitchen faucet.
    Fitting means a device that controls and guides the flow of water.
    Floor electric heater means an electric heater which is intended to 
be recessed in a floor, and which transfers by radiation and/or 
convection (either natural or forced).
    Fluorescent lamp means a low pressure mercury electric-discharge 
source in which a fluorescing coating transforms some of the ultraviolet 
energy generated by the mercury discharge into light, including only the 
following:
    (1) Any straight-shaped lamp (commonly referred to as 4-foot medium 
bipin lamps) with medium bipin bases of nominal overall length of 48 
inches and rated wattage of 25 or more;
    (2) Any U-shaped lamp (commonly referred to as 2-foot U-shaped 
lamps) with medium bipin bases of nominal overall length between 22 and 
25 inches and rated wattage of 25 or more;
    (3) Any rapid start lamp (commonly referred to as 8-foot high output 
lamps) with recessed double contact bases of nominal overall length of 
96 inches;
    (4) Any instant start lamp (commonly referred to as 8-foot slimline 
lamps) with single pin bases of nominal overall length of 96 inches and 
rated wattage of 49 or more;
    (5) Any straight-shaped lamp (commonly referred to as 4-foot 
miniature bipin standard output lamps) with miniature bipin bases of 
nominal overall length between 45 and 48 inches and rated wattage of 25 
or more; and
    (6) Any straight-shaped lamp (commonly referred to 4-foot miniature 
bipin high output lamps) with miniature bipin bases of nominal overall 
length between 45 and 48 inches and rated wattage of 44 or more.
    Fluorescent lamp ballast means a device which is used to start and 
operate fluorescent lamps by providing a starting voltage and current 
and limiting the current during normal operation.
    Fluorescent lamp designed for use in reprographic equipment means a 
fluorescent lamp intended for use in equipment used to reproduce, 
reprint, or copy graphic material.
    Flushometer tank means a device whose function is defined in 
flushometer valve, but integrated within an accumulator vessel affixed 
and adjacent to the fixture inlet so as to cause an effective 
enlargement of the supply line immediately before the unit.
    Flushometer valve means a valve attached to a pressurized water 
supply pipe and so designed that when actuated, it opens the line for 
direct flow into the fixture at a rate and quantity to properly operate 
the fixture, and then gradually closes to provide trap reseal in the 
fixture in order to avoid water hammer. The pipe to which this device is 
connected is in itself of sufficient size, that when open, will allow

[[Page 288]]

the device to deliver water at a sufficient rate of flow for flushing 
purposes.
    Forced air central furnace means a gas or oil burning furnace 
designed to supply heat through a system of ducts with air as the 
heating medium. The heat generated by combustion of gas or oil is 
transferred to the air within a casing by conduction through heat 
exchange surfaces and is circulated through the duct system by means of 
a fan or blower.
    Freestanding compact cooler means any cooler, excluding built-in 
compact coolers, with a total refrigerated volume less than 7.75 cubic 
feet.
    Freestanding cooler means any cooler, excluding built-in coolers, 
with a total refrigerated volume of 7.75 cubic feet or greater.
    Freezer means a cabinet, used with one or more doors, that has a 
source of refrigeration that requires single-phase, alternating current 
electric energy input only and is capable of maintaining compartment 
temperatures of 0 [deg]F (-17.8 [deg]C) or below as determined according 
to the provisions in Sec.  429.14(d)(2) of this chapter. It does not 
include any refrigerated cabinet that consists solely of an automatic 
ice maker and an ice storage bin arranged so that operation of the 
automatic icemaker fills the bin to its capacity. However, the term does 
not include:
    (1) Any product that does not include a compressor and condenser 
unit as an integral part of the cabinet assembly; or
    (2) Any miscellaneous refrigeration product that must comply with an 
applicable miscellaneous refrigeration product energy conservation 
standard.
    Furnace means a product which utilizes only single-phase electric 
current, or single-phase electric current or DC current in conjunction 
with natural gas, propane, or home heating oil, and which--
    (1) Is designed to be the principal heating source for the living 
space of a residence;
    (2) Is not contained within the same cabinet with a central air 
conditioner whose rated cooling capacity is above 65,000 Btu per hour;
    (3) Is an electric central furnace, electric boiler, forced-air 
central furnace, gravity central furnace, or low-pressure steam or hot 
water boiler; and
    (4) Has a heat input rate of less than 300,000 Btu per hour for 
electric boilers and low-pressure steam or hot water boilers and less 
than 225,000 Btu per hour for forced-air central furnaces, gravity 
central furnaces, and electric central furnaces.
    Furnace fan means an electrically-powered device used in a consumer 
product for the purpose of circulating air through ductwork.
    Gas means either natural gas or propane.
    Gas clothes dryer means a cabinet-like appliance designed to dry 
fabrics in a tumble-type drum with forced air circulation. The heat 
source is gas and the drum and blower(s) are driven by an electric 
motor(s).
    Gas-fired instantaneous water heater means a water heater that uses 
gas as the main energy source, has a nameplate input rating less than 
200,000 Btu/h, and contains no more than one gallon of water per 4,000 
Btu per hour of input.
    Gas-fired storage water heater means a water heater that uses gas as 
the main energy source, has a nameplate input rating of 75,000 Btu/h or 
less, and contains more than one gallon of water per 4,000 Btu per hour 
of input.
    General lighting application means lighting that provides an 
interior or exterior area with overall illumination.
    General service fluorescent lamp means any fluorescent lamp which 
can be used to satisfy the majority of fluorescent lighting 
applications, but does not include any lamp designed and marketed for 
the following nongeneral application:
    (1) Fluorescent lamps designed to promote plant growth;
    (2) Fluorescent lamps specifically designed for cold temperature 
applications;
    (3) Colored fluorescent lamps;
    (4) Impact-resistant fluorescent lamps;
    (5) Reflectorized or aperture lamps;
    (6) Fluorescent lamps designed for use in reprographic equipment;
    (7) Lamps primarily designed to produce radiation in the ultra-
violet region of the spectrum; and

[[Page 289]]

    (8) Lamps with a Color Rendering Index of 87 or greater.
    General service incandescent lamp means a standard incandescent or 
halogen type lamp that is intended for general service applications; has 
a medium screw base; has a lumen range of not less than 310 lumens and 
not more than 2,600 lumens or, in the case of a modified spectrum lamp, 
not less than 232 lumens and not more than 1,950 lumens; and is capable 
of being operated at a voltage range at least partially within 110 and 
130 volts; however this definition does not apply to the following 
incandescent lamps--
    (1) An appliance lamp;
    (2) A black light lamp;
    (3) A bug lamp;
    (4) A colored lamp;
    (5) An infrared lamp;
    (6) A left-hand thread lamp;
    (7) A marine lamp;
    (8) A marine signal service lamp;
    (9) A mine service lamp;
    (10) A plant light lamp;
    (11) A reflector lamp;
    (12) A rough service lamp;
    (13) A shatter-resistant lamp (including a shatter-proof lamp and a 
shatter-protected lamp);
    (14) A sign service lamp;
    (15) A silver bowl lamp;
    (16) A showcase lamp;
    (17) A 3-way incandescent lamp;
    (18) A traffic signal lamp;
    (19) A vibration service lamp;
    (20) A G shape lamp (as defined in ANSI C78.20) (incorporated by 
reference; see Sec.  430.3) and ANSI C79.1-2002 (incorporated by 
reference; see Sec.  430.3) with a diameter of 5 inches or more;
    (21) A T shape lamp (as defined in ANSI C78.20) (incorporated by 
reference; see Sec.  430.3) and ANSI C79.1-2002 (incorporated by 
reference; see Sec.  430.3) and that uses not more than 40 watts or has 
a length of more than 10 inches; and
    (22) A B, BA, CA, F, G16-1/2, G-25, G30, S, or M-14 lamp (as defined 
in ANSI C79.1-2002) (incorporated by reference; see Sec.  430.3) and 
ANSI C78.20 (incorporated by reference; see Sec.  430.3) of 40 watts or 
less.
    General service lamp includes general service incandescent lamps, 
compact fluorescent lamps, general service light-emitting diode lamps, 
organic light-emitting diode lamps, and any other lamps that the 
Secretary determines are used to satisfy lighting applications 
traditionally served by general service incandescent lamps; however, 
this definition does not apply to any lighting application or bulb shape 
excluded from the ``general service incandescent lamp'' definition, or 
any general service fluorescent lamp or incandescent reflector lamp.
    Gravity central furnace means a gas fueled furnace which depends 
primarily on natural convection for circulation of heated air and which 
is designed to be used in conjunction with a system of ducts.
    Grid-enabled water heater means an electric resistance water heater 
that--
    (1) Has a rated storage tank volume of more than 75 gallons;
    (2) Is manufactured on or after April 16, 2015;
    (3) Is equipped at the point of manufacture with an activation lock 
and;
    (4) Bears a permanent label applied by the manufacturer that--
    (i) Is made of material not adversely affected by water;
    (ii) Is attached by means of non-water-soluble adhesive; and
    (iii) Advises purchasers and end-users of the intended and 
appropriate use of the product with the following notice printed in 16.5 
point Arial Narrow Bold font: ``IMPORTANT INFORMATION: This water heater 
is intended only for use as part of an electric thermal storage or 
demand response program. It will not provide adequate hot water unless 
enrolled in such a program and activated by your utility company or 
another program operator. Confirm the availability of a program in your 
local area before purchasing or installing this product.''
    Hand-held showerhead means a showerhead that can be held or fixed in 
place for the purpose of spraying water onto a bather and that is 
connected to a flexible hose.
    High-definition multimedia interface or HDMI[supreg] means an audio 
and video interface as defined by HDMI[supreg] Specification 
Informational Version 1.0 or greater (incorporated by reference; see 
Sec.  430.3).
    Home heating equipment, not including furnaces means vented home 
heating

[[Page 290]]

equipment and unvented home heating equipment.
    Household means an entity consisting of either an individual, a 
family, or a group of unrelated individuals, who reside in a particular 
housing unit. For the purpose of this definition:
    (1) Group quarters means living quarters that are occupied by an 
institutional group of 10 or more unrelated persons, such as a nursing 
home, military barracks, halfway house, college dormitory, fraternity or 
sorority house, convent, shelter, jail or correctional institution.
    (2) Housing unit means a house, an apartment, a group of rooms, or a 
single room occupied as separate living quarters, but does not include 
group quarters.
    (3) Separate living quarters means living quarters:
    (i) To which the occupants have access either:
    (A) Directly from outside of the building, or
    (B) Through a common hall that is accessible to other living 
quarters and that does not go through someone else's living quarters, 
and
    (ii) Occupied by one or more persons who live and eat separately 
from occupant(s) of other living quarters, if any, in the same building.
    Immersed heating element means an electrically powered heating 
device which is designed to operate while totally immersed in water in 
such a manner that the heat generated by the device is imparted directly 
to the water.
    Impact-resistant fluorescent lamp means a lamp that:
    (1) Has a coating or equivalent technology that is compliant with 
NSF/ANSI 51 (incorporated by reference; see Sec.  430.3) and is designed 
to contain the glass if the glass envelope of the lamp is broken; and
    (2) Is designated and marketed for the intended application, with:
    (i) The designation on the lamp packaging; and
    (ii) Marketing materials that identify the lamp as being impact-
resistant, shatter-resistant, shatter-proof, or shatter-protected.
    Import means to import into the customs territory of the United 
States.
    Incandescent lamp means a lamp in which light is produced by a 
filament heated to incandescence by an electric current, including only 
the following:
    (1) Any lamp (commonly referred to as lower wattage non-reflector 
general service lamps, including any tungsten halogen lamp) that has a 
rated wattage between 30 and 199, has an E26 medium screw base, has a 
rated voltage or voltage range that lies at least partially in the range 
of 115 and 130 volts, and is not a reflector lamp.
    (2) Any incandescent reflector lamp.
    (3) Any general service incandescent lamp (commonly referred to as a 
high-or higher-wattage lamp) that has a rated wattage above 199 (above 
205 for a high wattage reflector lamp).
    Incandescent reflector lamp (commonly referred to as a reflector 
lamp) means any lamp in which light is produced by a filament heated to 
incandescence by an electric current, which: contains an inner 
reflective coating on the outer bulb to direct the light; is not 
colored; is not designed for rough or vibration service applications; is 
not an R20 short lamp; has an R, PAR, ER, BR, BPAR, or similar bulb 
shapes with an E26 medium screw base; has a rated voltage or voltage 
range that lies at least partially in the range of 115 and 130 volts; 
has a diameter that exceeds 2.25 inches; and has a rated wattage that is 
40 watts or higher.
    Indirect operation external power supply means an external power 
supply that cannot operate a consumer product that is not a battery 
charger without the assistance of a battery as determined by the steps 
in paragraphs (1)(i) through (v) of this definition:
    (1) If the external power supply (EPS) can be connected to an end-
use consumer product and that consumer product can be operated using 
battery power, the method for determining whether that EPS is incapable 
of operating that consumer product directly is as follows:
    (i) If the end-use product has a removable battery, remove it for 
the remainder of the test and proceed to the step in paragraph (1)(v) of 
this definition. If not, proceed to the step in paragraph (1)(ii).

[[Page 291]]

    (ii) Charge the battery in the application via the EPS such that the 
application can operate as intended before taking any additional steps.
    (iii) Disconnect the EPS from the application. From an off mode 
state, turn on the application and record the time necessary for it to 
become operational to the nearest five second increment (5 sec, 10 sec, 
etc.).
    (iv) Operate the application using power only from the battery until 
the application stops functioning due to the battery discharging.
    (v) Connect the EPS first to mains and then to the application. 
Immediately attempt to operate the application. If the battery was 
removed for testing and the end-use product operates as intended, the 
EPS is not an indirect operation EPS and paragraph 2 of this definition 
does not apply. If the battery could not be removed for testing, record 
the time for the application to become operational to the nearest five 
second increment (5 seconds, 10 seconds, etc.).
    (2) If the time recorded in paragraph (1)(v) of this definition is 
greater than the summation of the time recorded in paragraph (1)(iii) of 
this definition and five seconds, the EPS cannot operate the application 
directly and is an indirect operation EPS.
    Installation of a central air conditioner means the connection of 
the refrigerant lines and/or electrical systems to make the central air 
conditioner operational.
    Integrated light-emitting diode lamp means an integrated LED lamp as 
defined in ANSI/IES RP-16 (incorporated by reference; see Sec.  430.3).
    Intermediate base incandescent lamp means a lamp that uses an 
intermediate screw base as described in ANSI C81.61, Specifications for 
Electric Bases, common designation E17 (incorporated by reference; see 
Sec.  430.3).
    Kerosene means No. 1 fuel oil with a viscosity meeting the 
specifications as specified in UL-730-1974, section 36.9 and in tables 2 
and 3 of ANSI Standard Z91.1-1972.
    Lamp Efficacy (LE) means the measured lumen output of a lamp in 
lumens divided by the measured lamp electrical power input in watts 
expressed in units of lumens per watt (LPW).
    Lamps primarily designed to produce radiation in the ultraviolet 
region of the spectrum means fluorescent lamps that primarily emit light 
in the portion of the electromagnetic spectrum where light has a 
wavelength between 10 and 400 nanometers.
    Lifetime of a compact fluorescent lamp means the length of operating 
time between first use and failure of 50 percent of the sample units (as 
specified in Sec.  429.35(a)(1) of this chapter), determined in 
accordance with the test procedures described in section 3.3 of appendix 
W to subpart B of this part.
    Lifetime of an integrated light-emitting diode lamp means the length 
of operating time between first use and failure of 50 percent of the 
sample units (as required by Sec.  429.56(a)(1) of this chapter), when 
measured in accordance with the test procedures described in section 4 
of appendix BB to subpart B of this part.
    Light-emitting diode or LED means a p-n junction solid state device 
of which the radiated output, either in the infrared region, the visible 
region, or the ultraviolet region, is a function of the physical 
construction, material used, and exciting current of the device.
    Low consumption has the meaning given such a term in ASME A112.19.2-
2008. (see Sec.  430.3)
    Low pressure steam or hot water boiler means an electric, gas or oil 
burning furnace designed to supply low pressure steam or hot water for 
space heating application. A low pressure steam boiler operates at or 
below 15 pounds psig steam pressure; a hot water boiler operates at or 
below 160 psig water pressure and 250 [deg]F. water temperature.
    Low-voltage external power supply means an external power supply 
with a nameplate output voltage less than 6 volts and nameplate output 
current greater than or equal to 550 milliamps.
    LP-gas means liquified petroleum gas, and includes propane, butane, 
and propane/butane mixtures.
    Major cooking component means either a conventional cooking top, a 
conventional oven or a microwave oven.
    Manufacture means to manufacture, produce, assemble, or import.
    Manufacturer means any person who manufactures a consumer product.

[[Page 292]]

    Medium base compact fluorescent lamp means an integrally ballasted 
fluorescent lamp with a medium screw base, a rated input voltage range 
of 115 to 130 volts and which is designed as a direct replacement for a 
general service incandescent lamp; however, the term does not include--
    (1) Any lamp that is--
    (i) Specifically designed to be used for special purpose 
applications; and
    (ii) Unlikely to be used in general purpose applications, such as 
the applications described in the definition of ``General Service 
Incandescent Lamp'' in this section; or
    (2) Any lamp not described in the definition of ``General Service 
Incandescent Lamp'' in this section that is excluded by the Secretary, 
by rule, because the lamp is--
    (i) Designed for special applications; and
    (ii) Unlikely to be used in general purpose applications.
    Medium screw base means an Edison screw base identified with the 
prefix E-26 in the ``American National Standard for Electric Lamp 
Bases'', ANSI_IEC C81.61-2003, published by the American National 
Standards Institute.
    Microwave oven means a category of cooking products which is a 
household cooking appliance consisting of a compartment designed to cook 
or heat food by means of microwave energy, including microwave ovens 
with or without thermal elements designed for surface browning of food 
and convection microwave ovens. This includes any microwave oven(s) 
component of a combined cooking product.
    Miscellaneous refrigeration product means a consumer refrigeration 
product other than a refrigerator, refrigerator-freezer, or freezer, 
which includes coolers and combination cooler refrigeration products.
    Mobile home furnace means a direct vent furnace that is designed for 
use only in mobile homes.
    Modified spectrum means, with respect to an incandescent lamp, an 
incandescent lamp that--
    (1) Is not a colored incandescent lamp; and
    (2) When operated at the rated voltage and wattage of the 
incandescent lamp--
    (A) Has a color point with (x,y) chromaticity coordinates on the 
C.I.E. 1931 chromaticity diagram, figure 2, page 3 of IESNA LM-16 
(incorporated by reference; see Sec.  430.3) that lies below the black-
body locus; and
    (B) Has a color point with (x,y) chromaticity coordinates on the 
C.I.E. 1931 chromaticity diagram, figure 2, page 3 of IESNA LM-16 
(incorporated by reference; see Sec.  430.3) that lies at least 4 
MacAdam steps, as referenced in IESNA LM-16, distant from the color 
point of a clear lamp with the same filament and bulb shape, operated at 
the same rated voltage and wattage.
    Natural gas means natural gas as defined by the Federal Power 
Commission.
    Off mode means the condition in which an energy using product--
    (1) Is connected to a main power source; and
    (2) Is not providing any stand-by or active mode function.
    Oil means heating oil grade No. 2 as defined in American Society for 
Testing and Materials (ASTM) D396-71.
    Oil-fired instantaneous water heater means a water heater that uses 
oil as the main energy source, has a nameplate input rating of 210,000 
Btu/h or less, and contains no more than one gallon of water per 4,000 
Btu per hour of input.
    Oil-fired storage water heater means a water heater that uses oil as 
the main energy source, has a nameplate input rating of 105,000 Btu/h or 
less, and contains more than one gallon of water per 4,000 Btu per hour 
of input.
    Organic light-emitting diode or OLED means a thin-film light-
emitting device that typically consists of a series of organic layers 
between 2 electrical contacts (electrodes).
    Other clothes washer means a class of clothes washer which is not an 
automatic or semi-automatic clothes washer.
    Other cooking products means any category of cooking products other 
than conventional cooking tops, conventional ovens, and microwave ovens.
    Outdoor furnace or boiler is a furnace or boiler normally intended 
for installation out-of-doors or in an unheated space (such as an attic 
or a crawl space).

[[Page 293]]

    Packaged terminal air conditioner means a wall sleeve and a separate 
unencased combination of heating and cooling assemblies specified by the 
builder and intended for mounting through the wall. It includes a prime 
source of refrigeration, separable outdoor louvers, forced ventilation, 
and heating availability energy.
    Packaged terminal heat pump means a packaged terminal air 
conditioner that utilizes reverse cycle refrigeration as its prime heat 
source and should have supplementary heating availability by builder's 
choice of energy.
    Person includes any individual, corporation, company, association, 
firm, partnership, society, trust, joint venture or joint stock company, 
the government, and any agency of the United States or any State or 
political subdivision thereof.
    Pin-based means (1) the base of a fluorescent lamp, that is not 
integrally ballasted and that has a plug-in lamp base, including multi-
tube, multibend, spiral, and circline types, or (2) a socket that holds 
such a lamp.
    Pool heater means an appliance designed for heating nonpotable water 
contained at atmospheric pressure, including heating water in swimming 
pools, spas, hot tubs and similar applications.
    Portable air conditioner means a portable encased assembly, other 
than a ``packaged terminal air conditioner,'' ``room air conditioner,'' 
or ``dehumidifier,'' that delivers cooled, conditioned air to an 
enclosed space, and is powered by single-phase electric current. It 
includes a source of refrigeration and may include additional means for 
air circulation and heating.
    Portable dehumidifier means a dehumidifier designed to operate 
within the dehumidified space without the attachment of additional 
ducting, although means may be provided for optional duct attachment.
    Portable electric heater means an electric heater which is intended 
to stand unsupported, and can be moved from place to place within a 
structure. It is connected to electric supply by means of a cord and 
plug, and transfers heat by radiation and/or convention (either natural 
or forced).
    Primary heater means a heating device that is the principal source 
of heat for a structure and includes baseboard electric heaters, ceiling 
electric heaters, and wall electric heaters.
    Private labeler means an owner of a brand or trademark on the label 
of a consumer product which bears a private label. A consumer product 
bears a private label if:
    (1) Such product (or its container) is labeled with the brand or 
trademark of a person other than a manufacturer of such product;
    (2) The person with whose brand or trademark such product (or 
container) is labeled has authorized or caused such product to be so 
labeled; and
    (3) The brand or trademark of a manufacturer of such product does 
not appear on such label.
    Propane means a hydrocarbon whose chemical composition is 
predominantly C3H8, whether recovered from natural 
gas or crude oil.
    R20 incandescent reflector lamp means a reflector lamp that has a 
face diameter of approximately 2.5 inches, as shown in figure 1(R) on 
page 7 of ANSI C79.1-1994 (incorporated by reference; see Sec.  430.3).
    R20 short lamp means a lamp that is an R20 incandescent reflector 
lamp that has a rated wattage of 100 watts; has a maximum overall length 
of 3 and 5/8, or 3.625, inches; and is designed, labeled, and marketed 
specifically for pool and spa applications.
    Rated lifetime for general service incandescent lamps means the 
length of operating time of a sample of lamps (as defined in Sec.  
429.27(a)(2)(iv) of this chapter) between first use and failure of 50 
percent of the sample size in accordance with test procedures described 
in IESNA LM-49 (incorporated by reference; see Sec.  430.3), as 
determined in section 4.2 of Appendix R of this subpart. The operating 
time is based on the middle lamp operating time for an odd number of 
samples and the average operating time of the two middle lamps for an 
even number of samples.
    Rated voltage with respect to incandescent lamps means:
    (1) The design voltage if the design voltage is 115 V, 130 V or 
between 115V and 130 V:

[[Page 294]]

    (2) 115 V if the design voltage is less than 115 V and greater than 
or equal to 100 V and the lamp can operate at 115 V; and
    (3) 130 V if the design voltage is greater than 130 V and less than 
or equal to 150 V and the lamp can operate at 130 V.
    Rated wattage means:
    (1) With respect to fluorescent lamps and general service 
fluorescent lamps:
    (i) If the lamp is listed in ANSI C78.81 (incorporated by reference; 
see Sec.  430.3) or ANSI C78.901 (incorporated by reference; see Sec.  
430.3), the rated wattage of a lamp determined by the lamp designation 
of Clause 11.1 of ANSI C78.81 or ANSI C78.901;
    (ii) If the lamp is a residential straight-shaped lamp, and not 
listed in ANSI C78.81 (incorporated by reference; see Sec.  430.3), the 
wattage of a lamp when operated on a reference ballast for which the 
lamp is designed; or
    (iii) If the lamp is neither listed in one of the ANSI standards 
referenced in (1)(i) of this definition, nor a residential straight-
shaped lamp, the electrical power of a lamp when measured according to 
the test procedures outlined in appendix R to subpart B of this part.
    (2) With respect to general service incandescent lamps and 
incandescent reflector lamps, the electrical power measured according to 
the test procedures outlined in appendix R to subpart B of this part.
    Reflectorized or aperture lamp means a fluorescent lamp that 
contains an inner reflective coating on the bulb to direct light.
    Refrigerant-desiccant dehumidifier means a whole-home dehumidifier 
that removes moisture from the process air by means of a desiccant 
material in addition to a refrigeration system.
    Refrigerator means a cabinet, used with one or more doors, that has 
a source of refrigeration that requires single-phase, alternating 
current electric energy input only and is capable of maintaining 
compartment temperatures above 32 [deg]F (0 [deg]C) and below 39 [deg]F 
(3.9 [deg]C) as determined according to Sec.  429.14(d)(2) of this 
chapter. A refrigerator may include a compartment capable of maintaining 
compartment temperatures below 32 [deg]F (0 [deg]C), but does not 
provide a separate low temperature compartment capable of maintaining 
compartment temperatures below8 [deg]F (-13.3 [deg]C) as determined 
according to Sec.  429.14(d)(2). However, the term does not include:
    (1) Any product that does not include a compressor and condenser 
unit as an integral part of the cabinet assembly;
    (2) A cooler; or
    (3) Any miscellaneous refrigeration product that must comply with an 
applicable miscellaneous refrigeration product energy conservation 
standard.
    Refrigerator-freezer means a cabinet, used with one or more doors, 
that has a source of refrigeration that requires single-phase, 
alternating current electric energy input only and consists of two or 
more compartments where at least one of the compartments is capable of 
maintaining compartment temperatures above 32 [deg]F (0 [deg]C) and 
below 39 [deg]F (3.9 [deg]C) as determined according to Sec.  
429.14(d)(2) of this chapter, and at least one other compartment is 
capable of maintaining compartment temperatures of 8 [deg]F (-13.3 
[deg]C) and may be adjusted by the user to a temperature of 0 [deg]F (-
17.8 [deg]C) or below as determined according to Sec.  429.14(d)(2). 
However, the term does not include:
    (1) Any product that does not include a compressor and condenser 
unit as an integral part of the cabinet assembly; or
    (2) Any miscellaneous refrigeration product that must comply with an 
applicable miscellaneous refrigeration product energy conservation 
standard.
    Replacement ballast means a ballast that--
    (1) Is designed for use to replace an existing fluorescent lamp 
ballast in a previously installed luminaire;
    (2) Is marked ``FOR REPLACEMENT USE ONLY'';
    (3) Is shipped by the manufacturer in packages containing not more 
than 10 fluorescent lamp ballasts; and
    (4) Has output leads that when fully extended are a total length 
that is less than the length of the lamp with which the ballast is 
intended to be operated.
    Residential straight-shaped lamp means a low pressure mercury 
electric-discharge source in which a fluorescing coating transforms some 
of the ultraviolet energy generated by the mercury

[[Page 295]]

discharge into light, including a straight-shaped fluorescent lamp with 
medium bi-pin bases of nominal overall length of 48 inches and is either 
designed exclusively for residential applications; or designed primarily 
and marketed exclusively for residential applications.
    (1) A lamp is designed exclusively for residential applications if 
it will not function for more than 100 hours with a commercial high-
power-factor ballast.
    (2) A lamp is designed primarily and marketed exclusively for 
residential applications if it:
    (i) Is permanently and clearly marked as being for residential use 
only;
    (ii) Has a life of 6,000 hours or less when used with a commercial 
high-power-factor ballast;
    (iii) Is not labeled or represented as a replacement for a 
fluorescent lamp that is a covered product; and
    (iv) Is marketed and distributed in a manner designed to minimize 
use of the lamp with commercial high-power-factor ballasts.
    (3) A manufacturer may market and distribute a lamp in a manner 
designed to minimize use of the lamp with commercial high-power-factor 
ballasts by:
    (i) Packaging and labeling the lamp in a manner that clearly 
indicates the lamp is for residential use only and includes appropriate 
instructions concerning proper and improper use; if the lamp is included 
in a catalog or price list that also includes commercial/industrial 
lamps, listing the lamp in a separate residential section accompanied by 
notes about proper use on the same page; and providing as part of any 
express warranty accompanying the lamp that improper use voids such 
warranty; or
    (ii) Using other comparably effective measures to minimize use with 
commercial high-power-factor ballasts.
    Room air conditioner means a consumer product, other than a 
``packaged terminal air conditioner,'' which is powered by a single 
phase electric current and which is an encased assembly designed as a 
unit for mounting in a window or through the wall for the purpose of 
providing delivery of conditioned air to an enclosed space. It includes 
a prime source of refrigeration and may include a means for ventilating 
and heating.
    Rough or vibration service incandescent reflector lamp means a 
reflector lamp: in which a C-11 (5 support), C-17 (8 support), or C-22 
(16 support) filament is mounted (the number of support excludes lead 
wires); in which the filament configuration is as shown in Chapter 6 of 
the 1993 Illuminating Engineering Society of North America Lighting 
Handbook, 8th Edition (see 10 CFR 430.22); and that is designated and 
marketed specifically for rough or vibration service applications.
    Rough service lamp means a lamp that--
    (1) Has a minimum of 5 supports with filament configurations that 
are C-7A, C-11, C-17, and C-22 as listed in Figure 6-12 of the IESNA 
Lighting Handbook (incorporated by reference; see Sec.  430.3), or 
similar configurations where lead wires are not counted as supports; and
    (2) Is designated and marketed specifically for `rough service' 
applications, with
    (i) The designation appearing on the lamp packaging; and
    (ii) Marketing materials that identify the lamp as being for rough 
service.
    S-video means a video display interface that transmits analog video 
over two channels: luma and chroma as defined by IEC 60933-5 Ed. 1.0 
(incorporated by reference; see Sec.  430.3).
    Secretary means the Secretary of the Department of Energy.
    Security or life safety alarm or surveillance system means:
    (1) Equipment designed and marketed to perform any of the following 
functions (on a continuous basis):
    (i) Monitor, detect, record, or provide notification of intrusion or 
access to real property or physical assets or notification of threats to 
life safety.
    (ii) Deter or control access to real property or physical assets, or 
prevent the unauthorized removal of physical assets.
    (iii) Monitor, detect, record, or provide notification of fire, gas, 
smoke, flooding, or other physical threats to real property, physical 
assets, or life safety.
    (2) This term does not include any product with a principal function 
other

[[Page 296]]

than life safety, security, or surveillance that:
    (i) Is designed and marketed with a built-in alarm or theft-
deterrent feature; or
    (ii) Does not operate necessarily and continuously in active mode.
    Semi-automatic clothes washer means a class of clothes washer that 
is the same as an automatic clothes washer except that user intervention 
is required to regulate the water temperature by adjusting the external 
water faucet valves.
    Shatter-resistant lamp, shatter-proof lamp, or shatter-protected 
lamp means a lamp that--
    (1) Has a coating or equivalent technology that is compliant with 
NSF/ANSI 51 (incorporated by reference; see Sec.  430.3) and is designed 
to contain the glass if the glass envelope of the lamp is broken; and
    (2) Is designated and marketed for the intended application, with
    (i) The designation on the lamp packaging; and
    (ii) Marketing materials that identify the lamp as being shatter-
resistant, shatter-proof, or shatter-protected.
    Showerhead means a component or set of components distributed in 
commerce for attachment to a single supply fitting, for spraying water 
onto a bather, typically from an overhead position, excluding safety 
shower showerheads.
    Single-duct portable air conditioner means a portable air 
conditioner that draws all of the condenser inlet air from the 
conditioned space without the means of a duct, and discharges the 
condenser outlet air outside the conditioned space through a single duct 
attached to an adjustable window bracket.
    Small-duct high-velocity (SDHV) electric furnace means an electric 
furnace that:
    (1) Is designed for, and produces, at least 1.2 inches of external 
static pressure when operated at the certified air volume rate of 220-
350 CFM per rated ton of cooling in the highest default cooling airflow-
control setting; and
    (2) When applied in the field, uses high velocity room outlets 
generally greater than 1,000 fpm that have less than 6.0 square inches 
of free area.
    Small-duct high-velocity (SDHV) modular blower means a modular 
blower that:
    (1) Is designed for, and produces, at least 1.2 inches of external 
static pressure when operated at the certified air volume rate of 220-
350 CFM per rated ton of cooling in the highest default cooling airflow-
controls setting; and
    (2) When applied in the field, uses high velocity room outlets 
generally greater than 1,000 fpm that have less than 6.0 square inches 
of free area.
    Space constrained product means a central air conditioner or heat 
pump:
    (1) That has rated cooling capacities no greater than 30,000 BTU/hr;
    (2) That has an outdoor or indoor unit having at least two overall 
exterior dimensions or an overall displacement that:
    (i) Is substantially smaller than those of other units that are:
    (A) Currently usually installed in site-built single family homes; 
and
    (B) Of a similar cooling, and, if a heat pump, heating capacity; and
    (ii) If increased, would certainly result in a considerable increase 
in the usual cost of installation or would certainly result in a 
significant loss in the utility of the product to the consumer; and
    (3) Of a product type that was available for purchase in the United 
States as of December 1, 2000.
    Specialty application mercury vapor lamp ballast means a mercury 
vapor lamp ballast that--
    (1) Is designed and marketed for operation of mercury vapor lamps 
used in quality inspection, industrial processing, or scientific use, 
including fluorescent microscopy and ultraviolet curing; and
    (2) In the case of a specialty application mercury vapor lamp 
ballast, the label of which--
    (i) Provides that the specialty application mercury vapor lamp 
ballast is `For specialty applications only, not for general 
illumination'; and
    (ii) Specifies the specific applications for which the ballast is 
designed.
    Standby mode means the condition in which an energy-using product--

[[Page 297]]

    (1) Is connected to a main power source; and
    (2) Offers one or more of the following user-oriented or protective 
functions:
    (i) To facilitate the activation or deactivation of other functions 
(including active mode) by remote switch (including remote control), 
internal sensor, or timer; or
    (ii) Continuous functions, including information or status displays 
(including clocks) or sensor-based functions.
    State means a State, the District of Columbia, Puerto Rico, or any 
territory or possession of the United States.
    State regulation means a law or regulation of a State or political 
subdivision thereof.
    Supplementary heater means a heating device that provides heat to a 
space in addition to that which is supplied by a primary heater. 
Supplementary heaters include portable electric heaters.
    Surface unit means either a heating unit mounted in a cooking top, 
or a heating source and its associated heated area of the cooking top, 
on which vessels are placed for the cooking or heating of food.
    Television set or TV means a product designed to produce dynamic 
video, contains an internal TV tuner encased within the product housing, 
and that is capable of receiving dynamic visual content from wired or 
wireless sources including but not limited to:
    (1) Broadcast and similar services for terrestrial, cable, 
satellite, and/or broadband transmission of analog and/or digital 
signals; and/or
    (2) Display-specific data connections, such as HDMI, Component 
video, S-video, Composite video; and/or
    (3) Media storage devices such as a USB flash drive, memory card, or 
a DVD; and/or
    (4) Network connections, usually using Internet Protocol, typically 
carried over Ethernet or Wi-Fi.
    Through-the-wall central air conditioner means a central air 
conditioner that is designed to be installed totally or partially within 
a fixed-size opening in an exterior wall, and:
    (1) Is not weatherized;
    (2) Is clearly and permanently marked for installation only through 
an exterior wall;
    (3) Has a rated cooling capacity no greater than 30,000 Btu/hr;
    (4) Exchanges all of its outdoor air across a single surface of the 
equipment cabinet; and
    (5) Has a combined outdoor air exchange area of less than 800 square 
inches (split systems) or less than 1,210 square inches (single packaged 
systems) as measured on the surface described in paragraph (4) of this 
definition.
    Through-the-wall central air conditioning heat pump means a heat 
pump that is designed to be installed totally or partially within a 
fixed-size opening in an exterior wall, and:
    (1) Is not weatherized;
    (2) Is clearly and permanently marked for installation only through 
an exterior wall;
    (3) Has a rated cooling capacity no greater than 30,000 Btu/hr;
    (4) Exchanges all of its outdoor air across a single surface of the 
equipment cabinet; and
    (5) Has a combined outdoor air exchange area of less than 800 square 
inches (split systems) or less than 1,210 square inches (single packaged 
systems) as measured on the surface described in paragraph (4) of this 
definition.
    Torchiere means a portable electric lamp with a reflector bowl that 
directs light upward to give indirect illumination.
    Unvented gas heater means an unvented, self-contained, free-
standing, nonrecessed gas-burning appliance which furnishes warm air by 
gravity or fan circulation.
    Unvented home heating equipment means a class of home heating 
equipment, not including furnaces, used for the purpose of furnishing 
heat to a space proximate to such heater directly from the heater and 
without duct connections and includes electric heaters and unvented gas 
and oil heaters.
    Unvented oil heater means an unvented, self-contained, free-
standing, nonrecessed oil-burning appliance which furnishes warm air by 
gravity or fan circulation.
    Urinal means a plumbing fixture which receives only liquid body 
waste and, on demand, conveys the waste

[[Page 298]]

through a trap seal into a gravity drainage system, except such term 
does not include fixtures designed for installations in prisons.
    Vented floor furnace means a self-contained vented heater suspended 
from the floor of the space being heated, taking air for combustion from 
outside this space. The vented floor furnace supplies heated air 
circulated by gravity or by a fan directly into the space to be heated 
through openings in the casing.
    Vented home heating equipment or vented heater means a class of home 
heating equipment, not including furnaces, designed to furnish warmed 
air to the living space of a residence, directly from the device, 
without duct connections (except that boots not to exceed 10 inches 
beyond the casing may be permitted) and includes: vented wall furnace, 
vented floor furnace, and vented room heater.
    Vented room heater means a self-contained, free standing, 
nonrecessed, vented heater for furnishing warmed air to the space in 
which it is installed. The vented room heater supplies heated air 
circulated by gravity or by a fan directly into the space to be heated 
through openings in the casing.
    Vented wall furnace means a self-contained vented heater complete 
with grilles or the equivalent, designed for incorporation in, or 
permanent attachment to, a wall of a residence and furnishing heated air 
circulated by gravity or by a fan directly into the space to be heated 
through openings in the casing.
    Vibration service lamp means a lamp that--
    (1) Has filament configurations that are C-5, C-7A, or C-9, as 
listed in Figure 6-12 of the IESNA Lighting Handbook (incorporated by 
reference; see Sec.  430.3) or similar configurations;
    (2) Has a maximum wattage of 60 watts;
    (3) Is sold at retail in packages of 2 lamps or less; and
    (4) Is designated and marketed specifically for vibration service or 
vibration-resistant applications, with--
    (i) The designation appearing on the lamp packaging; and
    (ii) Marketing materials that identify the lamp as being vibration 
service only.
    Voltage range means a band of operating voltages as marked on an 
incandescent lamp, indicating that the lamp is designed to operate at 
any voltage within the band.
    Wall electric heater means an electric heater (excluding baseboard 
electric heaters) which is intended to be recessed in or surface mounted 
on walls, which transfers heat by radiation and/or convection (either 
natural or forced) and which includes forced convectors, natural 
convectors, radiant heaters, high wall or valance heaters.
    Water closet means a plumbing fixture that has a water-containing 
receptor which receives liquid and solid body waste, and upon actuation, 
conveys the waste through an exposed integral trap seal into a gravity 
drainage system, except such term does not include fixtures designed for 
installation in prisons.
    Water heater means a product which utilizes oil, gas, or electricity 
to heat potable water for use outside the heater upon demand, 
including--
    (1) Storage type units which heat and store water at a 
thermostatically controlled temperature, including gas storage water 
heaters with an input of 75,000 Btu per hour or less, oil storage water 
heaters with an input of 105,000 Btu per hour or less, and electric 
storage water heaters with an input of 12 kilowatts or less;
    (2) Instantaneous type units which heat water but contain no more 
than one gallon of water per 4,000 Btu per hour of input, including gas 
instantaneous water heaters with an input of 200,000 Btu per hour or 
less, oil instantaneous water heaters with an input of 210,000 Btu per 
hour or less, and electric instantaneous water heaters with an input of 
12 kilowatts or less; and
    (3) Heat pump type units, with a maximum current rating of 24 
amperes at a voltage no greater than 250 volts, which are products 
designed to transfer thermal energy from one temperature level to a 
higher temperature level for the purpose of heating water, including all 
ancillary equipment such as fans,

[[Page 299]]

storage tanks, pumps, or controls necessary for the device to perform 
its function.
    Water use means the quantity of water flowing through a showerhead, 
faucet, water closet, or urinal at point of use, determined in 
accordance with test procedures under appendices S and T of subpart B of 
this part.
    Weatherized warm air furnace or boiler means a furnace or boiler 
designed for installation outdoors, approved for resistance to wind, 
rain, and snow, and supplied with its own venting system.
    Whole-home dehumidifier means a dehumidifier designed to be 
installed with ducting to deliver return process air to its inlet and to 
supply dehumidified process air from its outlet to one or more locations 
in the dehumidified space.

[42 FR 27898, June 1, 1977]

    Editorial Note: For Federal Register citations affecting Sec.  
430.2, see the List of CFR Sections Affected, which appears in the 
Finding Aids section of the printed volume and at www.govinfo.gov.

    Effective Date Note: At 85 FR 81359, Dec. 16, 2020, Sec.  430.2 was 
amended by adding, in alphabetical order, definitions for ``Body spray'' 
and ``Safety shower showerhead,'' and revising the definition of 
``Showerhead,'' effective Jan. 15, 2021. For the convenience of the 
user, the added and revised text is set forth as follows:



Sec.  430.2  Definitions.

                                * * * * *

    Body spray means a shower device for spraying water onto a bather 
from other than the overhead position. A body spray is not a showerhead.

                                * * * * *

    Safety shower showerhead means a showerhead designed to meet the 
requirements of ISEA Z358.1 (incorporated by reference, see Sec.  
430.3).

                                * * * * *

    Showerhead means any showerhead (including a handheld showerhead) 
other than a safety showerhead. DOE interprets the term ``showerhead'' 
to mean an accessory to a supply fitting for spraying water onto a 
bather, typically from an overhead position.

                                * * * * *



Sec.  430.3  Materials incorporated by reference.

    (a) General. We incorporate by reference the following standards 
into this part. The material listed has been approved for incorporation 
by reference by the Director of the Federal Register in accordance with 
5 U.S.C. 552(a) and 1 CFR part 51. To enforce any edition other than 
that specified in this section, the Department of Energy must publish a 
document in the Federal Register and the material must be available to 
the public. All approved material is available for inspection at U.S. 
Department of Energy, Office of Energy Efficiency and Renewable Energy, 
Building Technologies Program, 6th Floor, 950 L'Enfant Plaza, SW, 
Washington, DC 20024, (202) 586-2945, or go to: www1.eere.energy.gov/
buildings/appliance__standards/. Standards can be obtained from the 
sources listed in this section. Material is also available for 
inspection at the National Archives and Records Administration (NARA). 
For information on the availability of this material at NARA, email 
[email protected], or go to: www.archives.gov/federal-register/cfr/
ibr-locations.html.
    (b) Air Movement and Control Association International, Inc. (AMCA), 
30 West University Drive, Arlington Heights, IL 60004, (847) 394-0150, 
or by going to http://www.amca.org/store/item.aspx?ItemId=81.
    (1) ANSI/ASHRAE 51-07/ANSI/AMCA 210-07 (``ANSI/AMCA 210''), 
Laboratory Methods of Testing Fans for Certified Aerodynamic Performance 
Rating, AMCA approved July 28, 2006; IBR approved for appendix X1 to 
subpart B.
    (2) ANSI/AMCA 210-07, ANSI/ASHRAE 51-07 (``AMCA 210-2007''), 
Laboratory Methods of Testing Fans for Certified Aerodynamic Performance 
Rating, ANSI approved August 17, 2007, Section 8--Report and Results of 
Test, Section 8.2--Performance graphical representation of test results, 
IBR approved for appendices M and M1 to subpart B, as follows:
    (i) Figure 2A--Static Pressure Tap, and
    (ii) Figure 12--Outlet Chamber Setup--Multiple Nozzles in Chamber.

[[Page 300]]

    (3) ANSI/AMCA Standard 230-15 (``AMCA 230-15''), ``Laboratory 
Methods of Testing Air Circulating Fans for Rating and Certification,'' 
ANSI approved October 16, 2015, IBR approved for appendix U to this 
subpart, as follows:
    (i) Section 3--Units of Measurement;
    (ii) Section 4--Symbols and Subscripts; (including Table 1--Symbols 
and Subscripts);
    (iii) Section 5--Definitions (except 5.1);
    (iv) Section 6--Instruments and Section Methods of Measurement;
    (v) Section 7--Equipment and Setups (except the last 2 bulleted 
items in 7.1--Allowable test setups);
    (vi) Section 8--Observations and Conduct of Test;
    (vii) Section 9--Calculations (except 9.5); and
    (viii) Test Figure 1--Vertical Airflow Setup with Load Cell (Ceiling 
Fans).
    (c) AHRI. Air-Conditioning, Heating, and Refrigeration Institute, 
2111 Wilson Blvd, Suite 500, Arlington, VA 22201, 703-524-8800, or go to 
http://www.ahrinet.org.
    (1) ANSI/AHRI 210/240-2008 with Addenda 1 and 2 (''AHRI 210/240-
2008''), 2008 Standard for Performance Rating of Unitary Air-
Conditioning & Air-Source Heat Pump Equipment, ANSI approved October 27, 
2011 (Addendum 1 dated June 2011 and Addendum 2 dated March 2012), IBR 
approved for appendices M and M1 to subpart B, as follows:
    (i) Section 6--Rating Requirements, Section 6.1--Standard Ratings, 
6.1.3--Standard Rating Tests, 6.1.3.2--Electrical Conditions;
    (ii) Section 6--Rating Requirements, Section 6.1--Standard Ratings, 
6.1.3--Standard Rating Tests, 6.1.3.4--Outdoor-Coil Airflow Rate;
    (iii) Section 6--Rating Requirements, Section 6.1--Standard Ratings, 
6.1.3--Standard Rating Tests, 6.1.3.5--Requirements for Separated 
Assemblies;
    (iv) Figure D1--Tunnel Air Enthalpy Test Method Arrangement;
    (v) Figure D2--Loop Air Enthalpy Test Method Arrangement; and
    (vi) Figure D4--Room Air Enthalpy Test Method Arrangement.
    (2) AHRI Standard 1160-2009 (``AHRI 1160''), Performance Rating of 
Heat Pump Pool Heaters, 2009, IBR approved for appendix P to subpart B.
    (3) ANSI/AHRI 1230-2010 with Addendum 2 (``AHRI 1230-2010''), 2010 
Standard for Performance Rating of Variable Refrigerant Flow (VRF) 
Multi-Split Air-Conditioning and Heat Pump Equipment (including Addendum 
1 dated March 2011), ANSI approved August 2, 2010 (Addendum 2 dated June 
2014), IBR approved for appendices M and M1 to subpart B, as follows:
    (i) Section 3--Definitions (except 3.8, 3.9, 3.13, 3.14, 3.15, 3.16, 
3.23, 3.24, 3.26, 3.27, 3.28, 3.29, 3.30, and 3.31);
    (ii) Section 5--Test Requirements, Section 5.1 (untitled), 5.1.3-
5.1.4;
    (ii) Section 6--Rating Requirements, Section 6.1--Standard Ratings, 
6.1.5--Airflow Requirements for Systems with Capacities <65,000 Btu/h 
[19,000 W];
    (iii) Section 6--Rating Requirements, Section 6.1--Standard Ratings, 
6.1.6--Outdoor-Coil Airflow Rate (Applies to all Air-to-Air Systems);
    (iv) Section 6--Rating Requirements, Section 6.2--Conditions for 
Standard Rating Test for Air-cooled Systems < 65,000 Btu/h [19,000W] 
(except Table 8); and
    (v) Table 4--Refrigerant Line Length Correction Factors.
    (d) AATCC. American Association of Textile Chemists and Colorists, 
P.O. Box 12215, Research Triangle Park, NC 27709, (919) 549-3526, or go 
to www.aatcc.org.
    (1) AATCC Test Method 79-2010, Absorbency of Textiles, Revised 2010, 
IBR approved for Appendix J2 to Subpart B.
    (2) AATCC Test Method 118-2007, Oil Repellency: Hydrocarbon 
Resistance Test, Revised 2007, IBR approved for Appendix J2 to Subpart 
B.
    (3) AATCC Test Method 135-2010, Dimensional Changes of Fabrics after 
Home Laundering, Revised 2010, IBR approved for Appendix J2 to Subpart 
B.
    (e) ANSI. American National Standards Institute, 25 W. 43rd Street, 
4th Floor, New York, NY 10036, 212-642-4900, or go to http://
www.ansi.org.
    (1) ANSI C78.3-1991 (``ANSI C78.3''), American National Standard for 
Fluorescent Lamps-Instant-start and Cold-Cathode Types-Dimensional and 
Electrical Characteristics, approved July 15, 1991; IBR approved for 
Sec.  430.32.

[[Page 301]]

    (2) ANSI C78.20-2003, Revision of ANSI C78.20-1995 (``ANSI 
C78.20''), American National Standard for electric lamps--A, G, PS, and 
Similar Shapes with E26 Medium Screw Bases, approved October 30, 2003; 
IBR approved for Sec.  430.2.
    (3) ANSI C78.21-1989, American National Standard for Electric 
Lamps--PAR and R Shapes, approved March 3, 1989, IBR approved for Sec.  
430.2.
    (4) ANSI C78.21-2003, Revision of ANSI C78.21-1995 with all 
supplements, American National Standard for Electric Lamps--PAR and R 
Shapes, approved October 30, 2003, IBR approved for Sec.  430.2.
    (5) ANSI_ANSLG C78.81-2010, (``ANSI C78.81''), American National 
Standard for Electric Lamps--Double-Capped Fluorescent Lamps-- 
Dimensional and Electrical Characteristics, approved January 14, 2010, 
IBR approved for Sec. Sec.  430.2 and 430.32 and appendix R to subpart 
B.
    (6) ANSI C78.81-2016, (``ANSI C78.81-2016''), American National 
Standard for Electric Lamps--Double-Capped Fluorescent Lamps--
Dimensional and Electrical Characteristics, approved June 29, 2016, IBR 
approved for appendix Q to subpart B.
    (7) ANSI C78.375-1997, Revision of ANSI C78.375-1991 (``ANSI 
C78.375''), American National Standard for Fluorescent Lamps--Guide for 
Electrical Measurements, first edition, approved September 25, 1997; IBR 
approved for appendix R to subpart B.
    (8) ANSI C78.375A-2014, (``ANSI C78.375A''), American National 
Standard for Electric Lamps--Fluorescent Lamps--Guide for Electrical 
Measures, approved August 28, 2014, IBR approved for appendix Q to 
subpart B.
    (9) ANSI_IEC C78.901-2005, Revision of ANSI C78.901-2001 (``ANSI 
C78.901''), American National Standard for Electric Lamps--Single-Based 
Fluorescent Lamps--Dimensional and Electrical Characteristics, approved 
March 23, 2005; IBR approved for Sec.  430.2 and appendix R to subpart 
B.
    (10) ANSI C78.901-2014, American National Standard for Electric 
Lamps--Single-Based Fluorescent Lamps--Dimensional and Electrical 
Characteristics, ANSI approved July 2, 2014; IBR approved for appendix W 
to subpart B.
    (11) ANSI/NEMA C78.901-2016 (``ANSI C78.901-2016''), American 
National Standard for Electric Lamps--Single-Based Fluorescent Lamps--
Dimensional and Electrical Characteristics, ANSI approved August 23, 
2016, IBR approved for appendix Q to subpart B.
    (12) ANSI C79.1-1994, American National Standard for Nomenclature 
for Glass Bulbs--Intended for Use with Electric Lamps, approved March 
24, 1994, IBR approved for Sec.  430.2.
    (13) ANSI C79.1-2002, American National Standard for Electric 
Lamps--Nomenclature for Glass Bulbs Intended for Use with Electric 
Lamps, approved September 16, 2002, IBR approved for Sec.  430.2.
    (14) ANSI_ANSLG_ C81.61-2006, Revision of ANSI C81.61-2005, (``ANSI 
C81.61''), American National Standard for electrical lamp bases--
Specifications for Bases (Caps) for Electric Lamps, approved August 25, 
2006, IBR approved for Sec.  430.2.
    (15) ANSI C82.1-2004 (R2008, R2015), (``ANSI C82.1''), American 
National Standard for Lamp Ballasts--Line Frequency Fluorescent Lamp 
Ballasts, approved November 20, 2015; IBR approved for appendix Q to 
subpart B.
    (16) ANSI C82.2-2002 (R2007, R2016), (``ANSI C82.2''), American 
National Standard for Lamp Ballasts--Method of Measurement of 
Fluorescent Lamp Ballasts, approved July 12, 2016, IBR approved for 
appendix Q to subpart B.
    (17) ANSI C82.3-2002, Revision of ANSI C82.3-1983 (R 1995) (``ANSI 
C82.3''), American National Standard for Reference Ballasts for 
Fluorescent Lamps, approved September 4, 2002; IBR approved for appendix 
R to subpart B.
    (18) ANSI C82.3-2016, (``ANSI C82.3''), American National Standard 
for Reference Ballasts for Fluorescent Lamps, approved April 8, 2016; 
IBR approved for appendix Q to subpart B.
    (19) ANSI/NEMA C82.11-2017, (``ANSI C82.11''), American National 
Standard for Lamp Ballasts--High-Frequency Fluorescent Lamp Ballasts, 
approved January 23, 2017; IBR approved for appendix Q to subpart B.
    (20) ANSI C82.13-2002 (``ANSI C82.13''), American National Standard 
for Lamp Ballasts--Definitions for Fluorescent Lamps and Ballasts, 
approved July 23,

[[Page 302]]

2002; IBR approved for appendix Q to subpart B.
    (21) ANSI C82.77-2002, (``ANSI C82.77'') Harmonic Emission Limits--
Related Power Quality Requirements for Lighting Equipment, approved 
January 17, 2002; IBR approved for appendix Q to subpart B.
    (22) ANSI/NEMA WD 6-2016, Wiring Devices--Dimensional 
Specifications, ANSI approved February 11, 2016, IBR approved for 
Appendix Y to subpart B; as follows:
    (i) Figure 1-15--Plug and Receptacle; and
    (ii) Figure 5-15--Plug and Receptacle.
    (23) ANSI Z21.56-2006, section 2.10 (``ANSI Z21.56''), Standard for 
Gas-Fired Pool Heaters, approved December 13, 2005, IBR approved for 
appendix P to subpart B.
    (24) ANSI Z21.50-2007 (CSA 2.22-2007), (``ANSI Z21.50''), Vented Gas 
Fireplaces, Fifth Edition, Approved February 22, 2007, IBR approved for 
Sec.  430.2.
    (25) ANSI Z21.86-2008, (``ANSI Z21.86''), Vented Gas-Fired Space 
Heating Appliances, Fifth Edition, approved March 28, 2008, IBR approved 
for appendix O to subpart B.
    (26) ANSI Z21.88-2009 (CSA 2.33-2009), (``ANSI Z21.88''), Vented Gas 
Fireplace Heaters, Fifth Edition, Approved March 26, 2009, IBR approved 
for Sec.  430.2.

    Note 1 to paragraph (e): The standards referenced in paragraphs 
(e)(6), (8), (11), (15), (16), (18), (19), and (21) of this section were 
all published by National Electrical Manufacturers Association (NEMA) 
and are also available from National Electrical Manufacturers 
Association, 1300 North 17th Street, Suite 900, Rosslyn, Virginia 22209, 
https://www.nema.org/Standards/Pages/default.aspx.

    (f) AS/NZS. Australian/New Zealand Standard, GPO Box 476, Sydney NSW 
2001, (02) 9237-6000 or (12) 0065-4646, or go to www.standards.org.au/
Standards New Zealand, Level 10 Radio New Zealand House 144 The Terrace 
Wellington 6001 (Private Bag 2439 Wellington 6020), (04) 498-5990 or 
(04) 498-5991, or go to www.standards.co.nz.
    (1) AS/NZS 4474.1:2007, Performance of Household Electrical 
Appliances--Refrigerating Appliances; Part 1: Energy Consumption and 
Performance, Second edition, published August 15, 2007, IBR approved for 
Appendix A to Subpart B.
    (2) [Reserved]
    (g) ASHRAE. American Society of Heating, Refrigerating and Air-
Conditioning Engineers, Inc., Publication Sales, 1791 Tullie Circle, 
NE., Atlanta, GA 30329, 800-527-4723 or 404-636-8400, or go to http://
www.ashrae.org.
    (1) ANSI/ASHRAE Standard 16-1983 (``ANSI/ASHRAE 16'') (RA 2009), 
(Reaffirmation of ANSI/ASHRAE Standard 16-1983 [RA 1999]), Method of 
Testing for Rating Room Air Conditioners and Packaged Terminal Air 
Conditioners, ASHRAE approved October 18, 1988, and reaffirmed June 20, 
2009. ANSI approved October 20, 1998 and reaffirmed June 25, 2009. IBR 
approved for appendix F to subpart B.
    (2) ANSI/ASHRAE 23.1-2010, (``ASHRAE 23.1-2010''), Methods of 
Testing for Rating the Performance of Positive Displacement Refrigerant 
Compressors and Condensing Units that Operate at Subcritical 
Temperatures of the Refrigerant, ANSI approved January 28, 2010, IBR 
approved for appendices M and M1 to subpart B, as follows:
    (i) Section 5--Requirements;
    (ii) Section 6--Instruments;
    (iii) Section 7--Methods of Testing; and
    (iv) Section 8--Compressor Testing.
    (3) ANSI/ASHRAE Standard 37-2009, (``ASHRAE 37-2009''), Methods of 
Testing for Rating Electrically Driven Unitary Air-Conditioning and Heat 
Pump Equipment, ANSI approved June 25, 2009, IBR approved for appendices 
AA and CC to subpart B.
    (4) ANSI/ASHRAE Standard 37-2009, (``ANSI/ASHRAE 37-2009''), Methods 
of Testing for Rating Electrically Driven Unitary Air-Conditioning and 
Heat Pump Equipment, ANSI approved June 25, 2009, IBR approved for 
appendices M and M1 to subpart B, as follows:
    (i) Section 5--Instruments, Section 5.1--Temperature Measuring 
Instruments: 5.1.1;
    (ii) Section 5--Instruments, Section 5.2--Refrigerant, Liquid, and 
Barometric Pressure Measuring Instruments;
    (iii) Section 5--Instruments, Section 5.5--Volatile Refrigerant Flow 
Measurement;

[[Page 303]]

    (iv) Section 6--Airflow and Air Differential Pressure Measurement 
Apparatus, Section 6.1--Enthalpy Apparatus (Excluding Figure 3): 6.1.1-
6.1.2 and 6.1.4;
    (v) Section 6--Airflow and Air Differential Pressure Measurement 
Apparatus, Section 6.2--Nozzle Airflow Measuring Apparatus (Excluding 
Figure 5);
    (vi) Section 6--Airflow and Air Differential Pressure Measurement 
Apparatus, Section 6.3--Nozzles (Excluding Figure 6);
    (vii) Section 6--Airflow and Air Differential Pressure Measurement 
Apparatus, Section 6.4--External Static Pressure Measurements;
    (viii) Section 6--Airflow and Air Differential Pressure Measurement 
Apparatus, Section 6.5--Recommended Practices for Static Pressure 
Measurements;
    (ix) Section 7--Methods of Testing and Calculation, Section 7.3--
Indoor and Outdoor Air Enthalpy Methods (Excluding Table 1);
    (x) Section 7--Methods of Testing and Calculation, Section 7.4--
Compressor Calibration Method;
    (xi) Section 7--Methods of Testing and Calculation, Section 7.5--
Refrigerant Enthalpy Method;
    (xii) Section 7--Methods of Testing and Calculation, Section 7.7--
Airflow Rate Measurement, Section 7.7.2--Calculations--Nozzle Airflow 
Measuring Apparatus (Excluding Figure 10), 7.7.2.1-7.7.2.2;
    (xiii) Section 8--Test Procedures, Section 8.1--Test Room 
Requirements: 8.1.2-8.1.3;
    (xiv) Section 8--Test Procedures, Section 8.2--Equipment 
Installation;
    (xv) Section 8--Test Procedures, Section 8.6--Additional 
Requirements for the Outdoor Air Enthalpy Method, Section 8.6.2;
    (xvii) Section 8--Test Procedures, Section 8.6--Additional 
Requirements for the Outdoor Air Enthalpy Method, Table 2a--Test 
Tolerances (SI Units), and
    (xviii) Section 8--Test Procedures, Section 8.6--Additional 
Requirements for the Outdoor Air Enthalpy Method, Table 2b--Test 
Tolerances (I-P Units);
    (xix) Section 9--Data to be Recorded, Section 9.2--Test Tolerances; 
and
    (xx) Section 9--Data to be Recorded, Table 3--Data to be Recorded.
    (5) ASHRAE 41.1-1986 (Reaffirmed 2006), Standard Method for 
Temperature Measurement, approved February 18, 1987, IBR approved for 
appendices E and AA to subpart B.
    (6) ANSI/ASHRAE 41.1-2013 (``ANSI/ASHRAE 41.1''), Standard Method 
for Temperature Measurement, ANSI approved January 30, 2013; IBR 
approved for appendix X1 to subpart B.
    (7) ANSI/ASHRAE Standard 41.1-2013, (``ANSI/ASHRAE 41.1-2013''), 
Standard Method for Temperature Measurement, ANSI approved January 30, 
2013, IBR approved for appendix M to subpart B, as follows:
    (i) Section 4--Classifications;
    (ii) Section 5--Requirements, Section 5.3--Airstream Temperature 
Measurements;
    (iii) Section 6--Instruments; and
    (iv) Section 7--Temperature Test Methods (Informative).
    (8) ANSI/ASHRAE Standard 41.2-1987 (RA 1992), (``ASHRAE 41.2-1987 
(RA 1992)''), Standard Methods for Laboratory Airflow Measurement, ANSI 
reaffirmed April 20, 1992, Section 5--Section of Airflow-Measuring 
Equipment and Systems, IBR approved for appendix M to subpart B, as 
follows:
    (i) Section 5.2--Test Ducts,, Section 5.2.2--Mixers, 5.2.2.1--
Performance of Mixers (excluding Figures 11 and 12 and Table 1); and
    (ii) Figure 14--Outlet Chamber Setup for Multiple Nozzles in 
Chamber.
    (9) ANSI/ASHRAE Standard 41.6-2014, (``ASHRAE 41.6-2014''), Standard 
Method for Humidity Measurement, ANSI approved July 3, 2014, IBR 
approved for appendix M to subpart B, as follows:
    (i) Section 4--Classifications;
    (ii) Section 5--Requirements;
    (iii) Section 6--Instruments and Calibration; and
    (iv) Section 7--Humidity Measurement Methods.
    (10) ANSI/ASHRAE 41.9-2011, (``ASHRAE 41.9-2011''), Standard Methods 
for Volatile-Refrigerant Mass Flow Measurements Using Calorimeters, ANSI 
approved February 3, 2011, IBR approved for appendix M to subpart B, as 
follows:
    (i) Section 5--Requirements;
    (ii) Section 6--Instruments;

[[Page 304]]

    (iii) Section 7--Secondary Refrigerant Calorimeter Method;
    (iv) Section 8--Secondary Fluid Calorimeter Method;
    (v) Section 9--Primary Refrigerant Calorimeter Method; and
    (vi) Section 11--Lubrication Circulation Measurements.
    (11) ANSI/ASHRAE Standard 103-1993, (``ASHRAE 103-1993''), Methods 
of Testing for Annual Fuel Utilization Efficiency of Residential Central 
Furnaces and Boilers, (with Errata of October 24, 1996), except for 
sections 7.1, 7.2.2.2, 7.2.2.5, 7.2.3.1, 7.8, 8.2.1.3, 8.3.3.1, 8.4.1.1, 
8.4.1.1.2, 8.4.1.2, 8.4.2.1.4, 8.4.2.1.6, 8.6.1.1, 8.7.2, 8.8.3, 
9.1.2.2.1, 9.1.2.2.2, 9.5.1.1, 9.5.1.2.1, 9.5.1.2.2, 9.5.2.1, 9.7.1, 
9.7.4, 9.7.6, 9.10, 11.5.11.1, 11.5.11.2 and appendices B and C, 
approved October 4, 1993, IBR approved for Sec.  430.23 and appendix N 
to subpart B.
    (12) ANSI/ASHRAE Standard 103-2007, (``ASHRAE 103-2007''), Method of 
Testing for Annual Fuel Utilization Efficiency of Residential Central 
Furnaces and Boilers, ANSI approved March 25, 2008, IBR approved for 
appendices O and AA to subpart B.
    (13) ANSI/ASHRAE Standard 116-2010, (``ASHRAE 116-2010''), Methods 
of Testing for Rating Seasonal Efficiency of Unitary Air Conditioners 
and Heat Pumps, ANSI approved February 24, 2010, Section 7--Methods of 
Test, Section 7.4--Air Enthalpy Method--Indoor Side (Primary Method), 
Section 7.4.3--Measurements, Section 7.4.3.4--Temperature, Section 
7.4.3.4.5, IBR approved for appendices M and M1 to subpart B.
    (14) ANSI/ASHRAE Standard 146-2011 (``ASHRAE 146''), Method of 
Testing and Rating Pool Heaters, ASHRAE approved February 2, 2011, IBR 
approved for appendix P to subpart B.
    (h) ASME. American Society of Mechanical Engineers, Service Center, 
22 Law Drive, P.O. Box 2900, Fairfield, NJ 07007, 973-882-1170, or go to 
http://www.asme.org.
    (1) ASME A112.18.1-2012, (``ASME A112.18.1-2012''), ``Plumbing 
supply fittings,'' section 5.4, approved December, 2012, IBR approved 
for appendix S to subpart B.
    (2) ASME A112.19.2-2008, (``ASME A112.19.2-2008''), ``Ceramic 
plumbing fixtures,'' sections 7.1, 7.1.1, 7.1.2, 7.1.3, 7.1.4, 7.1.5, 
7.4, 8.2, 8.2.1, 8.2.2, 8.2.3, 8.6, Table 5, and Table 6 approved August 
2008, including Update No. 1, dated August 2009, and Update No. 2, dated 
March 2011, IBR approved for Sec.  430.2 and appendix T to subpart B.
    (i) AHAM. Association of Home Appliance Manufacturers, 1111 19th 
Street NW, Suite 402, Washington, DC 20036, 202-872-5955, or go to 
http://www.aham.org.
    (1) ANSI/AHAM DH-1-2008 (``ANSI/AHAM DH-1''), Dehumidifiers, ANSI 
approved May 9, 2008, IBR approved for appendices X and X1 to subpart B 
of this part.
    (2) ANSI/AHAM DW-1-2010, Household Electric Dishwashers, (ANSI 
approved September 18, 2010), IBR approved for Sec.  430.32 and appendix 
C1 to subpart B of this part.
    (3) AHAM HLD-1-2009 (``AHAM HLD-1''), Household Tumble Type Clothes 
Dryers, (2009), IBR approved for appendices D1 and D2 to subpart B of 
this part.
    (4) AHAM HRF-1-2008, (``HRF-1-2008''), Association of Home Appliance 
Manufacturers, Energy and Internal Volume of Refrigerating Appliances 
(2008), including Errata to Energy and Internal Volume of Refrigerating 
Appliances, Correction Sheet issued November 17, 2009, IBR approved for 
appendices A and B to subpart B of this part.
    (5) ANSI/AHAM PAC-1-2015, (``ANSI/AHAM PAC-1-2015''), Portable Air 
Conditioners, June 19, 2015, IBR approved for appendix CC to subpart B 
of this part.
    (6) ANSI/AHAM RAC-1-2008 (``ANSI/AHAM RAC-1''), Room Air 
Conditioners, (2008; ANSI approved July 7, 2008), IBR approved for 
appendix F to subpart B of this part.
    (j) ASTM. American Society for Testing and Materials International, 
100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959 
(www.astm.org)
    (1) ASTM D2156-09, (``ASTM D2156''), Standard Test Method for Smoke 
Density in Flue Gases from Burning Distillate Fuels, ASTM approved 
December 1, 2009, IBR approved for appendices E and O to subpart B.
    (2) ASTM D2156-09 (Reapproved 2013) (``ASTM D2156R13''), Standard 
Test

[[Page 305]]

Method for Smoke Density in Flue Gases from Burning Distillate Fuels, 
approved October 1, 2013, IBR approved for appendix N to subpart B.
    (k) CEA. Consumer Electronics Association, Technology & Standards 
Department, 1919 S. Eads Street, Arlington, VA 22202, 703-907-7600, or 
go to www.CE.org.
    (1) CEA Standard, CEA-770.3-D, High Definition TV Analog Component 
Video Interface, published February 2008; IBR approved for Sec.  430.2.
    (2) [Reserved]
    (l) CIE. Commission Internationale de l'Eclairage (CIE), Central 
Bureau, Kegelgasse 27, A-1030, Vienna, Austria, 011 + 43 1 714 31 87 0, 
or go to http://www.cie.co.at.
    (1) CIE 13.3-1995 (``CIE 13.3''), Technical Report: Method of 
Measuring and Specifying Colour Rendering Properties of Light Sources, 
1995, ISBN 3 900 734 57 7; IBR approved for Sec.  430.2 and appendices R 
and W to subpart B.
    (2) CIE 15:2004 (``CIE 15''), Technical Report: Colorimetry, 3rd 
edition, 2004, ISBN 978 3 901906 33 6; IBR approved for appendices R and 
W to subpart B.
    (m) Environmental Protection Agency (EPA), ENERGY STAR documents 
published by the Environmental Protection Agency are available online at 
http://www.energystar.gov or by contacting the Energy Star hotline at 1-
888-782-7937.
    (1) ENERGY STAR Testing Facility Guidance Manual: Building a Testing 
Facility and Performing the Solid State Test Method for ENERGY STAR 
Qualified Ceiling Fans, Version 1.1, approved December 9, 2002, IBR 
approved for appendix U to subpart B.
    (2) ENERGY STAR Program Requirements for Dehumidifiers, approved 
January 1, 2001, IBR approved for appendix X to subpart B.
    (3) Energy Star Program Requirements for Single Voltage External Ac-
Dc and Ac-Ac Power Supplies, Eligibility Criteria (Version 2.0), 
effective date for EPS Manufacturers November 1, 2008, IBR approved for 
subpart C, Sec.  430.32.
    (4) Test Methodology for Determining the Energy Performance of 
Battery Charging Systems, approved December 2005, IBR approved for 
appendix Y to subpart B.
    (n) HDMI[supreg]. High-Definition Multimedia Interface Licensing, 
LLC, 1140 East Arques Avenue, Suite 100, Sunnyvale, CA 94085, 408-616-
1542, or go to www.hdmi.org.
    (1) HDMI Specification Informational Version 1.0, High-Definition 
Multimedia Interface Specification, published September 4, 2003; IBR 
approved for Sec.  430.2.
    (2) [Reserved]
    (o) IEC. International Electrotechnical Commission, available from 
the American National Standards Institute, 25 W. 43rd Street, 4th Floor, 
New York, NY 10036, (212) 642-4900, or go to http://webstore.ansi.org.
    (1) IEC Standard 933-5:1992, (``IEC 60933-5 Ed. 1.0''), Audio, video 
and audiovisual systems--Interconnections and matching values--Part 5: 
Y/C connector for video systems--Electrical matching values and 
description of the connector, First Edition, 1992-12; IBR approved for 
Sec.  430.2. (Note: IEC 933-5 is also known as IEC 60933-5.)
    (2) IEC 60081:1997/AMD6, (``IEC 60081''), Double-capped fluorescent 
lamps--Performance specifications (Amendment 6, Edition 5.0, August 
2017); IBR approved for appendix Q to subpart B.
    (3) IEC Standard 62040-3 Ed. 2.0, (``IEC 62040-3 Ed. 2.0''), 
Uninterruptible power systems (UPS)--Part 3: Method of specifying the 
performance and test requirements, Edition 2.0, 2011-03, IBR approved 
for appendix Y to subpart B, as follows:
    (i) Section 5, Electrical conditions, performance and declared 
values, Section 5.2, UPS input specification, Section 5.2.1--Conditions 
for normal mode of operation;
    (ii) Clause 5.2.2.k;
    (iii) Section 5.3, UPS output specification, Section 5.3.2, 
Characteristics to be declared by the manufacturer, Clause 5.3.2.d;
    (iv) Clause 5.3.2.e;
    (v) Section 5.3.4--Performance classification;
    (vi) Section 6.2, Routine test procedure, Section 6.2.2.7--AC input 
failure;
    (vii) Section 6.4, Type test procedure (electrical), Section 6.4.1--
Input--a.c. supply compatibility (excluding 6.4.1.3, 6.4.1.4, 6.4.1.5, 
6.4.1.6, 6.4.1.7, 6.4.1.8, 6.4.1.9 and 6.4.1.10);

[[Page 306]]

    (viii) Annex G--Input mains failure--Test method
    (ix) Annex J--UPS Efficiency--Methods of measurement.
    (4) IEC Standard 62087:2011, (``IEC 62087 Ed. 3.0''), Methods of 
measurement for the power consumption of audio, video, and related 
equipment, Edition 3.0, 2011-04, Sections 3.1.1, 3.1.18, 11.4.1, 11.4.2, 
11.4.5, 11.4.6, 11.4.8, 11.4.9, 11.4.10, 11.4.11, 11.5.5, and annexc.3; 
IBR approved for Appendix H to subpart B of this part.
    (5) International Electrotechnical Commission (IEC) Standard 62301 
(``IEC 62301''), Household electrical appliances--Measurement of standby 
power (first edition, June 2005), IBR approved for appendix F, and 
appendix I to subpart B.
    (6) IEC 62301 (``IEC 62301''), Household electrical appliances--
Measurement of standby power, (Edition 2.0, 2011-01), IBR approved for 
appendices C1, D1, D2, G, H, I, J2, N, O, P, Q, X, X1, Y, Z, BB, and CC 
to subpart B.
    (7) IEC 62301, (``IEC 62301-DD''), Household electrical appliances--
Measurement of standby power, (Edition 2.0, 2011-01); Section 5--
Measurements, IBR approved for appendix DD to subpart B.
    (8) IEC 62301 (``IEC 62301-U''), Household electrical appliances--
Measurement of standby power, (Edition 2.0, 2011-01), IBR approved for 
appendix U to this subpart, as follows:
    (i) Section 4.3--General conditions for measurements: Power supply: 
Section 4.3.1--Supply voltage and frequency (first paragraph only),
    (ii) Section 4.3--General conditions for measurements: Power supply: 
Section 4.3.2--Supply voltage waveform;
    (iii) Section 4.4--General conditions for measurements: Power 
measuring instruments;
    (iv) Section 5.3--Measurements: Procedure: Section 5.3.1--General 
(except the last bulleted item), and
    (v) Section 5.3--Measurements: Procedure: Section 5.3.2--Sampling 
method (first two paragraphs and Note 1).
    (9) IEC 62301, (``IEC 62301-W''), Household electrical appliances--
Measurement of standby power, (Edition 2.0, 2011-01), Section 5--
Measurements, IBR approved for appendix W to subpart B.
    (p) IESNA. Illuminating Engineering Society of North America, 120 
Wall Street, Floor 17, New York, NY 10005-4001, 212-248-5000, or go to 
http://www.iesna.org.
    (1) The IESNA Lighting Handbook, Reference & Application, (``The 
IESNA Lighting Handbook''), 9th ed., Chapter 6, ``Light Sources,'' July 
2000, IBR approved for Sec.  430.2.
    (2) IES LM-9-09, (``IES LM-9''), IES Approved Method for the 
Electrical and Photometric Measurement of Fluorescent Lamps, approved 
January 31, 2009; IBR approved for Sec.  430.2 and appendices R, V, and 
V1 to subpart B.
    (3) IES LM-9-09 (``IES LM-9-09-DD''), IES Approved Method for the 
Electrical and Photometric Measurement of Fluorescent Lamps, approved 
January 31, 2009; IBR approved for appendix DD to subpart B, as follows:
    (i) Section 4.0--Ambient and Physical Conditions;
    (ii) Section 5.0--Electrical Conditions;
    (iii) Section 6.0--Lamp Test Procedures; and
    (iv) Section 7.0--Photometric Test Procedures: Section 7.5--
Integrating Sphere Measurement.
    (4) IESNA LM-16-1993 (``IESNA LM-16''), IESNA Practical Guide to 
Colorimetry of Light Sources, December 1993, IBR approved for Sec.  
430.2.
    (5) IES LM-20-1994, IESNA Approved Method for Photometric Testing of 
Reflector-Type Lamps, approved December 3, 1994, IBR approved for 
appendix R to subpart B.
    (6) IES LM-20-13, IES Approved Method for Photometry of Reflector 
Type Lamps, approved February 4, 2013; IBR approved for appendix DD to 
subpart B, as follows:
    (i) Section 4.0--Ambient and Physical Conditions;
    (ii) Section 5.0--Electrical and Photometric Test Conditions;
    (iii) Section 6.0--Lamp Test Procedures; and
    (iv) Section 8.0--Total Flux Measurements by Integrating Sphere 
Method.
    (7) IES LM-45-09, (``IES LM-45''), IES Approved Method for the 
Electrical and Photometric Measurement of General Service Incandescent 
Filament Lamps, approved December 14, 2009; IBR approved for appendix R 
to subpart B.

[[Page 307]]

    (8) IES LM-45-15, IES Approved Method for the Electrical and 
Photometric Measurement of General Service Incandescent Filament Lamps, 
approved August 8, 2015; IBR approved for appendix DD to subpart B as 
follows:
    (i) Section 4.0--Ambient and Physical Conditions;
    (ii) Section 5.0--Electrical Conditions;
    (iii) Section 6.0--Lamp Test Procedures; and
    (iv) Section 7.0--Photometric Test Procedures: Section 7.1--Total 
Luminous Flux Measurements with an Integrating Sphere.
    (9) IESNA LM-49-01 (``IESNA LM-49''), IESNA Approved Method for Life 
Testing of Incandescent Filament Lamps, approved December 1, 2001, IBR 
approved for Sec.  430.2 and appendix R to subpart B.
    (10) IES LM-54-12, IES Guide to Lamp Seasoning, approved October 22, 
2012; IBR approved for appendix W to subpart B, as follows:
    (i) Section 4--Physical/Environmental Test Conditions;
    (ii) Section 5--Electrical Test Conditions;
    (iii) Section 6--Test Procedure Requirements: Section 6.1--Test 
Preparation; and
    (iv) Section 6--Test Procedure Requirements, Section 6.2--Seasoning 
Test Procedures: Section 6.2.2.1--Discharge Lamps: Discharge Lamps 
except T5 fluorescent.
    (11) IES LM-58-1994, IESNA Guide to Spectroradiometric Measurements, 
approved December 3, 1994, IBR approved for appendix R to subpart B.
    (12) IES LM-65-14, IES Approved Method for Life Testing of Single-
Based Fluorescent Lamps, approved December 30, 2014; IBR approved for 
appendix W to subpart B, as follows:
    (i) Section 4.0--Ambient and Physical Conditions;
    (ii) Section 5.0--Electrical Conditions; and
    (iii) Section 6.0--Lamp Test Procedures
    (13) IES LM-66-14, (``IES LM-66-14''), IES Approved Method for the 
Electrical and Photometric Measurements of Single-Based Fluorescent 
Lamps, approved December 30, 2014; IBR approved for appendix V to 
subpart B.
    (14) IES LM-66-14, (``IES LM-66''), IES Approved Method for the 
Electrical and Photometric Measurements of Single-Based Fluorescent 
Lamps, approved December 30, 2014; IBR approved for appendix W to 
subpart B, as follows:
    (i) Section 4.0--Ambient and Physical Conditions;
    (ii) Section 5.0--Power Source Characteristics; and
    (iii) Section 6.0--Testing Procedures Requirements.
    (15) IESNA LM-78-07, IESNA Approved Method for Total Luminous Flux 
Measurement of Lamps Using an Integrating Sphere Photometer, approved 
January 28, 2007; IBR approved for appendix W to subpart B.
    (16) IES LM-79-08, (``IES LM-79-08''), IES Approved Method for the 
Electrical and Photometric Measurements of Solid-State Lighting 
Products, approved December 31, 2007; IBR approved for appendices V1 and 
BB to subpart B.
    (17) IES LM-79-08 (``IES LM-79-08-DD''), Approved Method: Electrical 
and Photometric Measurements of Solid-State Lighting Products, approved 
December 31, 2007; IBR approved for appendix DD to subpart B as follows:
    (i) Section 1.0 Introduction: Section 1.3--Nomenclature and 
Definitions (except section 1.3f);
    (ii) Section 2.0--Ambient Conditions;
    (iii) Section 3.0--Power Supply Characteristics;
    (iv) Section 5.0--Stabilization of SSL Product;
    (v) Section 7.0--Electrical Settings;
    (vi) Section 8.0--Electrical Instrumentation;
    (vii) Section 9.0--Test Methods for Total Luminous Flux measurement: 
Section 9.1 Integrating sphere with a spectroradiometer (Sphere-
spectroradiometer system); and Section 9.2--Integrating sphere with a 
photometer head (Sphere-photometer system).
    (18) IES LM-84-14, (``IES LM-84''), Approved Method: Measuring 
Luminous Flux and Color Maintenance of LED Lamps, Light Engines, and 
Luminaires, approved March 31, 2014; IBR approved for appendix BB to 
subpart B.
    (19) ANSI/IES RP-16-10 (``ANSI/IES RP-16''), Nomenclature and 
Definitions for Illuminating Engineering, approved

[[Page 308]]

October 15, 2005; IBR approved for Sec.  430.2.
    (20) IES TM-28-14, (``IES TM-28''), Projecting Long-Term Luminous 
Flux Maintenance of LED Lamps and Luminaires, approved May 20, 2014; IBR 
approved for appendix BB to subpart B.
    (q) U.S. Department of Energy, Office of Energy Efficiency and 
Renewable Energy. Resource Room of the Building Technologies Program, 
950 L'Enfant Plaza SW., 6th Floor, Washington, DC 20024, 202-586-2945, 
(Energy Star materials are also found at http://www.energystar.gov.)
    (1) ITU-R BT.470-6, Conventional Television Systems, published 
November 1998; IBR approved for Sec.  430.2.
    (2) [Reserved]
    (3) International Efficiency Marking Protocol for External Power 
Supplies, Version 3.0, September 2013, IBR approved for Sec.  430.32.
    (r) NSF International. NSF International, P.O. Box 130140, 789 North 
Dixboro Road, Ann Arbor, MI 48113-0140, 1-800-673-6275, or go to http://
www.nsf.org.
    (1) NSF/ANSI 51-2007 (``NSF/ANSI 51''), Food equipment materials, 
revised and adopted April 2007, IBR approved for Sec. Sec.  430.2 and 
430.32.
    (2) [Reserved]
    (s) Optical Society of America. Optical Society of America, 2010 
Massachusetts Ave., NW., Washington, DC 20036-1012, 202-223-8130, or go 
to http://www.opticsinfobase.org;
    (1) ``Computation of Correlated Color Temperature and Distribution 
Temperature,'' A.R. Robertson, Journal of the Optical Society of 
America, Volume 58, Number 11, November 1968, pages 1528-1535, IBR 
approved for Sec.  430.2.
    (2) [Reserved]
    (t) SMPTE. Society of Motion Picture and Television Engineers, 3 
Barker Ave., 5th Floor, White Plains, NY 10601, 914-761-1100, or go to 
http://standards.smpte.org.
    (1) SMPTE 170M-2004, (``SMPTE 170M-2004''), SMPTE Standard for 
Television--Composite Analog Video Signal--NTSC for Studio Applications, 
approved November 30, 2004; IBR approved for Sec.  430.2.
    (2) [Reserved]
    (u) UL. Underwriters Laboratories, Inc., 2600 NW. Lake Rd., Camas, 
WA 98607-8542 (www.UL.com)
    (1) UL 729-2003 (``UL 729''), Standard for Safety for Oil-Fired 
Floor Furnaces, Sixth Edition, dated August 29, 2003, including 
revisions through April 22, 2010, IBR approved for appendix O to subpart 
B.
    (2) UL 730-2003 (``UL 730''), Standard for Safety for Oil-Fired Wall 
Furnaces, Fifth Edition, dated August 29, 2003, including revisions 
through April 22, 2010, IBR approved for appendix O to subpart B.
    (3) UL 896-1993 (``UL 896''), Standard for Safety for Oil-Burning 
Stoves, Fifth Edition, dated July 29, 1993, including revisions through 
May 7, 2010, IBR approved for appendix O to subpart B.

[74 FR 12066, Mar. 23, 2009]

    Editorial Note: For Federal Register citations affecting Sec.  
430.3, see the List of CFR Sections Affected, which appears in the 
Finding Aids section of the printed volume and at www.govinfo.gov.

    Effective Date Note: At 85 FR 81359, Dec. 16, 2020, Sec.  430.3 was 
amended by redesignating paragraphs (c)(3)(iii) through (v) as 
paragraphs (c)(3)(iv) through (vi); redesignating the second paragraph 
(c)(3)(ii) as new paragraph (c)(3)(iii); redesignating paragraphs (q) 
through (u) as paragraphs (r) through (v); and adding new paragraph (q), 
effective Jan. 15, 2021. For the convenience of the user, the added text 
is set forth as follows:



Sec.  430.3  Materials incorporated by reference.

                                * * * * *

    (q) International Safety Equipment Association, 1901 North Moore 
Street, Suite 808, Arlington, Virginia 22209, (703) 525-1695, 
www.safetyequipment.org.
    (1) ANSI/ISEA Z358.1-2014 (``ISEA Z358.1''), American National 
Standard for Emergency Eyewash and Shower Equipment, ANSI-approved 
January 8, 2015, IBR approved for Sec.  430.2.
    (2) [Reserved]

                                * * * * *



Sec.  430.4  Sources for information and guidance.

    (a) General. The standards listed in this paragraph are referred to 
in the DOE test procedures and elsewhere in this part but are not 
incorporated by

[[Page 309]]

reference. These sources are given here for information and guidance.
    (b) IESNA. Illuminating Engineering Society of North America, 120 
Wall Street, Floor 17, New York, NY 10005-4001, 212-248-5000, or go to 
http://www.iesna.org.
    (1) Illuminating Engineering Society of North America Lighting 
Handbook, 8th Edition, 1993.
    (2) [Reserved]
    (c) IEEE. Institute of Electrical and Electronics Engineers, Inc., 3 
Park Avenue, 17th Floor, New York, NY, 10016-5997, 212-419-7900, or go 
to http://www.ieee.org.
    (1) IEEE 1515-2000, IEEE Recommended Practice for Electronic Power 
Subsystems: Parameter Definitions, Test Conditions, and Test Methods, 
March 30, 2000.
    (2) IEEE 100, Authoritative Dictionary of IEEE Standards Terms, 7th 
Edition, January 1, 2006.
    (d) IEC. International Electrotechnical Commission, available from 
the American National Standards Institute, 11 W. 42nd Street, New York, 
NY 10036, 212-642-4936, or go to http://www.iec.ch.
    (1) IEC 62301, Household electrical appliances--Measurement of 
standby power, First Edition, June 13, 2005.
    (2) IEC 60050, International Electrotechnical Vocabulary.
    (e) National Voluntary Laboratory Accreditation Program, Standards 
Services Division, NIST, 100 Bureau Drive, Stop 2140, Gaithersburg, MD 
20899-2140, 301-975-4016, or go to http://ts.nist.gov/standards/
accreditation.
    (1) National Voluntary Laboratory Accreditation Program Handbook 
150-01, Energy Efficient Lighting Products, Lamps and Luminaires, August 
1993.
    (2) [Reserved]

[74 FR 12066, Mar. 23, 2009]



Sec.  430.5  Error correction procedures for energy conservation 
standards rules.

    (a) Scope and purpose. The regulations in this section describe 
procedures through which the Department of Energy accepts and considers 
submissions regarding possible Errors in its rules under the Energy 
Policy and Conservation Act, as amended (42 U.S.C. 6291-6317). This 
section applies to rules establishing or amending energy conservation 
standards under the Act, except that this section does not apply to 
direct final rules issued pursuant to section 325(p)(4) of the Act (42 
U.S.C. 6295(p)(4)).
    (b) Definitions.
    Act means the Energy Policy and Conservation Act of 1975, as amended 
(42 U.S.C. 6291-6317).
    Error means an aspect of the regulatory text of a rule that is 
inconsistent with what the Secretary intended regarding the rule at the 
time of posting. Examples of possible mistakes that might give rise to 
Errors include:
    (i) A typographical mistake that causes the regulatory text to 
differ from how the preamble to the rule describes the rule;
    (ii) A calculation mistake that causes the numerical value of an 
energy conservation standard to differ from what technical support 
documents would justify; or
    (iii) A numbering mistake that causes a cross-reference to lead to 
the wrong text.
    Rule means a rule establishing or amending an energy conservation 
standard under the Act.
    Secretary means the Secretary of Energy or an official with 
delegated authority to perform a function of the Secretary of Energy 
under this section.
    (c) Posting of rules. (1) The Secretary will cause a rule under the 
Act to be posted on a publicly-accessible Web site.
    (2) The Secretary will not submit a rule for publication in the 
Federal Register during 45 calendar days after posting the rule pursuant 
to paragraph (c)(1) of this section.
    (3) Each rule posted pursuant to paragraph (c)(1) of this section 
shall bear the following disclaimer:

    NOTICE: The text of this rule is subject to correction based on the 
identification of errors as defined in 10 CFR 430.5 before publication 
in the Federal Register. Readers are requested to notify the United 
States Department of Energy, by email at [EMAIL ADDRESS PROVIDED IN 
POSTED NOTICE], of any typographical or other errors, as described in 
such regulations, by no later than midnight on [DATE 45 CALENDAR DAYS 
AFTER DATE OF POSTING OF THE DOCUMENT ON THE DEPARTMENT'S

[[Page 310]]

WEBSITE], in order that DOE may make any necessary corrections in the 
regulatory text submitted to the Office of the Federal Register for 
publication.

    (d) Request for correction. (1) A person identifying an Error in a 
rule subject to this section may request that the Secretary correct the 
Error. Such a request must be submitted within 45 calendar days of the 
posting of the rule pursuant to paragraph (c)(1) of this section.
    (2)(i) A request under this section must identify an Error with 
particularity. The request must state what text is claimed to be 
erroneous. The request must also provide text that the requester argues 
would be a correct substitute. If a requester is unable to identify a 
correct substitute, the requester may submit a request that states that 
the requester is unable to determine what text would be correct and 
explains why the requester is unable to do so. The request must also 
substantiate the claimed Error by citing evidence from the existing 
record of the rulemaking that the text of the rule as issued is 
inconsistent with what the Secretary intended the text to be.
    (ii) A person's disagreement with a policy choice that the Secretary 
has made will not, on its own, constitute a valid basis for a request 
under this section.
    (3) The evidence to substantiate a request (or evidence of the Error 
itself) must be in the record of the rulemaking at the time of the 
rule's posting, which may include the preamble accompanying the rule. 
The Secretary will not consider new evidence submitted in connection 
with a request.
    (4) A request under this section must be filed in electronic format 
by email to the address that the rule designates for correction 
requests. Should filing by email not be feasible, the requester should 
contact the program point of contact designated in the rule regarding an 
appropriate alternative means of filing a request.
    (5) A request that does not comply with the requirements of this 
section will not be considered.
    (e) Correction of rules. The Secretary may respond to a request for 
correction under paragraph (d) of this section or address an Error 
discovered on the Secretary's own initiative by submitting to the Office 
of the Federal Register either a corrected rule or the rule as 
previously posted.
    (f) Publication in the Federal Register. (1) If, after receiving one 
or more properly filed requests for correction, the Secretary decides 
not to undertake any corrections, the Secretary will submit the rule for 
publication to the Office of the Federal Register as it was posted 
pursuant to paragraph (c)(1) of this section.
    (2) If the Secretary receives no properly filed requests after 
posting a rule and identifies no Errors on the Secretary's own 
initiative, the Secretary will in due course submit the rule, as it was 
posted pursuant to paragraph (c)(1) of this section, to the Office of 
the Federal Register for publication. This will occur after the period 
prescribed by paragraph (c)(2) of this section has elapsed.
    (3) If the Secretary receives a properly filed request after posting 
a rule pursuant to (c)(1) and determines that a correction is necessary, 
the Secretary will, absent extenuating circumstances, submit a corrected 
rule for publication in the Federal Register within 30 days after the 
period prescribed by paragraph (c)(2) of this section has elapsed.
    (4) Consistent with the Act, compliance with an energy conservation 
standard will be required upon the specified compliance date as 
published in the relevant rule in the Federal Register.
    (5) Consistent with the Administrative Procedure Act, and other 
applicable law, the Secretary will ordinarily designate an effective 
date for a rule under this section that is no less than 30 days after 
the publication of the rule in the Federal Register.
    (6) When the Secretary submits a rule for publication, the Secretary 
will make publicly available a written statement indicating how any 
properly filed requests for correction were handled.
    (g) Alteration of standards. Until an energy conservation standard 
has been published in the Federal Register, the Secretary may correct 
such standard, consistent with the Administrative Procedure Act.

[[Page 311]]

    (h) Judicial review. For determining the prematurity, timeliness, or 
lateness of a petition for judicial review pursuant to section 336(b) of 
the Act (42 U.S.C. 6306), a rule is considered ``prescribed'' on the 
date when the rule is published in the Federal Register.

[81 FR 57757, Aug. 24, 2016]



                        Subpart B_Test Procedures



Sec.  430.21  Purpose and scope.

    This subpart contains test procedures required to be prescribed by 
DOE pursuant to section 323 of the Act.



Sec.  430.23  Test procedures for the measurement of energy 
and water consumption.

    When the test procedures of this section call for rounding off of 
test results, and the results fall equally between two values of the 
nearest dollar, kilowatt-hour, or other specified nearest value, the 
result shall be rounded up to the nearest higher value.
    (a) Refrigerators and refrigerator-freezers. (1) The estimated 
annual operating cost for models without an anti-sweat heater switch 
shall be the product of the following three factors, with the resulting 
product then being rounded to the nearest dollar per year:
    (i) The representative average-use cycle of 365 cycles per year;
    (ii) The average per-cycle energy consumption for the standard cycle 
in kilowatt-hours per cycle, determined according to section 6.2 of 
appendix A of this subpart; and
    (iii) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided by the Secretary.
    (2) The estimated annual operating cost for models with an anti-
sweat heater switch shall be the product of the following three factors, 
with the resulting product then being rounded to the nearest dollar per 
year:
    (i) The representative average-use cycle of 365 cycles per year;
    (ii) Half the sum of the average per-cycle energy consumption for 
the standard cycle and the average per-cycle energy consumption for a 
test cycle type with the anti-sweat heater switch in the position set at 
the factory just before shipping, each in kilowatt-hours per cycle, 
determined according to section 6.2 of appendix A of this subpart; and
    (iii) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided by the Secretary.
    (3) The estimated annual operating cost for any other specified 
cycle type shall be the product of the following three factors, the 
resulting product then being rounded to the nearest dollar per year:
    (i) The representative average-use cycle of 365 cycles per year;
    (ii) The average per-cycle energy consumption for the specified 
cycle type, determined according to section 6.2 of appendix A of this 
subpart; and
    (iii) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided by the Secretary.
    (4) The energy factor, expressed in cubic feet per kilowatt-hour per 
cycle, shall be:
    (i) For models without an anti-sweat heater switch, the quotient of:
    (A) The adjusted total volume in cubic feet, determined according to 
section 6.1 of appendix A of this subpart, divided by--
    (B) The average per-cycle energy consumption for the standard cycle 
in kilowatt-hours per cycle, determined according to section 6.2 of 
appendix A of this subpart, the resulting quotient then being rounded to 
the second decimal place; and
    (ii) For models having an anti-sweat heater switch, the quotient of:
    (A) The adjusted total volume in cubic feet, determined according to 
6.1 of appendix A of this subpart, divided by--
    (B) Half the sum of the average per-cycle energy consumption for the 
standard cycle and the average per-cycle energy consumption for a test 
cycle type with the anti-sweat heater switch in the position set at the 
factory just before shipping, each in kilowatt-hours per cycle, 
determined according to section 6.2 of appendix A of this subpart, the 
resulting quotient then being rounded to the second decimal place.
    (5) The annual energy use, expressed in kilowatt-hours per year, 
shall be the

[[Page 312]]

following, rounded to the nearest kilowatt-hour per year:
    (i) For models without an anti-sweat heater switch, the 
representative average use cycle of 365 cycles per year multiplied by 
the average per-cycle energy consumption for the standard cycle in 
kilowatt-hours per cycle, determined according to section 6.2 of 
appendix A of this subpart; and
    (ii) For models having an anti-sweat heater switch, the 
representative average use cycle of 365 cycles per year multiplied by 
half the sum of the average per-cycle energy consumption for the 
standard cycle and the average per-cycle energy consumption for a test 
cycle type with the anti-sweat heater switch in the position set at the 
factory just before shipping, each in kilowatt-hours per cycle, 
determined according to section 6.2 of appendix A of this subpart.
    (6) Other useful measures of energy consumption shall be those 
measures of energy consumption that the Secretary determines are likely 
to assist consumers in making purchasing decisions which are derived 
from the application of appendix A of this subpart.
    (7) The following principles of interpretation shall be applied to 
the test procedure. The intent of the energy test procedure is to 
simulate typical room conditions (72 [deg]F (22.2 [deg]C)) with door 
openings, by testing at 90 [deg]F (32.2 [deg]C) without door openings. 
Except for operating characteristics that are affected by ambient 
temperature (for example, compressor percent run time), the unit, when 
tested under this test procedure, shall operate in a manner equivalent 
to the unit's operation while in typical room conditions.
    (i) The energy used by the unit shall be calculated when a 
calculation is provided by the test procedure. Energy consuming 
components that operate in typical room conditions (including as a 
result of door openings, or a function of humidity), and that are not 
excluded by this test procedure, shall operate in an equivalent manner 
during energy testing under this test procedure, or be accounted for by 
all calculations as provided for in the test procedure. Examples:
    (A) Energy saving features that are designed to operate when there 
are no door openings for long periods of time shall not be functional 
during the energy test.
    (B) The defrost heater shall neither function nor turn off 
differently during the energy test than it would when in typical room 
conditions. Also, the product shall not recover differently during the 
defrost recovery period than it would in typical room conditions.
    (C) Electric heaters that would normally operate at typical room 
conditions with door openings shall also operate during the energy test.
    (D) Energy used during adaptive defrost shall continue to be 
measured and adjusted per the calculation provided in this test 
procedure.
    (ii) DOE recognizes that there may be situations that the test 
procedures do not completely address. In such cases, a manufacturer must 
obtain a waiver in accordance with the relevant provisions of 10 CFR 
part 430 if:
    (A) A product contains energy consuming components that operate 
differently during the prescribed testing than they would during 
representative average consumer use; and
    (B) Applying the prescribed test to that product would evaluate it 
in a manner that is unrepresentative of its true energy consumption 
(thereby providing materially inaccurate comparative data).
    (b) Freezers. (1) The estimated annual operating cost for freezers 
without an anti-sweat heater switch shall be the product of the 
following three factors, with the resulting product then being rounded 
to the nearest dollar per year:
    (i) The representative average-use cycle of 365 cycles per year;
    (ii) The average per-cycle energy consumption for the standard cycle 
in kilowatt-hours per cycle, determined according to section 6.2 of 
appendix B of this subpart; and
    (iii) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided by the Secretary.
    (2) The estimated annual operating cost for freezers with an anti-
sweat heater switch shall be the product of the following three factors, 
with the resulting product then being rounded to the nearest dollar per 
year:

[[Page 313]]

    (i) The representative average-use cycle of 365 cycles per year;
    (ii) Half the sum of the average per-cycle energy consumption for 
the standard cycle and the average per-cycle energy consumption for a 
test cycle type with the anti-sweat heater switch in the position set at 
the factory just before shipping, each in kilowatt-hours per cycle, 
determined according to section 6.2 of appendix B of this subpart; and
    (iii) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided by the Secretary.
    (3) The estimated annual operating cost for any other specified 
cycle type for freezers shall be the product of the following three 
factors, with the resulting product then being rounded to the nearest 
dollar per year:
    (i) The representative average-use cycle of 365 cycles per year;
    (ii) The average per-cycle energy consumption for the specified 
cycle type, determined according to section 6.2 of appendix B of this 
subpart; and
    (iii) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided by the Secretary.
    (4) The energy factor for freezers, expressed in cubic feet per 
kilowatt-hour per cycle, shall be:
    (i) For freezers not having an anti-sweat heater switch, the 
quotient of:
    (A) The adjusted net refrigerated volume in cubic feet, determined 
according to section 6.1 of appendix B of this subpart, divided by--
    (B) The average per-cycle energy consumption for the standard cycle 
in kilowatt-hours per cycle, determined according to 6.2 of appendix B 
of this subpart, with the resulting quotient then being rounded to the 
second decimal place; and
    (ii) For freezers having an anti-sweat heater switch, the quotient 
of:
    (A) The adjusted net refrigerated volume in cubic feet, determined 
according to section 6.1 of appendix B of this subpart, divided by--
    (B) Half the sum of the average per-cycle energy consumption for the 
standard cycle and the average per-cycle energy consumption for a test 
cycle type with the anti-sweat heater switch in the position set at the 
factory just before shipping, each in kilowatt-hours per cycle, 
determined according to section 6.2 of appendix B of this subpart, with 
the resulting quotient then being rounded to the second decimal place.
    (5) The annual energy use of all freezers, expressed in kilowatt-
hours per year, shall be the following, rounded to the nearest kilowatt-
hour per year:
    (i) For freezers not having an anti-sweat heater switch, the 
representative average use cycle of 365 cycles per year multiplied by 
the average per-cycle energy consumption for the standard cycle in 
kilowatt-hours per cycle, determined according to section 6.2 of 
appendix B of this subpart; and
    (ii) For freezers having an anti-sweat heater switch, the 
representative average use cycle of 365 cycles per year multiplied by 
half the sum of the average per-cycle energy consumption for the 
standard cycle and the average per-cycle energy consumption for a test 
cycle type with the anti-sweat heater switch in the position set at the 
factory just before shipping, each in kilowatt-hours per cycle, 
determined according to section 6.2 of appendix B of this subpart.
    (6) Other useful measures of energy consumption for freezers shall 
be those measures the Secretary determines are likely to assist 
consumers in making purchasing decisions and are derived from the 
application of appendix B of this subpart.
    (7) The following principles of interpretation shall be applied to 
the test procedure. The intent of the energy test procedure is to 
simulate typical room conditions (72 [deg]F (22.2 [deg]C)) with door 
openings by testing at 90 [deg]F (32.2 [deg]C) without door openings. 
Except for operating characteristics that are affected by ambient 
temperature (for example, compressor percent run time), the unit, when 
tested under this test procedure, shall operate in a manner equivalent 
to the unit's operation while in typical room conditions.
    (i) The energy used by the unit shall be calculated when a 
calculation is provided by the test procedure. Energy consuming 
components that operate in typical room conditions (including as a 
result of door openings, or a function of

[[Page 314]]

humidity), and that are not excluded by this test procedure, shall 
operate in an equivalent manner during energy testing under this test 
procedure, or be accounted for by all calculations as provided for in 
the test procedure. Examples:
    (A) Energy saving features that are designed to operate when there 
are no door openings for long periods of time shall not be functional 
during the energy test.
    (B) The defrost heater shall neither function nor turn off 
differently during the energy test than it would when in typical room 
conditions. Also, the product shall not recover differently during the 
defrost recovery period than it would in typical room conditions.
    (C) Electric heaters that would normally operate at typical room 
conditions with door openings shall also operate during the energy test.
    (D) Energy used during adaptive defrost shall continue to be 
measured and adjusted per the calculation provided for in this test 
procedure.
    (ii) DOE recognizes that there may be situations that the test 
procedures do not completely address. In such cases, a manufacturer must 
obtain a waiver in accordance with the relevant provisions of this part 
if:
    (A) A product contains energy consuming components that operate 
differently during the prescribed testing than they would during 
representative average consumer use; and
    (B) Applying the prescribed test to that product would evaluate it 
in a manner that is unrepresentative of its true energy consumption 
(thereby providing materially inaccurate comparative data).
    (c) Dishwashers. (1) The Estimated Annual Operating Cost (EAOC) for 
dishwashers must be rounded to the nearest dollar per year and is 
defined as follows:
    (i) When cold water (50 [deg]F) is used,
    (A) For dishwashers having a truncated normal cycle as defined in 
section 1.22 of appendix C1 to this subpart, EAOC = (De x 
ETLP) + (De x N x (M + MWS + 
EF-(ED/2))).
    (B) For dishwashers not having a truncated normal cycle, EAOC = 
(De x ETLP) + (De x N x (M + 
MWS + EF)).

Where,

De = the representative average unit cost of electrical 
          energy, in dollars per kilowatt-hour, as provided by the 
          Secretary,
ETLP = the annual combined low-power mode energy consumption 
          in kilowatt-hours per year and determined according to section 
          5.7 of appendix C1 to this subpart,
N = the representative average dishwasher use of 215 cycles per year,
M = the machine energy consumption per cycle for the normal cycle, as 
          defined in section 1.12 of appendix C1 to this subpart, in 
          kilowatt-hours and determined according to section 5.1.1 of 
          appendix C1 to this subpart for non-soil-sensing dishwashers 
          and section 5.1.2 of appendix C1 to this subpart for soil-
          sensing dishwashers,
MWS = the machine energy consumption per cycle for water 
          softener regeneration, in kilowatt-hours and determined 
          according to section 5.1.3 of appendix C1 to this subpart,
EF = the fan-only mode energy consumption per cycle, in 
          kilowatt-hours and determined according to section 5.2 of 
          appendix C1 to this subpart, and
ED = the drying energy consumption, in kilowatt-hours and 
          defined as energy consumed using the power-dry feature after 
          the termination of the last rinse option of the normal cycle; 
          determined according to section 5.3 of appendix C1 to this 
          subpart.

    (ii) When electrically-heated water (120 [deg]F or 140 [deg]F) is 
used,
    (A) For dishwashers having a truncated normal cycle as defined in 
section 1.22 of appendix C1 to this subpart, EAOC = (De x 
ETLP) + (De x N x (M + MWS + 
EF-(ED/2))) + (De x N x (W + 
WWS)).
    (B) For dishwashers not having a truncated normal cycle, EAOC = 
(De x ETLP) + (De x N x (M + 
MWS + EF)) + (De x N x (W + 
WWS)).

Where,

De, ETLP, N, M, MWS, EF, and 
          ED, are defined in paragraph (c)(1)(i) of this 
          section,
W = the water energy consumption per cycle for the normal cycle, as 
          defined in section 1.12 of appendix C1 to this subpart, in 
          kilowatt-hours and determined according to section 5.5.1.1 of 
          appendix C1 to this subpart for dishwashers that operate with 
          a nominal 140 [deg]F inlet water temperature and section 
          5.5.2.1 of appendix C1 to this subpart for dishwashers that 
          operate with a nominal inlet water temperature of 120 [deg]F, 
          and
    WWS = the water softener regeneration water energy 
consumption per cycle in kilowatt-hours and determined according to 
section 5.5.1.2 of appendix C1 to this subpart for dishwashers that 
operate with a nominal 140

[[Page 315]]

[deg]F inlet water temperature and section 5.5.2.2 of appendix C1 to 
this subpart for dishwashers that operate with a nominal inlet water 
temperature of 120 [deg]F.

    (iii) When gas-heated or oil-heated water is used,
    (A) For dishwashers having a truncated normal cycle as defined in 
section 1.22 of appendix C1 to this subpart, EAOCg = 
(De x ETLP) + (De x N x (M + 
MWS + EF-(ED/2))) + (Dg x N 
x (Wg + WWSg)).
    (B) For dishwashers not having a truncated normal cycle, 
EAOCg = (De x ETLP) + (De x 
N x (M + MWS + EF)) + (Dg x N x 
(Wg + WWSg)).

Where,

    De, ETLP, N, M, MWS, EF, 
and ED are defined in paragraph (c)(1)(i) of this section,
Dg = the representative average unit cost of gas or oil, as 
          appropriate, in dollars per Btu, as provided by the Secretary,
Wg = the water energy consumption per cycle for the normal 
          cycle, as defined in section 1.12 of appendix C1 to this 
          subpart, in Btus and determined according to section 5.6.1.1 
          of appendix C1 to this subpart for dishwashers that operate 
          with a nominal 140 [deg]F inlet water temperature and section 
          5.6.2.1 of appendix C1 to this subpart for dishwashers that 
          operate with a nominal inlet water temperature of 120 [deg]F, 
          and
WWSg = the water softener regeneration energy consumption per 
          cycle in Btu per cycle and determined according to section 
          5.6.1.2 of appendix C1 to this subpart for dishwashers that 
          operate with a nominal 140 [deg]F inlet water temperature and 
          section 5.6.2.2 of appendix C1 to this subpart for dishwashers 
          that operate with a nominal inlet water temperature of 120 
          [deg]F.

    (2) The estimated annual energy use, EAEU, expressed in kilowatt-
hours per year must be rounded to the nearest kilowatt-hour per year and 
is defined as follows:
    (i) For dishwashers having a truncated normal cycle as defined in 
section 1.22 of appendix C1 to this subpart:

EAEU = (M + MWS + EF-(ED/2) + W + 
WWS) x N + (ETLP)

Where,

    M, MWS, ED, N, EF, and 
ETLP are defined in paragraph (c)(1)(i) of this section, and 
W and WWS are defined in paragraph (c)(1)(ii) of this 
section.

    (ii) For dishwashers not having a truncated normal cycle:
EAEU = (M + MWS + EF + W + WWS) x N + 
ETLP

Where,

    M, MWS, N, EF, and ETLP are defined 
in paragraph (c)(1)(i) of this section, and W and WWS are 
defined in paragraph (c)(1)(ii) of this section.

    (3) The sum of the water consumption, V, and the water consumption 
during water softener regeneration, VWS, expressed in gallons 
per cycle and defined in section 5.4 of appendix C1 to this subpart, 
must be rounded to one decimal place.
    (4) Other useful measures of energy consumption for dishwashers are 
those which the Secretary determines are likely to assist consumers in 
making purchasing decisions and which are derived from the application 
of appendix C1 to this subpart.
    (d) Clothes dryers. (1) The estimated annual operating cost for 
clothes dryers shall be--
    (i) For an electric clothes dryer, the product of the following 
three factors:
    (A) The representative average-use cycle of 283 cycles per year,
    (B) The per-cycle combined total energy consumption in kilowatt-
hours per-cycle, determined according to 4.6 of appendix D1 to this 
subpart, and
    (C) The representative average unit cost of electrical energy in 
dollars per kilowatt-hour as provided by the Secretary, the resulting 
product then being rounded off to the nearest dollar per year, and
    (ii) For a gas clothes dryer, the product of the representative 
average-use cycle of 283 cycles per year times the sum of:
    (A) The product of the per-cycle gas dryer electric energy 
consumption in kilowatt-hours per cycle, determined according to 4.2 of 
appendix D1 to this subpart, times the representative average unit cost 
of electrical energy in dollars per kilowatt-hour as provided by the 
Secretary plus,
    (B) The product of the per-cycle gas dryer gas energy consumption, 
in Btus per cycle, determined according to 4.3 of appendix D1 to this 
subpart, times the representative average unit cost for natural gas or 
propane, as appropriate, in dollars per Btu as provided by the 
Secretary, the resulting product

[[Page 316]]

then being rounded off to the nearest dollar per year plus,
    (C) The product of the per-cycle standby mode and off mode energy 
consumption in kilowatt-hours per cycle, determined according to 4.5 of 
appendix D1 to this subpart, times the representative average unit cost 
of electrical energy in dollars per kilowatt-hour as provided by the 
Secretary.
    (2) The energy factor, expressed in pounds of clothes per kilowatt-
hour, for clothes dryers shall be either the quotient of a 3-pound bone-
dry test load for compact dryers, as defined by 2.7.1 of appendix D to 
this subpart before the date that appendix D1 becomes mandatory, or the 
quotient of a 7-pound bone-dry test load for standard dryers, as defined 
by 2.7.2 of appendix D to this subpart before the date that appendix D1 
becomes mandatory, as applicable, divided by the clothes dryer energy 
consumption per cycle, as determined according to 4.1 for electric 
clothes dryers and 4.6 for gas clothes dryers of appendix D to this 
subpart before the date that appendix D1 becomes mandatory, the 
resulting quotient then being rounded off to the nearest hundredth 
(.01). Upon the date that appendix D1 to this subpart becomes mandatory, 
the energy factor is determined in accordance with 4.7 of appendix D1, 
the result then being rounded off to the nearest hundredth (.01).
    (3) Upon the date that appendix D1 to this subpart becomes 
mandatory, the combined energy factor is determined in accordance with 
4.8 of appendix D1, the result then being rounded off to the nearest 
hundredth (.01).
    (4) Other useful measures of energy consumption for clothes dryers 
shall be those measures of energy consumption for clothes dryers which 
the Secretary determines are likely to assist consumers in making 
purchasing decisions and which are derived from the application of 
appendix D to this subpart before the date that appendix D1 becomes 
mandatory and appendix D1 upon the date that appendix D1 to this subpart 
becomes mandatory.
    (e) Water heaters. (1) The estimated annual operating cost is 
calculated as:
    (i) For a gas-fired or oil-fired water heater, the sum of: The 
product of the annual gas or oil energy consumption, determined 
according to section 6.3.9 or 6.4.6 of appendix E of this subpart, times 
the representative average unit cost of gas or oil, as appropriate, in 
dollars per Btu as provided by the Secretary; plus the product of the 
annual electric energy consumption, determined according to section 
6.3.8 or 6.4.5 of appendix E of this subpart, times the representative 
average unit cost of electricity in dollars per kilowatt-hour as 
provided by the Secretary. Round the resulting sum to the nearest dollar 
per year.
    (ii) For an electric water heater, the product of the annual energy 
consumption, determined according to section 6.3.7 or 6.4.4 of appendix 
E of this subpart, times the representative average unit cost of 
electricity in dollars per kilowatt-hour as provided by the Secretary. 
Round the resulting product to the nearest dollar per year.
    (2) For an individual unit, determine the tested uniform energy 
factor in accordance with section 6.3.6 or 6.4.3 of appendix E of this 
subpart, and round the value to the nearest 0.01.
    (f) Room air conditioners. (1) The estimated annual operating cost 
for room air conditioners, expressed in dollars per year, shall be 
determined by multiplying the following three factors:
    (i) The combined annual energy consumption for room air 
conditioners, expressed in kilowatt-hours per year, as determined in 
accordance with paragraph (f)(4) of this section, and
    (ii) A representative average unit cost of electrical energy in 
dollars per kilowatt-hour as provided by the Secretary, the resulting 
product then being rounded off to the nearest dollar per year.
    (2) The energy efficiency ratio for room air conditioners, expressed 
in Btus per watt-hour, shall be the quotient of:
    (i) The cooling capacity in Btus per hour as determined in 
accordance with 5.1 of appendix F to this subpart divided by:
    (ii) The electrical input power in watts as determined in accordance 
with 5.2 of appendix F to this subpart, the resulting quotient then 
being rounded off to the nearest 0.1 Btu per watt-hour.

[[Page 317]]

    (3) The average annual energy consumption for room air conditioners, 
expressed in kilowatt-hours per year, shall be determined by multiplying 
together the following two factors:
    (i) Electrical input power in kilowatts as determined in accordance 
with 5.2 of appendix F to this subpart, and
    (ii) The representative average-use cycle of 750 hours of compressor 
operation per year, the resulting product then being rounded off to the 
nearest kilowatt-hour per year.
    (4) The combined annual energy consumption for room air 
conditioners, expressed in kilowatt-hours per year, shall be the sum of:
    (i) The average annual energy consumption as determined in 
accordance with paragraph (f)(4) of this section, and
    (ii) The standby mode and off mode energy consumption, as determined 
in accordance with 5.3 of appendix F to this subpart, the resulting sum 
then being rounded off to the nearest kilowatt-hour per year.
    (5) The combined energy efficiency ratio for room air conditioners, 
expressed in Btu's per watt-hour, shall be the quotient of:
    (i) The cooling capacity in Btus per hour as determined in 
accordance with 5.1 of appendix F to this subpart multiplied by the 
representative average-use cycle of 750 hours of compressor operation 
per year, divided by
    (ii) The combined annual energy consumption as determined in 
accordance with paragraph (f)(4) of this section multiplied by a 
conversion factor of 1,000 to convert kilowatt-hours to watt-hours, the 
resulting quotient then being rounded off to the nearest 0.1 Btu per 
watt-hour.
    (g) Unvented home heating equipment. (1) The estimated annual 
operating cost for primary electric heaters, shall be the product of: 
(i) The average annual electric energy consumption in kilowatt-hours per 
year, determined according to section 3.1 of appendix G of this subpart 
and (ii) the representative average unit cost in dollars per kilowatt-
hour as provided pursuant to section 323(b)(2) of the Act, the resulting 
product then being rounded off to the nearest dollar per year.
    (2) The estimated regional annual operating cost for primary 
electric heaters, shall be the product of: (i) The regional annual 
electric energy consumption in kilowatt-hours per year for primary 
heaters determined according to section 3.2 of appendix G of this 
subpart and (ii) the representative average unit cost in dollars per 
kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the 
resulting product then being rounded off to the nearest dollar per year.
    (3) The estimated operating cost per million Btu output shall be--
    (i) For primary and supplementary electric heaters and unvented gas 
and oil heaters without an auxiliary electric system, the product of: 
(A) One million; and (B) the representative unit cost in dollars per Btu 
for natural gas, propane, or oil, as provided pursuant to section 
323(b)(2) of the Act as appropriate, or the quotient of the 
representative unit cost in dollars per kilowatt-hour, as provided 
pursuant to section 323(b)(2) of the Act, divided by 3,412 Btu per 
kilowatt hour, the resulting product then being rounded off to the 
nearest 0.01 dollar per million Btu output; and
    (ii) For unvented gas and oil heaters with an auxiliary electric 
system, the product of: (A) The quotient of one million divided by the 
rated output in Btu's per hour as determined in 3.4 of appendix G of 
this subpart; and (B) the sum of: (1) The product of the maximum fuel 
input in Btu's per hour as determined in 2.2. of this appendix times the 
representative unit cost in dollars per Btu for natural gas, propane, or 
oil, as appropriate, as provided pursuant to section 323(b)(2) of the 
Act, plus (2) the product of the maximum auxiliary electric power in 
kilowatts as determined in 2.1 of appendix G of this subpart times the 
representative unit cost in dollars per kilowatt-hour as provided 
pursuant to section 323(b)(2) of the Act, the resulting quantity shall 
be rounded off to the nearest 0.01 dollar per million Btu output.
    (4) The rated output for unvented heaters is the rated output as 
determined according to either sections 3.3 or 3.4 of appendix G of this 
subpart, as appropriate, with the result being

[[Page 318]]

rounded to the nearest 100 Btu per hour.
    (5) Other useful measures of energy consumption for unvented home 
heating equipment shall be those measures of energy consumption for 
unvented home heating equipment which the Secretary determines are 
likely to assist consumers in making purchasing decisions and which are 
derived from the application of appendix G of this subpart.
    (h) Television sets. The power consumption of a television set, 
expressed in watts, including on mode, standby mode, and off mode power 
consumption values, shall be measured in accordance with sections 7.1, 
7.3, and 7.4 of appendix H of this subpart respectively. The annual 
energy consumption, expressed in kilowatt-hours per year, shall be 
measured in accordance with section 8 of appendix H of this subpart.
    (i) Cooking products. Determine the standby power for microwave 
ovens, excluding any microwave oven component of a combined cooking 
product, according to section 3.2.1 of appendix I to this subpart. Round 
standby power to the nearest 0.1 watt.
    (j) Clothes washers. (1) The estimated annual operating cost for 
automatic and semi-automatic clothes washers must be rounded off to the 
nearest dollar per year and is defined as follows:
    (i) When using appendix J1 (see the note at the beginning of 
appendix J1),
    (A) When electrically heated water is used,

(N1 x ETE1 x CKWH)

Where:

N1 = the representative average residential clothes washer 
          use of 392 cycles per year according to appendix J1,
ETE1 = the total per-cycle energy consumption when 
          electrically heated water is used, in kilowatt-hours per 
          cycle, determined according to section 4.1.7 of appendix J1, 
          and
CKWH = the representative average unit cost, in dollars per 
          kilowatt-hour, as provided by the Secretary.

    (B) When gas-heated or oil-heated water is used,

(N1 x ((MET1 x CKWH) + 
(HETG1 x CBTU)))

Where:

N1 and CKWH are defined in paragraph (j)(1)(i)(A) 
          of this section,
MET1 = the total weighted per-cycle machine electrical energy 
          consumption, in kilowatt-hours per cycle, determined according 
          to section 4.1.6 of appendix J1,
HETG1 = the total per-cycle hot water energy consumption 
          using gas-heated or oil-heated water, in Btu per cycle, 
          determined according to section 4.1.4 of appendix J1, and
CBTU = the representative average unit cost, in dollars per 
          Btu for oil or gas, as appropriate, as provided by the 
          Secretary.

    (ii) When using appendix J2 (see the note at the beginning of 
appendix J2),
    (A) When electrically heated water is used,

(N2 x (ETE2 + ETSO) x CKWH)

Where:

N2 = the representative average residential clothes washer 
          use of 295 cycles per year according to appendix J2,
ETE2 = the total per-cycle energy consumption when 
          electrically heated water is used, in kilowatt-hours per 
          cycle, determined according to section 4.1.7 of appendix J2,
ETSO = the per-cycle combined low-power mode energy 
          consumption, in kilowatt-hours per cycle, determined according 
          to section 4.4 of appendix J2, and
CKWH = the representative average unit cost, in dollars per 
          kilowatt-hour, as provided by the Secretary.

    (B) When gas-heated or oil-heated water is used,

(N2 x ((MET2 + ETSO) x CKWH) 
+ (HETG2 x CBTU))

Where:

N2 and ETSO are defined in (j)(1)(ii)(A) of this 
          section,
MET2 = the total weighted per-cycle machine electrical energy 
          consumption, in kilowatt-hours per cycle, determined according 
          to section 4.1.6 of appendix J2,
CKWH = the representative average unit cost, in dollars per 
          kilowatt-hour, as provided by the Secretary,
HETG2 = the total per-cycle hot water energy consumption 
          using gas-heated or oil-heated water, in Btu per cycle, 
          determined according to section 4.1.4 of appendix J2,
CBTU = the representative average unit cost, in dollars per 
          Btu for oil or gas, as appropriate, as provided by the 
          Secretary.

    (2)(i) The modified energy factor for automatic and semi-automatic 
clothes washers is determined according to section 4.4 of appendix J1 
(when using appendix J1) and section 4.5 of appendix J2 (when using 
appendix J2). The result

[[Page 319]]

shall be rounded off to the nearest 0.01 cubic foot per kilowatt-hour 
per cycle.
    (ii) The integrated modified energy factor for automatic and semi-
automatic clothes washers is determined according to section 4.6 of 
appendix J2 (when using appendix J2). The result shall be rounded off to 
the nearest 0.01 cubic foot per kilowatt-hour per cycle.
    (3) The annual water consumption of a clothes washer must be 
determined as:
    (i) When using appendix J1, the product of the representative 
average-use of 392 cycles per year and the total weighted per-cycle 
water consumption in gallons per cycle determined according to section 
4.2.2 of appendix J1.
    (ii) When using appendix J2, the product of the representative 
average-use of 295 cycles per year and the total weighted per-cycle 
water consumption for all wash cycles, in gallons per cycle, determined 
according to section 4.2.11 of appendix J2.
    (4)(i) The water factor must be determined according to section 
4.2.3 of appendix J1 (when using appendix J1) or section 4.2.12 of 
appendix J2 (when using appendix J2), with the result rounded to the 
nearest 0.1 gallons per cycle per cubic foot.
    (ii) The integrated water factor must be determined according to 
section 4.2.13 of appendix J2, with the result rounded to the nearest 
0.1 gallons per cycle per cubic foot.
    (5) Other useful measures of energy consumption for automatic or 
semi-automatic clothes washers shall be those measures of energy 
consumption that the Secretary determines are likely to assist consumers 
in making purchasing decisions and that are derived from the application 
of appendix J1 or appendix J2, as appropriate.
    (k)-(l) [Reserved]
    (m) Central air conditioners and heat pumps. See the note at the 
beginning of appendix M and M1 to determine the appropriate test method. 
Determine all values discussed in this section using a single appendix.
    (1) Determine cooling capacity from the steady-state wet-coil test 
(A or A2 Test), as described in section 3.2 of appendix M or 
M1 to this subpart, and rounded off to the nearest
    (i) To the nearest 50 Btu/h if cooling capacity is less than 20,000 
Btu/h;
    (ii) To the nearest 100 Btu/h if cooling capacity is greater than or 
equal to 20,000 Btu/h but less than 38,000 Btu/h; and
    (iii) To the nearest 250 Btu/h if cooling capacity is greater than 
or equal to 38,000 Btu/h and less than 65,000 Btu/h.
    (2) Determine seasonal energy efficiency ratio (SEER) as described 
in section 4.1 of appendix M to this subpart or seasonal energy 
efficiency ratio 2 (SEER2) as described in section 4.1 of appendix M1 to 
this subpart, and round off to the nearest 0.025 Btu/W-h.
    (3) Determine energy efficiency ratio (EER) as described in section 
4.6 of appendix M or M1 to this subpart, and round off to the nearest 
0.025 Btu/W-h. The EER from the A or A2 test, whichever 
applies, when tested in accordance with appendix M1 to this subpart, is 
referred to as EER2.
    (4) Determine heating seasonal performance factors (HSPF) as 
described in section 4.2 of appendix M to this subpart or heating 
seasonal performance factors 2 (HSPF2) as described in section 4.2 of 
appendix M1 to this subpart, and round off to the nearest 0.025 Btu/W-h.
    (5) Determine average off mode power consumption as described in 
section 4.3 of appendix M or M1 to this subpart, and round off to the 
nearest 0.5 W.
    (6) Determine all other measures of energy efficiency or consumption 
or other useful measures of performance using appendix M or M1 of this 
subpart.
    (n) Furnaces. (1) The estimated annual operating cost for furnaces 
is the sum of: (i) The product of the average annual fuel energy 
consumption, in Btu's per year for gas or oil furnaces or in kilowatt-
hours per year for electric furnaces, determined according to section 
10.2.2 or 10.3 of appendix N of this subpart, respectively, and the 
representative average unit cost in dollars per Btu for gas or oil, or 
dollars per kilowatt-hour for electric, as appropriate, as provided 
pursuant to section 323(b)(2) of the Act, plus (ii) the product of the 
average annual auxiliary electric energy consumption in kilowatt-hours 
per year determined according to section 10.2.3 of appendix N of

[[Page 320]]

this subpart, and the representative average unit cost in dollars per 
kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the 
resulting sum then being rounded off to the nearest dollar per year. 
(For furnaces which operate with variable inputs, an estimated annual 
operating cost is to be calculated for each degree of oversizing 
specified in section 10 of appendix N of this subpart.)
    (2) The annual fuel utilization efficiency for furnaces, expressed 
in percent, is the ratio of the annual fuel output of useful energy 
delivered to the heated space to the annual fuel energy input to the 
furnace determined according to section 10.1 of appendix N of this 
subpart for gas and oil furnaces and determined in accordance with 
section 11.1 of the American National Standards Institute/American 
Society of Heating, Refrigerating, and Air-Conditioning Engineers (ANSI/
ASHRAE) Standard 103-1993 (incorporated by reference, see Sec.  430.3) 
for electric furnaces. Truncate the annual fuel utilization efficiency 
to one-tenth of a percentage point.
    (3) The estimated regional annual operating cost for furnaces is the 
sum of: (i) The product of the regional annual fuel energy consumption 
in Btu's per year for gas or oil furnaces or in kilowatt-hours per year 
for electric furnaces, determined according to section 10.5.1 or 10.5.3 
of appendix N of this subpart, respectively, and the representative 
average unit cost in dollars per Btu for gas or oil, or dollars per 
kilowatt-hour for electric, as appropriate, as provided pursuant to 
section 323(b)(2) of the Act, plus (ii) the product of the regional 
annual auxiliary electrical energy consumption in kilowatt-hours per 
year, determined according to section 10.5.2 of appendix N of this 
subpart, and the representative average unit cost in dollars per 
kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the 
resulting sum then being rounded off to the nearest dollar per year.
    (4) The energy factor for furnaces, expressed in percent, is the 
ratio of annual fuel output of useful energy delivered to the heated 
space to the total annual energy input to the furnace determined 
according to section 10.4 of appendix N of this subpart.
    (5) The average standby mode and off mode electrical power 
consumption for furnaces shall be determined according to section 8.6 of 
appendix N of this subpart. Round the average standby mode and off mode 
electrical power consumption to the nearest watt.
    (6) Other useful measures of energy consumption for furnaces shall 
be those measures of energy consumption which the Secretary determines 
are likely to assist consumers in making purchasing decisions and which 
are derived from the application of appendix N of this subpart.
    (o) Vented home heating equipment. (1) When determining the annual 
fuel utilization efficiency (AFUE) of vented home heating equipment (see 
the note at the beginning of appendix O), expressed in percent (%), 
calculate AFUE in accordance with section 4.1.17 of appendix O of this 
subpart for vented heaters without either manual controls or thermal 
stack dampers; in accordance with section 4.2.6 of appendix O of this 
subpart for vented heaters equipped with manual controls; or in 
accordance with section 4.3.7 of appendix O of this subpart for vented 
heaters equipped with thermal stack dampers.
    (2) When estimating the annual operating cost for vented home 
heating equipment, calculate the sum of:
    (i) The product of the average annual fuel energy consumption, in 
Btus per year for natural gas, propane, or oil fueled vented home 
heating equipment, determined according to section 4.6.2 of appendix O 
of this subpart, and the representative average unit cost in dollars per 
Btu for natural gas, propane, or oil, as appropriate, as provided 
pursuant to section 323(b)(2) of the Act; plus
    (ii) The product of the average annual auxiliary electric energy 
consumption in kilowatt-hours per year determined according to section 
4.6.3 of appendix O of this subpart, and the representative average unit 
cost in dollars per kilowatt-hours as provided pursuant to section 
323(b)(2) of the Act. Round the resulting sum to the nearest dollar per 
year.
    (3) When estimating the operating cost per million Btu output for 
gas or oil vented home heating equipment

[[Page 321]]

with an auxiliary electric system, calculate the product of:
    (i) The quotient of one million Btu divided by the sum of:
    (A) The product of the maximum fuel input in Btus per hour as 
determined in sections 3.1.1 or 3.1.2 of appendix O of this subpart 
times the annual fuel utilization efficiency in percent as determined in 
sections 4.1.17, 4.2.6, or 4.3.7 of this appendix (as appropriate) 
divided by 100, plus
    (B) The product of the maximum electric power in watts as determined 
in section 3.1.3 of appendix O of this subpart times the quantity 3.412; 
and
    (ii) The sum of:
    (A) the product of the maximum fuel input in Btus per hour as 
determined in sections 3.1.1 or 3.1.2 of this appendix times the 
representative unit cost in dollars per Btu for natural gas, propane, or 
oil, as appropriate, as provided pursuant to section 323(b)(2) of the 
Act; plus
    (B) the product of the maximum auxiliary electric power in kilowatts 
as determined in section 3.1.3 of appendix O of this subpart times the 
representative unit cost in dollars per kilowatt-hour as provided 
pursuant to section 323(b)(2) of the Act. Round the resulting quantity 
to the nearest 0.01 dollar per million Btu output.
    (p) Pool heaters. (1) Determine the thermal efficiency 
(Et) of a pool heater expressed as a percent (%) in 
accordance with section 5.1 of appendix P to this subpart.
    (2) Determine the integrated thermal efficiency (TEI) of 
a pool heater expressed as a percent (%) in accordance with section 5.4 
of appendix P to this subpart.
    (3) When estimating the annual operating cost of pool heaters, 
calculate the sum of:
    (i) The product of the average annual fossil fuel energy 
consumption, in Btus per year, determined according to section 5.2 of 
appendix P to this subpart, and the representative average unit cost in 
dollars per Btu for natural gas or oil, as appropriate, as provided 
pursuant to section 323(b)(2) of the Act; plus
    (ii) The product of the average annual electrical energy consumption 
in kilowatt-hours per year determined according to section 5.3 of 
appendix P to this subpart and converted to kilowatt-hours using a 
conversion factor of 3412 Btus = 1 kilowatt-hour, and the representative 
average unit cost in dollars per kilowatt-hours as provided pursuant to 
section 323(b)(2) of the Act. Round the resulting sum to the nearest 
dollar per year.
    (q) Fluorescent lamp ballasts. (1) Calculate ballast luminous 
efficiency (BLE) using appendix Q to this subpart.
    (2) Calculate power factor using appendix Q to this subpart.
    (r) General service fluorescent lamps, general service incandescent 
lamps, and incandescent reflector lamps. (1) The estimated annual energy 
consumption for general service fluorescent lamps, general service 
incandescent lamps, and incandescent reflector lamps, expressed in 
kilowatt-hours per year, shall be the product of the input power in 
kilowatts as determined in accordance with section 4 of appendix R to 
this subpart and an average annual use specified by the manufacturer, 
with the resulting product rounded off to the nearest kilowatt-hour per 
year. Manufacturers must provide a clear and accurate description of the 
assumptions used for the estimated annual energy consumption.
    (2) The lamp efficacy for general service fluorescent lamps shall be 
equal to the average lumen output divided by the average lamp wattage as 
determined in section 4 of appendix R of this subpart, with the 
resulting quotient rounded off to the nearest tenth of a lumen per watt.
    (3) The lamp efficacy for general service incandescent lamps shall 
be equal to the average lumen output divided by the average lamp wattage 
as determined in section 4 of appendix R of this subpart, with the 
resulting quotient rounded off to the nearest tenth of a lumen per watt.
    (4) The lamp efficacy for incandescent reflector lamps shall be 
equal to the average lumen output divided by the average lamp wattage as 
determined in section 4 of appendix R of this subpart, with the 
resulting quotient rounded off to the nearest tenth of a lumen per watt.
    (5) The color rendering index of a general service fluorescent lamp 
shall

[[Page 322]]

be tested and determined in accordance with section 4.4 of appendix R of 
this subpart and rounded off to the nearest unit.
    (6) The rated lifetime for general service incandescent lamps shall 
be measured in accordance with test procedures described in section 4.2 
of Appendix R of this chapter. A lamp shall be compliant with standards 
if greater than 50 percent of the sample size specified in Sec.  429.27 
meets the minimum rated lifetime as specified by energy conservations 
standards for general service incandescent lamps.
    (s) Faucets. The maximum permissible water use allowed for lavatory 
faucets, lavatory replacement aerators, kitchen faucets, and kitchen 
replacement aerators, expressed in gallons and liters per minute (gpm 
and L/min), shall be measured in accordance to section 2(a) of appendix 
S of this subpart. The maximum permissible water use allowed for 
metering faucets, expressed in gallons and liters per cycle (gal/cycle 
and L/cycle), shall be measured in accordance to section 2(a) of 
appendix S of this subpart.
    (t) Showerheads. The maximum permissible water use allowed for 
showerheads, expressed in gallons and liters per minute (gpm and L/min), 
shall be measured in accordance to section 2(b) of appendix S of this 
subpart.
    (u) Water closets. The maximum permissible water use allowed for 
water closets, expressed in gallons and liters per flush (gpf and Lpf), 
shall be measured in accordance to section 3(a) of appendix T of this 
subpart.
    (v) Urinals. The maximum permissible water use allowed for urinals, 
expressed in gallons and liters per flush (gpf and Lpf), shall be 
measured in accordance to section 3(b) of appendix T of this subpart.
    (w) Ceiling fans. Measure the efficiency of a ceiling fan, expressed 
in cubic feet per minute per watt (CFM/W), in accordance with appendix U 
to this subpart.
    (x) Ceiling fan light kits. (1) For each ceiling fan light kit that 
is required to comply with the energy conservation standards as of 
January 1, 2007:
    (i) For a ceiling fan light kit with medium screw base sockets that 
is packaged with compact fluorescent lamps, measure lamp efficacy, lumen 
maintenance at 1,000 hours, lumen maintenance at 40 percent of lifetime, 
rapid cycle stress test, and time to failure in accordance with 
paragraph (y) of this section.
    (ii) For a ceiling fan light kit with medium screw base sockets that 
is packaged with integrated LED lamps, measure lamp efficacy in 
accordance with paragraph (ee) of this section.
    (iii) For a ceiling fan light kit with pin-based sockets that is 
packaged with fluorescent lamps, measure system efficacy in accordance 
with section 4 of appendix V of this subpart.
    (iv) For a ceiling fan light kit with medium screw base sockets that 
is packaged with incandescent lamps, measure lamp efficacy in accordance 
with paragraph (r) of this section.
    (2) For each ceiling fan light kit that requires compliance with the 
January 21, 2020 energy conservation standards:
    (i) For a ceiling fan light kit packaged with compact fluorescent 
lamps, measure lamp efficacy, lumen maintenance at 1,000 hours, lumen 
maintenance at 40 percent of lifetime, rapid cycle stress test, and time 
to failure in accordance with paragraph (y) of this section for each 
lamp basic model.
    (ii) For a ceiling fan light kit packaged with general service 
fluorescent lamps, measure lamp efficacy in accordance with paragraph 
(r) of this section for each lamp basic model.
    (iii) For a ceiling fan light kit packaged with incandescent lamps, 
measure lamp efficacy in accordance with paragraph (r) of this section 
for each lamp basic model.
    (iv) For a ceiling fan light kit packaged with integrated LED lamps, 
measure lamp efficacy in accordance with paragraph (ee) of this section 
for each lamp basic model.
    (v) For a ceiling fan light kit packaged with other fluorescent 
lamps (not compact fluorescent lamps or general service fluorescent 
lamps), packaged with other SSL products (not integrated LED lamps) or 
with integrated SSL circuitry, measure efficacy in accordance with 
section 3 of appendix V1 of this subpart for each lamp basic model or 
integrated SSL basic model.
    (y) Compact fluorescent lamps. (1) Measure initial lumen output, 
input

[[Page 323]]

power, initial lamp efficacy, lumen maintenance at 1,000 hours, lumen 
maintenance at 40 percent of lifetime of a compact fluorescent lamp (as 
defined in 10 CFR 430.2), color rendering index (CRI), correlated color 
temperature (CCT), power factor, start time, standby mode energy 
consumption, and time to failure in accordance with appendix W of this 
subpart. Express time to failure in hours.
    (2) Conduct the rapid cycle stress test in accordance with section 
3.3 of appendix W of this subpart.
    (z) Dehumidifiers. When using appendix X, determine the capacity, 
expressed in pints per day (pints/day), and the energy factor, expressed 
in liters per kilowatt hour (L/kWh), in accordance with section 4.1 of 
appendix X of this subpart. When using appendix X1, determine the 
capacity, expressed in pints/day, according to section 5.2 of appendix 
X1 to this subpart; determine the integrated energy factor, expressed in 
L/kWh, according to section 5.4 of appendix X1 to this subpart; and 
determine the case volume, expressed in cubic feet, for whole-home 
dehumidifiers in accordance with section 5.7 of appendix X1 of this 
subpart.
    (aa) Battery Chargers. (1) Measure the maintenance mode power, 
standby power, off mode power, battery discharge energy, 24-hour energy 
consumption and measured duration of the charge and maintenance mode 
test for a battery charger other than uninterruptible power supplies in 
accordance with appendix Y to this subpart.
    (2) Calculate the unit energy consumption of a battery charger other 
than uninterruptible power supplies in accordance with appendix Y to 
this subpart.
    (3) Calculate the average load adjusted efficiency of an 
uninterruptible power supply in accordance with appendix Y to this 
subpart.
    (bb) External Power Supplies. The energy consumption of an external 
power supply, including active-mode efficiency expressed as a percentage 
and the no-load, off, and standby mode energy consumption levels 
expressed in watts, shall be measured in accordance with section 4 of 
appendix Z of this subpart.
    (cc) Furnace Fans. The energy consumption of a single unit of a 
furnace fan basic model expressed in watts per 1000 cubic feet per 
minute (cfm) to the nearest integer shall be calculated in accordance 
with Appendix AA of this subpart.
    (dd) Portable air conditioners. (1) For single-duct and dual-duct 
portable air conditioners, measure the seasonally adjusted cooling 
capacity, expressed in British thermal units per hour (Btu/h), and the 
combined energy efficiency ratio, expressed in British thermal units per 
watt-hour (Btu/Wh) in accordance with appendix CC of this subpart.
    (2) Determine the estimated annual operating cost for portable air 
conditioners, expressed in dollars per year, by multiplying the 
following two factors:
    (i) For dual-duct portable air conditioners, the sum of 
AEC95 multiplied by 0.2, AEC83 multiplied by 0.8, 
and AECT as measured in accordance with section 5.3 of 
appendix CC of this subpart; or for single-duct portable air 
conditioners, the sum of AECSD and AECT as 
measured in accordance with section 5.3 of appendix CC of this subpart; 
and
    (ii) A representative average unit cost of electrical energy in 
dollars per kilowatt-hour as provided by the Secretary.
    (iii) Round the resulting product to the nearest dollar per year.
    (ee) Integrated light-emitting diode lamp. (1) The input power of an 
integrated light-emitting diode lamp must be measured in accordance with 
section 3 of appendix BB of this subpart.
    (2) The lumen output of an integrated light-emitting diode lamp must 
be measured in accordance with section 3 of appendix BB of this subpart.
    (3) The lamp efficacy of an integrated light-emitting diode lamp 
must be calculated in accordance with section 3 of appendix BB of this 
subpart.
    (4) The correlated color temperature of an integrated light-emitting 
diode lamp must be measured in accordance with section 3 of appendix BB 
of this subpart.
    (5) The color rendering index of an integrated light-emitting diode 
lamp must be measured in accordance with section 3 of appendix BB of 
this subpart.

[[Page 324]]

    (6) The power factor of an integrated light-emitting diode lamp must 
be measured in accordance with section 3 of appendix BB of this subpart.
    (7) The time to failure of an integrated light-emitting diode lamp 
must be measured in accordance with section 4 of appendix BB of this 
subpart.
    (8) The standby mode power must be measured in accordance with 
section 5 of appendix BB of this subpart.
    (ff) Coolers and combination cooler refrigeration products. (1) The 
estimated annual operating cost for models without an anti-sweat heater 
switch shall be the product of the following three factors, with the 
resulting product then being rounded to the nearest dollar per year:
    (i) The representative average-use cycle of 365 cycles per year;
    (ii) The average per-cycle energy consumption for the standard cycle 
in kilowatt-hours per cycle, determined according to section 6.2 of 
appendix A of this subpart; and
    (iii) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided by the Secretary.
    (2) The estimated annual operating cost for models with an anti-
sweat heater switch shall be the product of the following three factors, 
with the resulting product then being rounded to the nearest dollar per 
year:
    (i) The representative average-use cycle of 365 cycles per year;
    (ii) Half the sum of the average per-cycle energy consumption for 
the standard cycle and the average per-cycle energy consumption for a 
test cycle type with the anti-sweat heater switch in the position set at 
the factory just before shipping, each in kilowatt-hours per cycle, 
determined according to section 6.2 of appendix A of this subpart; and
    (iii) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided by the Secretary.
    (3) The estimated annual operating cost for any other specified 
cycle type shall be the product of the following three factors, with the 
resulting product then being rounded to the nearest dollar per year:
    (i) The representative average-use cycle of 365 cycles per year;
    (ii) The average per-cycle energy consumption for the specified 
cycle type, determined according to section 6.2 of appendix A to this 
subpart; and
    (iii) The representative average unit cost of electricity in dollars 
per kilowatt-hour as provided by the Secretary.
    (4) The energy factor, expressed in cubic feet per kilowatt-hour per 
cycle, shall be:
    (i) For models without an anti-sweat heater switch, the quotient of:
    (A) The adjusted total volume in cubic feet, determined according to 
section 6.1 of appendix A of this subpart, divided by--
    (B) The average per-cycle energy consumption for the standard cycle 
in kilowatt-hours per cycle, determined according to section 6.2 of 
appendix A of this subpart, with the resulting quotient then being 
rounded to the second decimal place; and
    (ii) For models having an anti-sweat heater switch, the quotient of:
    (A) The adjusted total volume in cubic feet, determined according to 
section 6.1 of appendix A of this subpart, divided by--
    (B) Half the sum of the average per-cycle energy consumption for the 
standard cycle and the average per-cycle energy consumption for a test 
cycle type with the anti-sweat heater switch in the position set at the 
factory just before shipping, each in kilowatt-hours per cycle, 
determined according to section 6.2 of appendix A of this subpart, with 
the resulting quotient then being rounded to the second decimal place.
    (5) The annual energy use, expressed in kilowatt-hours per year, 
shall be the following, rounded to the nearest kilowatt-hour per year:
    (i) For models without an anti-sweat heater switch, the 
representative average use cycle of 365 cycles per year multiplied by 
the average per-cycle energy consumption for the standard cycle in 
kilowatt-hours per cycle, determined according to section 6.2 of 
appendix A of this subpart; and
    (ii) For models having an anti-sweat heater switch, the 
representative average use cycle of 365 cycles per year

[[Page 325]]

multiplied by half the sum of the average per-cycle energy consumption 
for the standard cycle and the average per-cycle energy consumption for 
a test cycle type with the anti-sweat heater switch in the position set 
at the factory just before shipping, each in kilowatt-hours per cycle, 
determined according to section 6.2 of appendix A of this subpart.
    (6) Other useful measures of energy consumption shall be those 
measures of energy consumption that the Secretary determines are likely 
to assist consumers in making purchasing decisions which are derived 
from the application of appendix A of this subpart.
    (7) The following principles of interpretation shall be applied to 
the test procedure. The intent of the energy test procedure is to 
simulate operation in typical room conditions (72 [deg]F (22.2 [deg]C)) 
with door openings by testing at 90 [deg]F (32.2 [deg]C) ambient 
temperature without door openings. Except for operating characteristics 
that are affected by ambient temperature (for example, compressor 
percent run time), the unit, when tested under this test procedure, 
shall operate in a manner equivalent to the unit's operation while in 
typical room conditions.
    (i) The energy used by the unit shall be calculated when a 
calculation is provided by the test procedure. Energy consuming 
components that operate in typical room conditions (including as a 
result of door openings, or a function of humidity), and that are not 
excluded by this test procedure, shall operate in an equivalent manner 
during energy testing under this test procedure, or be accounted for by 
all calculations as provided for in the test procedure. Examples:
    (A) Energy saving features that are designed to operate when there 
are no door openings for long periods of time shall not be functional 
during the energy test.
    (B) The defrost heater shall neither function nor turn off 
differently during the energy test than it would when in typical room 
conditions. Also, the product shall not recover differently during the 
defrost recovery period than it would in typical room conditions.
    (C) Electric heaters that would normally operate at typical room 
conditions with door openings shall also operate during the energy test.
    (D) Energy used during adaptive defrost shall continue to be 
measured and adjusted per the calculation provided for in this test 
procedure.
    (ii) DOE recognizes that there may be situations that the test 
procedures do not completely address. In such cases, a manufacturer must 
obtain a waiver in accordance with the relevant provisions of this part 
if:
    (A) A product contains energy consuming components that operate 
differently during the prescribed testing than they would during 
representative average consumer use; and
    (B) Applying the prescribed test to that product would evaluate it 
in a manner that is unrepresentative of its true energy consumption 
(thereby providing materially inaccurate comparative data).
    (8) For non-compressor models, ``compressor'' and ``compressor 
cycles'' as used in appendix A of this subpart shall be interpreted to 
mean ``refrigeration system'' and ``refrigeration system cycles,'' 
respectively.
    (gg) General Service Lamps. (1) For general service incandescent 
lamps, use paragraph (r) of this section.
    (2) For compact fluorescent lamps, use paragraph (y) of this 
section.
    (3) For integrated LED lamps, use paragraph (ee) of this section.
    (4) For other incandescent lamps, measure initial light output, 
input power, lamp efficacy, power factor, and standby mode power in 
accordance with appendix DD of this subpart.
    (5) For other fluorescent lamps, measure initial light output, input 
power, lamp efficacy, power factor, and standby mode power in accordance 
with appendix DD of this subpart.
    (6) For OLED and non-integrated LED lamps, measure initial light 
output, input power, lamp efficacy, power factor, and standby mode power 
in accordance with appendix DD of this subpart.

[42 FR 27898, June 1, 1977]

    Editorial Note: For Federal Register citations affecting Sec.  
430.23, see the List of CFR Sections Affected, which appears in the 
Finding Aids section of the printed volume and at www.govinfo.gov.

[[Page 326]]



Sec.  430.24  [Reserved]



Sec.  430.25  Laboratory Accreditation Program.

    The testing for general service fluorescent lamps, general service 
incandescent lamps (with the exception of lifetime testing), general 
service lamps (with the exception of applicable lifetime testing), 
incandescent reflector lamps, compact fluorescent lamps, and fluorescent 
lamp ballasts, and integrated light-emitting diode lamps must be 
conducted by test laboratories accredited by an Accreditation Body that 
is a signatory member to the International Laboratory Accreditation 
Cooperation (ILAC) Mutual Recognition Arrangement (MRA). A 
manufacturer's or importer's own laboratory, if accredited, may conduct 
the applicable testing.

[81 FR 72504, Oct. 20, 2016]



Sec.  430.27  Petitions for waiver and interim waiver.

    (a) General information. This section provides a means for seeking 
waivers of the test procedure requirements of this subpart for basic 
models that meet the requirements of paragraph (a)(1) of this section. 
In granting a waiver or interim waiver, DOE will not change the energy 
use or efficiency metric that the manufacturer must use to certify 
compliance with the applicable energy conservation standard and to make 
representations about the energy use or efficiency of the covered 
product. The granting of a waiver or interim waiver by DOE does not 
exempt such basic models from any other regulatory requirement contained 
in this part or the certification and compliance requirements of 10 CFR 
part 429 and specifies an alternative method for testing the basic 
models addressed in the waiver.
    (1) Any interested person may submit a petition to waive for a 
particular basic model any requirements of Sec.  430.23 or of any 
appendix to this subpart, upon the grounds that the basic model contains 
one or more design characteristics which either prevent testing of the 
basic model according to the prescribed test procedures or cause the 
prescribed test procedures to evaluate the basic model in a manner so 
unrepresentative of its true energy and/or water consumption 
characteristics as to provide materially inaccurate comparative data.
    (2) Manufacturers of basic model(s) subject to a waiver or interim 
waiver are responsible for complying with the other requirements of this 
subpart and with the requirements of 10 CFR part 429 regardless of the 
person that originally submitted the petition for waiver and/or interim 
waiver. The filing of a petition for waiver and/or interim waiver shall 
not constitute grounds for noncompliance with any requirements of this 
subpart.
    (3) All correspondence regarding waivers and interim waivers must be 
submitted to DOE either electronically to [email protected] 
(preferred method of transmittal) or by mail to U.S. Department of 
Energy, Building Technologies Program, Test Procedure Waiver, 1000 
Independence Avenue SW., Mailstop EE-5B, Washington, DC 20585-0121.
    (b) Petition content and publication. (1) Each petition for waiver 
must:
    (i) Identify the particular basic model(s) for which a waiver is 
requested, each brand name under which the identified basic model(s) 
will be distributed in commerce, the design characteristic(s) 
constituting the grounds for the petition, and the specific requirements 
sought to be waived, and must discuss in detail the need for the 
requested waiver;
    (ii) Identify manufacturers of all other basic models distributed in 
commerce in the United States and known to the petitioner to incorporate 
design characteristic(s) similar to those found in the basic model that 
is the subject of the petition;
    (iii) Include any alternate test procedures known to the petitioner 
to evaluate the performance of the product type in a manner 
representative of the energy and/or water consumption characteristics of 
the basic model; and
    (iv) Be signed by the petitioner or an authorized representative. In 
accordance with the provisions set forth in 10 CFR 1004.11, any request 
for confidential treatment of any information contained in a petition 
for waiver or in supporting documentation must be accompanied by a copy 
of the petition,

[[Page 327]]

application or supporting documentation from which the information 
claimed to be confidential has been deleted. DOE will publish in the 
Federal Register the petition and supporting documents from which 
confidential information, as determined by DOE, has been deleted in 
accordance with 10 CFR 1004.11 and will solicit comments, data and 
information with respect to the determination of the petition.
    (2) Each petition for interim waiver must reference the related 
petition for waiver by identifying the particular basic model(s) for 
which a waiver is being sought. Each petition for interim waiver must 
demonstrate likely success of the petition for waiver and address what 
economic hardship and/or competitive disadvantage is likely to result 
absent a favorable determination on the petition for interim waiver. 
Each petition for interim waiver must be signed by the petitioner or an 
authorized representative.
    (c) Notification to other manufacturers. (1) Each petitioner for 
interim waiver must, upon publication of a grant of an interim waiver in 
the Federal Register, notify in writing all known manufacturers of 
domestically marketed basic models of the same product class (as 
specified in 10 CFR 430.32) and of other product classes known to the 
petitioner to use the technology or have the characteristic at issue in 
the waiver. The notice must include a statement that DOE has published 
the interim waiver and petition for waiver in the Federal Register and 
the date the petition for waiver was published. The notice must also 
include a statement that DOE will receive and consider timely written 
comments on the petition for waiver. Within five working days, each 
petitioner must file with DOE a statement certifying the names and 
addresses of each person to whom a notice of the petition for waiver has 
been sent.
    (2) If a petitioner does not request an interim waiver and 
notification has not been provided pursuant to paragraph (c)(1) of this 
section, each petitioner, after filing a petition for waiver with DOE, 
and after the petition for waiver has been published in the Federal 
Register, must, within five working days of such publication, notify in 
writing all known manufacturers of domestically marketed units of the 
same product class (as listed in 10 CFR 430.32) and of other product 
classes known to the petitioner to use the technology or have the 
characteristic at issue in the waiver. The notice must include a 
statement that DOE has published the petition in the Federal Register 
and the date the petition for waiver was published. Within five working 
days of the publication of the petition in the Federal Register, each 
petitioner must file with DOE a statement certifying the names and 
addresses of each person to whom a notice of the petition for waiver has 
been sent.
    (d) Public comment and rebuttal. (1) Any person submitting written 
comments to DOE with respect to an interim waiver must also send a copy 
of the comments to the petitioner by the deadline specified in the 
notice.
    (2) Any person submitting written comments to DOE with respect to a 
petition for waiver must also send a copy of such comments to the 
petitioner.
    (3) A petitioner may, within 10 working days of the close of the 
comment period specified in the Federal Register, submit a rebuttal 
statement to DOE. A petitioner may rebut more than one comment in a 
single rebuttal statement.
    (e) Provisions specific to interim waivers--(1) Disposition of 
application. If administratively feasible, DOE will notify the applicant 
in writing of the disposition of the petition for interim waiver within 
30 business days of receipt of the application. Notice of DOE's 
determination on the petition for interim waiver will be published in 
the Federal Register.
    (2) Criteria for granting. DOE will grant an interim waiver from the 
test procedure requirements if it appears likely that the petition for 
waiver will be granted and/or if DOE determines that it would be 
desirable for public policy reasons to grant immediate relief pending a 
determination on the petition for waiver.
    (f) Provisions specific to waivers--(1) Disposition of application. 
The petitioner shall be notified in writing as soon as practicable of 
the disposition of each petition for waiver. DOE shall

[[Page 328]]

issue a decision on the petition as soon as is practicable following 
receipt and review of the Petition for Waiver and other applicable 
documents, including, but not limited to, comments and rebuttal 
statements.
    (2) Criteria for granting. DOE will grant a waiver from the test 
procedure requirements if DOE determines either that the basic model(s) 
for which the waiver was requested contains a design characteristic that 
prevents testing of the basic model according to the prescribed test 
procedures, or that the prescribed test procedures evaluate the basic 
model in a manner so unrepresentative of its true energy or water 
consumption characteristics as to provide materially inaccurate 
comparative data. Waivers may be granted subject to conditions, which 
may include adherence to alternate test procedures specified by DOE. DOE 
will consult with the Federal Trade Commission prior to granting any 
waiver, and will promptly publish in the Federal Register notice of each 
waiver granted or denied, and any limiting conditions of each waiver 
granted.
    (g) Extension to additional basic models. A petitioner may request 
that DOE extend the scope of a waiver or an interim waiver to include 
additional basic models employing the same technology as the basic 
model(s) set forth in the original petition. DOE will publish any such 
extension in the Federal Register.
    (h) Duration. (1) Within one year of issuance of an interim waiver, 
DOE will either:
    (i) Publish in the Federal Register a determination on the petition 
for waiver; or
    (ii) Publish in the Federal Register a new or amended test procedure 
that addresses the issues presented in the waiver.
    (2) When DOE amends the test procedure to address the issues 
presented in a waiver, the waiver will automatically terminate on the 
date on which use of that test procedure is required to demonstrate 
compliance.
    (i) Compliance certification. (1) If the alternate test procedure 
specified in the interim waiver differs from the alternate test 
procedure specified by DOE in a subsequent decision and order granting 
the petition for waiver, a manufacturer who has already certified basic 
models using the procedure permitted in DOE's grant of an interim test 
procedure waiver is not required to re-test and re-rate those basic 
models so long as: The manufacturer used that alternative procedure to 
certify the compliance of the basic model after DOE granted the 
company's interim waiver request; changes have not been made to those 
basic models that would cause them to use more energy or otherwise be 
less energy efficient; and the manufacturer does not modify the 
certified rating. However, if the alternate test procedure specified in 
the interim waiver differs from the alternate test procedure specified 
by DOE in a subsequent decision and order granting the petition for 
waiver and if specified by DOE in the decision and order, the 
manufacturer must re-test and re-certify compliance using the procedure 
specified by DOE in the decision and order by the time of the next 
annual certification.
    (2) After DOE publishes a decision and order in the Federal 
Register, a manufacturer must use the test procedure contained in that 
notice to rate any basic models covered by the waiver that have not yet 
been certified to DOE and for any future testing in support of the 
certification for the basic model(s) while the waiver is valid.
    (j) Petition for waiver required of other manufacturers. Within 60 
days after DOE issues a waiver to a manufacturer for a product employing 
a particular technology or having a particular characteristic, any 
manufacturer currently distributing in commerce in the United States a 
product employing a technology or characteristic that results in the 
same need for a waiver (as specified by DOE in the published decision 
and order on the petition in the Federal Register) must submit a 
petition for waiver pursuant to the requirements of this section. 
Manufacturers not currently distributing such products in commerce in 
the United States must petition for and be granted a waiver prior to 
distribution in commerce in the United States. Manufacturers may also 
submit a request for interim waiver pursuant to the requirements of this 
section.

[[Page 329]]

    (k) Rescission or modification. (1) DOE may rescind or modify a 
waiver or interim waiver at any time upon DOE's determination that the 
factual basis underlying the petition for waiver or interim waiver is 
incorrect, or upon a determination that the results from the alternate 
test procedure are unrepresentative of the basic model(s)' true energy 
consumption characteristics. Waivers and interim waivers are conditioned 
upon the validity of statements, representations, and documents provided 
by the requestor; any evidence that the original grant of a waiver or 
interim waiver was based upon inaccurate information will weigh against 
continuation of the waiver. DOE's decision will specify the basis for 
its determination and, in the case of a modification, will also specify 
the change to the authorized test procedure.
    (2) A person may request that DOE rescind or modify a waiver or 
interim waiver issued to that person if the person discovers an error in 
the information provided to DOE as part of its petition, determines that 
the waiver is no longer needed, or for other appropriate reasons. In a 
request for rescission, the requestor must provide a statement 
explaining why it is requesting rescission. In a request for 
modification, the requestor must explain the need for modification to 
the authorized test procedure and detail the modifications needed and 
the corresponding impact on measured energy consumption.
    (3) DOE will publish a proposed rescission or modification (DOE-
initiated or at the request of the original requestor) in the Federal 
Register for public comment. A requestor may, within 10 working days of 
the close of the comment period specified in the proposed rescission or 
modification published in the Federal Register, submit a rebuttal 
statement to DOE. A requestor may rebut more than one comment in a 
single rebuttal statement.
    (4) DOE will publish its decision in the Federal Register. DOE's 
determination will be based on relevant information contained in the 
record and any comments received.
    (5) After the effective date of a rescission, any basic model(s) 
previously subject to a waiver must be tested and certified using the 
applicable DOE test procedure in 10 CFR part 430.
    (l) Revision of regulation. As soon as practicable after the 
granting of any waiver, DOE will publish in the Federal Register a 
notice of proposed rulemaking to amend its regulations so as to 
eliminate any need for the continuation of such waiver. As soon 
thereafter as practicable, DOE will publish in the Federal Register a 
final rule.
    (m) To exhaust administrative remedies, any person aggrieved by an 
action under this section must file an appeal with the DOE's Office of 
Hearings and Appeals as provided in 10 CFR part 1003, subpart C.

[79 FR 26599, May 9, 2014]

    Effective Date Note: At 85 FR 79820, Dec. 11, 2020, Sec.  430.27 was 
amended by revising paragraphs (e)(1), (h), and (i)(1), effective Jan. 
11, 2021. For the convenience of the user, the revised text is set forth 
as follows:



Sec.  430.27  Petitions for waiver and interim waiver.

                                * * * * *

    (e) Provisions specific to interim waiver--(1) Disposition of 
petition. (i) Within 5 business days of receipt of a petition for an 
interim waiver, DOE will post that petition for an interim waiver on its 
website.
    (ii) In those cases where DOE receives a petition for an interim 
waiver in conjunction with a petition for waiver, DOE will review the 
petition for interim waiver within 45 business days of receipt of the 
petition. Where the manufacturer does not specify any alternate test 
procedure, or otherwise fails to satisfy the other required criteria 
specified under paragraph (b)(2) of this section, DOE will deny the 
petition for interim waiver. In such case, DOE will notify the applicant 
of the denial within the 45-day review period and process the request 
for waiver in accordance with this section. If DOE does not notify the 
applicant of the disposition of the petition for interim waiver, in 
writing, within 45 business days of receipt of the petition, the interim 
waiver is granted utilizing the alternate test procedure requested in 
the petition. Notice of DOE's determination on the petition for interim 
waiver will be posted on the Department's website not later than 5 
business days after the end of the review period. Such determination 
will also be submitted for publication in the Federal Register.
    (iii) A petition submitted under this paragraph (whether for an 
interim waiver or waiver) is considered ``received'' on the date

[[Page 330]]

it is received by the Department through the Department's established 
email box for receipt of waiver petitions or, if delivered by mail, on 
the date the waiver petition is stamped as received by the Department.

                                * * * * *

    (h) Duration. (1) Interim waivers remain in effect until the earlier 
of the following:
    (i) DOE publishes a decision and order on a petition for waiver in 
the Federal Register pursuant to paragraph (f) of this section; or
    (ii) DOE publishes in the Federal Register a new or amended test 
procedure that addresses the issue(s) presented in the waiver.
    (2) Within one year of a determination to grant an interim waiver, 
DOE will complete either paragraph (h)(1)(i) or (ii) of this section as 
specified in this section.
    (3) When DOE amends the test procedure to address the issues 
presented in a waiver, the waiver will automatically terminate on the 
date on which use of that test procedure is required to demonstrate 
compliance.
    (i) Compliance certification. (1) If the alternate test procedure 
specified in the interim waiver differs from the alternate test 
procedure specified by DOE in a subsequent decision and order granting 
the petition for waiver, a manufacturer who has already certified basic 
models using the procedure permitted in DOE's grant of an interim test 
procedure waiver is not required to re-test and re-rate those basic 
models so long as: The manufacturer used that alternative procedure to 
certify the compliance of the basic model after DOE granted the 
company's interim waiver request; changes have not been made to those 
basic models that would cause them to use more energy or otherwise be 
less energy efficient; and the manufacturer does not modify the 
certified rating. However, if DOE ultimately denies the petition of 
waiver or the alternate test procedure specified in the interim waiver 
differs from the alternate test procedure specified by DOE in a 
subsequent decision and order granting the petition for waiver, DOE will 
provide a period of 180 days before the manufacturer is required to use 
the DOE test procedure or the alternate test procedure specified in the 
decision and order to make representations of energy efficiency.

                                * * * * *



   Sec. Appendix A to Subpart B of Part 430--Uniform Test Method for 
    Measuring the Energy Consumption of Refrigerators, Refrigerator-
           Freezers, and Miscellaneous Refrigeration Products

    Note: For refrigerators and refrigerator-freezers, the rounding 
requirements specified in sections 5.3.e and 6.1 of this appendix are 
not required for use until the compliance date of any amended energy 
conservation standards for these products. For combination cooler 
refrigeration products, manufacturers must use the test procedures in 
this appendix for all representations of energy use starting on the 
compliance date of any energy conservation standards for these products. 
For all other miscellaneous refrigeration products (e.g. coolers), 
manufacturers must use the test procedures in this appendix for all 
representations of energy use on or after January 17, 2017.

                             1. Definitions

    Section 3, Definitions, of HRF-1-2008 (incorporated by reference; 
see Sec.  430.3) applies to this test procedure, except that the term 
``wine chiller'' means ``cooler'' as defined in Sec.  430.2 and the term 
``wine chiller compartment'' means ``cooler compartment'' as defined in 
this appendix.
    Anti-sweat heater means a device incorporated into the design of a 
product to prevent the accumulation of moisture on the exterior or 
interior surfaces of the cabinet.
    Anti-sweat heater switch means a user-controllable switch or user 
interface which modifies the activation or control of anti-sweat 
heaters.
    AS/NZS 4474.1:2007 means Australian/New Zealand Standard 
4474.1:2007, Performance of household electrical appliances--
Refrigerating appliances, Part 1: Energy consumption and performance. 
Only sections of AS/NZS 4474.1:2007 (incorporated by reference; see 
Sec.  430.3) specifically referenced in this test procedure are part of 
this test procedure. In cases where there is a conflict, the language of 
the test procedure in this appendix takes precedence over AS/NZS 
4474.1:2007.
    Automatic defrost means a system in which the defrost cycle is 
automatically initiated and terminated, with resumption of normal 
refrigeration at the conclusion of the defrost operation. The system 
automatically prevents the permanent formation of frost on all 
refrigerated surfaces.
    Automatic icemaker means a device that can be supplied with water 
without user intervention, either from a pressurized water supply system 
or by transfer from a water reservoir located inside the cabinet, that 
automatically produces, harvests, and stores ice in a storage bin, with 
means to automatically interrupt the harvesting operation

[[Page 331]]

when the ice storage bin is filled to a pre-determined level.
    Cooler compartment means a refrigerated compartment designed 
exclusively for wine or other beverages within a consumer refrigeration 
product that is capable of maintaining compartment temperatures either 
(a) no lower than 39 [deg]F (3.9 [deg]C), or (b) in a range that extends 
no lower than 37 [deg]F (2.8 [deg]C) but at least as high as 60 [deg]F 
(15.6 [deg]C) as determined according to Sec.  429.14(d)(2) or Sec.  
429.61(d)(2) of this chapter.
    Complete temperature cycle means a time period defined based upon 
the cycling of compartment temperature that starts when the compartment 
temperature is at a maximum and ends when the compartment temperature 
returns to an equivalent maximum (within 0.5 [deg]F of the starting 
temperature), having in the interim fallen to a minimum and subsequently 
risen again to reach the second maximum. Alternatively, a complete 
temperature cycle can be defined to start when the compartment 
temperature is at a minimum and ends when the compartment temperature 
returns to an equivalent minimum (within 0.5 [deg]F of the starting 
temperature), having in the interim risen to a maximum and subsequently 
fallen again to reach the second minimum.
    Cycle means a 24-hour period for which the energy use of a product 
is calculated based on the consumer-activated compartment temperature 
controls being set to maintain the standardized temperatures (see 
section 3.2 of this appendix).
    Cycle type means the set of test conditions having the calculated 
effect of operating a product for a period of 24 hours, with the 
consumer-activated controls, other than those that control compartment 
temperatures, set to establish various operating characteristics.
    Defrost cycle type means a distinct sequence of control whose 
function is to remove frost and/or ice from a refrigerated surface. 
There may be variations in the defrost control sequence, such as the 
number of defrost heaters energized. Each such variation establishes a 
separate, distinct defrost cycle type. However, defrost achieved 
regularly during the compressor off-cycles by warming of the evaporator 
without active heat addition, although a form of automatic defrost, does 
not constitute a unique defrost cycle type for the purposes of 
identifying the test period in accordance with section 4 of this 
appendix.
    HRF-1-2008 means AHAM Standard HRF-1-2008, Association of Home 
Appliance Manufacturers, Energy and Internal Volume of Refrigerating 
Appliances (2008), including Errata to Energy and Internal Volume of 
Refrigerating Appliances, Correction Sheet issued November 17, 2009. 
Only sections of HRF-1-2008 (incorporated by reference; see Sec.  430.3) 
specifically referenced in this test procedure are part of this test 
procedure. In cases where there is a conflict, the language of the test 
procedure in this appendix takes precedence over HRF-1-2008.
    Ice storage bin means a container in which ice can be stored.
    Long-time automatic defrost means an automatic defrost system whose 
successive defrost cycles are separated by 14 hours or more of 
compressor operating time.
    Multiple-compressor product means a consumer refrigeration product 
with more than one compressor.
    Multiple refrigeration system product means a multiple-compressor 
product or a miscellaneous refrigeration product with more than one 
refrigeration system for which the operation of the systems is not 
coordinated. For non-compressor multiple refrigeration system products, 
``multiple-compressor product'' as used in this appendix shall be 
interpreted to mean ``multiple refrigeration system product.''
    Precooling means operating a refrigeration system before initiation 
of a defrost cycle to reduce one or more compartment temperatures 
significantly (more than 0.5 [deg]F) below its minimum during stable 
operation between defrosts.
    Recovery means operating a refrigeration system after the conclusion 
of a defrost cycle to reduce the temperature of one or more compartments 
to the temperature range that the compartment(s) exhibited during stable 
operation between defrosts.
    Separate auxiliary compartment means a separate freezer, fresh food, 
or cooler compartment that is not the primary freezer, primary fresh 
food, or primary cooler compartment. Separate auxiliary compartments may 
also be convertible (e.g., from fresh food to freezer). Separate 
auxiliary compartments may not be larger than the primary compartment of 
their type, but such size restrictions do not apply to separate 
auxiliary convertible compartments.
    Special compartment means any compartment other than a butter 
conditioner or a cooler compartment, without doors directly accessible 
from the exterior, and with separate temperature control (such as 
crispers convertible to meat keepers) that is not convertible from the 
fresh food temperature range to the freezer temperature range.
    Stable operation means operation after steady-state conditions have 
been achieved but excluding any events associated with defrost cycles. 
During stable operation the average rate of change of compartment 
temperatures must not exceed 0.042 [deg]F (0.023 [deg]C) per hour for 
all compartment temperatures. Such a calculation performed for 
compartment temperatures at any two times, or for any two periods of 
time comprising complete cycles, during stable operation must meet this 
requirement.
    (a) If compartment temperatures do not cycle, the relevant 
calculation shall be the

[[Page 332]]

difference between the temperatures at two points in time divided by the 
difference, in hours, between those points in time.
    (b) If compartment temperatures cycle as a result of compressor 
cycling or other cycling operation of any system component (e.g., a 
damper, fan, heater, etc.), the relevant calculation shall be the 
difference between compartment temperature averages evaluated for the 
whole compressor cycles or complete temperature cycles divided by the 
difference, in hours, between either the starts, ends, or mid-times of 
the two cycles.
    Stabilization period means the total period of time during which 
steady-state conditions are being attained or evaluated.
    Standard cycle means the cycle type in which the anti-sweat heater 
control, when provided, is set in the highest energy-consuming position.
    Through-the-door ice/water dispenser means a device incorporated 
within the cabinet, but outside the boundary of the refrigerated space, 
that delivers to the user on demand ice and may also deliver water from 
within the refrigerated space without opening an exterior door. This 
definition includes dispensers that are capable of dispensing ice and 
water or ice only.
    Variable anti-sweat heater control means an anti-sweat heater 
control that varies the average power input of the anti-sweat heater(s) 
based on operating condition variable(s) and/or ambient condition 
variable(s).
    Variable defrost control means an automatic defrost system in which 
successive defrost cycles are determined by an operating condition 
variable (or variables) other than solely compressor operating time. 
This includes any electrical or mechanical device performing this 
function. A control scheme that changes the defrost interval from a 
fixed length to an extended length (without any intermediate steps) is 
not considered a variable defrost control. A variable defrost control 
feature predicts the accumulation of frost on the evaporator and reacts 
accordingly. Therefore, the times between defrost must vary with 
different usage patterns and include a continuum of periods between 
defrosts as inputs vary.

                           2. Test Conditions

    2.1 Ambient Temperature Measurement. Temperature measuring devices 
shall be shielded so that indicated temperatures are not affected by the 
operation of the condensing unit or adjacent units.
    2.1.1 Ambient Temperature. Measure and record the ambient 
temperature at points located 3 feet (91.5 cm) above the floor and 10 
inches (25.4 cm) from the center of the two sides of the unit under 
test. The ambient temperature shall be 90.0  1 
[deg]F (32.2  0.6 [deg]C) during the stabilization 
period and the test period.
    2.1.2 Ambient Temperature Gradient. The test room vertical ambient 
temperature gradient in any foot of vertical distance from 2 inches (5.1 
cm) above the floor or supporting platform to a height of 1 foot (30.5 
cm) above the top of the unit under test is not to exceed 0.5 [deg]F per 
foot (0.9 [deg]C per meter). The vertical ambient temperature gradient 
at locations 10 inches (25.4 cm) out from the centers of the two sides 
of the unit being tested is to be maintained during the test. To 
demonstrate that this requirement has been met, test data must include 
measurements taken using temperature sensors at locations 10 inches 
(25.4 cm) from the center of the two sides of the unit under test at 
heights of 2 inches (5.1 cm) and 36 inches (91.4 cm) above the floor or 
supporting platform and at a height of 1 foot (30.5 cm) above the unit 
under test.
    2.1.3 Platform. A platform must be used if the floor temperature is 
not within 3 [deg]F (1.7 [deg]C) of the measured ambient temperature. If 
a platform is used, it is to have a solid top with all sides open for 
air circulation underneath, and its top shall extend at least 1 foot 
(30.5 cm) beyond each side and the front of the unit under test and 
extend to the wall in the rear.
    2.2 Operational Conditions. The unit under test shall be installed 
and its operating conditions maintained in accordance with HRF-1-2008 
(incorporated by reference; see Sec.  430.3), sections 5.3.2 through 
5.5.5.5 (excluding section 5.5.5.4). Exceptions and clarifications to 
the cited sections of HRF-1-2008 are noted in sections 2.3 through 2.8 
and 5.1 of this appendix.
    2.3 Anti-Sweat Heaters. The anti-sweat heater switch is to be on 
during one test and off during a second test. In the case of a unit 
equipped with variable anti-sweat heater control, the standard cycle 
energy use shall be the result of the calculation described in section 
6.2.5 of this appendix.
    2.4 Conditions for Automatic Defrost Refrigerator-Freezers, Cooler-
Refrigerator-Freezers and Cooler-Freezers. For these products, the 
freezer compartments shall not be loaded with any frozen food packages 
during testing. Cylindrical metallic masses of dimensions 1.12  0.25 inches (2.9  0.6 cm) in 
diameter and height shall be attached in good thermal contact with each 
temperature sensor within the refrigerated compartments. All temperature 
measuring sensor masses shall be supported by low-thermal-conductivity 
supports in such a manner to ensure that there will be at least 1 inch 
(2.5 cm) of air space separating the thermal mass from contact with any 
interior surface or hardware inside the cabinet. In case of interference 
with hardware at the sensor locations specified in section 5.1 of this 
appendix, the sensors shall be placed at the nearest adjacent location 
such that there will be a 1-

[[Page 333]]

inch air space separating the sensor mass from the hardware.
    2.5 Conditions for All-Refrigerators and Cooler-All-Refrigerators. 
There shall be no load in the freezer compartment during the test.
    2.6 The cabinet and its refrigerating mechanism shall be assembled 
and set up in accordance with the printed consumer instructions supplied 
with the cabinet. Set-up of the test unit shall not deviate from these 
instructions, unless explicitly required or allowed by this test 
procedure. Specific required or allowed deviations from such set-up 
include the following:
    (a) Connection of water lines and installation of water filters are 
not required;
    (b) Clearance requirements from surfaces of the product shall be as 
described in section 2.8 of this appendix;
    (c) The electric power supply shall be as described in HRF-1-2008 
(incorporated by reference; see Sec.  430.3), section 5.5.1;
    (d) Temperature control settings for testing shall be as described 
in section 3 of this appendix. Settings for convertible compartments and 
other temperature-controllable or special compartments shall be as 
described in section 2.7 of this appendix;
    (e) The product does not need to be anchored or otherwise secured to 
prevent tipping during energy testing;
    (f) All the product's chutes and throats required for the delivery 
of ice shall be free of packing, covers, or other blockages that may be 
fitted for shipping or when the icemaker is not in use; and
    (g) Ice storage bins shall be emptied of ice.
    For cases in which set-up is not clearly defined by this test 
procedure, manufacturers must submit a petition for a waiver (see 
section 7 of this appendix).
    2.7 Compartments that are convertible (e.g., from fresh food to 
freezer or cooler) shall be operated in the highest energy use position. 
A compartment may be considered to be convertible to a cooler 
compartment if it is capable of maintaining compartment temperatures at 
least as high as 55 [deg]F (12.8 [deg]C) and also capable of operating 
at storage temperatures less than 37 [deg]F. For the special case of 
convertible separate auxiliary compartments, this means that the 
compartment shall be treated as a freezer compartment, a fresh food 
compartment, or a cooler compartment, depending on which of these 
represents the highest energy use.
    Special compartments shall be tested with controls set to provide 
the coldest temperature. However, for special compartments in which 
temperature control is achieved using the addition of heat (including 
resistive electric heating, refrigeration system waste heat, or heat 
from any other source, but excluding the transfer of air from another 
part of the interior of the product) for any part of the controllable 
temperature range of that compartment, the product energy use shall be 
determined by averaging two sets of tests. The first set of tests shall 
be conducted with such special compartments at their coldest settings, 
and the second set of tests shall be conducted with such special 
compartments at their warmest settings. The requirements for the warmest 
or coldest temperature settings of this section do not apply to features 
or functions associated with temperature controls (such as fast chill 
compartments) that are initiated manually and terminated automatically 
within 168 hours.
    Movable subdividing barriers that separate compartments shall be 
placed in the median position. If such a subdividing barrier has an even 
number of positions, the near-median position representing the smallest 
volume of the warmer compartment(s) shall be used.
    2.8 Rear Clearance.
    (a) General. The space between the lowest edge of the rear plane of 
the cabinet and a vertical surface (the test room wall or simulated 
wall) shall be the minimum distance in accordance with the 
manufacturer's instructions, unless other provisions of this section 
apply. The rear plane shall be considered to be the largest flat surface 
at the rear of the cabinet, excluding features that protrude beyond this 
surface, such as brackets or compressors.
    (b) Maximum clearance. The clearance shall not be greater than 2 
inches (51 mm) from the lowest edge of the rear plane to the vertical 
surface, unless the provisions of paragraph (c) of this section apply.
    (c) If permanent rear spacers or other components that protrude 
beyond the rear plane extend further than the 2-inch (51 mm) distance, 
or if the highest edge of the rear plane is in contact with the vertical 
surface when the unit is positioned with the lowest edge of the rear 
plane at or further than the 2-inch (51 mm) distance from the vertical 
surface, the appliance shall be located with the spacers or other 
components protruding beyond the rear plane, or the highest edge of the 
rear plane, in contact with the vertical surface.
    (d) Rear-mounted condensers. If the product has a flat rear-wall-
mounted condenser (i.e., a rear-wall-mounted condenser with all 
refrigerant tube centerlines within 0.25 inches (6.4 mm) of the 
condenser plane), and the area of the condenser plane represents at 
least 25% of the total area of the rear wall of the cabinet, then the 
spacing to the vertical surface may be measured from the lowest edge of 
the condenser plane.
    2.9 Steady-State Condition. Steady-state conditions exist if the 
temperature measurements in all measured compartments taken at 4-minute 
intervals or less during a stabilization period are not changing at a 
rate greater than 0.042 [deg]F (0.023 [deg]C) per hour as determined by 
the applicable condition of paragraph (a) or (b) of this section.

[[Page 334]]

    (a) The average of the measurements during a 2-hour period if no 
cycling occurs or during a number of complete repetitive compressor 
cycles occurring through a period of no less than 2 hours is compared to 
the average over an equivalent time period with 3 hours elapsing between 
the two measurement periods.
    (b) If paragraph (a) of this section cannot be used, the average of 
the measurements during a number of complete repetitive compressor 
cycles occurring through a period of no less than 2 hours and including 
the last complete cycle before a defrost period (or if no cycling 
occurs, the average of the measurements during the last 2 hours before a 
defrost period) are compared to the same averaging period before the 
following defrost period.
    2.10 Products with Demand-Response Capability. Products that have a 
communication module for demand-response functions that is located 
within the cabinet shall be tested with the communication module in the 
configuration set at the factory just before shipping.

                        3. Test Control Settings

    3.1 Model with No User-Operable Temperature Control. A test shall be 
performed to measure the compartment temperatures and energy use. A 
second test shall be performed with the temperature control electrically 
short circuited to cause the compressor to run continuously (or to cause 
the non-compressor refrigeration system to run continuously at maximum 
capacity).
    3.2 Models with User-Operable Temperature Control. Testing shall be 
performed in accordance with the procedure in this section using the 
following standardized temperatures:
    39 [deg]F (3.9 [deg]C) fresh food compartment temperature;
    0 [deg]F (-17.8 [deg]C) freezer compartment temperature, except for 
freezer compartments in refrigerators and cooler-refrigerators, in which 
case testing would use a 15 [deg]F (-9.4 [deg]C) freezer compartment 
temperature; and
    55 [deg]F (12.8 [deg]C) cooler compartment temperature.
    For the purposes of comparing compartment temperatures with 
standardized temperatures, as described in sections 3.2.1 and 3.2.2 of 
this appendix, the freezer compartment temperature shall be as specified 
in section 5.1.4 of this appendix, the fresh food compartment 
temperature shall be as specified in section 5.1.3 of this appendix, and 
the cooler compartment temperature shall be as specified in section 
5.1.5 of this appendix.
    3.2.1 Temperature Control Settings and Tests to Use for Energy Use 
Calculations.
    3.2.1.1 Setting Temperature Controls. For mechanical control 
systems, (a) knob detents shall be mechanically defeated if necessary to 
attain a median setting, and (b) the warmest and coldest settings shall 
correspond to the positions in which the indicator is aligned with 
control symbols indicating the warmest and coldest settings. For 
electronic control systems, the test shall be performed with all 
compartment temperature controls set at the average of the coldest and 
warmest settings; if there is no setting equal to this average, the 
setting closest to the average shall be used. If there are two such 
settings equally close to the average, the higher of these temperature 
control settings shall be used.
    3.2.1.2 Test Sequence. A first test shall be performed with all 
compartment temperature controls set at their median position midway 
between their warmest and coldest settings. A second test shall be 
performed with all controls set at their warmest setting or all controls 
set at their coldest setting (not electrically or mechanically 
bypassed). For units with a single standardized temperature (e.g., all-
refrigerator or cooler), this setting shall be the appropriate setting 
that attempts to achieve compartment temperatures measured during the 
two tests that bound (i.e., one is above and one is below) the 
standardized temperature. For other units, the second test shall be 
conducted with all controls at their coldest setting, unless all 
compartment temperatures measured during the first test are lower than 
the standardized temperatures, in which case the second test shall be 
conducted with all controls at their warmest setting. If any compartment 
is warmer than its standardized temperature for a test with all controls 
at their coldest position, the product receives no energy use rating and 
the manufacturer must submit a petition for a waiver (see section 7 of 
this appendix).
    3.2.1.3 Temperature Setting Table. See Table 1 of this section for a 
general description of which settings to use and which test results to 
use in the energy consumption calculation for products with one, two, or 
three standardized temperatures.

                          Table 1--Temperature Settings: General Chart for All Products
----------------------------------------------------------------------------------------------------------------
                     First test                                     Second test               Energy calculation
---------------------------------------------------------------------------------------------      based on:
             Setting                    Results             Setting             Results
----------------------------------------------------------------------------------------------------------------
Mid for all compartments........  All compartments    Warm for all        All compartments    Second Test Only.
                                   low.                compartments.       low.

[[Page 335]]

 
                                                                          One or more         First and Second
                                                                           compartments high.  Test.
                                  One or more         Cold for all        All compartments    First and Second
                                   compartments high.  compartments.       low.                Test.
                                                                          One or more         No Energy Use
                                                                           compartments high.  Rating.
----------------------------------------------------------------------------------------------------------------

    3.2.2 Alternatively, a first test may be performed with all 
temperature controls set at their warmest setting. If all compartment 
temperatures are below the appropriate standardized temperatures, then 
the result of this test alone will be used to determine energy 
consumption. If this condition is not met, then the unit shall be tested 
in accordance with section 3.2.1 of this appendix.
    3.2.3 Temperature Settings for Separate Auxiliary Convertible 
Compartments. For separate auxiliary convertible compartments tested as 
freezer compartments, the median setting shall be within 2 [deg]F (1.1 
[deg]C) of the standardized freezer compartment temperature, and the 
warmest setting shall be at least 5 [deg]F (2.8 [deg]C) warmer than the 
standardized temperature. For separate auxiliary convertible 
compartments tested as fresh food compartments, the median setting shall 
be within 2 [deg]F (1.1 [deg]C) of 39 [deg]F (3.9 [deg]C), the coldest 
setting shall be below 34 [deg]F (1.1 [deg]C), and the warmest setting 
shall be above 43 [deg]F (6.1 [deg]C). For separate auxiliary 
convertible compartments tested as cooler compartments, the median 
setting shall be within 2 [deg]F (1.1 [deg]C) of 55 [deg]F (12.8 
[deg]C), and the coldest setting shall be below 50 [deg]F (10.0 [deg]C). 
For compartments where control settings are not expressed as particular 
temperatures, the measured temperature of the convertible compartment 
rather than the settings shall meet the specified criteria.
    3.3 Optional Test for Models with Two Compartments and User-Operable 
Controls. As an alternative to section 3.2 of this appendix, perform 
three tests such that the set of tests meets the ``minimum requirements 
for interpolation'' of AS/NZS 4474.1:2007 (incorporated by reference; 
see Sec.  430.3) appendix M, section M3, paragraphs (a) through (c) and 
as illustrated in Figure M1. The target temperatures txA and 
txB defined in section M4(a)(i) of AS/NZ 4474.1:2007 shall be 
the standardized temperatures defined in section 3.2 of this appendix.

                             4. Test Period

    Tests shall be performed by establishing the conditions set forth in 
section 2, and using the control settings set forth in section 3.
    4.1 Non-automatic Defrost. If the model being tested has no 
automatic defrost system, the test period shall start after steady-state 
conditions (see section 2.9 of this appendix) have been achieved and be 
no less than three hours in duration. During the test period, the 
compressor motor shall complete two or more whole compressor cycles. (A 
compressor cycle is a complete ``on'' and a complete ``off'' period of 
the motor.) If no ``off'' cycling occurs, the test period shall be three 
hours. If fewer than two compressor cycles occur during a 24-hour 
period, then a single complete compressor cycle may be used.
    4.2 Automatic Defrost. If the model being tested has an automatic 
defrost system, the test period shall start after steady-state 
conditions have been achieved and be from one point during a defrost 
period to the same point during the next defrost period. If the model 
being tested has a long-time automatic defrost system, the alternative 
provisions of section 4.2.1 may be used. If the model being tested has a 
variable defrost control, the provisions of section 4.2.2 shall apply. 
If the model is a multiple-compressor product with automatic defrost, 
the provisions of section 4.2.3 shall apply. If the model being tested 
has long-time automatic or variable defrost control involving multiple 
defrost cycle types, such as for a product with a single compressor and 
two or more evaporators in which the evaporators are defrosted at 
different frequencies, the provisions of section 4.2.4 shall apply. If 
the model being tested has multiple defrost cycle types for which 
compressor run time between defrosts is a fixed time of less than 14 
hours for all such cycle types, and for which the compressor run times 
between defrosts for different defrost cycle types are equal to or 
multiples of each other, the test period shall be from one point of the 
defrost cycle type with the longest compressor run time between defrosts 
to the same point during the next occurrence of this defrost cycle type. 
For such products not using the procedures of section 4.2.4, energy 
consumption shall be calculated as described in section 5.2.1.1 of this 
appendix.

[[Page 336]]

    4.2.1 Long-time Automatic Defrost. If the model being tested has a 
long-time automatic defrost system, the two-part test described in this 
section may be used. The first part is a stable period of compressor 
operation that includes no portions of the defrost cycle, such as 
precooling or recovery, that is otherwise the same as the test for a 
unit having no defrost provisions (section 4.1). The second part is 
designed to capture the energy consumed during all of the events 
occurring with the defrost control sequence that are outside of stable 
operation.
    4.2.1.1 Cycling Compressor System. For a system with a cycling 
compressor, the second part of the test starts at the termination of the 
last regular compressor ``on'' cycle. The average compartment 
temperatures measured from the termination of the previous compressor 
``on'' cycle to the termination of the last regular compressor ``on'' 
cycle must both be within 0.5 [deg]F (0.3 [deg]C) of their average 
temperatures measured for the first part of the test. If any compressor 
cycles occur prior to the defrost heater being energized that cause the 
average temperature in any compartment to deviate from its average 
temperature for the first part of the test by more than 0.5 [deg]F (0.3 
[deg]C), these compressor cycles are not considered regular compressor 
cycles and must be included in the second part of the test. As an 
example, a ``precooling'' cycle, which is an extended compressor cycle 
that lowers the temperature(s) of one or more compartments prior to 
energizing the defrost heater, must be included in the second part of 
the test. The test period for the second part of the test ends at the 
termination of the first regular compressor ``on'' cycle after 
compartment temperatures have fully recovered to their stable 
conditions. The average temperatures of the compartments measured from 
this termination of the first regular compressor ``on'' cycle until the 
termination of the next regular compressor ``on'' cycle must both be 
within 0.5 [deg]F (0.3 [deg]C) of their average temperatures measured 
for the first part of the test. See Figure 1 of this section. Note that 
Figure 1 illustrates the concepts of precooling and recovery but does 
not represent all possible defrost cycles.

[[Page 337]]

[GRAPHIC] [TIFF OMITTED] TR18JY16.004

    4.2.1.2 Non-cycling Compressor System. For a system with a non-
cycling compressor, the second part of the test starts at a time before 
defrost during stable operation when compartment temperatures are within 
0.5 [deg]F (0.3 [deg]C) of their average temperatures measured for the 
first part of the test. The second part stops at a time after defrost 
during stable operation when the compartment temperatures are within 0.5 
[deg]F (0.3 [deg]C) of their average temperatures measured for the first 
part of the test. See Figure 2 of this section.

[[Page 338]]

[GRAPHIC] [TIFF OMITTED] TR18JY16.005

    4.2.2 Variable Defrost Control. If the model being tested has a 
variable defrost control system, the test shall consist of the same two 
parts as the test for long-time automatic defrost (section 4.2.1).
    4.2.3 Multiple-compressor Products with Automatic Defrost.
    4.2.3.1 Measurement Frequency. Measurements of power input, 
cumulative electric energy consumption (watt-hours or kilowatt-hours), 
and compartment temperature shall be taken at regular intervals not 
exceeding one minute.
    4.2.3.2 Steady-state Condition. Steady state shall be considered to 
have been attained after 24 hours of operation after the last adjustment 
of the temperature controls.
    4.2.3.3 Primary Compressor. If at least one compressor cycles, test 
periods shall be based on compressor cycles associated with the primary 
compressor system (these are referred to as ``primary compressor 
cycles''). If the freezer compressor cycles, it shall be the primary 
compressor system.
    4.2.3.4 Test Periods. The two-part test described in this section 
shall be used. The first part is a stable continuous period of 
compressor operation that includes no defrost cycles or events 
associated with a defrost cycle, such as precooling or recovery, for any 
compressor system. The second part is a continuous test period designed 
to capture the energy consumed during all of the events occurring with 
the defrost control sequence that are outside of stable operation. The 
second part of the test shall be conducted separately for each automatic 
defrost system present.
    4.2.3.4.1 First Part of Test. If at least one compressor cycles, the 
test period for the first part of the test shall include a whole number 
of complete primary compressor cycles comprising at least 24 hours of 
stable operation, unless a defrost occurs prior to completion of 24 
hours of stable operation, in

[[Page 339]]

which case the first part of the test shall include a whole number of 
complete primary compressor cycles comprising at least 18 hours of 
stable operation. If no compressor cycles, the first part of the test 
shall comprise at least 24 hours of stable operation, unless a defrost 
occurs prior to completion of 24 hours of stable operation, in which 
case the first part of the test shall comprise at least 18 hours of 
stable operation.
    4.2.3.4.2 Second Part of Test. (a) If at least one compressor 
cycles, the test period for the second part of the test starts during 
stable operation before all portions of the defrost cycle, at the 
beginning of a complete primary compressor cycle. The test period for 
the second part of the test ends during stable operation after all 
portions of the defrost cycle, including recovery, at the termination of 
a complete primary compressor cycle. The start and stop for the test 
period shall both occur either when the primary compressor starts or 
when the primary compressor stops. For each compressor system, the 
compartment temperature averages for the first and last complete 
compressor cycles that lie completely within the second part of the test 
must be within 0.5 [deg]F (0.3 [deg]C) of the average compartment 
temperature measured for the first part of the test. If any one of the 
compressor systems is non-cycling, its compartment temperature averages 
during the first and last complete primary compressor cycles of the 
second part of the test must be within 0.5 [deg]F (0.3 [deg]C) of the 
average compartment temperature measured for the first part of the test.
    (b) If no compressor cycles, the test period for the second part of 
the test starts during stable operation before all portions of the 
defrost cycle, when the compartment temperatures of all compressor 
systems are within 0.5 [deg]F (0.3 [deg]C) of their average temperatures 
measured for the first part of the test. The test period for the second 
part ends during stable operation after all portions of the defrost 
cycle, including recovery, when the compartment temperatures of all 
compressor systems are within 0.5 [deg]F (0.3 [deg]C) of their average 
temperatures measured for the first part of the test.
    4.2.4 Systems with Multiple Defrost Frequencies. This section 
applies to models with long-time automatic or variable defrost control 
with multiple defrost cycle types, such as models with single 
compressors and multiple evaporators in which the evaporators have 
different defrost frequencies. The two-part method in 4.2.1 shall be 
used. The second part of the method will be conducted separately for 
each distinct defrost cycle type.

                          5. Test Measurements

    5.1 Temperature Measurements. (a) Temperature measurements shall be 
made at the locations prescribed in HRF-1-2008 (incorporated by 
reference; see Sec.  430.3) Figure 5.1 for cooler and fresh food 
compartments and Figure 5.2 for freezer compartments and shall be 
accurate to within 0.5 [deg]F (0.3 [deg]C). No 
freezer temperature measurements need be taken in an all-refrigerator or 
cooler-all-refrigerator.
    (b) If the interior arrangements of the unit under test do not 
conform with those shown in Figures 5.1 or 5.2 of HRF-1-2008, as 
appropriate, the unit must be tested by relocating the temperature 
sensors from the locations specified in the figures to avoid 
interference with hardware or components within the unit, in which case 
the specific locations used for the temperature sensors shall be noted 
in the test data records maintained by the manufacturer in accordance 
with 10 CFR 429.71, and the certification report shall indicate that 
non-standard sensor locations were used. If any temperature sensor is 
relocated by any amount from the location prescribed in Figure 5.1 or 
5.2 of HRF-1- 2008 in order to maintain a minimum 1-inch air space from 
adjustable shelves or other components that could be relocated by the 
consumer, except in cases in which the Figures prescribe a temperature 
sensor location within 1 inch of a shelf or similar feature (e.g., 
sensor T3 in Figure 5.1), this constitutes a relocation of 
temperature sensors that must be recorded in the test data and reported 
in the certification report as described in this paragraph (b).
    5.1.1 Measured Temperature. The measured temperature of a 
compartment is the average of all sensor temperature readings taken in 
that compartment at a particular point in time. Measurements shall be 
taken at regular intervals not to exceed 4 minutes. Measurements for 
multiple refrigeration system products shall be taken at regular 
intervals not to exceed one minute.
    5.1.2 Compartment Temperature. The compartment temperature for each 
test period shall be an average of the measured temperatures taken in a 
compartment during the test period as defined in section 4 of this 
appendix. For long-time automatic defrost models, compartment 
temperatures shall be those measured in the first part of the test 
period specified in section 4.2.1 of this appendix. For models with 
variable defrost controls, compartment temperatures shall be those 
measured in the first part of the test period specified in section 4.2.2 
of this appendix. For models with automatic defrost that is neither 
long-time nor variable defrost, the compartment temperature shall be an 
average of the measured temperatures taken in a compartment during a 
stable period of compressor operation that:
    (a) Includes no defrost cycles or events associated with a defrost 
cycle, such as precooling or recovery;
    (b) Is no less than three hours in duration; and

[[Page 340]]

    (c) Includes two or more whole compressor cycles. If the compressor 
does not cycle, the stable period used for the temperature average shall 
be three hours in duration.
    5.1.3 Fresh Food Compartment Temperature. The fresh food compartment 
temperature shall be calculated as:
[GRAPHIC] [TIFF OMITTED] TR18JY16.006

Where:

R is the total number of applicable fresh food compartments, including 
          the primary fresh food compartment and any separate auxiliary 
          fresh food compartments (including separate auxiliary 
          convertible compartments tested as fresh food compartments in 
          accordance with section 2.7 of this appendix);
TRi is the compartment temperature of fresh food compartment 
          ``i'' determined in accordance with section 5.1.2 of this 
          appendix; and
VRi is the volume of fresh food compartment ``i.''

    5.1.4 Freezer Compartment Temperature. The freezer compartment 
temperature shall be calculated as:
[GRAPHIC] [TIFF OMITTED] TR18JY16.007

Where:

F is the total number of applicable freezer compartments, which include 
          the primary freezer compartment and any number of separate 
          auxiliary freezer compartments (including separate auxiliary 
          convertible compartments tested as freezer compartments in 
          accordance with section 2.7 of this appendix);
TFi is the compartment temperature of freezer compartment 
          ``i'' determined in accordance with section 5.1.2 of this 
          appendix; and
VFi is the volume of freezer compartment ``i''.

    5.1.5 Cooler Compartment Temperature. The cooler compartment 
temperature shall be calculated as:
[GRAPHIC] [TIFF OMITTED] TR18JY16.008

Where:

C is the total number of applicable cooler compartments (including 
          separate auxiliary convertible compartments tested as cooler 
          compartments in accordance with section 2.7 of this appendix);
TCi is the compartment temperature of cooler compartment 
          ``i'' determined in accordance with section 5.1.2 of this 
          appendix; and
VCi is the volume of cooler compartment ``i.''

    5.2 Energy Measurements.
    5.2.1 Per-Day Energy Consumption. The energy consumption in 
kilowatt-hours per day, ET, for each test period shall be the energy 
expended during the test period as specified in section 4 of this 
appendix adjusted to a 24-hour period. The adjustment shall be 
determined as follows.
    5.2.1.1 Non-Automatic Defrost and Automatic Defrost. The energy 
consumption in kilowatt-hours per day shall be calculated equivalent to:

ET = (EP x 1440 x K)/T

Where:

ET = test cycle energy expended in kilowatt-hours per day;
EP = energy expended in kilowatt-hours during the test period;
T = length of time of the test period in minutes; and

[[Page 341]]

1440 = conversion factor to adjust to a 24-hour period in minutes per 
          day.
K = dimensionless correction factor of 1.0 for refrigerators and 
          refrigerator-freezers; and 0.55 for coolers and combination 
          cooler refrigeration products to adjust for average household 
          usage.

    5.2.1.2 Long-time Automatic Defrost. If the two-part test method is 
used, the energy consumption in kilowatt-hours per day shall be 
calculated equivalent to:

ET = (1440 x K x EP1/T1) + (EP2 - (EP1 x T2/T1)) x K x (12/CT)
Where:

ET, 1440, and K are defined in section 5.2.1.1 of this appendix;
EP1 = energy expended in kilowatt-hours during the first part of the 
          test;
EP2 = energy expended in kilowatt-hours during the second part of the 
          test;
T1 and T2 = length of time in minutes of the first and second test parts 
          respectively;
CT = defrost timer run time or compressor run time between defrosts in 
          hours required to cause it to go through a complete cycle, 
          rounded to the nearest tenth of an hour; and
12 = factor to adjust for a 50-percent run time of the compressor in 
          hours per day.

    5.2.1.3 Variable Defrost Control. The energy consumption in 
kilowatt-hours per day shall be calculated equivalent to:

ET = (1440 x K x EP1/T1) + (EP2 - (EP1 x T2/T1)) x K x (12/CT),

Where:

1440 and K are defined in section 5.2.1.1 of this appendix and EP1, EP2, 
          T1, T2, and 12 are defined in section 5.2.1.2 of this 
          appendix;
CT = (CTL x CTM)/(F x (CTM - 
          CTL) + CTL);
CTL = the shortest compressor run time between defrosts used 
          in the variable defrost control algorithm (greater than or 
          equal to 6 but less than or equal to 12 hours), or the 
          shortest compressor run time between defrosts observed for the 
          test (if it is shorter than the shortest run time used in the 
          control algorithm and is greater than 6 hours), or 6 hours (if 
          the shortest observed run time is less than 6 hours), in hours 
          rounded to the nearest tenth of an hour;
CTM = maximum compressor run time between defrosts in hours 
          rounded to the nearest tenth of an hour (greater than 
          CTL but not more than 96 hours);
F = ratio of per day energy consumption in excess of the least energy 
          and the maximum difference in per-day energy consumption and 
          is equal to 0.20.

    For variable defrost models with no values for CTL and 
CTM in the algorithm, the default values of 6 and 96 shall be 
used, respectively.
    5.2.1.4 Multiple Compressor Products with Automatic Defrost. For 
multiple compressor products, the two-part test method in section 
4.2.3.4 of this appendix must be used. The energy consumption in 
kilowatt-hours per day shall be calculated equivalent to:
[GRAPHIC] [TIFF OMITTED] TR18JY16.009

Where:

1440 and K are defined in section 5.2.1.1 of this appendix and EP1, T1, 
          and 12 are defined in section 5.2.1.2 of this appendix;
i = a variable that can equal 1, 2, or more that identifies each 
          individual compressor system that has automatic defrost;
D = the total number of compressor systems with automatic defrost.
EP2i = energy expended in kilowatt-hours during the second 
          part of the test for compressor system i;
T2i = length of time in minutes of the second part of the 
          test for compressor system i;
CTi = the compressor run time between defrosts for compressor 
          system i in hours rounded to the nearest tenth of an hour, for 
          long-time automatic defrost control equal to a fixed time in 
          hours, and for variable defrost control equal to:

(CTLi x CTMi)/(F x (CTMi- 
          CTLi) + CTLi);

Where:

CTLi = for compressor system i, the shortest compressor run 
          time between defrosts used in the variable defrost control 
          algorithm (greater than or equal to 6 but less than or equal 
          to 12 hours), or the shortest compressor run time between 
          defrosts observed for the test (if it is shorter than the 
          shortest run time used in the control algorithm and is greater 
          than 6 hours), or 6 hours (if the shortest observed run time 
          is less than 6 hours), in hours rounded to the nearest tenth 
          of an hour;
CTMi = for compressor system i, the maximum compressor run 
          time between defrosts in hours rounded to the nearest tenth of 
          an hour (greater than CTLi but not more than 96 
          hours);
F = default defrost energy consumption factor, equal to 0.20.


[[Page 342]]


    For variable defrost models with no values for CTLi and 
CTMi in the algorithm, the default values of 6 and 96 shall 
be used, respectively.
    5.2.1.5 Long-time or Variable Defrost Control for Systems with 
Multiple Defrost Cycle Types. The energy consumption in kilowatt-hours 
per day shall be calculated equivalent to:
[GRAPHIC] [TIFF OMITTED] TR18JY16.010

Where:

1440 and K are defined in section 5.2.1.1 of this appendix and EP1, T1, 
          and 12 are defined in section 5.2.1.2 of this appendix;
i is a variable that can equal 1, 2, or more that identifies the 
          distinct defrost cycle types applicable for the product;
EP2i = energy expended in kilowatt-hours during the second 
          part of the test for defrost cycle type i;
T2i = length of time in minutes of the second part of the 
          test for defrost cycle type i;
CTi is the compressor run time between instances of defrost 
          cycle type i, for long-time automatic defrost control equal to 
          a fixed time in hours rounded to the nearest tenth of an hour, 
          and for variable defrost control equal to:
(CTLi x CTMi)/(F x (CTMi - 
          CTLi) + CTLi);
CTLi = least or shortest compressor run time between 
          instances of defrost cycle type i in hours rounded to the 
          nearest tenth of an hour (CTL for the defrost cycle 
          type with the longest compressor run time between defrosts 
          must be greater than or equal to 6 but less than or equal to 
          12 hours);
CTMi = maximum compressor run time between instances of 
          defrost cycle type i in hours rounded to the nearest tenth of 
          an hour (greater than CTLi but not more than 96 
          hours);

    For cases in which there are more than one fixed CT value (for long-
time defrost models) or more than one CTM and/or 
CTL value (for variable defrost models) for a given defrost 
cycle type, an average fixed CT value or average CTM and 
CTL values shall be selected for this cycle type so that 12 
divided by this value or values is the frequency of occurrence of the 
defrost cycle type in a 24 hour period, assuming 50% compressor run 
time.

F = default defrost energy consumption factor, equal to 0.20.

    For variable defrost models with no values for CTLi and 
CTMi in the algorithm, the default values of 6 and 96 shall 
be used, respectively.
    D is the total number of distinct defrost cycle types.
    5.3 Volume Measurements. (a) The unit's total refrigerated volume, 
VT, shall be measured in accordance with HRF-1-2008, (incorporated by 
reference; see Sec.  430.3), section 3.30 and sections 4.2 through 4.3. 
The measured volume shall include all spaces within the insulated volume 
of each compartment except for the volumes that must be deducted in 
accordance with section 4.2.2 of HRF-1-2008, as provided in paragraph 
(b) of this section, and be calculated equivalent to:

VT = VF + VFF + VC

Where:

VT = total refrigerated volume in cubic feet,
VF = freezer compartment volume in cubic feet,
VFF = fresh food compartment volume in cubic feet, and
VC = cooler compartment volume in cubic feet.

    (b) The following component volumes shall not be included in the 
compartment volume measurements: Icemaker compartment insulation (e.g., 
insulation isolating the icemaker compartment from the fresh food 
compartment of a product with a bottom-mounted freezer with through-the-
door ice service), fountain recess, dispenser insulation, and ice chute 
(if there is a plug, cover, or cap over the chute per Figure 4-2 of HRF-
1-2008). The following component volumes shall be included in the 
compartment volume measurements: Icemaker auger motor (if housed inside 
the insulated space of the cabinet), icemaker kit, ice storage bin, and 
ice chute (up to the dispenser flap, if there is no plug, cover, or cap 
over the ice chute per Figure 4-3 of HRF-1-2008).
    (c) Total refrigerated volume is determined by physical measurement 
of the test unit. Measurements and calculations used to determine the 
total refrigerated volume shall be retained as part of the test records 
underlying the certification of the basic model in accordance with 10 
CFR 429.71.
    (d) Compartment classification shall be based on subdivision of the 
refrigerated volume into zones separated from each other by subdividing 
barriers: No evaluated compartment shall be a zone of a larger 
compartment unless the zone is separated from the

[[Page 343]]

remainder of the larger compartment by subdividing barriers; if there 
are no such subdividing barriers within the larger compartment, the 
larger compartment must be evaluated as a single compartment rather than 
as multiple compartments. If the cabinet contains a movable subdividing 
barrier, it must be placed as described in section 2.7 of this appendix.
    (e) Freezer, fresh food, and cooler compartment volumes shall be 
calculated and recorded to the nearest 0.01 cubic foot. Total 
refrigerated volume shall be calculated and recorded to the nearest 0.1 
cubic foot.

        6. Calculation of Derived Results From Test Measurements

    6.1 Adjusted Total Volume. The adjusted total volume of each tested 
unit must be determined based upon the volume measured in section 5.3 of 
this appendix using the following calculations. Where volume 
measurements for the freezer, fresh food, and cooler compartment are 
recorded in liters, the measured volume must be converted to cubic feet 
and rounded to the nearest 0.01 cubic foot prior to calculating the 
adjusted volume. Adjusted total volume shall be calculated and recorded 
to the nearest 0.1 cubic foot.
    6.1.1 Refrigerators, Coolers, and Cooler-Refrigerators. The adjusted 
total volume, AV, for refrigerators or cooler-refrigerators under test, 
shall be defined as:

AV = (VF x CR) + VFF + VC

Where:

AV = adjusted total volume in cubic feet;
VF, VFF, and VC are defined in section 5.3 of this appendix;
CR = dimensionless adjustment factor for freezer compartments of 1.00 
          for all-refrigerators and cooler-all-refrigerators, or 1.47 
          for other types of refrigerators and cooler-refrigerators; and

    6.1.2 Refrigerator-Freezers, Cooler-Refrigerator-Freezers, and 
Cooler-Freezers. The adjusted total volume, AV, for refrigerator-
freezers, cooler-refrigerator-freezers, and cooler-freezers under test 
shall be calculated as follows:

AV = (VF x CRF) + VFF + VC

Where:

VF, VFF, and VC are defined in section 5.3 and AV is defined in section 
          6.1.1 of this appendix;
CRF = dimensionless adjustment factor for freezer compartments of 1.76; 
          and

    6.2 Average Per-Cycle Energy Consumption. The average per-cycle 
energy consumption for a cycle type, E, is expressed in kilowatt-hours 
per cycle to the nearest one hundredth (0.01) kilowatt-hour and shall be 
calculated according to the sections below.
    6.2.1 All-Refrigerator Models. The average per-cycle energy 
consumption shall depend upon the temperature attainable in the fresh 
food compartment as shown in section 6.2.1.1 of this appendix.
    6.2.1.1 If the fresh food compartment temperature is always below 
39.0 [deg]F (3.9 [deg]C), the average per-cycle energy consumption shall 
be equivalent to:

E = ET1

Where:

ET is defined in section 5.2.1 of this appendix; and
The number 1 indicates the test during which the highest fresh food 
          compartment temperature is measured.

    6.2.1.2 If the conditions of section 6.2.1.1 of this appendix do not 
apply, the average per-cycle energy consumption shall be equivalent to:

E = ET1 + ((ET2 - ET1) x (39.0 - TR1)/(TR2 - TR1))

Where:

ET is defined in section 5.2.1 of this appendix;
TR = fresh food compartment temperature determined according to section 
          5.1.3 of this appendix in degrees F;
The numbers 1 and 2 indicate measurements taken during the two tests to 
          be used to calculate energy consumption, as specified in 
          section 3 of this appendix; and
39.0 = standardized fresh food compartment temperature in degrees F.

    6.2.2 Coolers. The average per-cycle energy consumption shall depend 
upon the temperature attainable in the cooler compartment as shown in 
section 6.2.2.1 of this appendix.
    6.2.2.1 If the cooler compartment temperature is always below 55.0 
[deg]F (12.8 [deg]C), the average per-cycle energy consumption shall be 
equivalent to:

E = ET1

Where:

ET is defined in section 5.2.1 of this appendix; and
The number 1 indicates the test during which the highest cooler 
          compartment temperature is measured.

    6.2.2.2 If the conditions of section 6.2.2.1 of this appendix do not 
apply, the average per-cycle energy consumption shall be equivalent to:

E = ET1 + ((ET2 - ET1) x (55.0 - TC1)/(TC2 - TC1))

Where:

ET is defined in section 5.2.1 of this appendix;
TC = cooler compartment temperature determined according to section 
          5.1.5 of this appendix in degrees F;
The numbers 1 and 2 are defined in section 6.2.1.2 of this appendix; and

[[Page 344]]

55.0 = standardized cooler compartment temperature in degrees F.

    6.2.3 Refrigerators and Refrigerator-Freezers. The average per-cycle 
energy consumption shall be defined in one of the following ways as 
applicable.
    6.2.3.1 If the fresh food compartment temperature is always below 39 
[deg]F (3.9 [deg]C) and the freezer compartment temperature is always 
below 15 [deg]F (-9.4 [deg]C) in both tests of a refrigerator or always 
below 0 [deg]F (-17.8 [deg]C) in both tests of a refrigerator-freezer, 
the average per-cycle energy consumption shall be:

E = ET1 + IET

Where:

ET is defined in section 5.2.1 of this appendix;
IET, expressed in kilowatt-hours per cycle, equals 0.23 for a product 
          with an automatic icemaker and otherwise equals 0 (zero); and
The number 1 indicates the test during which the highest freezer 
          compartment temperature was measured.

    6.2.3.2 If the conditions of section 6.2.3.1 of this appendix do not 
apply, the average per-cycle energy consumption shall be defined by the 
higher of the two values calculated by the following two formulas:

E = ET1 + ((ET2 - ET1) x (39.0 - TR1)/(TR2 - TR1)) + IET

and

E = ET1 + ((ET2 - ET1) x (k - TF1)/(TF2 - TF1)) + IET

Where:

ET is defined in section 5.2.1 of this appendix;
IET is defined in section 6.2.3.1 of this appendix;
TR and the numbers 1 and 2 are defined in section 6.2.1.2 of this 
          appendix;
TF = freezer compartment temperature determined according to section 
          5.1.4 of this appendix in degrees F;
39.0 is a specified fresh food compartment temperature in degrees F; and
k is a constant 15.0 for refrigerators or 0.0 for refrigerator-freezers, 
          each being a standardized freezer compartment temperature in 
          degrees F.

    6.2.4 Combination Cooler Refrigeration Products. The average per-
cycle energy consumption shall be defined in one of the following ways 
as applicable.
    6.2.4.1 If the compartment temperatures are always below their 
compartments' standardized temperatures as defined in section 3.2 of 
this appendix (the fresh food compartment temperature is at or below 39 
[deg]F (3.9 [deg]C); the cooler compartment temperature is at or below 
55 [deg]F (12.8 [deg]C); and the freezer compartment temperature is at 
or below 15 [deg]F (-9.4 [deg]C) for a cooler-refrigerator, or the 
freezer compartment temperature is at or below 0 [deg]F (-17.8 [deg]C) 
for a cooler-refrigerator-freezer or cooler-freezer), the average per-
cycle energy consumption shall be:

E = ET1 + IET

Where:

ET is defined in section 5.2.1 of this appendix;
IET is defined in section 6.2.3.1 of this appendix;
The number 1 indicates the test during which the highest freezer 
          compartment temperature is measured. If the product has no 
          freezer compartment, the number 1 indicates the test during 
          which the highest fresh food compartment temperature is 
          measured.

    6.2.4.2 If the conditions of section 6.2.4.1 of this appendix do not 
apply, the average per-cycle energy consumption shall be defined by the 
highest of the two or three values calculated by the following three 
formulas:

E = (ET1 + ((ET2 - ET1) x (39.0 - TR1)/(TR2 - TR1)) + IET if the product 
          has a fresh food compartment;
E = (ET1 + ((ET2 - ET1) x (k - TF1)/(TF2 - TF1)) + IET if the product 
          has a freezer compartment; and
E = (ET1 + ((ET2 - ET1) x (55.0 - TC1)/(TC2 - TC1)) + IET

Where:

ET is defined in section 5.2.1 of this appendix;
IET is defined in section 6.2.3.1 of this appendix;
TR and the numbers 1 and 2 are defined in section 6.2.1.2 of this 
          appendix;
TF is defined in section 6.2.3.2 of this appendix;
TC is defined in section 6.2.2.2 of this appendix;
39.0 is a specified fresh food compartment temperature in degrees F;
k is a constant 15.0 for cooler-refrigerators or 0.0 for cooler-
          refrigerator-freezers and cooler-freezers, each being a 
          standardized freezer compartment temperature in degrees F; and
55.0 is a specified cooler compartment temperature in degrees F.

    6.2.5 Variable Anti-Sweat Heater Models. The standard cycle energy 
consumption of a model with a variable anti-sweat heater control 
(Estd), expressed in kilowatt-hours per day, shall be 
calculated equivalent to:
    Estd = E + (Correction Factor) where E is determined by 
sections 6.2.1, 6.2.2, 6.2.3, or 6.2.4 of this appendix, whichever is 
appropriate, with the anti-sweat heater switch in the ``off'' position 
or, for a product without an anti-sweat heater switch, the anti-sweat 
heater in its lowest energy use state.

Correction Factor = (Anti-sweat Heater Power x System-loss Factor) x (24 
          hrs/1 day) x (1 kW/1000 W)


[[Page 345]]


Where:

Anti-sweat Heater Power = 0.034 * (Heater Watts at 5%RH)
+ 0.211 * (Heater Watts at 15%RH)
+ 0.204 * (Heater Watts at 25%RH)
+ 0.166 * (Heater Watts at 35%RH)
+ 0.126 * (Heater Watts at 45%RH)
+ 0.119 * (Heater Watts at 55%RH)
+ 0.069 * (Heater Watts at 65%RH)
+ 0.047 * (Heater Watts at 75%RH)
+ 0.008 * (Heater Watts at 85%RH)
+ 0.015 * (Heater Watts at 95%RH)
Heater Watts at a specific relative humidity = the nominal watts used by 
          all heaters at that specific relative humidity, 72 [deg]F 
          (22.2 [deg]C) ambient, and DOE reference temperatures of fresh 
          food (FF) average temperature of 39 [deg]F (3.9 [deg]C) and 
          freezer (FZ) average temperature of 0 [deg]F (-17.8 [deg]C).
System-loss Factor = 1.3.

                        7. Test Procedure Waivers

    To the extent that the procedures contained in this appendix do not 
provide a means for determining the energy consumption of a basic model, 
a manufacturer must obtain a waiver under Sec.  430.27 to establish an 
acceptable test procedure for each such basic model. Such instances 
could, for example, include situations where the test set-up for a 
particular basic model is not clearly defined by the provisions of 
section 2 of this appendix. For details regarding the criteria and 
procedures for obtaining a waiver, please refer to Sec.  430.27.

[75 FR 78851, Dec. 16, 2010, as amended at 76 FR 12502, Mar. 7, 2011; 76 
FR 24781, May 2, 2011; 77 FR 3574, Jan. 25, 2012; 79 FR 22349, Apr. 21, 
2014; 79 FR 41418, July 16, 2014; 81 FR 46795, July 18, 2016]



   Sec. Appendix B to Subpart B of Part 430--Uniform Test Method for 
              Measuring the Energy Consumption of Freezers

    Note: For freezers, the rounding requirements specified in sections 
5.3.e and 6.1 of this appendix are not required for use until the 
compliance date of any amended energy conservation standards for these 
products.

                             1. Definitions

    Section 3, Definitions, of HRF-1-2008 (incorporated by reference; 
see Sec.  430.3) applies to this test procedure.
    Adjusted total volume means the product of the freezer volume as 
defined in HRF-1-2008 (incorporated by reference; see Sec.  430.3) in 
cubic feet multiplied by an adjustment factor.
    Anti-sweat heater means a device incorporated into the design of a 
freezer to prevent the accumulation of moisture on exterior or interior 
surfaces of the cabinet.
    Anti-sweat heater switch means a user-controllable switch or user 
interface which modifies the activation or control of anti-sweat 
heaters.
    Automatic defrost means a system in which the defrost cycle is 
automatically initiated and terminated, with resumption of normal 
refrigeration at the conclusion of defrost operation. The system 
automatically prevents the permanent formation of frost on all 
refrigerated surfaces. Nominal refrigerated food temperatures are 
maintained during the operation of the automatic defrost system.
    Automatic icemaker means a device that can be supplied with water 
without user intervention, either from a pressurized water supply system 
or by transfer from a water reservoir that automatically produces, 
harvests, and stores ice in a storage bin, with means to automatically 
interrupt the harvesting operation when the ice storage bin is filled to 
a pre-determined level.
    Complete temperature cycle means a time period defined based upon 
the cycling of compartment temperature that starts when the compartment 
temperature is at a maximum and ends when the compartment temperature 
returns to an equivalent maximum (within 0.5 [deg]F of the starting 
temperature), having in the interim fallen to a minimum and subsequently 
risen again to reach the second maximum. Alternatively, a complete 
temperature cycle can be defined to start when the compartment 
temperature is at a minimum and end when the compartment temperature 
returns to an equivalent minimum (within 0.5 [deg]F of the starting 
temperature), having in the interim risen to a maximum and subsequently 
fallen again to reach the second minimum.
    Cycle means the period of 24 hours for which the energy use of a 
freezer is calculated as though the consumer-activated compartment 
temperature controls were set to maintain the standardized temperature 
(see section 3.2 of this appendix).
    Cycle type means the set of test conditions having the calculated 
effect of operating a freezer for a period of 24 hours with the 
consumer-activated controls other than the compartment temperature 
control set to establish various operating characteristics.
    HRF-1-2008 means AHAM Standard HRF-1-2008, Association of Home 
Appliance Manufacturers, Energy and Internal Volume of Refrigerating 
Appliances (2008), including Errata to Energy and Internal Volume of 
Refrigerating Appliances, Correction Sheet issued November 17, 2009. 
Only sections of HRF-1-2008 (incorporated by reference; see Sec.  430.3) 
specifically referenced in this test procedure are part of this test 
procedure. In cases where there is a conflict, the language of the test 
procedure in this appendix takes precedence over HRF-1-2008.
    Ice storage bin means a container in which ice can be stored.

[[Page 346]]

    Long-time automatic defrost means an automatic defrost system where 
successive defrost cycles are separated by 14 hours or more of 
compressor operating time.
    Precooling means operating a refrigeration system before initiation 
of a defrost cycle to reduce one or more compartment temperatures 
significantly (more than 0.5 [deg]F) below its minimum during stable 
operation between defrosts.
    Quick freeze means an optional feature on freezers that is initiated 
manually. It bypasses the thermostat control and operates continually 
until the feature is terminated either manually or automatically.
    Recovery means operating a refrigeration system after the conclusion 
of a defrost cycle to reduce the temperature of one or more compartments 
to the temperature range that the compartment(s) exhibited during stable 
operation between defrosts.
    Separate auxiliary compartment means a freezer compartment other 
than the primary freezer compartment of a freezer having more than one 
compartment. Access to a separate auxiliary compartment is through a 
separate exterior door or doors rather than through the door or doors of 
another compartment. Separate auxiliary freezer compartments may not be 
larger than the primary freezer compartment.
    Special compartment means any compartment without doors directly 
accessible from the exterior, and with separate temperature control that 
is not convertible from fresh food temperature range to freezer 
temperature range.
    Stabilization period means the total period of time during which 
steady-state conditions are being attained or evaluated.
    Stable operation means operation after steady-state conditions have 
been achieved but excluding any events associated with defrost cycles. 
During stable operation the average rate of change of compartment 
temperature must not exceed 0.042 [deg]F (0.023 [deg]C) per hour. Such a 
calculation performed for compartment temperatures at any two times, or 
for any two periods of time comprising complete cycles, during stable 
operation must meet this requirement.
    (a) If compartment temperatures do not cycle, the relevant 
calculation shall be the difference between the temperatures at two 
points in time divided by the difference, in hours, between those points 
in time.
    (b) If compartment temperatures cycle as a result of compressor 
cycling or other cycling operation of any system component (e.g., a 
damper, fan, or heater), the relevant calculation shall be the 
difference between compartment temperature averages evaluated for whole 
compressor cycles or complete temperature cycles divided by the 
difference, in hours, between either the starts, ends, or mid-times of 
the two cycles.
    Standard cycle means the cycle type in which the anti-sweat heater 
switch, when provided, is set in the highest energy-consuming position.
    Through-the-door ice/water dispenser means a device incorporated 
within the cabinet, but outside the boundary of the refrigerated space, 
that delivers to the user on demand ice and may also deliver water from 
within the refrigerated space without opening an exterior door. This 
definition includes dispensers that are capable of dispensing ice and 
water or ice only.
    Variable defrost control means an automatic defrost system in which 
successive defrost cycles are determined by an operating condition 
variable (or variables) other than solely compressor operating time. 
This includes any electrical or mechanical device performing this 
function. A control scheme that changes the defrost interval from a 
fixed length to an extended length (without any intermediate steps) is 
not considered a variable defrost control. A variable defrost control 
feature should predict the accumulation of frost on the evaporator and 
react accordingly. Therefore, the times between defrost must vary with 
different usage patterns and include a continuum of lengths of time 
between defrosts as inputs vary.

                           2. Test Conditions

    2.1 Ambient Temperature Measurement. Temperature measuring devices 
shall be shielded so that indicated temperatures are not affected by the 
operation of the condensing unit or adjacent units.
    2.1.1 Ambient Temperature. The ambient temperature shall be recorded 
at points located 3 feet (91.5 cm) above the floor and 10 inches (25.4 
cm) from the center of the two sides of the unit under test. The ambient 
temperature shall be 90.0 1.0 [deg]F (32.2 0.6 [deg]C) during the stabilization period and the test 
period.
    2.1.2 Ambient Temperature Gradient. The test room vertical ambient 
temperature gradient in any foot of vertical distance from 2 inches (5.1 
cm) above the floor or supporting platform to a height of 1 foot (30.5 
cm) above the top of the unit under test is not to exceed 0.5 [deg]F per 
foot (0.9 [deg]C per meter). The vertical ambient temperature gradient 
at locations 10 inches (25.4 cm) out from the centers of the two sides 
of the unit being tested is to be maintained during the test. To 
demonstrate that this requirement has been met, test data must include 
measurements taken using temperature sensors at locations 10 inches 
(25.4 cm) from the center of the two sides of the unit under test at 
heights of 2 inches (5.1 cm) and 36 inches (91.4 cm) above the floor or 
supporting platform and at a height of 1 foot (30.5 cm) above the unit 
under test.
    2.1.3 Platform. A platform must be used if the floor temperature is 
not within 3 [deg]F (1.7

[[Page 347]]

[deg]C) of the measured ambient temperature. If a platform is used, it 
is to have a solid top with all sides open for air circulation 
underneath, and its top shall extend at least 1 foot (30.5 cm) beyond 
each side and front of the unit under test and extend to the wall in the 
rear.
    2.2 Operational Conditions. The freezer shall be installed and its 
operating conditions maintained in accordance with HRF-1-2008 
(incorporated by reference; see Sec.  430.3), sections 5.3.2 through 
section 5.5.5.5 (but excluding sections 5.5.5.2 and 5.5.5.4). The quick 
freeze option shall be switched off except as specified in section 3.1 
of this appendix. Additional clarifications are noted in sections 2.3 
through 2.9 of this appendix.
    2.3 Anti-Sweat Heaters. The anti-sweat heater switch is to be on 
during one test and off during a second test. In the case of a freezer 
with variable anti-sweat heater control, the standard cycle energy use 
shall be the result of the calculation described in 6.2.3.
    2.4 The cabinet and its refrigerating mechanism shall be assembled 
and set up in accordance with the printed consumer instructions supplied 
with the cabinet. Set-up of the freezer shall not deviate from these 
instructions, unless explicitly required or allowed by this test 
procedure. Specific required or allowed deviations from such set-up 
include the following:
    (a) Connection of water lines and installation of water filters are 
not required;
    (b) Clearance requirements from surfaces of the product shall be as 
described in section 2.6 below;
    (c) The electric power supply shall be as described in HRF-1-2008 
(incorporated by reference; see Sec.  430.3) section 5.5.1;
    (d) Temperature control settings for testing shall be as described 
in section 3 of this appendix. Settings for special compartments shall 
be as described in section 2.5 of this appendix;
    (e) The product does not need to be anchored or otherwise secured to 
prevent tipping during energy testing;
    (f) All the product's chutes and throats required for the delivery 
of ice shall be free of packing, covers, or other blockages that may be 
fitted for shipping or when the icemaker is not in use; and
    (g) Ice storage bins shall be emptied of ice.
    For cases in which set-up is not clearly defined by this test 
procedure, manufacturers must submit a petition for a waiver (see 
section 7).
    2.5 Special compartments shall be tested with controls set to 
provide the coldest temperature. However, for special compartments in 
which temperature control is achieved using the addition of heat 
(including resistive electric heating, refrigeration system waste heat, 
or heat from any other source, but excluding the transfer of air from 
another part of the interior of the product) for any part of the 
controllable temperature range of that compartment, the product energy 
use shall be determined by averaging two sets of tests. The first set of 
tests shall be conducted with such special compartments at their coldest 
settings, and the second set of tests shall be conducted with such 
special compartments at their warmest settings. The requirements for the 
warmest or coldest temperature settings of this section do not apply to 
features or functions associated with temperature control (such as quick 
freeze) that are initiated manually and terminated automatically within 
168 hours.
    Movable subdividing barriers that separate compartments of different 
types (e.g., fresh food on one side and cooler on the other side) shall 
be placed in the median position. If such a subdividing barrier has an 
even number of positions, the near-median position representing the 
smallest volume of the warmer compartment(s) shall be used.
    2.6 Rear Clearance.
    (a) General. The space between the lowest edge of the rear plane of 
the cabinet and a vertical surface (the test room wall or simulated 
wall) shall be the minimum distance in accordance with the 
manufacturer's instructions, unless other provisions of this section 
apply. The rear plane shall be considered to be the largest flat surface 
at the rear of the cabinet, excluding features that protrude beyond this 
surface, such as brackets or compressors.
    (b) Maximum clearance. The clearance shall not be greater than 2 
inches (51 mm) from the lowest edge of the rear plane to the vertical 
surface, unless the provisions of subsection (c) of this section apply.
    (c) If permanent rear spacers or other components that protrude 
beyond the rear plane extend further than the 2 inch (51 mm) distance, 
or if the highest edge of the rear plane is in contact with the vertical 
surface when the unit is positioned with the lowest edge of the rear 
plane at or further than the 2 inch (51 mm) distance from the vertical 
surface, the appliance shall be located with the spacers or other 
components protruding beyond the rear plane, or the highest edge of the 
rear plane, in contact with the vertical surface.
    (d) Rear-mounted condensers. If the product has a flat rear-wall-
mounted condenser (i.e., a rear-wall-mounted condenser with all 
refrigerant tube centerlines within 0.25 inches (6.4 mm) of the 
condenser plane), and the area of the condenser plane represents at 
least 25% of the total area of the rear wall of the cabinet, then the 
spacing to the vertical surface may be measured from the lowest edge of 
the condenser plane.
    2.7 Steady State Condition. Steady-state conditions exist if the 
temperature measurements taken at 4-minute intervals or less

[[Page 348]]

during a stabilization period are not changing at a rate greater than 
0.042 [deg]F (0.023 [deg]C) per hour as determined by the applicable 
condition of A or B described below.
    A--The average of the measurements during a 2-hour period if no 
cycling occurs or during a number of complete repetitive compressor 
cycles occurring through a period of no less than 2 hours is compared to 
the average over an equivalent time period with 3 hours elapsing between 
the two measurement periods.
    B--If A above cannot be used, the average of the measurements during 
a number of complete repetitive compressor cycles occurring through a 
period of no less than 2 hours and including the last complete cycle 
before a defrost period (or if no cycling occurs, the average of the 
measurements during the last 2 hours before a defrost period) are 
compared to the same averaging period before the following defrost 
period.
    2.8 Freezers with Demand-Response Capability. Freezers that have a 
communication module for demand-response functions that is located 
within the cabinet shall be tested with the communication module in the 
configuration set at the factory just before shipping.
    2.9 For products that require the freezer compartment to be loaded 
with packages in accordance with section 5.5.5.3 of HRF-1-2008, the 
number of packages comprising the 75% load shall be determined by 
filling the compartment completely with the packages that are to be used 
for the test, such that the packages fill as much of the usable 
refrigerated space within the compartment as is physically possible, and 
then removing from the compartment a number of packages so that the 
compartment contains 75% of the packages that were placed in the 
compartment to completely fill it. If multiplying the total number of 
packages by 0.75 results in a fraction, the number of packages used 
shall be rounded to the nearest whole number, rounding up if the result 
ends in 0.5. For multi-shelf units, this method shall be applied to each 
shelf. For both single- and multi-shelf units, the remaining packages 
shall be arranged as necessary to provide the required air gap and 
thermocouple placement. The number of packages comprising the 100% and 
75% loading conditions shall be recorded in the test data maintained in 
accordance with 10 CFR 429.71.

                        3. Test Control Settings

    3.1 Model with No User Operable Temperature Control. A test shall be 
performed during which the compartment temperature and energy use shall 
be measured. A second test shall be performed with the temperature 
control electrically short circuited to cause the compressor to run 
continuously. If the model has the quick freeze option, this option must 
be used to bypass the temperature control.
    3.2 Model with User Operable Temperature Control. Testing shall be 
performed in accordance with one of the following sections using the 
standardized temperature of 0.0 [deg]F (-17.8 [deg]C).

For the purposes of comparing compartment temperatures with standardized 
temperatures, as described in sections 3.2.1 and 3.2.2, the freezer 
compartment temperature shall be as specified in section 5.1.3.
    3.2.1 A first test shall be performed with all temperature controls 
set at their median position midway between their warmest and coldest 
settings. For mechanical control systems, (a) knob detents shall be 
mechanically defeated if necessary to attain a median setting, and (b) 
the warmest and coldest settings shall correspond to the positions in 
which the indicator is aligned with control symbols indicating the 
warmest and coldest settings. For electronic control systems, the test 
shall be performed with all compartment temperature controls set at the 
average of the coldest and warmest settings; if there is no setting 
equal to this average, the setting closest to the average shall be used. 
If there are two such settings equally close to the average, the higher 
of these temperature control settings shall be used. A second test shall 
be performed with all controls set at either their warmest or their 
coldest setting (not electrically or mechanically bypassed), whichever 
is appropriate, to attempt to achieve compartment temperatures measured 
during the two tests that bound (i.e., one is above and one is below) 
the standardized temperature. If the compartment temperatures measured 
during these two tests bound the standardized temperature, then these 
test results shall be used to determine energy consumption. If the 
compartment temperature measured with all controls set at their coldest 
setting is above the standardized temperature, the tested unit fails the 
test and cannot be rated. If the compartment temperature measured with 
all controls set at their warmest setting is below the standardized 
temperature, then the result of this test alone will be used to 
determine energy consumption. Also see Table 1 of this appendix, which 
summarizes these requirements.

                                   Table 1--Temperature Settings for Freezers
----------------------------------------------------------------------------------------------------------------
                     First test                                     Second test               Energy calculation
---------------------------------------------------------------------------------------------      based on:
            Settings                    Results            Settings             Results
----------------------------------------------------------------------------------------------------------------
Mid.............................  Low...............  Warm..............  Low...............  Second Test Only.
                                                                          High..............  First and Second
                                                                                               Tests.
                                  High..............  Cold..............  Low...............  First and Second
                                                                                               Tests.
                                                                          High..............  No Energy Use
                                                                                               Rating.
----------------------------------------------------------------------------------------------------------------


[[Page 349]]

    3.2.2 Alternatively, a first test may be performed with all 
temperature controls set at their warmest setting. If the compartment 
temperature is below the standardized temperature, then the result of 
this test alone will be used to determine energy consumption. If this 
condition is not met, then the unit shall be tested in accordance with 
section 3.2.1.

                             4. Test Period

    Tests shall be performed by establishing the conditions set forth in 
section 2 and using the control settings as set forth in section 3 
above.
    4.1 Non-automatic Defrost. If the model being tested has no 
automatic defrost system, the test period shall start after steady-state 
conditions (see section 2.7 of this appendix) have been achieved and be 
no less than three hours in duration. During the test period, the 
compressor motor shall complete two or more whole compressor cycles. (A 
whole compressor cycle is a complete ``on'' and a complete ``off'' 
period of the motor.) If no ``off'' cycling occurs, the test period 
shall be three hours. If less than two compressor cycles occur during a 
24-hour period, then a single complete compressor cycle may be used.
    4.2 Automatic Defrost. If the model being tested has an automatic 
defrost system, the test time period shall start after steady-state 
conditions have been achieved and be from one point during a defrost 
period to the same point during the next defrost period. If the model 
being tested has a long-time automatic defrost system, the alternate 
provisions of 4.2.1 may be used. If the model being tested has a 
variable defrost control, the provisions of 4.2.2 shall apply.
    4.2.1 Long-time Automatic Defrost. If the model being tested has a 
long-time automatic defrost system, the two-part test described in this 
section may be used. The first part is a stable period of compressor 
operation that includes no portions of the defrost cycle, such as 
precooling or recovery, that is otherwise the same as the test for a 
unit having no defrost provisions (section 4.1). The second part is 
designed to capture the energy consumed during all of the events 
occurring with the defrost control sequence that are outside of stable 
operation.
    4.2.1.1 Cycling Compressor System. For a system with a cycling 
compressor, the second part of the test starts at the termination of the 
last regular compressor ``on'' cycle. The average temperature of the 
compartment measured from the termination of the previous compressor 
``on'' cycle to the termination of the last regular compressor ``on'' 
cycle must be within 0.5 [deg]F (0.3 [deg]C) of the average temperature 
of the compartment measured for the first part of the test. If any 
compressor cycles occur prior to the defrost heater being energized that 
cause the average temperature in the compartment to deviate from the 
average temperature for the first part of the test by more than 0.5 
[deg]F (0.3 [deg]C), these compressor cycles are not considered regular 
compressor cycles and must be included in the second part of the test. 
As an example, a ``precooling'' cycle, which is an extended compressor 
cycle that lowers the compartment temperature prior to energizing the 
defrost heater, must be included in the second part of the test. The 
test period for the second part of the test ends at the termination of 
the first regular compressor ``on'' cycle after the compartment 
temperatures have fully recovered to their stable conditions. The 
average temperature of the compartment measured from this termination of 
the first regular compressor ``on'' cycle until the termination of the 
next regular compressor ``on'' cycle must be within 0.5 [deg]F (0.3 
[deg]C) of the average temperature of the compartment measured for the 
first part of the test. See Figure 1. Note that Figure 1 illustrates the 
concepts of precooling and recovery but does not represent all possible 
defrost cycles.

[[Page 350]]

[GRAPHIC] [TIFF OMITTED] TR25JA12.007

    4.2.1.2 Non-cycling Compressor System. For a system with a non-
cycling compressor, the second part of the test starts at a time before 
defrost during stable operation when the compartment temperature is 
within 0.5 [deg]F (0.3 [deg]C) of the average temperature of the 
compartment measured for the first part of the test. The second part 
stops at a time after defrost during stable operation when the 
compartment temperature is within 0.5 [deg]F (0.3 [deg]C) of the average 
temperature of the compartment measured for the first part of the test. 
See Figure 2.

[[Page 351]]

[GRAPHIC] [TIFF OMITTED] TR25JA12.008

    4.2.2 Variable Defrost Control. If the model being tested has a 
variable defrost control system, the test shall consist of the same two 
parts as the test for long-time automatic defrost (section 4.2.1).

                          5. Test Measurements

    5.1 Temperature Measurements. (a) Temperature measurements shall be 
made at the locations prescribed in Figure 5.2 of HRF-1-2008 
(incorporated by reference; see Sec.  430.3) and shall be accurate to 
within 0.5 [deg]F (0.3 [deg]C).
    (b) If the interior arrangements of the unit under test do not 
conform with those shown in Figure 5.2 of HRF-1-2008, the unit must be 
tested by relocating the temperature sensors from the locations 
specified in the figures to avoid interference with hardware or 
components within the unit, in which case the specific locations used 
for the temperature sensors shall be noted in the test data records 
maintained by the manufacturer in accordance with 10 CFR 429.71, and the 
certification report shall indicate that non-standard sensor locations 
were used. If any temperature sensor is relocated by any amount from the 
location prescribed in Figure 5.2 of HRF-1-2008 in order to maintain a 
minimum 1-inch air space from adjustable shelves or other components 
that could be relocated by the consumer, except in cases in which the 
Figure prescribe a temperature sensor location within 1 inch of a shelf 
or similar feature, this constitutes a relocation of temperature sensors 
that must be recorded in the test data and reported in the certification 
report as described above.
    5.1.1 Measured Temperature. The measured temperature is to be the 
average of all sensor temperature readings taken at a particular point 
in time. Measurements shall be taken at regular intervals not to exceed 
4 minutes.
    5.1.2 Compartment Temperature. The compartment temperature for each 
test period shall be an average of the measured temperatures taken in a 
compartment during the test period as defined in section 4 of

[[Page 352]]

this appendix. For long-time automatic defrost models, compartment 
temperature shall be that measured in the first part of the test period 
specified in section 4.2.1 of this appendix. For models with variable 
defrost controls, compartment temperature shall be that measured in the 
first part of the test period specified in section 4.2.2 of this 
appendix. For models with automatic defrost that is neither long-time 
nor variable defrost, the compartment temperature shall be an average of 
the measured temperatures taken in a compartment during a stable period 
of compressor operation that (a) includes no defrost cycles or events 
associated with a defrost cycle, such as precooling or recovery, (b) is 
no less than three hours in duration, and (c) includes two or more whole 
compressor cycles. If the compressor does not cycle, the stable period 
used for the temperature average shall be three hours in duration.
    5.1.3 Freezer Compartment Temperature. The freezer compartment 
temperature shall be calculated as:
[GRAPHIC] [TIFF OMITTED] TR18JY16.011

Where:

F is the total number of applicable freezer compartments, which include 
          the primary freezer compartment and any number of separate 
          auxiliary freezer compartments;
TFi is the compartment temperature of freezer compartment 
          ``i'' determined in accordance with section 5.1.2 of this 
          appendix; and
VFi is the volume of freezer compartment ``i''.

    5.2 Energy Measurements:
    5.2.1 Per-Day Energy Consumption. The energy consumption in 
kilowatt-hours per day for each test period shall be the energy expended 
during the test period as specified in section 4 adjusted to a 24-hour 
period. The adjustment shall be determined as follows:
    5.2.1.1 Nonautomatic and Automatic Defrost Models. The energy 
consumption in kilowatt-hours per day shall be calculated equivalent to:

ET = (EP x 1440 x K) / T

Where:

ET = test cycle energy expended in kilowatt-hours per day;
EP = energy expended in kilowatt-hours during the test period;
T = length of time of the test period in minutes;
1440 = conversion factor to adjust to a 24-hour period in minutes per 
          day; and
K = dimensionless correction factor of 0.7 for chest freezers and 0.85 
          for upright freezers to adjust for average household usage.

    5.2.1.2 Long-time Automatic Defrost. If the two-part test method is 
used, the energy consumption in kilowatt-hours per day shall be 
calculated equivalent to:

ET = (1440 x K x EP1/T1) + (EP2-(EP1 x T2/T1)) x K x (12/CT)

Where:

ET, 1440, and K are defined in section 5.2.1.1;
EP1 = energy expended in kilowatt-hours during the first part of the 
          test;
EP2 = energy expended in kilowatt-hours during the second part of the 
          test;
CT = defrost timer run time or compressor run time between defrosts in 
          hours required to cause it to go through a complete cycle, 
          rounded to the nearest tenth of an hour;
12 = conversion factor to adjust for a 50 percent run time of the 
          compressor in hours per day; and
T1 and T2 = length of time in minutes of the first and second test parts 
          respectively.

    5.2.1.3 Variable Defrost Control. The energy consumption in 
kilowatt-hours per day shall be calculated equivalent to:

ET = (1440 x K x EP1/T1) + (EP2-(EP1 x T2/T1)) x K x (12/CT),

Where:

ET, 1440, and K are defined in section 5.2.1.1 and EP1, EP2, T1, T2, and 
          12 are defined in section 5.2.1.2;
CT = (CTL x CTM)/(F x (CTM - 
          CTL) + CTL);
CTL = the shortest compressor run time between defrosts used 
          in the variable defrost control algorithm (greater than or 
          equal to 6 but less than or equal to 12 hours), or the 
          shortest compressor run time between defrosts observed for the 
          test (if it is shorter than the shortest run time used in the 
          control algorithm and is greater than 6 hours), or 6 hours (if 
          the shortest observed run time is less than 6 hours), in hours 
          rounded to the nearest tenth of an hour;
CTM = maximum compressor run time between defrosts in hours 
          rounded to the

[[Page 353]]

          nearest tenth of an hour (greater than CTL but not 
          more than 96 hours);
F = ratio of per day energy consumption in excess of the least energy 
          and the maximum difference in per-day energy consumption and 
          is equal to 0.20.

    For variable defrost models with no values for CTL and 
CTM in the algorithm, the default values of 6 and 96 shall be 
used, respectively.
    5.3 Volume Measurements. (a) The unit's total refrigerated volume, 
VT, shall be measured in accordance with HRF-1-2008 (incorporated by 
reference; see Sec.  430.3), section 3.30 and sections 4.2 through 4.3. 
The measured volume shall include all spaces within the insulated volume 
of each compartment except for the volumes that must be deducted in 
accordance with section 4.2.2 of HRF-1-2008, as provided in paragraph 
(b) of this section.
    (b) The following component volumes shall not be included in the 
compartment volume measurements: Icemaker compartment insulation, 
fountain recess, dispenser insulation, and ice chute (if there is a 
plug, cover, or cap over the chute per Figure 4-2 of HRF-1-2008). The 
following component volumes shall be included in the compartment volume 
measurements: Icemaker auger motor (if housed inside the insulated space 
of the cabinet), icemaker kit, ice storage bin, and ice chute (up to the 
dispenser flap, if there is no plug, cover, or cap over the ice chute 
per Figure 4-3 of HRF-1-2008).
    (c) Total refrigerated volume is determined by physical measurement 
of the test unit. Measurements and calculations used to determine the 
total refrigerated volume shall be retained as part of the test records 
underlying the certification of the basic model in accordance with 10 
CFR 429.71.
    (d) Compartment classification shall be based on subdivision of the 
refrigerated volume into zones separated from each other by subdividing 
barriers: No evaluated compartment shall be a zone of a larger 
compartment unless the zone is separated from the remainder of the 
larger compartment by subdividing barriers; if there are no such 
subdividing barriers within the larger compartment, the larger 
compartment must be evaluated as a single compartment rather than as 
multiple compartments. If the cabinet contains a movable subdividing 
barrier, it must be placed as described in section 2.5 of this appendix.
    (e) Freezer compartment volumes shall be calculated and recorded to 
the nearest 0.01 cubic feet. Total refrigerated volume shall be 
calculated and recorded to the nearest 0.1 cubic feet.

        6. Calculation of Derived Results From Test Measurements

    6.1 Adjusted Total Volume. The adjusted total volume of each tested 
unit must be determined based upon the volume measured in section 5.3 of 
this appendix using the following calculations. Where volume 
measurements for the freezer are recorded in liters, the measured volume 
must be converted to cubic feet and rounded to the nearest 0.01 cubic 
foot prior to calculating the adjusted volume. Adjusted total volume 
shall be calculated and recorded to the nearest 0.1 cubic foot. The 
adjusted total volume, AV, for freezers under test shall be defined as:

AV = VT x CF

Where:

VA = adjusted total volume in cubic feet;
VT = total refrigerated volume in cubic feet; and
CF = dimensionless correction factor of 1.76.

    6.2 Average Per-Cycle Energy Consumption. The average per-cycle 
energy consumption for a cycle type, E, is expressed in kilowatt-hours 
per cycle to the nearest one hundredth (0.01) kilowatt-hour, and shall 
be calculated according to the sections below.
    6.2.1 If the compartment temperature is always below 0.0 [deg]F (-
17.8 [deg]C), the average per-cycle energy consumption shall be 
equivalent to:

E = ET1 + IET

Where:

E = total per-cycle energy consumption in kilowatt-hours per day;
ET is defined in section 5.2.1 of this appendix;
The number 1 indicates the test during which the highest compartment 
          temperature is measured; and
IET, expressed in kilowatt-hours per cycle, equals 0.23 for a product 
          with an automatic icemaker and otherwise equals 0 (zero).

    6.2.2 If one of the compartment temperatures measured for a test is 
greater than 0.0 [deg]F (17.8 [deg]C), the average per-cycle energy 
consumption shall be equivalent to:

E = ET1 + ((ET2 - ET1) x (0.0 - TF1)/(TF2 - TF1)) + IET

Where:

E and IET are defined in section 6.2.1 of this appendix and ET is 
          defined in section 5.2.1 of this appendix;
TF = freezer compartment temperature determined according to section 
          5.1.3 of this appendix in degrees F;
The numbers 1 and 2 indicate measurements taken during the two tests to 
          be used to calculate energy consumption, as specified in 
          section 3 of this appendix; and
0.0 = standardized compartment temperature in degrees F.


[[Page 354]]


    6.2.3 Variable Anti-Sweat Heater Models. The standard cycle energy 
consumption of a freezer with a variable anti-sweat heater control 
(Estd), expressed in kilowatt-hours per day, shall be 
calculated equivalent to:

Estd = E + (Correction Factor) where E is determined by 
          6.2.1, or 6.2.2, whichever is appropriate, with the anti-sweat 
          heater switch in the ``off'' position or, for a product 
          without an anti-sweat heater switch, the anti-sweat heater in 
          its lowest energy use state.
Correction Factor = (Anti-sweat Heater Power x System-loss Factor) x (24 
          hrs/1 day) x (1 kW/1000 W)

Where:

Anti-sweat Heater Power = 0.034 * (Heater Watts at 5%RH)
 + 0.211 * (Heater Watts at 15%RH)
 + 0.204 * (Heater Watts at 25%RH)
 + 0.166 * (Heater Watts at 35%RH)
 + 0.126 * (Heater Watts at 45%RH)
 + 0.119 * (Heater Watts at 55%RH)
 + 0.069 * (Heater Watts at 65%RH)
 + 0.047 * (Heater Watts at 75%RH)
 + 0.008 * (Heater Watts at 85%RH)
 + 0.015 * (Heater Watts at 95%RH)
Heater Watts at a specific relative humidity = the nominal watts used by 
          all heaters at that specific relative humidity, 72 [deg]F 
          ambient (22.2 [deg]C), and DOE reference freezer (FZ) average 
          temperature of 0 [deg]F (-17.8 [deg]C).
System-loss Factor = 1.3

                        7. Test Procedure Waivers

    To the extent that the procedures contained in this appendix do not 
provide a means for determining the energy consumption of a basic model, 
a manufacturer must obtain a waiver under Sec.  430.27 to establish an 
acceptable test procedure for each such basic model. Such instances 
could, for example, include situations where the test set-up for a 
particular basic model is not clearly defined by the provisions of 
section 2 of this appendix. For details regarding the criteria and 
procedures for obtaining a waiver, please refer to Sec.  430.27.

[75 FR 78866, Dec. 16, 2010, as amended at 76 FR 12502, Mar. 7, 2011; 76 
FR 24781, May 2, 2011; 77 FR 3577, Jan. 25, 2012; 79 FR 22354, Apr. 21, 
2014; 79 FR 41418, July 16, 2014; 81 FR 46803, July 18, 2016]



   Sec. Appendix C1 to Subpart B of Part 430--Uniform Test Method for 
             Measuring the Energy Consumption of Dishwashers

    Note: Manufacturers must test all dishwashers using the provisions 
of Appendix C1 to certify compliance with energy conservation standards 
and to make any other representations related to energy and/or water 
consumption.
    After the compliance date for any amended energy conservation 
standards that incorporate standby mode and off mode energy consumption 
(May 30, 2013 unless the direct final rule published on May 30, 2012 is 
withdrawn), all dishwashers shall be tested using the provisions of 
Appendix C1 to certify compliance with amended energy conservation 
standards and to make any representations related to energy and/or water 
consumption, with the following exception. If the compliance date is 
before April 29, 2013, manufacturers may use Appendix C for any 
representations until April 29, 2013 of energy and/or water consumption 
of these products, consistent with the requirements of 42 U.S.C. 
6293(c)(2).

                             1. Definitions

    1.1 Active mode means a mode in which the dishwasher is connected to 
a mains power source, has been activated, and is performing one of the 
main functions of washing, rinsing, or drying (when a drying process is 
included) dishware, glassware, eating utensils, and most cooking 
utensils by chemical, mechanical, and/or electrical means, or is 
involved in functions necessary for these main functions, such as 
admitting water into the dishwasher, pumping water out of the 
dishwasher, circulating air, or regenerating an internal water softener.
    1.2 AHAM means the Association of Home Appliance Manufacturers.
    1.3 Combined low-power mode means the aggregate of available modes 
other than active mode.
    1.4 Compact dishwasher means a dishwasher that has a capacity of 
less than eight place settings plus six serving pieces as specified in 
ANSI/AHAM DW-1-2010 (incorporated by reference; see Sec.  430.3), using 
the test load specified in section 2.7 of this appendix.
    1.5 Cycle means a sequence of operations of a dishwasher which 
performs a complete dishwashing function, and may include variations or 
combinations of washing, rinsing, and drying.
    1.6 Cycle finished mode means a standby mode which provides 
continuous status display following operation in active mode.
    1.7 Cycle type means any complete sequence of operations capable of 
being preset on the dishwasher prior to the initiation of machine 
operation.
    1.8 Fan-only mode means an active mode that is not user-selectable, 
and in which a fan circulates air for a finite period of time after the 
end of the cycle, where the end of the cycle is indicated to the 
consumer by means of a display, indicator light, or audible signal.

[[Page 355]]

    1.9 IEC 62301 means the standard published by the International 
Electrotechnical Commission, titled ``Household electrical appliances-
Measurement of standby power,'' Publication 62301 (Edition 2.0, 2011-01) 
(incorporated by reference; see Sec.  430.3).
    1.10 Inactive mode means a standby mode that facilitates the 
activation of active mode by remote switch (including remote control), 
internal sensor, or timer, or that provides continuous status display.
    1.11 Non-soil-sensing dishwasher means a dishwasher that does not 
have the ability to adjust automatically any energy consuming aspect of 
the normal cycle based on the soil load of the dishes.
    1.12 Normal cycle means the cycle type, including washing and drying 
temperature options, recommended in the manufacturer's instructions for 
daily, regular, or typical use to completely wash a full load of 
normally soiled dishes including the power-dry feature. If no cycle or 
more than one cycle is recommended in the manufacturer's instructions 
for daily, regular, or typical use to completely wash a full load of 
normally soiled dishes, the most energy intensive of these cycles shall 
be considered the normal cycle. In the absence of a manufacturer 
recommendation on washing and drying temperature options, the highest 
energy consumption options must be selected.
    1.13 Off mode means a mode in which the dishwasher is connected to a 
mains power source and is not providing any active mode or standby mode 
function, and where the mode may persist for an indefinite time. An 
indicator that only shows the user that the product is in the off 
position is included within the classification of an off mode.
    1.14 Power-dry feature means the introduction of electrically-
generated heat into the washing chamber for the purpose of improving the 
drying performance of the dishwasher.
    1.15 Preconditioning cycle means a normal cycle run with no test 
load to ensure that the water lines and sump area of the pump are 
primed.
    1.16 Sensor heavy response means, for standard dishwashers, the set 
of operations in a soil-sensing dishwasher for completely washing a load 
of dishes, four place settings of which are soiled according to ANSI/
AHAM DW-1-2010 (incorporated by reference; see Sec.  430.3) and as 
additionally specified in section 2.7 of this appendix. For compact 
dishwashers, this definition is the same, except that two soiled place 
settings are used instead of four.
    1.17 Sensor light response means, for both standard and compact 
dishwashers, the set of operations in a soil-sensing dishwasher for 
completely washing a load of dishes, one place setting of which is 
soiled with half of the gram weight of soils for each item specified in 
a single place setting according to ANSI/AHAM DW-1-2010 (incorporated by 
reference; see Sec.  430.3) and as additionally specified in section 2.7 
of this appendix.
    1.18 Sensor medium response means, for standard dishwashers, the set 
of operations in a soil-sensing dishwasher for completely washing a load 
of dishes, two place settings of which are soiled according to ANSI/AHAM 
DW-1-2010 (incorporated by reference; see Sec.  430.3) and as 
additionally specified in section 2.7 of this appendix. For compact 
dishwashers, this definition is the same, except that one soiled place 
setting is used instead of two.
    1.19 Soil-sensing dishwasher means a dishwasher that has the ability 
to adjust any energy-consuming aspect of the normal cycle based on the 
soil load of the dishes.
    1.20 Standard dishwasher means a dishwasher that has a capacity 
equal to or greater than eight place settings plus six serving pieces as 
specified in ANSI/AHAM DW-1-2010 (incorporated by reference; see Sec.  
430.3), using the test load specified in section 2.7 of this appendix.
    1.21 Standby mode means a mode in which the dishwasher is connected 
to a mains power source and offers one or more of the following user-
oriented or protective functions which may persist for an indefinite 
time: (a) To facilitate the activation of other modes (including 
activation or deactivation of active mode) by remote switch (including 
remote control), internal sensor, or timer; (b) continuous functions, 
including information or status displays (including clocks) or sensor-
based functions. A timer is a continuous clock function (which may or 
may not be associated with a display) that provides regular scheduled 
tasks (e.g., switching) and that operates on a continuous basis.
    1.22 Truncated normal cycle means the normal cycle interrupted to 
eliminate the power-dry feature after the termination of the last rinse 
operation.
    1.23 Truncated sensor heavy response means the sensor heavy response 
interrupted to eliminate the power-dry feature after the termination of 
the last rinse operation.
    1.24 Truncated sensor light response means the sensor light response 
interrupted to eliminate the power-dry feature after the termination of 
the last rinse operation.
    1.25 Truncated sensor medium response means the sensor medium 
response interrupted to eliminate the power-dry feature after the 
termination of the last rinse operation.
    1.26 Water-heating dishwasher means a dishwasher which, as 
recommended by the manufacturer, is designed for heating cold inlet 
water (nominal 50 [deg]F) or designed for heating water with a nominal 
inlet temperature of 120 [deg]F. Any dishwasher designated as water-
heating (50 [deg]F or 120 [deg]F inlet water) must provide internal 
water heating to above 120

[[Page 356]]

[deg]F in a least one wash phase of the normal cycle.
    1.27 Water-softening dishwasher means a dishwasher which 
incorporates a water softening system that periodically consumes 
additional water and energy during the cycle to regenerate.

                          2. Testing Conditions

    2.1 Installation requirements. Install the dishwasher according to 
the manufacturer's instructions, including drain height. If the 
manufacture does not provide instructions for a specific drain height, 
the drain height shall be 20 inches. The racks shall be positioned 
according to the manufacturer recommendation for washing a full load of 
normally soiled dishes, or in the absence of a recommendation, the racks 
shall be maintained in the as-shipped position. The rinse aid container 
shall remain empty. A standard or compact under-counter or under-sink 
dishwasher must be tested in a rectangular enclosure constructed of 
nominal 0.374 inch (9.5 mm) plywood painted black. The enclosure must 
consist of a top, a bottom, a back, and two sides. If the dishwasher 
includes a counter top as part of the appliance, omit the top of the 
enclosure. Bring the enclosure into the closest contact with the 
appliance that the configuration of the dishwasher will allow. For 
standby mode and off mode testing, these products shall also be 
installed in accordance with Section 5, Paragraph 5.2 of IEC 62301 
(incorporated by reference; see Sec.  430.3), disregarding the 
provisions regarding batteries and the determination, classification, 
and testing of relevant modes.
    2.2 Electrical energy supply.
    2.2.1 Dishwashers that operate with an electrical supply of 115 
volts. Maintain the electrical supply to the dishwasher at 115 volts 
2 percent and within 1 percent of the nameplate 
frequency as specified by the manufacturer. Maintain a continuous 
electrical supply to the unit throughout testing, including the 
preconditioning cycles, specified in section 2.9 of this appendix, and 
in between all test cycles.
    2.2.2 Dishwashers that operate with an electrical supply of 240 
volts. Maintain the electrical supply to the dishwasher at 240 volts 
2 percent and within 1 percent of the nameplate 
frequency as specified by the manufacturer. Maintain a continuous 
electrical supply to the unit throughout testing, including the 
preconditioning cycles, specified in section 2.9 of this appendix, and 
in between all test cycles.
    2.2.3 Supply voltage waveform. For the standby mode and off mode 
testing, maintain the electrical supply voltage waveform indicated in 
Section 4, Paragraph 4.3.2 of IEC 62301 (incorporated by reference; see 
Sec.  430.3).
    2.3 Water temperature. Measure the temperature of the water supplied 
to the dishwasher using a temperature measuring device as specified in 
section 3.1 of this appendix.
    2.3.1 Dishwashers to be tested at a nominal 140 [deg]F inlet water 
temperature. Maintain the water supply temperature at 140[deg] 2 [deg]F.
    2.3.2 Dishwashers to be tested at a nominal 120 [deg]F inlet water 
temperature. Maintain the water supply temperature at 120[deg] 2 [deg]F.
    2.3.3 Dishwashers to be tested at a nominal 50 [deg]F inlet water 
temperature. Maintain the water supply temperature at 50[deg] 2 [deg]F.
    2.4 Water pressure. Using a water pressure gauge as specified in 
section 3.4 of this appendix, maintain the pressure of the water supply 
at 35 2.5 pounds per square inch gauge (psig) when 
the water is flowing. The pressure shall be achieved within 2 seconds of 
opening the water supply valve.
    2.5 Ambient temperature.
    2.5.1 Active mode ambient and machine temperature. Using a 
temperature measuring device as specified in section 3.1 of this 
appendix, maintain the room ambient air temperature at 75[deg] 5 [deg]F and ensure that the dishwasher and the test 
load are at room ambient temperature at the start of each test cycle.
    2.5.2 Standby mode and off mode ambient temperature. For standby 
mode and off mode testing, maintain room ambient air temperature 
conditions as specified in Section 4, Paragraph 4.2 of IEC 62301 
(incorporated by reference; see Sec.  430.3).
    2.6 Test cycle and load.
    2.6.1 Non-soil-sensing dishwashers to be tested at a nominal inlet 
temperature of 140 [deg]F. All non-soil-sensing dishwashers to be tested 
according to section 4.1 of this appendix at a nominal inlet temperature 
of 140 [deg]F must be tested on the normal cycle and truncated normal 
cycle without a test load if the dishwasher does not heat water in the 
normal cycle.
    2.6.2 Non-soil-sensing dishwashers to be tested at a nominal inlet 
temperature of 50 [deg]F or 120 [deg]F. All non-soil-sensing dishwashers 
to be tested according to section 4.1 of this appendix at a nominal 
inlet temperature of 50 [deg]F or 120 [deg]F must be tested on the 
normal cycle with a clean load of eight place settings plus six serving 
pieces, as specified in section 2.7 of this appendix. If the capacity of 
the dishwasher, as stated by the manufacturer, is less than eight place 
settings, then the test load must be the stated capacity.
    2.6.3 Soil-sensing dishwashers to be tested at a nominal inlet 
temperature of 50 [deg]F, 120 [deg]F, or 140 [deg]F. All soil-sensing 
dishwashers shall be tested according to section 4.1 of this appendix on 
the normal cycle. The dishwasher shall be tested first for the sensor 
heavy response, then tested for the sensor medium response, and finally 
for the sensor light response with the following combinations of soiled 
and clean test loads.

[[Page 357]]

    2.6.3.1 For tests of the sensor heavy response, as defined in 
section 1.16 of this appendix:
    (A) For standard dishwashers, the test unit is to be loaded with a 
total of eight place settings plus six serving pieces as specified in 
section 2.7 of this appendix. Four of the eight place settings, except 
for the flatware, must be soiled according to sections 5.3 through 5.7 
of ANSI/AHAM DW-1-2010 (incorporated by reference, see Sec.  430.3) and 
as additionally specified in sections 2.7.4 and 2.7.5 of this appendix, 
while the remaining place settings, serving pieces, and all flatware are 
not soiled. The test load is to be loaded in the dishwasher according to 
section 5.8 of ANSI/AHAM DW-1-2010.
    (B) For compact dishwashers, the test unit is to be loaded with four 
place settings plus six serving pieces as specified in section 2.7 of 
this appendix. Two of the four place settings, except for the flatware, 
must be soiled according to sections 5.3 through 5.7 of ANSI/AHAM DW-1-
2010 and as additionally specified in sections 2.7.4 and 2.7.5 of this 
appendix, while the remaining place settings, serving pieces, and all 
flatware are not soiled. The test load is to be loaded in the dishwasher 
according to section 5.8 of ANSI/AHAM DW-1-2010.
    2.6.3.2 For tests of the sensor medium response, as defined in 
section 1.18 of this appendix:
    (A) For standard dishwashers, the test unit is to be loaded with a 
total of eight place settings plus six serving pieces as specified in 
section 2.7 of this appendix. Two of the eight place settings, except 
for the flatware, must be soiled according to sections 5.3 through 5.7 
of ANSI/AHAM DW-1-2010 (incorporated by reference, see Sec.  430.3) and 
as additionally specified in sections 2.7.4 and 2.7.5 of this appendix, 
while the remaining place settings, serving pieces, and all flatware are 
not soiled. The test load is to be loaded in the dishwasher according to 
section 5.8 of ANSI/AHAM DW-1-2010.
    (B) For compact dishwashers, the test unit is to be loaded with four 
place settings plus six serving pieces as specified in section 2.7 of 
this appendix. One of the four place settings, except for the flatware, 
must be soiled according to sections 5.3 through 5.7 of ANSI/AHAM DW-1-
2010 and as additionally specified in sections 2.7.4 and 2.7.5 of this 
appendix, while the remaining place settings, serving pieces, and all 
flatware are not soiled. The test load is to be loaded in the dishwasher 
according to section 5.8 of ANSI/AHAM DW-1-2010.
    2.6.3.3 For tests of the sensor light response, as defined in 
section 1.17 of this appendix:
    (A) For standard dishwashers, the test unit is to be loaded with a 
total of eight place settings plus six serving pieces as specified in 
section 2.7 of this appendix. One of the eight place settings, except 
for the flatware, must be soiled with half of the soil load specified 
for a single place setting according to sections 5.3 through 5.7 of 
ANSI/AHAM DW-1-2010 (incorporated by reference, see Sec.  430.3) and as 
additionally specified in sections 2.7.4 and 2.7.5 of this appendix, 
while the remaining place settings, serving pieces, and all flatware are 
not soiled. The test load is to be loaded in the dishwasher according to 
section 5.8 of ANSI/AHAM DW-1-2010.
    (B) For compact dishwashers, the test unit is to be loaded with four 
place settings plus six serving pieces as specified in section 2.7 of 
this appendix. One of the four place settings, except for the flatware, 
must be soiled with half of the soil load specified for a single place 
setting according to sections 5.3 through 5.7 of ANSI/AHAM DW-1-2010 and 
as additionally specified in sections 2.7.4 and 2.7.5 of this appendix, 
while the remaining place settings, serving pieces, and all flatware are 
not soiled. The test load is to be loaded in the dishwasher according to 
section 5.8 of ANSI/AHAM DW-1-2010.
    2.7 Test load.
    2.7.1 Test load items.

----------------------------------------------------------------------------------------------------------------
 Dishware/glassware/flatware                                                       Alternate        Alternate
             item               Primary source      Description    Primary No.       source         source No.
----------------------------------------------------------------------------------------------------------------
Dinner Plate.................  Corning           10 inch Dinner    6003893....
                                Comcor[supreg]/   Plate.
                                Corelle[supreg].
Bread and Butter Plate.......  Corning           6.75 inch Bread   6003887....  Arzberg........  8500217100 or
                                Comcor[supreg]/   & Butter.                                       2000-00001-021
                                Corelle[supreg].                                                  7-1
Fruit Bowl...................  Corning           10 oz. Dessert    6003899....  Arzberg........  3820513100
                                Comcor[supreg]/   Bowl.
                                Corelle[supreg].
Cup..........................  Corning           8 oz. Ceramic     6014162....  Arzberg........  1382-00001-4732
                                Comcor[supreg]/   Cup.
                                Corelle[supreg].
Saucer.......................  Corning           6 inch Saucer...  6010972....  Arzberg........  1382-00001-4731
                                Comcor[supreg]/
                                Corelle[supreg].
Serving Bowl.................  Corning           1 qt. Serving     6003911....
                                Comcor[supreg]/   Bowl.
                                Corelle[supreg].
Platter......................  Corning           9.5 inch Oval     6011655....
                                Comcor[supreg]/   Platter.
                                Corelle[supreg].
Glass--Iced Tea..............  Libbey..........  ................  551 HT.....
Flatware--Knife..............  Oneida[supreg]--  ................  2619KPVF...  WMF--Gastro      12.0803.6047
                                Accent.                                          0800.

[[Page 358]]

 
Flatware--Dinner Fork........  Oneida[supreg]--  ................  2619FRSF...  WMF--Signum      12.1905.6040
                                Accent.                                          1900.
Flatware--Salad Fork.........  Oneida[supreg]--  ................  2619FSLF...  WMF--Signum      12.1964.6040
                                Accent.                                          1900.
Flatware--Teaspoon...........  Oneida[supreg]--  ................  2619STSF...  WMF--Signum      12.1910.6040
                                Accent.                                          1900.
Flatware--Serving Fork.......  Oneida[supreg]--  ................  2865FCM....  WMF--Signum      12.1902.6040
                                Flight.                                          1900.
Flatware--Serving Spoon......  Oneida[supreg]--  ................  2619STBF...  WMF--Signum      12.1904.6040
                                Accent.                                          1900.
----------------------------------------------------------------------------------------------------------------

    2.7.2 Place setting. A place setting shall consist of one cup, one 
saucer, one dinner plate, one bread and butter plate, one fruit bowl, 
one iced tea glass, one dinner fork, one salad fork, one knife, and two 
teaspoons.
    2.7.3 Serving pieces. Serving pieces shall consist of two serving 
bowls, one platter, one serving fork, and two serving spoons.
    2.7.4 Soils. The soils shall be as specified in section 5.4 of ANSI/
AHAM DW-1-2010 (incorporated by reference, see Sec.  430.3), except for 
the following substitutions.
    2.7.4.1 Margarine. The margarine shall be Fleischmann's Original 
stick margarine.
    2.7.4.2 Coffee. The coffee shall be Folgers Classic Decaf.
    2.7.5 Soil Preparation. Soils shall be prepared according to section 
5.5 of ANSI/AHAM DW-1-2010 (incorporated by reference, see Sec.  430.3), 
with the following additional specifications.
    2.7.5.1 Milk. The nonfat dry milk shall be reconstituted before 
mixing with the oatmeal and potatoes. It shall be reconstituted with 
water by mixing \2/3\ cup of nonfat dry milk with 2 cups of water until 
well mixed. The reconstituted milk may be stored for use over the course 
of 1 day.
    2.7.5.2 Instant mashed potatoes. The potato mixture shall be applied 
within 30 minutes of preparation.
    2.7.5.3 Ground beef. The 1-pound packages of ground beef shall be 
stored frozen for no more than 6 months.
    2.8 Testing requirements. Provisions in this appendix pertaining to 
dishwashers that operate with a nominal inlet temperature of 50 [deg]F 
or 120 [deg]F apply only to water-heating dishwashers as defined in 
section 1.26 of this appendix.
    2.9 Preconditioning requirements. Precondition the dishwasher twice 
by establishing the testing conditions set forth in sections 2.1 through 
2.5 of this appendix. For each preconditioning, set the dishwasher to 
the preconditioning cycle as defined in section 1.15 of this appendix, 
without using a test load, and initiate the cycle. During the second 
preconditioning, measure the prewash fill water volume, Vpw, 
if any, and the main wash fill water volume, Vmw.
    2.10 Detergent. Use half the quantity of detergent specified 
according to section 4.1 of ANSI/AHAM DW-1-2010 (incorporated by 
reference, see Sec.  430.3), using Cascade with the Grease Fighting 
Power of Dawn powder as the detergent formulation. Determine the amount 
of detergent (in grams) to be added to the prewash compartment (if 
provided) or elsewhere in the dishwasher (if recommended by the 
manufacturer) and the main wash compartment according to sections 2.10.1 
and 2.10.2 of this appendix.
    2.10.1 Prewash Detergent Dosing. If the cycle setting for the test 
cycle includes prewash, determine the quantity of dry prewash detergent, 
Dpw, in grams (g) that results in 0.25 percent concentration 
by mass in the prewash fill water as:

Dpw = Vpw x [rho] x k x 0.25/100

    where,

Vpw = the prewash fill volume of water in gallons,
[rho] = water density = 8.343 pounds (lb)/gallon for dishwashers to be 
          tested at a nominal inlet water temperature of 50 [deg]F (10 
          [deg]C), 8.250 lb/gallon for dishwashers to be tested at a 
          nominal inlet water temperature of 120 [deg]F (49 [deg]C), and 
          8.205 lb/gallon for dishwashers to be tested at a nominal 
          inlet water temperature of 140 [deg]F (60 [deg]C), and
k = conversion factor from lb to g = 453.6 g/lb.

    2.10.2 Main Wash Detergent Dosing. Determine the quantity of dry 
main wash detergent, Dmw, in grams (g) that results in 0.25 
percent concentration by mass in the main wash fill water as:

Dmw = Vmw x [rho] x k x 0.25/100

where,

Vmw = the main wash fill volume of water in gallons, and
[rho], and k are defined in section 2.10.1 of this appendix.

                           3. Instrumentation

    Test instruments must be calibrated annually.
    3.1 Temperature measuring device. The device must have an error no 
greater than 1 [deg]F over the range being 
measured.

[[Page 359]]

    3.2 Timer. Time measurements for each monitoring period shall be 
accurate to within 2 seconds.
    3.3 Water meter. The water meter must have a resolution of no larger 
than 0.1 gallons and a maximum error no greater than 1.5 percent of the measured flow rate for all water 
temperatures encountered in the test cycle.
    3.4 Water pressure gauge. The water pressure gauge must have a 
resolution of one pound per square inch (psi) and must have an error no 
greater than 5 percent of any measured value over the range of 35 2.5 psig.
    3.5 Watt-hour meter. The watt-hour meter must have a resolution of 
.1 watt-hour or less and a maximum error of no more than 1 percent of 
the measured value for any demand greater than 5 watts.
    3.6 Standby mode and off mode watt meter. The watt meter used to 
measure standby mode and off mode power consumption shall meet the 
requirements specified in Section 4, Paragraph 4.4 of IEC 62301 
(incorporated by reference, see Sec.  430.3).

                     4. Test Cycle and Measurements

    4.1 Active mode cycle. Perform a test cycle by establishing the 
testing conditions set forth in section 2 of this appendix, setting the 
dishwasher to the cycle type to be tested according to section 2.6.1, 
2.6.2, or 2.6.3 of this appendix, initiating the cycle, and allowing the 
cycle to proceed to completion.
    4.1.1 Machine electrical energy consumption. Measure the machine 
electrical energy consumption, M, expressed as the number of kilowatt-
hours of electricity consumed by the machine during the entire test 
cycle, using a water supply temperature as set forth in section 2.3 of 
this appendix and using a watt-hour meter as specified in section 3.5 of 
this appendix.
    4.1.2 Fan electrical energy consumption. If the dishwasher is 
capable of operation in fan-only mode, measure the fan electrical energy 
consumption, MF, expressed as the number of kilowatt-hours of 
electricity consumed by the machine for the duration of fan-only mode, 
using a watt-hour meter as specified in section 3.5 of this appendix. 
Alternatively, if the duration of fan-only mode is known, the watt-hours 
consumed may be measured for a period of 10 minutes in fan-only mode, 
using a watt-hour meter as specified in section 3.5 of this appendix. 
Multiply this value by the time in minutes that the dishwasher remains 
in fan-only mode, LF, and divide by 10,000 to obtain 
MF. The alternative approach may be used only if the 
resulting MF is representative of energy use during the 
entire fan-only mode.
    4.1.3 Water consumption. Measure the water consumption, V, expressed 
as the number of gallons of water delivered to the machine during the 
entire test cycle, using a water meter specified in section 3.3 of this 
appendix.
    4.2 Standby mode and off mode power. Connect the dishwasher to a 
standby mode and off mode watt meter as specified in section 3.6 of this 
appendix. Establish the testing conditions set forth in sections 2.1, 
2.2, and 2.5.2 of this appendix. For dishwashers that take some time to 
enter a stable state from a higher power state as discussed in Section 
5, Paragraph 5.1, note 1 of IEC 62301 (incorporated by reference; see 
Sec.  430.3), allow sufficient time for the dishwasher to reach the 
lower power state before proceeding with the test measurement. Follow 
the test procedure specified in Section 5, Paragraph 5.3.2 of IEC 62301 
for testing in each possible mode as described in sections 4.2.1 and 
4.2.2 of this appendix.
    4.2.1 If the dishwasher has an inactive mode, as defined in section 
1.10 of this appendix, measure and record the average inactive mode 
power of the dishwasher, PIA, in watts.
    4.2.2 If the dishwasher has an off mode, as defined in section 1.13 
of this appendix, measure and record the average off mode power, 
POM, in watts.

        5. Calculation of Derived Results From Test Measurements

    5.1 Machine energy consumption.
    5.1.1 Machine energy consumption for non-soil-sensing electric 
dishwashers. Take the value recorded in section 4.1.1 of this appendix 
as the per-cycle machine electrical energy consumption. Express the 
value, M, in kilowatt-hours per cycle.
    5.1.2 Machine energy consumption for soil-sensing electric 
dishwashers. The machine energy consumption for the sensor normal cycle, 
M, is defined as:

M = (Mhr x Fhr) + (Mmr x 
          Fmr) + (Mlr x Flr)

where,

Mhr = the value recorded in section 4.1.1 of this appendix 
          for the test of the sensor heavy response, expressed in 
          kilowatt-hours per cycle,
Mmr = the value recorded in section 4.1.1 of this appendix 
          for the test of the sensor medium response, expressed in 
          kilowatt-hours per cycle,
Mlr = the value recorded in section 4.1.1 of this appendix 
          for the test of the sensor light response, expressed in 
          kilowatt-hours per cycle,
Fhr = the weighting factor based on consumer use of heavy 
          response = 0.05,
Fmr = the weighting factor based on consumer use of medium 
          response = 0.33, and
Flr = the weighting factor based on consumer use of light 
          response = 0.62.

    5.1.3 Machine energy consumption during water softener regeneration 
for water-softening dishwashers. The machine energy consumption for 
water softener regeneration, MWS, is defined as:

MWS = MWScycle x NWS/N


[[Page 360]]


where,

MWScycle = the reported value of the additional machine 
          electrical energy consumption required for water softener 
          regeneration during a cycle including water softener 
          regeneration, expressed in kilowatt-hours,
NWS = the reported representative average number of water 
          softener regeneration cycles per year, and
N = the representative average dishwasher use of 215 cycles per year.

    5.2 Fan-only mode energy consumption.
    5.2.1 Electrical energy consumption for fan-only mode for non-soil-
sensing electric dishwashers. Take the value recorded in section 4.1.2 
of this appendix as the per-cycle electrical energy consumption for fan-
only mode. Express the value, EF, in kilowatt-hours per 
cycle. If the dishwasher is not capable of operation in fan-only mode, 
EF = 0.
    5.2.2 Electrical energy consumption for fan-only mode for soil-
sensing electric dishwashers. The fan-only mode electrical energy 
consumption, EF, for the sensor normal cycle is defined as:

EF = (EFhr + EFmr + EFlr) / 
          3

where,

EFhr = the value recorded in section 4.1.2 of this appendix 
          for the test of the sensor heavy response, expressed in 
          kilowatt-hours per cycle,
EFmr = the value recorded in section 4.1.2 of this appendix 
          for the test of the sensor medium response, expressed in 
          kilowatt-hours per cycle,
EFlr = the value recorded in section 4.1.2 of this appendix 
          for the test of the sensor light response, expressed in 
          kilowatt-hours per cycle,

    If the dishwasher is not capable of operation in fan-only mode, 
EF = 0.
    5.3 Drying energy.
    5.3.1 Drying energy consumption for non-soil-sensing electric 
dishwashers. Calculate the amount of energy consumed using the power-dry 
feature after the termination of the last rinse option of the normal 
cycle. Express the value, ED, in kilowatt-hours per cycle.
    5.3.2 Drying energy consumption for soil-sensing electric 
dishwashers. The drying energy consumption, ED, for the 
sensor normal cycle is defined as:

ED = (EDhr + EDmr + EDlr) / 
          3

where,

EDhr = energy consumed using the power-dry feature after the 
          termination of the last rinse option of the sensor heavy 
          response, expressed in kilowatt-hours per cycle,
EDmr = energy consumed using the power-dry feature after the 
          termination of the last rinse option of the sensor medium 
          response, expressed in kilowatt-hours per cycle,
EDlr = energy consumed using the power-dry feature after the 
          termination of the last rinse option of the sensor light 
          response, expressed in kilowatt-hours per cycle,

    5.4 Water consumption.
    5.4.1 Water consumption for non-soil-sensing electric dishwashers 
using electrically heated, gas-heated, or oil-heated water. Take the 
value recorded in section 4.1.3 of this appendix as the per-cycle water 
consumption. Express the value, V, in gallons per cycle.
    5.4.2 Water consumption for soil-sensing electric dishwashers using 
electrically heated, gas-heated, or oil-heated water. The water 
consumption for the sensor normal cycle, V, is defined as:

V = (Vhr x Fhr) + (Vmr x 
          Fmr) + (Vlr x Flr)

where,

Vhr = the value recorded in section 4.1.3 of this appendix 
          for the test of the sensor heavy response, expressed in 
          gallons per cycle,
Vmr = the value recorded in section 4.1.3 of this appendix 
          for the test of the sensor medium response, expressed in 
          gallons per cycle,
Vlr = the value recorded in section 4.1.3 of this appendix 
          for the test of the sensor light response, expressed in 
          gallons per cycle,
Fhr = the weighting factor based on consumer use of heavy 
          response = 0.05,
Fmr = the weighting factor based on consumer use of medium 
          response = 0.33, and
Flr = the weighting factor based on consumer use of light 
          response = 0.62.

    5.4.3 Water consumption during water softener regeneration for 
water-softening dishwashers using electrically heated, gas-heated, or 
oil-heated water. The water consumption for water softener regeneration, 
VWS, is defined as:

VWS = VWScycle x NWS/N

where,

VWScycle = the reported value of the additional water 
          consumption required for water softener regeneration during a 
          cycle including water softener regeneration, expressed in 
          gallons per cycle,
NWS = the reported representative average number of water 
          softener regeneration cycles per year, and
N = the representative average dishwasher use of 215 cycles per year.

    5.5 Water energy consumption for non-soil-sensing or soil-sensing 
dishwashers using electrically heated water.
    5.5.1 Dishwashers that operate with a nominal 140 [deg]F inlet water 
temperature, only.
    5.5.1.1 Calculate the water energy consumption, W, expressed in 
kilowatt-hours per cycle and defined as:

W = V x T x K

where,


[[Page 361]]


V = water consumption in gallons per cycle, as determined in section 
          5.4.1 of this appendix for non-soil-sensing dishwashers and 
          section 5.4.2 of this appendix for soil-sensing dishwashers,
T = nominal water heater temperature rise = 90 [deg]F, and
K = specific heat of water in kilowatt-hours per gallon per degree 
          Fahrenheit = 0.0024.

    5.5.1.2 For water-softening dishwashers, calculate the water 
softener regeneration water energy consumption, WWS, 
expressed in kilowatt-hours per cycle and defined as:

WWS = VWS x T x K

where,

VWS = water consumption during water softener regeneration in 
          gallons per cycle which includes regeneration, as determined 
          in section 5.4.3 of this appendix,
T = nominal water heater temperature rise = 90 [deg]F, and
K = specific heat of water in kilowatt-hours per gallon per degree 
          Fahrenheit = 0.0024.

    5.5.2 Dishwashers that operate with a nominal inlet water 
temperature of 120 [deg]F.
    5.5.2.1 Calculate the water energy consumption, W, expressed in 
kilowatt-hours per cycle and defined as:

W = V x T x K

where,

V = water consumption in gallons per cycle, as determined in section 
          5.4.1 of this appendix for non-soil-sensing dishwashers and 
          section 5.4.2 of this appendix for soil-sensing dishwashers,
T = nominal water heater temperature rise = 70 [deg]F, and
K = specific heat of water in kilowatt-hours per gallon per degree 
          Fahrenheit = 0.0024,

    5.5.2.2 For water-softening dishwashers, calculate the water 
softener regeneration water energy consumption, WWS, 
expressed in kilowatt-hours per cycle and defined as:

WWS = VWS x T x K

where,

VWS = water consumption during water softener regeneration in 
          gallons per cycle which includes regeneration, as determined 
          in section 5.4.3 of this appendix,
T = nominal water heater temperature rise = 70 [deg]F, and
K = specific heat of water in kilowatt-hours per gallon per degree 
          Fahrenheit = 0.0024.

    5.6 Water energy consumption per cycle using gas-heated or oil-
heated water.
    5.6.1 Dishwashers that operate with a nominal 140 [deg]F inlet water 
temperature, only.
    5.6.1.1 Calculate the water energy consumption using gas-heated or 
oil-heated water, Wg, expressed in Btu's per cycle and 
defined as:

Wg = V x T x C/e

where,

V = water consumption in gallons per cycle, as determined in section 
          5.4.1 of this appendix for non-soil-sensing dishwashers and 
          section 5.4.2 of this appendix for soil-sensing dishwashers,
T = nominal water heater temperature rise = 90 [deg]F,
C = specific heat of water in Btu's per gallon per degree Fahrenheit = 
          8.2, and
e = nominal gas or oil water heater recovery efficiency = 0.75,

    5.6.1.2 For water-softening dishwashers, calculate the water 
softener regeneration water energy consumption, WWSg, 
expressed in kilowatt-hours per cycle and defined as:

WWSg = VWS x T x C/e

where,

VWS = water consumption during water softener regeneration in 
          gallons per cycle which includes regeneration, as determined 
          in section 5.4.3 of this appendix,
T = nominal water heater temperature rise = 90 [deg]F,
C = specific heat of water in Btu's per gallon per degree Fahrenheit = 
          8.2, and
e = nominal gas or oil water heater recovery efficiency = 0.75.

    5.6.2 Dishwashers that operate with a nominal 120 [deg]F inlet water 
temperature, only.
    5.6.2.1 Calculate the water energy consumption using gas-heated or 
oil-heated water, Wg, expressed in Btu's per cycle and 
defined as:
Wg = V x T x C/e

where,

V = water consumption in gallons per cycle, as determined in section 
          5.4.1 of this appendix for non-soil-sensing dishwashers and 
          section 5.4.2 of this appendix for soil-sensing dishwashers,
T = nominal water heater temperature rise = 70 [deg]F,
C = specific heat of water in Btu's per gallon per degree Fahrenheit = 
          8.2, and
e = nominal gas or oil water heater recovery efficiency = 0.75.

    5.6.2.2 For water-softening dishwashers, calculate the water 
softener regeneration water energy consumption, WWSg, 
expressed in kilowatt-hours per cycle and defined as:

WWSg = VWS x T x C/e

where,

VWS = water consumption during water softener regeneration in 
          gallons per cycle which includes regeneration, as determined 
          in section 5.4.3 of this appendix,
T = nominal water heater temperature rise = 70 [deg]F,
C = specific heat of water in Btu's per gallon per degree Fahrenheit = 
          8.2, and
e = nominal gas or oil water heater recovery efficiency = 0.75.

    5.7 Annual combined low-power mode energy consumption. Calculate the 
annual combined

[[Page 362]]

low-power mode energy consumption for dishwashers, ETLP, 
expressed in kilowatt-hours per year, according to the following:

ETLP = [(PIA x SIA) + (POM x 
          SOM)] x K

where:

PIA = dishwasher inactive mode power, in watts, as measured 
          in section 4.2.1 of this appendix for dishwashers capable of 
          operating in inactive mode; otherwise, PIA = 0,
POM = dishwasher off mode power, in watts, as measured in 
          section 4.2.2 of this appendix for dishwashers capable of 
          operating in off mode; otherwise, POM = 0,
SIA = annual hours in inactive mode as defined as 
          SLP if no off mode is possible, [SLP/2] 
          if both inactive mode and off mode are possible, and 0 if no 
          inactive mode is possible,
SOM = annual hours in off mode as defined as SLP 
          if no inactive mode is possible, [SLP/2] if both 
          inactive mode and off mode are possible, and 0 if no off mode 
          is possible,
SLP = combined low-power annual hours for all available modes 
          other than active mode as defined as [H - (N x (L + 
          LF))] for dishwashers capable of operating in fan-
          only mode; otherwise, SLP = 8,465,
H = the total number of hours per year = 8766 hours per year,
N = the representative average dishwasher use of 215 cycles per year,
L = the average of the duration of the normal cycle and truncated normal 
          cycle, for non-soil-sensing dishwashers with a truncated 
          normal cycle; the duration of the normal cycle, for non-soil-
          sensing dishwashers without a truncated normal cycle; the 
          average duration of the sensor light response, truncated 
          sensor light response, sensor medium response, truncated 
          sensor medium response, sensor heavy response, and truncated 
          sensor heavy response, for soil-sensing dishwashers with a 
          truncated cycle option; the average duration of the sensor 
          light response, sensor medium response, and sensor heavy 
          response, for soil-sensing dishwashers without a truncated 
          cycle option,
LF = the duration of the fan-only mode for the normal cycle 
          for non-soil-sensing dishwashers; the average duration of the 
          fan-only mode for sensor light response, sensor medium 
          response, and sensor heavy response for soil-sensing 
          dishwashers, and
K = 0.001 kWh/Wh conversion factor for watt-hours to kilowatt-hours.

[77 FR 65982, Oct. 31, 2012, as amended at 81 FR 90120, Dec. 13, 2016]



   Sec. Appendix D to Subpart B of Part 430--Uniform Test Method for 
           Measuring the Energy Consumption of Clothes Dryers

    Note: Effective February 10, 2014, manufacturers must make 
representations of energy efficiency, including certifications of 
compliance, using appendix D. Compliance with DOE's amended standards 
for clothes dryers, and corresponding use of the test procedures at 
appendix D1 for all representations, including certifications of 
compliance, is required as of January 1, 2015. Manufacturers must use a 
single appendix for all representations, including certifications of 
compliance, and may not use appendix D for certain representations and 
appendix D1 for other representations. The procedures in appendix D2 
need not be performed to determine compliance with energy conservation 
standards for clothes dryers at this time. However, manufacturers may 
elect to use the amended appendix D, D1 or D2 early.

                             1. Definitions

    1.1 ``AHAM'' means the Association of Home Appliance Manufacturers.
    1.2 ``Bone dry'' means a condition of a load of test clothes which 
has been dried in a dryer at maximum temperature for a minimum of 10 
minutes, removed and weighed before cool down, and then dried again for 
10-minute periods until the final weight change of the load is 1 percent 
or less.
    1.3 ``Compact'' or compact size'' means a clothes dryer with a drum 
capacity of less than 4.4 cubic feet.
    1.4 ``Cool down'' means that portion of the clothes drying cycle 
when the added gas or electric heat is terminated and the clothes 
continue to tumble and dry within the drum.
    1.5 ``Cycle'' means a sequence of operation of a clothes dryer which 
performs a clothes drying operation, and may include variations or 
combinations of the functions of heating, tumbling and drying.
    1.6 ``Drum capacity'' means the volume of the drying drum in cubic 
feet.
    1.7 ``HLD-1'' means the test standard promulgated by AHAM and titled 
``AHAM Performance Evaluation Procedure for Household Tumble Type 
Clothes Dryers'', June 1974, and designated as HLD-1.
    1.8 ``HLD-2EC'' means the test standard promulgated by AHAM and 
titled ``Test Method for Measuring Energy Consumption of Household 
Tumble Type Clothes Dryers,'' December 1975, and designated as HLD-2EC.
    1.9 ``Standard size'' means a clothes dryer with a drum capacity of 
4.4 cubic feet or greater.
    1.10 ``Moisture content'' means the ratio of the weight of water 
contained by the test load to the bone-dry weight of the test load, 
expressed as a percent.

[[Page 363]]

    1.11 ``Automatic termination control'' means a dryer control system 
with a sensor which monitors either the dryer load temperature or its 
moisture content and with a controller which automatically terminates 
the drying process. A mark or detent which indicates a preferred 
automatic termination control setting must be present if the dryer is to 
be classified as having an ``automatic termination control.'' A mark is 
a visible single control setting on one or more dryer controls.
    1.12 ``Temperature sensing control'' means a system which monitors 
dryer exhaust air temperature and automatically terminates the dryer 
cycle.
    1.13 ``Moisture sensing control'' means a system which utilizes a 
moisture sensing element within the dryer drum that monitors the amount 
of moisture in the clothes and automatically terminates the dryer cycle.

                          2. Testing Conditions

    2.1 Installation. Install the clothes dryer in accordance with 
manufacturer's instructions as shipped with the unit. If the 
manufacturer's instructions do not specify the installation requirements 
for a certain component, it shall be tested in the as-shipped condition. 
The dryer exhaust shall be restricted by adding the AHAM exhaust 
simulator described in 3.3.5 of HLD-1. All external joints should be 
taped to avoid air leakage. Disconnect all lights, such as task lights, 
that do not provide any information related to the drying process on the 
clothes dryer and that do not consume more than 10 watts during the 
clothes dryer test cycle. Control setting indicator lights showing the 
cycle progression, temperature or dryness settings, or other cycle 
functions that cannot be turned off during the test cycle shall not be 
disconnected during the active mode test cycle.
    2.2 Ambient temperature and humidity. Maintain the room ambient air 
temperature at 75 3 [deg]F and the room relative 
humidity at 5010 percent relative humidity.
    2.3 Energy supply.
    2.3.1 Electrical supply. Maintain the electrical supply at the 
clothes dryer terminal block within 1 percent of 120/240 or 120/208Y or 
120 volts as applicable to the particular terminal block wiring system 
and within 1 percent of the nameplate frequency as specified by the 
manufacturer. If the dryer has a dual voltage conversion capability, 
conduct test at the highest voltage specified by the manufacturer.
    2.3.2 Gas supply.
    2.3.2.1 Natural gas. Maintain the gas supply to the clothes dryer at 
a normal inlet test pressure immediately ahead of all controls at 7 to 
10 inches of water column. If the clothes dryer is equipped with a gas 
appliance pressure regulator, the regulator outlet pressure at the 
normal test pressure shall be within 10 percent of 
the value recommended by the manufacturer in the installation manual, on 
the nameplate sticker, or wherever the manufacturer makes such a 
recommendation for the basic model. The hourly Btu rating of the burner 
shall be maintained within 5 percent of the rating 
specified by the manufacturer. If the requirement to maintain the hourly 
Btu rating of the burner within 5 percent of the 
rating specified by the manufacturer cannot be achieved under the 
allowable range in gas inlet test pressure, the orifice of the gas 
burner should be modified as necessary to achieve the required Btu 
rating. The natural gas supplied should have a heating value of 
approximately 1,025 Btus per standard cubic foot. The actual heating 
value, Hn2, in Btus per standard cubic foot, for the natural 
gas to be used in the test shall be obtained either from measurements 
made by the manufacturer conducting the test using a standard continuous 
flow calorimeter as described in section 2.4.6 or by the purchase of 
bottled natural gas whose Btu rating is certified to be at least as 
accurate a rating as could be obtained from measurements with a standard 
continuous flow calorimeter as described in section 2.4.6.
    2.3.2.2 Propane gas. Maintain the gas supply to the clothes dryer at 
a normal inlet test pressure immediately ahead of all controls at 11 to 
13 inches of water column. If the clothes dryer is equipped with a gas 
appliance pressure regulator, the regulator outlet pressure at the 
normal test pressure shall be within 10 percent of 
the value recommended by the manufacturer in the installation manual, on 
the nameplate sticker, or wherever the manufacturer makes such a 
recommendation for the basic model. The hourly Btu rating of the burner 
shall be maintained within 5 percent of the rating 
specified by the manufacturer. If the requirement to maintain the hourly 
Btu rating of the burner within 5 percent of the 
rating specified by the manufacturer cannot be achieved under the 
allowable range in gas inlet test pressure, the orifice of the gas 
burner should be modified as necessary to achieve the required Btu 
rating. The propane gas supplied should have a heating value of 
approximately 2,500 Btus per standard cubic foot. The actual heating 
value, Hp, in Btus per standard cubic foot, for the propane 
gas to be used in the test shall be obtained either from measurements 
made by the manufacturer conducting the test using a standard continuous 
flow calorimeter as described in section 2.4.6 or by the purchase of 
bottled gas whose Btu rating is certified to be at least as accurate a 
rating as could be obtained from measurement with a standard continuous 
calorimeter as described in section 2.4.6.
    2.4 Instrumentation. Perform all test measurements using the 
following instruments as appropriate.

[[Page 364]]

    2.4.1 Weighing scale for test cloth. The scale shall have a range of 
0 to a maximum of 60 pounds with a resolution of at least 0.2 ounces and 
a maximum error no greater than 0.3 percent of any measured value within 
the range of 3 to 15 pounds.
    2.4.1.2 Weighing scale for drum capacity measurements. The scale 
should have a range of 0 to a maximum of 600 pounds with resolution of 
0.50 pounds and a maximum error no greater than 0.5 percent of the 
measured value.
    2.4.2 Kilowatt-hour meter. The kilowatt-hour meter shall have a 
resolution of 0.001 kilowatt-hours and a maximum error no greater than 
0.5 percent of the measured value.
    2.4.3 Gas meter. The gas meter shall have a resolution of 0.001 
cubic feet and a maximum error no greater than 0.5 percent of the 
measured value.
    2.4.4 Dry and wet bulb psychrometer. The dry and wet bulb 
psychrometer shall have an error no greater than 1 
[deg]F. A relative humidity meter with a maximum error tolerance 
expressed in [deg]F equivalent to the requirements for the dry and wet 
bulb psychrometer or with a maximum error tolerance of 2 percent relative humidity would be acceptable for 
measuring the ambient humidity.
    2.4.5 Temperature. The temperature sensor shall have an error no 
greater than 1 [deg]F.
    2.4.6 Standard Continuous Flow Calorimeter. The Calorimeter shall 
have an operating range of 750 to 3,500 Btu per cubic feet. The maximum 
error of the basic calorimeter shall be no greater than 0.2 percent of 
the actual heating value of the gas used in the test. The indicator 
readout shall have a maximum error no greater than 0.5 percent of the 
measured value within the operating range and a resolution of 0.2 
percent of the full scale reading of the indicator instrument.
    2.5 Lint trap. Clean the lint trap thoroughly before each test run.
    2.6 Test cloths.
    2.6.1 Energy test cloth. The energy test cloth shall be clean and 
consist of the following:
    (a) Pure finished bleached cloth, made with a momie or granite 
weave, which is a blended fabric of 50 percent cotton and 50 percent 
polyester and weighs within + 10 percent of 5.75 ounces per square yard 
after test cloth preconditioning and has 65 ends on the warp and 57 
picks on the fill. The individual warp and fill yarns are a blend of 50 
percent cotton and 50 percent polyester fibers.
    (b) Cloth material that is 24 inches by 36 inches and has been 
hemmed to 22 inches by 34 inches before washing. The maximum shrinkage 
after five washes shall not be more than four percent on the length and 
width.
    (c) The number of test runs on the same energy test cloth shall not 
exceed 25 runs.
    2.6.2 Energy stuffer cloths. The energy stuffer cloths shall be made 
from energy test cloth material and shall consist of pieces of material 
that are 12 inches by 12 inches and have been hemmed to 10 inches by 10 
inches before washing. The maximum shrinkage after five washes shall not 
be more than four percent on the length and width. The number of test 
runs on the same energy stuffer cloth shall not exceed 25 runs after 
test cloth preconditioning.
    2.6.3 Test Cloth Preconditioning.
    A new test cloth load and energy stuffer cloths shall be treated as 
follows:
    (1) Bone dry the load to a weight change of 1 
percent, or less, as prescribed in Section 1.2.
    (2) Place test cloth load in a standard clothes washer set at the 
maximum water fill level. Wash the load for 10 minutes in soft water (17 
parts per million hardness or less), using 6.0 grams of AHAM Standard 
Test Detergent, IIA, per gallon of water. Wash water temperature is to 
controlled at 140[deg]5 [deg]F (60[deg] 2.7 [deg]C). Rinse water temperature is to be controlled 
at 100[deg] 5 [deg]F (37.7 2.7 [deg]C).
    (3) Rinse the load again at the same water temperature.
    (4) Bone dry the load as prescribed in Section 1.2 and weigh the 
load.
    (5) This procedure is repeated until there is a weight change of one 
percent or less.
    (6) A final cycle is to be a hot water wash with no detergent, 
followed by two warm water rinses.
    2.7 Test loads.
    2.7.1 Compact size dryer load. Prepare a bone-dry test load of 
energy cloths which weighs 3.00 pounds .03 pounds. 
Adjustments to the test load to achieve the proper weight can be made by 
the use of energy stuffer cloths, with no more than five stuffer cloths 
per load. Dampen the load by agitating it in water whose temperature is 
100[deg] 5 [deg]F and consists of 0 to 17 parts 
per million hardness for approximately two minutes in order to saturate 
the fabric. Then, extract water from the wet test load by spinning the 
load until the moisture content of the load is between 66.5 percent to 
73.5 percent of the bone-dry weight of the test load.
    2.7.2 Standard size dryer load. Prepare a bone-dry test load of 
energy cloths which weighs 7.00 pounds .07 pounds. 
Adjustments to the test load to achieve the proper weight can be made by 
the use of energy stuffer cloths, with no more than five stuffer cloths 
per load. Dampen the load by agitating it in water whose temperature is 
100[deg] 5 [deg]F and consists of 0 to 17 parts 
per million hardness for approximately two minutes in order to saturate 
the fabric. Then, extract water from the wet test load by spinning the 
load until the moisture content of the load is between 66.5 percent to 
73.5 percent of the bone-dry weight of the test load.
    2.7.3 Method of loading. Load the energy test cloths by grasping 
them in the center,

[[Page 365]]

shaking them to hang loosely and then dropping them in the dryer at 
random.
    2.8 Clothes dryer preconditioning. Before any test cycle, operate 
the dryer without a test load in the non-heat mode for 15 minutes or 
until the discharge air temperature is varying less than 1 [deg]F for 10 
minutes, which ever is longer, in the test installation location with 
the ambient conditions within the specified rest condition tolerances of 
2.2.

                   3. Test Procedures and Measurements

    3.1 Drum Capacity. Measure the drum capacity by sealing all openings 
in the drum except the loading port with a plastic bag, and ensure that 
all corners and depressions are filled and that there are no extrusions 
of the plastic bag through any openings in the interior of the drum. 
Support the dryer's rear drum surface on a platform scale to prevent 
deflection of the dryer, and record the weight of the empty dryer. Fill 
the drum with water to a level determined by the intersection of the 
door plane and the loading port (i.e., the uppermost edge of the drum 
that is in contact with the door seal). Record the temperature of the 
water and then the weight of the dryer with the added water and then 
determine the mass of the water in pounds. Add the appropriate volume to 
account for any space in the drum interior not measured by water fill 
(e.g., the space above the uppermost edge of the drum within a curved 
door) and subtract the appropriate volume to account for space that is 
measured by water fill but cannot be used when the door is closed (e.g., 
space occupied by the door when closed). The drum capacity is calculated 
as follows:
C = w/d volume adjustment
C = capacity in cubic feet.
w = mass of water in pounds.
d = density of water at the measured temperature in pounds per cubic 
          foot.
    3.2 Dryer loading. Load the dryer as specified in 2.7.
    3.3 Test cycle. Operate the clothes dryer at the maximum temperature 
setting and, if equipped with a timer, at the maximum time setting. Any 
other optional cycle settings that do not affect the temperature or time 
settings shall be tested in the as-shipped position. If the clothes 
dryer does not have a separate temperature setting selection on the 
control panel, the maximum time setting should be used for the drying 
test cycle. Dry the test load until the moisture content of the test 
load is between 2.5 percent and 5.0 percent of the bone-dry weight of 
the test load, but do not permit the dryer to advance into cool down. If 
required, reset the timer or automatic dry control.
    3.4 Data recording. Record for each test cycle:
    3.4.1 Bone-dry weight of the test load described in 2.7.
    3.4.2 Moisture content of the wet test load before the test, as 
described in 2.7.
    3.4.3 Moisture content of the dry test load obtained after the test 
described in 3.3.
    3.4.4 Test room conditions, temperature and percent relative 
humidity described in 2.2.
    3.4.5 For electric dryers--the total kilowatt-hours of electric 
energy, Et, consumed during the test described in 3.3.
    3.4.6 For gas dryers:
    3.4.6.1 Total kilowatt-hours of electrical energy, Ete, 
consumed during the test described in 3.3.
    3.4.6.2 Cubic feet of gas per cycle, Etg, consumed during 
the test described in 3.3.
    3.4.6.3 On gas dryers using a continuously burning pilot light--the 
cubic feet of gas, Epg, consumed by the gas pilot light in 
one hour.
    3.4.6.4 Correct the gas heating value, GEF, as measured in 2.3.2.1 
and 2.3.2.2, to standard pressure and temperature conditions in 
accordance with U.S. Bureau of Standards, circular C417, 1938. A sample 
calculation is illustrated in appendix E of HLD-1.
    3.5 Test for automatic termination field use factor credits. Credit 
for automatic termination can be claimed for those dryers which meet the 
requirements for either temperature-sensing control, 1.12, or moisture 
sensing control, 1.13, and having present the appropriate mark or detent 
feed defined in 1.11.

        4. Calculation of Derived Results From Test Measurements

    4.1 Total per-cycle electric dryer energy consumption. Calculate the 
total electric dryer energy consumption per cycle, Ece 
expressed in kilowatt-hours per cycle and defined as:

Ece = [66/Ww-Wd)] x Ett x FU
    Et = the energy recorded in 3.4.5.
    66 = an experimentally established value for the percent reduction 
in the moisture content of the test load during a laboratory test cycle 
expressed as a percent.
    FU = Field use factor.
     = 1.18 for time termination control systems.
    = 1.04 for automatic control systems which meet the requirements of 
the definitions for automatic termination controls in 1.11.1, 1.12 and 
1.13.
    Ww = the moisture content of the wet test load as 
recorded in 3.4.2.
    Wd = the moisture content of the dry test load as 
recorded in 3.4.3.
    4.2 Per-cycle gas dryer electrical energy consumption. Calculate the 
gas dryer electrical energy consumption per cycle, Ege, 
expressed in kilowatt-hours per cycle and defined as:

Ege = [66/(Ww-Wd)] x Ete x FU
    Ete = the energy recorded in 3.4.6.1

FU, 66, Ww, Wd as defined in 4.1

[[Page 366]]

    4.3 Per-cycle gas dryer gas energy consumption. Calculate the gas 
dryer gas energy consumption per cycle, Ege, expressed in Btu's per 
cycle as defined as:

Egg = [66/(Ww-Wd)] x Etg x FU x GEF
    Etg = the energy recorded in 3.4.6.2
    GEF = corrected gas heat value (Btu per cubic feet) as defined in 
3.4.6.4
    FU, 66, Ww Wd as defined in 4.1
    4.4 Per-cycle gas dryer continuously burning pilot light gas energy 
consumption. Calculate the gas dryer continuously burning pilot light 
gas energy consumption per cycle, Eup expressed in Btu's per cycle and 
defined as:

Eup = Epg x (8760 - 140 / 416) x GEF
    Epg = the energy recorded in 3.4.6.3
    8760 = number of hours in a year
    416 = representative average number of clothes dryer cycles in a 
year
    140 = estimated number of hours that the continuously burning pilot 
light is on during the operation of the clothes dryer for the 
representative average use cycle for clothes dryers (416 cycles per 
year)
    GEF as defined in 4.3
    4.5 Total per-cycle gas dryer gas energy consumption expressed in 
Btu's. Calculate the total gas dryer energy consumption per cycle, Eg, 
expressed in Btu's per cycle and defined as:

Eg = Egg + Eup
    Egg as defined in 4.3
    Eup as defined in 4.4
    4.6 Total per-cycle gas dryer energy consumption expressed in 
kilowatt-hours. Calculate the total gas dryer energy consumption per 
cycle, Ecg, expressed in kilowatt-hours per cycle and defined as:

Ecg + Ege + (Eg/3412 Btu/k Wh)
    Ege as defined in 4.2
    Eg as defined in 4.5

[46 FR 27326, May 19, 1981, as amended at 76 FR 1032, Jan. 6, 2011; 78 
FR 49644, Aug. 14, 2013]



   Sec. Appendix D1 to Subpart B of Part 430--Uniform Test Method for 
           Measuring the Energy Consumption of Clothes Dryers

    Note: Effective February 10, 2014, manufacturers must make 
representations of energy efficiency, including certifications of 
compliance, using appendix D. Compliance with DOE's amended standards 
for clothes dryers, and corresponding use of the test procedures at 
appendix D1 for all representations, including certifications of 
compliance, is required as of January 1, 2015. Manufacturers must use a 
single appendix for all representations, including certifications of 
compliance, and may not use appendix D for certain representations and 
appendix D1 for other representations. The procedures in appendix D2 
need not be performed to determine compliance with energy conservation 
standards for clothes dryers at this time. However, manufacturers may 
elect to use the amended appendix D, D1, or D2 early.

                             1. Definitions

    1.1 ``Active mode'' means a mode in which the clothes dryer is 
connected to a main power source, has been activated and is performing 
the main function of tumbling the clothing with or without heated or 
unheated forced air circulation to remove moisture from the clothing, 
remove wrinkles or prevent wrinkling of the clothing, or both.
    1.2 ``AHAM'' means the Association of Home Appliance Manufacturers.
    1.3 ``AHAM HLD-1'' means the test standard published by the 
Association of Home Appliance Manufacturers, titled ``Household Tumble 
Type Clothes Dryers'' (2009), AHAM HLD-1-2009 (incorporated by 
reference; see Sec.  430.3).
    1.4 ``Automatic termination control'' means a dryer control system 
with a sensor which monitors either the dryer load temperature or its 
moisture content and with a controller which automatically terminates 
the drying process. A mark, detent, or other visual indicator or detent 
which indicates a preferred automatic termination control setting must 
be present if the dryer is to be classified as having an ``automatic 
termination control.'' A mark is a visible single control setting on one 
or more dryer controls.
    1.5 ``Bone dry'' means a condition of a load of test clothes which 
has been dried in a dryer at maximum temperature for a minimum of 10 
minutes, removed, and weighed before cool down, and then dried again for 
10-minute periods until the final weight change of the load is 1 percent 
or less.
    1.6 ``Compact'' or ``compact size'' means a clothes dryer with a 
drum capacity of less than 4.4 cubic feet.
    1.7 ``Conventional clothes dryer'' means a clothes dryer that 
exhausts the evaporated moisture from the cabinet.
    1.8 ``Cool down'' means that portion of the clothes drying cycle 
when the added gas or electric heat is terminated and the clothes 
continue to tumble and dry within the drum.
    1.9 ``Cycle'' means a sequence of operation of a clothes dryer which 
performs a clothes drying operation, and may include variations or 
combinations of the functions of heating, tumbling, and drying.
    1.10 ``Drum capacity'' means the volume of the drying drum in cubic 
feet.
    1.11 ``IEC 62301'' (Second Edition) means the test standard 
published by the International Electrotechnical Commission (``IEC'') 
titled ``Household electrical appliances--Measurement of standby 
power,'' Publication 62301 (Edition 2.0 2011-01) (incorporated by 
reference; see Sec.  430.3).

[[Page 367]]

    1.12 ``Inactive mode'' means a standby mode that facilitates the 
activation of active mode by remote switch (including remote control), 
internal sensor, or timer, or that provides continuous status display.
    1.13 ``Moisture content'' means the ratio of the weight of water 
contained by the test load to the bone-dry weight of the test load, 
expressed as a percent.
    1.14 ``Moisture sensing control'' means a system which utilizes a 
moisture sensing element within the dryer drum that monitors the amount 
of moisture in the clothes and automatically terminates the dryer cycle.
    1.15 ``Off mode'' means a mode in which the clothes dryer is 
connected to a main power source and is not providing any active or 
standby mode function, and where the mode may persist for an indefinite 
time. An indicator that only shows the user that the product is in the 
off position is included within the classification of an off mode.
    1.16 ``Standard size'' means a clothes dryer with a drum capacity of 
4.4 cubic feet or greater.
    1.17 ``Standby mode'' means any product modes where the energy using 
product is connected to a main power source and offers one or more of 
the following user-oriented or protective functions which may persist 
for an indefinite time:
    (a) To facilitate the activation of other modes (including 
activation or deactivation of active mode) by remote switch (including 
remote control), internal sensor, or timer.
    (b) Continuous functions, including information or status displays 
(including clocks) or sensor-based functions. A timer is a continuous 
clock function (which may or may not be associated with a display) that 
provides regular scheduled tasks (e.g., switching) and that operates on 
a continuous basis.
    1.18 ``Temperature sensing control'' means a system which monitors 
dryer exhaust air temperature and automatically terminates the dryer 
cycle.
    1.19 ``Ventless clothes dryer'' means a clothes dryer that uses a 
closed-loop system with an internal condenser to remove the evaporated 
moisture from the heated air. The moist air is not discharged from the 
cabinet.

                          2. Testing Conditions

    2.1 Installation.
    2.1.1 All clothes dryers. For both conventional clothes dryers and 
ventless clothes dryers, as defined in sections 1.7 and 1.19 of this 
appendix, install the clothes dryer in accordance with manufacturer's 
instructions as shipped with the unit. If the manufacturer's 
instructions do not specify the installation requirements for a certain 
component, it shall be tested in the as-shipped condition. Where the 
manufacturer gives the option to use the dryer both with and without a 
duct, the dryer shall be tested without the exhaust simulator described 
in section 3.3.5.1 of AHAM HLD-1 (incorporated by reference; see Sec.  
430.3). All external joints should be taped to avoid air leakage. For 
drying testing, disconnect all lights, such as task lights, that do not 
provide any information related to the drying process on the clothes 
dryer and that do not consume more than 10 watts during the clothes 
dryer test cycle. Control setting indicator lights showing the cycle 
progression, temperature or dryness settings, or other cycle functions 
that cannot be turned off during the test cycle shall not be 
disconnected during the active mode test cycle. For standby and off mode 
testing, the clothes dryer shall also be installed in accordance with 
section 5, paragraph 5.2 of IEC 62301 (Second Edition) (incorporated by 
reference; see Sec.  430.3), disregarding the provisions regarding 
batteries and the determination, classification, and testing of relevant 
modes. For standby and off mode testing, all lighting systems shall 
remain connected.
    2.1.2 Conventional clothes dryers. For conventional clothes dryers, 
as defined in section 1.7 of this appendix, the dryer exhaust shall be 
restricted by adding the AHAM exhaust simulator described in section 
3.3.5.1 of AHAM HLD-1 (incorporated by reference; see Sec.  430.3).
    2.1.3 Ventless clothes dryers. For ventless clothes dryers, as 
defined in section 1.19, the dryer shall be tested without the AHAM 
exhaust simulator. If the manufacturer gives the option to use a 
ventless clothes dryer, with or without a condensation box, the dryer 
shall be tested with the condensation box installed. For ventless 
clothes dryers, the condenser unit of the dryer must remain in place and 
not be taken out of the dryer for any reason between tests.
    2.2 Ambient temperature and humidity.
    2.2.1 For drying testing, maintain the room ambient air temperature 
at 75 3 [deg]F and the room relative humidity at 
50 10 percent relative humidity.
    2.2.2 For standby and off mode testing, maintain room ambient air 
temperature conditions as specified in section 4, paragraph 4.2 of IEC 
62301 (Second Edition) (incorporated by reference; see Sec.  430.3)
    2.3 Energy supply.
    2.3.1 Electrical supply. Maintain the electrical supply at the 
clothes dryer terminal block within 1 percent of 120/240 or 120/208Y or 
120 volts as applicable to the particular terminal block wiring system 
and within 1 percent of the nameplate frequency as specified by the 
manufacturer. If the dryer has a dual voltage conversion capability, 
conduct the test at the highest voltage specified by the manufacturer.
    2.3.1.1 Supply voltage waveform. For the clothes dryer standby mode 
and off mode

[[Page 368]]

testing, maintain the electrical supply voltage waveform indicated in 
section 4, paragraph 4.3.2 of IEC 62301 (Second Edition) (incorporated 
by reference; see Sec.  430.3). If the power measuring instrument used 
for testing is unable to measure and record the total harmonic content 
during the test measurement period, it is acceptable to measure and 
record the total harmonic content immediately before and after the test 
measurement period.
    2.3.2 Gas supply.
    2.3.2.1 Natural gas. Maintain the gas supply to the clothes dryer 
immediately ahead of all controls at a pressure of 7 to 10 inches of 
water column. If the clothes dryer is equipped with a gas appliance 
pressure regulator for which the manufacturer specifies an outlet 
pressure, the regulator outlet pressure shall be within 10 percent of the value recommended by the manufacturer 
in the installation manual, on the nameplate sticker, or wherever the 
manufacturer makes such a recommendation for the basic model. The hourly 
Btu rating of the burner shall be maintained within 5 percent of the rating specified by the manufacturer. 
If the requirement to maintain the hourly Btu rating of the burner 
within 5 percent of the rating specified by the 
manufacturer cannot be achieved under the allowable range in gas inlet 
test pressure, the orifice of the gas burner should be modified as 
necessary to achieve the required Btu rating. The natural gas supplied 
should have a heating value of approximately 1,025 Btus per standard 
cubic foot. The actual heating value, Hn2, in Btus per 
standard cubic foot, for the natural gas to be used in the test shall be 
obtained either from measurements made by the manufacturer conducting 
the test using a standard continuous flow calorimeter as described in 
section 2.4.6 or by the purchase of bottled natural gas whose Btu rating 
is certified to be at least as accurate a rating as could be obtained 
from measurements with a standard continuous flow calorimeter as 
described in section 2.4.6.
    2.3.2.2 Propane gas. Maintain the gas supply to the clothes dryer 
immediately ahead of all controls at a pressure of 11 to 13 inches of 
water column. If the clothes dryer is equipped with a gas appliance 
pressure regulator for which the manufacturer specifies an outlet 
pressure, the regulator outlet pressure shall be within 10 percent of the value recommended by the manufacturer 
in the installation manual, on the nameplate sticker, or wherever the 
manufacturer makes such a recommendation for the basic model. The hourly 
Btu rating of the burner shall be maintained within 5 percent of the rating specified by the manufacturer. 
If the requirement to maintain the hourly Btu rating of the burner 
within 5 percent of the rating specified by the 
manufacturer cannot be achieved under the allowable range in gas inlet 
test pressure, the orifice of the gas burner should be modified as 
necessary to achieve the required Btu rating. The propane gas supplied 
should have a heating value of approximately 2,500 Btus per standard 
cubic foot. The actual heating value, Hp, in Btus per 
standard cubic foot, for the propane gas to be used in the test shall be 
obtained either from measurements made by the manufacturer conducting 
the test using a standard continuous flow calorimeter as described in 
section 2.4.6 or by the purchase of bottled gas whose Btu rating is 
certified to be at least as accurate a rating as could be obtained from 
measurement with a standard continuous calorimeter as described in 
section 2.4.6.
    2.4 Instrumentation. Perform all test measurements using the 
following instruments as appropriate.
    2.4.1 Weighing scale for test cloth. The scale shall have a range of 
0 to a maximum of 60 pounds with a resolution of at least 0.2 ounces and 
a maximum error no greater than 0.3 percent of any measured value within 
the range of 3 to 15 pounds.
    2.4.1.2 Weighing scale for drum capacity measurements. The scale 
should have a range of 0 to a maximum of 600 pounds with resolution of 
0.50 pounds and a maximum error no greater than 0.5 percent of the 
measured value.
    2.4.2 Kilowatt-hour meter. The kilowatt-hour meter shall have a 
resolution of 0.001 kilowatt-hours and a maximum error no greater than 
0.5 percent of the measured value.
    2.4.3 Gas meter. The gas meter shall have a resolution of 0.001 
cubic feet and a maximum error no greater than 0.5 percent of the 
measured value.
    2.4.4 Dry and wet bulb psychrometer. The dry and wet bulb 
psychrometer shall have an error no greater than 1 
[deg]F. A relative humidity meter with a maximum error tolerance 
expressed in [deg]F equivalent to the requirements for the dry and wet 
bulb psychrometer or with a maximum error tolerance of 2 percent relative humidity would be acceptable for 
measuring the ambient humidity.
    2.4.5 Temperature. The temperature sensor shall have an error no 
greater than 1 [deg]F.
    2.4.6 Standard Continuous Flow Calorimeter. The calorimeter shall 
have an operating range of 750 to 3,500 Btu per cubic feet. The maximum 
error of the basic calorimeter shall be no greater than 0.2 percent of 
the actual heating value of the gas used in the test. The indicator 
readout shall have a maximum error no greater than 0.5 percent of the 
measured value within the operating range and a resolution of 0.2 
percent of the full-scale reading of the indicator instrument.
    2.4.7 Standby mode and off mode watt meter. The watt meter used to 
measure standby mode and off mode power consumption shall meet the 
requirements specified in section 4,

[[Page 369]]

paragraph 4.4 of IEC 62301 (Second Edition) (incorporated by reference; 
see Sec.  430.3). If the power measuring instrument used for testing is 
unable to measure and record the crest factor, power factor, or maximum 
current ratio during the test measurement period, it is acceptable to 
measure the crest factor, power factor, and maximum current ratio 
immediately before and after the test measurement period.
    2.5 Lint trap. Clean the lint trap thoroughly before each test run.
    2.6 Test Clothes.
    2.6.1 Energy test cloth. The energy test cloth shall be clean and 
consist of the following:
    (a) Pure finished bleached cloth, made with a momie or granite 
weave, which is a blended fabric of 50-percent cotton and 50-percent 
polyester and weighs within + 10 percent of 5.75 ounces per square yard 
after test cloth preconditioning, and has 65 ends on the warp and 57 
picks on the fill. The individual warp and fill yarns are a blend of 50-
percent cotton and 50-percent polyester fibers.
    (b) Cloth material that is 24 inches by 36 inches and has been 
hemmed to 22 inches by 34 inches before washing. The maximum shrinkage 
after five washes shall not be more than 4 percent on the length and 
width.
    (c) The number of test runs on the same energy test cloth shall not 
exceed 25 runs.
    2.6.2 Energy stuffer cloths. The energy stuffer cloths shall be made 
from energy test cloth material, and shall consist of pieces of material 
that are 12 inches by 12 inches and have been hemmed to 10 inches by 10 
inches before washing. The maximum shrinkage after five washes shall not 
be more than 4 percent on the length and width. The number of test runs 
on the same energy stuffer cloth shall not exceed 25 runs after test 
cloth preconditioning.
    2.6.3 Test Cloth Preconditioning.
    A new test cloth load and energy stuffer cloths shall be treated as 
follows:
    (1) Bone dry the load to a weight change of 1 
percent, or less, as prescribed in section 1.5.
    (2) Place the test cloth load in a standard clothes washer set at 
the maximum water fill level. Wash the load for 10 minutes in soft water 
(17 parts per million hardness or less), using 60.8 grams of AHAM 
standard test detergent Formula 3. Wash water temperature is to be 
controlled at 140 [deg] 5 [deg]F (60 [deg] 2.7 [deg]C). Rinse water temperature is to be controlled 
at 100 [deg] 5 [deg]F (37.7 2.7 [deg]C).
    (3) Rinse the load again at the same water temperature.
    (4) Bone dry the load as prescribed in section 1.5 and weigh the 
load.
    (5) This procedure is repeated until there is a weight change of 1 
percent or less.
    (6) A final cycle is to be a hot water wash with no detergent, 
followed by two warm water rinses.
    2.7 Test loads.
    2.7.1 Compact size dryer load. Prepare a bone-dry test load of 
energy cloths which weighs 3.00 pounds .03 pounds. 
Adjustments to the test load to achieve the proper weight can be made by 
the use of energy stuffer cloths, with no more than five stuffer cloths 
per load. Dampen the load by agitating it in water whose temperature is 
60 [deg]F 5 [deg]F and consists of 0 to 17 parts 
per million hardness for approximately 2 minutes in order to saturate 
the fabric. Then, extract water from the wet test load by spinning the 
load until the moisture content of the load is between 54.0-61.0 percent 
of the bone-dry weight of the test load.
    2.7.2 Standard size dryer load. Prepare a bone-dry test load of 
energy cloths which weighs 8.45 pounds .085 
pounds. Adjustments to the test load to achieve the proper weight can be 
made by the use of energy stuffer cloths, with no more than five stuffer 
cloths per load. Dampen the load by agitating it in water whose 
temperature is 60 [deg]F 5 [deg]F and consists of 
0 to 17 parts per million hardness for approximately 2 minutes in order 
to saturate the fabric. Then, extract water from the wet test load by 
spinning the load until the moisture content of the load is between 
54.0-61.0 percent of the bone-dry weight of the test load.
    2.7.3 Method of loading. Load the energy test cloths by grasping 
them in the center, shaking them to hang loosely, and then dropping them 
in the dryer at random.
    2.8 Clothes dryer preconditioning.
    2.8.1 Conventional clothes dryers. For conventional clothes dryers, 
before any test cycle, operate the dryer without a test load in the non-
heat mode for 15 minutes or until the discharge air temperature is 
varying less than 1 [deg]F for 10 minutes--whichever is longer--in the 
test installation location with the ambient conditions within the 
specified test condition tolerances of 2.2.
    2.8.2 Ventless clothes dryers. For ventless clothes dryers, before 
any test cycle, the steady-state machine temperature must be equal to 
ambient room temperature described in 2.2.1. This may be done by leaving 
the machine at ambient room conditions for at least 12 hours between 
tests.

                   3. Test Procedures and Measurements

    3.1 Drum Capacity. Measure the drum capacity by sealing all openings 
in the drum except the loading port with a plastic bag, and ensuring 
that all corners and depressions are filled and that there are no 
extrusions of the plastic bag through any openings in the interior of 
the drum. Support the dryer's rear drum surface on a platform scale to 
prevent deflection of the drum surface, and record the weight of the 
empty dryer. Fill the drum with water to a level determined by the 
intersection of the door plane and the loading port (i.e., the uppermost 
edge of the drum that is in contact with the door seal).

[[Page 370]]

Record the temperature of the water and then the weight of the dryer 
with the added water and then determine the mass of the water in pounds. 
Add the appropriate volume to account for any space in the drum interior 
not measured by water fill (e.g., the space above the uppermost edge of 
the drum within a curved door) and subtract the appropriate volume to 
account for space that is measured by water fill but cannot be used when 
the door is closed (e.g., space occupied by the door when closed). The 
drum capacity is calculated as follows:

C = w/d volume adjustment
C = capacity in cubic feet.
w = mass of water in pounds.
d = density of water at the measured temperature in pounds per cubic 
          foot.

    3.2 Dryer Loading. Load the dryer as specified in 2.7.
    3.3 Test cycle. Operate the clothes dryer at the maximum temperature 
setting and, if equipped with a timer, at the maximum time setting. Any 
other optional cycle settings that do not affect the temperature or time 
settings shall be tested in the as-shipped position. If the clothes 
dryer does not have a separate temperature setting selection on the 
control panel, the maximum time setting should be used for the drying 
test cycle. Dry the load until the moisture content of the test load is 
between 2.5 and 5.0 percent of the bone-dry weight of the test load, at 
which point the test cycle is stopped, but do not permit the dryer to 
advance into cool down. If required, reset the timer to increase the 
length of the drying cycle. After stopping the test cycle, remove and 
weigh the test load. The clothes dryer shall not be stopped 
intermittently in the middle of the test cycle for any reason. Record 
the data specified by section 3.4 of this appendix. If the dryer 
automatically stops during a cycle because the condensation box is full 
of water, the test is stopped, and the test run is invalid, in which 
case the condensation box shall be emptied and the test re-run from the 
beginning. For ventless dryers, as defined in section 1.19 of this 
appendix, during the time between two cycles, the door of the dryer 
shall be closed except for loading (and unloading).
    3.4 Data recording. Record for each test cycle:
    3.4.1 Bone-dry weight of the test load described in 2.7.
    3.4.2 Moisture content of the wet test load before the test, as 
described in 2.7.
    3.4.3 Moisture content of the dry test load obtained after the test 
described in 3.3.
    3.4.4 Test room conditions, temperature, and percent relative 
humidity described in 2.2.1.
    3.4.5 For electric dryers--the total kilowatt-hours of electric 
energy, Et, consumed during the test described in 3.3.
    3.4.6 For gas dryers:
    3.4.6.1 Total kilowatt-hours of electrical energy, Ete, 
consumed during the test described in 3.3.
    3.4.6.2 Cubic feet of gas per cycle, Etg, consumed during 
the test described in 3.3.
    3.4.6.3 Correct the gas heating value, GEF, as measured in 2.3.2.1 
and 2.3.2.2, to standard pressure and temperature conditions in 
accordance with U.S. Bureau of Standards, circular C417, 1938.
    3.5 Test for automatic termination field use factor. The field use 
factor for automatic termination can be claimed for those dryers which 
meet the requirements for automatic termination control, defined in 1.4.
    3.6 Standby mode and off mode power. Establish the testing 
conditions set forth in Section 2 ``Testing Conditions'' of this 
appendix. For clothes dryers that take some time to enter a stable state 
from a higher power state as discussed in Section 5, Paragraph 5.1, Note 
1 of IEC 62301 (Second Edition) (incorporated by reference; see Sec.  
430.3), allow sufficient time for the clothes dryer to reach the lower 
power state before proceeding with the test measurement. Follow the test 
procedure specified in section 5, paragraph 5.3.2 of IEC 62301 (Second 
Edition) for testing in each possible mode as described in sections 
3.6.1 and 3.6.2 of this appendix.
    3.6.1 If a clothes dryer has an inactive mode, as defined in 1.12, 
measure and record the average inactive mode power of the clothes dryer, 
PIA, in watts.
    3.6.2 If a clothes dryer has an off mode, as defined in 1.15, 
measure and record the average off mode power of the clothes dryer, 
POFF, in watts.

        4. Calculation of Derived Results From Test Measurements

    4.1 Total Per-cycle electric dryer energy consumption. Calculate the 
total electric dryer energy consumption per cycle, Ece, 
expressed in kilowatt-hours per cycle and defined as:

Ece = [53.5/(Ww-Wd)] x Ett x 
field use,

Where:

53.5 = an experimentally established value for the percent reduction in 
          the moisture content of the test load during a laboratory test 
          cycle expressed as a percent.
field use = field use factor.

 = 1.18 for clothes dryers with time termination control systems only 
          without any automatic termination control functions.
 = 1.04 clothes dryers with automatic control systems that meet the 
          requirements of the definition for automatic control systems 
          in 1.4, 1.14 and 1.18, including those that also have a 
          supplementary timer control, or that may also be manually 
          controlled.


[[Page 371]]


Ww = the moisture content of the wet test load as recorded in 
          3.4.2.

Wd = the moisture content of the dry test load as recorded in 
          3.4.3.

    4.2 Per-cycle gas dryer electrical energy consumption. Calculate the 
gas dryer electrical energy consumption per cycle, Ege, 
expressed in kilowatt-hours per cycle and defined as:

Ege = [53.5/(Ww-Wd)] x Ete x 
field use,

Where:

Ete = the energy recorded in 3.4.6.1 field use, 53.5, 
          Ww, Wd as defined in 4.1.

    4.3 Per-cycle gas dryer gas energy consumption. Calculate the gas 
dryer gas energy consumption per cycle, Ege, expressed in 
Btus per cycle as defined as:

Egg = [53.5/(Ww - Wd)] x Etg 
x field use x GEF

Where:

Etg = the energy recorded in 3.4.6.2
GEF = corrected gas heat value (Btu per cubic feet) as defined in 
          3.4.6.3, field use, 53.5, Ww, Wd as 
          defined in 4.1.

    4.4 Total per-cycle gas dryer energy consumption expressed in 
kilowatt-hours. Calculate the total gas dryer energy consumption per 
cycle, Ecg, expressed in kilowatt-hours per cycle and defined 
as:

Ecg = Ege + (Egg/3412 Btu/kWh)

Where:

Ege as defined in 4.2
Egg as defined in 4.3

    4.5 Per-cycle standby mode and off mode energy consumption. 
Calculate the dryer inactive mode and off mode energy consumption per 
cycle, ETSO, expressed in kWh per cycle and defined as:

ETSO = [(PIA x SIA) + (POFF 
x SOFF)] x K/283

Where:

PIA = dryer inactive mode power, in watts, as measured in 
          section 3.6.1;
POFF = dryer off mode power, in watts, as measured in section 
          3.6.2.

If the clothes dryer has both inactive mode and off mode, SIA 
          and SOFF both equal 8,620 / 2 = 4,310, where 8,620 
          is the total inactive and off mode annual hours;

If the clothes dryer has an inactive mode but no off mode, the inactive 
          mode annual hours, SIA, is equal to 8,620 and the 
          off mode annual hours, SOFF, is equal to 0;

If the clothes dryer has an off mode but no inactive mode, 
          SIA is equal to 0 and SOFF is equal to 
          8,620

Where:

K = 0.001 kWh/Wh conversion factor for watt-hours to kilowatt-hours; and
283 = representative average number of clothes dryer cycles in a year.

    4.6 Per-cycle combined total energy consumption expressed in 
kilowatt-hours. Calculate the per-cycle combined total energy 
consumption, ECC, expressed in kilowatt-hours per cycle and 
defined for an electric clothes dryer as:

ECC = Ece + ETSO

Where:

Ece = the energy recorded in section 4.1 of this appendix, 
          and
ETSO = the energy recorded in section 4.5 of this appendix, 
          and defined for a gas clothes dryer as:
ECC = Ecg + ETSO

Where:

Ecg = the energy recorded in section 4.4 of this appendix, 
          and
ETSO = the energy recorded in section 4.5 of this appendix.

    4.7 Energy Factor in pounds per kilowatt-hour. Calculate the energy 
factor, EF, expressed in pounds per kilowatt-hour and defined for an 
electric clothes dryer as:

EF = Wbonedry/Ece

Where:

Wbonedry = the bone dry test load weight recorded in 3.4.1, 
          and
Ece = the energy recorded in 4.1, and

and defined for a gas clothes dryer as:

EF = Wbonedry/Ecg

Where:

Wbonedry = the bone dry test load weight recorded in 3.4.1, 
          and
Ecg = the energy recorded in 4.4,

    4.8 Combined Energy Factor in pounds per kilowatt-hour. Calculate 
the combined energy factor, CEF, expressed in pounds per kilowatt-hour 
and defined as:

CEF = Wbonedry/ECC

Where:

Wbonedry = the bone dry test load weight 3.4.1, and
ECC = the energy recorded in 4.6

[76 FR 1032, Jan. 6, 2011, as amended at 78 FR 49645, Aug. 14, 2013]



   Sec. Appendix D2 to Subpart B of Part 430--Uniform Test Method for 
           Measuring the Energy Consumption of Clothes Dryers

    Note: The procedures in appendix D2 need not be performed to 
determine compliance with energy conservation standards for clothes 
dryers at this time. Manufacturers may elect to use the amended appendix 
D2 early to show compliance with the January 1, 2015 energy conservation 
standards. Manufacturers must use a single appendix for all 
representations, including certifications of compliance, and may not use 
appendix D1 for

[[Page 372]]

certain representations and appendix D2 for other representations.

                             1. Definitions

    1.1 ``Active mode'' means a mode in which the clothes dryer is 
connected to a main power source, has been activated and is performing 
the main function of tumbling the clothing with or without heated or 
unheated forced air circulation to remove moisture from the clothing, 
remove wrinkles or prevent wrinkling of the clothing, or both.
    1.2 ``AHAM'' means the Association of Home Appliance Manufacturers.
    1.3 ``AHAM HLD-1'' means the test standard published by the 
Association of Home Appliance Manufacturers, titled ``Household Tumble 
Type Clothes Dryers,'' (2009), AHAM HLD-1-2009 (incorporated by 
reference; see Sec.  430.3).
    1.4 ``Automatic termination control'' means a dryer control system 
with a sensor which monitors either the dryer load temperature or its 
moisture content and with a controller which automatically terminates 
the drying process. A mark, detent, or other visual indicator or detent 
which indicates a preferred automatic termination control setting must 
be present if the dryer is to be classified as having an ``automatic 
termination control.'' A mark is a visible single control setting on one 
or more dryer controls.
    1.5 ``Automatic termination control dryer'' means a clothes dryer 
which can be preset to carry out at least one sequence of operations to 
be terminated by means of a system assessing, directly or indirectly, 
the moisture content of the load. An automatic termination control dryer 
with supplementary timer or that may also be manually controlled shall 
be tested as an automatic termination control dryer.
    1.6 ``Bone dry'' means a condition of a load of test clothes which 
has been dried in a dryer at maximum temperature for a minimum of 10 
minutes, removed, and weighed before cool down, and then dried again for 
10-minute periods until the final weight change of the load is 1 percent 
or less.
    1.7 ``Compact'' or ``compact size'' means a clothes dryer with a 
drum capacity of less than 4.4 cubic feet.
    1.8 ``Conventional clothes dryer'' means a clothes dryer that 
exhausts the evaporated moisture from the cabinet.
    1.9 ``Cool down'' means that portion of the clothes drying cycle 
when the added gas or electric heat is terminated and the clothes 
continue to tumble and dry within the drum.
    1.10 ``Cycle'' means a sequence of operation of a clothes dryer 
which performs a clothes drying operation, and may include variations or 
combinations of the functions of heating, tumbling, and drying.
    1.11 ``Drum capacity'' means the volume of the drying drum in cubic 
feet.
    1.12 ``IEC 62301'' (Second Edition) means the test standard 
published by the International Electrotechnical Commission (``IEC'') 
titled ``Household electrical appliances--Measurement of standby 
power,'' Publication 62301 (Edition 2.0 2011-01) (incorporated by 
reference; see Sec.  430.3).
    1.13 ``Inactive mode'' means a standby mode that facilitates the 
activation of active mode by remote switch (including remote control), 
internal sensor, or timer, or that provides continuous status display.
    1.14 ``Moisture content'' means the ratio of the weight of water 
contained by the test load to the bone-dry weight of the test load, 
expressed as a percent.
    1.15 ``Moisture sensing control'' means a system which utilizes a 
moisture sensing element within the dryer drum that monitors the amount 
of moisture in the clothes and automatically terminates the dryer cycle.
    1.16 ``Off mode'' means a mode in which the clothes dryer is 
connected to a main power source and is not providing any active or 
standby mode function, and where the mode may persist for an indefinite 
time. An indicator that only shows the user that the product is in the 
off position is included within the clasification of an off mode.
    1.17 ``Standard size'' means a clothes dryer with a drum capacity of 
4.4 cubic feet or greater.
    1.18 ``Standby mode'' means any product modes where the energy using 
product is connected to a mains power source and offers one or more of 
the following user-oriented or protective functions which may persist 
for an indefinite time:
    (a) To facilitate the activation of other modes (including 
activation or deactivation of active mode) by remote switch (including 
remote control), internal sensor, or timer.
    (b) Continuous functions, including information or status displays 
(including clocks) or sensor-based functions. A timer is a continuous 
clock function (which may or may not be associated with a display) that 
provides regular scheduled tasks (e.g., switching) and that operates on 
a continuous basis.
    1.19 ``Temperature sensing control'' means a system which monitors 
dryer exhaust air temperature and automatically terminates the dryer 
cycle.
    1.20 ``Timer dryer'' means a clothes dryer that can be preset to 
carry out at least one operation to be terminated by a timer, but may 
also be manually controlled, and does not include any automatic 
termination function.
    1.21 ``Ventless clothes dryer'' means a clothes dryer that uses a 
closed-loop system with an internal condenser to remove the evaporated 
moisture from the heated air. The moist air is not discharged from the 
cabinet.

[[Page 373]]

                          2. Testing Conditions

    2.1 Installation.
    2.1.1 All clothes dryers. For both conventional clothes dryers and 
ventless clothes dryers, as defined in sections 1.8 and 1.21 of this 
appendix, install the clothes dryer in accordance with manufacturer's 
instructions as shipped with the unit. If the manufacturer's 
instructions do not specify the installation requirements for a certain 
component, it shall be tested in the as-shipped condition. Where the 
manufacturer gives the option to use the dryer both with and without a 
duct, the dryer shall be tested without the exhaust simulator described 
in section 3.3.5.1 of AHAM HLD-1 (incorporated by reference; see Sec.  
430.3). All external joints should be taped to avoid air leakage. For 
drying testing, disconnect all lights, such as task lights, that do not 
provide any information related to the drying process on the clothes 
dryer and that do not consume more than 10 watts during the clothes 
dryer test cycle. Control setting indicator lights showing the cycle 
progression, temperature or dryness settings, or other cycle functions 
that cannot be turned off during the test cycle shall not be 
disconnected during the active mode test cycle. For standby and off mode 
testing, the clothes dryer shall also be installed in accordance with 
section 5, paragraph 5.2 of IEC 62301 (Second Edition) (incorporated by 
reference; see Sec.  430.3), disregarding the provisions regarding 
batteries and the determination, classification, and testing of relevant 
modes. For standby and off mode testing, all lighting systems shall 
remain connected.
    2.1.2 Conventional clothes dryers. For conventional clothes dryers, 
as defined in section 1.8 of this appendix, the dryer exhaust shall be 
restricted by adding the AHAM exhaust simulator described in section 
3.3.5.1 of AHAM HLD-1 (incorporated by reference; see Sec.  430.3).
    2.1.3 Ventless clothes dryers. For ventless clothes dryers, as 
defined in section 1.21, the dryer shall be tested without the AHAM 
exhaust simulator. If the manufacturer gives the option to use a 
ventless clothes dryer, with or without a condensation box, the dryer 
shall be tested with the condensation box installed. For ventless 
clothes dryers, the condenser unit of the dryer must remain in place and 
not be taken out of the dryer for any reason between tests.
    2.2 Ambient temperature and humidity.
    2.2.1 For drying testing, maintain the room ambient air temperature 
at 75 3 F and the room relative humidity at 50 
10 percent relative humidity.
    2.2.2 For standby and off mode testing, maintain room ambient air 
temperature conditions as specified in section 4, paragraph 4.2 of IEC 
62301 (Second Edition) (incorporated by reference; see Sec.  430.3).
    2.3 Energy supply.
    2.3.1 Electrical supply. Maintain the electrical supply at the 
clothes dryer terminal block within 1 percent of 120/240 or 120/208Y or 
120 volts as applicable to the particular terminal block wiring system 
and within 1 percent of the nameplate frequency as specified by the 
manufacturer. If the dryer has a dual voltage conversion capability, 
conduct the test at the highest voltage specified by the manufacturer.
    2.3.1.1 Supply voltage waveform. For the clothes dryer standby mode 
and off mode testing, maintain the electrical supply voltage waveform 
indicated in section 4, paragraph 4.3.2 of IEC 62301 (Second Edition) 
(incorporated by reference; see Sec.  430.3). If the power measuring 
instrument used for testing is unable to measure and record the total 
harmonic content during the test measurement period, it is acceptable to 
measure and record the total harmonic content immediately before and 
after the test measurement period.
    2.3.2 Gas supply.
    2.3.2.1 Natural gas. Maintain the gas supply to the clothes dryer 
immediately ahead of all controls at a pressure of 7 to 10 inches of 
water column. If the clothes dryer is equipped with a gas appliance 
pressure regulator for which the manufacturer specifies an outlet 
pressure, the regulator outlet pressure shall be within 10 percent of the value recommended by the manufacturer 
in the installation manual, on the nameplate sticker, or wherever the 
manufacturer makes such a recommendation for the basic model. The hourly 
Btu rating of the burner shall be maintained within 5 percent of the rating specified by the manufacturer. 
If the requirement to maintain the hourly Btu rating of the burner 
within 5 percent of the rating specified by the 
manufacturer cannot be achieved under the allowable range in gas inlet 
test pressure, the orifice of the gas burner should be modified as 
necessary to achieve the required Btu rating. The natural gas supplied 
should have a heating value of approximately 1,025 Btus per standard 
cubic foot. The actual heating value, Hn2, in Btus per 
standard cubic foot, for the natural gas to be used in the test shall be 
obtained either from measurements made by the manufacturer conducting 
the test using a standard continuous flow calorimeter as described in 
section 2.4.6 or by the purchase of bottled natural gas whose Btu rating 
is certified to be at least as accurate a rating as could be obtained 
from measurements with a standard continuous flow calorimeter as 
described in section 2.4.6.
    2.3.2.2 Propane gas. Maintain the gas supply to the clothes dryer 
immediately ahead of all controls at a pressure of 11 to 13 inches of 
water column. If the clothes dryer is equipped with a gas appliance 
pressure regulator for which the manufacturer specifies an outlet 
pressure, the regulator outlet pressure

[[Page 374]]

shall be within 10 percent of the value 
recommended by the manufacturer in the installation manual, on the 
nameplate sticker, or wherever the manufacturer makes such a 
recommendation for the basic model. The hourly Btu rating of the burner 
shall be maintained within 5 percent of the rating 
specified by the manufacturer. If the requirement to maintain the hourly 
Btu rating of the burner within 5 percent of the 
rating specified by the manufacturer cannot be achieved under the 
allowable range in gas inlet test pressure, the orifice of the gas 
burner should be modified as necessary to achieve the required Btu 
rating. The propane gas supplied should have a heating value of 
approximately 2,500 Btus per standard cubic foot. The actual heating 
value, Hp, in Btus per standard cubic foot, for the propane 
gas to be used in the test shall be obtained either from measurements 
made by the manufacturer conducting the test using a standard continuous 
flow calorimeter as described in section 2.4.6 or by the purchase of 
bottled gas whose Btu rating is certified to be at least as accurate a 
rating as could be obtained from measurement with a standard continuous 
calorimeter as described in section 2.4.6.
    2.4 Instrumentation. Perform all test measurements using the 
following instruments as appropriate.
    2.4.1 Weighing scale for test cloth. The scale shall have a range of 
0 to a maximum of 60 pounds with a resolution of at least 0.2 ounces and 
a maximum error no greater than 0.3 percent of any measured value within 
the range of 3 to 15 pounds.
    2.4.1.2 Weighing scale for drum capacity measurements. The scale 
should have a range of 0 to a maximum of 600 pounds with resolution of 
0.50 pounds and a maximum error no greater than 0.5 percent of the 
measured value.
    2.4.2 Kilowatt-hour meter. The kilowatt-hour meter shall have a 
resolution of 0.001 kilowatt-hours and a maximum error no greater than 
0.5 percent of the measured value.
    2.4.3 Gas meter. The gas meter shall have a resolution of 0.001 
cubic feet and a maximum error no greater than 0.5 percent of the 
measured value.
    2.4.4 Dry and wet bulb psychrometer. The dry and wet bulb 
psychrometer shall have an error no greater than 1 
[deg]F. A relative humidity meter with a maximum error tolerance 
expressed in [deg]F equivalent to the requirements for the dry and wet 
bulb psychrometer or with a maximum error tolerance of 2 percent relative humidity would be acceptable for 
measuring the ambient humidity.
    2.4.5 Temperature. The temperature sensor shall have an error no 
greater than 1 [deg]F.
    2.4.6 Standard Continuous Flow Calorimeter. The calorimeter shall 
have an operating range of 750 to 3,500 Btu per cubic foot. The maximum 
error of the basic calorimeter shall be no greater than 0.2 percent of 
the actual heating value of the gas used in the test. The indicator 
readout shall have a maximum error no greater than 0.5 percent of the 
measured value within the operating range and a resolution of 0.2 
percent of the full-scale reading of the indicator instrument.
    2.4.7 Standby mode and off mode watt meter. The watt meter used to 
measure standby mode and off mode power consumption shall meet the 
requirements specified in section 4, paragraph 4.4 of IEC 62301 (Second 
Edition) (incorporated by reference; see Sec.  430.3). If the power 
measuring instrument used for testing is unable to measure and record 
the crest factor, power factor, or maximum current ratio during the test 
measurement period, it is acceptable to measure the crest factor, power 
factor, and maximum current ratio immediately before and after the test 
measurement period.
    2.5 Lint trap. Clean the lint trap thoroughly before each test run.
    2.6 Test Cloths.
    2.6.1 Energy test cloth. The energy test cloth shall be clean and 
consist of the following:
    (a) Pure finished bleached cloth, made with a momie or granite 
weave, which is a blended fabric of 50-percent cotton and 50-percent 
polyester and weighs within + 10 percent of 5.75 ounces per square yard 
after test cloth preconditioning, and has 65 ends on the warp and 57 
picks on the fill. The individual warp and fill yarns are a blend of 50-
percent cotton and 50-percent polyester fibers.
    (b) Cloth material that is 24 inches by 36 inches and has been 
hemmed to 22 inches by 34 inches before washing. The maximum shrinkage 
after five washes shall not be more than 4 percent on the length and 
width.
    (c) The number of test runs on the same energy test cloth shall not 
exceed 25 runs.
    2.6.2 Energy stuffer cloths. The energy stuffer cloths shall be made 
from energy test cloth material, and shall consist of pieces of material 
that are 12 inches by 12 inches and have been hemmed to 10 inches by 10 
inches before washing. The maximum shrinkage after five washes shall not 
be more than 4 percent on the length and width. The number of test runs 
on the same energy stuffer cloth shall not exceed 25 runs after test 
cloth preconditioning.
    2.6.3 Test Cloth Preconditioning.
    A new test cloth load and energy stuffer cloths shall be treated as 
follows:
    (1) Bone dry the load to a weight change of 1 
percent, or less, as prescribed in section 1.6 of this appendix.
    (2) Place the test cloth load in a standard clothes washer set at 
the maximum water fill level. Wash the load for 10 minutes in soft water 
(17 parts per million hardness or less), using 60.8 grams of AHAM 
standard test detergent Formula 3. Wash water temperature should be 
maintained at 140 [deg]F 5 [deg]F

[[Page 375]]

(60 [deg]C 2.7 [deg]C). Rinse water temperature is 
to be controlled at 100 [deg]F 5 [deg]F (37.7 
[deg]C 2.7 [deg]C).
    (3) Rinse the load again at the same water temperature.
    (4) Bone dry the load as prescribed in section 1.6 of this appendix 
and weigh the load.
    (5) This procedure is repeated until there is a weight change of 1 
percent or less.
    (6) A final cycle is to be a hot water wash with no detergent, 
followed by two warm water rinses.
    2.7 Test loads.
    2.7.1 Compact size dryer load. Prepare a bone-dry test load of 
energy cloths that weighs 3.00 pounds .03 pounds. 
The test load can be adjusted to achieve proper weight by adding energy 
stuffer cloths, but no more than five stuffer cloths may be added per 
load. Dampen the load by agitating it in water whose temperature is 60 
[deg]F 5 [deg]F and consists of 0 to 17 parts per 
million hardness for approximately 2 minutes to saturate the fabric. 
Then, extract water from the wet test load by spinning the load until 
the moisture content of the load is between 52.5 and 57.5 percent of the 
bone-dry weight of the test load. Make a final mass adjustment, such 
that the moisture content is 57.5 percent 0.33 
percent by adding water uniformly distributed among all of the test 
clothes in a very fine spray using a spray bottle.
    2.7.2 Standard size dryer load. Prepare a bone-dry test load of 
energy cloths that weighs 8.45 pounds .085 pounds. 
The test load can be adjusted to achieve proper weight by adding stuffer 
cloths, but no more than five stuffer cloths may be added per load. 
Dampen the load by agitating it in water whose temperature is 60 [deg]F 
5 [deg]F and consists of 0 to 17 parts per million 
hardness for approximately 2 minutes to saturate the fabric. Then, 
extract water from the wet test load by spinning the load until the 
moisture content of the load is between 52.5 and 57.5 percent of the 
bone-dry weight of the test load. Make a final mass adjustment, such 
that the moisture content is 57.5 percent 0.33 
percent by adding water uniformly distributed among all of the test 
clothes in a very fine spray using a spray bottle.
    2.7.3 Method of loading. Load the energy test cloths by grasping 
them in the center, shaking them to hang loosely, and then dropping them 
in the dryer at random.
    2.8 Clothes dryer preconditioning.
    2.8.1 Conventional clothes dryers. For conventional clothes dryers, 
before any test cycle, operate the dryer without a test load in the non-
heat mode for 15 minutes or until the discharge air temperature is 
varying less than 1 [deg]F for 10 minutes--whichever is longer--in the 
test installation location with the ambient conditions within the 
specified test condition tolerances of 2.2.
    2.8.2 Ventless clothes dryers. For ventless clothes dryers, before 
any test cycle, the steady-state machine temperature must be equal to 
ambient room temperature described in 2.2.1. This may be done by leaving 
the machine at ambient room conditions for at least 12 hours between 
tests.

                   3. Test Procedures and Measurements

    3.1 Drum Capacity. Measure the drum capacity by sealing all openings 
in the drum except the loading port with a plastic bag, and ensuring 
that all corners and depressions are filled and that there are no 
extrusions of the plastic bag through any openings in the interior of 
the drum. Support the dryer's rear drum surface on a platform scale to 
prevent deflection of the drum surface, and record the weight of the 
empty dryer. Fill the drum with water to a level determined by the 
intersection of the door plane and the loading port (i.e., the uppermost 
edge of the drum that is in contact with the door seal). Record the 
temperature of the water and then the weight of the dryer with the added 
water and then determine the mass of the water in pounds. Add the 
appropriate volume to account for any space in the drum interior not 
measured by water fill (e.g., the space above the uppermost edge of the 
drum within a curved door) and subtract the appropriate volume to 
account for the space that is measured by water fill but cannot be used 
when the door is closed (e.g., space occupied by the door when closed). 
The drum capacity is calculated as follows:

C= w/d volume adjustment
C = capacity in cubic feet.
w = mass of water in pounds.
d = density of water at the measured temperature in pounds per cubic 
          foot.
    3.2 Dryer Loading. Load the dryer as specified in 2.7.
    3.3 Test cycle.
    3.3.1 Timer dryers. For timer dryers, as defined in section 1.20 of 
this appendix, operate the clothes dryer at the maximum temperature 
setting and, if equipped with a timer, at the maximum time setting. Any 
other optional cycle settings that do not affect the temperature or time 
settings shall be tested in the as-shipped position. If the clothes 
dryer does not have a separate temperature setting selection on the 
control panel, the maximum time setting should be used for the drying 
test cycle. Dry the load until the moisture content of the test load is 
between 1 and 2.5 percent of the bone-dry weight of the test load, at 
which point the test cycle is stopped, but do not permit the dryer to 
advance into cool down. If required, reset the timer to increase the 
length of the drying cycle. After stopping the test cycle, remove and 
weigh the test load. The clothes dryer shall not be stopped 
intermittently in the middle of the test cycle for any reason. Record 
the data specified by section 3.4 of this appendix. If the dryer 
automatically

[[Page 376]]

stops during a cycle because the condensation box is full of water, the 
test is stopped, and the test run is invalid, in which case the 
condensation box shall be emptied and the test re-run from the 
beginning. For ventless dryers, as defined in section 1.21 of this 
appendix, during the time between two cycles, the door of the dryer 
shall be closed except for loading (and unloading).
    3.3.2 Automatic termination control dryers. For automatic 
termination control dryers, as defined in section 1.5 of this appendix, 
a ``normal'' program shall be selected for the test cycle. For dryers 
that do not have a ``normal'' program, the cycle recommended by the 
manufacturer for drying cotton or linen clothes shall be selected. Where 
the drying temperature setting can be chosen independently of the 
program, it shall be set to the maximum. Where the dryness level setting 
can be chosen independently of the program, it shall be set to the 
``normal'' or ``medium'' dryness level setting. If such designation is 
not provided, then the dryness level shall be set at the mid-point 
between the minimum and maximum settings. Any other optional cycle 
settings that do not affect the program, temperature or dryness settings 
shall be tested in the as-shipped position. Operate the clothes dryer 
until the completion of the programmed cycle, including the cool down 
period. The cycle shall be considered complete when the dryer indicates 
to the user that the cycle has finished (by means of a display, 
indicator light, audible signal, or other signal) and the heater and 
drum/fan motor shuts off for the final time. If the clothes dryer is 
equipped with a wrinkle prevention mode (i.e., that continuously or 
intermittently tumbles the clothes dryer drum after the clothes dryer 
indicates to the user that the cycle has finished) that is activated by 
default in the as-shipped position or if manufacturers' instructions 
specify that the feature is recommended to be activated for normal use, 
the cycle shall be considered complete after the end of the wrinkle 
prevention mode. After the completion of the test cycle, remove and 
weigh the test load. Record the data specified in section 3.4 of this 
appendix. If the final moisture content is greater than 2 percent, the 
test shall be invalid and a new run shall be conducted using the highest 
dryness level setting. If the dryer automatically stops during a cycle 
because the condensation box is full of water, the test is stopped, and 
the test run is invalid, in which case the condensation box shall be 
emptied and the test re-run from the beginning. For ventless dryers, 
during the time between two cycles, the door of the dryer shall be 
closed except for loading (and unloading).
    3.4 Data recording. Record for each test cycle:
    3.4.1 Bone-dry weight of the test load described in 2.7.
    3.4.2 Moisture content of the wet test load before the test, as 
described in 2.7.
    3.4.3 Moisture content of the dry test load obtained after the test 
described in 3.3.
    3.4.4 Test room conditions, temperature, and percent relative 
humidity described in 2.2.1.
    3.4.5 For electric dryers--the total kilowatt-hours of electric 
energy, Et, consumed during the test described in 3.3.
    3.4.6 For gas dryers:
    3.4.6.1 Total kilowatt-hours of electrical energy, Ete, 
consumed during the test described in 3.3.
    3.4.6.2 Cubic feet of gas per cycle, Etg, consumed during 
the test described in 3.3.
    3.4.6.3 Correct the gas heating value, GEF, as measured in 2.3.2.1 
and 2.3.2.2, to standard pressure and temperature conditions in 
accordance with U.S. Bureau of Standards, circular C417, 1938.
    3.4.7 The cycle settings selected, in accordance with section 3.3.2 
of this appendix, for the automatic termination control dryer test.
    3.5 Test for automatic termination field use factor. The field use 
factor for automatic termination can be claimed for those dryers which 
meet the requirements for automatic termination control, defined in 1.4.
    3.6 Standby mode and off mode power. Establish the testing 
conditions set forth in Section 2 ``Testing Conditions'' of this 
appendix. For clothes dryers that take some time to enter a stable state 
from a higher power state as discussed in Section 5, Paragraph 5.1, Note 
1 of IEC 62301 (Second Edition) (incorporated by reference; see Sec.  
430.3), allow sufficient time for the clothes dryer to reach the lower 
power state before proceeding with the test measurement. Follow the test 
procedure specified in section 5, paragraph 5.3.2 of IEC 62301 (Second 
Edition) for testing in each possible mode as described in sections 
3.6.1 and 3.6.2 of this appendix.
    3.6.1 If a clothes dryer has an inactive mode, as defined in section 
1.13 of this appendix, measure and record the average inactive mode 
power of the clothes dryer, PIA, in watts.
    3.6.2 If a clothes dryer has an off mode, as defined in section 1.16 
of this appendix, measure and record the average off mode power of the 
clothes dryer, POFF, in watts.

        4. Calculation of Derived Results From Test Measurements

    4.1 Total per-cycle electric dryer energy consumption. Calculate the 
total electric dryer energy consumption per cycle, Ece, 
expressed in kilowatt-hours per cycle and defined as:
Ece = Et,
for automatic termination control dryers, and,
Ece = [55.5/(Ww- Wd)] x Et x 
          field use,
for timer dryers


[[Page 377]]


Where:

55.5 = an experimentally established value for the percent reduction in 
          the moisture content of the test load during a laboratory test 
          cycle expressed as a percent.
Et = the energy recorded in section 3.4.5 of this appendix
field use = 1.18, the field use factor for clothes dryers with time 
          termination control systems only without any automatic 
          termination control functions.
Ww = the moisture content of the wet test load as recorded in 
          section 3.4.2 of this appendix.
Wd = the moisture content of the dry test load as recorded in 
          section 3.4.3 of this appendix.
    4.2 Per-cycle gas dryer electrical energy consumption. Calculate the 
gas dryer electrical energy consumption per cycle, Ege, 
expressed in kilowatt-hours per cycle and defined as:
Ege = Ete,
for automatic termination control dryers, and,
Ege = [55.5/(Ww -Wd)] x Ete 
          x field use,
for timer dryers

Where:

Ete = the energy recorded in section 3.4.6.1 of this 
          appendix.
field use, 55.5, Ww, Wd as defined in section 4.1 
          of this appendix.
4.3 Per-cycle gas dryer gas energy consumption. Calculate the gas dryer 
          gas energy consumption per cycle, Ege, expressed in 
          Btus per cycle and defined as:
Egg = Etg x GEF
for automatic termination control dryers, and,
Egg = [55.5/(Ww -Wd)] x Etg 
          x field use x GEF
for timer dryers

Where:

Etg = the energy recorded in section 3.4.6.2 of this 
          appendix.
GEF = corrected gas heat value (Btu per cubic foot) as defined in 
          section 3.4.6.3 of this appendix,
field use, 55.5, Ww, Wd as defined in section 4.1 
          of this appendix.
    4.4 Total per-cycle gas dryer energy consumption expressed in 
kilowatt-hours. Calculate the total gas dryer energy consumption per 
cycle, Ecg, expressed in kilowatt-hours per cycle and defined 
as:
Ecg = Ege + (Egg/3412 Btu/kWh)

Where:

Ege = the energy calculated in section 4.2 of this appendix
Egg = the energy calculated in section 4.3 of this appendix
    4.5 Per-cycle standby mode and off mode energy consumption. 
Calculate the dryer inactive mode and off mode energy consumption per 
cycle, ETSO, expressed in kWh per cycle and defined as:
ETSO = [(PIA x SIA) + (POFF 
          x SOFF)] x K/283

Where:

PIA = dryer inactive mode power, in watts, as measured in 
          section 3.6.1;
POFF = dryer off mode power, in watts, as measured in section 
          3.6.2.
If the clothes dryer has both inactive mode and off mode, SIA 
          and SOFF both equal 8,620 / 2 = 4,310, where 8,620 
          is the total inactive and off mode annual hours;
If the clothes dryer has an inactive mode but no off mode, the inactive 
          mode annual hours, SIA, is equal to 8,620 and the 
          off mode annual hours, SOFF, is equal to 0;
If the clothes dryer has an off mode but no inactive mode, 
          SIA is equal to 0 and SOFF is equal to 
          8,620

Where:

K = 0.001 kWh/Wh conversion factor for watt-hours to kilowatt-hours; and
283 = representative average number of clothes dryer cycles in a year.
    4.6 Per-cycle combined total energy consumption expressed in 
kilowatt-hours. Calculate the per-cycle combined total energy 
consumption, ECC, expressed in kilowatt-hours per cycle and 
defined for an electric clothes dryer as:
ECC = Ece + ETSO

Where:

Ece = the energy calculated in section 4.1 of this appendix, 
          and
ETSO = the energy calculated in section 4.5 of this appendix, 
          and defined for a gas clothes dryer as:
ECC = Ecg + ETSO

Where:

Ecg = the energy calculated in section 4.4 of this appendix, 
          and
ETSO = the energy calculated in section 4.5 of this appendix.
    4.7 Energy Factor in pounds per kilowatt-hour. Calculate the energy 
factor, EF, expressed in pounds per kilowatt-hour and defined for an 
electric clothes dryer as:
EF = Wbonedry/Ece

Where:

Wbonedry = the bone dry test load weight recorded in section 
          3.4.1 of this appendix, and
Ece = the energy calculated in section 4.1 of this 
          appendix,and defined for a gas clothes dryer as:
EF = Wbonedry/Ecg

Where:

Wbonedry = the bone dry test load weight recorded in section 
          3.4.1 of this appendix, and
Ecg = the energy calculated in section 4.4 of this appendix,
    4.8 Combined Energy Factor in pounds per kilowatt-hour. Calculate 
the combined energy factor, CEF, expressed in pounds per kilowatt-hour 
and defined as:
CEF = Wbonedry/ECC


[[Page 378]]


Where:

Wbonedry = the bone dry test load weight recorded in section 
          3.4.1 of this appendix, and
ECC = the energy calculated in section 4.6 of this appendix.

[78 FR 49647, Aug. 14, 2013]



   Sec. Appendix E to Subpart B of Part 430--Uniform Test Method for 
            Measuring the Energy Consumption of Water Heaters

    Note: After December 31, 2015, any representations made with respect 
to the energy use or efficiency of residential water heaters and 
commercial water heaters covered by this test method must be made in 
accordance with the results of testing pursuant to this appendix. 
(Because the statute permits use of a conversion factor until the later 
of December 31, 2015 or one year after publication of a conversion 
factor final rule, DOE may amend the mandatory compliance date for use 
of this amended test procedure, as necessary.)
    Manufacturers conducting tests of residential water heaters and 
commercial water heaters covered by this test method after July 13, 
2015, and prior to December 31, 2015, must conduct such test in 
accordance with either this appendix or the previous test method. For 
residential water heaters, the previous test method is appendix E as it 
appeared at 10 CFR part 430, subpart B, appendix E, in the 10 CFR parts 
200 to 499 edition revised as of January 1, 2014. For commercial water 
heaters, the previous test method is 10 CFR 431.106 in the 10 CFR parts 
200 to 499 edition revised as of January 1, 2014. Any representations 
made with respect to the energy use or efficiency of such water heaters 
must be in accordance with whichever version is selected.

                             1. Definitions.

    1.1. Cut-in means the time when or water temperature at which a 
water heater control or thermostat acts to increase the energy or fuel 
input to the heating elements, compressor, or burner.
    1.2. Cut-out means the time when or water temperature at which a 
water heater control or thermostat acts to reduce to a minimum the 
energy or fuel input to the heating elements, compressor, or burner.
    1.3. Design Power Rating means the nominal power rating that a water 
heater manufacturer assigns to a particular design of water heater, 
expressed in kilowatts or Btu (kJ) per hour as appropriate.
    1.4. Draw Cluster means a collection of water draws initiated during 
the simulated-use test during which no successive draws are separated by 
more than 2 hours.
    1.5. First-Hour Rating means an estimate of the maximum volume of 
``hot'' water that a storage-type water heater can supply within an hour 
that begins with the water heater fully heated (i.e., with all 
thermostats satisfied). It is a function of both the storage volume and 
the recovery rate.
    1.6. Flow-activated describes an operational scheme in which a water 
heater initiates and terminates heating based on sensing flow.
    1.7. Heat Trap means a device that can be integrally connected or 
independently attached to the hot and/or cold water pipe connections of 
a water heater such that the device will develop a thermal or mechanical 
seal to minimize the recirculation of water due to thermal convection 
between the water heater tank and its connecting pipes.
    1.8. Maximum GPM (L/min) Rating means the maximum gallons per minute 
(liters per minute) of hot water that can be supplied by an 
instantaneous water heater while maintaining a nominal temperature rise 
of 67 [deg]F (37.3 [deg]C) during steady-state operation, as determined 
by testing in accordance with section 5.3.2 of this appendix.
    1.9. Rated Storage Volume means the water storage capacity of a 
water heater, in gallons (liters), as certified by the manufacturer 
pursuant to 10 CFR part 429.
    1.10. Recovery Efficiency means the ratio of energy delivered to the 
water to the energy content of the fuel consumed by the water heater.
    1.11. Recovery Period means the time when the main burner of a 
storage water heater is raising the temperature of the stored water.
    1.12. Standby means the time, in hours, during which water is not 
being withdrawn from the water heater. There are two standby time 
intervals used within this test procedure: [tau]stby,1 
represents the elapsed time between the time at which the maximum mean 
tank temperature is observed after the first draw cluster and the minute 
prior to the start of the first draw following the end of the first draw 
cluster of the 24-hour simulated-use test; [tau]stby,2 
represents the total time during the 24-hour simulated-use test when 
water is not being withdrawn from the water heater.
    1.13. Symbol Usage. The following identity relationships are 
provided to help clarify the symbology used throughout this procedure:

Cp--specific heat of water
Eannual--annual energy consumption of a water heater
Eannual,e--annual electrical energy consumption of a water heater
Eannual,f--annual fossil-fuel energy consumption of a water heater
Fhr--first-hour rating of a storage-type water heater
Fmax--maximum GPM (L/min) rating of an instantaneous water heater rated 
          at a temperature rise of 67 [deg]F (37.3 [deg]C)

[[Page 379]]

i--a subscript to indicate the draw number during a test
Mi--mass of water removed during the ith draw of the 24-hour simulated-
          use test
M*i--for storage-type water heaters, mass of water removed during the 
          ith draw during the first-hour rating test
M10m--for instantaneous water heaters, mass of water removed 
          continuously during a 10-minute interval in the maximum GPM 
          (L/min) rating test
n--for storage-type water heaters, total number of draws during the 
          first-hour rating test
N--total number of draws during the 24-hour simulated-use test
Q--total fossil fuel and/or electric energy consumed during the entire 
          24-hour simulated-use test
Qd--daily water heating energy consumption adjusted for net change in 
          internal energy
Qda--Qd with adjustment for variation of tank to ambient air temperature 
          difference from nominal value
Qdm--overall adjusted daily water heating energy consumption including 
          Qda and QHWD
Qe--total electrical energy used during the 24-hour simulated-use test
Qf--total fossil fuel energy used by the water heater during the 24-hour 
          simulated-use test
Qhr--hourly standby losses
QHW--daily energy consumption to heat water at the measured average 
          temperature rise across the water heater
QHW,67 [deg]F--daily energy consumption to heat quantity of water 
          removed during test over a temperature rise of 67 [deg]F (37.3 
          [deg]C)
QHWD--adjustment to daily energy consumption, QHW, due to 
          variation of the temperature rise across the water heater not 
          equal to the nominal value of 67 [deg]F
Qr--energy consumption of water heater from the beginning of the test to 
          the end of the first recovery period following the first draw, 
          which may extend beyond subsequent draws
Qstby--total energy consumed by the water heater during the standby time 
          interval [tau]stby,1
Qsu,0--total fossil fuel and/or electric energy consumed from the 
          beginning of the test to the end of the cutout following the 
          first draw cluster
Qsu,f--total fossil fuel and/or electric energy consumed from the 
          beginning of the test to the initiation of the first draw 
          following the first draw cluster
T0--mean tank temperature at the beginning of the 24-hour simulated-use 
          test
T24--mean tank temperature at the end of the 24-hour simulated-use test
Ta,stby--average ambient air temperature during standby periods of the 
          24-hour simulated-use test
Tdel--for flow-activated water heaters, average outlet water temperature 
          during a 10-minute continuous draw interval in the maximum GPM 
          (L/min) rating test
Tdel,i--average outlet water temperature during the ith draw of the 24-
          hour simulated-use test
Tin--for flow-activated water heaters, average inlet water temperature 
          during a 10-minute continuous draw interval in the maximum GPM 
          (L/min) rating test
Tin,i--average inlet water temperature during the ith draw of the 24-
          hour simulated-use test
Tmax,1--maximum measured mean tank temperature after cut-out following 
          the first draw of the 24-hour simulated-use test
Tsu,0--maximum measured mean tank temperature at the beginning of the 
          standby period which occurs after cut-out following the final 
          draw of the first draw cluster
Tsu,f--measured mean tank temperature at the end of the standby period 
          which occurs at the minute prior to commencement of the first 
          draw that follows the end of the first draw cluster
T*del,i--for storage-type water heaters, average outlet water 
          temperature during the ith draw (i = 1 to n) of the first-hour 
          rating test
T*max,i--for storage-type water heaters, maximum outlet water 
          temperature observed during the ith draw (i = 1 to n) of the 
          first-hour rating test
T*min,i--for storage-type water heaters, minimum outlet water 
          temperature to terminate the ith draw (i = 1 to n) of the 
          first-hour rating test
UA--standby loss coefficient of a storage-type water heater
UEF--uniform energy factor of a water heater
Vi--volume of water removed during the ith draw (i = 1 to N) of the 24-
          hour simulated-use test
V*i--volume of water removed during the ith draw (i = 1 to n) of the 
          first-hour rating test
V10m--for flow-activated water heaters, volume of water removed 
          continuously during a 10-minute interval in the maximum GPM 
          (L/min) rating test
Vst--measured storage volume of the storage tank
Wf--weight of storage tank when completely filled with water
Wt--tare weight of storage tank when completely empty of water
[eta]r--recovery efficiency
[rho]--density of water
[tau]stby,1--elapsed time between the time the maximum mean tank 
          temperature is observed after the first draw cluster and the 
          minute prior to the start of the first draw following the 
          first draw cluster

[[Page 380]]

[tau]stby,2--overall time of standby periods when no water is withdrawn 
          during the 24-hour simulated-use test

    1.14. Temperature controller means a device that is available to the 
user to adjust the temperature of the water inside a storage-type water 
heater or the outlet water temperature.
    1.15. Uniform Energy Factor means the measure of water heater 
overall efficiency.

                           2. Test Conditions.

    2.1 Installation Requirements. Tests shall be performed with the 
water heater and instrumentation installed in accordance with section 4 
of this appendix.
    2.2 Ambient Air Temperature. The ambient air temperature shall be 
maintained between 65.0 [deg]F and 70.0 [deg]F (18.3 [deg]C and 21.1 
[deg]C) on a continuous basis. For heat pump water heaters, the dry bulb 
temperature shall be maintained at 67.5 [deg]F 1 
[deg]F (19.7 [deg]C 0.6 [deg]C) and the relative 
humidity shall be maintained at 50% 2% throughout 
the test.
    2.3 Supply Water Temperature. The temperature of the water being 
supplied to the water heater shall be maintained at 58 [deg]F 2 [deg]F (14.4 [deg]C 1.1 [deg]C) 
throughout the test.
    2.4 Outlet Water Temperature. The temperature controllers of a 
storage-type water heater shall be set so that water is delivered at a 
temperature of 125 [deg]F 5 [deg]F (51.7 [deg]C 
2.8 [deg]C).
    2.5 Set Point Temperature. The temperature controller of 
instantaneous water heaters shall be set to deliver water at a 
temperature of 125 [deg]F 5 [deg]F (51.7 [deg]C 
2.8 [deg]C).
    2.6 Supply Water Pressure. During the test when water is not being 
withdrawn, the supply pressure shall be maintained between 40 psig (275 
kPa) and the maximum allowable pressure specified by the water heater 
manufacturer.
    2.7 Electrical and/or Fossil Fuel Supply.
    2.7.1 Electrical. Maintain the electrical supply voltage to within 
1% of the center of the voltage range specified by 
the water heater and/or heat pump manufacturer.
    2.7.2 Natural Gas. Maintain the supply pressure in accordance with 
the manufacturer's specifications. If the supply pressure is not 
specified, maintain a supply pressure of 7-10 inches of water column 
(1.7-2.5 kPa). If the water heater is equipped with a gas appliance 
pressure regulator, the regulator outlet pressure shall be within 10% of the manufacturer's specified manifold pressure. 
For all tests, use natural gas having a heating value of approximately 
1,025 Btu per standard cubic foot (38,190 kJ per standard cubic meter).
    2.7.3 Propane Gas. Maintain the supply pressure in accordance with 
the manufacturer's specifications. If the supply pressure is not 
specified, maintain a supply pressure of 11-13 inches of water column 
(2.7-3.2 kPa). If the water heater is equipped with a gas appliance 
pressure regulator, the regulator outlet pressure shall be within 10% of the manufacturer's specified manifold pressure. 
For all tests, use propane gas with a heating value of approximately 
2,500 Btu per standard cubic foot (93,147 kJ per standard cubic meter).
    2.7.4 Fuel Oil Supply. Maintain an uninterrupted supply of fuel oil. 
Use fuel oil having a heating value of approximately 138,700 Btu per 
gallon (38,660 kJ per liter).

                           3. Instrumentation

    3.1 Pressure Measurements. Pressure-measuring instruments shall have 
an error no greater than the following values:

------------------------------------------------------------------------
                                      Instrument          Instrument
          Item measured                accuracy            precision
------------------------------------------------------------------------
Gas pressure....................  0.1 inch of      eq>0.05 inch of
                                   water column        water column
                                   (0.025 kPa).  thn-eq>0.012
                                                       kPa).
Atmospheric pressure............  0.1 inch of      eq>0.05 inch of
                                   mercury column      mercury column
                                   (0.34 kPa).   thn-eq>0.17 kPa).
Water pressure..................  1.0 pounds per   eq>0.50 pounds
                                   square inch         per square inch
                                   (6.9 kPa).    thn-eq>3.45 kPa).
------------------------------------------------------------------------

    3.2 Temperature Measurement
    3.2.1 Measurement. Temperature measurements shall be made in 
accordance with the Standard Method for Temperature Measurement, ASHRAE 
41.1-1986 (incorporated by reference, see Sec.  430.3).
    3.2.2 Accuracy and Precision. The accuracy and precision of the 
instruments, including their associated readout devices, shall be within 
the following limits:

------------------------------------------------------------------------
                                      Instrument          Instrument
          Item measured                accuracy            precision
------------------------------------------------------------------------
Air dry bulb temperature........  0.2 [deg]F       eq>0.1 [deg]F
                                   (0.1          thn-eq>0.06
                                   [deg]C).            [deg]C).
Air wet bulb temperature........  0.2 [deg]F       eq>0.1 [deg]F
                                   (0.1          thn-eq>0.06
                                   [deg]C).            [deg]C).
Inlet and outlet water            0.2 [deg]F       eq>0.1 [deg]F
                                   (0.1          thn-eq>0.06
                                   [deg]C).            [deg]C).
Storage tank temperatures.......  0.5 [deg]F       eq>0.25 [deg]F
                                   (0.3          thn-eq>0.14
                                   [deg]C).            [deg]C).
------------------------------------------------------------------------


[[Page 381]]

    3.2.3 Scale Division. In no case shall the smallest scale division 
of the instrument or instrument system exceed 2 times the specified 
precision.
    3.2.4 Temperature Difference Temperature difference between the 
entering and leaving water may be measured with any of the following:

a. A thermopile
b. Calibrated resistance thermometers
c. Precision thermometers
d. Calibrated thermistors
e. Calibrated thermocouples
f. Quartz thermometers

    3.2.5 Thermopile Construction. If a thermopile is used, it shall be 
made from calibrated thermocouple wire taken from a single spool. 
Extension wires to the recording device shall also be made from that 
same spool.
    3.2.6 Time Constant. The time constant of the instruments used to 
measure the inlet and outlet water temperatures shall be no greater than 
2 seconds.
    3.3 Liquid Flow Rate Measurement. The accuracy of the liquid flow 
rate measurement, using the calibration if furnished, shall be equal to 
or less than 1% of the measured value in mass 
units per unit time.
    3.4 Electrical Energy. The electrical energy used shall be measured 
with an instrument and associated readout device that is accurate within 
0.5% of the reading.
    3.5 Fossil Fuels. The quantity of fuel used by the water heater 
shall be measured with an instrument and associated readout device that 
is accurate within 1% of the reading.
    3.6 Mass Measurements. For mass measurements greater than or equal 
to 10 pounds (4.5 kg), a scale that is accurate within 0.5% of the reading shall be used to make the 
measurement. For mass measurements less than 10 pounds (4.5 kg), the 
scale shall provide a measurement that is accurate within 0.1 pound (0.045 kg).
    3.7 Heating Value. The higher heating value of the natural gas, 
propane, or fuel oil shall be measured with an instrument and associated 
readout device that is accurate within 1% of the 
reading. The heating values of natural gas and propane must be corrected 
from those reported at standard temperature and pressure conditions to 
provide the heating value at the temperature and pressure measured at 
the fuel meter.
    3.8 Time. The elapsed time measurements shall be measured with an 
instrument that is accurate within 0.5 seconds per 
hour.
    3.9 Volume. Volume measurements shall be measured with an accuracy 
of 2% of the total volume.
    3.10 Relative Humidity. If a relative humidity (RH) transducer is 
used to measure the relative humidity of the surrounding air while 
testing heat pump water heaters, the relative humidity shall be measured 
with an accuracy of 1.5% RH.

                             4. Installation

    4.1 Water Heater Mounting. A water heater designed to be 
freestanding shall be placed on a \3/4\ inch (2 cm) thick plywood 
platform supported by three 2x4 inch (5 cmx10 cm) runners. If the water 
heater is not approved for installation on combustible flooring, 
suitable non-combustible material shall be placed between the water 
heater and the platform. Counter-top water heaters shall be placed 
against a simulated wall section. Wall-mounted water heaters shall be 
supported on a simulated wall in accordance with the manufacturer-
published installation instructions. When a simulated wall is used, the 
construction shall be 2x4 inch (5 cmx10 cm) studs, faced with \3/4\ inch 
(2 cm) plywood. For heat pump water heaters not delivered as a single 
package, the units shall be connected in accordance with the 
manufacturer-published installation instructions and the overall system 
shall be placed on the above-described plywood platform. If installation 
instructions are not provided by the heat pump manufacturer, uninsulated 
8 foot (2.4 m) long connecting hoses having an inside diameter of \5/8\ 
inch (1.6 cm) shall be used to connect the storage tank and the heat 
pump water heater. The testing of the water heater shall occur in an 
area that is protected from drafts of more than 50 ft/min (0.25 m/s) 
from room ventilation registers, windows, or other external sources of 
air movement.
    4.2 Water Supply. Connect the water heater to a water supply capable 
of delivering water at conditions as specified in sections 2.3 and 2.6 
of this appendix.
    4.3 Water Inlet and Outlet Configuration. For freestanding water 
heaters that are taller than 36 inches (91.4 cm), inlet and outlet 
piping connections shall be configured in a manner consistent with 
Figures 1 and 2 of section 6.4.6 of this appendix. Inlet and outlet 
piping connections for wall-mounted water heaters shall be consistent 
with Figure 3 of section 6.4.6 of this appendix. For freestanding water 
heaters that are 36 inches or less in height and not supplied as part of 
a counter-top enclosure (commonly referred to as an under-the-counter 
model), inlet and outlet piping shall be installed in a manner 
consistent with Figures 4, 5, or 6 of section 6.4.6 of this appendix. 
For water heaters that are supplied with a counter-top enclosure, inlet 
and outlet piping shall be made in a manner consistent with Figures 7a 
and 7b of section 6.4.6 of this appendix, respectively. The vertical 
piping noted in Figures 7a and 7b shall be located (whether inside the 
enclosure or along the outside in a recessed channel) in accordance with 
the manufacturer-published installation instructions.
    All dimensions noted in Figures 1 through 7 of section 6.4.6 of this 
appendix must be

[[Page 382]]

achieved. All piping between the water heater and inlet and outlet 
temperature sensors, noted as TIN and TOUT in the 
figures, shall be Type ``L'' hard copper having the same diameter as the 
connections on the water heater. Unions may be used to facilitate 
installation and removal of the piping arrangements. Install a pressure 
gauge and diaphragm expansion tank in the supply water piping at a 
location upstream of the inlet temperature sensor. Install an 
appropriately rated pressure and temperature relief valve on all water 
heaters at the port specified by the manufacturer. Discharge piping for 
the relief valve must be non-metallic. If heat traps, piping insulation, 
or pressure relief valve insulation are supplied with the water heater, 
they must be installed for testing. Except when using a simulated wall, 
provide sufficient clearance such that none of the piping contacts other 
surfaces in the test room.
    4.4 Fuel and/or Electrical Power and Energy Consumption. Install one 
or more instruments that measure, as appropriate, the quantity and rate 
of electrical energy and/or fossil fuel consumption in accordance with 
section 3 of this appendix.
    4.5 Internal Storage Tank Temperature Measurements. For water 
heaters with rated storage volumes greater than or equal to 20 gallons, 
install six temperature measurement sensors inside the water heater tank 
with a vertical distance of at least 4 inches (100 mm) between 
successive sensors. For water heaters with rated storage volumes between 
2 and 20 gallons, install three temperature measurement sensors inside 
the water heater tank. Position a temperature sensor at the vertical 
midpoint of each of the six equal volume nodes within a tank larger than 
20 gallons or the three equal volume nodes within a tank between 2 and 
20 gallons. Nodes designate the equal volumes used to evenly partition 
the total volume of the tank. As much as is possible, the temperature 
sensor should be positioned away from any heating elements, anodic 
protective devices, tank walls, and flue pipe walls. If the tank cannot 
accommodate six temperature sensors and meet the installation 
requirements specified above, install the maximum number of sensors that 
comply with the installation requirements. Install the temperature 
sensors through: (1) The anodic device opening; (2) the relief valve 
opening; or (3) the hot water outlet. If installed through the relief 
valve opening or the hot water outlet, a tee fitting or outlet piping, 
as applicable, must be installed as close as possible to its original 
location. If the relief valve temperature sensor is relocated, and it no 
longer extends into the top of the tank, install a substitute relief 
valve that has a sensing element that can reach into the tank. If the 
hot water outlet includes a heat trap, install the heat trap on top of 
the tee fitting. Cover any added fittings with thermal insulation having 
an R value between 4 and 8 h[middot]ft\2\[middot] [deg]F/Btu (0.7 and 
1.4 m\2\[middot] [deg]C/W).
    4.6 Ambient Air Temperature Measurement. Install an ambient air 
temperature sensor at the vertical mid-point of the water heater and 
approximately 2 feet (610 mm) from the surface of the water heater. 
Shield the sensor against radiation.
    4.7 Inlet and Outlet Water Temperature Measurements. Install 
temperature sensors in the cold-water inlet pipe and hot-water outlet 
pipe as shown in Figures 1, 2, 3, 4, 5, 6, 7a, and 7b of section 6.4.6 
of this appendix, as applicable.
    4.8 Flow Control. Install a valve or valves to provide flow as 
specified in sections 5.3 and 5.4 of this appendix.
    4.9 Flue Requirements.
    4.9.1 Gas-Fired Water Heaters. Establish a natural draft in the 
following manner. For gas-fired water heaters with a vertically 
discharging draft hood outlet, connect to the draft hood outlet a 5-foot 
(1.5-meter) vertical vent pipe extension with a diameter equal to the 
largest flue collar size of the draft hood. For gas-fired water heaters 
with a horizontally discharging draft hood outlet, connect to the draft 
hood outlet a 90-degree elbow with a diameter equal to the largest flue 
collar size of the draft hood, connect a 5-foot (1.5-meter) length of 
vent pipe to that elbow, and orient the vent pipe to discharge 
vertically upward. Install direct-vent gas-fired water heaters with 
venting equipment specified in the manufacturer's instructions using the 
minimum vertical and horizontal lengths of vent pipe recommended by the 
manufacturer.
    4.9.2 Oil-Fired Water Heaters. Establish a draft at the flue collar 
at the value specified in the manufacturer's instructions. Establish the 
draft by using a sufficient length of vent pipe connected to the water 
heater flue outlet, and directed vertically upward. For an oil-fired 
water heater with a horizontally discharging draft hood outlet, connect 
to the draft hood outlet a 90-degree elbow with a diameter equal to the 
largest flue collar size of the draft hood, connect to the elbow fitting 
a length of vent pipe sufficient to establish the draft, and orient the 
vent pipe to discharge vertically upward. Direct-vent oil-fired water 
heaters should be installed with venting equipment as specified in the 
manufacturer's instructions, using the minimum vertical and horizontal 
lengths of vent pipe recommended by the manufacturer.

                           5. Test Procedures

    5.1 Operational Mode Selection. For water heaters that allow for 
multiple user-selected operational modes, all procedures specified in 
this appendix shall be carried out with the water heater in the same 
operational mode (i.e., only one mode). This operational mode shall be 
the default mode (or similarly-

[[Page 383]]

named, suggested mode for normal operation) as defined by the 
manufacturer in its product literature for giving selection guidance to 
the consumer. For heat pump water heaters, if a default mode is not 
defined in the product literature, each test shall be conducted under an 
operational mode in which both the heat pump and any electric resistance 
backup heating element(s) are activated by the unit's control scheme, 
and which can achieve the internal storage tank temperature specified in 
this test procedure; if multiple operational modes meet these criteria, 
the water heater shall be tested under the most energy-intensive mode. 
If no default mode is specified and the unit does not offer an 
operational mode that utilizes both the heat pump and the electric 
resistance backup heating element(s), the first-hour rating test and the 
simulated-use test shall be tested in heat-pump-only mode. For other 
types of water heaters where a default mode is not specified, test the 
unit in all modes and rate the unit using the results of the most 
energy-intensive mode.
    5.2 Water Heater Preparation.
    5.2.1 Determination of Storage Tank Volume. For water heaters with a 
rated storage volume greater than or equal to 2 gallons, determine the 
storage capacity, Vst, of the water heater under test, in 
gallons (liters), by subtracting the tare weight--measured while the 
tank is empty--from the gross weight of the storage tank when completely 
filled with water (with all air eliminated and line pressure applied as 
described in section 2.5 of this appendix) and dividing the resulting 
net weight by the density of water at the measured temperature.
    5.2.2 Setting the Outlet Discharge Temperature.
    5.2.2.1 Flow-Activated Water Heaters, including certain 
instantaneous water heaters and certain storage-type water heaters. 
Initiate normal operation of the water heater at the full input rating 
for electric water heaters and at the maximum firing rate specified by 
the manufacturer for gas or oil water heaters. Monitor the discharge 
water temperature and set to a value of 125 [deg]F 5 [deg]F (51.7 [deg]C 2.8 [deg]C) 
in accordance with the manufacturer's instructions. If the water heater 
is not capable of providing this discharge temperature when the flow 
rate is 1.7 gallons 0.25 gallons per minute (6.4 
liters 0.95 liters per minute), then adjust the 
flow rate as necessary to achieve the specified discharge water 
temperature. Once the proper temperature control setting is achieved, 
the setting must remain fixed for the duration of the maximum GPM test 
and the simulated-use test.
    5.2.2.2 Storage-Type Water Heaters that Are Not Flow-Activated.
    5.2.2.2.1 Tanks with a Single Temperature Controller.
    5.2.2.2.1.1 Water Heaters with Rated Volumes Less than 20 Gallons. 
Starting with a tank at the supply water temperature, initiate normal 
operation of the water heater. After cut-out, initiate a draw from the 
water heater at a flow rate of 1.0 gallon 0.25 
gallons per minute (3.8 liters 0.95 liters per 
minute) for 2 minutes. Starting 15 seconds after commencement of draw, 
record the outlet temperature at 15-second intervals until the end of 
the 2-minute period. Determine whether the maximum outlet temperature is 
within the range of 125 [deg]F 5 [deg]F (51.7 
[deg]C 2.8 [deg]C). If not, turn off the water 
heater, adjust the temperature controller, and then drain and refill the 
tank with supply water. Then, once again, initiate normal operation of 
the water heater, and repeat the 2-minute outlet temperature test 
following cut-out. Repeat this sequence until the maximum outlet 
temperature during the 2-minute test is within 125 [deg]F 5 [deg]F (51.7 [deg]C 2.8 [deg]C). 
Once the proper temperature control setting is achieved, the setting 
must remain fixed for the duration of the first-hour rating test and the 
simulated-use test such that a second identical simulated-use test run 
immediately following the one specified in section 5.4 would result in 
average delivered water temperatures that are within the bounds 
specified in section 2.4 of this appendix.
    5.2.2.2.1.2 Water Heaters with Rated Volumes Greater than or Equal 
to 20 Gallons. Starting with a tank at the supply water temperature, 
initiate normal operation of the water heater. After cut-out, initiate a 
draw from the water heater at a flow rate of 1.7 gallons 0.25 gallons per minute (6.4 liters 0.95 liters per minute) for 5 minutes. Starting 15 
seconds after commencement of draw, record the outlet temperature at 15-
second intervals until the end of the 5-minute period. Determine whether 
the maximum outlet temperature is within the range of 125 [deg]F 5 [deg]F (51.7 [deg]C 2.8 [deg]C). 
If not, turn off the water heater, adjust the temperature controller, 
and then drain and refill the tank with supply water. Then, once again, 
initiate normal operation of the water heater, and repeat the 5-minute 
outlet temperature test following cut-out. Repeat this sequence until 
the maximum outlet temperature during the 5-minute test is within of 125 
[deg]F 5 [deg]F (51.7 [deg]C 2.8 [deg]C). Once the proper temperature control setting 
is achieved, the setting must remain fixed for the duration of the 
first-hour rating test and the simulated-use test such that a second 
identical simulated-use test run immediately following the one specified 
in section 5.4 would result in average delivered water temperatures that 
are within the bounds specified in section 2.4 of this appendix.
    5.2.2.2.2 Tanks with Two or More Temperature Controllers. Verify the 
temperature controller set-point while removing water in accordance with 
the procedure set forth for the first-hour rating test in section 5.3.3 
of this

[[Page 384]]

appendix. The following criteria must be met to ensure that all 
temperature controllers are set to deliver water at 125 [deg]F 5 [deg]F (51.7 [deg]C 2.8 [deg]C):
    (a) At least 50 percent of the water drawn during the first draw of 
the first-hour rating test procedure shall be delivered at a temperature 
of 125 [deg]F 5 [deg]F (51.7 [deg]C 2.8 [deg]C).
    (b) No water is delivered above 130 [deg]F (54.4 [deg]C) during 
first-hour rating test.
    (c) The delivery temperature measured 15 seconds after commencement 
of each draw begun prior to an elapsed time of 60 minutes from the start 
of the test shall be at 125 [deg]F 5 [deg]F (51.7 
[deg]C 2.8 [deg]C).
    If these conditions are not met, turn off the water heater, adjust 
the temperature controllers, and then drain and refill the tank with 
supply water. Repeat the procedure described at the start of section 
5.2.2.2.2 until the criteria for setting the temperature controllers is 
met.
    If the conditions stated above are met, the data obtained during the 
process of verifying the temperature control set-points may be used in 
determining the first-hour rating provided that all other conditions and 
methods required in sections 2 and 5.2.4 in preparing the water heater 
were followed.
    5.2.3 Power Input Determination. For all water heaters except 
electric types, initiate normal operation (as described in section 5.1) 
and determine the power input, P, to the main burners (including pilot 
light power, if any) after 15 minutes of operation. If the water heater 
is equipped with a gas appliance pressure regulator, the regulator 
outlet pressure shall be set within 10% of that 
recommended by the manufacturer. For oil-fired water heaters, the fuel 
pump pressure shall be within 10% of the 
manufacturer's specified pump pressure. Adjust all burners to achieve an 
hourly Btu (kJ) rating that is within 2% of the 
value specified by the manufacturer. For an oil-fired water heater, 
adjust the burner to give a CO2 reading recommended by the 
manufacturer and an hourly Btu (kJ) rating that is within 2% of that specified by the manufacturer. Smoke in the 
flue may not exceed No. 1 smoke as measured by the procedure in ASTM 
D2156 (incorporated by reference, see Sec.  430.3).
    5.2.4 Soak-In Period for Water Heaters with Rated Storage Volumes 
Greater than or Equal to 2 Gallons. For storage-type water heaters and 
instantaneous water heaters having greater than 2 gallons (7.6 liters) 
of storage (including heat pump water heaters having greater than 2 
gallons of storage), the water heater must sit filled with water and 
without any draws taking place for at least 12 hours after initially 
being energized so as to achieve the nominal temperature set-point 
within the tank and with the unit connected to a power source.
    5.3 Delivery Capacity Tests.
    5.3.1 General. For flow-activated water heaters, conduct the maximum 
GPM test, as described in section 5.3.2, Maximum GPM Rating Test for 
Flow-Activated Water Heaters, of this appendix. For all other water 
heaters, conduct the first-hour rating test as described in section 
5.3.3 of this appendix.
    5.3.2 Maximum GPM Rating Test for Flow-Activated Water Heaters. 
Establish normal water heater operation at the full input rate for 
electric water heaters and at the maximum firing rate for gas or oil 
water heaters with the discharge water temperature set in accordance 
with section 5.2.2.1 of this appendix.
    For this 10-minute test, either collect the withdrawn water for 
later measurement of the total mass removed or use a water meter to 
directly measure the water volume removed. Initiate water flow through 
the water heater and record the inlet and outlet water temperatures 
beginning 15 seconds after the start of the test and at subsequent 5-
second intervals throughout the duration of the test. At the end of 10 
minutes, turn off the water. Determine and record the mass of water 
collected, M10m, in pounds (kilograms), or the volume of 
water, V10m, in gallons (liters).
    5.3.3 First-Hour Rating Test.
    5.3.3.1 General. During hot water draws for water heaters with rated 
storage volumes greater than or equal to 20 gallons, remove water at a 
rate of 3.0 0.25 gallons per minute (11.4 0.95 liters per minute). During hot water draws for 
storage-type water heaters with rated storage volumes below 20 gallons, 
remove water at a rate of 1.0 0.25 gallon per 
minute (3.8 0.95 liters per minute). Collect the 
water in a container that is large enough to hold the volume removed 
during an individual draw and is suitable for weighing at the 
termination of each draw to determine the total volume of water 
withdrawn. As an alternative to collecting the water, a water meter may 
be used to directly measure the water volume(s) withdrawn.
    5.3.3.2 Draw Initiation Criteria. Begin the first-hour rating test 
by starting a draw on the storage-type water heater. After completion of 
this first draw, initiate successive draws based on the following 
criteria. For gas-fired and oil-fired water heaters, initiate successive 
draws when the temperature controller acts to reduce the supply of fuel 
to the main burner. For electric water heaters having a single element 
or multiple elements that all operate simultaneously, initiate 
successive draws when the temperature controller acts to reduce the 
electrical input supplied to the element(s). For electric water heaters 
having two or more elements that do not operate simultaneously, initiate 
successive draws when the applicable temperature controller acts to 
reduce the electrical input to the energized element located vertically 
highest in the storage tank. For

[[Page 385]]

heat pump water heaters that do not use supplemental, resistive heating, 
initiate successive draws immediately after the electrical input to the 
compressor is reduced by the action of the water heater's temperature 
controller. For heat pump water heaters that use supplemental resistive 
heating, initiate successive draws immediately after the electrical 
input to the first of either the compressor or the vertically highest 
resistive element is reduced by the action of the applicable water 
heater temperature controller. This draw initiation criterion for heat 
pump water heaters that use supplemental resistive heating, however, 
shall only apply when the water located above the thermostat at cut-out 
is heated to 125 [deg]F 5 [deg]F (51.7 [deg]C 
2.8 [deg]C). If this criterion is not met, then 
the next draw should be initiated once the heat pump compressor cuts 
out.
    5.3.3.3 Test Sequence. Establish normal water heater operation. If 
the water heater is not presently operating, initiate a draw. The draw 
may be terminated any time after cut-in occurs. After cut-out occurs 
(i.e., all temperature controllers are satisfied), record the internal 
storage tank temperature at each sensor described in section 4.5 of this 
appendix every one minute, and determine the mean tank temperature by 
averaging the values from these sensors.
    Initiate a draw after a maximum mean tank temperature (the maximum 
of the mean temperatures of the individual sensors) has been observed 
following a cut-out. Record the time when the draw is initiated and 
designate it as an elapsed time of zero ([tau]* = 0). (The superscript * 
is used to denote variables pertaining to the first-hour rating test). 
Record the outlet water temperature beginning 15 seconds after the draw 
is initiated and at 5-second intervals thereafter until the draw is 
terminated. Determine the maximum outlet temperature that occurs during 
this first draw and record it as T*max,1. For the duration of 
this first draw and all successive draws, in addition, monitor the inlet 
temperature to the water heater to ensure that the required 58 [deg]F 
2 [deg]F (14.4 [deg]C 1.1 
[deg]C) test condition is met. Terminate the hot water draw when the 
outlet temperature decreases to T*max,1 - 15 [deg]F 
(T*max,1 - 8.3 [deg]C). (Note, if the outlet temperature does 
not decrease to T*max,1 - 15 [deg]F (T*max,1 - 8.3 
[deg]C) during the draw, then hot water would be drawn continuously for 
the duration of the test. In this instance, the test would end when the 
temperature decreases to T*max,1- 15 [deg]F 
(T*max,1 - 8.3 [deg]C) after the electrical power and/or fuel 
supplied to the water heater is shut off, as described in the following 
paragraphs.) Record this temperature as T*min,1. Following 
draw termination, determine the average outlet water temperature and the 
mass or volume removed during this first draw and record them as 
T*del,i and M*1 or V*1, respectively.
    Initiate a second and, if applicable, successive draw(s) each time 
the applicable draw initiation criteria described in section 5.3.3.2 are 
satisfied. As required for the first draw, record the outlet water 
temperature 15 seconds after initiating each draw and at 5-second 
intervals thereafter until the draw is terminated. Determine the maximum 
outlet temperature that occurs during each draw and record it as 
T*max,i, where the subscript i refers to the draw number. 
Terminate each hot water draw when the outlet temperature decreases to 
T*max,i - 15 [deg]F (T*max,i - 8.3 [deg]C). Record 
this temperature as T*min,i. Calculate and record the average 
outlet temperature and the mass or volume removed during each draw 
(T*del,i and M*i or V*i, respectively). 
Continue this sequence of draw and recovery until one hour after the 
start of the test, then shut off the electrical power and/or fuel 
supplied to the water heater.
    If a draw is occurring at one hour from the start of the test, 
continue this draw until the outlet temperature decreases to 
T*max,n - 15 [deg]F (T*max,n - 8.3 [deg]C), at 
which time the draw shall be immediately terminated. (The subscript n 
shall be used to denote measurements associated with the final draw.) If 
a draw is not occurring one hour after the start of the test, initiate a 
final draw at one hour, regardless of whether the criteria described in 
section 5.3.3.2 of this appendix are satisfied. This draw shall proceed 
for a minimum of 30 seconds and shall terminate when the outlet 
temperature first indicates a value less than or equal to the cut-off 
temperature used for the previous draw (T*min,n-1). If an 
outlet temperature greater than T*min,n-1 is not measured 
within 30 seconds of initiation of the draw, zero additional credit 
shall be given towards first-hour rating (i.e., M*n = 0 or 
V*n = 0) based on the final draw. After the final draw is 
terminated, calculate and record the average outlet temperature and the 
mass or volume removed during the final draw (T*del,n and 
M*n or V*n, respectively).
    5.4 24-Hour Simulated Use Test.
    5.4.1 Selection of Draw Pattern. The water heater will be tested 
under a draw profile that depends upon the first-hour rating obtained 
following the test prescribed in section 5.3.3 of this appendix, or the 
maximum GPM rating obtained following the test prescribed in section 
5.3.2 of this appendix, whichever is applicable. For water heaters that 
have been tested according to the first-hour rating procedure, one of 
four different patterns shall be applied based on the measured first-
hour rating, as shown in Table I of this section. For water heater that 
have been tested according to the maximum GPM rating procedure, one of 
four different patterns shall be applied based on the maximum GPM, as 
shown in Table II of this section.

[[Page 386]]



                           Table I--Draw Pattern To Be Used Based on First-Hour Rating
----------------------------------------------------------------------------------------------------------------
  First-hour rating greater than or     ... and first-hour
              equal to:                  rating less than:       Draw pattern to be used in simulated-use test
----------------------------------------------------------------------------------------------------------------
0 gallons...........................  18 gallons............  Very-Small-Usage (Table III.1).
18 gallons..........................  51 gallons............  Low-Usage (Table III.2).
51 gallons..........................  75 gallons............  Medium-Usage (Table III.3).
75 gallons..........................  No upper limit........  High-Usage (Table III.4).
----------------------------------------------------------------------------------------------------------------


                          Table II--Draw Pattern To Be Used Based on Maximum GPM Rating
----------------------------------------------------------------------------------------------------------------
 Maximum GPM rating greater than or   and maximum GPM rating
              equal to:                     less than:           Draw pattern to be used in simulated-use test
----------------------------------------------------------------------------------------------------------------
0 gallons/minute....................  1.7 gallons/minute....  Very-Small-Usage (Table III.1).
1.7 gallons/minute..................  2.8 gallons/minute....  Low-Usage (Table III.2).
2.8 gallons/minute..................  4 gallons/minute......  Medium-Usage (Table III.3).
4 gallons/minute....................  No upper limit........  High-Usage (Table III.4).
----------------------------------------------------------------------------------------------------------------

    The draw patterns are provided in Tables III.1 through III.4 in 
section 5.5 of this appendix. Use the appropriate draw pattern when 
conducting the test sequence provided in section 5.4.2 of this appendix 
for water heaters with rated storage volumes greater than or equal to 2 
gallons or section 5.4.3 of this appendix for water heaters with rated 
storage volumes less than 2 gallons.
    5.4.2 Test Sequence for Water Heaters with Rated Storage Volumes 
Greater Than or Equal to 2 Gallons. If the water heater is turned off, 
fill the water heater with supply water and maintain supply water 
pressure as described in section 2.6 of this appendix. Turn on the water 
heater and associated heat pump unit, if present. If turned on in this 
fashion, the soak-in period described in section 5.2.4 of this appendix 
shall be implemented. If the water heater has undergone a first-hour 
rating test prior to conduct of the simulated-use test, allow the water 
heater to fully recover after completion of that test such that the main 
burner, heating elements, or heat pump compressor of the water heater 
are no longer raising the temperature of the stored water. In all cases, 
the water heater shall sit idle for 1 hour prior to the start of the 24-
hour test; during which time no water is drawn from the unit and there 
is no energy input to the main heating elements, heat pump compressor, 
and/or burners. At the end of this period, the 24-hour simulated-use 
test will begin.
    At the start of the 24-hour test, record the mean tank temperature 
(T0), and the electrical and/or fuel measurement readings, as 
appropriate. Begin the 24-hour simulated use test by withdrawing the 
volume specified in the appropriate table in section 5.5 of this 
appendix (i.e., Table III.1, Table III.2, Table III.3, or Table III.4, 
depending on the first-hour rating or maximum GPM rating) for the first 
draw at the flow rate specified in the applicable table. Record the time 
when this first draw is initiated and assign it as the test elapsed time 
([tau]) of zero (0). Record the average storage tank and ambient 
temperature every minute throughout the 24-hour simulated-use test. At 
the elapsed times specified in the applicable draw pattern table in 
section 5.5 of this appendix for a particular draw pattern, initiate 
additional draws pursuant to the draw pattern, removing the volume of 
hot water at the prescribed flow rate specified by the table. The 
maximum allowable deviation from the specified volume of water removed 
for any single draw taken at a nominal flow rate of 1 GPM or 1.7 GPM is 
0.1 gallons (0.4 liters). 
The maximum allowable deviation from the specified volume of water 
removed for any single draw taken at a nominal flow rate of 3 GPM is 
0.25 gallons (0.9 liters). The quantity of water 
withdrawn during the last draw shall be increased or decreased as 
necessary such that the total volume of water withdrawn equals the 
prescribed daily amount for that draw pattern 1.0 
gallon (3.8 liters). If this adjustment to the 
volume drawn during the last draw results in no draw taking place, the 
test is considered invalid.
    All draws during the 24-hour simulated-use test shall be made at the 
flow rates specified in the applicable draw pattern table in section 5.5 
of this appendix, within a tolerance of 0.25 
gallons per minute (0. 9 liters per minute). 
Measurements of the inlet and outlet temperatures shall be made 5 
seconds after the draw is initiated and at every subsequent 3-second 
interval throughout the duration of each draw. Calculate and record the 
mean of the hot water discharge temperature and the cold water inlet 
temperature for each draw Tdel,i and Tin,i). 
Determine and record the net mass or volume removed (Mi or 
Vi), as appropriate, after each draw.
    At the end of the first recovery period following the first draw, 
which may extend beyond subsequent draws, record the maximum mean tank 
temperature observed after cut-out, Tmax,1, and the energy 
consumed by an

[[Page 387]]

electric resistance, gas, or oil-fired water heater (including 
electrical energy), from the beginning of the test, Qr. For 
heat pump water heaters, the total energy consumed during the first 
recovery by the heat pump (including compressor, fan, controls, pump, 
etc.) and, if applicable, by the resistive element(s) shall be recorded 
as Qr.
    The start of the portion of the test during which the standby loss 
coefficient is determined depends upon whether the unit has fully 
recovered from the first draw cluster. If a recovery is occurring at or 
within five minutes of the end of the final draw in the first draw 
cluster, as identified in the applicable draw pattern table in section 
5.5 of this appendix, then the standby period starts when a maximum 
average tank temperature is observed starting five minutes after the end 
of the recovery period that follows that draw. If a recovery does not 
occur at or within five minutes of the end of the final draw in the 
first draw cluster, as identified in the applicable draw pattern table 
in section 5.5 of this appendix, then the standby period starts five 
minutes after the end of that draw. Determine and record the total 
electrical energy and/or fossil fuel consumed from the beginning of the 
test to the start of the standby period, Qsu,0.
    In preparation for determining the energy consumed during standby, 
record the reading given on the electrical energy (watt-hour) meter, the 
gas meter, and/or the scale used to determine oil consumption, as 
appropriate. Record the mean tank temperature at the start of the 
standby period as Tsu,0. At 1-minute intervals, record the 
mean tank temperature and the electric and/or fuel instrument readings 
until the next draw is initiated. Just prior to initiation of the next 
draw, record the mean tank temperature as Tsu,f. If the water 
heater is undergoing recovery when the next draw is initiated, record 
the mean tank temperature Tsu,f at the minute prior to the 
start of the recovery. The time at which this value occurs is the end of 
the standby period. Determine the total electrical energy and/or fossil 
fuel energy consumption from the beginning of the test to this time and 
record as Qsu,f. Record the time interval between the start 
of the standby period and the end of the standby period as 
[tau]stby,1. Record the time during which water is not being 
withdrawn from the water heater during the entire 24-hour period as 
[tau]stby,2.
    In the event that the recovery period continues from the end of the 
last draw of the first draw cluster until the subsequent draw, the 
standby period will start after the end of the first recovery period 
after the last draw of the simulated-use test, when the temperature 
reaches the maximum average tank temperature, though no sooner than five 
minutes after the end of this recovery period. The standby period shall 
last eight hours, so testing will extend beyond the 24-hour duration of 
the simulated-use test. Determine and record the total electrical energy 
and/or fossil fuel consumed from the beginning of the simulated-use test 
to the start of the 8-hour standby period, Qsu,0. In 
preparation for determining the energy consumed during standby, record 
the reading(s) given on the electrical energy (watt-hour) meter, the gas 
meter, and/or the scale used to determine oil consumption, as 
appropriate. Record the mean tank temperature at the start of the 
standby period as Tsu,0. Record the mean tank temperature, 
the ambient temperature, and the electric and/or fuel instrument 
readings until the end of the 8 hour period. Record the mean tank 
temperature at the end of the 8 hour standby period as Tsu,f. 
If the water heater is undergoing recovery at the end of the standby 
period, record the mean tank temperature Tsu,f at the minute 
prior to the start of the recovery, which will mark the end of the 
standby period. Determine the total electrical energy and/or fossil fuel 
energy consumption from the beginning of the test to the end of the 
standby period and record this value as Qsu,f. Record the 
time interval between the start of the standby period and the end of the 
standby period as [tau]stby,1.
    Following the final draw of the prescribed draw pattern and 
subsequent recovery, allow the water heater to remain in the standby 
mode until exactly 24 hours have elapsed since the start of the 
simulated-use test (i.e., since [tau] = 0). During the last hour of the 
simulated-use test, power to the main burner, heating element, or 
compressor shall be disabled. At 24 hours, record the reading given by 
the gas meter, oil meter, and/or the electrical energy meter as 
appropriate. Determine the fossil fuel and/or electrical energy consumed 
during the entire 24-hour simulated-use test and designate the quantity 
as Q.
    5.4.3 Test Sequence for Water Heaters With Rated Storage Volume Less 
Than 2 Gallons.
    Establish normal operation with the discharge water temperature at 
125 [deg]F 5 [deg]F (51.7 [deg]C 2.8 [deg]C) and set the flow rate as determined in 
section 5.2 of this appendix. Prior to commencement of the 24-hour 
simulated-use test, the unit shall remain in an idle state in which 
controls are active but no water is drawn through the unit for a period 
of one hour. With no draw occurring, record the reading given by the gas 
meter and/or the electrical energy meter as appropriate. Begin the 24-
hour simulated-use test by withdrawing the volume specified in Tables 
III.1 through III.4 of section 5.5 of this appendix for the first draw 
at the flow rate specified. Record the time when this first draw is 
initiated and designate it as an elapsed time, [tau], of 0. At the 
elapsed times specified in Tables III.1 through III.4 for a particular 
draw pattern, initiate additional draws, removing

[[Page 388]]

the volume of hot water at the prescribed flow rate specified in Tables 
III.1 through III.4. The maximum allowable deviation from the specified 
volume of water removed for any single draw taken at a nominal flow rate 
less than or equal to 1.7 GPM (6.4 L/min) is 0.1 
gallons (0.4 liters). The maximum allowable 
deviation from the specified volume of water removed for any single draw 
taken at a nominal flow rate of 3 GPM (11.4 L/min) is 0.25 gallons (0.9 liters). The quantity of water drawn 
during the final draw shall be increased or decreased as necessary such 
that the total volume of water withdrawn equals the prescribed daily 
amount for that draw pattern 1.0 gallon (3.8 liters). If this adjustment to the volume drawn in 
the last draw results in no draw taking place, the test is considered 
invalid.
    Measurements of the inlet and outlet water temperatures shall be 
made 5 seconds after the draw is initiated and at every 3-second 
interval thereafter throughout the duration of the draw. Calculate the 
mean of the hot water discharge temperature and the cold water inlet 
temperature for each draw. Record the mass of the withdrawn water or the 
water meter reading, as appropriate, after each draw. At the end of the 
recovery period following the first draw, determine and record the 
fossil fuel and/or electrical energy consumed, Qr. Following 
the final draw and subsequent recovery, allow the water heater to remain 
in the standby mode until exactly 24 hours have elapsed since the start 
of the test (i.e., since [tau] = 0). At 24 hours, record the reading 
given by the gas meter, oil meter, and/or the electrical energy meter, 
as appropriate. Determine the fossil fuel and/or electrical energy 
consumed during the entire 24-hour simulated-use test and designate the 
quantity as Q.
    5.5 Draw Patterns. The draw patterns to be imposed during 24-hour 
simulated-use tests are provided in Tables III.1 through III.4. Subject 
each water heater under test to one of these draw patterns based on its 
first-hour rating or maximum GPM rating, as discussed in section 5.4.1 
of this appendix. Each draw pattern specifies the elapsed time in hours 
and minutes during the 24-hour test when a draw is to commence, the 
total volume of water in gallons (liters) that is to be removed during 
each draw, and the flow rate at which each draw is to be taken, in 
gallons (liters) per minute.

                                   Table III.1--Very-Small-Usage Draw Pattern
----------------------------------------------------------------------------------------------------------------
                                                       Time during test     Volume [gallons    Flow Rate ** [GPM
                      Draw No.                              [hh:mm]              (L)]              (L/min)]
----------------------------------------------------------------------------------------------------------------
1 *.................................................                0:00           2.0 (7.6)             1 (3.8)
2 *.................................................                1:00           1.0 (3.8)             1 (3.8)
3 *.................................................                1:05           0.5 (1.9)             1 (3.8)
4 *.................................................                1:10           0.5 (1.9)             1 (3.8)
5 *.................................................                1:15           0.5 (1.9)             1 (3.8)
6...................................................                8:00           1.0 (3.8)             1 (3.8)
7...................................................                8:15           2.0 (7.6)             1 (3.8)
8...................................................                9:00           1.5 (5.7)             1 (3.8)
9...................................................                9:15           1.0 (3.8)             1 (3.8)
----------------------------------------------------------------------------------------------------------------
                                  Total Volume Drawn Per Day: 10 gallons (38 L)
----------------------------------------------------------------------------------------------------------------
* Denotes draws in first draw cluster.
** Should the water heater have a maximum GPM rating less than 1 GPM (3.8 L/min), then all draws shall be
  implemented at a flow rate equal to the rated maximum GPM.


                                       Table III.2--Low-Usage Draw Pattern
----------------------------------------------------------------------------------------------------------------
                                                       Time during test     Volume [gallons   Flow rate [GPM (L/
                      Draw No.                              [hh:mm]            (liters)]             min)]
----------------------------------------------------------------------------------------------------------------
1 *.................................................                0:00         15.0 (56.8)           1.7 (6.4)
2 *.................................................                0:30           2.0 (7.6)             1 (3.8)
3 *.................................................                1:00           1.0 (3.8)             1 (3.8)
4...................................................               10:30          6.0 (22.7)           1.7 (6.4)
5...................................................               11:30          4.0 (15.1)           1.7 (6.4)
6...................................................               12:00           1.0 (3.8)             1 (3.8)
7...................................................               12:45           1.0 (3.8)             1 (3.8)
8...................................................               12:50           1.0 (3.8)             1 (3.8)
9...................................................               16:15           2.0 (7.6)             1 (3.8)
10..................................................               16:45           2.0 (7.6)           1.7 (6.4)
11..................................................               17:00          3.0 (11.4)           1.7 (6.4)
----------------------------------------------------------------------------------------------------------------
                                 Total Volume Drawn Per Day: 38 gallons (144 L)
----------------------------------------------------------------------------------------------------------------
* Denotes draws in first draw cluster.


[[Page 389]]


                                     Table III.3--Medium-Usage Draw Pattern
----------------------------------------------------------------------------------------------------------------
                                                       Time during test     Volume [gallons   Flow rate [GPM (L/
                      Draw No.                              [hh:mm]            (liters)]             min)]
----------------------------------------------------------------------------------------------------------------
1 *.................................................                0:00         15.0 (56.8)           1.7 (6.4)
2 *.................................................                0:30           2.0 (7.6)             1 (3.8)
3 *.................................................                1:40          9.0 (34.1)           1.7 (6.4)
4...................................................               10:30          9.0 (34.1)           1.7 (6.4)
5...................................................               11:30          5.0 (18.9)           1.7 (6.4)
6...................................................               12:00           1.0 (3.8)             1 (3.8)
7...................................................               12:45           1.0 (3.8)             1 (3.8)
8...................................................               12:50           1.0 (3.8)             1 (3.8)
9...................................................               16:00           1.0 (3.8)             1 (3.8)
10..................................................               16:15           2.0 (7.6)             1 (3.8)
11..................................................               16:45           2.0 (7.6)           1.7 (6.4)
12..................................................               17:00          7.0 (26.5)           1.7 (6.4)
----------------------------------------------------------------------------------------------------------------
                                 Total Volume Drawn Per Day: 55 gallons (208 L)
----------------------------------------------------------------------------------------------------------------
* Denotes draws in first draw cluster.


                                      Table III.4--High-Usage Draw Pattern
----------------------------------------------------------------------------------------------------------------
                                                       Time during test     Volume [gallons   Flow rate [GPM (L/
                      Draw No.                              [hh:mm]            (liters)]             min)]
----------------------------------------------------------------------------------------------------------------
1 *.................................................                0:00          27.0 (102)            3 (11.4)
2 *.................................................                0:30           2.0 (7.6)             1 (3.8)
3 *.................................................                0:40           1.0 (3.8)             1 (3.8)
4 *.................................................                1:40          9.0 (34.1)           1.7 (6.4)
5...................................................               10:30         15.0 (56.8)            3 (11.4)
6...................................................               11:30          5.0 (18.9)           1.7 (6.4)
7...................................................               12:00           1.0 (3.8)             1 (3.8)
8...................................................               12:45           1.0 (3.8)             1 (3.8)
9...................................................               12:50           1.0 (3.8)             1 (3.8)
10..................................................               16:00           2.0 (7.6)             1 (3.8)
11..................................................               16:15           2.0 (7.6)             1 (3.8)
12..................................................               16:30           2.0 (7.6)           1.7 (6.4)
13..................................................               16:45           2.0 (7.6)           1.7 (6.4)
14..................................................               17:00         14.0 (53.0)            3 (11.4)
----------------------------------------------------------------------------------------------------------------
                                 Total Volume Drawn Per Day: 84 gallons (318 L)
----------------------------------------------------------------------------------------------------------------
* Denotes draws in first draw cluster.

                             6. Computations

    6.1 First-Hour Rating Computation. For the case in which the final 
draw is initiated at or prior to one hour from the start of the test, 
the first-hour rating, Fhr, shall be computed using,
[GRAPHIC] [TIFF OMITTED] TR11JY14.067

Where:

n = the number of draws that are completed during the first-hour rating 
          test.
V*i = the volume of water removed during the ith draw of the 
          first-hour rating test, gal (L) or, if the mass of water is 
          being measured,
          [GRAPHIC] [TIFF OMITTED] TR11JY14.068
          

[[Page 390]]


Where:

M*i = the mass of water removed during the ith draw of the 
          first-hour rating test, lb (kg).
[rho] = the water density corresponding to the average outlet 
          temperature measured during the ith draw, (T*del,i), lb/gal 
          (kg/L).

    For the case in which a draw is not in progress at one hour from the 
start of the test and a final draw is imposed at the elapsed time of one 
hour, the first-hour rating shall be calculated using
[GRAPHIC] [TIFF OMITTED] TR11JY14.069

where n and V*i are the same quantities as defined above, and
V*n = the volume of water drawn during the nth (final) draw 
          of the first-hour rating test, gal (L).
T*del,n-1 = the average water outlet temperature measured 
          during the (n-1)th draw of the first-hour rating test, [deg]F 
          ( [deg]C).
T*del,n = the average water outlet temperature measured 
          during the nth (final) draw of the first-hour rating test, 
          [deg]F ( [deg]C).
T*min,n-1 = the minimum water outlet temperature measured 
          during the (n-1)th draw of the first-hour rating test, [deg]F 
          ( [deg]C).
    6.2 Maximum GPM (L/min) Rating Computation. Compute the maximum GPM 
(L/min) rating, Fmax, as:
[GRAPHIC] [TIFF OMITTED] TR11JY14.070

Where:

M10m = the mass of water collected during the 10-minute test, 
          lb (kg).

[[Page 391]]

Tdel = the average delivery temperature, [deg]F ( [deg]C).
Tin = the average inlet temperature, [deg]F ( [deg]C).
[rho] = the density of water at the average delivery temperature, lb/gal 
          (kg/L).
    If a water meter is used, the maximum GPM (L/min) rating is computed 
as:
[GRAPHIC] [TIFF OMITTED] TR11JY14.071

Where:

V10m = the volume of water measured during the 10-minute 
          test, gal (L).
Tdel = as defined in this section.
Tin = as defined in this section.

    6.3 Computations for Water Heaters with a Rated Storage Volume 
Greater Than or Equal to 2 Gallons.
    6.3.1 Storage Tank Capacity. The storage tank capacity, 
Vst, is computed as follows:
[GRAPHIC] [TIFF OMITTED] TR11JY14.072

Where:

Vst = the storage capacity of the water heater, gal (L)
Wf = the weight of the storage tank when completely filled 
          with water, lb (kg)
Wt = the (tare) weight of the storage tank when completely 
          empty, lb (kg)
[rho] = the density of water used to fill the tank measured at the 
          temperature of the water, lb/gal (kg/L)

    6.3.2 Recovery Efficiency. The recovery efficiency for gas, oil, and 
heat pump storage-type water heaters, [eta]r, is computed as:
[GRAPHIC] [TIFF OMITTED] TR11JY14.073

Where:

M1 = total mass removed from the start of the 24-hour 
          simulated-use test to the end of the first recovery period, lb 
          (kg), or, if the volume of water is being measured,
M1 = V1[rho]1

Where:

V1 = total volume removed from the start of the 24-hour 
          simulated-use test to the end of the first recovery period, 
          gal (L).
[rho]1 = density of the water at the water temperature 
          measured at the point where the flow volume is measured, lb/
          gal (kg/L).
Cp1 = specific heat of the withdrawn water evaluated at 
          (Tdel,1 + Tin,1)/2, Btu/(lb[middot] 
          [deg]F) (kJ/(kg[middot] [deg]C))
Tdel,1 = average water outlet temperature measured during the 
          draws from the start of the 24-hour simulated-use test to the 
          end of the first recovery period, [deg]F ( [deg]C).
Tin,1 = average water inlet temperature measured during the 
          draws from the start of the 24-hour simulated-use test to the 
          end of the first recovery period, [deg]F ( [deg]C).

[[Page 392]]

Vst = as defined in section 6.3.1.
[rho]2 = density of stored hot water evaluated at 
          (Tmax,1 + To)/2, lb/gal (kg/L).
Cp2 = specific heat of stored hot water evaluated at 
          (Tmax,1 + To)/2, Btu/(lb[middot] [deg]F) 
          (kJ/(kg[middot] [deg]C).
Tmax,1 = maximum mean tank temperature recorded after cut-out 
          following the first recovery of the 24-hour simulated use 
          test, [deg]F ( [deg]C).
To = maximum mean tank temperature recorded prior to the 
          first draw of the 24-hour simulated-use test, [deg]F ( 
          [deg]C).
Qr = the total energy used by the water heater between cut-
          out prior to the first draw and cut-out following the first 
          recovery period, including auxiliary energy such as pilot 
          lights, pumps, fans, etc., Btu (kJ). (Electrical auxiliary 
          energy shall be converted to thermal energy using the 
          following conversion: 1 kWh = 3412 Btu).

    The recovery efficiency for electric water heaters with immersed 
heating elements is assumed to be 98 percent.
    6.3.3 Hourly Standby Losses. The energy consumed as part of the 
standby loss test of the 24-hour simulated-use test, Qstby, 
is computed as:

Qstby = Qsu,f - Qsu,o

Where:

    Qsu,0 = cumulative energy consumption of the water heater 
from the start of the 24-hour simulated-use test to the time at which 
the maximum mean tank temperature is attained starting five minutes 
after the recovery following the end of the first draw cluster, Btu 
(kJ).
    Qsu,f = cumulative energy consumption of the water heater 
from the start of the 24-hour simulated-use test to the minute prior to 
the start of the draw following the end of the first draw cluster or the 
minute prior to a recovery occurring at the start of the draw following 
the end of the first draw cluster, Btu (kJ).

    The hourly standby energy losses are computed as:
    [GRAPHIC] [TIFF OMITTED] TR11JY14.075
    
Where:

Qhr = the hourly standby energy losses of the water heater, 
          Btu/h (kJ/h).
Vst = as defined in section 6.3.1 of this appendix.
[rho] = density of stored hot water, (Tsu,f + 
          Tsu,0)/2, lb/gal (kg/L).
Cp = specific heat of the stored water, (Tsu,f + 
          Tsu,0)/2, Btu/(lb[middot]F), (kJ/(kg[middot]K))
Tsu,f = the mean tank temperature observed at the minute 
          prior to the start of the draw following the first draw 
          cluster or the minute prior to a recovery occurring at the 
          start of the draw following the end of the first draw cluster, 
          [deg]F ( [deg]C).
Tsu,0 = the maximum mean tank temperature observed starting 
          five minutes after the first recovery following the final draw 
          of the first draw cluster, [deg]F ( [deg]C).
[eta]r = as defined in section 6.3.2 of this appendix.
[tau]stby,1 = elapsed time between the time at which the 
          maximum mean tank temperature is observed starting five 
          minutes after recovery from the first draw cluster and the 
          minute prior to the start of the first draw following the end 
          of the first draw cluster of the 24-hour simulated-use test or 
          the minute prior to a recovery occurring at the start of the 
          draw following the end of the first draw cluster, h.

    The standby heat loss coefficient for the tank is computed as:
    [GRAPHIC] [TIFF OMITTED] TR11JY14.076
    
Where:

UA = standby heat loss coefficient of the storage tank, Btu/(h[middot] 
          [deg]F), (kJ/(h[middot] [deg]C).
Tt,stby,1 = overall average storage tank temperature between 
          the time when the maximum mean tank temperature is observed 
          starting five minutes after cut-out following the first draw 
          cluster and the minute prior to commencement of the next draw 
          following the first draw cluster of the 24-hour simulated-use 
          test or the minute prior to a recovery occurring at the start 
          of the draw following the end of the first draw cluster, 
          [deg]F ( [deg]C).
Ta,stby,1 = overall average ambient temperature between the 
          time when the maximum mean tank temperature is observed 
          starting five minutes after cut-out following the first draw 
          cluster and the minute prior to commencement of the next draw 
          following the first draw cluster of the 24-hour simulated-use 
          test

[[Page 393]]

          or the minute prior to a recovery occurring at the start of 
          the draw following the end of the first draw cluster, [deg]F ( 
          [deg]C).
    6.3.4 Daily Water Heating Energy Consumption. The daily water 
heating energy consumption, Qd, is computed as:
[GRAPHIC] [TIFF OMITTED] TR11JY14.077

Where:

Q = Qf + Qe = total energy used by the water 
          heater during the 24-hour simulated-use test, including 
          auxiliary energy such as pilot lights, pumps, fans, etc., Btu 
          (kJ). (Electrical energy shall be converted to thermal energy 
          using the following conversion: 1kWh = 3412 Btu.)
Qf = total fossil fuel energy used by the water heater during 
          the 24-hour simulated-use test, Btu (kJ).
Qe = total electrical energy used during the 24-hour 
          simulated-use test, Btu (kJ).
Vst = as defined in section 6.3.1 of this appendix.
[rho] = density of the stored hot water, evaluated at (T24 + 
          T0)/2, lb/gal (kg/L)
Cp = specific heat of the stored water, evaluated at 
          (T24 + T0)/2, Btu/(lb[middot]F), (kJ/
          (kg[middot]K)).
T24 = mean tank temperature at the end of the 24-hour 
          simulated-use test, [deg]F ( [deg]C).
T0 = mean tank temperature at the beginning of the 24-hour 
          simulated-use test, recorded one minute before the first draw 
          is initiated, [deg]F ( [deg]C).
[eta]r = as defined in section 6.3.2 of this appendix.

    6.3.5 Adjusted Daily Water Heating Energy Consumption. The adjusted 
daily water heating energy consumption, Qda, takes into 
account that the ambient temperature may differ from the nominal value 
of 67.5 [deg]F (19.7 [deg]C) due to the allowable variation in 
surrounding ambient temperature of 65 [deg]F (18.3 [deg]C) to 70 [deg]C 
(21.1 [deg]C). The adjusted daily water heating energy consumption is 
computed as:
[GRAPHIC] [TIFF OMITTED] TR11JY14.078

Where:

Qda = the adjusted daily water heating energy consumption, 
          Btu (kJ).
Qd = as defined in section 6.3.4 of this appendix.
Ta,stby,2 = the average ambient temperature during the total 
          standby portion, [tau]stby,2, of the 24-hour 
          simulated-use test, [deg]F ( [deg]C).
UA = as defined in section 6.3.3 of this appendix.
[tau]stby,2 = the number of hours during the 24-hour 
          simulated-use test when water is not being withdrawn from the 
          water heater.

    A modification is also needed to take into account that the 
temperature difference between the outlet water temperature and supply 
water temperature may not be equivalent to the nominal value of 67 
[deg]F (125 [deg]F-58 [deg]F) or 37.3 [deg]C (51.7 [deg]C-14.4 [deg]C). 
The following equations adjust the experimental data to a nominal 67 
[deg]F(37.3 [deg]C) temperature rise.
    The energy used to heat water, Btu/day (kJ/day), may be computed as:

[[Page 394]]

[GRAPHIC] [TIFF OMITTED] TR11JY14.079

Where:

N = total number of draws in the draw pattern.
Mi = the mass withdrawn for the ith draw (i = 1 to N), lb 
          (kg)
Cpi = the specific heat of the water of the ith draw 
          evaluated at (Tdel,i + Tin,i)/2, Btu/
          (lb[middot] [deg]F) (kJ/(kg[middot] [deg]C)).
Tdel,i = the average water outlet temperature measured during 
          the ith draw (i = 1 to N), [deg]F ( [deg]C).
Tin,i = the average water inlet temperature measured during 
          the ith draw (i = 1 to N), [deg]F ( [deg]C).
[eta]r = as defined in section 6.3.2 of this appendix.

    The energy required to heat the same quantity of water over a 67 
[deg]F (37.3 [deg]C) temperature rise, Btu/day (kJ/day), is:
[GRAPHIC] [TIFF OMITTED] TR11JY14.080

    The difference between these two values is:

QHWD = QHW,67 [deg]F - QHW
or QHWD = QHW,37.3 [deg]C - QHW

This difference (QHWD) must be added to the adjusted daily 
water heating energy consumption value. Thus, the daily energy 
consumption value which takes into account that the ambient temperature 
may not be 67.5 [deg]F (19.7 [deg]C) and that the temperature rise 
across the storage tank may not be 67 [deg]F (37.3 [deg]C) is:

Qdm = Qda + QHWD

    6.3.6 Uniform Energy Factor. The uniform energy factor, UEF, is 
computed as:
[GRAPHIC] [TIFF OMITTED] TR11JY14.082


[[Page 395]]


Where:

N = total number of draws in the draw pattern
Qdm = the modified daily water heating energy consumption as 
          computed in accordance with section 6.3.5 of this appendix, 
          Btu (kJ)
Mi = the mass withdrawn for the ith draw (i = 1 to N), lb 
          (kg)
Cpi = the specific heat of the water of the ith draw, 
          evaluated at (125 [deg]F + 58 [deg]F)/2 = 91.5 [deg]F ((51.7 
          [deg]C + 14.4 [deg]C)/2 = 33 [deg]C), Btu/(lb[middot] [deg]F) 
          (kJ/(kg[middot] [deg]C)).

    6.3.7 Annual Energy Consumption. The annual energy consumption for 
water heaters with rated storage volumes greater than or equal to 2 
gallons is computed as:
[GRAPHIC] [TIFF OMITTED] TR11JY14.083

Where:

UEF = the uniform energy factor as computed in accordance with section 
          6.3.6 of this appendix
365 = the number of days in a year
V = the volume of hot water drawn during the applicable draw pattern, 
          gallons
= 10 for the very-small-usage draw pattern
= 38 for the low-usage draw pattern
= 55 for the medium-usage draw pattern
= 84 for high-usage draw pattern
[rho] = 8.24 lbm/gallon, the density of water at 125 [deg]F
CP = 1.00 Btu/lbm [deg]F, the specific heat of 
          water at 91.5 [deg]F
67 = the nominal temperature difference between inlet and outlet water

    6.3.8 Annual Electrical Energy Consumption. The annual electrical 
energy consumption in kilowatt-hours for water heaters with rated 
storage volumes greater than or equal to 2 gallons, 
Eannual,e, is computed as:

Eannual,e = Eannual*(Qe/Q)/3412

Where:

Eannual = the annual energy consumption as determined in 
          accordance with section 6.3.7, Btu (kJ)
Qe = the daily electrical energy consumption as defined in 
          section 6.3.4 of this appendix, Btu (kJ).
Q = total energy used by the water heater during the 24-hour simulated-
          use test in accordance with section 6.3.4 of this appendix, 
          Btu (kJ)
3412 = conversion factor from Btu to kWh

    6.3.9 Annual Fossil Fuel Energy Consumption. The annual fossil fuel 
energy consumption for water heaters with rated storage volumes greater 
than or equal to 2 gallons, Eannual,f, is computed as:

Eannual,f = Eannual - (Eannual,e x 
          3412)

Where:

Eannual = the annual energy consumption as determined in 
          accordance with section 6.3.7 of this appendix, Btu (kJ)
Eannual,e = the annual electrical energy consumption as 
          determined in accordance with section 6.3.8 of this appendix, 
          kWh
3412 = conversion factor from kWh to Btu
    6.4 Computations for Water Heaters With Rated Storage Volume Less 
Than 2 Gallons.
    6.4.1 Recovery Efficiency. The recovery efficiency, [eta]r, is 
computed as:
[GRAPHIC] [TIFF OMITTED] TR11JY14.084

Where:

M1 = total mass removed during the first draw of the 24-hour 
          simulated-use test, lb (kg), or, if the volume of water is 
          being measured, M1 = V1 [middot] [rho]
Where:

V1 = total volume removed during the first draw of the 24-
          hour simulated-use test, gal (L).
[rho] = density of the water at the water temperature measured at the 
          point where the flow volume is measured, lb/gal(kg/L).
Cp1 = specific heat of the withdrawn water, 
          (Tdel,1 [mnplus] Tin,1)/2, Btu/(lb 
          [middot] [deg]F) (kJ/(kg [middot] [deg]C)).
Tdel,1 = average water outlet temperature measured during the 
          first draw of the 24-hour simulated-use test, [deg]F ( 
          [deg]C).
Tin,1 = average water inlet temperature measured during the 
          first draw of the 24-hour simulated-use test, [deg]F ( 
          [deg]C).
Qr = the total energy used by the water heater between cut-
          out prior to the first draw

[[Page 396]]

          and cut-out following the first draw, including auxiliary 
          energy such as pilot lights, pumps, fans, etc., Btu (kJ). 
          (Electrical auxiliary energy shall be converted to thermal 
          energy using the following conversion: 1 kWh = 3412 Btu.)
    6.4.2 Daily Water Heating Energy Consumption. The daily water 
heating energy consumption, Qd, is computed as:

Qd = Q

Where:

Q = Qf + Qe = the energy used by the water heater 
          during the 24-hour simulated-use test.
Qf = total fossil fuel energy used by the water heater during 
          the 24-hour simulated-use test, Btu (kJ).
Qe = total electrical energy used during the 24-hour 
          simulated-use test, Btu (kJ).

    A modification is needed to take into account that the temperature 
difference between the outlet water temperature and supply water 
temperature may not be equivalent to the nominal value of 67 [deg]F (125 
[deg]F-58 [deg]F) or 37.3 [deg]C (51.7 [deg]C-14.4 [deg]C). The 
following equations adjust the experimental data to a nominal 67 [deg]F 
(37.3 [deg]C) temperature rise.
    The energy used to heat water may be computed as:
    [GRAPHIC] [TIFF OMITTED] TR11JY14.085
    
Where:

N = total number of draws in the draw pattern
Mi = the mass withdrawn for the ith draw(i = 1 to N), lb (kg)
Cpi = the specific heat of the water of the ith draw 
          evaluated at (Tdel,i + Tin,i)/2, Btu/(lb 
          [middot] [deg]F) (kJ/(kg [middot] [deg]C)).
Tdel,i = the average water outlet temperature measured during 
          the ith draw (i = 1 to N), [deg]F ( [deg]C).
Tin,i = the average water inlet temperature measured during 
          the ith draw (i = 1 to N), [deg]F ( [deg]C).
[eta]r = as defined in section 6.4.1 of this appendix.

    The energy required to heat the same quantity of water over a 67 
[deg]F (37.3 [deg]C) temperature rise is:
[GRAPHIC] [TIFF OMITTED] TR11JY14.086

Where:

N = total number of draws in the draw pattern
Mi = the mass withdrawn during the ith draw, lb (kg)
Cpi = the specific heat of water of the ith draw, Btu/(lb 
          [middot] [deg]F) (kJ/(kg [middot] [deg]C))
[eta]r = as defined in section 6.4.1 of this appendix.

    The difference between these two values is:


[[Page 397]]


[GRAPHIC] [TIFF OMITTED] TR11JY14.095

This difference (QHWD) must be added to the daily water 
heating energy consumption value. Thus, the daily energy consumption 
value, which takes into account that the temperature rise across the 
water heater may not be 67 [deg]F (37.3 [deg]C), is:

Qdm = Qd + QHWD

    6.4.3 Uniform Energy Factor. The uniform energy factor, UEF, is 
computed as:
[GRAPHIC] [TIFF OMITTED] TR11JY14.087

Where:

N = total number of draws in the draw pattern
Qdm = the modified daily water heating energy consumption as 
          computed in accordance with section 6.4.2 of this appendix, 
          Btu (kJ)
Mi = the mass withdrawn for the ith draw(i = 1 to N), lb (kg)
Cpi = the specific heat of the water at the ith draw, 
          evaluated at (125 [deg]F + 58 [deg]F)/2 = 91.5 [deg]F ((51.7 
          [deg]C + 14.4 [deg]C)/2 = 33.1 [deg]C), Btu/(lb [middot] 
          [deg]F) (kJ/(kg [middot] [deg]C)).
    6.4.4 Annual Energy Consumption. The annual energy consumption for 
water heaters with rated storage volumes less than 2 gallons, 
Eannual, is computed as:
[GRAPHIC] [TIFF OMITTED] TR11JY14.088

Where:

UEF = the uniform energy factor as computed in accordance with section 
          6.4.3 of this appendix
365 = the number of days in a year.
V = the volume of hot water drawn during the applicable draw pattern, 
          gallons
= 10 for the very-small-usage draw pattern
= 38 for the low-usage draw pattern
= 55 for the medium-usage draw pattern
= 84 for high-usage draw pattern
[rho] = 8.24 lbm/gallon, the density of water at 125 [deg]F
CP = 1.00 Btu/lbm [deg]F, the specific heat of 
          water at 91.5 [deg]F
67 = the nominal temperature difference between inlet and outlet water

    6.4.5 Annual Electrical Energy Consumption. The annual electrical 
energy consumption in kilowatt-hours for water heaters with rated 
storage volumes less than 2 gallons, Eannual, e, is computed 
as:

Eannual,e = Eannual*(Qe/Q)/3412


[[Page 398]]


Where:

Qe = the daily electrical energy consumption as defined in 
          section 6.4.2 of this appendix, Btu (kJ)
Eannual = the annual energy consumption as determined in 
          accordance with section 6.4.4 of this appendix, Btu (kJ)
Q = total energy used by the water heater during the 24-hour simulated-
          use test in accordance with section 6.4.2 of this appendix, 
          Btu (kJ)
Qdm = the modified daily water heating energy consumption as 
          computed in accordance with section 6.4.2 of this appendix, 
          Btu (kJ)
3412 = conversion factor from Btu to kWh

    6.4.6 Annual Fossil Fuel Energy Consumption. The annual fossil fuel 
energy consumption for water heaters with rated storage volumes less 
than 2 gallons, Eannual,f, is computed as:

Eannual,f = Eannual-(Eannual,e x 3412)

Where:

Eannual,e = the annual electrical energy consumption as 
          defined in section 6.4.5 of this appendix, kWh.
Eannual = the annual energy consumption as defined in section 
          6.4.4 of this appendix, Btu (kJ)
3412 = conversion factor from kWh to Btu
[GRAPHIC] [TIFF OMITTED] TR11JY14.089


[[Page 399]]


[GRAPHIC] [TIFF OMITTED] TR11JY14.090

[GRAPHIC] [TIFF OMITTED] TR11JY14.091


[[Page 400]]


[GRAPHIC] [TIFF OMITTED] TR11JY14.092


[[Page 401]]


[GRAPHIC] [TIFF OMITTED] TR11JY14.093


[[Page 402]]


[GRAPHIC] [TIFF OMITTED] TR11JY14.094


[79 FR 40567, July 11, 2014]



   Sec. Appendix F to Subpart B of Part 430--Uniform Test Method for 
        Measuring the Energy Consumption of Room Air Conditioners

    Note: Manufacturers are not required to use the test procedures and 
calculations that refer to standby mode and off mode energy consumption, 
(specifically, sections 2.2, 3.2, 4.2, and 5.3 of this appendix F) until 
the compliance date of any amended energy conservation standards for 
room air conditioners at 10 CFR 430.32(b).
    1. Definitions.
    1.1 ``Active mode'' means a mode in which the room air conditioner 
is connected to a mains power source, has been activated and

[[Page 403]]

is performing the main function of cooling or heating the conditioned 
space, or circulating air through activation of its fan or blower, with 
or without energizing active air-cleaning components or devices such as 
ultraviolet (UV) radiation, electrostatic filters, ozone generators, or 
other air-cleaning devices.
    1.2 ``ANSI/AHAM RAC-1'' means the test standard published jointly by 
the American National Standards Institute and the Association of Home 
Appliance Manufacturers, titled ``Room Air Conditioners,'' Standard RAC-
1-2008 (incorporated by reference; see Sec.  430.3).
    1.3 ``ANSI/ASHRAE 16'' means the test standard published jointly by 
the American National Standards Institute and the American Society of 
Heating, Refrigerating, and Air-Conditioning Engineers titled ``Method 
of Testing for Rating Room Air Conditioners and Packaged Terminal Air 
Conditioners,'' Standard 16-1983 (RA 2009) (incorporated by reference; 
see Sec.  430.3).
    1.4 ``IEC 62301'' means the test standard published by the 
International Electrotechnical Commission, (``IEC''), titled ``Household 
electrical appliances--Measurement of standby power,'' Publication 62301 
(first edition June 2005), (incorporated by reference; see Sec.  430.3).
    1.5 ``Inactive mode'' means a standby mode that facilitates the 
activation of active mode by remote switch (including remote control) or 
internal sensor or which provides continuous status display.
    1.6 ``Off mode'' means a mode in which a room air conditioner is 
connected to a mains power source and is not providing any active or 
standby mode function and where the mode may persist for an indefinite 
time. An indicator that only shows the user that the product is in the 
off position is included within the clasification of an off mode.
    1.7 ``Standby mode'' means any product modes where the where the 
energy using product is connected to a mains power source and offers one 
or more of the following user oriented or protective functions which may 
persist for an indefinite time:
    (a) To facilitate the activation of other modes (including 
activation or deactivation of active mode) by remote switch (including 
remote control), internal sensor, or timer.
    (b) Continuous functions, including information or status displays 
(including clocks) or sensor-based functions. A timer is a continuous 
clock function (which may or may not be associated with a display) that 
provides regular scheduled tasks (e.g., switching) and that operates on 
a continuous basis.
    2. Test methods.
    2.1 Cooling. The test method for testing room air conditioners in 
cooling mode shall consist of application of the methods and conditions 
in ANSI/AHAM RAC-1 sections 4, 5, 6.1, and 6.5 (incorporated by 
reference; see Sec.  430.3), and in ANSI/ASHRAE 16 (incorporated by 
reference; see Sec.  430.3).
    2.2 Standby and off modes. The method for testing room air 
conditioners in standby and off modes shall consist of application of 
the methods and conditions in IEC 62301 (incorporated by reference; see 
Sec.  430.3), as modified by the requirements of this standard. The 
testing may be conducted in test facilities used for testing cooling 
performance. If testing is not conducted in such a facility, the test 
facility shall comply with IEC 62301 section 4.2.
    3. Test conditions.
    3.1 Cooling mode. Establish the test conditions described in 
sections 4 and 5 of ANSI/AHAM RAC-1 (incorporated by reference; see 
Sec.  430.3) and in accordance with ANSI/ASHRAE 16 (incorporated by 
reference; see Sec.  430.3).
    3.2 Standby and off modes.
    3.2.1 Test room conditions. Maintain the indoor test conditions as 
required by section 4.2 of IEC 62301 (incorporated by reference; see 
Sec.  430.3). If the standby and off mode testing is conducted in a 
facility that is also used for testing cooling performance, maintain the 
outdoor test conditions either as required by section 4.2 of IEC 62301 
or as described in section 3.1. If the unit is equipped with an outdoor 
air ventilation damper, close this damper during testing.
    3.2.2 Power supply. Maintain power supply conditions specified in 
section 4.3 of IEC 62301 (incorporated by reference; see Sec.  430.3). 
Use room air conditioner nameplate voltage and frequency as the basis 
for power supply conditions. Maintain power supply voltage waveform 
according to the requirements of section 4.4 of IEC 62301.
    3.2.3 Watt meter. The watt meter used to measure standby mode and 
off mode power consumption of the room air conditioner shall have the 
resolution specified in section 4, paragraph 4.5 of IEC 62301 
(incorporated by reference; see Sec.  430.3). The watt meter shall also 
be able to record a ``true'' average power specified in section 5, 
paragraph 5.3.2(a) of IEC 62301.
    4. Measurements.
    4.1 Cooling mode. Measure the quantities delineated in section 5 of 
ANSI/AHAM RAC-1 (incorporated by reference; see Sec.  430.3).
    4.2 Standby and off modes. Establish the testing conditions set 
forth in section 3.2. Prior to the initiation of the test measurements, 
the room air conditioner shall also be installed in accordance with 
section 5, paragraph 5.2 of IEC 62301 (incorporated by reference; see 
Sec.  430.3). For room air conditioners that drop from a higher power 
state to a lower power state as discussed in section 5, paragraph 5.1, 
note 1 of IEC 62301, allow sufficient time for the room air conditioner 
to reach the lower power state before proceeding with the test 
measurement. Follow the test procedure specified in section 5,

[[Page 404]]

paragraph 5.3 of IEC 62301 for testing in each possible mode as 
described in 4.2.1 and 4.2.2, except allow the product to stabilize for 
5 to 10 minutes and use an energy use measurement period of 5 minutes. 
For units in which power varies over a cycle, as described in section 5, 
paragraph 5.3.2 of IEC 62301, use the average power approach in 
paragraph 5.3.2(a).
    4.2.1 If a room air conditioner has an inactive mode, as defined in 
1.5, measure and record the average inactive mode power of the room air 
conditioner, PIA, in watts.
    4.2.2 If a room air conditioner has an off mode, as defined in 1.6, 
measure and record the average off mode power of the room air 
conditioner, POFF, in watts.
    5. Calculations.
    5.1 Calculate the cooling capacity (expressed in Btu/hr) as required 
in section 6.1 of ANSI/AHAM RAC-1 (incorporated by reference; see Sec.  
430.3) and in accordance with ANSI/ASHRAE 16 (incorporated by reference; 
see Sec.  430.3).
    5.2 Determine the electrical power input (expressed in watts) as 
required by section 6.5 of ANSI/AHAM RAC-1 (incorporated by reference; 
see Sec.  430.3) and in accordance with ANSI/ASHRAE 16 (incorporated by 
reference; see Sec.  430.3).
    5.3 Standby mode and off mode annual energy consumption. Calculate 
the standby mode and off mode annual energy consumption for room air 
conditioners, ETSO, expressed in kilowatt-hours per year, 
according to the following:

ETSO = [(PIA x SIA) + (POFF 
x SOFF)] x K

Where:

PIA = room air conditioner inactive mode power, in watts, as 
          measured in section 4.2.1
POFF = room air conditioner off mode power, in watts, as 
          measured in section 4.2.2.
If the room air conditioner has both inactive mode and off mode, 
          SIA and SOFF both equal 5,115 / 2 = 
          2,557.5, where 5,115 is the total inactive and off mode annual 
          hours;
If the room air conditioner has an inactive mode but no off mode, the 
          inactive mode annual hours, SIA, is equal to 5,115 
          and the off mode annual hours, SOFF, is equal to 0;
If the room air conditioner has an off mode but no inactive mode, 
          SIA is equal to 0 and SOFF is equal to 
          STOT;
K = 0.001 kWh/Wh conversion factor for watt-hours to kilowatt-hours.

[76 FR 1035, Jan. 6, 2011]



   Sec. Appendix G to Subpart B of Part 430--Uniform Test Method for 
   Measuring the Energy Consumption of Unvented Home Heating Equipment

                         1. Testing conditions.

    1.1 Installation.
    1.1.1 Electric heater. Install heater according to manufacturer's 
instructions. Heaters shall be connected to an electrical supply circuit 
of nameplate voltage with a wattmeter installed in the circuit. The 
wattmeter shall have a maximum error not greater than one percent.
    1.1.2 Unvented gas heater. Install heater according to 
manufacturer's instructions. Heaters shall be connected to a gas supply 
line with a gas displacement meter installed between the supply line and 
the heater according to manufacturer's specifications. The gas 
displacement meter shall have a maximum error not greater than one 
percent. Gas heaters with electrical auxiliaries shall be connected to 
an electrical supply circuit of nameplate voltage with a wattmeter 
installed in the circuit. The wattmeter shall have a maximum error not 
greater than one percent.
    1.1.3 Unvented oil heater. Install heater according to 
manufacturer's instructions. Oil heaters with electric auxiliaries shall 
be connected to an electrical supply circuit of nameplate voltage with a 
wattmeter installed in the circuit. The wattmeter shall have a maximum 
error not greater than one percent.
    1.2 Temperature regulating controls. All temperature regulating 
controls shall be shorted out of the circuit or adjusted so that they 
will not operate during the test period.
    1.3 Fan controls. All fan controls shall be set at the highest fan 
speed setting.
    1.4 Energy supply.
    1.4.1 Electrical supply. Supply power to the heater within one 
percent of the nameplate voltage.
    1.4.2 Natural gas supply. For an unvented gas heater utilizing 
natural gas, maintain the gas supply to the heater with a normal inlet 
test pressure immediately ahead of all controls at 7 to 10 inches of 
water column. The regulator outlet pressure at normal supply test 
pressure shall be approximately that recommended by the manufacturer. 
The natural gas supplied should have a higher heating value within 
5 percent of 1,025 Btu's per standard cubic foot. 
Determine the higher heating value, in Btu's per standard cubic foot, 
for the natural gas to be used in the test, with an error no greater 
than one percent. Alternatively, the test can be conducted using 
``bottled'' natural gas of a higher heating value within 5 percent of 1,025 Btu's per standard cubic foot as long 
as the actual higher heating value of the bottled

[[Page 405]]

natural gas has been determined with an error no greater than one 
percent as certified by the supplier.
    1.4.3 Propane gas supply. For an unvented gas heater utilizing 
propane, maintain the gas supply to the heater with a normal inlet test 
pressure immediately ahead of all controls at 11 to 13 inches of water 
column. The regulator outlet pressure at normal supply test pressure 
shall be that recommended by the manufacturer. The propane supplied 
should have a higher heating value of within5 
percent of 2,500 Btu's per standard cubic foot. Determine the higher 
heating value in Btu's per standard foot, for the propane to be used in 
the test, with an error no greater than one percent. Alternatively, the 
test can be conducted using ``bottled'' propane of a higher heating 
value within 5 percent of 2,500 Btu's per standard 
cubic foot as long as the actual higher heating value of the bottled 
propane has been determined with an error no greater than one percent as 
certified by the supplier.
    1.4.4 Oil supply. For an unvented oil heater utilizing kerosene, 
determine the higher heating value in Btu's per gallon with an error no 
greater than one percent. Alternatively, the test can be conducted using 
a tested fuel of a higher heating value within 5 
percent of 137,400 Btu's per gallon as long as the actual higher heating 
value of the tested fuel has been determined with an error no greater 
than one percent as certified by the supplier.
    1.5 Energy flow instrumentation. Install one or more energy flow 
instruments which measure, as appropriate and with an error no greater 
than one percent, the quantity of electrical energy, natural gas, 
propane gas, or oil supplied to the heater.

                      2. Testing and measurements.

    2.1 Electric power measurement. Establish the test conditions set 
forth in section 1 of this appendix. Allow an electric heater to warm up 
for at least five minutes before recording the maximum electric power 
measurement from the wattmeter. Record the maximum electric power 
(PE) expressed in kilowatts.
    Allow the auxiliary electrical system of a forced air unvented gas, 
propane, or oil heater to operate for at least five minutes before 
recording the maximum auxiliary electric power measurement from the 
wattmeter. Record the maximum auxiliary electric power (PA) 
expressed in kilowatts.
    2.2 Natural gas, propane, and oil measurement. Establish the test 
conditions as set forth in section 1 of this appendix. A natural gas, 
propane, or oil heater shall be operated for one hour. Using either the 
nameplate rating or the energy flow instrumentation set forth in section 
1.5 of this appendix and the fuel supply rating set forth in sections 
1.4.2, 1.4.3, or 1.4.4 of this appendix, as appropriate, determine the 
maximum fuel input (PF) of the heater under test in Btu's per 
hour. The energy flow instrumentation shall measure the maximum fuel 
input with an error no greater than one percent.
    2.3 Pilot light measurement. Except as provided in section 2.3.1 of 
this appendix, measure the energy input rate to the pilot light 
(Qp), with an error no greater than 3 percent, for unvented 
heaters so equipped.
    2.3.1 The measurement of Qp is not required for unvented 
heaters where the pilot light is designed to be turned off by the user 
when the heater is not in use (i.e., for units where turning the control 
to the OFF position will shut off the gas supply to the burner(s) and 
the pilot light). This provision applies only if an instruction to turn 
off the unit is provided on the heater near the gas control value (e.g., 
by label) by the manufacturer.
    2.4 Electrical standby mode power measurement. Except as provided in 
section 2.4.1 of this appendix, for all electric heaters and unvented 
heaters with electrical auxiliaries, measure the standby power 
(PW,SB) in accordance with the procedures in IEC 62301 Second 
Edition (incorporated by reference; see Sec.  430.3), with all 
electrical auxiliaries not activated. Voltage shall be as specified in 
section 1.4.1 Electrical supply of this appendix. The recorded standby 
power (PW,SB) shall be rounded to the second decimal place, 
and for loads greater than or equal to 10W, at least three significant 
figures shall be reported.
    2.4.1 The measurement of PW,SB is not required for 
heaters designed to be turned off by the user when the heater is not in 
use (i.e., for units where turning the control to the OFF position will 
shut off the electrical supply to the heater). This provision applies 
only if an instruction to turn off the unit is provided on the heater 
(e.g., by label) by the manufacturer.

                            3. Calculations.

    3.1 Annual energy consumption for primary electric heaters. For 
primary electric heaters, calculate the annual energy consumption 
(EE) expressed in kilowatt-hours per year and defined as:

EE = 2080(0.77)DHR

where:

2080 = national average annual heating load hours
0.77 = adjustment factor
DHR = design heating requirement and is equal to PE /1.2 in 
          kilowatts.
PE = as defined in 2.1 of this appendix
1.2 = typical oversizing factor for primary electric heaters

    3.2 Annual energy consumption for primary electric heaters by 
geographic region of the United States. For primary electric heaters, 
calculate the annual energy consumption by geographic region of the 
United States (ER)

[[Page 406]]

expressed in kilowatt-hours per year and defined as:

ER = HLH(0.77) (DHR)

where:

HLH = heating load hours for a specific region determined from Figure 1 
          of this appendix in hours
0.77 = as defined in 3.1 of this appendix
DHR = as defined in 3.1 of this appendix

    3.3 Rated output for electric heaters. Calculate the rated output 
(Qout) for electric heaters, expressed in Btu's per hour, and 
defined as:

Qout = PE (3,412 Btu/kWh)

where:

PE = as defined in 2.1 of this appendix

    3.4 Rated output for unvented heaters using either natural gas, 
propane, or oil. For unvented heaters using either natural gas, propane, 
or oil equipped without auxiliary electrical systems, the rated output 
(Qout), expressed in Btu's per hour, is equal to 
PF, as determined in section 2.2 of this appendix.
    For unvented heaters using either natural gas, propane, or oil 
equipped with auxiliary electrical systems, calculate the rated output 
(Qout), expressed in Btu's per hour, and defined as:

Qout = PF + PA (3,412 Btu/kWh)

where:

PF = as defined in 2.2 of this appendix in Btu/hr
PA = as defined in 2.1 of this appendix in Btu/hr

[[Page 407]]

[GRAPHIC] [TIFF OMITTED] TC04OC91.002


(Energy Policy and Conservation Act, Pub. L. 94-163, as amended by Pub. 
L. 94-385; Federal Energy Administration Act of 1974, Pub. L. 93-275, as 
amended by Pub. L. 94-385; Department of Energy Organization Act, Pub. 
L. 95-91; E.O. 11790, 39 FR 23185)

[43 FR 20132, May 10, 1978. Redesignated and amended at 44 FR 37938, 
June 29, 1979; 49 FR 12157, Mar. 28, 1984; 77 FR 74571, Dec. 17, 2012]



   Sec. Appendix H to Subpart B of Part 430--Uniform Test Method for 
           Measuring the Power Consumption of Television Sets

    Note: After April 23, 2014, any representations made with respect to 
the energy use or efficiency of televisions must be made in accordance 
with the results of testing pursuant to this appendix. Given that after 
April 23, 2014 representations with respect to the energy use or 
efficiency of televisions must be made in accordance with tests 
conducted pursuant to this appendix, manufacturers may wish to begin 
using this test procedure as soon as possible.

                                1. Scope

    This appendix covers the test requirements used to measure the 
energy and power consumption of television sets that:
    (i) Have a diagonal screen size of at least fifteen inches; and
    (ii) Are powered by mains power (including TVs with auxiliary 
batteries but not TVs with main batteries).

                       2. Definitions and Symbols

    2.1. Additional functions shall be defined using the additional 
functions definition in section 3.1.1 of IEC 62087 Ed. 3.0 (incorporated 
by reference, see Sec.  430.3).

[[Page 408]]

    2.2. Auxiliary Battery means a battery capable of powering a clock 
or retaining TV settings but is incapable of powering the TV to produce 
dynamic video.
    2.3. Brightest selectable preset picture setting means the preset 
picture setting in which the television produces the highest screen 
luminance within either the home or retail configuration.
    2.4. Default picture setting means the preset picture setting that 
the TV enters into immediately after making a selection from the forced 
menu. If the TV does not have a forced menu, this is the as-shipped 
preset picture setting.
    2.5. Forced menu means a series of menus which require the selection 
of initial settings before allowing the user to utilize primary 
functions. Within these menus contains an option to choose the viewing 
environment between retail and home configurations.
    2.6. Home configuration means the TV configuration selected from the 
forced menu which is designed for typical consumer viewing and is 
recommended by the manufacturer for home environments.
    2.7. IEC 62087 Ed. 3.0 means the test standard published by the 
International Electrotechnical Commission, entitled ``Methods of 
measurement of the power consumption of audio, video, and related 
equipment,'' IEC 62087 Ed. 3.0 (incorporated by reference, see Sec.  
430.3).
    2.8. IEC 62087 Ed. 3.0 Blu-ray Disc \TM\ Dynamic Broadcast-Content 
Video Signal means the test video content published by the International 
Electrotechnical Commission, entitled ``IEC 62087 Ed. 3.0, video 
content_BD, video content for IEC 62087 Ed. 3.0 on Blu-ray \TM\ Disc,'' 
IEC 62087 Ed. 3.0 (incorporated by reference, see Sec.  430.3).
    2.9. IEC 62301 Ed. 2.0 means the test standard published by the 
International Electrotechnical Commission, entitled ``Household 
electrical appliances--Measurement of standby power,'' IEC 62301 Ed. 2.0 
(incorporated by reference, see Sec.  430.3).
    2.10. Illuminance means the luminous flux per unit area of light 
illuminating a given surface, expressed in units of lux (lx).
    2.11. Luminance means the photometric measure of the luminous 
intensity per unit area of light traveling in a given direction, 
expressed in units of candelas per square meter (cd/m\2\).
    2.12. Main battery means a battery capable of powering the TV to 
produce dynamic video without the support of mains power.
    2.13. Off mode means the mode of operation in which the TV is 
connected to mains power, produces neither sound nor picture, and cannot 
be switched into any other mode of operation with the remote control 
unit, an internal signal, or external signal.
    2.14. On mode means the mode of operation in which the TV is 
connected to mains power, and is capable of producing dynamic video.
    2.15. Preset picture setting means a preprogrammed factory setting 
obtained from the TV menu with pre-determined picture parameters such as 
brightness, contrast, color, sharpness, etc. Preset picture settings can 
be selected within the home or retail mode.
    2.16. Retail configuration means the TV configuration selected from 
the forced menu which is designed to highlight the TV's features in a 
retail environment. This configuration may display demos, disable 
configurable settings, or increase screen brightness in a manner which 
is not desirable for typical consumer viewing.
    2.17. Special functions shall be defined using the definition in 
section 3.1.18 of IEC 62087 Ed. 3.0 (incorporated by reference, see 
Sec.  430.3).
    2.18. Standby-passive mode means the mode of operation in which the 
TV is connected to mains power, produces neither sound nor picture, and 
can be switched into another mode with only the remote control unit or 
an internal signal.
    2.19. Standby-active, high mode means the mode of operation in which 
the TV is connected to mains power, produces neither sound nor picture, 
is exchanging/receiving data with/from an external source, and can be 
switched into another mode of operation with the remote control unit, an 
internal signal, or an external signal.
    2.20. Standby-active, low mode means the mode of operation in which 
the TV is connected to mains power, produces neither sound nor picture, 
can be switched into another mode with the remote control unit or an 
internal signal, and can additionally be switched into another mode with 
an external signal.
    2.21. Symbol usage. The following identity relationships are 
provided to help clarify the symbols used throughout this test 
procedure.
ABC--Automatic Brightness Control
AEC--Annual Energy Consumption
BD--Blu-ray Disc \TM\
DVD--Digital Versatile Disc \TM\
DVI--Digital Visual Interface
HDMI[supreg]--High Definition Multimedia Interface
Lbrightest--Screen luminance in brightest selectable preset 
picture setting within the home configuration
Ldefault--Screen luminance in default picture setting within 
the home configuration
Ldefault_retail--Screen luminance in default picture setting 
within the retail configuration
LAN--Local Area Network
Pon--Power consumed in on mode
P3--Average power consumed in on mode, ABC enabled, 3 lx
P12--Average power consumed in on mode, ABC enabled, 12 lx
P35--Average power consumed in on mode, ABC enabled, 35 lx

[[Page 409]]

P100--Average power consumed in on mode, ABC enabled, 100 lx
Pstandby-passive--Power consumption in standby-passive mode
Pstandby-active, low--Power consumption in standby-active, 
low mode
Poff--Power consumption in off mode
STB--Set-top Box
THD--Total Harmonic Distortion
TV--Television Set
USB--Universal Serial Bus
W3--Percent weighting for on mode, ABC enabled, 3 lx
W12--Percent weighting for on mode, ABC enabled, 12 lx
W35--Percent weighting for on mode, ABC enabled, 35 lx
W100--Percent weighting for on mode, ABC enabled, 100 lx
WAN--Wide Area Network

           3. Accuracy and Precision of Measurement Equipment

    3.1. Voltage and Frequency. Set the test voltage and frequency to 
the rated electrical supply values of the region in accordance with 
Table 1 in section 4.3.1 of IEC 62301 Ed. 2.0
    3.2. Power Supply Requirements. The TV power use shall be measured 
using a power supply that meets the specifications found in section 
4.3.1 of IEC 62301 Ed. 2.0 (incorporated by reference, see Sec.  430.3). 
The THD of the supply voltage shall not exceed 5%, inclusive to the 13th 
order harmonic, when the unit is under test.
    3.3. Power Meter Requirements. The power measurement shall be 
carried out directly by means of a wattmeter, a wattmeter with averaging 
function, or a watt-hour meter by dividing the reading by the measuring 
time. For TVs where the input video signal varies over time, use a 
wattmeter with an averaging function to carry out the measurement.
    3.3.1. The sampling rate of the watt-hour meter or wattmeter with 
averaging function shall be one measurement per second or more frequent.
    3.3.2. The power measurement instrument shall measure and record the 
power factor and the real power consumed during all on mode tests at the 
same sampling rate.
    3.3.3. Power measurements of 0.5 W or greater shall be made with an 
uncertainty of less than or equal to 2 percent (at the 95 percent 
confidence level). Measurements of power of less than 0.5 W shall be 
made with an uncertainty of less than or equal to 0.01 W (at the 95 
percent confidence level). The power measurement instrument shall have a 
resolution of:
    0.01 W or better for power measurements of 10 W or less;
    0.1 W or better for power measurements of greater than 10 W up to 
100 W;
    1 W or better for power measurements of greater than 100 W.
    3.4. Luminance Meter Requirements. Contact or non-contact luminance 
meters shall have an accuracy of 2 percent 2 digits of the digitally displayed value. Non-contact 
meters are also required to have an acceptance angle of 3 degrees or 
less.
    3.5. Illuminance Meter Requirements. All illuminance meters shall 
have an accuracy of 2 percent 2 digits of the digitally displayed value.
    3.6. Video Input Device. The video input device (i.e. BD player) 
shall be capable of decoding a BD signal. The video input device 
manufacturer shall be different from the manufacturer of the TV under 
test to prevent device interaction.

                           4. Test Room Set-Up

    4.1. Ambient Temperature Conditions. For all testing, maintain 
ambient temperature conditions in accordance with in section 11.4.1 of 
IEC 62087 Ed. 3.0 (incorporated by reference, see Sec.  430.3).
    4.2. Ambient Relative Humidity Conditions. For all testing, maintain 
the ambient relative humidity between 10 and 80 percent.
    4.3. Room Illuminance Level. All luminance testing (with a non-
contact meter) and on mode testing (with ABC enabled by default) shall 
be performed in a room which measures less than or equal to 1.0 lx 
measured at the ABC sensor while the TV is in off or a standby mode. If 
the TV does not have an ABC sensor, measure at the bottom center of the 
TV bezel.
    4.4. Installation. Install the TV in accordance with manufacturer's 
instructions.
    4.5. TV Placement. TVs which have an ABC sensor enabled by default 
shall be placed at least 0.5 meters away from any wall surface (i.e. 
wall, ceiling, and floor). This does not include the furnishings which 
the TV may be placed on or the wall which the back of the TV faces. All 
four corners of the face of the TV shall be placed equidistant from a 
vertical reference plane (e.g. wall).

                  5. TV and Video Signal Configuration

    5.1. Additional Functions. The TV shall be set up according to the 
requirements in section 11.4.5 of IEC 62087 Ed. 3.0 (incorporated by 
reference, see Sec.  430.3).
    5.2. Video Connection Priority. The TV and the video input device 
shall be connected using an HDMI input cable. If the TV does not have an 
HDMI input terminal, the specified input terminals shall be used in the 
following order: Component video, S-video, and Composite video.
    5.3. Input Terminal. If the TV has multiple input terminals of the 
same type (i.e. HDMI 1, HDMI 2), testing shall only be performed using 
any input terminal designed for viewing live TV or dynamic content from 
a BD

[[Page 410]]

player or STB, not from an input designed for an alternative purpose. 
Examples 1 and 2 provide visual explanations of this requirement.
[GRAPHIC] [TIFF OMITTED] TR25OC13.010

    5.4. Special Functions. The TV shall be set up according to the 
requirements in section 11.4.6 of IEC 62087 Ed. 3.0 (incorporated by 
reference, see Sec.  430.3).
    5.5. Special Function Configuration. If at any time during on mode 
operation a message prompt is displayed requesting the configuration of 
special functions, the most power consumptive configuration shall be 
selected. If it is unknown which configuration yields the most power 
consumptive state, verify the selection by measuring the power 
consumption of each possible configuration.
    Note: The selection of the home or retail configuration within the 
forced menu is not considered the configuration of a special function, 
and is therefore exempt from this requirement.
    5.6. On Mode Picture Setting. Ensure that the TV is in the default 
picture setting within the home configuration for all on mode tests. 
This picture setting shall only be changed as instructed by the 
luminance test.
    5.7. Video Aspect Ratio. The input video signal shall be configured 
in accordance with section 11.4.9 of IEC 62087 Ed. 3.0 (incorporated by 
reference; see Sec.  430.3)
    5.8. Frame Rate. The video frame rate shall be selected in 
accordance with section 11.4.10 of IEC 62087 Ed. 3.0 (incorporated by 
reference; see Sec.  430.3)
    5.9. Sound level. The TV sound level shall be configured in 
accordance with section 11.4.11 of IEC 62087 Ed. 3.0 (incorporated by 
reference; see Sec.  430.3)
    5.10. Network Connection Configuration.
    5.10.1. Network Connections and Capabilities. Network connections 
should be listed in the user manual. If no connections are specified in 
the user manual, verify that the TV does not have network capabilities 
by checking for the absence of physical connections and the absence of 
network settings in the menu. If the TV has the capability to be 
connected to a network but was not shipped with a required piece of 
hardware (e.g. wireless adapter), that connection type shall not be 
tested.
    5.10.2. Network Configuration. If the TV is network enabled, connect 
it to a LAN in on mode and prior to being placed into standby mode. The 
LAN shall allow devices to ping other devices on the network but will 
not allow access to a WAN. If the TV has multiple network connections 
(e.g., Wi-Fi and Ethernet), the TV shall be configured and connected to 
a single network source in accordance with the hierarchy of connections 
listed in Table 1 of this section.

[[Page 411]]



                  Table 1--Network Connection Hierarchy
------------------------------------------------------------------------
                 Priority                      Network connection type
------------------------------------------------------------------------
1.........................................  Wi-Fi (Institution of
                                             Electrical and Electronics
                                             Engineers--IEEE 802.11-
                                             20072)
2.........................................  Ethernet (IEEE 802.3). If
                                             the TV supports Energy
                                             Efficient Ethernet (IEEE
                                             802.3az-20103), then it
                                             shall be connected to a
                                             device that also supports
                                             IEEE 802.3az.
------------------------------------------------------------------------

               6. Calculation of Average Power Consumption

    6.1. Average Power Calculation. For all tests in the on, standby-
active, low, and standby-passive modes, the average power shall be 
calculated using one of the following two methods:
    6.1.1. Record the accumulated energy (Ei) in kilo-watt 
hours (kWh) consumed over the time period specified for each test 
(Ti). The average power consumption is calculated as 
Pi = Ei/Ti.
    6.1.2. Record the average power consumption (Pi) by 
sampling the power at a rate of at least 1 sample per second and 
computing the arithmetic mean of all samples over the time period 
specified for each test (Ti).
    The resulting average power consumption value for each mode of 
operation shall be rounded according to the accurary requirements 
specified in section 3.3.3 of this section.
    7. Test Measurements.
    7.1. On Mode Test.
    7.1.1. On Mode Stabilization. If the TV has an ABC sensor enabled by 
default, direct at least 300 lx into the ABC sensor. The TV shall be 
stabilized prior to testing on mode using the IEC 62087 Ed. 3.0 Blu-ray 
Disc \TM\ dynamic broadcast-content video signal in accordance with 
section 11.4.2 of IEC 62087 Ed. 3.0 (incorporated by reference, see 
Sec.  430.3).
    7.1.2. On Mode Test for TVs without ABC Enabled by Default. The 
following test shall be performed if the TV is shipped with ABC disabled 
by default or the ABC function is unavailable. Display the IEC 62087 Ed. 
3.0 Blu-ray Disc \TM\ dynamic broadcast-content video signal for one 10-
minute period (incorporated by reference, see Sec.  430.3). Measure and 
record the average power consumption value over the test duration as 
Pon.
    7.1.3. On Mode Test for TVs with ABC Enabled by Default. The 
following test shall be performed if the TV is shipped with ABC enabled 
by default:
    7.1.3.1. Illuminance Values. Display the IEC 62087 Ed. 3.0 Blu-ray 
Disc \TM\ dynamic broadcast-content video signal for one 10-minute 
period (incorporated by reference, see Sec.  430.3) with 100 lx (5 lx) entering the ABC sensor. Measure and record the 
average power consumption value over the test duration as 
P100. Repeat the measurements with 35 lx (2 lx), 12 lx (1 lx), and 3 lux 
(1 lx) entering the ABC sensor and record the 
values as P35, P12, and P3 
respectively. Testing shall be performed from the brightest to dimmest 
illuminance value and the values shall be changed by varying the input 
voltage to the light source.

    Note: The 3 lx illuminance value shall be simulated using a 67 mm 2 
F-stop neutral density filter. 12 lx is measured at the ABC sensor prior 
to the application of the neutral density filter.

    7.1.3.2. On Mode Power Calculation. All illuminance values shall be 
weighted equally when calculating the on mode power for a TV with ABC 
enabled by default and shall be determined by the following equation:

Pon = P100 * W100 + P35 * 
          W35 + P12 * W12 + 
          P3 * W3
Where:
    W100 = W35 = W12 = W3 = 
0.25

    7.1.3.3. Lamp Requirements. A standard spectrum, halogen 
incandescent aluminized reflector lamp with a lamp diameter of 95 mm 
(10 mm), a beam angle of 30 degrees (10 degrees), and a center beam candlepower of 1500 cd 
(500 cd) shall be positioned in front of the ABC 
sensor so that the light is directed into the sensor.

    Note: Lamps with spectrum modifying qualities, such as an IR 
coating, are not considered to meet a standard spectrum.

    7.1.3.4. Light Source Set-up. The center of the lamp shall measure 
1.5 m (0.1 m) from the center of the ABC sensor. 
The light source shall be aligned ensuring that the center focal point 
of the lamp is perpendicular to the center of the ABC sensor.
    7.1.3.5. Illuminance Measurement. The room illuminance shall be 
measured at the sensor in the direction of the light source while the TV 
is on and displaying the first menu from the IEC 62087 Ed. 3.0 Blu-ray 
Disc \TM\ dynamic broadcast-content video signal.
    7.2. Luminance Test.
    7.2.1. Luminance Test Set-up.
    7.2.1.1. Picture Setting Set-up. When transitioning from the on mode 
power consumption test to the luminance test, the TV shall remain in the 
default picture setting within the home configuration for the first 
luminance measurement.
    7.2.1.2. ABC Configuration. The ABC sensor shall be disabled at all 
times during the luminance test. If the ABC sensor is incapable of being 
disabled through the TV settings menu, direct at least 300 lx of light 
into the ABC sensor.
    7.2.1.3. Stabilization. Prior to the first luminance measurement, 
the TV must undergo a 10-minute re-stabilization period using the IEC 
62087 Ed. 3.0 Blu-ray Disc\TM\ dynamic broadcast-content video signal.
    7.2.2. Luminance Meter Set-up. Align the luminance meter 
perpendicular to the center of the TV screen. If a non-contact luminance

[[Page 412]]

meter is used to measure the screen luminance, the luminance measurement 
shall be taken at a distance capable of meeting the meter specifications 
outlined in section 3.1.3, and in accordance with the meter's user 
manual.
    7.2.3. Three Vertical Bar Signal Measurement. The IEC 62087 Ed. 3.0 
three vertical bar signal found in section 11.5.5 of IEC 62087 Ed. 3.0 
(incorporated by reference, see Sec.  430.3) shall be displayed for no 
more than 5 seconds when each luminance measurement is taken. The 
luminance measurement taken in the default picture setting within the 
home configuration shall be recorded as LDefault_Home.
    7.2.4. Luminance in the Brightest Selectable Preset Picture Setting. 
Using the IEC 62087 Ed. 3.0 three vertical bar signal, determine the 
brightest selectable preset picture setting within the home 
configuration. Measure and record the screen luminance in the brightest 
selectable preset picture setting as LBrightest_Home.
    7.2.5. Retail Configuration Luminance Measurement. If the TV has a 
retail configuration and the retail configuration is acceptable for 
making a luminance measurement, measure and record the screen luminance 
in the default picture setting within the retail configuration as 
LDefault_Retail. A retail configuration is considered 
acceptable for a luminance measurement if the TV does not display a demo 
or ticker which alters the screen content, or if such features are 
present, they must be capable of being disabled for the entire re-
stabilization period and measurement.
    7.3. Standby Mode Test.
    7.3.1. Video Input Device. The video input device shall be 
disconnected from the TV for all testing in standby mode.
    7.3.2. Standby-Passive Mode. The standby-passive mode test shall be 
performed according to section 5.3.1 of IEC 62301 Ed. 2.0 (incorporated 
by reference, see Sec.  430.3). Measure and record the average power 
consumption value over the test duration as Pstandby-passive.
    7.3.3. Standby-Active, Low Mode. The standby-active, low mode shall 
only be tested if the TV is capable of connecting to a network and is 
capable of entering this mode of operation. The standby-active, low mode 
test shall be performed according to section 5.3.1 of IEC 62301 Ed. 2.0 
(incorporated by reference, see Sec.  430.3). Measure and record the 
average power consumption value over the test duration as 
Pstandby-active,low.
    7.4. Off Mode Test.
    7.4.1. The off mode test shall be performed according to section 
5.3.1 of IEC 62301 Ed. 2.0 (incorporated by reference, see Sec.  430.3). 
Measure and record the average power consumption value over the test 
duration as Poff.

                      8. Annual Energy Consumption

    8.1. Input Value. The annual energy consumption (AEC) of the TV 
shall be calculated using on mode, standby mode, and off mode power 
consumption values as measured pursuant to section 7.1, 7.3, and 7.4 
respectively.
    8.2. Rounding. Calculate the AEC of the TV using the equation below. 
The calculated AEC value shall be rounded as follows:
    If the calculated AEC value is 100 kWh or less, the rated value 
shall be rounded to the nearest tenth of a kWh;
    If the calculated AEC value is greater than 100 kWh, the rated value 
shall be rounded to the nearest kWh.
    8.3. Calculations. Express the AEC in kWh per year, according to the 
following:

AEC = 365 * (Pon * Hon + 
          Pstandby-active, low * 
          Hstandby-active, low + Pstandby-passive 
          * Hstandby-passive + Poff * 
          Hoff)/1000

Where:

    Pm = power measured in a given mode m (in Watts)
    Hm = hours per day spent in mode m
    365 = conversion factor from daily to yearly
    1000 = conversion factor from watts to kilowatts

    Values for Hm (in hours/day) are specified in Table 2 of 
this section:

                                           Table 2--Hourly Weightings
----------------------------------------------------------------------------------------------------------------
                                                                               Hstandby-     Hstandby-
                      Standby-active, low mode                         Hon    active, low     passive      Hoff
----------------------------------------------------------------------------------------------------------------
Yes................................................................       5            19             0        0
No.................................................................       5             0            19        0
----------------------------------------------------------------------------------------------------------------


[78 FR 63841, Oct. 25, 2013]



   Sec. Appendix I to Subpart B of Part 430--Uniform Test Method for 
          Measuring the Energy Consumption of Cooking Products

                             1. Definitions

    The following definitions apply to the test procedures in this 
appendix, including the test procedures incorporated by reference:
    1.1 Active mode means a mode in which the product is connected to a 
mains power source, has been activated, and is performing the main 
function of producing heat by means of a gas flame, electric resistance 
heating, electric inductive heating, or microwave energy.
    1.2 Built-in means the product is enclosed in surrounding cabinetry, 
walls, or other similar structures on at least three sides, and can be 
supported by surrounding cabinetry or the floor.
    1.3 Combined cooking product means a household cooking appliance 
that combines a cooking product with other appliance functionality, 
which may or may not include another cooking product. Combined cooking 
products include the following products:

[[Page 413]]

Conventional range, microwave/conventional cooking top, microwave/
conventional oven, and microwave/conventional range.
    1.4 Drop-in means the product is supported by horizontal surface 
cabinetry.
    1.5 IEC 62301 (First Edition) means the test standard published by 
the International Electrotechnical Commission, titled ``Household 
electrical appliances--Measurement of standby power,'' Publication 62301 
(First Edition 2005-06) (incorporated by reference; see Sec.  430.3).
    1.6 IEC 62301 (Second Edition) means the test standard published by 
the International Electrotechnical Commission, titled ``Household 
electrical appliances--Measurement of standby power,'' Publication 62301 
(Edition 2.0 2011-01) (incorporated by reference; see Sec.  430.3).
    1.7 Normal non-operating temperature means a temperature of all 
areas of an appliance to be tested that is within 5 [deg]F (2.8 [deg]C) 
of the temperature that the identical areas of the same basic model of 
the appliance would attain if it remained in the test room for 24 hours 
while not operating with all oven doors closed.
    1.8 Off mode means any mode in which a cooking product is connected 
to a mains power source and is not providing any active mode or standby 
function, and where the mode may persist for an indefinite time. An 
indicator that only shows the user that the product is in the off 
position is included within the classification of an off mode.
    1.9 Standby mode means any mode in which a cooking product is 
connected to a mains power source and offers one or more of the 
following user-oriented or protective functions which may persist for an 
indefinite time:
    (1) Facilitation of the activation of other modes (including 
activation or deactivation of active mode) by remote switch (including 
remote control), internal sensor, or timer;
    (2) Provision of continuous functions, including information or 
status displays (including clocks) or sensor-based functions. A timer is 
a continuous clock function (which may or may not be associated with a 
display) that allows for regularly scheduled tasks and that operates on 
a continuous basis.

                           2. Test Conditions

    2.1 Installation. Install a drop-in or built-in cooking product in a 
test enclosure in accordance with manufacturer's instructions. If the 
manufacturer's instructions specify that the cooking product may be used 
in multiple installation conditions, install the appliance according to 
the built-in configuration. Completely assemble the product with all 
handles, knobs, guards, and similar components mounted in place. 
Position any electric resistance heaters and baffles in accordance with 
the manufacturer's instructions.
    2.1.1 Microwave ovens, excluding any microwave oven component of a 
combined cooking product. Install the microwave oven in accordance with 
the manufacturer's instructions and connect to an electrical supply 
circuit with voltage as specified in section 2.2.1 of this appendix. 
Install the microwave oven also in accordance with Section 5, Paragraph 
5.2 of IEC 62301 (Second Edition) (incorporated by reference; see Sec.  
430.3), disregarding the provisions regarding batteries and the 
determination, classification, and testing of relevant modes. A watt 
meter shall be installed in the circuit and shall be as described in 
section 2.6.1.1 of this appendix.
    2.2 Energy supply.
    2.2.1 Electrical supply.
    2.2.1.1 Voltage. For microwave oven testing, maintain the electrical 
supply to the unit at 240/120 volts 1 percent. 
Maintain the electrical supply frequency for all products at 60 hertz 
1 percent.
    2.3 Air circulation. Maintain air circulation in the room sufficient 
to secure a reasonably uniform temperature distribution, but do not 
cause a direct draft on the unit under test.
    2.4 Ambient room test conditions.
    2.4.1 Standby mode and off mode ambient temperature. For standby 
mode and off mode testing, maintain room ambient air temperature 
conditions as specified in Section 4, Paragraph 4.2 of IEC 62301 (Second 
Edition) (incorporated by reference; see Sec.  430.3).
    2.5 Normal non-operating temperature. All areas of the appliance to 
be tested must attain the normal non-operating temperature, as defined 
in section 1.7 of this appendix, before any testing begins. Measure the 
applicable normal non-operating temperature using the equipment 
specified in sections 2.6.2.1 of this appendix.
    2.6 Instrumentation. Perform all test measurements using the 
following instruments, as appropriate:
    2.6.1 Electrical Measurements.
    2.6.1.1 Standby mode and off mode watt meter. The watt meter used to 
measure standby mode and off mode power must meet the requirements 
specified in Section 4, Paragraph 4.4 of IEC 62301 (Second Edition) 
(incorporated by reference; see Sec.  430.3). For microwave oven standby 
mode and off mode testing, if the power measuring instrument used for 
testing is unable to measure and record the crest factor, power factor, 
or maximum current ratio during the test measurement period, measure the 
crest factor, power factor, and maximum current ratio immediately before 
and after the test measurement period to determine whether these 
characteristics meet the requirements specified in Section 4, Paragraph 
4.4 of IEC 62301 (Second Edition).
    2.6.2 Temperature measurement equipment.
    2.6.2.1 Room temperature indicating system. For the test of 
microwave ovens, the room

[[Page 414]]

temperature indicating system must have an error no greater than 1 [deg]F (0.6 [deg]C) over the 
range 65[deg] to 90 [deg]F (18 [deg]C to 32 [deg]C).

                    3. Test Methods and Measurements

    3.1. Test methods.
    3.1.1 Microwave oven.
    3.1.1.1 Microwave oven test standby mode and off mode power except 
for any microwave oven component of a combined cooking product. 
Establish the testing conditions set forth in section 2, Test 
Conditions, of this appendix. For microwave ovens that drop from a 
higher power state to a lower power state as discussed in Section 5, 
Paragraph 5.1, Note 1 of IEC 62301 (Second Edition) (incorporated by 
reference; see Sec.  430.3), allow sufficient time for the microwave 
oven to reach the lower power state before proceeding with the test 
measurement. Follow the test procedure as specified in Section 5, 
Paragraph 5.3.2 of IEC 62301 (Second Edition). For units in which power 
varies as a function of displayed time in standby mode, set the clock 
time to 3:23 and use the average power approach described in Section 5, 
Paragraph 5.3.2(a) of IEC 62301 (First Edition), but with a single test 
period of 10 minutes +0/-2 sec after an additional stabilization period 
until the clock time reaches 3:33. If a microwave oven is capable of 
operation in either standby mode or off mode, as defined in sections 1.9 
and 1.8 of this appendix, respectively, or both, test the microwave oven 
in each mode in which it can operate.
    3.2 Test measurements.
    3.2.1 Microwave oven standby mode and off mode power except for any 
microwave oven component of a combined cooking product. Make 
measurements as specified in Section 5, Paragraph 5.3 of IEC 62301 
(Second Edition) (incorporated by reference; see Sec.  430.3). If the 
microwave oven is capable of operating in standby mode, as defined in 
section 1.9 of this appendix, measure the average standby mode power of 
the microwave oven, PSB, in watts as specified in section 3.1.1.1 of 
this appendix. If the microwave oven is capable of operating in off 
mode, as defined in section 1.8 of this appendix, measure the average 
off mode power of the microwave oven, POM, as specified in section 
3.1.1.1.
    3.3 Recorded values.
    3.3.1 For microwave ovens except for any microwave oven component of 
a combined cooking product, record the average standby mode power, PSB, 
for the microwave oven standby mode, as determined in section 3.2.1 of 
this appendix for a microwave oven capable of operating in standby mode. 
Record the average off mode power, POM, for the microwave oven off mode 
power test, as determined in section 3.2.1 of this appendix for a 
microwave oven capable of operating in off mode.

[85 FR 50766, Aug. 18, 2020]



   Sec. Appendix J1 to Subpart B of Part 430--Uniform Test Method for 
Measuring the Energy Consumption of Automatic and Semi-Automatic Clothes 
                                 Washers

    Note: Any representation related to the energy or water consumption 
of a residential clothes washer must be based upon results generated 
using Appendix J2.
    Before January 1, 2018, any representation related to the energy or 
water consumption of commercial clothes washers must be based on results 
generated using Appendix J1. Specifically, before February 1, 2016, 
representations must be based upon results generated either under this 
appendix or under Appendix J1 as it appeared in the 10 CFR parts 200-499 
edition revised as of January 1, 2015. Any representations made on or 
after February 1, 2016, but before January 1, 2018, must be made based 
upon results generated using this appendix. Any representations made on 
or after January 1, 2018, must be based upon results generated using 
Appendix J2.

                       1. Definitions and Symbols

    1.1 Adaptive control system means a clothes washer control system, 
other than an adaptive water fill control system, that is capable of 
automatically adjusting washer operation or washing conditions based on 
characteristics of the clothes load placed in the clothes container, 
without allowing or requiring user intervention or actions. The 
automatic adjustments may, for example, include automatic selection, 
modification, or control of any of the following: Wash water 
temperature, agitation or tumble cycle time, number of rinse cycles, or 
spin speed. The characteristics of the clothes load, which could trigger 
such adjustments, could, for example, consist of or be indicated by the 
presence of either soil, soap, suds, or any other additive laundering 
substitute or complementary product.
    1.2 Adaptive water fill control system means a clothes washer 
automatic water fill control system that is capable of automatically 
adjusting the water fill level based on the size or weight of the 
clothes load placed in the clothes container.
    1.3 Automatic water fill control system means a clothes washer water 
fill control system that does not allow or require the user to determine 
or select the water fill level, and includes adaptive water fill control 
systems and fixed water fill control systems.
    1.4 Bone-dry means a condition of a load of test cloth which has 
been dried in a dryer at maximum temperature for a minimum of 10 
minutes, removed and weighed before cool down, and then dried again for 
10 minute periods until the final weight change of the load is 1 percent 
or less.

[[Page 415]]

    1.5 Clothes container means the compartment within the clothes 
washer that holds the clothes during the operation of the machine.
    1.6 Compact means a clothes washer which has a clothes container 
capacity of less than 1.6 ft\3\ (45 L).
    1.7 Deep rinse cycle means a rinse cycle in which the clothes 
container is filled with water to a selected level and the clothes load 
is rinsed by agitating it or tumbling it through the water.
    1.8 Energy test cycle for a basic model includes:
    (A) All wash/rinse temperature selections and water levels offered 
in the cycle recommended by the manufacturer for washing cotton or linen 
clothes, and
    (B) For each other wash/rinse temperature selection or water level 
available on that basic model, the portion(s) of other cycle(s) with 
that temperature selection or water level that, when tested pursuant to 
these test procedures, will contribute to an accurate representation of 
the energy consumption of the basic model as used by end users.
    If a warm rinse temperature selection is available on the clothes 
washer but is not available in the cycle recommended for washing cotton 
or linen clothes, the energy test cycle shall include the warm rinse 
temperature selection in the cycle most comparable to the cycle 
recommended for washing cotton or linen clothes.
    If an extra-hot temperature selection is available only on a 
sanitization cycle, the sanitization cycle should be included in the 
energy test cycle if the cycle is recommended by the manufacturer for 
washing clothing. If the extra-hot temperature selection is available 
only on a sanitization cycle not recommended by the manufacturer for 
washing clothing (e.g., a cycle intended only for sanitizing the wash 
drum), such a cycle is not required for consideration as part of the 
energy test cycle.
    (C) For clothes washers with electronic control systems, use the 
manufacturer default settings for any cycle selections, except for (1) 
the temperature selection, (2) the wash water fill levels, or (3) if 
necessary, the spin speeds on wash cycles used to determine remaining 
moisture content. Specifically, the manufacturer default settings must 
be used for wash conditions such as agitation/tumble operation, soil 
level, spin speed on wash cycles used to determine energy and water 
consumption, wash times, rinse times, optional rinse settings, water 
heating time for water-heating clothes washers, and all other wash 
parameters or optional features applicable to that wash cycle. Any 
optional wash cycle feature or setting (other than wash/rinse 
temperature, water fill level selection, or spin speed on wash cycles 
used to determine remaining moisture content) that is activated by 
default on the wash cycle under test must be included for testing unless 
the manufacturer instructions recommend not selecting this option, or 
recommend selecting a different option, for washing normally soiled 
cotton clothing.
    For clothes washers with control panels containing mechanical 
switches or dials, any optional settings, except for (1) the temperature 
selection, (2) the wash water fill levels, or (3) if necessary, the spin 
speeds on wash cycles used to determine remaining moisture content, must 
be in the position recommended by the manufacturer for washing normally 
soiled cotton clothing. If the manufacturer instructions do not 
recommend a particular switch or dial position to be used for washing 
normally soiled cotton clothing, the setting switch or dial must remain 
in its as-shipped position.
    (D) The determination of the energy test cycle must take into 
consideration all cycle settings available to the end user, including 
any cycle selections or cycle modifications provided by the manufacturer 
via software or firmware updates to the product, for the basic model 
under test.
    1.9 Fixed water fill control system means a clothes washer automatic 
water fill control system that automatically terminates the fill when 
the water reaches an appropriate level in the clothes container.
    1.10 Load use factor means the percentage of the total number of 
wash loads that a user would wash a particular size (weight) load.
    1.11 Manual control system means a clothes washer control system 
that requires that the user make the choices that determine washer 
operation or washing conditions, such as, for example, wash/rinse 
temperature selections, and wash time before starting the cycle.
    1.12 Manual water fill control system means a clothes washer water 
fill control system that requires the user to determine or select the 
water fill level.
    1.13 Modified energy factor means the quotient of the cubic foot (or 
liter) capacity of the clothes container divided by the total clothes 
washer energy consumption per cycle, with such energy consumption 
expressed as the sum of the machine electrical energy consumption, the 
hot water energy consumption, and the energy required for removal of the 
remaining moisture in the wash load.
    1.14 Non-water-heating clothes washer means a clothes washer which 
does not have an internal water heating device to generate hot water.
    1.15 Spray rinse cycle means a rinse cycle in which water is sprayed 
onto the clothes for a period of time without maintaining any specific 
water level in the clothes container.
    1.16 Standard means a clothes washer which has a clothes container 
capacity of 1.6 ft\3\ (45 L) or greater.

[[Page 416]]

    1.17 Temperature use factor means, for a particular wash/rinse 
temperature setting, the percentage of the total number of wash loads 
that an average user would wash with that setting.
    1.18 Thermostatically controlled water valves means clothes washer 
controls that have the ability to sense and adjust the hot and cold 
supply water.
    1.19 Warm wash means all wash temperature selections that are below 
the hottest hot, less than 135 [deg]F (57.2 [deg]C), and above the 
coldest cold temperature selection.
    1.20 Water factor means the quotient of the total weighted per-cycle 
water consumption divided by the cubic foot (or liter) capacity of the 
clothes washer.
    1.21 Water-heating clothes washer means a clothes washer where some 
or all of the hot water for clothes washing is generated by a water 
heating device internal to the clothes washer.
    1.22 Symbol usage. The following identity relationships are provided 
to help clarify the symbology used throughout this procedure.

E--Electrical Energy Consumption
H--Hot Water Consumption
C--Cold Water Consumption
R--Hot Water Consumed by Warm Rinse
ER--Electrical Energy Consumed by Warm Rinse
TUF--Temperature Use Factor
HE--Hot Water Energy Consumption
F--Load Usage Factor
Q--Total Water Consumption
ME--Machine Electrical Energy Consumption
RMC--Remaining Moisture Content
WI--Initial Weight of Dry Test Load
WC--Weight of Test Load After Extraction
m--Extra Hot Wash (maximum wash temp. 135 [deg]F (57.2 
[deg]C.))
h--Hot Wash (maximum wash temp. <=135 [deg]F (57.2 [deg]C.))
w--Warm Wash
c--Cold Wash (minimum wash temp.)
r--Warm Rinse (hottest rinse temp.)
x or max--Maximum Test Load
a or avg--Average Test Load
n or min--Minimum Test Load

    The following examples are provided to show how the above symbols 
can be used to define variables:

Emx = ``Electrical Energy Consumption'' for an ``Extra Hot 
          Wash'' and ``Maximum Test Load''
Ra = ``Hot Water Consumed by Warm Rinse'' for the ``Average 
          Test Load''
TUFm = ``Temperature Use Factor'' for an ``Extra Hot Wash''
HEmin = ``Hot Water Energy Consumption'' for the ``Minimum 
          Test Load''
    1.23 Cold rinse means the coldest rinse temperature available on the 
machine.
    1.24 Warm rinse means the hottest rinse temperature available on the 
machine (and should be the same rinse temperature selection tested in 
3.7 of this appendix).

                          2. Testing Conditions

    2.1 Installation. Install the clothes washer in accordance with 
manufacturer's instructions.
    2.2 Electrical energy supply. Maintain the electrical supply at the 
clothes washer terminal block within 2 percent of 120, 120/240, or 120/
208Y volts as applicable to the particular terminal block wiring system 
and within 2 percent of the nameplate frequency as specified by the 
manufacturer. If the clothes washer has a dual voltage conversion 
capability, conduct test at the highest voltage specified by the 
manufacturer.
    2.3 Supply Water. Maintain the temperature of the hot water supply 
at the water inlets between 130 [deg]F (54.4 [deg]C) and 135 [deg]F 
(57.2 [deg]C), using 135 [deg]F as the target temperature. Maintain the 
temperature of the cold water supply at the water inlets between 55 
[deg]F (12.8 [deg]C) and 60 [deg]F (15.6 [deg]C), using 60 [deg]F as the 
target temperature. A water meter shall be installed in both the hot and 
cold water lines to measure water consumption.
    2.4 Water pressure. The static water pressure at the hot and cold 
water inlet connection of the clothes washer shall be maintained at 35 
pounds per square inch gauge (psig) 2.5 psig 
(241.3 kPa17.2 kPa) during the test. The static 
water pressure for a single water inlet connection shall be maintained 
at 35 psig2.5 psig (241.3 kPa17.2 kPa) during the test. A water pressure gauge shall 
be installed in both the hot and cold water lines to measure water 
pressure.
    2.5 Instrumentation. Perform all test measurements using the 
following instruments, as appropriate:
    2.5.1 Weighing scales.
    2.5.1.1 Weighing scale for test cloth. The scale shall have a 
resolution of no larger than 0.2 oz (5.7 g) and a maximum error no 
greater than 0.3 percent of the measured value.
    2.5.1.2 Weighing scale for clothes container capacity measurements. 
The scale should have a resolution no larger than 0.50 lbs (0.23 kg) and 
a maximum error no greater than 0.5 percent of the measured value.
    2.5.2 Watt-hour meter. The watt-hour meter shall have a resolution 
no larger than 1 Wh (3.6 kJ) and a maximum error no greater than 2 
percent of the measured value for any demand greater than 50 Wh (180.0 
kJ).
    2.5.3 Temperature measuring device. The device shall have an error 
no greater than 1 [deg]F (0.6 [deg]C) over the range being measured.
    2.5.4 Water meter. The water meter shall have a resolution no larger 
than 0.1 gallons (0.4 liters) and a maximum error no greater than 2 
percent for the water flow rates being measured.
    2.5.5 Water pressure gauge. The water pressure gauge shall have a 
resolution of 1 pound per square inch gauge (psig) (6.9 kPa) and

[[Page 417]]

shall have an error no greater than 5 percent of any measured value.
    2.6 Test cloths.
    2.6.1 Energy Test Cloth. The energy test cloth shall be made from 
energy test cloth material, as specified in 2.6.4, that is 24 inches by 
36 inches (61.0 cm by 91.4 cm) and has been hemmed to 22 inches by 34 
inches (55.9 cm by 86.4 cm) before washing. The energy test cloth shall 
be clean and shall not be used for more than 60 test runs (after 
preconditioning as specified in 2.6.3 of this appendix). All energy test 
cloth must be permanently marked identifying the lot number of the 
material. Mixed lots of material shall not be used for testing the 
clothes washers.
    2.6.2 Energy Stuffer Cloth. The energy stuffer cloth shall be made 
from energy test cloth material, as specified in 2.6.4, and shall 
consist of pieces of material that are 12 inches by 12 inches (30.5 cm 
by 30.5 cm) and have been hemmed to 10 inches by 10 inches (25.4 cm by 
25.4 cm) before washing. The energy stuffer cloth shall be clean and 
shall not be used for more than 60 test runs (after preconditioning as 
specified in 2.6.3 of this appendix). All energy stuffer cloth must be 
permanently marked identifying the lot number of the material. Mixed 
lots of material shall not be used for testing the clothes washers.
    2.6.3 Preconditioning of Test Cloths. The new test cloths, including 
energy test cloths and energy stuffer cloths, shall be pre-conditioned 
in a clothes washer in the following manner:
    2.6.3.1 Perform 5 complete normal wash-rinse-spin cycles, the first 
two with current AHAM Standard detergent Formula 3 and the last three 
without detergent. Place the test cloth in a clothes washer set at the 
maximum water level. Wash the load for ten minutes in soft water (17 ppm 
hardness or less) using 27.0 grams + 4.0 grams per pound of cloth load 
of AHAM Standard detergent Formula 3. The wash temperature is to be 
controlled to 135 [deg]F 5 [deg]F (57.2 [deg]C 
2.8 [deg]C) and the rinse temperature is to be 
controlled to 60 [deg]F 5 [deg]F (15.6 [deg]C 
2.8 [deg]C). Repeat the cycle with detergent and 
then repeat the cycle three additional times without detergent, bone 
drying the load between cycles (total of five wash and rinse cycles).
    2.6.4 Energy test cloth material. The energy test cloths and energy 
stuffer cloths shall be made from fabric meeting the following 
specifications. The material should come from a roll of material with a 
width of approximately 63 inches and approximately 500 yards per roll, 
however, other sizes maybe used if they fall within the specifications.
    2.6.4.1 Nominal fabric type. Pure finished bleached cloth, made with 
a momie or granite weave, which is nominally 50 percent cotton and 50 
percent polyester.
    2.6.4.2 The fabric weight shall be 5.60 ounces per square yard 
(190.0 g/m\2\), 5 percent.
    2.6.4.3 The thread count shall be 65 x 57 per inch (warp x fill), 
2 percent.
    2.6.4.4 The warp yarn and filling yarn shall each have fiber content 
of 50 percent 4 percent cotton, with the balance 
being polyester, and be open end spun, 15/1 5 
percent cotton count blended yarn.
    2.6.4.5 Water repellent finishes, such as fluoropolymer stain 
resistant finishes shall not be applied to the test cloth. The absence 
of such finishes shall be verified by:
    2.6.4.5.1 American Association of Textile Chemists and Colorists 
(AATCC) Test Method 118--1997, Oil Repellency: Hydrocarbon Resistance 
Test (reaffirmed 1997), of each new lot of test cloth (when purchased 
from the mill) to confirm the absence of Scotchguard \TM\ or other water 
repellent finish (required scores of ``D'' across the board).
    2.6.4.5.2 American Association of Textile Chemists and Colorists 
(AATCC) Test Method 79-2000, Absorbency of Bleached Textiles (reaffirmed 
2000), of each new lot of test cloth (when purchased from the mill) to 
confirm the absence of Scotchguard \TM\ or other water repellent finish 
(time to absorb one drop should be on the order of 1 second).
    2.6.4.5.3 The standards listed in 2.6.4.5.1 and 2.6.4.5.2 of this 
appendix which are not otherwise set forth in this part 430 are 
incorporated by reference. The material listed in this paragraph has 
been approved for incorporation by reference by the Director of the 
Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. 
Any subsequent amendment to a standard by the standard-setting 
organization will not affect the DOE test procedures unless and until 
amended by DOE. Material is incorporated as it exists on the date of the 
approval and notice of any change in the material will be published in 
the Federal Register. The standards incorporated by reference are the 
American Association of Textile Chemists and Colorists Test Method 118-
1997, Oil Repellency: Hydrocarbon Resistance Test (reaffirmed 1997) and 
Test Method 79-2000, Absorbency of Bleached Textiles (reaffirmed 2000).
    (a) The above standards incorporated by reference are available for 
inspection at:
    (i) National Archives and Records Administration (NARA). For 
information on the availability of this material at NARA, call 202-741-
6030, or go to: http://www.archives.gov/federal_register/ 
code_of_federal_regulations/ ibr_locations.html.
    (ii) U.S. Department of Energy, Office of Energy Efficiency and 
Renewable Energy, Hearings and Dockets, ``Energy Conservation Program 
for Consumer Products: Clothes Washer Energy Conservation Standards,'' 
Docket No. EE--RM-94-403, Forrestal Building, 1000 Independence Avenue, 
SW, Washington, DC.
    (b) Copies of the above standards incorporated by reference can be 
obtained from

[[Page 418]]

the American Association of Textile Chemists and Colorists, P.O. Box 
12215, Research Triangle Park, NC 27709, telephone (919) 549-3526, fax 
(919) 549-8933, or email: [email protected].
    2.6.4.6 The moisture absorption and retention shall be evaluated for 
each new lot of test cloth by the standard extractor Remaining Moisture 
Content (RMC) test specified in appendix J3 to 10 CFR part 430 subpart 
B.
    2.6.5 Application of RMC correction curve.
    2.6.5.1 Using the coefficients A and B calculated in Appendix J3 to 
10 CFR part 430, subpart B:

RMCcorr = A x RMC + B

    2.6.5.2 Substitute RMCcorr values in calculations in 
section 3.8 of this appendix.
    2.7 Test Load Sizes. Maximum, minimum, and, when required, average 
test load sizes shall be determined using Table 5.1 of this appendix and 
the clothes container capacity as measured in sections 3.1.1 through 
3.1.6 of this appendix. Test loads shall consist of energy test cloths, 
except that adjustments to the test loads to achieve proper weight can 
be made by the use of energy stuffer cloths with no more than 5 stuffer 
cloths per load.
    2.8 Use of Test Loads. Use the test load sizes and corresponding 
water fill settings defined in Table 2.8 when measuring water and energy 
consumptions. Automatic water fill control system and manual water fill 
control system are defined in section 1 of this appendix.

       Table 2.8--Required Test Load Sizes and Water Fill Settings
------------------------------------------------------------------------
Water fill control system type    Test load size     Water fill setting
------------------------------------------------------------------------
Manual water fill control       Max..............  Max.
 system.                        Min..............  Min.
Automatic water fill control    Max..............  As determined by the
 system.                        Avg..............   clothes washer.
                                Min..............
------------------------------------------------------------------------

    2.8.1 The test load sizes to be used to measure RMC are specified in 
section 3.8.1.
    2.8.2 Test loads for energy and water consumption measurements shall 
be bone dry prior to the first cycle of the test, and dried to a maximum 
of 104 percent of bone dry weight for subsequent testing.
    2.8.3 Prepare the energy test cloths for loading by grasping them in 
the center, lifting, and shaking them to hang loosely, as illustrated in 
Figure 2.8.3 of this appendix.
[GRAPHIC] [TIFF OMITTED] TR05AU15.000

    For all clothes washers, follow any manufacturer loading 
instructions provided to the user regarding the placement of clothing 
within the clothes container. In the absence

[[Page 419]]

of any manufacturer instructions regarding the placement of clothing 
within the clothes container, the following loading instructions apply.
    2.8.3.1 To load the energy test cloths in a top-loading clothes 
washer, arrange the cloths circumferentially around the axis of rotation 
of the clothes container, using alternating lengthwise orientations for 
adjacent pieces of cloth. Complete each cloth layer across its 
horizontal plane within the clothes container before adding a new layer. 
Figure 2.8.3.1 of this appendix illustrates the correct loading 
technique for a vertical-axis clothes washer.
[GRAPHIC] [TIFF OMITTED] TR05AU15.001

    2.8.3.2 To load the energy test cloths in a front-loading clothes 
washer, grasp each test cloth in the center as indicated in section 
2.8.3 of this appendix, and then place each cloth into the clothes 
container prior to activating the clothes washer.
    2.9 Pre-conditioning.
    2.9.1 Nonwater-heating clothes washer. If the clothes washer has not 
been filled with water in the preceding 96 hours, pre-condition it by 
running it through a cold rinse cycle and then draining it to ensure 
that the hose, pump, and sump are filled with water.
    2.9.2 Water-heating clothes washer. If the clothes washer has not 
been filled with water in the preceding 96 hours, or if it has not been 
in the test room at the specified ambient conditions for 8 hours, pre-
condition it by running it through a cold rinse cycle and then draining 
it to ensure that the hose, pump, and sump are filled with water.
    2.10 Wash time setting. If one wash time is prescribed in the energy 
test cycle, that shall be the wash time setting; otherwise, the wash 
time setting shall be the higher of either the minimum or 70 percent of 
the maximum wash time available in the energy test cycle, regardless of 
the labeling of suggested dial locations. If 70% of the maximum wash 
time is not available on a dial with a discreet number of wash time 
settings, choose the next-highest setting greater than 70%. If the 
clothes washer is equipped with an electromechanical dial controlling 
wash time, reset the dial to the minimum wash time and then turn it in 
the direction of increasing wash time to reach the appropriate setting. 
If the appropriate setting is passed, return the dial to the minimum 
wash time and then turn in the direction of increasing wash time until 
the appropriate setting is reached.
    2.11 Test room temperature for water-heating clothes washers. 
Maintain the test room ambient air temperature at 75 [deg]F5 [deg]F (23.9 [deg]C2.8 [deg]C).

                          3. Test Measurements

    3.1 Clothes container capacity. Measure the entire volume which a 
dry clothes load could occupy within the clothes container during washer 
operation according to the following procedures:

[[Page 420]]

    3.1.1 Place the clothes washer in such a position that the uppermost 
edge of the clothes container opening is leveled horizontally, so that 
the container will hold the maximum amount of water. For front-loading 
clothes washers, the door seal and shipping bolts or other forms of 
bracing hardware to support the wash drum during shipping must remain in 
place during the capacity measurement.
    If the design of a front-loading clothes washer does not include 
shipping bolts or other forms of bracing hardware to support the wash 
drum during shipping, a laboratory may support the wash drum by other 
means, including temporary bracing or support beams. Any temporary 
bracing or support beams must keep the wash drum in a fixed position, 
relative to the geometry of the door and door seal components, that is 
representative of the position of the wash drum during normal operation. 
The method used must avoid damage to the unit that would affect the 
results of the energy and water testing.
    For a front-loading clothes washer that does not include shipping 
bolts or other forms of bracing hardware to support the wash drum during 
shipping, the test report must document the alternative method used to 
support the wash drum during capacity measurement, and, pursuant to 
Sec.  429.71 of this chapter, the manufacturer must retain such 
documentation as part of its test records.
    3.1.2 Line the inside of the clothes container with a 2 mil 
thickness (0.051 mm) plastic bag. All clothes washer components that 
occupy space within the clothes container and that are recommended for 
use during a wash cycle must be in place and must be lined with a 2 mil 
thickness (0.051 mm) plastic bag to prevent water from entering any void 
space.
    3.1.3 Record the total weight of the machine before adding water.
    3.1.4 Fill the clothes container manually with either 60 [deg]F 
 5 [deg]F (15.6 [deg]C  2.8 
[deg]C) or 100 [deg]F  10 [deg]F (37.8 [deg]C 
 5.5 [deg]C) water to its uppermost edge. For a 
top-loading, vertical-axis clothes washer, the uppermost edge of the 
clothes container is defined as the highest point of the innermost 
diameter of the tub cover. Figure 3.1.4.1 illustrates the maximum fill 
level for top-loading vertical-axis clothes washers. Figure 3.1.4.2 
shows the location of the maximum fill level for a variety of example 
tub cover designs.

[[Page 421]]

[GRAPHIC] [TIFF OMITTED] TR05AU15.002

    For a front-loading horizontal-axis clothes washer, fill the clothes 
container to the highest point of contact between the door and the door 
gasket. If any portion of the door or gasket would occupy the measured 
volume space when the door is closed, exclude the volume that the door 
or gasket

[[Page 422]]

portion would occupy from the measurement. For a front-loading 
horizontal-axis clothes washer with a concave door shape, include any 
additional volume above the plane defined by the highest point of 
contact between the door and the door gasket, if that area can be 
occupied by clothing during washer operation. For a top-loading 
horizontal-axis clothes washer, include any additional volume above the 
plane of the door hinge that clothing could occupy during washer 
operation. Figure 3.1.4.3 illustrates the maximum fill volumes for all 
horizontal-axis clothes washer types.
[GRAPHIC] [TIFF OMITTED] TR05AU15.003

    For all clothes washers, exclude any volume that cannot be occupied 
by the clothing load during operation.
    3.1.5 Measure and record the weight of water, W, in pounds. 
Calculate the clothes container capacity as follows:

C = W/d

where:
C = Capacity in cubic feet (liters).

W = Mass of water in pounds (kilograms).
d = Density of water (62.0 lbs/ft\3\ for 100 [deg]F (993 kg/m\3\ for 
          37.8 [deg]C) or 62.3 lbs/ft\3\ for 60 [deg]F (998 kg/m\3\ for 
          15.6 [deg]C)).

    3.1.6 Calculate the clothes container capacity, C, to the nearest 
0.01 cubic foot for the purpose of determining test load sizes per Table 
5.1 of this appendix and for all subsequent calculations in this 
appendix that include the clothes container capacity.

    3.2 Procedure for measuring water and energy consumption values on 
all automatic and semi-automatic washers. All energy consumption tests 
shall be performed under the energy test cycle(s), unless otherwise 
specified. Table 3.2 indicates the sections below that govern tests of 
particular clothes washers, based on the number of wash/rinse 
temperature selections available on the model and also, in some 
instances, method of water heating. The procedures prescribed are 
applicable regardless of a clothes washer's washing capacity, loading 
port location, primary axis of rotation of the clothes container, and 
type of control system. Data from a wash cycle that provides a visual or 
audio indicator to alert the user that an out-of-balance condition has 
been detected, or that terminates prematurely if an out-of-balance 
condition is detected, and thus does not include the agitation/tumble 
operation, spin speed(s), wash times, and rinse times applicable to the 
wash cycle under test, shall be discarded. The test report must document 
the rejection of data from any wash cycle during testing and the reason 
for the rejection.
    3.2.1 Inlet water temperature and the wash/rinse temperature 
settings.
    3.2.1.1 For automatic clothes washers set the wash/rinse temperature 
selection control to obtain the wash water temperature desired (extra 
hot, hot, warm, or cold) and cold rinse, and open both the hot and cold 
water faucets.
    3.2.1.2 For semi-automatic washers: (1) For hot water temperature, 
open the hot water faucet completely and close the cold water faucet; 
(2) for warm inlet water temperature, open both hot and cold water 
faucets completely; (3) for cold water temperature, close the hot water 
faucet and open the cold water faucet completely.
    3.2.2 Total water consumption during the energy test cycle shall be 
measured, including hot and cold water consumption during wash, deep 
rinse, and spray rinse.
    3.2.3 Clothes washers with automatic water fill/manual water fill 
control systems
    3.2.3.1 Clothes washers with automatic water fill control system and 
alternate manual water fill control system. If a clothes washer with an 
automatic water fill control system allows user selection of manual 
controls as an alternative, then both manual and automatic

[[Page 423]]

modes shall be tested and, for each mode, the energy consumption 
(HET, MET, and DE) and water 
consumption (QT) values shall be calculated as set forth in 
section 4. Then the average of the two values (one from each mode, 
automatic and manual) for each variable shall be used in section 4 for 
the clothes washer.
    3.2.3.2 Clothes washers with automatic water fill control system.
    3.2.3.2.1. Not user adjustable. The maximum, minimum, and average 
water levels as defined in the following sections shall be interpreted 
to mean that amount of water fill which is selected by the control 
system when the respective test loads are used, as defined in Table 2.8. 
The load usage factors which shall be used when calculating energy 
consumption values are defined in Table 4.1.3.
    3.2.3.2.2 User-adjustable. Four tests shall be conducted on clothes 
washers with user-adjustable automatic water fill controls that affect 
the relative wash water levels. The first test shall be conducted using 
the maximum test load and with the automatic water fill control system 
set in the setting that will give the most energy intensive result. The 
second test shall be conducted with the minimum test load and with the 
automatic water fill control system set in the setting that will give 
the least energy intensive result. The third test shall be conducted 
with the average test load and with the automatic water fill control 
system set in the setting that will give the most energy intensive 
result for the given test load. The fourth test shall be conducted with 
the average test load and with the automatic water fill control system 
set in the setting that will give the least energy intensive result for 
the given test load. The energy and water consumption for the average 
test load and water level shall be the average of the third and fourth 
tests.
    3.2.3.3 Clothes washers with manual water fill control system. In 
accordance with Table 2.8, the water fill selector shall be set to the 
maximum water level available for the wash cycle under test for the 
maximum test load size and the minimum water level available for the 
wash cycle under test for the minimum test load size.

                                        Table 3.2--Test Section Reference
----------------------------------------------------------------------------------------------------------------
             Max. wash temp. available                   <=135 [deg]F (57.2 [deg]C)       135 [deg]F
----------------------------------------------------------------------------------------    (57.2 [deg]C) \2\
 Number of wash temp. Selections in the energy test                                     ------------------------
                       cycle                             1          2      2      3      3
----------------------------------------------------------------------------------------------------------------
Test Sections Required to be Followed..............  .........  .........  ............        3.3          3.3
                                                     .........        3.4          3.4   .........          3.4
                                                     .........  .........          3.5         3.5          3.5
                                                           3.6        3.6          3.6         3.6          3.6
                                                       \1\ 3.7    \1\ 3.7      \1\ 3.7     \1\ 3.7      \1\ 3.7
                                                           3.8        3.8          3.8         3.8          3.8
----------------------------------------------------------------------------------------------------------------
\1\ Only applicable to machines with warm rinse in any cycle.
\2\ This only applies to water heating clothes washers on which the maximum wash temperature available exceeds
  135 [deg]F (57.2 [deg]C).

    3.3 ``Extra-Hot Wash'' (Max Wash Temp 135 [deg]F (57.2 
[deg]C)) for water heating clothes washers only. Water and electrical 
energy consumption shall be measured for each water fill level and/or 
test load size as specified in 3.3.1 through 3.3.3 for the hottest wash 
setting available.
    Non-reversible temperature indicator labels, adhered to the inside 
of the clothes container, may be used to confirm that an extra-hot wash 
temperature greater than 135 [deg]F has been achieved during the wash 
cycle, under the following conditions. The label must remain waterproof, 
intact, and adhered to the wash drum throughout an entire wash cycle; 
provide consistent maximum temperature readings; and provide repeatable 
temperature indications sufficient to demonstrate that a wash 
temperature of greater than 135 [deg]F has been achieved. The label must 
have been verified to consistently indicate temperature measurements 
with an accuracy of 1 [deg]F if the label provides 
a temperature indicator at 135 [deg]F. If the label does not provide a 
temperature indicator at 135 [deg]F, the label must have been verified 
to consistently indicate temperature measurements with an accuracy of 
1 [deg]F if the next-highest temperature indicator 
is greater than 135 [deg]F and less than 140 [deg]F, or 3 [deg]F if the next-highest temperature indicator is 
140 [deg]F or greater. If the label does not provide a temperature 
indicator at 135 [deg]F, failure to activate the next-highest 
temperature indicator does not necessarily indicate the lack of an 
extra-hot wash temperature. However, such a result would not be 
considered a valid test due to the lack of verification of the water 
temperature requirement, in which case an alternative method must be 
used to confirm that an extra-hot wash temperature greater than 135 
[deg]F has been achieved during the wash cycle.
    If using a temperature indicator label to test a front-loading 
clothes washer, adhere the label along the interior surface of the

[[Page 424]]

clothes container drum, midway between the front and the back of the 
drum, adjacent to one of the baffles. If using a temperature indicator 
label to test a top-loading clothes washer, adhere the label along the 
interior surface of the clothes container drum, on the vertical portion 
of the sidewall, as close to the bottom of the container as possible.
    3.3.1 Maximum test load and water fill. Hot water consumption 
(Hmx), cold water consumption (Cmx), and 
electrical energy consumption (Emx) shall be measured for an 
extra hot wash/cold rinse energy test cycle, with the controls set for 
the maximum water fill level. The maximum test load size is to be used 
and shall be determined per Table 5.1.
    3.3.2 Minimum test load and water fill. Hot water consumption 
(Hmn), cold water consumption (Cmn), and 
electrical energy consumption (Emn) shall be measured for an 
extra hot wash/cold rinse energy test cycle, with the controls set for 
the minimum water fill level. The minimum test load size is to be used 
and shall be determined per Table 5.1.
    3.3.3 Average test load and water fill. For clothes washers with an 
automatic water fill control system, measure the values for hot water 
consumption (Hma), cold water consumption (Cma), 
and electrical energy consumption (Ema) for an extra-hot 
wash/cold rinse energy test cycle, with an average test load size as 
determined per Table 5.1.
    3.4 ``Hot Wash'' (Max Wash Temp<=135 [deg]F (57.2 [deg]C)). Water 
and electrical energy consumption shall be measured for each water fill 
level or test load size as specified in 3.4.1 through 3.4.3 for a 135 
[deg]F (57.2 [deg]C)) wash, if available, or for the hottest selection 
less than 135 [deg]F (57.2 [deg]C)).
    3.4.1 Maximum test load and water fill. Hot water consumption 
(Hhx), cold water consumption (Chx), and 
electrical energy consumption (Ehx) shall be measured for a 
hot wash/cold rinse energy test cycle, with the controls set for the 
maximum water fill level. The maximum test load size is to be used and 
shall be determined per Table 5.1.
    3.4.2 Minimum test load and water fill. Hot water consumption 
(Hhn), cold water consumption (Chn), and 
electrical energy consumption (Ehn) shall be measured for a 
hot wash/cold rinse energy test cycle, with the controls set for the 
minimum water fill level. The minimum test load size is to be used and 
shall be determined per Table 5.1.
    3.4.3  Average test load and water fill. For clothes washers with an 
automatic water fill control system, measure the values for hot water 
consumption (Hha), cold water consumption (Cha), 
and electrical energy consumption (Eha) for a hot wash/cold 
rinse energy test cycle, with an average test load size as determined 
per Table 5.1.
    3.5 ``Warm Wash.'' Water and electrical energy consumption shall be 
determined for each water fill level and/or test load size as specified 
in 3.5.1 through 3.5.3 for the applicable warm water wash 
temperature(s). For a clothes washer with fewer than four discrete warm 
wash selections, test all warm wash temperature selections. For a 
clothes washer that offers four or more warm wash selections, test at 
all discrete selections, or test at the 25 percent, 50 percent, and 75 
percent positions of the temperature selection device between the 
hottest hot (<=135 [deg]F (57.2 [deg]C)) wash and the coldest cold wash. 
If a selection is not available at the 25, 50 or 75 percent position, in 
place of each such unavailable selection use the next warmer setting. 
Each reportable value to be used for the warm water wash setting shall 
be the arithmetic average of the results from all tests conducted 
pursuant to this section.
    3.5.1  Maximum test load and water fill. Hot water consumption 
(Hwx), cold water consumption (Cwx), and electrical energy consumption 
(Ewx) shall be measured with the controls set for the maximum water fill 
level. The maximum test load size is to be used and shall be determined 
per Table 5.1.
    3.5.2  Minimum test load and water fill. Hot water consumption 
(Hwn), cold water consumption (Cwn), and electrical energy consumption 
(Ewn) shall be measured with the controls set for the minimum water fill 
level. The minimum test load size is to be used and shall be determined 
per Table 5.1.
    3.5.3  Average test load and water fill. For clothes washers with an 
automatic water fill control system, measure the values for hot water 
consumption (Hwa), cold water consumption (Cwa), and electrical energy 
consumption (Ewa) with an average test load size as determined per Table 
5.1.
    3.6 ``Cold Wash'' (Minimum Wash Temperature Selection). Water and 
electrical energy consumption shall be measured for each water fill 
level or test load size as specified in sections 3.6.1 through 3.6.3 of 
this appendix for the coldest wash temperature selection available. For 
a clothes washer that offers two or more wash temperature settings 
labeled as cold, such as ``Cold'' and ``Tap Cold,'' the setting with the 
minimum wash temperature shall be considered the cold wash. If any of 
the other cold wash temperature settings add hot water to raise the wash 
temperature above the cold water supply temperature, as defined in 
section 2.3 of this appendix, those setting(s) shall be considered warm 
wash setting(s), as defined in section 1.20 of this appendix. If none of 
the cold wash temperature settings add hot water for any of the water 
fill levels or test load sizes required for the energy test cycle, the 
wash temperature setting labeled as ``Cold'' shall be considered the 
cold wash, and the other wash temperature setting(s) labeled as cold 
shall not be required for testing.

[[Page 425]]

    3.6.1 Maximum test load and water fill. Hot water consumption 
(HcX), cold water consumption (CcX), and 
electrical energy consumption (EcX) shall be measured for a 
cold wash/cold rinse energy test cycle, with the controls set for the 
maximum water fill level. The maximum test load size is to be used and 
shall be determined per Table 5.1 of this appendix.
    3.6.2 Minimum test load and water fill. Hot water consumption 
(Hcn), cold water consumption (Ccn), and 
electrical energy consumption (Ecn) shall be measured for a 
cold wash/cold rinse energy test cycle, with the controls set for the 
minimum water fill level. The minimum test load size is to be used and 
shall be determined per Table 5.1 of this appendix.
    3.6.3 Average test load and water fill. For clothes washers with an 
automatic water fill control system, measure the values for hot water 
consumption (Hca), cold water consumption (Cca), 
and electrical energy consumption (Eca) for a cold wash/cold 
rinse energy test cycle, with an average test load size as determined 
per Table 5.1 of this appendix.
    3.7 Warm Rinse. Tests in sections 3.7.1 and 3.7.2 shall be conducted 
with the hottest rinse temperature available. If multiple wash 
temperatures are available with the hottest rinse temperature, any 
``warm wash'' temperature may be selected to conduct the tests.
    3.7.1 For the rinse only, measure the amount of hot water consumed 
by the clothes washer including all deep and spray rinses, for the 
maximum (RX), minimum (Rn), and, if required by 
section 3.5.3 of this appendix, average (Ra) test load sizes 
or water fill levels.
    3.7.2 Measure the amount of electrical energy consumed by the 
clothes washer to heat the rinse water only, including all deep and 
spray rinses, for the maximum (ERX), minimum 
(ERn), and, if required by section 3.5.3 of this appendix, 
average (ERa) test load sizes or water fill levels.
    3.8 Remaining Moisture Content:
    3.8.1 The wash temperature will be the same as the rinse temperature 
for all testing. Use the maximum test load as defined in Table 5.1 and 
section 3.1 for testing.
    3.8.2 For clothes washers with cold rinse only:
    3.8.2.1 Record the actual `bone dry' weight of the test load 
(WImax), then place the test load in the clothes washer.
    3.8.2.2 Set water level selector to maximum fill.
    3.8.2.3 Run the energy test cycle.
    3.8.2.4 Record the weight of the test load immediately after 
completion of the energy test cycle (WCmax).
    3.8.2.5 Calculate the remaining moisture content of the maximum test 
load, RMCMAX, expressed as a percentage and defined as:

RMCmax = ((WCmax-WImax)/
          WImax) x 100%

    3.8.3 For clothes washers with cold and warm rinse options:
    3.8.3.1 Complete steps 3.8.2.1 through 3.8.2.4 for cold rinse. 
Calculate the remaining moisture content of the maximum test load for 
cold rinse, RMCCOLD, expressed as a percentage and defined 
as:

RMCCOLD = ((WCmax-WImax)/
          WImax) x 100%

    3.8.3.2 Complete steps 3.8.2.1 through 3.8.2.4 for warm rinse. 
Calculate the remaining moisture content of the maximum test load for 
warm rinse, RMCWARM, expressed as a percentage and defined 
as:

RMCWARM = ((WCmax - WImax)/
          WImax) x 100%

    3.8.3.3 Calculate the remaining moisture content of the maximum test 
load, RMCmax, expressed as a percentage and defined as:

RMCmax = RMCCOLD x (1-TUFr) + 
          RMCWARM x (TUFr).

where:

TUFr is the temperature use factor for warm rinse as defined 
          in Table 4.1.1.

    3.8.4 Clothes washers which have options that result in different 
RMC values, such as multiple selection of spin speeds or spin times, 
that are available in the energy test cycle, shall be tested at the 
maximum and minimum extremes of the available options, excluding any 
``no spin'' (zero spin speed) settings, in accordance with requirements 
in 3.8.2 or 3.8.3. The calculated RMCmax extraction and 
RMCmin extraction at the maximum and minimum settings, 
respectively, shall be combined as follows and the final RMC to be used 
in section 4.3 shall be:

RMC = 0.75 x RMCmax extraction + 0.25 x 
          RMCmin extraction
    3.8.5 The procedure for calculating RMC as defined in section 
3.8.2.5, 3.8.3.3., or 3.8.4 of this appendix may be replicated twice in 
its entirety, for a total of three independent RMC measurements. If 
three replications of the RMC measurement are performed, use the average 
of the three RMC measurements as the final RMC in section 4.3 of this 
appendix.

        4. Calculation of Derived Results From Test Measurements

    4.1 Hot water and machine electrical energy consumption of clothes 
washers.
    4.1.1 Per-cycle temperature-weighted hot water consumption for 
maximum, average, and minimum water fill levels using each appropriate 
load size as defined in section 2.8 and Table 5.1. Calculate for the 
cycle under test the per-cycle temperature weighted hot water 
consumption for the maximum water fill level, Vhx, the 
average water fill level, Vha, and the minimum water fill 
level, Vhn,

[[Page 426]]

expressed in gallons per cycle (or liters per cycle) and defined as:

(a) Vhx = [Hmx x TUFm] + 
          [Hhx x TUFh] + [Hwx x 
          TUFw] + [Hcx x TUFc] + 
          [Rx x TUFr]
(b) Vha = [Hma x TUFm] + 
          [Hha x TUFh] + [Hwa x 
          TUFw] + [Hca x TUFc] + 
          [Ra x TUFr]
(c) Vhn = [Hmn x TUFm] + 
          [Hhn x TUFh] + [Hwn x 
          TUFw] + [Hcn x TUFc] + 
          [Rn x TUFr]

where:

Hmx, Hma, and Hmn, are reported hot 
          water consumption values, in gallons per-cycle (or liters per 
          cycle), at maximum, average, and minimum water fill, 
          respectively, for the extra-hot wash cycle with the 
          appropriate test loads as defined in section 2.8.
Hhx, Hha, and Hhn, are reported hot 
          water consumption values, in gallons per-cycle (or liters per 
          cycle), at maximum, average, and minimum water fill, 
          respectively, for the hot wash cycle with the appropriate test 
          loads as defined in section 2.8.
Hwx, Hwa, and Hwn, are reported hot 
          water consumption values, in gallons per-cycle (or liters per 
          cycle), at maximum, average, and minimum water fill, 
          respectively, for the warm wash cycle with the appropriate 
          test loads as defined in section 2.8.
Hcx, Hca, and Hcn, are reported hot 
          water consumption values, in gallons per-cycle (or liters per 
          cycle), at maximum, average, and minimum water fill, 
          respectively, for the cold wash cycle with the appropriate 
          test loads as defined in section 2.8.
Rx, Ra, and Rn are the reported hot 
          water consumption values, in gallons per-cycle (or liters per 
          cycle), at maximum, average, and minimum water fill, 
          respectively, for the warm rinse cycle and the appropriate 
          test loads as defined in section 2.8.
TUFm, TUFh, TUFw, TUFc, and 
          TUFr are temperature use factors for extra hot 
          wash, hot wash, warm wash, cold wash, and warm rinse 
          temperature selections, respectively, and are as defined in 
          Table 4.1.1.

                                      Table 4.1.1--Temperature Use Factors
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
Max Wash Temp Available.......  <=135 [deg]F     <=135 [deg]F     <=135 [deg]F    135  135
                                                                                   [deg]F          [deg]F
                                (57.2 [deg]C)    (57.2 [deg]C)    (57.2 [deg]C)   (57.2 [deg]C)   (57.2 [deg]C)
No. Wash Temp Selections......  Single           2 Temps          2    3 Temps         3
                                                                   Temps                           Temps
TUFm (extra hot)..............  NA               NA               NA              0.14            0.05
TUFh (hot)....................  NA               0.63             0.14            NA              0.09
TUFw (warm)...................  NA               NA               0.49            0.49            0.49
TUFc (cold)...................  1.00             0.37             0.37            0.37            0.37
TUFr (warm rinse).............  0.27             0.27             0.27            0.27            0.27
----------------------------------------------------------------------------------------------------------------

    4.1.2 Total per-cycle hot water energy consumption for all maximum, 
average, and minimum water fill levels tested. Calculate the total per-
cycle hot water energy consumption for the maximum water fill level, 
HEmax, the minimum water fill level, HEmin, and 
the average water fill level, HEavg, expressed in kilowatt-
hours per cycle and defined as:

(a) HEmax = [Vhx x T x K] = Total energy when a 
          maximum load is tested.
(b) HEavg = [Vha x T x K] = Total energy when an 
          average load is tested.
(c) HEmin = [Vhn x T x K] = Total energy when a 
          minimum load is tested.

where:

T = Temperature rise = 75 [deg]F (41.7 [deg]C).
K = Water specific heat in kilowatt-hours per gallon degree F = 0.00240 
          (0.00114 kWh/L-[deg]C).
Vhx Vha, and Vhn, are as defined in 
          4.1.1.

    4.1.3 Total weighted per-cycle hot water energy consumption. 
Calculate the total weighted per cycle hot water energy consumption, 
HET, expressed in kilowatt-hours per cycle and defined as:

HET = [HEmax x Fmax] + 
          [HEavg x Favg] + [HEmn x 
          Fmin]

where:

HEmax, HEavg, and HEmin are as defined 
          in 4.1.2.
Fmax, Favg, and Fmin are the load usage 
          factors for the maximum, average, and minimum test loads based 
          on the size and type of control system on the washer being 
          tested. The values are as shown in table 4.1.3.

                     Table 4.1.3--Load Usage Factors
------------------------------------------------------------------------
                                                      Water fill control
                                                            system
                 Load usage factor                  --------------------
                                                      Manual   Automatic
------------------------------------------------------------------------
Fmax =.............................................     0.72    0.12 \2\
                                                         \1\
Favg =.............................................  .......    0.74 \2\
Fmin =.............................................     0.28    0.14 \2\
                                                         \1\
------------------------------------------------------------------------
\1\Reference 3.2.3.3.
\2\Reference 3.2.3.2.

    4.1.4 Total per-cycle hot water energy consumption using gas-heated 
or oil-heated water, for product labeling requirements. Calculate for 
the energy test cycle the per-cycle hot water consumption, 
HETG, using gas-heated or oil-

[[Page 427]]

heated water, expressed in Btu per cycle (or megajoules per cycle) and 
defined as:

HETG = HET x 1/e x 3412 Btu/kWh or HETG 
          = HET x 1/e x 3.6 MJ/kWh

where:

e = Nominal gas or oil water heater efficiency = 0.75.
HET = As defined in 4.1.3.

    4.1.5 Per-cycle machine electrical energy consumption for all 
maximum, average, and minimum test load sizes. Calculate the total per-
cycle machine electrical energy consumption for the maximum water fill 
level, MEmax, the minimum water fill level, MEmin, 
and the average water fill level, MEavg, expressed in 
kilowatt-hours per cycle and defined as:

(a)MEmax = [Emx x TUFm] + 
          [Ehx x TUFh] + [Ewx x 
          TUFw] + [Ecx x TUFc] + 
          [ERx x TUFr]
(b) MEavg = [Ema x TUFm] + 
          [Eha x TUFh] + [Ewa x 
          TUFw] + [Eca x TUFc] + 
          [ERa x TUFr]
(c) MEmin = [Emn x TUFm] + 
          [Ehn x TUFh] + [Ewn x 
          TUFw] + [Ecn x xTUFc] + 
          [ERn x TUFr]

where:

Emx, Ema, and Emn, are reported 
          electrical energy consumption values, in kilowatt-hours per 
          cycle, at maximum, average, and minimum test loads, 
          respectively, for the extra-hot wash cycle.
Ehx, Eha, and Ehn, are reported 
          electrical energy consumption values, in kilowatt-hours per 
          cycle, at maximum, average, and minimum test loads, 
          respectively, for the hot wash cycle.
Ewx, Ewa, and Ewn, are reported 
          electrical energy consumption values, in kilowatt-hours per 
          cycle, at maximum, average, and minimum test loads, 
          respectively, for the warm wash cycle.
Ecx, Eca, and Ecn, are reported 
          electrical energy consumption values, in kilowatt-hours per 
          cycle, at maximum, average, and minimum test loads, 
          respectively, for the cold wash cycle.
ERx, ERa, ERn, are reported electrical 
          energy consumption values, in kilowatt-hours per cycle, at 
          maximum, average, and minimum test loads, respectively, for 
          the warm rinse cycle per definitions in 3.7.2 of this 
          appendix.
TUFm, TUFh, TUFw, TUFc, and 
          TUFr are as defined in Table 4.1.1.

    4.1.6 Total weighted per-cycle machine electrical energy 
consumption. Calculate the total per cycle load size weighted energy 
consumption, MET, expressed in kilowatt-hours per cycle and 
defined as:

MET = [MEmax x Fmax] + 
          [MEavg x Favg] + [MEmin x 
          Fmin]

where:

MEmax, MEavg, and MEmin are as defined 
          in 4.1.5.
Fmax, Favg, and Fmin are as defined in 
          Table 4.1.3.

    4.1.7 Total per-cycle energy consumption when electrically heated 
water is used. Calculate for the energy test cycle the total per-cycle 
energy consumption, ETE, using electrical heated water, 
expressed in kilowatt-hours per cycle and defined as:

ETE = HET + MET

where:

MET = As defined in 4.1.6.
HET = As defined in 4.1.3.

    4.2 Water consumption of clothes washers.
    4.2.1 Per-cycle water consumption. Calculate the maximum, average, 
and minimum total water consumption, expressed in gallons per cycle (or 
liters per cycle), for the cold wash/cold rinse cycle and defined as:

Qmax = [Hcx + Ccx]
Qavg = [Hca + Cca]
Qmin = [Hcn + Ccn]

where:

Hcx, Ccx, Hca, Cca, 
          Hcn, and Ccn are as defined in 3.6.

    4.2.2 Total weighted per-cycle water consumption. Calculate the 
total weighted per cycle consumption, QT, expressed in 
gallons per cycle (or liters per cycle) and defined as:

QT = [Qmax x Fmax] + [Qavg x 
          Favg] + [Qmin x Fmin]

where:

Qmax, Qavg, and Qmin are as defined in 
          4.2.1.
Fmax, Favg, and Fmin are as defined in 
          table 4.1.3.

    4.2.3 Water factor. Calculate the water factor, WF, expressed in 
gallons per cycle per cubic foot (or liters per cycle per liter), as:

WF = QT/C

where:

QT = As defined in section 4.2.2 of this appendix.
C = As defined in section 3.1.6 of this appendix.
    4.3 Per-cycle energy consumption for removal of moisture from test 
load. Calculate the per-cycle energy required to remove the moisture of 
the test load, DE, expressed in kilowatt-hours per cycle and 
defined as

DE = (LAF) x (Maximum test load weight) x (RMC--4%) x (DEF) x 
          (DUF)

where:

LAF = Load adjustment factor = 0.52.
Test load weight = As required in 3.8.1, expressed in lbs/cycle.
RMC = As defined in 3.8.2.5, 3.8.3.3 or 3.8.4.
DEF= nominal energy required for a clothes dryer to remove moisture from 
          clothes = 0.5 kWh/lb (1.1 kWh/kg).

[[Page 428]]

DUF = dryer usage factor, percentage of washer loads dried in a clothes 
          dryer = 0.84.

    4.4 Modified energy factor. Calculate the modified energy factor, 
MEF, expressed in cubic feet per kilowatt-hour per cycle (or liters per 
kilowatt-hour per cycle) and defined as:

MEF = C/(ETE + DE)

where:

C = As defined in section 3.1.6 of this appendix.
ETE = As defined in section 4.1.7 of this appendix.
DE = As defined in section 4.3 of this appendix.

                              5. Test Loads

                                                               Table 5.1--Test Load Sizes
--------------------------------------------------------------------------------------------------------------------------------------------------------
                             Container volume                                     Minimum load              Maximum load              Average load
--------------------------------------------------------------------------------------------------------------------------------------------------------
           cu. ft. =<                  liter =<            lb           kg           lb           kg           lb           kg
--------------------------------------------------------------------------------------------------------------------------------------------------------
0-0.80.....................................  0-22.7.......................         3.00         1.36         3.00         1.36         3.00         1.36
0.80-0.90..................................  22.7-25.5....................         3.00         1.36         3.50         1.59         3.25         1.47
0.90-1.00..................................  25.5-28.3....................         3.00         1.36         3.90         1.77         3.45         1.56
1.00-1.10..................................  28.3-31.1....................         3.00         1.36         4.30         1.95         3.65         1.66
1.10-1.20..................................  31.1-34.0....................         3.00         1.36         4.70         2.13         3.85         1.75
1.20-1.30..................................  34.0-36.8....................         3.00         1.36         5.10         2.31         4.05         1.84
1.30-1.40..................................  36.8-39.6....................         3.00         1.36         5.50         2.49         4.25         1.93
1.40-1.50..................................  39.6-42.5....................         3.00         1.36         5.90         2.68         4.45         2.02
1.50-1.60..................................  42.5-45.3....................         3.00         1.36         6.40         2.90         4.70         2.13
1.60-1.70..................................  45.3-48.1....................         3.00         1.36         6.80         3.08         4.90         2.22
1.70-1.80..................................  48.1-51.0....................         3.00         1.36         7.20         3.27         5.10         2.31
1.80-1.90..................................  51.0-53.8....................         3.00         1.36         7.60         3.45         5.30         2.40
1.90-2.00..................................  53.8-56.6....................         3.00         1.36         8.00         3.63         5.50         2.49
2.00-2.10..................................  56.6-59.5....................         3.00         1.36         8.40         3.81         5.70         2.59
2.10-2.20..................................  59.5-62.3....................         3.00         1.36         8.80         3.99         5.90         2.68
2.20-2.30..................................  62.3-65.1....................         3.00         1.36         9.20         4.17         6.10         2.77
2.30-2.40..................................  65.1-68.0....................         3.00         1.36         9.60         4.35         6.30         2.86
2.40-2.50..................................  68.0-70.8....................         3.00         1.36        10.00         4.54         6.50         2.95
2.50-2.60..................................  70.8-73.6....................         3.00         1.36        10.50         4.76         6.75         3.06
2.60-2.70..................................  73.6-76.5....................         3.00         1.36        10.90         4.94         6.95         3.15
2.70-2.80..................................  76.5-79.3....................         3.00         1.36        11.30         5.13         7.15         3.24
2.80-2.90..................................  79.3-82.1....................         3.00         1.36        11.70         5.31         7.35         3.33
2.90-3.00..................................  82.1-85.0....................         3.00         1.36        12.10         5.49         7.55         3.42
3.00-3.10..................................  85.0-87.8....................         3.00         1.36        12.50         5.67         7.75         3.52
3.10-3.20..................................  87.8-90.6....................         3.00         1.36        12.90         5.85         7.95         3.61
3.20-3.30..................................  90.6-93.4....................         3.00         1.36        13.30         6.03         8.15         3.70
3.30-3.40..................................  93.4-96.3....................         3.00         1.36        13.70         6.21         8.35         3.79
3.40-3.50..................................  96.3-99.1....................         3.00         1.36        14.10         6.40         8.55         3.88
3.50-3.60..................................  99.1-101.9...................         3.00         1.36        14.60         6.62         8.80         3.99
3.60-3.70..................................  101.9-104.8..................         3.00         1.36        15.00         6.80         9.00         4.08
3.70-3.80..................................  104.8-107.6..................         3.00         1.36        15.40         6.99         9.20         4.17
3.80-3.90..................................  107.6-110.4..................         3.00         1.36        15.80         7.16         9.40         4.26
3.90-4.00..................................  110.4-113.3..................         3.00         1.36        16.20         7.34         9.60         4.35
4.00-4.10..................................  113.3-116.1..................         3.00         1.36        16.60         7.53         9.80         4.45
4.10-4.20..................................  116.1-118.9..................         3.00         1.36        17.00         7.72        10.00         4.54
4.20-4.30..................................  118.9-121.8..................         3.00         1.36        17.40         7.90        10.20         4.63
4.30-4.40..................................  121.8-124.6..................         3.00         1.36        17.80         8.09        10.40         4.72
4.40-4.50..................................  124.6-127.4..................         3.00         1.36        18.20         8.27        10.60         4.82
4.50-4.60..................................  127.4-130.3..................         3.00         1.36        18.70         8.46        10.85         4.91
4.60-4.70..................................  130.3-133.1..................         3.00         1.36        19.10         8.65        11.05         5.00
4.70-4.80..................................  133.1-135.9..................         3.00         1.36        19.50         8.83        11.25         5.10
4.80-4.90..................................  135.9-138.8..................         3.00         1.36        19.90         9.02        11.45         5.19
4.90-5.00..................................  138.8-141.6..................         3.00         1.36        20.30         9.20        11.65         5.28
5.00-5.10..................................  141.6-144.4..................         3.00         1.36        20.70         9.39        11.85         5.38
5.10-5.20..................................  144.4-147.2..................         3.00         1.36        21.10         9.58        12.05         5.47
5.20-5.30..................................  147.2-150.1..................         3.00         1.36        21.50         9.76        12.25         5.56
5.30-5.40..................................  150.1-152.9..................         3.00         1.36        21.90         9.95        12.45         5.65
5.40-5.50..................................  152.9-155.7..................         3.00         1.36        22.30        10.13        12.65         5.75
5.50-5.60..................................  155.7-158.6..................         3.00         1.36        22.80        10.32        12.90         5.84
5.60-5.70..................................  158.6-161.4..................         3.00         1.36        23.20        10.51        13.10         5.93
5.70-5.80..................................  161.4-164.2..................         3.00         1.36        23.60        10.69        13.30         6.03
5.80-5.90..................................  164.2-167.1..................         3.00         1.36        24.00        10.88        13.50         6.12
5.90-6.00..................................  167.1-169.9..................         3.00         1.36        24.40        11.06        13.70         6.21
--------------------------------------------------------------------------------------------------------------------------------------------------------
Notes: (1) All test load weights are bone dry weights.
(2) Allowable tolerance on the test load weights are 0.10 lbs (0.05 kg).


[[Page 429]]

                      6. Waivers and Field Testing

    6.1 Waivers and Field Testing for Non-conventional Clothes Washers. 
Manufacturers of nonconventional clothes washers, such as clothes 
washers with adaptive control systems, must submit a petition for waiver 
pursuant to 10 CFR 430.27 to establish an acceptable test procedure for 
that clothes washer. For these and other clothes washers that have 
controls or systems such that the DOE test procedures yield results that 
are so unrepresentative of the clothes washer's true energy consumption 
characteristics as to provide materially inaccurate comparative data, 
field testing may be appropriate for establishing an acceptable test 
procedure. The following are guidelines for field testing which may be 
used by manufacturers in support of petitions for waiver. These 
guidelines are not mandatory and the Department may determine that they 
do not apply to a particular model. Depending upon a manufacturer's 
approach for conducting field testing, additional data may be required. 
Manufacturers are encouraged to communicate with the Department prior to 
the commencement of field tests which may be used to support a petition 
for waiver. Section 6.3 provides an example of field testing for a 
clothes washer with an adaptive water fill control system. Other 
features, such as the use of various spin speed selections, could be the 
subject of field tests.
    6.2 Nonconventional Wash System Energy Consumption Test. The field 
test may consist of a minimum of 10 of the nonconventional clothes 
washers (``test clothes washers'') and 10 clothes washers already being 
distributed in commerce (``base clothes washers''). The tests should 
include a minimum of 50 energy test cycles per clothes washer. The test 
clothes washers and base clothes washers should be identical in 
construction except for the controls or systems being tested. Equal 
numbers of both the test clothes washer and the base clothes washer 
should be tested simultaneously in comparable settings to minimize 
seasonal or consumer laundering conditions or variations. The clothes 
washers should be monitored in such a way as to accurately record the 
average total energy and water consumption per cycle, including water 
heating energy when electrically heated water is used, and the energy 
required to remove the remaining moisture of the test load. The field 
test results should be used to determine the best method to correlate 
the rating of the test clothes washer to the rating of the base clothes 
washer.
    6.3 Adaptive water fill control system field test. Section 3.2.3.1 
defines the test method for measuring energy consumption for clothes 
washers which incorporate control systems having both adaptive and 
alternate cycle selections. Energy consumption calculated by the method 
defined in section 3.2.3.1 assumes the adaptive cycle will be used 50 
percent of the time. This section can be used to develop field test data 
in support of a petition for waiver when it is believed that the 
adaptive cycle will be used more than 50 percent of the time. The field 
test sample size should be a minimum of 10 test clothes washers. The 
test clothes washers should be totally representative of the design, 
construction, and control system that will be placed in commerce. The 
duration of field testing in the user's house should be a minimum of 50 
energy test cycles, for each unit. No special instructions as to cycle 
selection or product usage should be given to the field test 
participants, other than inclusion of the product literature pack which 
would be shipped with all units, and instructions regarding filling out 
data collection forms, use of data collection equipment, or basic 
procedural methods. Prior to the test clothes washers being installed in 
the field test locations, baseline data should be developed for all 
field test units by conducting laboratory tests as defined by section 1 
through section 5 of these test procedures to determine the energy 
consumption, water consumption, and remaining moisture content values. 
The following data should be measured and recorded for each wash load 
during the test period: wash cycle selected, the mode of the clothes 
washer (adaptive or manual), clothes load dry weight (measured after the 
clothes washer and clothes dryer cycles are completed) in pounds, and 
type of articles in the clothes load (e.g., cottons, linens, permanent 
press). The wash loads used in calculating the in-home percentage split 
between adaptive and manual cycle usage should be only those wash loads 
which conform to the definition of the energy test cycle.
    Calculate:

T = The total number of energy test cycles run during the field test
Ta = The total number of adaptive control energy test cycles
Tm = The total number of manual control energy test cycles

    The percentage weighting factors:

Pa = (Ta/T) x 100 (the percentage weighting for 
adaptive control selection)
Pm = (Tm/T) x 100 (the percentage weighting for 
manual control selection)

    Energy consumption (HET, MET, and 
DE) and water consumption (QT), values calculated 
in section 4 for the manual and

[[Page 430]]

adaptive modes, should be combined using Pa and Pm 
as the weighting factors.

[62 FR 45508, Aug. 27, 1997; 63 FR 16669, Apr. 6, 1998, as amended at 66 
FR 3330, Jan. 12, 2001; 68 FR 62204, Oct. 31, 2003; 69 FR 18803, Apr. 9, 
2004; 77 FR 13937, Mar. 7, 2012; 77 FR 20292, Apr. 4, 2012; 80 FR 46760, 
Aug. 5, 2015; 80 FR 62442, Oct. 16, 2015]



   Sec. Appendix J2 to Subpart B of Part 430--Uniform Test Method for 
Measuring the Energy Consumption of Automatic and Semi-automatic Clothes 
                                 Washers

    Note: Any representation related to the energy or water consumption 
of residential clothes washers must be based upon results generated 
using Appendix J2. Specifically, before February 1, 2016, 
representations must be based upon results generated either under this 
appendix or under Appendix J2 as it appeared in the 10 CFR parts 200-499 
edition revised as of January 1, 2015. Any representations made on or 
after February 1, 2016 must be made based upon results generated using 
this appendix.
    Before January 1, 2018, any representation related to the energy or 
water consumption of commercial clothes washers must be based on results 
generated using Appendix J1. Any representations made on or after 
January 1, 2018, must be based upon results generated using Appendix J2.

                       1. Definitions and Symbols

    1.1  Active mode means a mode in which the clothes washer is 
connected to a mains power source, has been activated, and is performing 
one or more of the main functions of washing, soaking, tumbling, 
agitating, rinsing, and/or removing water from the clothing, or is 
involved in functions necessary for these main functions, such as 
admitting water into the washer or pumping water out of the washer. 
Active mode also includes delay start and cycle finished modes.
    1.2  Active washing mode means a mode in which the clothes washer is 
performing any of the operations included in a complete cycle intended 
for washing a clothing load, including the main functions of washing, 
soaking, tumbling, agitating, rinsing, and/or removing water from the 
clothing.
    1.3  Adaptive control system means a clothes washer control system, 
other than an adaptive water fill control system, that is capable of 
automatically adjusting washer operation or washing conditions based on 
characteristics of the clothes load placed in the clothes container, 
without allowing or requiring user intervention or actions. The 
automatic adjustments may, for example, include automatic selection, 
modification, or control of any of the following: wash water 
temperature, agitation or tumble cycle time, number of rinse cycles, or 
spin speed. The characteristics of the clothes load, which could trigger 
such adjustments, could, for example, consist of or be indicated by the 
presence of either soil, soap, suds, or any other additive laundering 
substitute or complementary product.
    1.4  Adaptive water fill control system means a clothes washer 
automatic water fill control system that is capable of automatically 
adjusting the water fill level based on the size or weight of the 
clothes load placed in the clothes container.
    1.5  Automatic water fill control system means a clothes washer 
water fill control system that does not allow or require the user to 
determine or select the water fill level, and includes adaptive water 
fill control systems and fixed water fill control systems.
    1.6  Bone-dry means a condition of a load of test cloth that has 
been dried in a dryer at maximum temperature for a minimum of 10 
minutes, removed and weighed before cool down, and then dried again for 
10 minute periods until the final weight change of the load is 1 percent 
or less.
    1.7  Clothes container means the compartment within the clothes 
washer that holds the clothes during the operation of the machine.
    1.8  Cold rinse means the coldest rinse temperature available on the 
machine, as indicated to the user on the clothes washer control panel.
    1.9  Combined low-power mode means the aggregate of available modes 
other than active washing mode, including inactive mode, off mode, delay 
start mode, and cycle finished mode.
    1.10  Compact means a clothes washer that has a clothes container 
capacity of less than 1.6 ft\3\ (45 L).
    1.11  Cycle finished mode means an active mode that provides 
continuous status display, intermittent tumbling, or air circulation 
following operation in active washing mode.
    1.12 Delay start mode means an active mode in which activation of 
active washing mode is facilitated by a timer.
    1.13  Energy test cycle means the complete set of wash/rinse 
temperature selections required for testing, as determined according to 
section 2.12. Within the energy test cycle, the following definitions 
apply:
    (a) Cold Wash/Cold Rinse is the wash/rinse temperature selection 
determined by evaluating the flowchart in Figure 2.12.1 of this 
appendix.
    (b) Hot Wash/Cold Rinse is the wash/rinse temperature selection 
determined by evaluating the flowchart in Figure 2.12.2 of this 
appendix.

[[Page 431]]

    (c) Warm Wash/Cold Rinse is the wash/rinse temperature selection 
determined by evaluating the flowchart in Figure 2.12.3 of this 
appendix.
    (d) Warm Wash/Warm Rinse is the wash/rinse temperature selection 
determined by evaluating the flowchart in Figure 2.12.4 of this 
appendix.
    (e) Extra-Hot Wash/Cold Rinse is the wash/rinse temperature 
selection determined by evaluating the flowchart in Figure 2.12.5 of 
this appendix.
    1.14  Fixed water fill control system means a clothes washer 
automatic water fill control system that automatically terminates the 
fill when the water reaches an appropriate level in the clothes 
container.
    1.15  IEC 62301 means the test standard published by the 
International Electrotechnical Commission, entitled ``Household 
electrical appliances--Measurement of standby power,'' Publication 
62301, Edition 2.0 2011-01 (incorporated by reference; see Sec.  430.3).
    1.16  Inactive mode means a standby mode that facilitates the 
activation of active mode by remote switch (including remote control), 
internal sensor, or timer, or that provides continuous status display.
    1.17  Integrated modified energy factor means the quotient of the 
cubic foot (or liter) capacity of the clothes container divided by the 
total clothes washer energy consumption per cycle, with such energy 
consumption expressed as the sum of:
    (a) The machine electrical energy consumption;
    (b) The hot water energy consumption;
    (c) The energy required for removal of the remaining moisture in the 
wash load; and
    (d) The combined low-power mode energy consumption.
    1.18  Integrated water factor means the quotient of the total 
weighted per-cycle water consumption for all wash cycles in gallons 
divided by the cubic foot (or liter) capacity of the clothes washer.
    1.19  Load usage factor means the percentage of the total number of 
wash loads that a user would wash a particular size (weight) load.
    1.20  Lot means a quantity of cloth that has been manufactured with 
the same batches of cotton and polyester during one continuous process.
    1.21  Manual control system means a clothes washer control system 
that requires that the user make the choices that determine washer 
operation or washing conditions, such as, for example, wash/rinse 
temperature selections and wash time, before starting the cycle.
    1.22  Manual water fill control system means a clothes washer water 
fill control system that requires the user to determine or select the 
water fill level.
    1.23  Modified energy factor means the quotient of the cubic foot 
(or liter) capacity of the clothes container divided by the total 
clothes washer energy consumption per cycle, with such energy 
consumption expressed as the sum of the machine electrical energy 
consumption, the hot water energy consumption, and the energy required 
for removal of the remaining moisture in the wash load.
    1.24  Non-water-heating clothes washer means a clothes washer that 
does not have an internal water heating device to generate hot water.
    1.25  Normal cycle means the cycle recommended by the manufacturer 
(considering manufacturer instructions, control panel labeling, and 
other markings on the clothes washer) for normal, regular, or typical 
use for washing up to a full load of normally-soiled cotton clothing. 
For machines where multiple cycle settings are recommended by the 
manufacturer for normal, regular, or typical use for washing up to a 
full load of normally-soiled cotton clothing, then the Normal cycle is 
the cycle selection that results in the lowest IMEF or MEF value.
    1.26  Off mode means a mode in which the clothes washer is connected 
to a mains power source and is not providing any active or standby mode 
function, and where the mode may persist for an indefinite time.
    1.27  Roll means a subset of a lot.
    1.28  Standard means a clothes washer that has a clothes container 
capacity of 1.6 ft\3\ (45 L) or greater.
    1.29 Standby mode means any mode in which the clothes washer is 
connected to a mains power source and offers one or more of the 
following user oriented or protective functions that may persist for an 
indefinite time:
    (a) Facilitating the activation of other modes (including activation 
or deactivation of active mode) by remote switch (including remote 
control), internal sensor, or timer;
    (b) Continuous functions, including information or status displays 
(including clocks) or sensor-based functions.
    A timer is a continuous clock function (which may or may not be 
associated with a display) that provides regular scheduled tasks (e.g., 
switching) and that operates on a continuous basis.
    1.30 Symbol usage. The following identity relationships are provided 
to help clarify the symbology used throughout this procedure.

C--Capacity
C (with subscripts)--Cold Water Consumption
D--Energy Consumption for Removal of Moisture from Test Load
E--Electrical Energy Consumption
F--Load Usage Factor
H--Hot Water Consumption
HE--Hot Water Energy Consumption

[[Page 432]]

ME--Machine Electrical Energy Consumption
P--Power
Q--Water Consumption
RMC--Remaining Moisture Content
S--Annual Hours
TUF--Temperature Use Factor
V--Temperature-Weighted Hot Water Consumption
W--Mass of Water
WC--Weight of Test Load After Extraction
WI--Initial Weight of Dry Test Load

Subscripts:

a or avg--Average Test Load
c--Cold Wash (minimum wash temp.)
corr--Corrected (RMC values)
h--Hot Wash (maximum wash temp. <=135 [deg]F (57.2 [deg]C))
ia--Inactive Mode
LP--Combined Low-Power Mode
m--Extra-Hot Wash (maximum wash temp. 135 [deg]F (57.2 
[deg]C))
n--Minimum Test Load
o--Off Mode
oi--Combined Off and Inactive Modes
T--Total
w--Warm Wash
ww--Warm Wash/Warm Rinse
x--Maximum Test Load

    The following examples are provided to show how the above symbols 
can be used to define variables:

EmX = ``Electrical Energy Consumption'' for an ``Extra-Hot 
          Wash'' and ``Maximum Test Load''
HEmin = ``Hot Water Energy Consumption'' for the ``Minimum 
          Test Load''
Qhmin = ``Water Consumption'' for a ``Hot Wash'' and 
          ``Minimum Test Load''
TUFm = ``Temperature Use Factor'' for an ``Extra-Hot Wash''

    1.31 Temperature use factor means, for a particular wash/rinse 
temperature setting, the percentage of the total number of wash loads 
that an average user would wash with that setting.
    1.32 Thermostatically controlled water valves means clothes washer 
controls that have the ability to sense and adjust the hot and cold 
supply water.
    1.33 Water factor means the quotient of the total weighted per-cycle 
water consumption for cold wash divided by the cubic foot (or liter) 
capacity of the clothes washer.
    1.34 Water-heating clothes washer means a clothes washer where some 
or all of the hot water for clothes washing is generated by a water 
heating device internal to the clothes washer.

                          2. Testing Conditions

    2.1 Electrical energy supply.
    2.1.1 Supply voltage and frequency. Maintain the electrical supply 
at the clothes washer terminal block within 2 percent of 120, 120/240, 
or 120/208Y volts as applicable to the particular terminal block wiring 
system and within 2 percent of the nameplate frequency as specified by 
the manufacturer. If the clothes washer has a dual voltage conversion 
capability, conduct test at the highest voltage specified by the 
manufacturer.
    2.1.2 Supply voltage waveform. For the combined low-power mode 
testing, maintain the electrical supply voltage waveform indicated in 
Section 4, Paragraph 4.3.2 of IEC 62301. If the power measuring 
instrument used for testing is unable to measure and record the total 
harmonic content during the test measurement period, total harmonic 
content may be measured and recorded immediately before and after the 
test measurement period.
    2.2 Supply water. Maintain the temperature of the hot water supply 
at the water inlets between 130 [deg]F (54.4 [deg]C) and 135 [deg]F 
(57.2 [deg]C), using 135 [deg]F as the target temperature. Maintain the 
temperature of the cold water supply at the water inlets between 55 
[deg]F (12.8 [deg]C) and 60 [deg]F (15.6 [deg]C), using 60 [deg]F as the 
target temperature.
    2.3 Water pressure. Maintain the static water pressure at the hot 
and cold water inlet connection of the clothes washer at 35 pounds per 
square inch gauge (psig)  2.5 psig (241.3 kPa 
 17.2 kPa) when the water is flowing.
    2.4 Test room temperature. For all clothes washers, maintain the 
test room ambient air temperature at 75  5 [deg]F 
(23.9  2.8 [deg]C) for active mode testing and 
combined low-power mode testing. Do not use the test room ambient air 
temperature conditions specified in Section 4, Paragraph 4.2 of IEC 
62301 for combined low-power mode testing.
    2.5 Instrumentation. Perform all test measurements using the 
following instruments, as appropriate:
    2.5.1 Weighing scales.
    2.5.1.1 Weighing scale for test cloth. The scale used for weighing 
test cloth must have a resolution of no larger than 0.2 oz (5.7 g) and a 
maximum error no greater than 0.3 percent of the measured value.
    2.5.1.2 Weighing scale for clothes container capacity measurement. 
The scale used for performing the clothes container capacity measurement 
must have a resolution no larger than 0.50 lbs (0.23 kg) and a maximum 
error no greater than 0.5 percent of the measured value.
    2.5.2 Watt-hour meter. The watt-hour meter used to measure 
electrical energy consumption must have a resolution no larger than 1 Wh 
(3.6 kJ) and a maximum error no greater than 2 percent of the measured 
value for any demand greater than 50 Wh (180.0 kJ).
    2.5.3 Watt meter. The watt meter used to measure combined low-power 
mode power consumption must comply with the requirements specified in 
Section 4, Paragraph 4.4 of IEC 62301 (incorporated by reference, see

[[Page 433]]

Sec.  430.3). If the power measuring instrument used for testing is 
unable to measure and record the crest factor, power factor, or maximum 
current ratio during the test measurement period, the crest factor, 
power factor, and maximum current ratio may be measured and recorded 
immediately before and after the test measurement period.
    2.5.4 Water and air temperature measuring devices. The temperature 
devices used to measure water and air temperature must have an error no 
greater than 1 [deg]F (0.6 
[deg]C) over the range being measured.
    2.5.5 Water meter. A water meter must be installed in both the hot 
and cold water lines to measure water flow and/or water consumption. The 
water meters must have a resolution no larger than 0.1 gallons (0.4 
liters) and a maximum error no greater than 2 percent for the water flow 
rates being measured.
    2.5.6 Water pressure gauge. A water pressure gauge must be installed 
in both the hot and cold water lines to measure water pressure. The 
water pressure gauges must have a resolution of 1 pound per square inch 
gauge (psig) (6.9 kPa) and a maximum error no greater than 5 percent of 
any measured value.
    2.6 Bone dryer temperature. The dryer used for bone drying must heat 
the test cloth load above 210 [deg]F (99 [deg]C).
    2.7 Test cloths.
    2.7.1 Energy test cloth. The energy test cloth must be made from 
energy test cloth material, as specified in section 2.7.4 of this 
Appendix, that is 24  \1/2\ inches by 36  \1/2\ inches (61.0  1.3 cm by 
91.4  1.3 cm) and has been hemmed to 22 \ 1/2\ inches by 34  \1/2\ inches 
(55.9  1.3 cm by 86.4  1.3 
cm) before washing. The energy test cloth must be clean and must not be 
used for more than 60 test runs (after preconditioning as specified in 
2.7.3 of this appendix). All energy test cloth must be permanently 
marked identifying the lot number of the material. Mixed lots of 
material must not be used for testing a clothes washer.
    2.7.2 Energy stuffer cloth. The energy stuffer cloth must be made 
from energy test cloth material, as specified in section 2.7.4 of this 
Appendix, that is 12  \1/4\ inches by 12  \1/4\inches (30.5  0.6 cm by 30.5 
 0.6 cm) and has been hemmed to 10  \1/4\ inches by 10  \1/4\ inches 
(25.4  0.6 cm by 25.4  0.6 
cm) before washing. The energy stuffer cloth must be clean and must not 
be used for more than 60 test runs (after preconditioning as specified 
in section 2.7.3 of this Appendix). All energy stuffer cloth must be 
permanently marked identifying the lot number of the material. Mixed 
lots of material must not be used for testing a clothes washer.
    2.7.3 Preconditioning of test cloths. The new test cloths, including 
energy test cloths and energy stuffer cloths, must be pre-conditioned in 
a clothes washer in the following manner:
    Perform five complete wash-rinse-spin cycles, the first two with 
AHAM Standard Detergent Formula 3 and the last three without detergent. 
Place the test cloth in a clothes washer set at the maximum water level. 
Wash the load for ten minutes in soft water (17 ppm hardness or less) 
using 27.0 grams + 4.0 grams per pound of cloth load of AHAM Standard 
detergent Formula 3. The wash temperature is to be controlled to 135 
[deg]F  5 [deg]F (57.2 [deg]C  2.8 [deg]C) and the rinse temperature is to be 
controlled to 60 [deg]F 5 [deg]F (15.6 [deg]C 
 2.8 [deg]C). Repeat the cycle with detergent and 
then repeat the cycle three additional times without detergent, bone 
drying the load between cycles (for a total of five complete wash-rinse-
spin cycles).
    2.7.4 Energy test cloth material. The energy test cloths and energy 
stuffer cloths must be made from fabric meeting the following 
specifications:
    2.7.4.1 The test cloth material should come from a roll of material 
with a width of approximately 63 inches and approximately 500 yards per 
roll. However, other sizes may be used if the test cloth material meets 
the specifications listed in sections 2.7.4.2 through 2.7.4.7.
    2.7.4.2 Nominal fabric type. Pure finished bleached cloth made with 
a momie or granite weave, which is nominally 50 percent cotton and 50 
percent polyester.
    2.7.4.3 Fabric weight. 5.60  0.25 ounces per 
square yard (190.0  8.4 g/m\2\).
    2.7.4.4 Thread count. 65 x 57 per inch (warp x fill), 2 percent.
    2.7.4.5 Fiber content of warp and filling yarn. 50 percent 4 percent cotton, with the balance being polyester, open 
end spun, 15/1 5 percent cotton count blended 
yarn.
    2.7.4.6 Water repellent finishes, such as fluoropolymer stain 
resistant finishes, must not be applied to the test cloth. Verify the 
absence of such finishes using both of the following:
    2.7.4.6.1 AATCC Test Method 118-2007 (incorporated by reference; see 
Sec.  430.3) for each new lot of test cloth (when purchased from the 
mill) to confirm the absence of ScotchguardTM or other water 
repellent finish (required scores of ``D'' across the board).
    2.7.4.6.2 AATCC Test Method 79-2010 (incorporated by reference; see 
Sec.  430.3) for each new lot of test cloth (when purchased from the 
mill) to confirm the absence of ScotchguardTM or other water 
repellent finish (time to absorb one drop should be on the order of 1 
second).
    2.7.4.7 The maximum shrinkage after preconditioning must not be more 
than 5 percent of the length and width. Measure per AATCC Test Method 
135-2010 (incorporated by reference; see Sec.  430.3).
    2.7.5 The moisture absorption and retention must be evaluated for 
each new lot of test cloth using the standard extractor Remaining 
Moisture Content (RMC) procedure

[[Page 434]]

specified in Appendix J3 to 10 CFR part 430 subpart B.
    2.8 Test load sizes. Use Table 5.1 of this appendix to determine the 
maximum, minimum, and, when required, average test load sizes based on 
the clothes container capacity as measured in section 3.1 of this 
appendix. Test loads must consist of energy test cloths and no more than 
five energy stuffer clothes per load to achieve the proper weight.
    Use the test load sizes and corresponding water fill settings 
defined in Table 2.8 of this appendix when measuring water and energy 
consumption. Use only the maximum test load size when measuring RMC.

                          Table 2.8--Required Test Load Siszes and Water Fill Settings
----------------------------------------------------------------------------------------------------------------
 Water fill control system type    Test load size                        Water fill setting
----------------------------------------------------------------------------------------------------------------
Manual water fill control        Max..............  Max.
 system.                         Min..............  Min.
Automatic water fill control     Max..............  As determined by the clothes washer.
 system.                         Avg..............
                                 Min..............
----------------------------------------------------------------------------------------------------------------

    2.9 Use of test loads.
    2.9.1 Test loads for energy and water consumption measurements must 
be bone dry prior to the first cycle of the test, and dried to a maximum 
of 104 percent of bone dry weight for subsequent testing.
    2.9.2 Prepare the energy test cloths for loading by grasping them in 
the center, lifting, and shaking them to hang loosely, as illustrated in 
Figure 2.9.2 of this appendix.
[GRAPHIC] [TIFF OMITTED] TR05AU15.004

    For all clothes washers, follow any manufacturer loading 
instructions provided to the user regarding the placement of clothing 
within the clothes container. In the absence of any manufacturer 
instructions regarding the placement of clothing within the clothes 
container, the following loading instructions apply.
    2.9.2.1 To load the energy test cloths in a top-loading clothes 
washer, arrange the cloths circumferentially around the axis of rotation 
of the clothes container, using alternating lengthwise orientations for 
adjacent pieces of cloth. Complete each cloth layer across its 
horizontal plane within the clothes container before adding a new layer. 
Figure 2.9.2.1 of this appendix illustrates the correct loading 
technique for a vertical-axis clothes washer.

[[Page 435]]

[GRAPHIC] [TIFF OMITTED] TR05AU15.005

    2.9.2.2 To load the energy test cloths in a front-loading clothes 
washer, grasp each test cloth in the center as indicted in section 2.9.2 
of this appendix, and then place each cloth into the clothes container 
prior to activating the clothes washer.
    2.10 Clothes washer installation. Install the clothes washer in 
accordance with manufacturer's instructions. For combined low-power mode 
testing, install the clothes washer in accordance with Section 5, 
Paragraph 5.2 of IEC 62301 (incorporated by reference; see Sec.  430.3), 
disregarding the provisions regarding batteries and the determination, 
classification, and testing of relevant modes.
    2.11 Clothes washer pre-conditioning.
    2.11.1 Non-water-heating clothes washer. If the clothes washer has 
not been filled with water in the preceding 96 hours, pre-condition it 
by running it through a cold rinse cycle and then draining it to ensure 
that the hose, pump, and sump are filled with water.
    2.11.2 Water-heating clothes washer. If the clothes washer has not 
been filled with water in the preceding 96 hours, or if it has not been 
in the test room at the specified ambient conditions for 8 hours, pre-
condition it by running it through a cold rinse cycle and then draining 
it to ensure that the hose, pump, and sump are filled with water.
    2.12 Determining the energy test cycle. To determine the energy test 
cycle, evaluate the wash/rinse temperature selection flowcharts in the 
order in which they are presented in this section. The determination of 
the energy test cycle must take into consideration all cycle settings 
available to the end user, including any cycle selections or cycle 
modifications provided by the manufacturer via software or firmware 
updates to the product, for the basic model under test. The energy test 
cycle does not include any cycle that is recommended by the manufacturer 
exclusively for cleaning, deodorizing, or sanitizing the clothes washer.

[[Page 436]]

[GRAPHIC] [TIFF OMITTED] TR05AU15.006


[[Page 437]]


[GRAPHIC] [TIFF OMITTED] TR05AU15.007


[[Page 438]]


[GRAPHIC] [TIFF OMITTED] TR05AU15.008


[[Page 439]]


[GRAPHIC] [TIFF OMITTED] TR05AU15.009


[[Page 440]]


[GRAPHIC] [TIFF OMITTED] TR05AU15.010

                          3. Test Measurements

    3.1 Clothes container capacity. Measure the entire volume that a 
clothes load could occupy within the clothes container during active 
mode washer operation according to the following procedures:
    3.1.1 Place the clothes washer in such a position that the uppermost 
edge of the clothes container opening is leveled horizontally, so that 
the container will hold the

[[Page 441]]

maximum amount of water. For front-loading clothes washers, the door 
seal and shipping bolts or other forms of bracing hardware to support 
the wash drum during shipping must remain in place during the capacity 
measurement.
    If the design of a front-loading clothes washer does not include 
shipping bolts or other forms of bracing hardware to support the wash 
drum during shipping, a laboratory may support the wash drum by other 
means, including temporary bracing or support beams. Any temporary 
bracing or support beams must keep the wash drum in a fixed position, 
relative to the geometry of the door and door seal components, that is 
representative of the position of the wash drum during normal operation. 
The method used must avoid damage to the unit that would affect the 
results of the energy and water testing.
    For a front-loading clothes washer that does not include shipping 
bolts or other forms of bracing hardware to support the wash drum during 
shipping, the laboratory must fully document the alternative method used 
to support the wash drum during capacity measurement, include such 
documentation in the final test report, and pursuant to Sec.  429.71 of 
this chapter, the manufacturer must retain such documentation as part 
its test records.
    3.1.2 Line the inside of the clothes container with a 2 mil 
thickness (0.051 mm) plastic bag. All clothes washer components that 
occupy space within the clothes container and that are recommended for 
use during a wash cycle must be in place and must be lined with a 2 mil 
thickness (0.051 mm) plastic bag to prevent water from entering any void 
space.
    3.1.3 Record the total weight of the machine before adding water.
    3.1.4 Fill the clothes container manually with either 60 [deg]F 
 5 [deg]F (15.6 [deg]C  2.8 
[deg]C) or 100 [deg]F  10 [deg]F (37.8 [deg]C 
 5.5 [deg]C) water, with the door open. For a top-
loading vertical-axis clothes washer, fill the clothes container to the 
uppermost edge of the rotating portion, including any balance ring. 
Figure 3.1.4.1 of this appendix illustrates the maximum fill level for 
top-loading clothes washers.
[GRAPHIC] [TIFF OMITTED] TR05AU15.011

    For a front-loading horizontal-axis clothes washer, fill the clothes 
container to the highest point of contact between the door and the door 
gasket. If any portion of the door or gasket would occupy the measured 
volume space when the door is closed, exclude from the measurement the 
volume that the door or gasket portion would occupy. For a front-loading 
horizontal-axis clothes washer with a concave door shape, include any 
additional volume above the plane defined by the highest point of 
contact between the door and the door gasket, if that area can be 
occupied by clothing during washer operation. For a top-loading 
horizontal-axis clothes washer, include any additional volume above the 
plane of the door hinge that clothing could occupy during washer 
operation. Figure 3.1.4.2 of this appendix illustrates the maximum fill 
volumes for all horizontal-axis clothes washer types.

[[Page 442]]

[GRAPHIC] [TIFF OMITTED] TR05AU15.012

    For all clothes washers, exclude any volume that cannot be occupied 
by the clothing load during operation.
    3.1.5 Measure and record the weight of water, W, in pounds.
    3.1.6 Calculate the clothes container capacity as follows:

C = W/d

where:

C = Capacity in cubic feet (liters).
W = Mass of water in pounds (kilograms).
d = Density of water (62.0 lbs/ft\3\ for 100 [deg]F (993 kg/m\3\ for 
          37.8 [deg]C) or 62.3 lbs/ft\3\ for 60 [deg]F (998 kg/m\3\ for 
          15.6 [deg]C)).

    3.1.7 Calculate the clothes container capacity, C, to the nearest 
0.01 cubic foot for the purpose of determining test load sizes per Table 
5.1 of this appendix and for all subsequent calculations that include 
the clothes container capacity.
    3.2 Procedure for measuring water and energy consumption values on 
all automatic and semi-automatic washers.
    3.2.1 Perform all energy consumption tests under the energy test 
cycle.
    3.2.2 Perform the test sections listed in Table 3.2.2 in accordance 
with the wash/rinse temperature selections available in the energy test 
cycle.

                   Table 3.2.2--Test Section Reference
------------------------------------------------------------------------
                                                          Corresponding
   Wash/rinse temperature selections available in the      test section
                   energy test cycle                        reference
------------------------------------------------------------------------
Extra-Hot/Cold.........................................              3.3
Hot/Cold...............................................              3.4
Warm/Cold..............................................              3.5
Warm/Warm..............................................              3.6
Cold/Cold..............................................              3.7
------------------------------------------------------------------------
             Test Sections Applicable to all Clothes Washers
------------------------------------------------------------------------
Remaining Moisture Content.............................              3.8
Combined Low-Power Mode Power..........................              3.9
------------------------------------------------------------------------

    3.2.3 Hot and cold water faucets.
    3.2.3.1 For automatic clothes washers, open both the hot and cold 
water faucets.
    3.2.3.2 For semi-automatic washers:
    (1) For hot inlet water temperature, open the hot water faucet 
completely and close the cold water faucet;
    (2) For warm inlet water temperature, open both hot and cold water 
faucets completely;
    (3) For cold inlet water temperature, close the hot water faucet and 
open the cold water faucet completely.
    3.2.4 Wash/rinse temperature selection. Set the wash/rinse 
temperature selection control to obtain the desired wash/rinse 
temperature selection within the energy test cycle.
    3.2.5 Wash time setting. If one wash time is prescribed for the wash 
cycle under test, that shall be the wash time setting; otherwise, the 
wash time setting shall be the higher of either the minimum or 70 
percent of the maximum wash time available for the wash cycle under 
test, regardless of the labeling of suggested dial locations. If 70% of 
the maximum wash time is not available on a dial with a discreet number 
of wash time settings, choose the next-highest setting greater than 70%. 
If the clothes washer is equipped with an electromechanical dial 
controlling wash time, reset the dial to the minimum wash time and then 
turn it in the direction of increasing wash time to reach the 
appropriate setting. If the appropriate setting is passed, return the 
dial to the minimum wash time and then turn in the direction of 
increasing wash time until the appropriate setting is reached.
    3.2.6 Water fill levels.
    3.2.6.1 Clothes washers with manual water fill control system. Set 
the water fill selector to the maximum water level available for the 
wash cycle under test for the maximum test load size and the minimum 
water level available for the wash cycle under test for the minimum test 
load size.
    3.2.6.2 Clothes washers with automatic water fill control system.

[[Page 443]]

    3.2.6.2.1 Not user adjustable. The maximum, minimum, and average 
water levels as described in the following sections refer to the amount 
of water fill that is automatically selected by the control system when 
the respective test loads are used.
    3.2.6.2.2 User adjustable. Conduct four tests on clothes washers 
with user adjustable automatic water fill controls that affect the 
relative wash water levels. Conduct the first test using the maximum 
test load and with the automatic water fill control system set in the 
setting that will give the most energy intensive result. Conduct the 
second test using the minimum test load and with the automatic water 
fill control system set in the setting that will give the least energy 
intensive result. Conduct the third test using the average test load and 
with the automatic water fill control system set in the setting that 
will give the most energy intensive result for the given test load. 
Conduct the fourth test using the average test load and with the 
automatic water fill control system set in the setting that will give 
the least energy intensive result for the given test load. Average the 
results of the third and fourth tests to obtain the energy and water 
consumption values for the average test load size.
    3.2.6.3 Clothes washers with automatic water fill control system and 
alternate manual water fill control system. If a clothes washer with an 
automatic water fill control system allows user selection of manual 
controls as an alternative, test both manual and automatic modes and, 
for each mode, calculate the energy consumption (HET, 
MET, and DE) and water consumption (QT) 
values as set forth in section 4 of this appendix. Then, calculate the 
average of the two values (one from each mode, automatic and manual) for 
each variable (HET, MET, DE, and 
QT) and use the average value for each variable in the final 
calculations in section 4 of this appendix.
    3.2.7 Manufacturer default settings. For clothes washers with 
electronic control systems, use the manufacturer default settings for 
any cycle selections, except for (1) the temperature selection, (2) the 
wash water fill levels, or (3) if necessary, the spin speeds on wash 
cycles used to determine remaining moisture content. Specifically, the 
manufacturer default settings must be used for wash conditions such as 
agitation/tumble operation, soil level, spin speed on wash cycles used 
to determine energy and water consumption, wash times, rinse times, 
optional rinse settings, water heating time for water heating clothes 
washers, and all other wash parameters or optional features applicable 
to that wash cycle. Any optional wash cycle feature or setting (other 
than wash/rinse temperature, water fill level selection, or spin speed 
on wash cycles used to determine remaining moisture content) that is 
activated by default on the wash cycle under test must be included for 
testing unless the manufacturer instructions recommend not selecting 
this option, or recommend selecting a different option, for washing 
normally soiled cotton clothing.
    For clothes washers with control panels containing mechanical 
switches or dials, any optional settings, except for (1) the temperature 
selection, (2) the wash water fill levels, or (3) if necessary, the spin 
speeds on wash cycles used to determine remaining moisture content, must 
be in the position recommended by the manufacturer for washing normally 
soiled cotton clothing. If the manufacturer instructions do not 
recommend a particular switch or dial position to be used for washing 
normally soiled cotton clothing, the setting switch or dial must remain 
in its as-shipped position.
    3.2.8 For each wash cycle tested, include the entire active washing 
mode and exclude any delay start or cycle finished modes.
    3.2.9 Discard the data from a wash cycle that provides a visual or 
audio indicator to alert the user that an out-of-balance condition has 
been detected, or that terminates prematurely if an out-of-balance 
condition is detected, and thus does not include the agitation/tumble 
operation, spin speed(s), wash times, and rinse times applicable to the 
wash cycle under test. Document in the test report the rejection of data 
from any wash cycle during testing and the reason for the rejection.
    3.3 Extra-Hot Wash/Cold Rinse. Measure the water and electrical 
energy consumption for each water fill level and test load size as 
specified in sections 3.3.1 through 3.3.3 of this appendix for the 
Extra-Hot Wash/Cold Rinse as defined within the energy test cycle.
    Non-reversible temperature indicator labels, adhered to the inside 
of the clothes container, may be used to confirm that an extra-hot wash 
temperature greater than 135 [deg]F has been achieved during the wash 
cycle, under the following conditions. The label must remain waterproof, 
intact, and adhered to the wash drum throughout an entire wash cycle; 
provide consistent maximum temperature readings; and provide repeatable 
temperature indications sufficient to demonstrate that a wash 
temperature of greater than 135 [deg]F has been achieved. The label must 
have been verified to consistently indicate temperature measurements 
with an accuracy of 1 [deg]F if the label provides 
a temperature indicator at 135 [deg]F. If the label does not provide a 
temperature indicator at 135 [deg]F, the label must have been verified 
to consistently indicate temperature measurements with an accuracy of 
1 [deg]F if the next-highest temperature indicator 
is greater than 135 [deg]F and less than 140 [deg]F, or 3 [deg]F if the next-highest temperature indicator is 
140 [deg]F or greater. If the label does not provide a temperature 
indicator at 135 [deg]F, failure to

[[Page 444]]

activate the next-highest temperature indicator does not necessarily 
indicate the lack of an extra-hot wash temperature. However, such a 
result would not be considered a valid test due to the lack of 
verification of the water temperature requirement, in which case an 
alternative method must be used to confirm that an extra-hot wash 
temperature greater than 135 [deg]F has been achieved during the wash 
cycle.
    If using a temperature indicator label to test a front-loading 
clothes washer, adhere the label along the interior surface of the 
clothes container drum, midway between the front and the back of the 
drum, adjacent to one of the baffles. If using a temperature indicator 
label to test a top-loading clothes washer, adhere the label along the 
interior surface of the clothes container drum, on the vertical portion 
of the sidewall, as close to the bottom of the container as possible.
    3.3.1 Maximum test load and water fill. Measure the values for hot 
water consumption (HmX), cold water consumption 
(CmX), and electrical energy consumption (EmX) for 
an Extra-Hot Wash/Cold Rinse cycle, with the controls set for the 
maximum water fill level. Use the maximum test load size as specified in 
Table 5.1 of this appendix.
    3.3.2 Minimum test load and water fill. Measure the values for hot 
water consumption (Hmn), cold water consumption 
(Cmn), and electrical energy consumption (Emn) for 
an Extra-Hot Wash/Cold Rinse cycle, with the controls set for the 
minimum water fill level. Use the minimum test load size as specified in 
Table 5.1 of this appendix.
    3.3.3 Average test load and water fill. For a clothes washer with an 
automatic water fill control system, measure the values for hot water 
consumption (Hma), cold water consumption (Cma), 
and electrical energy consumption (Ema) for an Extra-Hot 
Wash/Cold Rinse cycle. Use the average test load size as specified in 
Table 5.1 of this appendix.
    3.4 Hot Wash/Cold Rinse. Measure the water and electrical energy 
consumption for each water fill level and test load size as specified in 
sections 3.4.1 through 3.4.3 of this appendix for the Hot Wash/Cold 
Rinse temperature selection, as defined within the energy test cycle.
    3.4.1 Maximum test load and water fill. Measure the values for hot 
water consumption (HhX), cold water consumption 
(ChX), and electrical energy consumption (EhX) for 
a Hot Wash/Cold Rinse cycle, with the controls set for the maximum water 
fill level. Use the maximum test load size as specified in Table 5.1 of 
this appendix.
    3.4.2 Minimum test load and water fill. Measure the values for hot 
water consumption (Hhn), cold water consumption 
(Chn), and electrical energy consumption (Ehn) for 
a Hot Wash/Cold Rinse cycle, with the controls set for the minimum water 
fill level. Use the minimum test load size as specified in Table 5.1 of 
this appendix.
    3.4.3 Average test load and water fill. For a clothes washer with an 
automatic water fill control system, measure the values for hot water 
consumption (Hha), cold water consumption (Cha), 
and electrical energy consumption (Eha) for a Hot Wash/Cold 
Rinse cycle. Use the average test load size as specified in Table 5.1 of 
this appendix.
    3.5 Warm Wash/Cold Rinse. Measure the water and electrical energy 
consumption for each water fill level and test load size as specified in 
sections 3.5.1 through 3.5.3 of this appendix for the applicable Warm 
Wash/Cold Rinse temperature selection(s), as defined within the energy 
test cycle.
    For a clothes washer with fewer than four discrete Warm Wash/Cold 
Rinse temperature selections, test all Warm Wash/Cold Rinse selections. 
For a clothes washer that offers four or more Warm Wash/Cold Rinse 
selections, test at all discrete selections, or test at the 25 percent, 
50 percent, and 75 percent positions of the temperature selection device 
between the hottest hot (<=135 [deg]F (57.2 [deg]C)) wash and the 
coldest cold wash. If a selection is not available at the 25, 50 or 75 
percent position, in place of each such unavailable selection, use the 
next warmer setting. For each reportable value to be used for the Warm 
Wash/Cold Rinse temperature selection, calculate the average of all Warm 
Wash/Cold Rinse temperature selections tested pursuant to this section.
    3.5.1 Maximum test load and water fill. Measure the values for hot 
water consumption (HwX), cold water consumption 
(CwX), and electrical energy consumption (EwX) for 
the Warm Wash/Cold Rinse cycle, with the controls set for the maximum 
water fill level. Use the maximum test load size as specified in Table 
5.1 of this appendix.
    3.5.2 Minimum test load and water fill. Measure the values for hot 
water consumption (Hwn), cold water consumption 
(Cwn), and electrical energy consumption (Ewn) for 
the Warm Wash/Cold Rinse cycle, with the controls set for the minimum 
water fill level. Use the minimum test load size as specified in Table 
5.1 of this appendix.
    3.5.3 Average test load and water fill. For a clothes washer with an 
automatic water fill control system, measure the values for hot water 
consumption (Hwa), cold water consumption (Cwa), 
and electrical energy consumption (Ewa) for a Warm Wash/Cold 
Rinse cycle. Use the average test load size as specified in Table 5.1 of 
this appendix.
    3.6 Warm Wash/Warm Rinse. Measure the water and electrical energy 
consumption for each water fill level and/or test load size as specified 
in sections 3.6.1 through 3.6.3 of this appendix for the applicable Warm 
Wash/Warm Rinse temperature selection(s), as defined within the energy 
testy cycle.

[[Page 445]]

    For a clothes washer with fewer than four discrete Warm Wash/Warm 
Rinse temperature selections, test all Warm Wash/Warm Rinse selections. 
For a clothes washer that offers four or more Warm Wash/Warm Rinse 
selections, test at all discrete selections, or test at 25 percent, 50 
percent, and 75 percent positions of the temperature selection device 
between the hottest hot (<=135 [deg]F (57.2 [deg]C)) wash and the 
coldest cold wash. If a selection is not available at the 25, 50 or 75 
percent position, in place of each such unavailable selection use the 
next warmer setting. For each reportable value to be used for the Warm 
Wash/Warm Rinse temperature selection, calculate the arithmetic average 
of all Warm Wash/Warm Rinse temperature selections tested pursuant to 
this section.
    3.6.1 Maximum test load and water fill. Measure the values for hot 
water consumption (HwwX), cold water consumption 
(CwwX), and electrical energy consumption (EwwX) 
for the Warm Wash/Warm Rinse cycle, with the controls set for the 
maximum water fill level. Use the maximum test load size as specified in 
Table 5.1 of this appendix.
    3.6.2 Minimum test load and water fill. Measure the values for hot 
water consumption (Hwwn), cold water consumption 
(Cwwn), and electrical energy consumption (Ewwn) 
for the Warm Wash/Warm Rinse cycle, with the controls set for the 
minimum water fill level. Use the minimum test load size as specified in 
Table 5.1 of this appendix.
    3.6.3 Average test load and water fill. For a clothes washer with an 
automatic water fill control system, measure the values for hot water 
consumption (Hwwa), cold water consumption (Cwwa), 
and electrical energy consumption (Ewwa) for the Warm Wash/
Warm Rinse cycle. Use the average test load size as specified in Table 
5.1 of this appendix.
    3.7 Cold Wash/Cold Rinse. Measure the water and electrical energy 
consumption for each water fill level and test load size as specified in 
sections 3.7.1 through 3.7.3 of this appendix for the applicable Cold 
Wash/Cold Rinse temperature selection, as defined within the energy test 
cycle.
    3.7.1 Maximum test load and water fill. Measure the values for hot 
water consumption (HcX), cold water consumption 
(CcX), and electrical energy consumption (EcX) for 
a Cold Wash/Cold Rinse cycle, with the controls set for the maximum 
water fill level. Use the maximum test load size as specified in Table 
5.1 of this appendix.
    3.7.2 Minimum test load and water fill. Measure the values for hot 
water consumption (Hcn), cold water consumption 
(Ccn), and electrical energy consumption (Ecn) for 
a Cold Wash/Cold Rinse cycle, with the controls set for the minimum 
water fill level. Use the minimum test load size as specified in Table 
5.1 of this appendix.
    3.7.3 Average test load and water fill. For a clothes washer with an 
automatic water fill control system, measure the values for hot water 
consumption (Hca), cold water consumption (Cca), 
and electrical energy consumption (Eca) for a Cold Wash/Cold 
Rinse cycle. Use the average test load size as specified in Table 5.1 of 
this appendix.
    3.8 Remaining moisture content (RMC).
    3.8.1 The wash temperature must be the same as the rinse temperature 
for all testing. Use the maximum test load as defined in Table 5.1 of 
this appendix for testing.
    3.8.2 Clothes washers with cold rinse only.
    3.8.2.1 Record the actual ``bone dry'' weight of the test load 
(WIX), then place the test load in the clothes washer.
    3.8.2.2 Set the water level controls to maximum fill.
    3.8.2.3 Run the Cold Wash/Cold Rinse cycle.
    3.8.2.4 Record the weight of the test load immediately after 
completion of the wash cycle (WCX).
    3.8.2.5 Calculate the remaining moisture content of the maximum test 
load, RMCX, defined as:

RMCX = (WCX - WIX)/WIX

    3.8.2.6 Apply the RMC correction curve described in section 7 of 
appendix J3 to this subpart to calculate the corrected remaining 
moisture content, RMCcorr, expressed as a percentage as 
follows:

RMCcorr = (A x RMCX + B) x 100%

where:

A and B are the coefficients of the RMC correction curve as defined in 
          section 6.1 of appendix J3 to this subpart.

RMCX = As defined in section 3.8.2.5 of this appendix.

    3.8.2.7 Use RMCcorr as the final corrected RMC in section 
4.3 of this appendix.
    3.8.3 Clothes washers with both cold and warm rinse options.
    3.8.3.1 Complete sections 3.8.2.1 through 3.8.2.4 of this appendix 
for a Cold Wash/Cold Rinse cycle. Calculate the remaining moisture 
content of the maximum test load for Cold Wash/Cold Rinse, 
RMCCOLD, defined as:

RMCCOLD = (WCX - WIX)/WIX

    3.8.3.2 Apply the RMC correction curve described in section 7 of 
appendix J3 to this subpart to calculate the corrected remaining 
moisture content for Cold Wash/Cold Rinse, RMCCOLD,corr, 
expressed as a percentage, as follows:

RMCCOLD,corr = (A x RMCCOLD + B) x 100%

where:

A and B are the coefficients of the RMC correction curve as defined in 
          section 6.1 of appendix J3 to this subpart.

RMCCOLD = As defined in section 3.8.3.1 of this appendix.

    3.8.3.3 Complete sections 3.8.2.1 through 3.8.2.4 of this appendix 
using a Warm Wash/

[[Page 446]]

Warm Rinse cycle instead. Calculate the remaining moisture content of 
the maximum test load for Warm Wash/Warm Rinse, RMCWARM, 
defined as:

RMCWARM = (WCX-WIX)/WIX

    3.8.3.4 Apply the RMC correction curve described in section 7 of 
appendix J3 to this subpart to calculate the corrected remaining 
moisture content for Warm Wash/Warm Rinse, RMCWARM,corr, 
expressed as a percentage, as follows:

RMCWARM,corr = (A x RMCWARM + B) x 100%

where:

A and B are the coefficients of the RMC correction curve as defined in 
          section 6.1 of appendix J3 to this subpart.

RMCWARM = As defined in section 3.8.3.3 of this appendix.

    3.8.3.5 Calculate the corrected remaining moisture content of the 
maximum test load, RMCcorr, expressed as a percentage as 
follows:

RMCcorr = RMCCOLD,corr x (1 - TUFww) + 
          RMCWARM,corr x (TUFww)

where:

RMCCOLD,corr = As defined in section 3.8.3.2 of this 
          Appendix.
RMCWARM,corr = As defined in section 3.8.3.4 of this 
          Appendix.
TUFww is the temperature use factor for Warm Wash/Warm Rinse 
          as defined in Table 4.1.1 of this appendix.

    3.8.3.6 Use RMCcorr as calculated in section 3.8.3.5 as 
the final corrected RMC used in section 4.3 of this appendix.
    3.8.4 Clothes washers that have options such as multiple selections 
of spin speeds or spin times that result in different RMC values, and 
that are available within the energy test cycle.
    3.8.4.1 Complete sections 3.8.2 or 3.8.3 of this appendix, as 
applicable, using the maximum and minimum extremes of the available spin 
options, excluding any ``no spin'' (zero spin speed) settings. Combine 
the calculated values RMCcorr,max extraction and 
RMCcorr,min extraction at the maximum and minimum settings, 
respectively, as follows:

RMCcorr = 0.75 x RMCcorr,max extraction + 0.25 x 
          RMCcorr,min extraction

where:

RMCcorr, max extraction is the corrected remaining moisture 
          content using the maximum spin setting, calculated according 
          to section 3.8.2 or 3.8.3 of this appendix, as applicable.
RMCcorr, min extraction is the corrected remaining moisture 
          content using the minimum spin setting, calculated according 
          to section 3.8.2 or 3.8.3 of this appendix, as applicable.

    3.8.4.2 Use RMCcorr as calculated in section 3.8.4.1 as 
the final corrected RMC used in section 4.3 of this appendix.
    3.8.5 The procedure for calculating the corrected RMC as described 
in section 3.8.2, 3.8.3, or 3.8.4 of this appendix may be replicated 
twice in its entirety, for a total of three independent corrected RMC 
measurements. If three replications of the RMC measurement are 
performed, use the average of the three corrected RMC measurements as 
the final corrected RMC in section 4.3 of this appendix.
    3.9 Combined low-power mode power. Connect the clothes washer to a 
watt meter as specified in section 2.5.3 of this appendix. Establish the 
testing conditions set forth in sections 2.1, 2.4, and 2.10 of this 
appendix.
    3.9.1 Perform combined low-power mode testing after completion of an 
active mode wash cycle included as part of the energy test cycle; after 
removing the test load; without changing the control panel settings used 
for the active mode wash cycle; with the door closed; and without 
disconnecting the electrical energy supply to the clothes washer between 
completion of the active mode wash cycle and the start of combined low-
power mode testing.
    3.9.2 For a clothes washer that takes some time to automatically 
enter a stable inactive mode or off mode state from a higher power state 
as discussed in Section 5, Paragraph 5.1, note 1 of IEC 62301 
(incorporated by reference; see Sec.  430.3), allow sufficient time for 
the clothes washer to automatically reach the default inactive/off mode 
state before proceeding with the test measurement.
    3.9.3 Once the stable inactive/off mode state has been reached, 
measure and record the default inactive/off mode power, 
Pdefault, in watts, following the test procedure for the 
sampling method specified in Section 5, Paragraph 5.3.2 of IEC 62301.
    3.9.4 For a clothes washer with a switch, dial, or button that can 
be optionally selected by the end user to achieve a lower-power 
inactive/off mode state than the default inactive/off mode state 
measured in section 3.9.3 of this appendix, after performing the 
measurement in section 3.9.3, activate the switch, dial, or button to 
the position resulting in the lowest power consumption and repeat the 
measurement procedure described in section 3.9.3. Measure and record the 
lowest-power inactive/off mode power, Plowest, in Watts.
    3.10 Energy consumption for the purpose of determining the cycle 
selection(s) to be included in the energy test cycle. This section is 
implemented only in cases where the energy test cycle flowcharts in 
section 2.12 require the determination of the wash/rinse temperature 
selection with the highest energy consumption.
    3.10.1 For the wash/rinse temperature selection being considered 
under this section, establish the testing conditions set forth in

[[Page 447]]

section 2 of this appendix. Select the applicable cycle selection and 
wash/rinse temperature selection. For all wash/rinse temperature 
selections, the manufacturer default settings shall be used as described 
in section 3.2.7 of this appendix.
    3.10.2 Use the clothes washer's maximum test load size, determined 
from Table 5.1 of this appendix, for testing under this section.
    3.10.3 For clothes washers with a manual fill control system, user-
adjustable automatic water fill control system, or automatic water fill 
control system with alternate manual water fill control system, use the 
water fill selector setting resulting in the maximum water level 
available for each cycle selection for testing under this section.
    3.10.4 Each wash cycle tested under this section shall include the 
entire active washing mode and exclude any delay start or cycle finished 
modes.
    3.10.5 Measure each wash cycle's electrical energy consumption 
(EX) and hot water consumption (HX). Calculate the 
total energy consumption for each cycle selection (ETX), as 
follows:

ETX = EX + (HX x T x K)

where:

EX is the electrical energy consumption, expressed in 
          kilowatt-hours per cycle.
HX is the hot water consumption, expressed in gallons per 
          cycle.
T = nominal temperature rise = 75 [deg]F (41.7 [deg]C).
K = Water specific heat in kilowatt-hours per gallon per degree F = 
          0.00240 kWh/gal - [deg]F (0.00114 kWh/L- [deg]C).

        4. Calculation of Derived Results From Test Measurements

    4.1 Hot water and machine electrical energy consumption of clothes 
washers.
    4.1.1 Per-cycle temperature-weighted hot water consumption for all 
maximum, average, and minimum water fill levels tested. Calculate the 
per-cycle temperature-weighted hot water consumption for the maximum 
water fill level, VhX, the average water fill level, 
Vha, and the minimum water fill level, Vhn, 
expressed in gallons per cycle (or liters per cycle) and defined as:

(a) VhX = [HmX x TUFm] + 
          [HhX x TUFh] + [HwX x 
          TUFw] + [HwwX x TUFww] + 
          [HcX x TUFc]
(b) Vha = [Hma x TUFm] + 
          [Hha x TUFh] + [Hwa x 
          TUFw] + [Hwwa x TUFww] + 
          [Hca x TUFc]
(c) Vhn = [Hmn x TUFm] + 
          [Hhn x TUFh] + [Hwn x 
          TUFw] + [Hwwn x TUFww] + 
          [Hcn x TUFc]

where:

    HmX, Hma, and Hmn, are reported hot 
water consumption values, in gallons per-cycle (or liters per cycle), at 
maximum, average, and minimum water fill levels, respectively, for the 
Extra-Hot Wash/Cold Rinse cycle, as measured in sections 3.3.1 through 
3.3.3 of this appendix.
    HhX, Hha, and Hhn, are reported hot 
water consumption values, in gallons per-cycle (or liters per cycle), at 
maximum, average, and minimum water fill levels, respectively, for the 
Hot Wash/Cold Rinse cycle, as measured in sections 3.4.1 through 3.4.3 
of this appendix.
    HwX, Hwa, and Hwn, are reported hot 
water consumption values, in gallons per-cycle (or liters per cycle), at 
maximum, average, and minimum water fill levels, respectively, for the 
Warm Wash/Cold Rinse cycle, as measured in sections 3.5.1 through 3.5.3 
of this appendix.
    HwwX, Hwwa, and Hwwn, are reported 
hot water consumption values, in gallons per-cycle (or liters per 
cycle), at maximum, average, and minimum water fill levels, 
respectively, for the Warm Wash/Warm Rinse cycle, as measured in 
sections 3.6.1 through 3.6.3 of this appendix.
    HcX, Hca, and Hcn, are reported hot 
water consumption values, in gallons per-cycle (or liters per cycle), at 
maximum, average, and minimum water fill levels, respectively, for the 
Cold Wash/Cold Rinse cycle, as measured in sections 3.7.1 through 3.7.3 
of this appendix.
    TUFm, TUFh, TUFw, TUFww, 
and TUFc are temperature use factors for Extra-Hot Wash/Cold 
Rinse, Hot Wash/Cold Rinse, Warm Wash/Cold Rinse, Warm Wash/Warm Rinse, 
and Cold Wash/Cold Rinse temperature selections, respectively, as 
defined in Table 4.1.1 of this appendix.

                                                          Table 4.1.1--Temperature Use Factors
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                           Clothes washers with cold rinse only           Clothes washers with both cold
                                                                 -------------------------------------------------------          and warm rinse
 Wash/Rinse Temperature Selections Available in the Energy Test                                                         --------------------------------
                              Cycle                                                     H/C W/C C/  XH/C H/C   XH/C H/C                         XH/C H/C
                                                                     C/C      H/C C/C       C         C/C      W/C C/C   H/C W/C W/  XH/C H/C  W/C W/W C/
                                                                                                                           W C/C     W/W C/C       C
--------------------------------------------------------------------------------------------------------------------------------------------------------
TUFm (Extra-Hot/Cold)...........................................  .........  .........  .........       0.14       0.05  .........       0.14       0.05
TUFh (Hot/Cold).................................................  .........       0.63       0.14     * 0.49       0.09       0.14     * 0.22       0.09
TUFw (Warm/Cold)................................................  .........  .........       0.49  .........       0.49       0.22  .........       0.22
TUFww (Warm/Warm)...............................................  .........  .........  .........  .........  .........       0.27       0.27       0.27

[[Page 448]]

 
TUFc (Cold/Cold)................................................       1.00       0.37       0.37       0.37       0.37       0.37       0.37       0.37
--------------------------------------------------------------------------------------------------------------------------------------------------------
* On clothes washers with only two wash temperature selections <=135 [deg]F, the higher of the two wash temperatures is classified as a Hot Wash/Cold
  Rinse, in accordance with the wash/rinse temperature definitions within the energy test cycle.

    4.1.2 Total per-cycle hot water energy consumption for all maximum, 
average, and minimum water fill levels tested. Calculate the total per-
cycle hot water energy consumption for the maximum water fill level, 
HEmax, the average water fill level, HEavg, and 
the minimum water fill level, HEmin, expressed in kilowatt-
hours per cycle and defined as:
(a) HEmax = [VhX x T x K] = Total energy when a 
          maximum load is tested.
(b) HEavg = [Vha x T x K] = Total energy when an 
          average load is tested.
(c) HEmin = [Vhn x T x K] = Total energy when a 
          minimum load is tested.

where:

VhX, Vha, and Vhn are defined in 
          section 4.1.1 of this appendix.
T = Temperature rise = 75 [deg]F (41.7 [deg]C).
K = Water specific heat in kilowatt-hours per gallon per degree F = 
          0.00240 kWh/gal- [deg]F (0.00114 kWh/L- [deg]C).

    4.1.3 Total weighted per-cycle hot water energy consumption. 
Calculate the total weighted per-cycle hot water energy consumption, 
HET, expressed in kilowatt-hours per cycle and defined as:

HET = [HEmax x Fmax] + 
          [HEavg x Favg] + HEmin x 
          Fmin]

where:
    HEmax, HEavg, and HEmin are defined 
in section 4.1.2 of this appendix.
    Fmax, Favg, and Fmin are the load 
usage factors for the maximum, average, and minimum test loads based on 
the size and type of the control system on the washer being tested, as 
defined in Table 4.1.3 of this appendix.

                     Table 4.1.3--Load Usage Factors
------------------------------------------------------------------------
                                                      Water fill control
                                                            system
                 Load usage factor                  --------------------
                                                      Manual   Automatic
------------------------------------------------------------------------
Fmax =.............................................     0.72        0.12
Favg =.............................................  .......        0.74
Fmin =.............................................     0.28        0.14
------------------------------------------------------------------------

    4.1.4 Total per-cycle hot water energy consumption using gas-heated 
or oil-heated water, for product labeling requirements. Calculate for 
the energy test cycle the per-cycle hot water consumption, 
HETG, using gas-heated or oil-heated water, expressed in Btu 
per cycle (or megajoules per cycle) and defined as:

HETG = HET x 1/e x 3412 Btu/kWh or HETG 
          = HET x 1/e x 3.6 MJ/kWh

where:

e = Nominal gas or oil water heater efficiency = 0.75.
HET = As defined in section 4.1.3 of this Appendix.

    4.1.5 Per-cycle machine electrical energy consumption for all 
maximum, average, and minimum test load sizes. Calculate the total per-
cycle machine electrical energy consumption for the maximum water fill 
level, MEmax, the average water fill level, MEavg, 
and the minimum water fill level, MEmin, expressed in 
kilowatt-hours per cycle and defined as:

(a) MEmax = [EmX x TUFm] + 
          [EhX x TUFh] + [EwX x 
          TUFw] + [EwwX x TUFww] + 
          [EcX x TUFc]
(b) MEavg = [Ema x TUFm] + 
          [Eha x TUFh] + [Ewa x 
          TUFw] + [Ewwa x TUFww] + 
          [Eca x TUFc]
(c) MEmin = [Emn x TUFm] + 
          [Ehn x TUFh] + [Ewn x 
          TUFw] + [Ewwn x TUFww] + 
          [Ecn x TUFc]

where:

    EmX, Ema, and Emn, are reported 
electrical energy consumption values, in kilowatt-hours per cycle, at 
maximum, average, and minimum test loads, respectively, for the Extra-
Hot Wash/Cold Rinse cycle, as measured in sections 3.3.1 through 3.3.3 
of this appendix.
    EhX, Eha, and Ehn, are reported 
electrical energy consumption values, in kilowatt-hours per cycle, at 
maximum, average, and minimum test loads, respectively, for the Hot 
Wash/Cold Rinse cycle, as measured in sections 3.4.1 through 3.4.3 of 
this appendix.
    EwX, Ewa, and Ewn, are reported 
electrical energy consumption values, in kilowatt-hours per cycle, at 
maximum, average, and minimum test loads, respectively, for the Warm 
Wash/Cold Rinse cycle, as measured in sections 3.5.1 through 3.5.3 of 
this appendix.
    EwwX, Ewwa, and Ewwn, are reported 
electrical energy consumption values, in kilowatt-hours per cycle, at 
maximum, average,

[[Page 449]]

and minimum test loads, respectively, for the Warm Wash/Warm Rinse 
cycle, as measured in sections 3.6.1 through 3.6.3 of this appendix.
    EcX, Eca, and Ecn, are reported 
electrical energy consumption values, in kilowatt-hours per cycle, at 
maximum, average, and minimum test loads, respectively, for the Cold 
Wash/Cold Rinse cycle, as measured in sections 3.7.1 through 3.7.3 of 
this appendix.
    TUFm, TUFh, TUFw, TUFww, 
and TUFc are defined in Table 4.1.1 of this appendix.

    4.1.6 Total weighted per-cycle machine electrical energy 
consumption. Calculate the total weighted per-cycle machine electrical 
energy consumption, MET, expressed in kilowatt-hours per 
cycle and defined as:

MET = [MEmax x Fmax] + 
          [MEavg x Favg] + [MEmin x 
          Fmin]

where:
    MEmax, MEavg, and MEmin are defined 
in section 4.1.5 of this appendix.
    Fmax, Favg, and Fmin are defined in 
Table 4.1.3 of this appendix.

    4.1.7 Total per-cycle energy consumption when electrically heated 
water is used. Calculate the total per-cycle energy consumption, 
ETE, using electrically heated water, expressed in kilowatt-
hours per cycle and defined as:

ETE = HET + MET

where:

MET = As defined in section 4.1.6 of this appendix.
HET = As defined in section 4.1.3 of this appendix.

    4.2 Water consumption of clothes washers.
    4.2.1 Per-cycle water consumption for Extra-Hot Wash/Cold Rinse. 
Calculate the maximum, average, and minimum total water consumption, 
expressed in gallons per cycle (or liters per cycle), for the Extra-Hot 
Wash/Cold Rinse cycle and defined as:

Qmmax = [HmX + CmX]
Qmavg = [Hma + Cma]
Qmmin = [Hmn + Cmn]

where:

    HmX, CmX, Hma, Cma, 
Hmn, and Cmn are defined in section 3.3 of this 
appendix.

    4.2.2 Per-cycle water consumption for Hot Wash/Cold Rinse. Calculate 
the maximum, average, and minimum total water consumption, expressed in 
gallons per cycle (or liters per cycle), for the Hot Wash/Cold Rinse 
cycle and defined as:
Qhmax = [HhX + ChX]
Qhavg = [Hha + Cha]
Qhmin = [Hhn + Chn]

where:
    HhX, ChX, Hha, Cha, 
Hhn, and Chn are defined in section 3.4 of this 
appendix.

    4.2.3 Per-cycle water consumption for Warm Wash/Cold Rinse. 
Calculate the maximum, average, and minimum total water consumption, 
expressed in gallons per cycle (or liters per cycle), for the Warm Wash/
Cold Rinse cycle and defined as:
Qwmax = [HwX + CwX]
Qwavg = [Hwa + Cwa]
Qwmin = [Hwn + Cwn]

where:

    HwX, CwX, Hwa, Cwa, 
Hwn, and Cwn are defined in section 3.5 of this 
appendix.

    4.2.4 Per-cycle water consumption for Warm Wash/Warm Rinse. 
Calculate the maximum, average, and minimum total water consumption, 
expressed in gallons per cycle (or liters per cycle), for the Warm Wash/
Warm Rinse cycle and defined as:

Qwwmax = [HwwX + CwwX]
Qwwavg = [Hwwa + Cwwa]
Qwwmin = [Hwwn + Cwwn]

where:

HwwX, CwwX, Hwwa, Cwwa, 
          Hwwn, and Cwwn are defined in section 
          3.6 of this appendix.

    4.2.5 Per-cycle water consumption for Cold Wash/Cold Rinse. 
Calculate the maximum, average, and minimum total water consumption, 
expressed in gallons per cycle (or liters per cycle), for the Cold Wash/
Cold Rinse cycle and defined as:

Qcmax = [HcX + CcX]
Qcavg = [Hca + Cca]
Qcmin = [Hcn + Ccn]

where:

HcX, CcX, Hca, Cca, 
          Hcn, and Ccn are defined in section 3.7 
          of this appendix.

    4.2.6 Total weighted per-cycle water consumption for Extra-Hot Wash/
Cold Rinse. Calculate the total weighted per-cycle water consumption for 
the Extra-Hot Wash/Cold Rinse cycle, QmT, expressed in 
gallons per cycle (or liters per cycle) and defined as:

QmT = [Qmmax x Fmax] + 
          [Qmavg x Favg] + [Qmmin x 
          Fmin]

where:
    Qmmax, Qmavg, Qmmin are defined in 
section 4.2.1 of this appendix.
    Fmax, Favg, Fmin are defined in 
Table 4.1.3 of this appendix.

    4.2.7 Total weighted per-cycle water consumption for Hot Wash/Cold 
Rinse. Calculate the total weighted per-cycle water consumption for the 
Hot Wash/Cold Rinse cycle, QhT, expressed in gallons per 
cycle (or liters per cycle) and defined as:

QhT = [Qhmax x Fmax] + 
          [Qhavg x Favg] + [Qhmin x 
          Fmin]

where:

    Qhmax, Qhavg, Qhmin are defined in 
section 4.2.2 of this appendix.

[[Page 450]]

    Fmax, Favg, Fmin are defined in 
Table 4.1.3 of this appendix.

    4.2.8 Total weighted per-cycle water consumption for Warm Wash/Cold 
Rinse. Calculate the total weighted per-cycle water consumption for the 
Warm Wash/Cold Rinse cycle, QwT, expressed in gallons per 
cycle (or liters per cycle) and defined as:

QwT = [Qwmax x Fmax] + 
          [Qwavg x Favg] + [Qwmin x 
          Fmin]

where:

    Qwmax, Qwavg, Qwmin are defined in 
section 4.2.3 of this appendix.
    Fmax, Favg, Fmin are defined in 
Table 4.1.3 of this appendix.

    4.2.9 Total weighted per-cycle water consumption for Warm Wash/Warm 
Rinse. Calculate the total weighted per-cycle water consumption for the 
Warm Wash/Warm Rinse cycle, QwwT, expressed in gallons per 
cycle (or liters per cycle) and defined as:

QwwT = [Qwwmax x Fmax] + 
          [Qwwavg x Favg] + [Qwwmin x 
          Fmin]

where:

    Qwwmax, Qwwavg, Qwwmin are defined 
in section 4.2.4 of this appendix.
    Fmax, Favg, Fmin are defined in 
Table 4.1.3 of this appendix.

    4.2.10 Total weighted per-cycle water consumption for Cold Wash/Cold 
Rinse. Calculate the total weighted per-cycle water consumption for the 
Cold Wash/Cold Rinse cycle, QcT, expressed in gallons per 
cycle (or liters per cycle) and defined as:

QcT = [Qcmax x Fmax] + 
          [Qcavg x Favg] + [Qcmin x 
          Fmin]

where:

    Qcmax, Qcavg, Qcmin are defined in 
section 4.2.5 of this appendix.
    Fmax, Favg, Fmin are defined in 
Table 4.1.3 of this appendix.

    4.2.11 Total weighted per-cycle water consumption for all wash 
cycles. Calculate the total weighted per-cycle water consumption for all 
wash cycles, QT, expressed in gallons per cycle (or liters 
per cycle) and defined as:

QT = [QmT x TUFm] + [QhT x 
          TUFh] + [QwT x TUFw] + 
          [QwwT x TUFww] + [QcT x 
          TUFc]

where:

    QmT, QhT, QwT, QwwT, and 
QcT are defined in sections 4.2.6 through 4.2.10 of this 
appendix.
    TUFm, TUFh, TUFw, TUFww, 
and TUFc are defined in Table 4.1.1 of this appendix.

    4.2.12 Water factor. Calculate the water factor, WF, expressed in 
gallons per cycle per cubic foot (or liters per cycle per liter), as:

WF = QcT/C

where:

QcT = As defined in section 4.2.10 of this appendix.
C = As defined in section 3.1.7 of this appendix.

    4.2.13 Integrated water factor. Calculate the integrated water 
factor, IWF, expressed in gallons per cycle per cubic foot (or liters 
per cycle per liter), as:

IWF = QT/C

where:

QT = As defined in section 4.2.11 of this appendix.
C = As defined in section 3.1.7 of this appendix.

    4.3 Per-cycle energy consumption for removal of moisture from test 
load. Calculate the per-cycle energy required to remove the remaining 
moisture of the test load, DE, expressed in kilowatt-hours 
per cycle and defined as:
    DE = [(Fmax x Maximum test load weight) + 
(Favg x Average test load weight) + (Fmin x 
Minimum test load weight)] x (RMCcorr - 4%) x (DEF) x (DUF)

where:

    Fmax, Favg, and Fmin are defined in 
Table 4.1.3 of this appendix.
    Maximum, average, and minimum test load weights are defined in Table 
5.1 of this appendix.

RMCcorr = As defined in section 3.8.2.6, 3.8.3.5, or 3.8.4.1 
          of this Appendix.
DEF = Nominal energy required for a clothes dryer to remove moisture 
          from clothes = 0.5 kWh/lb (1.1 kWh/kg).
DUF = Dryer usage factor, percentage of washer loads dried in a clothes 
          dryer = 0.91.
    4.4 Per-cycle combined low-power mode energy consumption. Calculate 
the per-cycle combined low-power mode energy consumption, 
ETLP, expressed in kilowatt-hours per cycle and defined as:

ETLP = [(Pdefault x Sdefault) + 
          (Plowest x Slowest)] x Kp/295

where:

    Pdefault = Default inactive/off mode power, in watts, as 
measured in section 3.9.3 of this appendix.

Plowest = Lowest-power inactive/off mode power, in watts, as 
          measured in section 3.9.4 of this appendix for clothes washers 
          with a switch, dial, or button that can be optionally selected 
          by the end user to achieve a lower-power inactive/off mode 
          than the default inactive/off mode; otherwise, 
          Plowest=0.
Sdefault= Annual hours in default inactive/off mode, defined 
          as 8,465 if no optional lowest-power inactive/off mode is 
          available; otherwise 4,232.5.
Slowest= Annual hours in lowest-power inactive/off mode, 
          defined as 0 if no optional

[[Page 451]]

          lowest-power inactive/off mode is available; otherwise 
          4,232.5.
Kp = Conversion factor of watt-hours to kilowatt-hours = 
          0.001.
295 = Representative average number of clothes washer cycles in a year.
8,465 = Combined annual hours for inactive and off mode.
4,232.5 = One-half of the combined annual hours for inactive and off 
          mode.

    4.5 Modified energy factor. Calculate the modified energy factor, 
MEF, expressed in cubic feet per kilowatt-hour per cycle (or liters per 
kilowatt-hour per cycle) and defined as:

MEF = C/(ETE + DE)

where:

C = As defined in section 3.1.7 of this appendix.
ETE = As defined in section 4.1.7 of this appendix.
DE = As defined in section 4.3 of this appendix.

    4.6 Integrated modified energy factor. Calculate the integrated 
modified energy factor, IMEF, expressed in cubic feet per kilowatt-hour 
per cycle (or liters per kilowatt-hour per cycle) and defined as:

IMEF = C/(ETE + DE + ETLP)

where:

C = As defined in section 3.1.7 of this appendix.
ETE = As defined in section 4.1.7 of this appendix.
DE = As defined in section 4.3 of this appendix.
ETLP = As defined in section 4.4 of this appendix.

                              5. Test Loads

                                           Table 5.1--Test Load Sizes
----------------------------------------------------------------------------------------------------------------
               Container volume                     Minimum load          Maximum load          Average load
----------------------------------------------------------------------------------------------------------------
            cu. ft.                  liter
-----------------------------------------------     lb         kg         lb         kg         lb         kg
        = <          = <
----------------------------------------------------------------------------------------------------------------
0.00-0.80.....................       0.00-22.7       3.00       1.36       3.00       1.36       3.00       1.36
0.80-0.90.....................       22.7-25.5       3.00       1.36       3.50       1.59       3.25       1.47
0.90-1.00.....................       25.5-28.3       3.00       1.36       3.90       1.77       3.45       1.56
1.00-1.10.....................       28.3-31.1       3.00       1.36       4.30       1.95       3.65       1.66
1.10-1.20.....................       31.1-34.0       3.00       1.36       4.70       2.13       3.85       1.75
1.20-1.30.....................       34.0-36.8       3.00       1.36       5.10       2.31       4.05       1.84
1.30-1.40.....................       36.8-39.6       3.00       1.36       5.50       2.49       4.25       1.93
1.40-1.50.....................       39.6-42.5       3.00       1.36       5.90       2.68       4.45       2.02
1.50-1.60.....................       42.5-45.3       3.00       1.36       6.40       2.90       4.70       2.13
1.60-1.70.....................       45.3-48.1       3.00       1.36       6.80       3.08       4.90       2.22
1.70-1.80.....................       48.1-51.0       3.00       1.36       7.20       3.27       5.10       2.31
1.80-1.90.....................       51.0-53.8       3.00       1.36       7.60       3.45       5.30       2.40
1.90-2.00.....................       53.8-56.6       3.00       1.36       8.00       3.63       5.50       2.49
2.00-2.10.....................       56.6-59.5       3.00       1.36       8.40       3.81       5.70       2.59
2.10-2.20.....................       59.5-62.3       3.00       1.36       8.80       3.99       5.90       2.68
2.20-2.30.....................       62.3-65.1       3.00       1.36       9.20       4.17       6.10       2.77
2.30-2.40.....................       65.1-68.0       3.00       1.36       9.60       4.35       6.30       2.86
2.40-2.50.....................       68.0-70.8       3.00       1.36      10.00       4.54       6.50       2.95
2.50-2.60.....................       70.8-73.6       3.00       1.36      10.50       4.76       6.75       3.06
2.60-2.70.....................       73.6-76.5       3.00       1.36      10.90       4.94       6.95       3.15
2.70-2.80.....................       76.5-79.3       3.00       1.36      11.30       5.13       7.15       3.24
2.80-2.90.....................       79.3-82.1       3.00       1.36      11.70       5.31       7.35       3.33
2.90-3.00.....................       82.1-85.0       3.00       1.36      12.10       5.49       7.55       3.42
3.00-3.10.....................       85.0-87.8       3.00       1.36      12.50       5.67       7.75       3.52
3.10-3.20.....................       87.8-90.6       3.00       1.36      12.90       5.85       7.95       3.61
3.20-3.30.....................       90.6-93.4       3.00       1.36      13.30       6.03       8.15       3.70
3.30-3.40.....................       93.4-96.3       3.00       1.36      13.70       6.21       8.35       3.79
3.40-3.50.....................       96.3-99.1       3.00       1.36      14.10       6.40       8.55       3.88
3.50-3.60.....................      99.1-101.9       3.00       1.36      14.60       6.62       8.80       3.99
3.60-3.70.....................     101.9-104.8       3.00       1.36      15.00       6.80       9.00       4.08
3.70-3.80.....................     104.8-107.6       3.00       1.36      15.40       6.99       9.20       4.17
3.80-3.90.....................     107.6-110.4       3.00       1.36      15.80       7.16       9.40       4.26
3.90-4.00.....................     110.4-113.3       3.00       1.36      16.20       7.34       9.60       4.35
4.00-4.10.....................     113.3-116.1       3.00       1.36      16.60       7.53       9.80       4.45
4.10-4.20.....................     116.1-118.9       3.00       1.36      17.00       7.72      10.00       4.54
4.20-4.30.....................     118.9-121.8       3.00       1.36      17.40       7.90      10.20       4.63
4.30-4.40.....................     121.8-124.6       3.00       1.36      17.80       8.09      10.40       4.72
4.40-4.50.....................     124.6-127.4       3.00       1.36      18.20       8.27      10.60       4.82
4.50-4.60.....................     127.4-130.3       3.00       1.36      18.70       8.46      10.85       4.91
4.60-4.70.....................     130.3-133.1       3.00       1.36      19.10       8.65      11.05       5.00
4.70-4.80.....................     133.1-135.9       3.00       1.36      19.50       8.83      11.25       5.10
4.80-4.90.....................     135.9-138.8       3.00       1.36      19.90       9.02      11.45       5.19
4.90-5.00.....................     138.8-141.6       3.00       1.36      20.30       9.20      11.65       5.28

[[Page 452]]

 
5.00-5.10.....................     141.6-144.4       3.00       1.36      20.70       9.39      11.85       5.38
5.10-5.20.....................     144.4-147.2       3.00       1.36      21.10       9.58      12.05       5.47
5.20-5.30.....................     147.2-150.1       3.00       1.36      21.50       9.76      12.25       5.56
5.30-5.40.....................     150.1-152.9       3.00       1.36      21.90       9.95      12.45       5.65
5.40-5.50.....................     152.9-155.7       3.00       1.36      22.30      10.13      12.65       5.75
5.50-5.60.....................     155.7-158.6       3.00       1.36      22.80      10.32      12.90       5.84
5.60-5.70.....................     158.6-161.4       3.00       1.36      23.20      10.51      13.10       5.93
5.70-5.80.....................     161.4-164.2       3.00       1.36      23.60      10.69      13.30       6.03
5.80-5.90.....................     164.2-167.1       3.00       1.36      24.00      10.88      13.50       6.12
5.90-6.00.....................     167.1-169.9       3.00       1.36      24.40      11.06      13.70       6.21
----------------------------------------------------------------------------------------------------------------
Notes: (1) All test load weights are bone dry weights.
(2) Allowable tolerance on the test load weights is 0.10 lbs (0.05 kg).

                      6. Waivers and Field Testing

    6.1 Waivers and Field Testing for Nonconventional Clothes Washers. 
Manufacturers of nonconventional clothes washers, such as clothes 
washers with adaptive control systems, must submit a petition for waiver 
pursuant to 10 CFR 430.27 to establish an acceptable test procedure for 
that clothes washer if the washer cannot be tested pursuant to the DOE 
test procedure or the DOE test procedure yields results that are so 
unrepresentative of the clothes washer's true energy consumption 
characteristics as to provide materially inaccurate comparative data. In 
such cases, field testing may be appropriate for establishing an 
acceptable test procedure. The following are guidelines for field 
testing that may be used by manufacturers in support of petitions for 
waiver. These guidelines are not mandatory and the Department may 
determine that they do not apply to a particular model. Depending upon a 
manufacturer's approach for conducting field testing, additional data 
may be required. Manufacturers are encouraged to communicate with the 
Department prior to the commencement of field tests that may be used to 
support a petition for waiver. Section 6.3 of this appendix provides an 
example of field testing for a clothes washer with an adaptive water 
fill control system. Other features, such as the use of various spin 
speed selections, could be the subject of field tests.
    6.2 Nonconventional Wash System Energy Consumption Test. The field 
test may consist of a minimum of 10 of the nonconventional clothes 
washers (``test clothes washers'') and 10 clothes washers already being 
distributed in commerce (``base clothes washers''). The tests should 
include a minimum of 50 wash cycles per clothes washer. The test clothes 
washers and base clothes washers should be identical in construction 
except for the controls or systems being tested. Equal numbers of both 
the test clothes washer and the base clothes washer should be tested 
simultaneously in comparable settings to minimize seasonal or end-user 
laundering conditions or variations. The clothes washers should be 
monitored in such a way as to accurately record the average total energy 
and water consumption per cycle, including water heating energy when 
electrically heated water is used, and the energy required to remove the 
remaining moisture of the test load. Standby and off mode energy 
consumption should be measured according to section 4.4 of this test 
procedure. The field test results should be used to determine the best 
method to correlate the rating of the test clothes washer to the rating 
of the base clothes washer.
    6.3 Adaptive water fill control system field test. (1) Section 
3.2.6.3 of this appendix defines the test method for measuring energy 
consumption for clothes washers that incorporate both adaptive 
(automatic) and alternate manual water fill control systems. Energy 
consumption calculated by the method defined in section 3.2.6.3 of this 
appendix assumes the adaptive cycle will be used 50 percent of the time. 
This section can be used to develop field test data in support of a 
petition for waiver when it is believed that the adaptive cycle will be 
used more than 50 percent of the time. The field test sample size should 
be a minimum of 10 test clothes washers. The test clothes washers should 
be representative of the design, construction, and control system that 
will be placed in commerce. The duration of field testing in the user's 
house should be a minimum of 50 wash cycles, for each unit. No special 
instructions as to cycle selection or product usage should be given to 
the field test participants, other than inclusion of the product 
literature pack that would be shipped with all units, and instructions 
regarding filling out data collection forms, use of data collection 
equipment, or basic procedural methods. Prior to the test clothes 
washers being installed in the field test locations, baseline data 
should be

[[Page 453]]

developed for all field test units by conducting laboratory tests as 
defined by section 1 through section 5 of this appendix to determine the 
energy consumption, water consumption, and remaining moisture content 
values. The following data should be measured and recorded for each wash 
load during the test period: wash cycle selected, the mode of the 
clothes washer (adaptive or manual), clothes load dry weight (measured 
after the clothes washer and clothes dryer cycles are completed) in 
pounds, and type of articles in the clothes load (e.g., cottons, linens, 
permanent press). The wash cycles used in calculating the in-home 
percentage split between adaptive and manual cycle usage should be only 
those wash cycles that conform to the definition of the energy test 
cycle.
    Calculate:

T = The total number of wash cycles run during the field test.
Ta = The total number of adaptive control wash cycles.
Tm = The total number of manual control wash cycles.

    The percentage weighting factors:

Pa = (Ta/T) x 100% (the percentage weighting for 
          adaptive control selection)
Pm = (Tm/T) x 100% (the percentage weighting for 
          manual control selection)

    (2) Energy consumption (HET, MET, and 
DE) and water consumption (QT) values calculated 
in section 4 of this appendix for the manual and adaptive modes should 
be combined using Pa and Pm as the weighting 
factors.

[80 FR 46767, Aug. 5, 2015; 80 FR 50757, Aug. 21, 2015, as amended at 80 
FR 62443, Oct. 16, 2015]



   Sec. Appendix J3 to Subpart B of Part 430--Uniform Test Method for 
 Measuring the Moisture Absorption and Retention Characteristics of New 
                         Energy Test Cloth Lots

    Note: DOE maintains an historical record of the standard extractor 
test data and final correction curve coefficients for each approved lot 
of energy test cloth. These can be accessed through DOE's Web page for 
standards and test procedures for residential clothes washers at DOE's 
Building Technologies Office Appliance and Equipment Standards Web site.

                              1. Objective

    The following procedure is used to evaluate the moisture absorption 
and retention characteristics of a new lot of test cloth by measuring 
the remaining moisture content (RMC) in a standard extractor at a 
specified set of conditions. The results are used to develop a set of 
coefficients that correlate the measured RMC values of the new test 
cloth lot with a set of standard RMC values established as an historical 
reference point. These correction coefficients are applied to the RMC 
measurements performed during testing according to appendix J1 or 
appendix J2 to 10 CFR part 430 subpart B, ensuring that the final 
corrected RMC measurement for a clothes washer remains independent of 
the test cloth lot used for testing.

                             2. Definitions

    2.1 AHAM means the Association of Home Appliance Manufacturers.
    2.2 Bone-dry means a condition of a load of test cloth that has been 
dried in a dryer at maximum temperature for a minimum of 10 minutes, 
removed and weighed before cool down, and then dried again for 10 minute 
periods until the final weight change of the load is 1 percent or less.
    2.3 Lot means a quantity of cloth that has been manufactured with 
the same batches of cotton and polyester during one continuous process.

                          3. Testing Conditions

    3.1 Table 3.1 of this appendix provides the matrix of test 
conditions. In the table, ``g Force'' represents units of gravitational 
acceleration. When this matrix is repeated 3 times, a total of 60 
extractor RMC test runs are required. For the purpose of the extractor 
RMC test, the test cloths may be used for up to 60 test runs (after 
preconditioning as specified in appendix J1 or appendix J2).

                               Table 3.1--Matrix of Extractor RMC Test Conditions
----------------------------------------------------------------------------------------------------------------
                                                          Warm soak                         Cold soak
                 ``g Force''                 -------------------------------------------------------------------
                                                15 min. spin     4 min. spin      15 min. spin     4 min. spin
----------------------------------------------------------------------------------------------------------------
100.........................................
----------------------------------------------------------------------------------------------------------------
200.........................................
----------------------------------------------------------------------------------------------------------------
350.........................................
----------------------------------------------------------------------------------------------------------------
500.........................................
----------------------------------------------------------------------------------------------------------------

[[Page 454]]

 
650.........................................  ...............  ...............  ...............  ...............
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------

    3.2 Perform the standard extractor RMC tests using a North Star 
Engineered Products Inc. (formerly Bock) Model 215 extractor (having a 
basket diameter of 20 inches, height of 11.5 inches, and volume of 2.09 
ft\3\), with a variable speed drive (North Star Engineered Products, 
P.O. Box 5127, Toledo, OH 43611) or an equivalent extractor with same 
basket design (i.e., diameter, height, volume, and hole configuration) 
and variable speed drive. Table 3.2 shows the extractor spin speed, in 
revolutions per minute (RPM), that must be used to attain each required 
g-force level.

        Table 3.2--Extractor Spin Speeds for Each Test Condition
------------------------------------------------------------------------
                        ``g Force''                              RPM
------------------------------------------------------------------------
100........................................................   594  5 [deg]F (57.2 [deg]C 
 2.8 [deg]C) and the rinse temperature is to be 
controlled to 60 [deg]F  5; [deg]F (15.6 [deg]C 
 2.8 [deg]C). Repeat the cycle with detergent and 
then repeat the cycle three additional times without detergent, bone 
drying the load between cycles (for a total of five complete wash-rinse-
spin cycles).
    4.2  Test load composition. Test loads must be comprised of randomly 
selected cloth at the beginning, middle and end of a lot.
    4.3  Test load size. Use a test load size of 8.4 lbs. Two test loads 
may be used for standard extractor RMC tests, with each load used for 
half of the total number of required tests.

                          5. Test Measurements

    5.1 Dry the test cloth until it is ``bone-dry'' according to the 
definition in section 2.2 of this appendix. Record the bone-dry weight 
of the test load (WI).
    5.2 Prepare the test load for soak by grouping four test cloths into 
loose bundles. Create the bundles by hanging four cloths vertically from 
one corner and loosely wrapping the test cloth onto itself to form the 
bundle. Bundles should be wrapped loosely to ensure consistency of water 
extraction. Then place the bundles into the water to soak. Eight to nine 
bundles will be formed depending on the test load. The ninth bundle may 
not equal four cloths but can incorporate energy stuffer cloths to help 
offset the size difference.
    5.3 Soak the test load for 20 minutes in 10 gallons of soft (<17 
ppm) water. The entire test load must be submerged. Maintain a water 
temperature of 100 [deg]F  5 [deg]F (37.8 [deg]C 
 2.8 [deg]C) at all times between the start and 
end of the soak.
    5.4 Remove the test load and allow each of the test cloth bundles to 
drain over the water bath for a maximum of 5 seconds.
    5.5 Manually place the test cloth bundles in the basket of the 
extractor, distributing them evenly by eye. The draining and loading 
process must take no longer than 1 minute. Spin the load at a fixed 
speed corresponding to the intended centripetal acceleration level 
(measured in units of the acceleration of gravity, g)  1g for the intended time period  
5 seconds. Begin the timer when the extractor meets the required spin 
speed for each test.
    5.6 Record the weight of the test load immediately after the 
completion of the extractor spin cycle (WC).
    5.7 Calculate the remaining moisture content of the test load as 
(WC-WI)/WI.
    5.8 Draining the soak tub is not necessary if the water bath is 
corrected for water level and temperature before the next extraction.
    5.9 Drying the test load in between extraction runs is not 
necessary. However, the bone dry weight must be checked after every 12 
extraction runs to make sure the bone dry weight is within tolerance 
(8.4  0.1 lb).
    5.10 The test load must be soaked and extracted once following bone 
drying, before continuing with the remaining extraction

[[Page 455]]

runs. Perform this extraction at the same spin speed used for the 
extraction run prior to bone drying, for a time period of 4 minutes. 
Either warm or cold soak temperature may be used.
    5.11 Measure the remaining moisture content of the test load at five 
g levels: 100 g, 200 g, 350 g, 500 g, and 650 g, using two different 
spin times at each g level: 4 minutes and 15 minutes.
    5.12 Repeat sections 5.1 through 5.11 of this appendix using soft 
(<17 ppm) water at 60 [deg]F5 [deg]F (15.6 [deg]C 
 2.8 [deg]C).

                 6. Calculation of RMC Correction Curve

    6.1 Average the values of 3 test runs, and fill in Table 3.1 of this 
appendix. Perform a linear least-squares fit to determine coefficients A 
and B such that the standard RMC values shown in Table 6.1 of this 
appendix (RMCstandard) are linearly related to the RMC values 
measured in section 5 of this appendix (RMCcloth):

RMCstandard  A * RMCcloth + B

where A and B are coefficients of the linear least-squares fit.

                                  Table 6.1--Standard RMC Values (RMCstandard)
----------------------------------------------------------------------------------------------------------------
                                                                        RMC Percentage
                                             -------------------------------------------------------------------
                                                          Warm soak                         Cold soak
                 ``g Force''                 -------------------------------------------------------------------
                                                15 min. spin     4 min. spin      15 min. spin     4 min. spin
                                                 (percent)        (percent)        (percent)        (percent)
----------------------------------------------------------------------------------------------------------------
100.........................................             45.9             49.9             49.7             52.8
200.........................................             35.7             40.4             37.9             43.1
350.........................................             29.6             33.1             30.7             35.8
500.........................................             24.2             28.7             25.5             30.0
650.........................................             23.0             26.4             24.1             28.0
----------------------------------------------------------------------------------------------------------------

    6.2 Perform an analysis of variance with replication test using two 
factors, spin speed and lot, to check the interaction of speed and lot. 
Use the values from Table 3.1 and Table 6.1 of this appendix in the 
calculation. The ``P'' value of the F-statistic for interaction between 
spin speed and lot in the variance analysis must be greater than or 
equal to 0.1. If the ``P'' value is less than 0.1, the test cloth is 
unacceptable. ``P'' is a theoretically based measure of interaction 
based on an analysis of variance.

               7. Application of the RMC Correction Curve

    7.1 Using the coefficients A and B calculated in section 6.1 of this 
appendix:

RMCcorr = A x RMC + B

    7.2 Apply this RMC correction curve to measured RMC values in 
appendix J1 and appendix J2.

[80 FR 46786, Aug. 5, 2015]



         Sec. Appendixes K-L to Subpart B of Part 430 [Reserved]



   Sec. Appendix M to Subpart B of Part 430--Uniform Test Method for 
 Measuring the Energy Consumption of Central Air Conditioners and Heat 
                                  Pumps

    Note: Prior to July 5, 2017, any representations, including 
compliance certifications, made with respect to the energy use, power, 
or efficiency of central air conditioners and central air conditioning 
heat pumps must be based on the results of testing pursuant to either 
this appendix or the procedures in Appendix M as it appeared at 10 CFR 
part 430, subpart B, Appendix M, in the 10 CFR parts 200 to 499 edition 
revised as of January 1, 2017. Any representations made with respect to 
the energy use or efficiency of such central air conditioners and 
central air conditioning heat pumps must be in accordance with whichever 
version is selected.
    On or after July 5, 2017 and prior to January 1, 2023, any 
representations, including compliance certifications, made with respect 
to the energy use, power, or efficiency of central air conditioners and 
central air conditioning heat pumps must be based on the results of 
testing pursuant to this appendix.
    On or after January 1, 2023, any representations, including 
compliance certifications, made with respect to the energy use, power, 
or efficiency of central air conditioners and central air conditioning 
heat pumps must be based on the results of testing pursuant to appendix 
M1 of this subpart.

                        1. Scope and Definitions

                                1.1 Scope

    This test procedure provides a method of determining SEER, EER, HSPF 
and PW,OFF for central air conditioners and central air 
conditioning heat pumps including the following categories:
(a) Split-system air conditioners, including single-split, multi-head 
mini-split, multi-split (including VRF), and multi-circuit systems

[[Page 456]]

(b) Split-system heat pumps, including single-split, multi-head mini-
split, multi-split (including VRF), and multi-circuit systems
(c) Single-package air conditioners
(d) Single-package heat pumps
(e) Small-duct, high-velocity systems (including VRF)
(f) Space-constrained products--air conditioners
(g) Space-constrained products--heat pumps

    For purposes of this appendix, the Department of Energy incorporates 
by reference specific sections of several industry standards, as listed 
in Sec.  430.3. In cases where there is a conflict, the language of the 
test procedure in this appendix takes precedence over the incorporated 
standards.
    All section references refer to sections within this appendix unless 
otherwise stated.

                             1.2 Definitions

    Airflow-control settings are programmed or wired control system 
configurations that control a fan to achieve discrete, differing ranges 
of airflow--often designated for performing a specific function (e.g., 
cooling, heating, or constant circulation)--without manual adjustment 
other than interaction with a user-operable control (i.e., a thermostat) 
that meets the manufacturer specifications for installed-use. For the 
purposes of this appendix, manufacturer specifications for installed-use 
are those found in the product literature shipped with the unit.
    Air sampling device is an assembly consisting of a manifold with 
several branch tubes with multiple sampling holes that draws an air 
sample from a critical location from the unit under test (e.g. indoor 
air inlet, indoor air outlet, outdoor air inlet, etc.).
    Airflow prevention device denotes a device that prevents airflow via 
natural convection by mechanical means, such as an air damper box, or by 
means of changes in duct height, such as an upturned duct.
    Aspirating psychrometer is a piece of equipment with a monitored 
airflow section that draws uniform airflow through the measurement 
section and has probes for measurement of air temperature and humidity.
    Blower coil indoor unit means an indoor unit either with an indoor 
blower housed with the coil or with a separate designated air mover such 
as a furnace or a modular blower (as defined in appendix AA to the 
subpart).
    Blower coil system refers to a split system that includes one or 
more blower coil indoor units.
    Cased coil means a coil-only indoor unit with external cabinetry.
    Coefficient of Performance (COP) means the ratio of the average rate 
of space heating delivered to the average rate of electrical energy 
consumed by the heat pump. These rate quantities must be determined from 
a single test or, if derived via interpolation, must be determined at a 
single set of operating conditions. COP is a dimensionless quantity. 
When determined for a ducted coil-only system, COP must include the 
sections 3.7 and 3.9.1 of this appendix: Default values for the heat 
output and power input of a fan motor.
    Coil-only indoor unit means an indoor unit that is distributed in 
commerce without an indoor blower or separate designated air mover. A 
coil-only indoor unit installed in the field relies on a separately-
installed furnace or a modular blower for indoor air movement. Coil-only 
system refers to a system that includes only (one or more) coil-only 
indoor units.
    Condensing unit removes the heat absorbed by the refrigerant to 
transfer it to the outside environment and consists of an outdoor coil, 
compressor(s), and air moving device.
    Constant-air-volume-rate indoor blower means a fan that varies its 
operating speed to provide a fixed air-volume-rate from a ducted system.
    Continuously recorded, when referring to a dry bulb measurement, dry 
bulb temperature used for test room control, wet bulb temperature, dew 
point temperature, or relative humidity measurements, means that the 
specified value must be sampled at regular intervals that are equal to 
or less than 15 seconds.
    Cooling load factor (CLF) means the ratio having as its numerator 
the total cooling delivered during a cyclic operating interval 
consisting of one ON period and one OFF period, and as its denominator 
the total cooling that would be delivered, given the same ambient 
conditions, had the unit operated continuously at its steady-state, 
space-cooling capacity for the same total time (ON + OFF) interval.
    Crankcase heater means any electrically powered device or mechanism 
for intentionally generating heat within and/or around the compressor 
sump volume. Crankcase heater control may be achieved using a timer or 
may be based on a change in temperature or some other measurable 
parameter, such that the crankcase heater is not required to operate 
continuously. A crankcase heater without controls operates continuously 
when the compressor is not operating.
    Cyclic Test means a test where the unit's compressor is cycled on 
and off for specific time intervals. A cyclic test provides half the 
information needed to calculate a degradation coefficient.
    Damper box means a short section of duct having an air damper that 
meets the performance requirements of section 2.5.7 of this appendix.
    Degradation coefficient (CD) means a parameter used in 
calculating the part load factor.

[[Page 457]]

The degradation coefficient for cooling is denoted by CD\c\. 
The degradation coefficient for heating is denoted by CD\h\.
    Demand-defrost control system means a system that defrosts the heat 
pump outdoor coil-only when measuring a predetermined degradation of 
performance. The heat pump's controls either:
    (1) Monitor one or more parameters that always vary with the amount 
of frost accumulated on the outdoor coil (e.g., coil to air differential 
temperature, coil differential air pressure, outdoor fan power or 
current, optical sensors) at least once for every ten minutes of 
compressor ON-time when space heating or
    (2) operate as a feedback system that measures the length of the 
defrost period and adjusts defrost frequency accordingly. In all cases, 
when the frost parameter(s) reaches a predetermined value, the system 
initiates a defrost. In a demand-defrost control system, defrosts are 
terminated based on monitoring a parameter(s) that indicates that frost 
has been eliminated from the coil. (Note: Systems that vary defrost 
intervals according to outdoor dry-bulb temperature are not demand-
defrost systems.) A demand-defrost control system, which otherwise meets 
the above requirements, may allow time-initiated defrosts if, and only 
if, such defrosts occur after 6 hours of compressor operating time.
    Design heating requirement (DHR) predicts the space heating load of 
a residence when subjected to outdoor design conditions. Estimates for 
the minimum and maximum DHR are provided for six generalized U.S. 
climatic regions in section 4.2 of this appendix.
    Dry-coil tests are cooling mode tests where the wet-bulb temperature 
of the air supplied to the indoor unit is maintained low enough that no 
condensate forms on the evaporator coil.
    Ducted system means an air conditioner or heat pump that is designed 
to be permanently installed equipment and delivers conditioned air to 
the indoor space through a duct(s). The air conditioner or heat pump may 
be either a split-system or a single-package unit.
    Energy efficiency ratio (EER) means the ratio of the average rate of 
space cooling delivered to the average rate of electrical energy 
consumed by the air conditioner or heat pump. Determine these rate 
quantities from a single test or, if derived via interpolation, 
determine at a single set of operating conditions. EER is expressed in 
units of
[GRAPHIC] [TIFF OMITTED] TR05JA17.305

When determined for a ducted coil-only system, EER must include, from 
this appendix, the section 3.3 and 3.5.1 default values for the heat 
output and power input of a fan motor.
    Evaporator coil means an assembly that absorbs heat from an enclosed 
space and transfers the heat to a refrigerant.
    Heat pump means a kind of central air conditioner that utilizes an 
indoor conditioning coil, compressor, and refrigerant-to-outdoor air 
heat exchanger to provide air heating, and may also provide air cooling, 
air dehumidifying, air humidifying, air circulating, and air cleaning.
    Heat pump having a heat comfort controller means a heat pump with 
controls that can regulate the operation of the electric resistance 
elements to assure that the air temperature leaving the indoor section 
does not fall below a specified temperature. Heat pumps that actively 
regulate the rate of electric resistance heating when operating below 
the balance point (as the result of a second stage call from the 
thermostat) but do not operate to maintain a minimum delivery 
temperature are not considered as having a heat comfort controller.
    Heating load factor (HLF) means the ratio having as its numerator 
the total heating delivered during a cyclic operating interval 
consisting of one ON period and one OFF period, and its denominator the 
heating capacity measured at the same test conditions used for the 
cyclic test, multiplied by the total time interval (ON plus OFF) of the 
cyclic-test.
    Heating season means the months of the year that require heating, 
e.g., typically, and roughly, October through April.
    Heating seasonal performance factor (HSPF) means the total space 
heating required during the heating season, expressed in Btu, divided by 
the total electrical energy consumed by the heat pump system during the 
same season, expressed in watt-hours. The HSPF used to evaluate 
compliance with 10 CFR 430.32(c) is based on Region IV and the sampling 
plan stated in 10 CFR 429.16(a). HSPF is determined in accordance with 
appendix M.
    Independent coil manufacturer (ICM) means a manufacturer that 
manufactures indoor units but does not manufacture single-package units 
or outdoor units.
    Indoor unit means a separate assembly of a split system that 
includes--

[[Page 458]]

    (1) An arrangement of refrigerant-to-air heat transfer coil(s) for 
transfer of heat between the refrigerant and the indoor air,
    (2) A condensate drain pan, and may or may not include
    (3) Sheet metal or plastic parts not part of external cabinetry to 
direct/route airflow over the coil(s),
    (4) A cooling mode expansion device,
    (5) External cabinetry, and
    (6) An integrated indoor blower (i.e. a device to move air including 
its associated motor). A separate designated air mover that may be a 
furnace or a modular blower (as defined in appendix AA to the subpart) 
may be considered to be part of the indoor unit. A service coil is not 
an indoor unit.
    Multi-head mini-split system means a split system that has one 
outdoor unit and that has two or more indoor units connected with a 
single refrigeration circuit. The indoor units operate in unison in 
response to a single indoor thermostat.
    Multiple-circuit (or multi-circuit) system means a split system that 
has one outdoor unit and that has two or more indoor units installed on 
two or more refrigeration circuits such that each refrigeration circuit 
serves a compressor and one and only one indoor unit, and refrigerant is 
not shared from circuit to circuit.
    Multiple-split (or multi-split) system means a split system that has 
one outdoor unit and two or more coil-only indoor units and/or blower 
coil indoor units connected with a single refrigerant circuit. The 
indoor units operate independently and can condition multiple zones in 
response to at least two indoor thermostats or temperature sensors. The 
outdoor unit operates in response to independent operation of the indoor 
units based on control input of multiple indoor thermostats or 
temperature sensors, and/or based on refrigeration circuit sensor input 
(e.g., suction pressure).
    Nominal capacity means the capacity that is claimed by the 
manufacturer on the product name plate. Nominal cooling capacity is 
approximate to the air conditioner cooling capacity tested at A or A2 
condition. Nominal heating capacity is approximate to the heat pump 
heating capacity tested in H12 test (or the optional H1N test).
    Non-ducted indoor unit means an indoor unit that is designed to be 
permanently installed, mounted on room walls and/or ceilings, and that 
directly heats or cools air within the conditioned space.
    Normalized Gross Indoor Fin Surface (NGIFS) means the gross fin 
surface area of the indoor unit coil divided by the cooling capacity 
measured for the A or A2 Test, whichever applies.
    Off-mode power consumption means the power consumption when the unit 
is connected to its main power source but is neither providing cooling 
nor heating to the building it serves.
    Off-mode season means, for central air conditioners other than heat 
pumps, the shoulder season and the entire heating season; and for heat 
pumps, the shoulder season only.
    Outdoor unit means a separate assembly of a split system that 
transfers heat between the refrigerant and the outdoor air, and consists 
of an outdoor coil, compressor(s), an air moving device, and in addition 
for heat pumps, may include a heating mode expansion device, reversing 
valve, and/or defrost controls.
    Outdoor unit manufacturer (OUM) means a manufacturer of single-
package units, outdoor units, and/or both indoor units and outdoor 
units.
    Part-load factor (PLF) means the ratio of the cyclic EER (or COP for 
heating) to the steady-state EER (or COP), where both EERs (or COPs) are 
determined based on operation at the same ambient conditions.
    Seasonal energy efficiency ratio (SEER) means the total heat removed 
from the conditioned space during the annual cooling season, expressed 
in Btu's, divided by the total electrical energy consumed by the central 
air conditioner or heat pump during the same season, expressed in watt-
hours. SEER is determined in accordance with appendix M.
    Service coil means an arrangement of refrigerant-to-air heat 
transfer coil(s), condensate drain pan, sheet metal or plastic parts to 
direct/route airflow over the coil(s), which may or may not include 
external cabinetry and/or a cooling mode expansion device, distributed 
in commerce solely for replacing an uncased coil or cased coil that has 
already been placed into service, and that has been labeled ``for indoor 
coil replacement only'' on the nameplate and in manufacturer technical 
and product literature. The model number for any service coil must 
include some mechanism (e.g., an additional letter or number) for 
differentiating a service coil from a coil intended for an indoor unit.
    Shoulder season means the months of the year in between those months 
that require cooling and those months that require heating, e.g., 
typically, and roughly, April through May, and September through 
October.
    Single-package unit means any central air conditioner or heat pump 
that has all major assemblies enclosed in one cabinet.
    Single-split system means a split system that has one outdoor unit 
and one indoor unit connected with a single refrigeration circuit. 
Small-duct, high-velocity system means a split system for which all 
indoor units are blower coil indoor units that produce at least 1.2 
inches (of water column) of external static pressure when operated at 
the full-

[[Page 459]]

load air volume rate certified by the manufacturer of at least 220 scfm 
per rated ton of cooling.
    Split system means any air conditioner or heat pump that has at 
least two separate assemblies that are connected with refrigerant piping 
when installed. One of these assemblies includes an indoor coil that 
exchanges heat with the indoor air to provide heating or cooling, while 
one of the others includes an outdoor coil that exchanges heat with the 
outdoor air. Split systems may be either blower coil systems or coil-
only systems.
    Standard Air means dry air having a mass density of 0.075 lb/ft\3\.
    Steady-state test means a test where the test conditions are 
regulated to remain as constant as possible while the unit operates 
continuously in the same mode.
    Temperature bin means the 5 [deg]F increments that are used to 
partition the outdoor dry-bulb temperature ranges of the cooling 
(=65 [deg]F) and heating (<65 [deg]F) seasons.
    Test condition tolerance means the maximum permissible difference 
between the average value of the measured test parameter and the 
specified test condition.
    Test operating tolerance means the maximum permissible range that a 
measurement may vary over the specified test interval. The difference 
between the maximum and minimum sampled values must be less than or 
equal to the specified test operating tolerance.
    Tested combination means a multi-head mini-split, multi-split, or 
multi-circuit system having the following features:
    (1) The system consists of one outdoor unit with one or more 
compressors matched with between two and five indoor units;
    (2) The indoor units must:
    (i) Collectively, have a nominal cooling capacity greater than or 
equal to 95 percent and less than or equal to 105 percent of the nominal 
cooling capacity of the outdoor unit;
    (ii) Each represent the highest sales volume model family, if this 
is possible while meeting all the requirements of this section. If this 
is not possible, one or more of the indoor units may represent another 
indoor model family in order that all the other requirements of this 
section are met.
    (iii) Individually not have a nominal cooling capacity greater than 
50 percent of the nominal cooling capacity of the outdoor unit, unless 
the nominal cooling capacity of the outdoor unit is 24,000 Btu/h or 
less;
    (iv) Operate at fan speeds consistent with manufacturer's 
specifications; and
    (v) All be subject to the same minimum external static pressure 
requirement while able to produce the same external static pressure at 
the exit of each outlet plenum when connected in a manifold 
configuration as required by the test procedure.
    (3) Where referenced, ``nominal cooling capacity'' means, for indoor 
units, the highest cooling capacity listed in published product 
literature for 95 [deg]F outdoor dry bulb temperature and 80 [deg]F dry 
bulb, 67 [deg]F wet bulb indoor conditions, and for outdoor units, the 
lowest cooling capacity listed in published product literature for these 
conditions. If incomplete or no operating conditions are published, the 
highest (for indoor units) or lowest (for outdoor units) such cooling 
capacity available for sale must be used.
    Time-adaptive defrost control system is a demand-defrost control 
system that measures the length of the prior defrost period(s) and uses 
that information to automatically determine when to initiate the next 
defrost cycle.
    Time-temperature defrost control systems initiate or evaluate 
initiating a defrost cycle only when a predetermined cumulative 
compressor ON-time is obtained. This predetermined ON-time is generally 
a fixed value (e.g., 30, 45, 90 minutes) although it may vary based on 
the measured outdoor dry-bulb temperature. The ON-time counter 
accumulates if controller measurements (e.g., outdoor temperature, 
evaporator temperature) indicate that frost formation conditions are 
present, and it is reset/remains at zero at all other times. In one 
application of the control scheme, a defrost is initiated whenever the 
counter time equals the predetermined ON-time. The counter is reset when 
the defrost cycle is completed.
    In a second application of the control scheme, one or more 
parameters are measured (e.g., air and/or refrigerant temperatures) at 
the predetermined, cumulative, compressor ON-time. A defrost is 
initiated only if the measured parameter(s) falls within a predetermined 
range. The ON-time counter is reset regardless of whether or not a 
defrost is initiated. If systems of this second type use cumulative ON-
time intervals of 10 minutes or less, then the heat pump may qualify as 
having a demand defrost control system (see definition).
    Triple-capacity, northern heat pump means a heat pump that provides 
two stages of cooling and three stages of heating. The two common stages 
for both the cooling and heating modes are the low capacity stage and 
the high capacity stage. The additional heating mode stage is the 
booster capacity stage, which offers the highest heating capacity output 
for a given set of ambient operating conditions.
    Triple-split system means a split system that is composed of three 
separate assemblies: An outdoor fan coil section, a blower coil indoor 
unit, and an indoor compressor section.
    Two-capacity (or two-stage) compressor system means a central air 
conditioner or heat pump that has a compressor or a group of compressors 
operating with only two stages

[[Page 460]]

of capacity. For such systems, low capacity means the compressor(s) 
operating at low stage, or at low load test conditions. The low 
compressor stage that operates for heating mode tests may be the same or 
different from the low compressor stage that operates for cooling mode 
tests. For such systems, high capacity means the compressor(s) operating 
at high stage, or at full load test conditions.
    Two-capacity, northern heat pump means a heat pump that has a 
factory or field-selectable lock-out feature to prevent space cooling at 
high-capacity. Two-capacity heat pumps having this feature will 
typically have two sets of ratings, one with the feature disabled and 
one with the feature enabled. The heat pump is a two-capacity northern 
heat pump only when this feature is enabled at all times. The certified 
indoor coil model number must reflect whether the ratings pertain to the 
lockout enabled option via the inclusion of an extra identifier, such as 
``+LO''. When testing as a two-capacity, northern heat pump, the lockout 
feature must remain enabled for all tests.
    Uncased coil means a coil-only indoor unit without external 
cabinetry.
    Variable refrigerant flow (VRF) system means a multi-split system 
with at least three compressor capacity stages, distributing refrigerant 
through a piping network to multiple indoor blower coil units each 
capable of individual zone temperature control, through proprietary zone 
temperature control devices and a common communications network. Note: 
Single-phase VRF systems less than 65,000 Btu/h are central air 
conditioners and central air conditioning heat pumps.
    Variable-speed compressor system means a central air conditioner or 
heat pump that has a compressor that uses a variable-speed drive to vary 
the compressor speed to achieve variable capacities.
    Wet-coil test means a test conducted at test conditions that 
typically cause water vapor to condense on the test unit evaporator 
coil.

                   2. Testing Overview and Conditions

    (A) Test VRF systems using AHRI 1230-2010 (incorporated by 
reference, see Sec.  430.3) and appendix M. Where AHRI 1230-2010 refers 
to the appendix C therein substitute the provisions of this appendix. In 
cases where there is a conflict, the language of the test procedure in 
this appendix takes precedence over AHRI 1230-2010.
    For definitions use section 1 of appendix M and section 3 of AHRI 
1230-2010 (incorporated by reference, see Sec.  430.3). For rounding 
requirements, refer to Sec.  430.23(m). For determination of certified 
ratings, refer to Sec.  429.16 of this chapter.
    For test room requirements, refer to section 2.1 of this appendix. 
For test unit installation requirements refer to sections 2.2.a, 2.2.b, 
2.2.c, 2.2.1, 2.2.2, 2.2.3(a), 2.2.3(c), 2.2.4, 2.2.5, and 2.4 to 2.12 
of this appendix, and sections 5.1.3 and 5.1.4 of AHRI 1230-2010. The 
``manufacturer's published instructions,'' as stated in section 8.2 of 
ANSI/ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3) and 
``manufacturer's installation instructions'' discussed in this appendix 
mean the manufacturer's installation instructions that come packaged 
with or appear in the labels applied to the unit. This does not include 
online manuals. Installation instructions that appear in the labels 
applied to the unit take precedence over installation instructions that 
are shipped with the unit.
    For general requirements for the test procedure, refer to section 
3.1 of this appendix, except for sections 3.1.3 and 3.1.4, which are 
requirements for indoor air volume and outdoor air volume. For indoor 
air volume and outdoor air volume requirements, refer instead to section 
6.1.5 (except where section 6.1.5 refers to Table 8, refer instead to 
Table 4 of this appendix) and 6.1.6 of AHRI 1230-2010.
    For the test method, refer to sections 3.3 to 3.5 and 3.7 to 3.13 of 
this appendix. For cooling mode and heating mode test conditions, refer 
to section 6.2 of AHRI 1230-2010. For calculations of seasonal 
performance descriptors, refer to section 4 of this appendix.
    (B) For systems other than VRF, only a subset of the sections listed 
in this test procedure apply when testing and determining represented 
values for a particular unit. Table 1 shows the sections of the test 
procedure that apply to each system. This table is meant to assist 
manufacturers in finding the appropriate sections of the test procedure; 
the appendix sections rather than the table provide the specific 
requirements for testing, and given the varied nature of available 
units, manufacturers are responsible for determining which sections 
apply to each unit tested based on the unit's characteristics. To use 
this table, first refer to the sections listed under ``all units''. Then 
refer to additional requirements based on:
    (1) System configuration(s),
    (2) The compressor staging or modulation capability, and
    (3) Any special features.
    Testing requirements for space-constrained products do not differ 
from similar equipment that is not space-constrained and thus are not 
listed separately in this table. Air conditioners and heat pumps are not 
listed separately in this table, but heating procedures and calculations 
apply only to heat pumps.

[[Page 461]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.004


[[Page 462]]


[GRAPHIC] [TIFF OMITTED] TR05JA17.005


[[Page 463]]


[GRAPHIC] [TIFF OMITTED] TR05JA17.006

                       2.1 Test Room Requirements

    a. Test using two side-by-side rooms: An indoor test room and an 
outdoor test room. For multiple-split, single-zone-multi-coil or multi-
circuit air conditioners and heat pumps, however, use as many indoor 
test rooms as needed to accommodate the total number of indoor units. 
These rooms must

[[Page 464]]

comply with the requirements specified in sections 8.1.2 and 8.1.3 of 
ANSI/ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3).
    b. Inside these test rooms, use artificial loads during cyclic tests 
and frost accumulation tests, if needed, to produce stabilized room air 
temperatures. For one room, select an electric resistance heater(s) 
having a heating capacity that is approximately equal to the heating 
capacity of the test unit's condenser. For the second room, select a 
heater(s) having a capacity that is close to the sensible cooling 
capacity of the test unit's evaporator. Cycle the heater located in the 
same room as the test unit evaporator coil ON and OFF when the test unit 
cycles ON and OFF. Cycle the heater located in the same room as the test 
unit condensing coil ON and OFF when the test unit cycles OFF and ON.

                 2.2 Test Unit Installation Requirements

    a. Install the unit according to section 8.2 of ANSI/ASHRAE 37-2009 
(incorporated by reference, see Sec.  430.3), subject to the following 
additional requirements:
    (1) When testing split systems, follow the requirements given in 
section 6.1.3.5 of AHRI 210/240-2008 (incorporated by reference, see 
Sec.  430.3). For the vapor refrigerant line(s), use the insulation 
included with the unit; if no insulation is provided, use insulation 
meeting the specifications for the insulation in the installation 
instructions included with the unit by the manufacturer; if no 
insulation is included with the unit and the installation instructions 
do not contain provisions for insulating the line(s), fully insulate the 
vapor refrigerant line(s) with vapor proof insulation having an inside 
diameter that matches the refrigerant tubing and a nominal thickness of 
at least 0.5 inches. For the liquid refrigerant line(s), use the 
insulation included with the unit; if no insulation is provided, use 
insulation meeting the specifications for the insulation in the 
installation instructions included with the unit by the manufacturer; if 
no insulation is included with the unit and the installation 
instructions do not contain provisions for insulating the line(s), leave 
the liquid refrigerant line(s) exposed to the air for air conditioners 
and heat pumps that heat and cool; or, for heating-only heat pumps, 
insulate the liquid refrigerant line(s) with insulation having an inside 
diameter that matches the refrigerant tubing and a nominal thickness of 
at least 0.5 inches. However, these requirements do not take priority 
over instructions for application of insulation for the purpose of 
improving refrigerant temperature measurement accuracy as required by 
sections 2.10.2 and 2.10.3 of this appendix. Insulation must be the same 
for the cooling and heating tests.
    (2) When testing split systems, if the indoor unit does not ship 
with a cooling mode expansion device, test the system using the device 
as specified in the installation instructions provided with the indoor 
unit. If none is specified, test the system using a fixed orifice or 
piston type expansion device that is sized appropriately for the system.
    (3) When testing triple-split systems (see section 1.2 of this 
appendix, Definitions), use the tubing length specified in section 
6.1.3.5 of AHRI 210/240-2008 (incorporated by reference, see Sec.  
430.3) to connect the outdoor coil, indoor compressor section, and 
indoor coil while still meeting the requirement of exposing 10 feet of 
the tubing to outside conditions;
    (4) When testing split systems having multiple indoor coils, connect 
each indoor blower coil unit to the outdoor unit using:
    (a) 25 feet of tubing, or
    (b) tubing furnished by the manufacturer, whichever is longer.
    At least 10 feet of the system interconnection tubing shall be 
exposed to the outside conditions. If they are needed to make a 
secondary measurement of capacity or for verification of refrigerant 
charge, install refrigerant pressure measuring instruments as described 
in section 8.2.5 of ANSI/ASHRAE 37-2009 (incorporated by reference, see 
Sec.  430.3). Section 2.10 of this appendix specifies which secondary 
methods require refrigerant pressure measurements and section 2.2.5.5 of 
this appendix discusses use of pressure measurements to verify charge. 
At a minimum, insulate the low-pressure line(s) of a split system with 
insulation having an inside diameter that matches the refrigerant tubing 
and a nominal thickness of 0.5 inch.
    b. For units designed for both horizontal and vertical installation 
or for both up-flow and down-flow vertical installations, use the 
orientation for testing specified by the manufacturer in the 
certification report. Conduct testing with the following installed:
    (1) The most restrictive filter(s);
    (2) Supplementary heating coils; and
    (3) Other equipment specified as part of the unit, including all 
hardware used by a heat comfort controller if so equipped (see section 1 
of this appendix, Definitions). For small-duct, high-velocity systems, 
configure all balance dampers or restrictor devices on or inside the 
unit to fully open or lowest restriction.
    c. Testing a ducted unit without having an indoor air filter 
installed is permissible as long as the minimum external static pressure 
requirement is adjusted as stated in Table 4, note 3 (see section 3.1.4 
of this appendix). Except as noted in section 3.1.10 of this appendix, 
prevent the indoor air supplementary heating coils from operating during 
all tests. For uncased coils, create an enclosure using 1 inch 
fiberglass foil-faced ductboard having a nominal density of 6 pounds per 
cubic foot. Or alternatively, construct an enclosure using sheet metal 
or a

[[Page 465]]

similar material and insulating material having a thermal resistance 
(``R'' value) between 4 and 6 hr[middot]ft\2\[middot] [deg]F/Btu. Size 
the enclosure and seal between the coil and/or drainage pan and the 
interior of the enclosure as specified in installation instructions 
shipped with the unit. Also seal between the plenum and inlet and outlet 
ducts.
    d. When testing a coil-only system, install a toroidal-type 
transformer to power the system's low-voltage components, complying with 
any additional requirements for the transformer mentioned in the 
installation manuals included with the unit by the system manufacturer. 
If the installation manuals do not provide specifications for the 
transformer, use a transformer having the following features:
    (1) A nominal volt-amp rating such that the transformer is loaded 
between 25 and 90 percent of this rating for the highest level of power 
measured during the off mode test (section 3.13 of this appendix);
    (2) Designed to operate with a primary input of 230 V, single phase, 
60 Hz; and
    (3) That provides an output voltage that is within the specified 
range for each low-voltage component. Include the power consumption of 
the components connected to the transformer as part of the total system 
power consumption during the off mode tests; do not include the power 
consumed by the transformer when no load is connected to it.
    e. Test an outdoor unit with no match (i.e., that is not distributed 
in commerce with any indoor units) using a coil-only indoor unit with a 
single cooling air volume rate whose coil has:
    (1) Round tubes of outer diameter no less than 0.375 inches, and
    (2) a normalized gross indoor fin surface (NGIFS) no greater than 
1.0 square inches per British thermal unit per hour (sq. in./Btu/hr). 
NGIFS is calculated as follows:
    NGIFS = 2 x Lf x Wf x Nf / Qc(95)
where:

Lf = Indoor coil fin length in inches, also height of the 
          coil transverse to the tubes.
Wf = Indoor coil fin width in inches, also depth of the coil.
Nf = Number of fins.
Qc(95) = the measured space cooling capacity of the tested 
          outdoor unit/indoor unit combination as determined from the A2 
          or A Test whichever applies, Btu/h.

    [fnof]. If the outdoor unit or the outdoor portion of a single-
package unit has a drain pan heater to prevent freezing of defrost 
water, the heater shall be energized, subject to control to de-energize 
it when not needed by the heater's thermostat or the unit's control 
system, for all tests.
    g. If pressure measurement devices are connected to a cooling/
heating heat pump refrigerant circuit, the refrigerant charge 
Mt that could potentially transfer out of the connected 
pressure measurement systems (transducers, gauges, connections, and 
lines) between operating modes must be less than 2 percent of the 
factory refrigerant charge listed on the nameplate of the outdoor unit. 
If the outdoor unit nameplate has no listed refrigerant charge, or the 
heat pump is shipped without a refrigerant charge, use a factory 
refrigerant charge equal to 30 ounces per ton of certified cooling 
capacity. Use Equation 2.2-1 to calculate Mt for heat pumps 
that have a single expansion device located in the outdoor unit to serve 
each indoor unit, and use Equation 2.2-2 to calculate Mt for 
heat pumps that have two expansion devices per indoor unit.
[GRAPHIC] [TIFF OMITTED] TR05JA17.007

[GRAPHIC] [TIFF OMITTED] TR05JA17.027

where:

Vi (i=2,3,4. . .) = the internal volume of the pressure 
          measurement system (pressure lines, fittings, and gauge and/or 
          transducer) at the location i (as indicated in Table 2), 
          (cubic inches)
fi (i=5,6) = 0 if the pressure measurement system is pitched 
          upwards from the pressure tap location to the gauge or 
          transducer, 1 if it is not.
r = the density associated with liquid refrigerant at 100 [deg]F bubble 
          point conditions (ounces per cubic inch)


                 Table 2--Pressure Measurement Locations
------------------------------------------------------------------------
                        Location
------------------------------------------------------------------------
Compressor Discharge....................................               1
Between Outdoor Coil and Outdoor Expansion Valve(s).....               2
Liquid Service Valve....................................               3
Indoor Coil Inlet.......................................               4
Indoor Coil Outlet......................................               5
Common Suction Port (i.e. vapor service valve)..........               6
Compressor Suction......................................               7
------------------------------------------------------------------------


[[Page 466]]

    Calculate the internal volume of each pressure measurement system 
using internal volume reported for pressure transducers and gauges in 
product literature, if available. If such information is not available, 
use the value of 0.1 cubic inches internal volume for each pressure 
transducer, and 0.2 cubic inches for each pressure gauge.
    In addition, for heat pumps that have a single expansion device 
located in the outdoor unit to serve each indoor unit, the internal 
volume of the pressure system at location 2 (as indicated in Table 2) 
must be no more than 1 cubic inch. Once the pressure measurement lines 
are set up, no change should be made until all tests are finished.

                     2.2.1 Defrost Control Settings

    Set heat pump defrost controls at the normal settings which most 
typify those encountered in generalized climatic region IV. (Refer to 
Figure 1 and Table 20 of section 4.2 of this appendix for information on 
region IV.) For heat pumps that use a time-adaptive defrost control 
system (see section 1.2 of this appendix, Definitions), the manufacturer 
must specify in the certification report the frosting interval to be 
used during frost accumulation tests and provide the procedure for 
manually initiating the defrost at the specified time.

2.2.2 Special Requirements for Units Having a Multiple-Speed Outdoor Fan

    Configure the multiple-speed outdoor fan according to the 
installation manual included with the unit by the manufacturer, and 
thereafter, leave it unchanged for all tests. The controls of the unit 
must regulate the operation of the outdoor fan during all lab tests 
except dry coil cooling mode tests. For dry coil cooling mode tests, the 
outdoor fan must operate at the same speed used during the required wet 
coil test conducted at the same outdoor test conditions.

  2.2.3 Special Requirements for Multi-Split Air Conditioners and Heat 
   Pumps and Ducted Systems Using a Single Indoor Section Containing 
 Multiple Indoor Blowers That Would Normally Operate Using Two or More 
                           Indoor Thermostats

    Because these systems will have more than one indoor blower and 
possibly multiple outdoor fans and compressor systems, references in 
this test procedure to a singular indoor blower, outdoor fan, and/or 
compressor means all indoor blowers, all outdoor fans, and all 
compressor systems that are energized during the test.
    a. Additional requirements for multi-split air conditioners and heat 
pumps. For any test where the system is operated at part load (i.e., one 
or more compressors ``off'', operating at the intermediate or minimum 
compressor speed, or at low compressor capacity), record the indoor 
coil(s) that are not providing heating or cooling during the test. For 
variable-speed systems, the manufacturer must designate in the 
certification report at least one indoor unit that is not providing 
heating or cooling for all tests conducted at minimum compressor speed.
    b. Additional requirements for ducted split systems with a single 
indoor unit containing multiple indoor blowers (or for single-package 
units with an indoor section containing multiple indoor blowers) where 
the indoor blowers are designed to cycle on and off independently of one 
another and are not controlled such that all indoor blowers are 
modulated to always operate at the same air volume rate or speed. For 
any test where the system is operated at its lowest capacity--i.e., the 
lowest total air volume rate allowed when operating the single-speed 
compressor or when operating at low compressor capacity--indoor blowers 
accounting for at least one-third of the full-load air volume rate must 
be turned off unless prevented by the controls of the unit. In such 
cases, turn off as many indoor blowers as permitted by the unit's 
controls. Where more than one option exists for meeting this ``off'' 
requirement, the manufacturer shall indicate in its certification report 
which indoor blower(s) are turned off. The chosen configuration shall 
remain unchanged for all tests conducted at the same lowest capacity 
configuration. For any indoor coil turned off during a test, cease 
forced airflow through any outlet duct connected to a switched-off 
indoor blower.
    c. For test setups where the laboratory's physical limitations 
requires use of more than the required line length of 25 feet as listed 
in section 2.2.a(4) of this appendix, then the actual refrigerant line 
length used by the laboratory may exceed the required length and the 
refrigerant line length correction factors in Table 4 of AHRI 1230-2010 
are applied to the cooling capacity measured for each cooling mode test.

2.2.4 Wet-Bulb Temperature Requirements for the Air Entering the Indoor 
                            and Outdoor Coils

                       2.2.4.1 Cooling Mode Tests

    For wet-coil cooling mode tests, regulate the water vapor content of 
the air entering the indoor unit so that the wet-bulb temperature is as 
listed in Tables 5 to 8. As noted in these same tables, achieve a wet-
bulb temperature during dry-coil cooling mode tests that results in no 
condensate forming on the indoor coil. Controlling the water vapor 
content of the air entering the outdoor side of the unit is not required 
for cooling mode tests except when testing:
    (1) Units that reject condensate to the outdoor coil during wet coil 
tests. Tables 5-8 list the applicable wet-bulb temperatures.

[[Page 467]]

    (2) Single-package units where all or part of the indoor section is 
located in the outdoor test room. The average dew point temperature of 
the air entering the outdoor coil during wet coil tests must be within 
3.0 [deg]F of the average dew point temperature of 
the air entering the indoor coil over the 30-minute data collection 
interval described in section 3.3 of this appendix. For dry coil tests 
on such units, it may be necessary to limit the moisture content of the 
air entering the outdoor coil of the unit to meet the requirements of 
section 3.4 of this appendix.

                       2.2.4.2 Heating Mode Tests

    For heating mode tests, regulate the water vapor content of the air 
entering the outdoor unit to the applicable wet-bulb temperature listed 
in Tables 12 to 15. The wet-bulb temperature entering the indoor side of 
the heat pump must not exceed 60 [deg]F. Additionally, if the Outdoor 
Air Enthalpy test method (section 2.10.1 of this appendix) is used while 
testing a single-package heat pump where all or part of the outdoor 
section is located in the indoor test room, adjust the wet-bulb 
temperature for the air entering the indoor side to yield an indoor-side 
dew point temperature that is as close as reasonably possible to the dew 
point temperature of the outdoor-side entering air.

           2.2.5 Additional Refrigerant Charging Requirements

                2.2.5.1 Instructions To Use for Charging

    a. Where the manufacturer's installation instructions contain two 
sets of refrigerant charging criteria, one for field installations and 
one for lab testing, use the field installation criteria.
    b. For systems consisting of an outdoor unit manufacturer's outdoor 
section and indoor section with differing charging procedures, adjust 
the refrigerant charge per the outdoor installation instructions.
    c. For systems consisting of an outdoor unit manufacturer's outdoor 
unit and an independent coil manufacturer's indoor unit with differing 
charging procedures, adjust the refrigerant charge per the indoor unit's 
installation instructions. If instructions are provided only with the 
outdoor unit or are provided only with an independent coil 
manufacturer's indoor unit, then use the provided instructions.

                   2.2.5.2 Test(s) To Use for Charging

    a. Use the tests or operating conditions specified in the 
manufacturer's installation instructions for charging. The 
manufacturer's installation instructions may specify use of tests other 
than the A or A2 test for charging, but, unless the unit is a 
heating-only heat pump, the air volume rate must be determined by the A 
or A2 test as specified in section 3.1 of this appendix.
    b. If the manufacturer's installation instructions do not specify a 
test or operating conditions for charging or there are no manufacturer's 
instructions, use the following test(s):
    (1) For air conditioners or cooling and heating heat pumps, use the 
A or A2 test.
    (2) For cooling and heating heat pumps that do not operate in the H1 
or H12 test (e.g. due to shut down by the unit limiting 
devices) when tested using the charge determined at the A or 
A2 test, and for heating-only heat pumps, use the H1 or 
H12 test.

            2.2.5.3 Parameters To Set and Their Target Values

    a. Consult the manufacturer's installation instructions regarding 
which parameters (e.g., superheat) to set and their target values. If 
the instructions provide ranges of values, select target values equal to 
the midpoints of the provided ranges.
    b. In the event of conflicting information between charging 
instructions (i.e., multiple conditions given for charge adjustment 
where all conditions specified cannot be met), follow the following 
hierarchy.
    (1) For fixed orifice systems:
    (i) Superheat
    (ii) High side pressure or corresponding saturation or dew-point 
temperature
    (iii) Low side pressure or corresponding saturation or dew-point 
temperature
    (iv) Low side temperature
    (v) High side temperature
    (vi) Charge weight
    (2) For expansion valve systems:
    (i) Subcooling
    (ii) High side pressure or corresponding saturation or dew-point 
temperature
    (iii) Low side pressure or corresponding saturation or dew-point 
temperature
    (iv) Approach temperature (difference between temperature of liquid 
leaving condenser and condenser average inlet air temperature)
    (v) Charge weight
    c. If there are no installation instructions and/or they do not 
provide parameters and target values, set superheat to a target value of 
12 [deg]F for fixed orifice systems or set subcooling to a target value 
of 10 [deg]F for expansion valve systems.

                       2.2.5.4 Charging Tolerances

    a. If the manufacturer's installation instructions specify 
tolerances on target values for the charging parameters, set the values 
within these tolerances.
    b. Otherwise, set parameter values within the following test 
condition tolerances for the different charging parameters:
1. Superheat:  2.0 [deg]F
2. Subcooling:  2.0 [deg]F

[[Page 468]]

3. High side pressure or corresponding saturation or dew point 
temperature:  4.0 psi or  
1.0 [deg]F
4. Low side pressure or corresponding saturation or dew point 
temperature:  2.0 psi or  
0.8 [deg]F
5. High side temperature: 2.0 [deg]F
6. Low side temperature: 2.0 [deg]F
7. Approach temperature:  1.0 [deg]F
8. Charge weight:  2.0 ounce

                  2.2.5.5 Special Charging Instructions

                    a. Cooling and Heating Heat Pumps

    If, using the initial charge set in the A or A2 test, the 
conditions are not within the range specified in manufacturer's 
installation instructions for the H1 or H12 test, make as 
small as possible an adjustment to obtain conditions for this test in 
the specified range. After this adjustment, recheck conditions in the A 
or A2 test to confirm that they are still within the 
specified range for the A or A2 test.

                        b. Single-Package Systems

    Unless otherwise directed by the manufacturer's installation 
instructions, install one or more refrigerant line pressure gauges 
during the setup of the unit, located depending on the parameters used 
to verify or set charge, as described:
    (1) Install a pressure gauge at the location of the service valve on 
the liquid line if charging is on the basis of subcooling, or high side 
pressure or corresponding saturation or dew point temperature;
    (2) Install a pressure gauge at the location of the service valve on 
the suction line if charging is on the basis of superheat, or low side 
pressure or corresponding saturation or dew point temperature.
    Use methods for installing pressure gauge(s) at the required 
location(s) as indicated in manufacturer's instructions if specified.

           2.2.5.6 Near-Azeotropic and Zeotropic Refrigerants.

    Perform charging of near-azeotropic and zeotropic refrigerants only 
with refrigerant in the liquid state.

               2.2.5.7 Adjustment of Charge Between Tests.

    After charging the system as described in this test procedure, use 
the set refrigerant charge for all tests used to determine performance. 
Do not adjust the refrigerant charge at any point during testing. If 
measurements indicate that refrigerant charge has leaked during the 
test, repair the refrigerant leak, repeat any necessary set-up steps, 
and repeat all tests.

                      2.3 Indoor Air Volume Rates.

    If a unit's controls allow for overspeeding the indoor blower 
(usually on a temporary basis), take the necessary steps to prevent 
overspeeding during all tests.

                           2.3.1 Cooling Tests

    a. Set indoor blower airflow-control settings (e.g., fan motor pin 
settings, fan motor speed) according to the requirements that are 
specified in section 3.1.4 of this appendix.
    b. Express the Cooling full-load air volume rate, the Cooling 
Minimum Air Volume Rate, and the Cooling Intermediate Air Volume Rate in 
terms of standard air.

                           2.3.2 Heating Tests

    a. Set indoor blower airflow-control settings (e.g., fan motor pin 
settings, fan motor speed) according to the requirements that are 
specified in section 3.1.4 of this appendix.
    b. Express the heating full-load air volume rate, the heating 
minimum air volume rate, the heating intermediate air volume rate, and 
the heating nominal air volume rate in terms of standard air.

            2.4 Indoor Coil Inlet and Outlet Duct Connections

    Insulate and/or construct the outlet plenum as described in section 
2.4.1 of this appendix and, if installed, the inlet plenum described in 
section 2.4.2 of this appendix with thermal insulation having a nominal 
overall resistance (R-value) of at least 19 hr[middot]ft\2\[middot] 
[deg]F/Btu.

                 2.4.1 Outlet Plenum for the Indoor Unit

    a. Attach a plenum to the outlet of the indoor coil. (Note: For some 
packaged systems, the indoor coil may be located in the outdoor test 
room.)
    b. For systems having multiple indoor coils, or multiple indoor 
blowers within a single indoor section, attach a plenum to each indoor 
coil or indoor blower outlet. In order to reduce the number of required 
airflow measurement apparati (section 2.6 of this appendix), each such 
apparatus may serve multiple outlet plenums connected to a single common 
duct leading to the apparatus. More than one indoor test room may be 
used, which may use one or more common ducts leading to one or more 
airflow measurement apparati within each test room that contains 
multiple indoor coils. At the plane where each plenum enters a common 
duct, install an adjustable airflow damper and use it to equalize the 
static pressure in each plenum. Each outlet air temperature grid 
(section 2.5.4 of this appendix) and airflow measuring apparatus are 
located downstream of the inlet(s) to the common duct. For multiple-
circuit (or multi-circuit) systems for which each indoor coil outlet is 
measured

[[Page 469]]

separately and its outlet plenum is not connected to a common duct 
connecting multiple outlet plenums, the outlet air temperature grid and 
airflow measuring apparatus must be installed at each outlet plenum.
    c. For small-duct, high-velocity systems, install an outlet plenum 
that has a diameter that is equal to or less than the value listed in 
Table 3. The limit depends only on the Cooling full-load air volume rate 
(see section 3.1.4.1.1 of this appendix) and is effective regardless of 
the flange dimensions on the outlet of the unit (or an air supply plenum 
adapter accessory, if installed in accordance with the manufacturer's 
installation instructions).
    d. Add a static pressure tap to each face of the (each) outlet 
plenum, if rectangular, or at four evenly distributed locations along 
the circumference of an oval or round plenum. Create a manifold that 
connects the four static pressure taps. Figure 9 of ANSI/ASHRAE 37-2009 
(incorporated by reference, see Sec.  430.3) shows allowed options for 
the manifold configuration. The cross-sectional dimensions of plenum 
shall be equal to the dimensions of the indoor unit outlet. See Figures 
7a, 7b, and 7c of ANSI/ASHRAE 37-2009 for the minimum length of the 
(each) outlet plenum and the locations for adding the static pressure 
taps for ducted blower coil indoor units and single-package systems. See 
Figure 8 of ANSI/ASHRAE 37-2009 for coil-only indoor units.

Table 3--Size of Outlet Plenum for Small-Duct High-Velocity Indoor Units
------------------------------------------------------------------------
                                                              Maximum
                                                           diameter * of
        Cooling full-load air volume rate (scfm)           outlet plenum
                                                             (inches)
------------------------------------------------------------------------
<=500...................................................               6
501 to 700..............................................               7
701 to 900..............................................               8
901 to 1100.............................................               9
1101 to 1400............................................              10
1401 to 1750............................................              11
------------------------------------------------------------------------
* If the outlet plenum is rectangular, calculate its equivalent diameter
  using (4A/P,) where A is the cross-sectional area and P is the
  perimeter of the rectangular plenum, and compare it to the listed
  maximum diameter.

                 2.4.2 Inlet Plenum for the Indoor Unit

    Install an inlet plenum when testing a coil-only indoor unit, a 
ducted blower coil indoor unit, or a single-package system. See Figures 
7b and 7c of ANSI/ASHRAE 37-2009 for cross-sectional dimensions, the 
minimum length of the inlet plenum, and the locations of the static-
pressure taps for ducted blower coil indoor units and single-package 
systems. See Figure 8 of ANSI/ASHRAE 37-2009 for coil-only indoor units. 
The inlet plenum duct size shall equal the size of the inlet opening of 
the air-handling (blower coil) unit or furnace. For a ducted blower coil 
indoor unit the set up may omit the inlet plenum if an inlet airflow 
prevention device is installed with a straight internally unobstructed 
duct on its outlet end with a minimum length equal to 1.5 times the 
square root of the cross-sectional area of the indoor unit inlet. See 
section 2.5.1.2 of this appendix for requirements for the locations of 
static pressure taps built into the inlet airflow prevention device. For 
all of these arrangements, make a manifold that connects the four 
static-pressure taps using one of the three configurations specified in 
section 2.4.1.d of this appendix. Never use an inlet plenum when testing 
non-ducted indoor units.

2.5 Indoor Coil Air Property Measurements and Airflow Prevention Devices

    Follow instructions for indoor coil air property measurements as 
described in section 2.14 of this appendix, unless otherwise instructed 
in this section.
    a. Measure the dry-bulb temperature and water vapor content of the 
air entering and leaving the indoor coil. If needed, use an air sampling 
device to divert air to a sensor(s) that measures the water vapor 
content of the air. See section 5.3 of ANSI/ASHRAE 41.1-2013 
(incorporated by reference, see Sec.  430.3) for guidance on 
constructing an air sampling device. No part of the air sampling device 
or the tubing transferring the sampled air to the sensor shall be within 
two inches of the test chamber floor, and the transfer tubing shall be 
insulated. The sampling device may also be used for measurement of dry 
bulb temperature by transferring the sampled air to a remotely located 
sensor(s). The air sampling device and the remotely located temperature 
sensor(s) may be used to determine the entering air dry bulb temperature 
during any test. The air sampling device and the remotely located 
sensor(s) may be used to determine the leaving air dry bulb temperature 
for all tests except:
    (1) Cyclic tests; and
    (2) Frost accumulation tests.
    b. Install grids of temperature sensors to measure dry bulb 
temperatures of both the entering and leaving airstreams of the indoor 
unit. These grids of dry bulb temperature sensors may be used to measure 
average dry bulb temperature entering and leaving the indoor unit in all 
cases (as an alternative to the dry bulb sensor measuring the sampled 
air). The leaving airstream grid is required for measurement of average 
dry bulb temperature leaving the indoor unit for the two special cases 
noted above. The grids are also required to measure the air temperature 
distribution of the entering and leaving

[[Page 470]]

airstreams as described in sections 3.1.8 and 3.1.9 of this appendix. 
Two such grids may applied as a thermopile, to directly obtain the 
average temperature difference rather than directly measuring both 
entering and leaving average temperatures.
    c. Use of airflow prevention devices. Use an inlet and outlet air 
damper box, or use an inlet upturned duct and an outlet air damper box 
when conducting one or both of the cyclic tests listed in sections 3.2 
and 3.6 of this appendix on ducted systems. If not conducting any cyclic 
tests, an outlet air damper box is required when testing ducted and non-
ducted heat pumps that cycle off the indoor blower during defrost cycles 
and there is no other means for preventing natural or forced convection 
through the indoor unit when the indoor blower is off. Never use an 
inlet damper box or an inlet upturned duct when testing non-ducted 
indoor units. An inlet upturned duct is a length of ductwork installed 
upstream from the inlet such that the indoor duct inlet opening, facing 
upwards, is sufficiently high to prevent natural convection transfer out 
of the duct. If an inlet upturned duct is used, install a dry bulb 
temperature sensor near the inlet opening of the indoor duct at a 
centerline location not higher than the lowest elevation of the duct 
edges at the inlet, and ensure that any pair of 5-minute averages of the 
dry bulb temperature at this location, measured at least every minute 
during the compressor OFF period of the cyclic test, do not differ by 
more than 1.0 [deg]F.

2.5.1 Test Set-Up on the Inlet Side of the Indoor Coil: For Cases Where 
            the Inlet Airflow Prevention Device Is Installed

    a. Install an airflow prevention device as specified in section 
2.5.1.1 or 2.5.1.2 of this appendix, whichever applies.
    b. For an inlet damper box, locate the grid of entering air dry-bulb 
temperature sensors, if used, and the air sampling device, or the sensor 
used to measure the water vapor content of the inlet air, at a location 
immediately upstream of the damper box inlet. For an inlet upturned 
duct, locate the grid of entering air dry-bulb temperature sensors, if 
used, and the air sampling device, or the sensor used to measure the 
water vapor content of the inlet air, at a location at least one foot 
downstream from the beginning of the insulated portion of the duct but 
before the static pressure measurement.

         2.5.1.1 If the Section 2.4.2 Inlet Plenum Is Installed

    Construct the airflow prevention device having a cross-sectional 
flow area equal to or greater than the flow area of the inlet plenum. 
Install the airflow prevention device upstream of the inlet plenum and 
construct ductwork connecting it to the inlet plenum. If needed, use an 
adaptor plate or a transition duct section to connect the airflow 
prevention device with the inlet plenum. Insulate the ductwork and inlet 
plenum with thermal insulation that has a nominal overall resistance (R-
value) of at least 19 hr [middot] ft\2\ [middot] [deg]F/Btu.

       2.5.1.2 If the Section 2.4.2 Inlet Plenum Is Not Installed

    Construct the airflow prevention device having a cross-sectional 
flow area equal to or greater than the flow area of the air inlet of the 
indoor unit. Install the airflow prevention device immediately upstream 
of the inlet of the indoor unit. If needed, use an adaptor plate or a 
short transition duct section to connect the airflow prevention device 
with the unit's air inlet. Add static pressure taps at the center of 
each face of a rectangular airflow prevention device, or at four evenly 
distributed locations along the circumference of an oval or round 
airflow prevention device. Locate the pressure taps at a distance from 
the indoor unit inlet equal to 0.5 times the square root of the cross 
sectional area of the indoor unit inlet. This location must be between 
the damper and the inlet of the indoor unit, if a damper is used. Make a 
manifold that connects the four static pressure taps using one of the 
configurations shown in Figure 9 of ANSI/ASHRAE 37-2009 (incorporated by 
reference, see Sec.  430.3). Insulate the ductwork with thermal 
insulation that has a nominal overall resistance (R-value) of at least 
19 hr [middot] ft\2\ [middot] [deg]F/Btu.

2.5.2 Test Set-Up on the Inlet Side of the Indoor Unit: for Cases Where 
                No Airflow Prevention Device is Installed

    If using the section 2.4.2 inlet plenum and a grid of dry bulb 
temperature sensors, mount the grid at a location upstream of the static 
pressure taps described in section 2.4.2 of this appendix, preferably at 
the entrance plane of the inlet plenum. If the section 2.4.2 inlet 
plenum is not used (i.e. for non-ducted units) locate a grid 
approximately 6 inches upstream of the indoor unit inlet. In the case of 
a system having multiple non-ducted indoor units, do this for each 
indoor unit. Position an air sampling device, or the sensor used to 
measure the water vapor content of the inlet air, immediately upstream 
of the (each) entering air dry-bulb temperature sensor grid. If a grid 
of sensors is not used, position the entering air sampling device (or 
the sensor used to measure the water vapor content of the inlet air) as 
if the grid were present.

        2.5.3 Indoor Coil Static Pressure Difference Measurement

    Fabricate pressure taps meeting all requirements described in 
section 6.5.2 of

[[Page 471]]

ANSI/ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3) and 
illustrated in Figure 2A of AMCA 210-2007 (incorporated by reference, 
see Sec.  430.3), however, if adhering strictly to the description in 
section 6.5.2 of ANSI/ASHRAE 37-2009, the minimum pressure tap length of 
2.5 times the inner diameter of Figure 2A of AMCA 210-2007 is waived. 
Use a differential pressure measuring instrument that is accurate to 
within 0.01 inches of water and has a resolution 
of at least 0.01 inches of water to measure the static pressure 
difference between the indoor coil air inlet and outlet. Connect one 
side of the differential pressure instrument to the manifolded pressure 
taps installed in the outlet plenum. Connect the other side of the 
instrument to the manifolded pressure taps located in either the inlet 
plenum or incorporated within the airflow prevention device. For non-
ducted indoor units that are tested with multiple outlet plenums, 
measure the static pressure within each outlet plenum relative to the 
surrounding atmosphere.

         2.5.4 Test Set-Up on the Outlet Side of the Indoor Coil

    a. Install an interconnecting duct between the outlet plenum 
described in section 2.4.1 of this appendix and the airflow measuring 
apparatus described below in section 2.6 of this appendix. The cross-
sectional flow area of the interconnecting duct must be equal to or 
greater than the flow area of the outlet plenum or the common duct used 
when testing non-ducted units having multiple indoor coils. If needed, 
use adaptor plates or transition duct sections to allow the connections. 
To minimize leakage, tape joints within the interconnecting duct (and 
the outlet plenum). Construct or insulate the entire flow section with 
thermal insulation having a nominal overall resistance (R-value) of at 
least 19 hr[middot]ft\2\[middot] [deg]F/Btu.
    b. Install a grid(s) of dry-bulb temperature sensors inside the 
interconnecting duct. Also, install an air sampling device, or the 
sensor(s) used to measure the water vapor content of the outlet air, 
inside the interconnecting duct. Locate the dry-bulb temperature grid(s) 
upstream of the air sampling device (or the in-duct sensor(s) used to 
measure the water vapor content of the outlet air). Turn off the sampler 
fan motor during the cyclic tests. Air leaving an indoor unit that is 
sampled by an air sampling device for remote water-vapor-content 
measurement must be returned to the interconnecting duct at a location:
    (1) Downstream of the air sampling device;
    (2) On the same side of the outlet air damper as the air sampling 
device; and
    (3) Upstream of the section 2.6 airflow measuring apparatus.

        2.5.4.1 Outlet Air Damper Box Placement and Requirements

    If using an outlet air damper box (see section 2.5 of this 
appendix), the leakage rate from the combination of the outlet plenum, 
the closed damper, and the duct section that connects these two 
components must not exceed 20 cubic feet per minute when a negative 
pressure of 1 inch of water column is maintained at the plenum's inlet.

       2.5.4.2 Procedures To Minimize Temperature Maldistribution

    Use these procedures if necessary to correct temperature 
maldistributions. Install a mixing device(s) upstream of the outlet air, 
dry-bulb temperature grid (but downstream of the outlet plenum static 
pressure taps). Use a perforated screen located between the mixing 
device and the dry-bulb temperature grid, with a maximum open area of 40 
percent. One or both items should help to meet the maximum outlet air 
temperature distribution specified in section 3.1.8 of this appendix. 
Mixing devices are described in sections 5.3.2 and 5.3.3 of ANSI/ASHRAE 
41.1-2013 and section 5.2.2 of ASHRAE 41.2-1987 (RA 1992) (incorporated 
by reference, see Sec.  430.3).

                     2.5.4.3 Minimizing Air Leakage

    For small-duct, high-velocity systems, install an air damper near 
the end of the interconnecting duct, just prior to the transition to the 
airflow measuring apparatus of section 2.6 of this appendix. To minimize 
air leakage, adjust this damper such that the pressure in the receiving 
chamber of the airflow measuring apparatus is no more than 0.5 inch of 
water higher than the surrounding test room ambient. If applicable, in 
lieu of installing a separate damper, use the outlet air damper box of 
sections 2.5 and 2.5.4.1 of this appendix if it allows variable 
positioning. Also apply these steps to any conventional indoor blower 
unit that creates a static pressure within the receiving chamber of the 
airflow measuring apparatus that exceeds the test room ambient pressure 
by more than 0.5 inches of water column.

                 2.5.5 Dry Bulb Temperature Measurement

    a. Measure dry bulb temperatures as specified in sections 4, 5.3, 6, 
and 7 of ANSI/ASHRAE 41.1-2013 (incorporated by reference, see Sec.  
430.3).
    b. Distribute the sensors of a dry-bulb temperature grid over the 
entire flow area. The required minimum is 9 sensors per grid.

                  2.5.6 Water Vapor Content Measurement

    Determine water vapor content by measuring dry-bulb temperature 
combined with

[[Page 472]]

the air wet-bulb temperature, dew point temperature, or relative 
humidity. If used, construct and apply wet-bulb temperature sensors as 
specified in sections 4, 5, 6, 7.2, 7.3, and 7.4 of ASHRAE 41.6-2014 
(incorporated by reference, see Sec.  430.3). The temperature sensor 
(wick removed) must be accurate to within 0.2 
[deg]F. If used, apply dew point hygrometers as specified in sections 4, 
5, 6, 7.1, and 7.4 of ASHRAE 41.6-2014 (incorporated by reference, see 
Sec.  430.3). The dew point hygrometers must be accurate to within 
0.4 [deg]F when operated at conditions that result 
in the evaluation of dew points above 35 [deg]F. If used, a relative 
humidity (RH) meter must be accurate to within 0.7% RH. Other means to determine the psychrometric 
state of air may be used as long as the measurement accuracy is 
equivalent to or better than the accuracy achieved from using a wet-bulb 
temperature sensor that meets the above specifications.

              2.5.7 Air Damper Box Performance Requirements

    If used (see section 2.5 of this appendix), the air damper box(es) 
must be capable of being completely opened or completely closed within 
10 seconds for each action.

                     2.6 Airflow Measuring Apparatus

    a. Fabricate and operate an airflow measuring apparatus as specified 
in section 6.2 and 6.3 of ANSI/ASHRAE 37-2009 (incorporated by 
reference, see Sec.  430.3). Place the static pressure taps and position 
the diffusion baffle (settling means) relative to the chamber inlet as 
indicated in Figure 12 of AMCA 210-2007 and/or Figure 14 of ASHRAE 41.2-
1987 (RA 1992) (incorporated by reference, see Sec.  430.3). When 
measuring the static pressure difference across nozzles and/or velocity 
pressure at nozzle throats using electronic pressure transducers and a 
data acquisition system, if high frequency fluctuations cause 
measurement variations to exceed the test tolerance limits specified in 
section 9.2 and Table 2 of ANSI/ASHRAE 37-2009, dampen the measurement 
system such that the time constant associated with response to a step 
change in measurement (time for the response to change 63% of the way 
from the initial output to the final output) is no longer than five 
seconds.
    b. Connect the airflow measuring apparatus to the interconnecting 
duct section described in section 2.5.4 of this appendix. See sections 
6.1.1, 6.1.2, and 6.1.4, and Figures 1, 2, and 4 of ANSI/ASHRAE 37-2009; 
and Figures D1, D2, and D4 of AHRI 210/240-2008 (incorporated by 
reference, see Sec.  430.3) for illustrative examples of how the test 
apparatus may be applied within a complete laboratory set-up. Instead of 
following one of these examples, an alternative set-up may be used to 
handle the air leaving the airflow measuring apparatus and to supply 
properly conditioned air to the test unit's inlet. The alternative set-
up, however, must not interfere with the prescribed means for measuring 
airflow rate, inlet and outlet air temperatures, inlet and outlet water 
vapor contents, and external static pressures, nor create abnormal 
conditions surrounding the test unit. (Note: Do not use an enclosure as 
described in section 6.1.3 of ANSI/ASHRAE 37-2009 when testing triple-
split units.)

                      2.7 Electrical Voltage Supply

    Perform all tests at the voltage specified in section 6.1.3.2 of 
AHRI 210/240-2008 (incorporated by reference, see Sec.  430.3) for 
``Standard Rating Tests.'' If either the indoor or the outdoor unit has 
a 208V or 200V nameplate voltage and the other unit has a 230V nameplate 
rating, select the voltage supply on the outdoor unit for testing. 
Otherwise, supply each unit with its own nameplate voltage. Measure the 
supply voltage at the terminals on the test unit using a volt meter that 
provides a reading that is accurate to within 1.0 
percent of the measured quantity.

              2.8 Electrical Power and Energy Measurements

    a. Use an integrating power (watt-hour) measuring system to 
determine the electrical energy or average electrical power supplied to 
all components of the air conditioner or heat pump (including auxiliary 
components such as controls, transformers, crankcase heater, integral 
condensate pump on non-ducted indoor units, etc.). The watt-hour 
measuring system must give readings that are accurate to within 0.5 percent. For cyclic tests, this accuracy is required 
during both the ON and OFF cycles. Use either two different scales on 
the same watt-hour meter or two separate watt-hour meters. Activate the 
scale or meter having the lower power rating within 15 seconds after 
beginning an OFF cycle. Activate the scale or meter having the higher 
power rating within 15 seconds prior to beginning an ON cycle. For 
ducted blower coil systems, the ON cycle lasts from compressor ON to 
indoor blower OFF. For ducted coil-only systems, the ON cycle lasts from 
compressor ON to compressor OFF. For non-ducted units, the ON cycle 
lasts from indoor blower ON to indoor blower OFF. When testing air 
conditioners and heat pumps having a variable-speed compressor, avoid 
using an induction watt/watt-hour meter.
    b. When performing section 3.5 and/or 3.8 cyclic tests on non-ducted 
units, provide instrumentation to determine the average electrical power 
consumption of the indoor blower motor to within 1.0 percent. If required according to sections 3.3, 3.4, 
3.7, 3.9.1 of this appendix, and/or 3.10 of this appendix, this same 
instrumentation requirement (to

[[Page 473]]

determine the average electrical power consumption of the indoor blower 
motor to within 1.0 percent) applies when testing 
air conditioners and heat pumps having a variable-speed constant-air-
volume-rate indoor blower or a variable-speed, variable-air-volume-rate 
indoor blower.

                          2.9 Time Measurements

    Make elapsed time measurements using an instrument that yields 
readings accurate to within 0.2 percent.

   2.10 Test Apparatus for the Secondary Space Conditioning Capacity 
                               Measurement

    For all tests, use the indoor air enthalpy method to measure the 
unit's capacity. This method uses the test set-up specified in sections 
2.4 to 2.6 of this appendix. In addition, for all steady-state tests, 
conduct a second, independent measurement of capacity as described in 
section 3.1.1 of this appendix. For split systems, use one of the 
following secondary measurement methods: Outdoor air enthalpy method, 
compressor calibration method, or refrigerant enthalpy method. For 
single-package units, use either the outdoor air enthalpy method or the 
compressor calibration method as the secondary measurement.

                   2.10.1 Outdoor Air Enthalpy Method

    a. To make a secondary measurement of indoor space conditioning 
capacity using the outdoor air enthalpy method, do the following:
    (1) Measure the electrical power consumption of the test unit;
    (2) Measure the air-side capacity at the outdoor coil; and
    (3) Apply a heat balance on the refrigerant cycle.
    b. The test apparatus required for the outdoor air enthalpy method 
is a subset of the apparatus used for the indoor air enthalpy method. 
Required apparatus includes the following:
    (1) On the outlet side, an outlet plenum containing static pressure 
taps (sections 2.4, 2.4.1, and 2.5.3 of this appendix),
    (2) An airflow measuring apparatus (section 2.6 of this appendix),
    (3) A duct section that connects these two components and itself 
contains the instrumentation for measuring the dry-bulb temperature and 
water vapor content of the air leaving the outdoor coil (sections 2.5.4, 
2.5.5, and 2.5.6 of this appendix), and
    (4) On the inlet side, a sampling device and temperature grid 
(section 2.11.b of this appendix).
    c. During the free outdoor air tests described in sections 3.11.1 
and 3.11.1.1 of this appendix, measure the evaporator and condenser 
temperatures or pressures. On both the outdoor coil and the indoor coil, 
solder a thermocouple onto a return bend located at or near the midpoint 
of each coil or at points not affected by vapor superheat or liquid 
subcooling. Alternatively, if the test unit is not sensitive to the 
refrigerant charge, install pressure gages to the access valves or to 
ports created from tapping into the suction and discharge lines 
according to sections 7.4.2 and 8.2.5 of ANSI/ASHRAE 37-2009. Use this 
alternative approach when testing a unit charged with a zeotropic 
refrigerant having a temperature glide in excess of 1 [deg]F at the 
specified test conditions.

                  2.10.2 Compressor Calibration Method

    Measure refrigerant pressures and temperatures to determine the 
evaporator superheat and the enthalpy of the refrigerant that enters and 
exits the indoor coil. Determine refrigerant flow rate or, when the 
superheat of the refrigerant leaving the evaporator is less than 5 
[deg]F, total capacity from separate calibration tests conducted under 
identical operating conditions. When using this method, install 
instrumentation and measure refrigerant properties according to section 
7.4.2 and 8.2.5 of ANSI/ASHRAE 37-2009 (incorporated by reference, see 
Sec.  430.3). If removing the refrigerant before applying refrigerant 
lines and subsequently recharging, use the steps in 7.4.2 of ANSI/ASHRAE 
37-2009 in addition to the methods of section 2.2.5 of this appendix to 
confirm the refrigerant charge. Use refrigerant temperature and pressure 
measuring instruments that meet the specifications given in sections 
5.1.1 and 5.2 of ANSI/ASHRAE 37-2009.

                   2.10.3 Refrigerant Enthalpy Method

    For this method, calculate space conditioning capacity by 
determining the refrigerant enthalpy change for the indoor coil and 
directly measuring the refrigerant flow rate. Use section 7.5.2 of ANSI/
ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3) for the 
requirements for this method, including the additional instrumentation 
requirements, and information on placing the flow meter and a sight 
glass. Use refrigerant temperature, pressure, and flow measuring 
instruments that meet the specifications given in sections 5.1.1, 5.2, 
and 5.5.1 of ANSI/ASHRAE 37-2009. Refrigerant flow measurement 
device(s), if used, must be either elevated at least two feet from the 
test chamber floor or placed upon insulating material having a total 
thermal resistance of at least R-12 and extending at least one foot 
laterally beyond each side of the device(s)' exposed surfaces.

            2.11 Measurement of Test Room Ambient Conditions

    Follow instructions for setting up air sampling device and 
aspirating psychrometer as

[[Page 474]]

described in section 2.14 of this appendix, unless otherwise instructed 
in this section.
    a. If using a test set-up where air is ducted directly from the 
conditioning apparatus to the indoor coil inlet (see Figure 2, Loop Air-
Enthalpy Test Method Arrangement, of ANSI/ASHRAE 37-2009 (incorporated 
by reference, see Sec.  430.3)), add instrumentation to permit 
measurement of the indoor test room dry-bulb temperature.
    b. On the outdoor side, use one of the following two approaches, 
except that approach (1) is required for all evaporatively-cooled units 
and units that transfer condensate to the outdoor unit for evaporation 
using condenser heat.
    (1) Use sampling tree air collection on all air-inlet surfaces of 
the outdoor unit.
    (2) Use sampling tree air collection on one or more faces of the 
outdoor unit and demonstrate air temperature uniformity as follows. 
Install a grid of evenly-distributed thermocouples on each air-
permitting face on the inlet of the outdoor unit. Install the 
thermocouples on the air sampling device, locate them individually or 
attach them to a wire structure. If not installed on the air sampling 
device, install the thermocouple grid 6 to 24 inches from the unit. The 
thermocouples shall be evenly spaced across the coil inlet surface and 
be installed to avoid sampling of discharge air or blockage of air 
recirculation. The grid of thermocouples must provide at least 16 
measuring points per face or one measurement per square foot of inlet 
face area, whichever is less. This grid must be constructed and used as 
per section 5.3 of ANSI/ASHRAE 41.1-2013 (incorporated by reference, see 
Sec.  430.3). The maximum difference between the average temperatures 
measured during the test period of any two pairs of these individual 
thermocouples located at any of the faces of the inlet of the outdoor 
unit, must not exceed 2.0 [deg]F, otherwise approach (1) must be used.
    The air sampling devices shall be located at the geometric center of 
each side; the branches may be oriented either parallel or perpendicular 
to the longer edges of the air inlet area. The air sampling devices in 
the outdoor air inlet location shall be sized such that they cover at 
least 75% of the face area of the side of the coil that they are 
measuring.
    Air distribution at the test facility point of supply to the unit 
shall be reviewed and may require remediation prior to the beginning of 
testing. Mixing fans can be used to ensure adequate air distribution in 
the test room. If used, mixing fans shall be oriented such that they are 
pointed away from the air intake so that the mixing fan exhaust does not 
affect the outdoor coil air volume rate. Particular attention should be 
given to prevent the mixing fans from affecting (enhancing or limiting) 
recirculation of condenser fan exhaust air back through the unit. Any 
fan used to enhance test room air mixing shall not cause air velocities 
in the vicinity of the test unit to exceed 500 feet per minute.
    The air sampling device may be larger than the face area of the side 
being measured, however care shall be taken to prevent discharge air 
from being sampled. If an air sampling device dimension extends beyond 
the inlet area of the unit, holes shall be blocked in the air sampling 
device to prevent sampling of discharge air. Holes can be blocked to 
reduce the region of coverage of the intake holes both in the direction 
of the trunk axis or perpendicular to the trunk axis. For intake hole 
region reduction in the direction of the trunk axis, block holes of one 
or more adjacent pairs of branches (the branches of a pair connect 
opposite each other at the same trunk location) at either the outlet end 
or the closed end of the trunk. For intake hole region reduction 
perpendicular to the trunk axis, block off the same number of holes on 
each branch on both sides of the trunk.
    A maximum of four (4) air sampling devices shall be connected to 
each aspirating psychrometer. In order to proportionately divide the 
flow stream for multiple air sampling devices for a given aspirating 
psychrometer, the tubing or conduit conveying sampled air to the 
psychrometer shall be of equivalent lengths for each air sampling 
device. Preferentially, the air sampling device should be hard connected 
to the aspirating psychrometer, but if space constraints do not allow 
this, the assembly shall have a means of allowing a flexible tube to 
connect the air sampling device to the aspirating psychrometer. The 
tubing or conduit shall be insulated and routed to prevent heat transfer 
to the air stream. Any surface of the air conveying tubing in contact 
with surrounding air at a different temperature than the sampled air 
shall be insulated with thermal insulation with a nominal thermal 
resistance (R-value) of at least 19 hr [middot] ft\2\ [middot] [deg]F/
Btu. Alternatively the conduit may have lower thermal resistance if 
additional sensor(s) are used to measure dry bulb temperature at the 
outlet of each air sampling device. No part of the air sampling device 
or the tubing conducting the sampled air to the sensors shall be within 
two inches of the test chamber floor.
    Pairs of measurements (e.g., dry bulb temperature and wet bulb 
temperature) used to determine water vapor content of sampled air shall 
be measured in the same location.

                 2.12 Measurement of Indoor Blower Speed

    When required, measure fan speed using a revolution counter, 
tachometer, or stroboscope that gives readings accurate to within 1.0 percent.

[[Page 475]]

                 2.13 Measurement of Barometric Pressure

    Determine the average barometric pressure during each test. Use an 
instrument that meets the requirements specified in section 5.2 of ANSI/
ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3).

    2.14 Air Sampling Device and Aspirating Psycrhometer Requirements

    Air temperature measurements shall be made in accordance with ANSI/
ASHRAE 41.1-2013, unless otherwise instructed in this section.

                 2.14.1 Air Sampling Device Requirements

    The air sampling device is intended to draw in a sample of the air 
at the critical locations of a unit under test. It shall be constructed 
of stainless steel, plastic or other suitable, durable materials. It 
shall have a main flow trunk tube with a series of branch tubes 
connected to the trunk tube. Holes shall be on the side of the sampler 
facing the upstream direction of the air source. Other sizes and 
rectangular shapes can be used, and shall be scaled accordingly with the 
following guidelines:
    (1) Minimum hole density of 6 holes per square foot of area to be 
sampled
    (2) Sampler branch tube pitch (spacing) of 6  
3 in
    (3) Manifold trunk to branch diameter ratio having a minimum of 3:1 
ratio
    (4) Hole pitch (spacing) shall be equally distributed over the 
branch (\1/2\ pitch from the closed end to the nearest hole)
    (5) Maximum individual hole to branch diameter ratio of 1:2 (1:3 
preferred)
    The minimum average velocity through the air sampling device holes 
shall be 2.5 ft/s as determined by evaluating the sum of the open area 
of the holes as compared to the flow area in the aspirating 
psychrometer.

                     2.14.2 Aspirating Psychrometer

    The psychrometer consists of a flow section and a fan to draw air 
through the flow section and measures an average value of the sampled 
air stream. At a minimum, the flow section shall have a means for 
measuring the dry bulb temperature (typically, a resistance temperature 
device (RTD) and a means for measuring the humidity (RTD with wetted 
sock, chilled mirror hygrometer, or relative humidity sensor). The 
aspirating psychrometer shall include a fan that either can be adjusted 
manually or automatically to maintain required velocity across the 
sensors.
    The psychrometer shall be made from suitable material which may be 
plastic (such as polycarbonate), aluminum or other metallic materials. 
All psychrometers for a given system being tested, shall be constructed 
of the same material. Psychrometers shall be designed such that radiant 
heat from the motor (for driving the fan that draws sampled air through 
the psychrometer) does not affect sensor measurements. For aspirating 
psychrometers, velocity across the wet bulb sensor shall be 1000  200 ft/min. For all other psychrometers, velocity shall 
be as specified by the sensor manufacturer.

                          3. Testing Procedures

                        3.1 General Requirements

    If, during the testing process, an equipment set-up adjustment is 
made that would have altered the performance of the unit during any 
already completed test, then repeat all tests affected by the 
adjustment. For cyclic tests, instead of maintaining an air volume rate, 
for each airflow nozzle, maintain the static pressure difference or 
velocity pressure during an ON period at the same pressure difference or 
velocity pressure as measured during the steady-state test conducted at 
the same test conditions.
    Use the testing procedures in this section to collect the data used 
for calculating
    (1) Performance metrics for central air conditioners and heat pumps 
during the cooling season;
    (2) Performance metrics for heat pumps during the heating season; 
and
    (3) Power consumption metric(s) for central air conditioners and 
heat pumps during the off mode season(s).

                3.1.1 Primary and Secondary Test Methods

    For all tests, use the indoor air enthalpy method test apparatus to 
determine the unit's space conditioning capacity. The procedure and data 
collected, however, differ slightly depending upon whether the test is a 
steady-state test, a cyclic test, or a frost accumulation test. The 
following sections described these differences. For the full-capacity 
cooling-mode test and (for a heat pump) the full-capacity heating-mode 
test, use one of the acceptable secondary methods specified in section 
2.10 of this appendix to determine indoor space conditioning capacity. 
Calculate this secondary check of capacity according to section 3.11 of 
this appendix. The two capacity measurements must agree to within 6 
percent to constitute a valid test. For this capacity comparison, use 
the Indoor Air Enthalpy Method capacity that is calculated in section 
7.3 of ANSI/ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3) 
(and, if testing a coil-only system, compare capacities before making 
the after-test fan heat adjustments described in section 3.3, 3.4, 3.7, 
and 3.10 of this appendix). However, include the appropriate section 3.3 
to 3.5 and 3.7 to 3.10 fan heat adjustments within the indoor air 
enthalpy method capacities used for the section 4 seasonal calculations 
of this appendix.

[[Page 476]]

             3.1.2 Manufacturer-Provided Equipment Overrides

    Where needed, the manufacturer must provide a means for overriding 
the controls of the test unit so that the compressor(s) operates at the 
specified speed or capacity and the indoor blower operates at the 
specified speed or delivers the specified air volume rate.

                 3.1.3 Airflow Through the Outdoor Coil

    For all tests, meet the requirements given in section 6.1.3.4 of 
AHRI 210/240-2008 (incorporated by reference, see Sec.  430.3) when 
obtaining the airflow through the outdoor coil.

                          3.1.3.1 Double-Ducted

    For products intended to be installed with the outdoor airflow 
ducted, the unit shall be installed with outdoor coil ductwork installed 
per manufacturer installation instructions and shall operate between 
0.10 and 0.15 in H2O external static pressure. External 
static pressure measurements shall be made in accordance with ANSI/
ASHRAE 37-2009 section 6.4 and 6.5.

                  3.1.4 Airflow Through the Indoor Coil

    Airflow setting(s) shall be determined before testing begins. Unless 
otherwise specified within this or its subsections, no changes shall be 
made to the airflow setting(s) after initiation of testing.

                3.1.4.1 Cooling Full-Load Air Volume Rate

      3.1.4.1.1. Cooling Full-Load Air Volume Rate for Ducted Units

    Identify the certified cooling full-load air volume rate and 
certified instructions for setting fan speed or controls. If there is no 
certified Cooling full-load air volume rate, use a value equal to the 
certified cooling capacity of the unit times 400 scfm per 12,000 Btu/h. 
If there are no instructions for setting fan speed or controls, use the 
as-shipped settings. Use the following procedure to confirm and, if 
necessary, adjust the Cooling full-load air volume rate and the fan 
speed or control settings to meet each test procedure requirement:
    a. For all ducted blower coil systems, except those having a 
constant-air-volume-rate indoor blower:
    Step (1) Operate the unit under conditions specified for the A (for 
single-stage units) or A2 test using the certified fan speed 
or controls settings, and adjust the exhaust fan of the airflow 
measuring apparatus to achieve the certified Cooling full-load air 
volume rate;
    Step (2) Measure the external static pressure;
    Step (3) If this external static pressure is equal to or greater 
than the applicable minimum external static pressure cited in Table 4, 
the pressure requirement is satisfied; proceed to step 7 of this 
section. If this external static pressure is not equal to or greater 
than the applicable minimum external static pressure cited in Table 4, 
proceed to step 4 of this section;
    Step (4) Increase the external static pressure by adjusting the 
exhaust fan of the airflow measuring apparatus until either
    (i) The applicable Table 4 minimum is equaled or
    (ii) The measured air volume rate equals 90 percent or less of the 
Cooling full-load air volume rate, whichever occurs first;
    Step (5) If the conditions of step 4 (i) of this section occur 
first, the pressure requirement is satisfied; proceed to step 7 of this 
section. If the conditions of step 4 (ii) of this section occur first, 
proceed to step 6 of this section;
    Step (6) Make an incremental change to the setup of the indoor 
blower (e.g., next highest fan motor pin setting, next highest fan motor 
speed) and repeat the evaluation process beginning above, at step 1 of 
this section. If the indoor blower setup cannot be further changed, 
increase the external static pressure by adjusting the exhaust fan of 
the airflow measuring apparatus until the applicable Table 4 minimum is 
equaled; proceed to step 7 of this section;
    Step (7) The airflow constraints have been satisfied. Use the 
measured air volume rate as the Cooling full-load air volume rate. Use 
the final fan speed or control settings for all tests that use the 
Cooling full-load air volume rate.
    b. For ducted blower coil systems with a constant-air-volume-rate 
indoor blower. For all tests that specify the Cooling full-load air 
volume rate, obtain an external static pressure as close to (but not 
less than) the applicable Table 4 value that does not cause automatic 
shutdown of the indoor blower or air volume rate variation 
QVar, defined as follows, greater than 10 percent.
[GRAPHIC] [TIFF OMITTED] TR05JA17.008



[[Page 477]]


where:

Qmax = maximum measured airflow value
Qmin = minimum measured airflow value
QVar = airflow variance, percent

    Additional test steps as described in section 3.3.(e) of this 
appendix are required if the measured external static pressure exceeds 
the target value by more than 0.03 inches of water.
    c. For coil-only indoor units. For the A or A2 Test, 
(exclusively), the pressure drop across the indoor coil assembly must 
not exceed 0.30 inches of water. If this pressure drop is exceeded, 
reduce the air volume rate until the measured pressure drop equals the 
specified maximum. Use this reduced air volume rate for all tests that 
require the Cooling full-load air volume rate.

Table 4--Minimum External Static Pressure for Ducted Blower Coil Systems
------------------------------------------------------------------------
                                            Minimum external resistance
                                               \3\ (Inches of water)
                                         -------------------------------
    Rated Cooling \1\ or Heating \2\        Small-duct,
            Capacity (Btu/h)               high-velocity     All other
                                            systems \4\       systems
                                                \5\
------------------------------------------------------------------------
Up Thru 28,800..........................            1.10            0.10
29,000 to 42,500........................            1.15            0.15
43,000 and Above........................            1.20            0.20
------------------------------------------------------------------------
\1\ For air conditioners and air-conditioning heat pumps, the value
  certified by the manufacturer for the unit's cooling capacity when
  operated at the A or A2 Test conditions.
\2\ For heating-only heat pumps, the value certified by the manufacturer
  for the unit's heating capacity when operated at the H1 or H12 Test
  conditions.
\3\ For ducted units tested without an air filter installed, increase
  the applicable tabular value by 0.08 inches of water.
\4\ See section 1.2 of this appendix, Definitions, to determine if the
  equipment qualifies as a small-duct, high-velocity system.
\5\ If a closed-loop, air-enthalpy test apparatus is used on the indoor
  side, limit the resistance to airflow on the inlet side of the blower
  coil indoor unit to a maximum value of 0.1 inch of water. Impose the
  balance of the airflow resistance on the outlet side of the indoor
  blower.

    d. For ducted systems having multiple indoor blowers within a single 
indoor section, obtain the full-load air volume rate with all indoor 
blowers operating unless prevented by the controls of the unit. In such 
cases, turn on the maximum number of indoor blowers permitted by the 
unit's controls. Where more than one option exists for meeting this 
``on'' indoor blower requirement, which indoor blower(s) are turned on 
must match that specified in the certification report. Conduct section 
3.1.4.1.1 setup steps for each indoor blower separately. If two or more 
indoor blowers are connected to a common duct as per section 2.4.1 of 
this appendix, temporarily divert their air volume to the test room when 
confirming or adjusting the setup configuration of individual indoor 
blowers. The allocation of the system's full-load air volume rate 
assigned to each ``on'' indoor blower must match that specified by the 
manufacturer in the certification report.

    3.1.4.1.2. Cooling Full-Load Air Volume Rate for Non-Ducted Units

    For non-ducted units, the Cooling full-load air volume rate is the 
air volume rate that results during each test when the unit is operated 
at an external static pressure of zero inches of water.

                 3.1.4.2 Cooling Minimum Air Volume Rate

    Identify the certified cooling minimum air volume rate and certified 
instructions for setting fan speed or controls. If there is no certified 
cooling minimum air volume rate, use the final indoor blower control 
settings as determined when setting the cooling full-load air volume 
rate, and readjust the exhaust fan of the airflow measuring apparatus if 
necessary to reset to the cooling full load air volume obtained in 
section 3.1.4.1 of this appendix. Otherwise, calculate the target 
external static pressure and follow instructions a, b, c, d, or e below. 
The target external static pressure, [Delta]Pst_i, for any 
test ``i'' with a specified air volume rate not equal to the Cooling 
full-load air volume rate is determined as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.009


[[Page 478]]


where:

[Delta]Pst_i = target minimum external static pressure for 
          test i;
[Delta]Pst_full = minimum external static pressure for test A 
          or A2 (Table 4);
Qi = air volume rate for test i; and
Qfull = Cooling full-load air volume rate as measured after 
          setting and/or adjustment as described in section 3.1.4.1.1 of 
          this appendix.

    a. For a ducted blower coil system without a constant-air-volume 
indoor blower, adjust for external static pressure as follows:
    Step (1) Operate the unit under conditions specified for the B1 test 
using the certified fan speed or controls settings, and adjust the 
exhaust fan of the airflow measuring apparatus to achieve the certified 
cooling minimum air volume rate;
    Step (2) Measure the external static pressure;
    Step (3) If this pressure is equal to or greater than the minimum 
external static pressure computed above, the pressure requirement is 
satisfied; proceed to step 7 of this section. If this pressure is not 
equal to or greater than the minimum external static pressure computed 
above, proceed to step 4 of this section;
    Step (4) Increase the external static pressure by adjusting the 
exhaust fan of the airflow measuring apparatus until either
    (i) The pressure is equal to the minimum external static pressure 
computed above or
    (ii) The measured air volume rate equals 90 percent or less of the 
cooling minimum air volume rate, whichever occurs first;
    Step (5) If the conditions of step 4 (i) of this section occur 
first, the pressure requirement is satisfied; proceed to step 7 of this 
section. If the conditions of step 4 (ii) of this section occur first, 
proceed to step 6 of this section;
    Step (6) Make an incremental change to the setup of the indoor 
blower (e.g., next highest fan motor pin setting, next highest fan motor 
speed) and repeat the evaluation process beginning above, at step 1 of 
this section. If the indoor blower setup cannot be further changed, 
increase the external static pressure by adjusting the exhaust fan of 
the airflow measuring apparatus until it equals the minimum external 
static pressure computed above; proceed to step 7 of this section;
    Step (7) The airflow constraints have been satisfied. Use the 
measured air volume rate as the cooling minimum air volume rate. Use the 
final fan speed or control settings for all tests that use the cooling 
minimum air volume rate.
    b. For ducted units with constant-air-volume indoor blowers, conduct 
all tests that specify the cooling minimum air volume rate--(i.e., the 
A1, B1, C1, F1, and 
G1 Tests)--at an external static pressure that does not cause 
an automatic shutdown of the indoor blower or air volume rate variation 
QVar, defined in section 3.1.4.1.1.b of this appendix, 
greater than 10 percent, while being as close to, but not less than the 
target minimum external static pressure. Additional test steps as 
described in section 3.3(e) of this appendix are required if the 
measured external static pressure exceeds the target value by more than 
0.03 inches of water.
    c. For ducted two-capacity coil-only systems, the cooling minimum 
air volume rate is the higher of (1) the rate specified by the 
installation instructions included with the unit by the manufacturer or 
(2) 75 percent of the cooling full-load air volume rate. During the 
laboratory tests on a coil-only (fanless) system, obtain this cooling 
minimum air volume rate regardless of the pressure drop across the 
indoor coil assembly.
    d. For non-ducted units, the cooling minimum air volume rate is the 
air volume rate that results during each test when the unit operates at 
an external static pressure of zero inches of water and at the indoor 
blower setting used at low compressor capacity (two-capacity system) or 
minimum compressor speed (variable-speed system). For units having a 
single-speed compressor and a variable-speed variable-air-volume-rate 
indoor blower, use the lowest fan setting allowed for cooling.
    e. For ducted systems having multiple indoor blowers within a single 
indoor section, operate the indoor blowers such that the lowest air 
volume rate allowed by the unit's controls is obtained when operating 
the lone single-speed compressor or when operating at low compressor 
capacity while meeting the requirements of section 2.2.3.b of this 
appendix for the minimum number of blowers that must be turned off. 
Using the target external static pressure and the certified air volume 
rates, follow the procedures described in section 3.1.4.2.a of this 
appendix if the indoor blowers are not constant-air-volume indoor 
blowers or as described in section 3.1.4.2.b of this appendix if the 
indoor blowers are constant-air-volume indoor blowers. The sum of the 
individual ``on'' indoor blowers' air volume rates is the cooling 
minimum air volume rate for the system.

              3.1.4.3 Cooling Intermediate Air Volume Rate

    Identify the certified cooling intermediate air volume rate and 
certified instructions for setting fan speed or controls. If there is no 
certified cooling intermediate air volume rate, use the final indoor 
blower control settings as determined when setting the cooling full load 
air volume rate, and readjust the exhaust fan of the airflow measuring 
apparatus if necessary to reset to the cooling full load air volume 
obtained in section 3.1.4.1 of this appendix. Otherwise, calculate 
target

[[Page 479]]

minimum external static pressure as described in section 3.1.4.2 of this 
appendix, and set the air volume rate as follows.
    a. For a ducted blower coil system without a constant-air-volume 
indoor blower, adjust for external static pressure as described in 
section 3.1.4.2.a of this appendix for cooling minimum air volume rate.
    b. For a ducted blower coil system with a constant-air-volume indoor 
blower, conduct the EV Test at an external static pressure 
that does not cause an automatic shutdown of the indoor blower or air 
volume rate variation QVar, defined in section 3.1.4.1.1.b of 
this appendix, greater than 10 percent, while being as close to, but not 
less than the target minimum external static pressure. Additional test 
steps as described in section 3.3(e) of this appendix are required if 
the measured external static pressure exceeds the target value by more 
than 0.03 inches of water.
    c. For non-ducted units, the cooling intermediate air volume rate is 
the air volume rate that results when the unit operates at an external 
static pressure of zero inches of water and at the fan speed selected by 
the controls of the unit for the EV Test conditions.

                3.1.4.4 Heating Full-Load Air Volume Rate

3.1.4.4.1. Ducted Heat Pumps Where the Heating and Cooling Full-Load Air 
                        Volume Rates Are the Same

    a. Use the Cooling full-load air volume rate as the heating full-
load air volume rate for:
    (1) Ducted blower coil system heat pumps that do not have a 
constant-air-volume indoor blower, and that operate at the same airflow-
control setting during both the A (or A2) and the H1 (or 
H12) Tests;
    (2) Ducted blower coil system heat pumps with constant-air-flow 
indoor blowers that provide the same air flow for the A (or 
A2) and the H1 (or H12) Tests; and
    (3) Ducted heat pumps that are tested with a coil-only indoor unit 
(except two-capacity northern heat pumps that are tested only at low 
capacity cooling--see section 3.1.4.4.2 of this appendix).
    b. For heat pumps that meet the above criteria ``1'' and ``3,'' no 
minimum requirements apply to the measured external or internal, 
respectively, static pressure. Use the final indoor blower control 
settings as determined when setting the Cooling full-load air volume 
rate, and readjust the exhaust fan of the airflow measuring apparatus if 
necessary to reset to the cooling full-load air volume obtained in 
section 3.1.4.1 of this appendix. For heat pumps that meet the above 
criterion ``2,'' test at an external static pressure that does not cause 
an automatic shutdown of the indoor blower or air volume rate variation 
QVar, defined in section 3.1.4.1.1.b of this appendix, 
greater than 10 percent, while being as close to, but not less than, the 
same Table 4 minimum external static pressure as was specified for the A 
(or A2) cooling mode test. Additional test steps as described 
in section 3.9.1(c) of this appendix are required if the measured 
external static pressure exceeds the target value by more than 0.03 
inches of water.

3.1.4.4.2. Ducted Heat Pumps Where the Heating and Cooling Full-Load Air 
 Volume Rates Are Different Due to Changes in Indoor Blower Operation, 
              i.e. Speed Adjustment by the System Controls

    Identify the certified heating full-load air volume rate and 
certified instructions for setting fan speed or controls. If there is no 
certified heating full-load air volume rate, use the final indoor blower 
control settings as determined when setting the cooling full-load air 
volume rate, and readjust the exhaust fan of the airflow measuring 
apparatus if necessary to reset to the cooling full load air volume 
obtained in section 3.1.4.1 of this appendix. Otherwise, calculate 
target minimum external static pressure as described in section 3.1.4.2 
of this appendix and set the air volume rate as follows.
    a. For ducted blower coil system heat pumps that do not have a 
constant-air-volume indoor blower, adjust for external static pressure 
as described in section 3.1.4.2.a of this appendix for cooling minimum 
air volume rate.
    b. For ducted heat pumps tested with constant-air-volume indoor 
blowers installed, conduct all tests that specify the heating full-load 
air volume rate at an external static pressure that does not cause an 
automatic shutdown of the indoor blower or air volume rate variation 
QVar, defined in section 3.1.4.1.1.b of this appendix, 
greater than 10 percent, while being as close to, but not less than the 
target minimum external static pressure. Additional test steps as 
described in section 3.9.1(c) of this appendix are required if the 
measured external static pressure exceeds the target value by more than 
0.03 inches of water.
    c. When testing ducted, two-capacity blower coil system northern 
heat pumps (see section 1.2 of this appendix, Definitions), use the 
appropriate approach of the above two cases. For coil-only system 
northern heat pumps, the heating full-load air volume rate is the lesser 
of the rate specified by the manufacturer in the installation 
instructions included with the unit or 133 percent of the cooling full-
load air volume rate. For this latter case, obtain the heating full-load 
air volume rate regardless of the pressure drop across the indoor coil 
assembly.
    d. For ducted systems having multiple indoor blowers within a single 
indoor section, obtain the heating full-load air volume rate using the 
same ``on'' indoor blowers as used for the Cooling full-load air volume 
rate. Using the target external static pressure and

[[Page 480]]

the certified air volume rates, follow the procedures as described in 
section 3.1.4.4.2.a of this appendix if the indoor blowers are not 
constant-air-volume indoor blowers or as described in section 
3.1.4.4.2.b of this appendix if the indoor blowers are constant-air-
volume indoor blowers. The sum of the individual ``on'' indoor blowers' 
air volume rates is the heating full load air volume rate for the 
system.

                3.1.4.4.3. Ducted Heating-Only Heat Pumps

    Identify the certified heating full-load air volume rate and 
certified instructions for setting fan speed or controls. If there is no 
certified heating full-load air volume rate, use a value equal to the 
certified heating capacity of the unit times 400 scfm per 12,000 Btu/h. 
If there are no instructions for setting fan speed or controls, use the 
as-shipped settings.
    a. For all ducted heating-only blower coil system heat pumps, except 
those having a constant-air-volume-rate indoor blower. Conduct the 
following steps only during the first test, the H1 or H12 
Test:
    Step (1) Adjust the exhaust fan of the airflow measuring apparatus 
to achieve the certified heating full-load air volume rate.
    Step (2) Measure the external static pressure.
    Step (3) If this pressure is equal to or greater than the Table 4 
minimum external static pressure that applies given the heating-only 
heat pump's rated heating capacity, the pressure requirement is 
satisfied; proceed to step 7 of this section. If this pressure is not 
equal to or greater than the applicable Table 4 minimum external static 
pressure, proceed to step 4 of this section;
    Step (4) Increase the external static pressure by adjusting the 
exhaust fan of the airflow measuring apparatus until either (i) the 
pressure is equal to the applicable Table 4 minimum external static 
pressure or (ii) the measured air volume rate equals 90 percent or less 
of the heating full-load air volume rate, whichever occurs first;
    Step (5) If the conditions of step 4(i) of this section occur first, 
the pressure requirement is satisfied; proceed to step 7 of this 
section. If the conditions of step 4(ii) of this section occur first, 
proceed to step 6 of this section;
    Step (6) Make an incremental change to the setup of the indoor 
blower (e.g., next highest fan motor pin setting, next highest fan motor 
speed) and repeat the evaluation process beginning above, at step 1 of 
this section. If the indoor blower setup cannot be further changed, 
increase the external static pressure by adjusting the exhaust fan of 
the airflow measuring apparatus until it equals the applicable Table 4 
minimum external static pressure; proceed to step 7 of this section;
    Step (7) The airflow constraints have been satisfied. Use the 
measured air volume rate as the heating full-load air volume rate. Use 
the final fan speed or control settings for all tests that use the 
heating full-load air volume rate.
    b. For ducted heating-only blower coil system heat pumps having a 
constant-air-volume-rate indoor blower. For all tests that specify the 
heating full-load air volume rate, obtain an external static pressure 
that does not cause an automatic shutdown of the indoor blower or air 
volume rate variation QVar, defined in section 3.1.4.1.1.b of 
this appendix, greater than 10 percent, while being as close to, but not 
less than, the applicable Table 4 minimum. Additional test steps as 
described in section 3.9.1(c) of this appendix are required if the 
measured external static pressure exceeds the target value by more than 
0.03 inches of water.
    c. For ducted heating-only coil-only system heat pumps in the H1 or 
H12 Test, (exclusively), the pressure drop across the indoor 
coil assembly must not exceed 0.30 inches of water. If this pressure 
drop is exceeded, reduce the air volume rate until the measured pressure 
drop equals the specified maximum. Use this reduced air volume rate for 
all tests that require the heating full-load air volume rate.

3.1.4.4.4. Non-Ducted Heat Pumps, Including Non-Ducted Heating-Only Heat 
                                  Pumps

    For non-ducted heat pumps, the heating full-load air volume rate is 
the air volume rate that results during each test when the unit operates 
at an external static pressure of zero inches of water.

                 3.1.4.5 Heating Minimum Air Volume Rate

 3.1.4.5.1. Ducted Heat Pumps Where the Heating and Cooling Minimum Air 
                        Volume Rates Are the Same

    a. Use the cooling minimum air volume rate as the heating minimum 
air volume rate for:
    (1) Ducted blower coil system heat pumps that do not have a 
constant-air-volume indoor blower, and that operate at the same airflow-
control setting during both the A1 and the H11 
tests;
    (2) Ducted blower coil system heat pumps with constant-air-flow 
indoor blowers installed that provide the same air flow for the 
A1 and the H11 Tests; and
    (3) Ducted coil-only system heat pumps.
    b. For heat pumps that meet the above criteria ``1'' and ``3,'' no 
minimum requirements apply to the measured external or internal, 
respectively, static pressure. Use the final indoor blower control 
settings as determined when setting the cooling minimum air volume rate, 
and readjust the exhaust fan of the airflow measuring apparatus if 
necessary to reset to the cooling minimum air volume

[[Page 481]]

rate obtained in section 3.1.4.2 of this appendix. For heat pumps that 
meet the above criterion ``2,'' test at an external static pressure that 
does not cause an automatic shutdown of the indoor blower or air volume 
rate variation QVar, defined in section 3.1.4.1.1.b of this 
appendix, greater than 10 percent, while being as close to, but not less 
than, the same target minimum external static pressure as was specified 
for the A1 cooling mode test. Additional test steps as 
described in section 3.9.1(c) of this appendix are required if the 
measured external static pressure exceeds the target value by more than 
0.03 inches of water.

 3.1.4.5.2. Ducted Heat Pumps Where the Heating and Cooling Minimum Air 
 Volume Rates Are Different Due to Changes in Indoor Blower Operation, 
              i.e. Speed Adjustment by the System Controls

    Identify the certified heating minimum air volume rate and certified 
instructions for setting fan speed or controls. If there is no certified 
heating minimum air volume rate, use the final indoor blower control 
settings as determined when setting the cooling minimum air volume rate, 
and readjust the exhaust fan of the airflow measuring apparatus if 
necessary to reset to the cooling minimum air volume obtained in section 
3.1.4.2 of this appendix. Otherwise, calculate the target minimum 
external static pressure as described in section 3.1.4.2 of this 
appendix.
    a. For ducted blower coil system heat pumps that do not have a 
constant-air-volume indoor blower, adjust for external static pressure 
as described in section 3.1.4.2.a of this appendix for cooling minimum 
air volume rate.
    b. For ducted heat pumps tested with constant-air-volume indoor 
blowers installed, conduct all tests that specify the heating minimum 
air volume rate--(i.e., the H01, H11, 
H21, and H31 Tests)--at an external static 
pressure that does not cause an automatic shutdown of the indoor blower 
while being as close to, but not less than the air volume rate variation 
QVar, defined in section 3.1.4.1.1.b of this appendix, 
greater than 10 percent, while being as close to, but not less than the 
target minimum external static pressure. Additional test steps as 
described in section 3.9.1.c of this appendix are required if the 
measured external static pressure exceeds the target value by more than 
0.03 inches of water.
    c. For ducted two-capacity blower coil system northern heat pumps, 
use the appropriate approach of the above two cases.
    d. For ducted two-capacity coil-only system heat pumps, use the 
cooling minimum air volume rate as the heating minimum air volume rate. 
For ducted two-capacity coil-only system northern heat pumps, use the 
cooling full-load air volume rate as the heating minimum air volume 
rate. For ducted two-capacity heating-only coil-only system heat pumps, 
the heating minimum air volume rate is the higher of the rate specified 
by the manufacturer in the test setup instructions included with the 
unit or 75 percent of the heating full-load air volume rate. During the 
laboratory tests on a coil-only system, obtain the heating minimum air 
volume rate without regard to the pressure drop across the indoor coil 
assembly.
    e. For non-ducted heat pumps, the heating minimum air volume rate is 
the air volume rate that results during each test when the unit operates 
at an external static pressure of zero inches of water and at the indoor 
blower setting used at low compressor capacity (two-capacity system) or 
minimum compressor speed (variable-speed system). For units having a 
single-speed compressor and a variable-speed, variable-air-volume-rate 
indoor blower, use the lowest fan setting allowed for heating.
    f. For ducted systems with multiple indoor blowers within a single 
indoor section, obtain the heating minimum air volume rate using the 
same ``on'' indoor blowers as used for the cooling minimum air volume 
rate. Using the target external static pressure and the certified air 
volume rates, follow the procedures as described in section 3.1.4.5.2.a 
of this appendix if the indoor blowers are not constant-air-volume 
indoor blowers or as described in section 3.1.4.5.2.b of this appendix 
if the indoor blowers are constant-air-volume indoor blowers. The sum of 
the individual ``on'' indoor blowers' air volume rates is the heating 
full-load air volume rate for the system.

              3.1.4.6 Heating Intermediate Air Volume Rate

    Identify the certified heating intermediate air volume rate and 
certified instructions for setting fan speed or controls. If there is no 
certified heating intermediate air volume rate, use the final indoor 
blower control settings as determined when setting the heating full-load 
air volume rate, and readjust the exhaust fan of the airflow measuring 
apparatus if necessary to reset to the cooling full load air volume 
obtained in section 3.1.4.2 of this appendix. Calculate the target 
minimum external static pressure as described in section 3.1.4.2 of this 
appendix.
    a. For ducted blower coil system heat pumps that do not have a 
constant-air-volume indoor blower, adjust for external static pressure 
as described in section 3.1.4.2.a of this appendix for cooling minimum 
air volume rate.
    b. For ducted heat pumps tested with constant-air-volume indoor 
blowers installed, conduct the H2V Test at an external static 
pressure that does not cause an automatic shutdown of the indoor blower 
or air volume rate variation QVar, defined in section 
3.1.4.1.1.b of this appendix, greater than 10

[[Page 482]]

percent, while being as close to, but not less than the target minimum 
external static pressure. Additional test steps as described in section 
3.9.1(c) of this appendix are required if the measured external static 
pressure exceeds the target value by more than 0.03 inches of water.
    c. For non-ducted heat pumps, the heating intermediate air volume 
rate is the air volume rate that results when the heat pump operates at 
an external static pressure of zero inches of water and at the fan speed 
selected by the controls of the unit for the H2V Test 
conditions.

                 3.1.4.7 Heating Nominal Air Volume Rate

    The manufacturer must specify the heating nominal air volume rate 
and the instructions for setting fan speed or controls. Calculate target 
minimum external static pressure as described in section 3.1.4.2 of this 
appendix. Make adjustments as described in section 3.1.4.6 of this 
appendix for heating intermediate air volume rate so that the target 
minimum external static pressure is met or exceeded.

 3.1.5 Indoor Test Room Requirement When the Air Surrounding the Indoor 
Unit Is Not Supplied From the Same Source as the Air Entering the Indoor 
                                  Unit

    If using a test set-up where air is ducted directly from the air 
reconditioning apparatus to the indoor coil inlet (see Figure 2, Loop 
Air-Enthalpy Test Method Arrangement, of ANSI/ASHRAE 37-2009 
(incorporated by reference, see Sec.  430.3)), maintain the dry bulb 
temperature within the test room within 5.0 [deg]F 
of the applicable sections 3.2 and 3.6 dry bulb temperature test 
condition for the air entering the indoor unit. Dew point shall be 
within 2 [deg]F of the required inlet conditions.

                   3.1.6 Air Volume Rate Calculations

    For all steady-state tests and for frost accumulation (H2, 
H21, H22, H2V) tests, calculate the air 
volume rate through the indoor coil as specified in sections 7.7.2.1 and 
7.7.2.2 of ANSI/ASHRAE 37-2009. When using the outdoor air enthalpy 
method, follow sections 7.7.2.1 and 7.7.2.2 of ANSI/ASHRAE 37-2009 to 
calculate the air volume rate through the outdoor coil. To express air 
volume rates in terms of standard air, use:
[GRAPHIC] [TIFF OMITTED] TR05JA17.010

Where:

Vis = air volume rate of standard (dry) air, (ft\3\/
          min)da
Vimx = air volume rate of the air-water vapor mixture, 
          (ft\3\/min)mx
vn[min] = specific volume of air-water vapor mixture at the 
          nozzle, ft\3\ per lbm of the air-water vapor mixture
Wn = humidity ratio at the nozzle, lbm of water vapor per lbm 
          of dry air
0.075 = the density associated with standard (dry) air, (lbm/ft\3\)
vn = specific volume of the dry air portion of the mixture 
          evaluated at the dry-bulb temperature, vapor content, and 
          barometric pressure existing at the nozzle, ft\3\ per lbm of 
          dry air.
    Note: In the first printing of ANSI/ASHRAE 37-2009, the second IP 
equation for Qmi should read
[GRAPHIC] [TIFF OMITTED] TR05JA17.011

                           3.1.7 Test Sequence

    Before making test measurements used to calculate performance, 
operate the equipment for the ``break-in'' period specified in the 
certification report, which may not exceed 20 hours. Each compressor of 
the unit must undergo this ``break-in'' period. When testing a ducted 
unit (except if a heating-only heat pump), conduct the A or 
A2 Test first to establish the cooling full-load air volume 
rate. For ducted heat pumps where the heating and cooling full-load air 
volume rates are different, make the first heating mode test one that 
requires the heating full-load air volume rate. For ducted heating-only 
heat pumps, conduct the H1 or H12 Test first to establish the 
heating full-load air volume rate. When conducting a cyclic test, always 
conduct it immediately after the steady-state test that requires the 
same test conditions. For variable-speed systems, the

[[Page 483]]

first test using the cooling minimum air volume rate should precede the 
EV Test, and the first test using the heating minimum air 
volume rate must precede the H2V Test. The test laboratory 
makes all other decisions on the test sequence.

   3.1.8 Requirement for the Air Temperature Distribution Leaving the 
                               Indoor Coil

    For at least the first cooling mode test and the first heating mode 
test, monitor the temperature distribution of the air leaving the indoor 
coil using the grid of individual sensors described in sections 2.5 and 
2.5.4 of this appendix. For the 30-minute data collection interval used 
to determine capacity, the maximum spread among the outlet dry bulb 
temperatures from any data sampling must not exceed 1.5 [deg]F. Install 
the mixing devices described in section 2.5.4.2 of this appendix to 
minimize the temperature spread.

  3.1.9 Requirement for the Air Temperature Distribution Entering the 
                              Outdoor Coil

    Monitor the temperatures of the air entering the outdoor coil using 
air sampling devices and/or temperature sensor grids, maintaining the 
required tolerances, if applicable, as described in section 2.11 of this 
appendix.

         3.1.10 Control of Auxiliary Resistive Heating Elements

    Except as noted, disable heat pump resistance elements used for 
heating indoor air at all times, including during defrost cycles and if 
they are normally regulated by a heat comfort controller. For heat pumps 
equipped with a heat comfort controller, enable the heat pump resistance 
elements only during the below-described, short test. For single-speed 
heat pumps covered under section 3.6.1 of this appendix, the short test 
follows the H1 or, if conducted, the H1C Test. For two-capacity heat 
pumps and heat pumps covered under section 3.6.2 of this appendix, the 
short test follows the H12 Test. Set the heat comfort 
controller to provide the maximum supply air temperature. With the heat 
pump operating and while maintaining the heating full-load air volume 
rate, measure the temperature of the air leaving the indoor-side 
beginning 5 minutes after activating the heat comfort controller. Sample 
the outlet dry-bulb temperature at regular intervals that span 5 minutes 
or less. Collect data for 10 minutes, obtaining at least 3 samples. 
Calculate the average outlet temperature over the 10-minute interval, 
TCC.

3.2 Cooling Mode Tests for Different Types of Air Conditioners and Heat 
                                  Pumps

  3.2.1 Tests for a System Having a Single-Speed Compressor and Fixed 
                         Cooling Air Volume Rate

    This set of tests is for single-speed-compressor units that do not 
have a cooling minimum air volume rate or a cooling intermediate air 
volume rate that is different than the cooling full load air volume 
rate. Conduct two steady-state wet coil tests, the A and B Tests. Use 
the two optional dry-coil tests, the steady-state C Test and the cyclic 
D Test, to determine the cooling mode cyclic degradation coefficient, 
CD\c\. If the two optional tests are conducted but yield a 
tested CD\c\ that exceeds the default CD\c\ or if 
the two optional tests are not conducted, assign CD\c\ the 
default value of 0.25 (for outdoor units with no match) or 0.20 (for all 
other systems). Table 5 specifies test conditions for these four tests.

 Table 5--Cooling Mode Test Conditions for Units Having a Single-Speed Compressor and a Fixed Cooling Air Volume
                                                      Rate
----------------------------------------------------------------------------------------------------------------
                                   Air entering indoor unit    Air entering outdoor
                                     temperature ( [deg]F)      unit temperature (
         Test description         --------------------------          [deg]F)           Cooling air volume rate
                                                            --------------------------
                                     Dry bulb     Wet bulb     Dry bulb     Wet bulb
----------------------------------------------------------------------------------------------------------------
A Test--required (steady, wet               80           67           95       \1\ 75  Cooling full-load.\2\
 coil).
B Test--required (steady, wet               80           67           82       \1\ 65  Cooling full-load.\2\
 coil).
C Test--optional (steady, dry               80        (\3\)           82  ...........  Cooling full-load.\2\
 coil).
D Test--optional (cyclic, dry               80        (\3\)           82  ...........  (\4\).
 coil).
----------------------------------------------------------------------------------------------------------------
\1\ The specified test condition only applies if the unit rejects condensate to the outdoor coil.
\2\ Defined in section 3.1.4.1 of this appendix.
\3\ The entering air must have a low enough moisture content so no condensate forms on the indoor coil. (It is
  recommended that an indoor wet-bulb temperature of 57 [deg]F or less be used.)
\4\ Maintain the airflow nozzles static pressure difference or velocity pressure during the ON period at the
  same pressure difference or velocity pressure as measured during the C Test.


[[Page 484]]

3.2.2 Tests for a Unit Having a Single-Speed Compressor Where the Indoor 
  Section Uses a Single Variable-Speed Variable-Air-Volume Rate Indoor 
                    Blower or Multiple Indoor Blowers

   3.2.2.1 Indoor Blower Capacity Modulation That Correlates With the 
 Outdoor Dry Bulb Temperature or Systems With a Single Indoor Coil but 
                         Multiple Indoor Blowers

    Conduct four steady-state wet coil tests: The A2, 
A1, B2, and B1 tests. Use the two 
optional dry-coil tests, the steady-state C1 test and the 
cyclic D1 test, to determine the cooling mode cyclic 
degradation coefficient, CD\c\. If the two optional tests are 
conducted but yield a tested CDc that exceeds the default 
CDc or if the two optional tests are not conducted, assign 
CDc the default value of 0.20.

    3.2.2.2 Indoor Blower Capacity Modulation Based on Adjusting the 
             Sensible to Total (S/T) Cooling Capacity Ratio

    The testing requirements are the same as specified in section 3.2.1 
of this appendix and Table 5. Use a cooling full-load air volume rate 
that represents a normal installation. If performed, conduct the steady-
state C Test and the cyclic D Test with the unit operating in the same 
S/T capacity control mode as used for the B Test.

  Table 6--Cooling Mode Test Conditions for Units With a Single-Speed Compressor That Meet the Section 3.2.2.1
                                            Indoor Unit Requirements
----------------------------------------------------------------------------------------------------------------
                                   Air entering indoor unit    Air entering outdoor
                                     temperature ( [deg]F)      unit temperature (
         Test description         --------------------------          [deg]F)           Cooling air volume rate
                                                            --------------------------
                                     Dry bulb     Wet bulb     Dry bulb     Wet bulb
----------------------------------------------------------------------------------------------------------------
A2 Test--required (steady, wet              80           67           95       \1\ 75  Cooling full-load.\2\
 coil).
A1 Test--required (steady, wet              80           67           95       \1\ 75  Cooling minimum.\3\
 coil).
B2 Test--required (steady, wet              80           67           82       \1\ 65  Cooling full-load.\2\
 coil).
B1 Test--required (steady, wet              80           67           82       \1\ 65  Cooling minimum.\3\
 coil).
C1 Test \4\--optional (steady,              80        (\4\)           82  ...........  Cooling minimum.\3\
 dry coil).
D1 Test \4\--optional (cyclic,              80        (\4\)           82  ...........  (\5\).
 dry coil).
----------------------------------------------------------------------------------------------------------------
\1\ The specified test condition only applies if the unit rejects condensate to the outdoor coil.
\2\ Defined in section 3.1.4.1 of this appendix.
\3\ Defined in section 3.1.4.2 of this appendix.
\4\ The entering air must have a low enough moisture content so no condensate forms on the indoor coil. (It is
  recommended that an indoor wet-bulb temperature of 5 [deg]F or less be used.)
\5\ Maintain the airflow nozzles static pressure difference or velocity pressure during the ON period at the
  same pressure difference or velocity pressure as measured during the C1 Test.

3.2.3 Tests for a Unit Having a Two-Capacity Compressor (See Section 1.2 
                     of This Appendix, Definitions)

    a. Conduct four steady-state wet coil tests: the A2, 
B2, B1, and F1 Tests. Use the two 
optional dry-coil tests, the steady-state C1 Test and the 
cyclic D1 Test, to determine the cooling-mode cyclic-
degradation coefficient, CD\c\. If the two optional tests are 
conducted but yield a tested CDc that exceeds the default 
CDc or if the two optional tests are not conducted, assign 
CDc the default value of 0.20. Table 6 specifies test 
conditions for these six tests.
    b. For units having a variable speed indoor blower that is modulated 
to adjust the sensible to total (S/T) cooling capacity ratio, use 
cooling full-load and cooling minimum air volume rates that represent a 
normal installation. Additionally, if conducting the dry-coil tests, 
operate the unit in the same S/T capacity control mode as used for the 
B1 Test.
    c. Test two-capacity, northern heat pumps (see section 1.2 of this 
appendix, Definitions) in the same way as a single speed heat pump with 
the unit operating exclusively at low compressor capacity (see section 
3.2.1 of this appendix and Table 5).
    d. If a two-capacity air conditioner or heat pump locks out low-
capacity operation at higher outdoor temperatures, then use the two dry-
coil tests, the steady-state C2 Test and the cyclic 
D2 Test, to determine the cooling-mode cyclic-degradation 
coefficient that only applies to on/off cycling from high capacity, 
CD\c\(k=2). If the two optional tests are conducted but yield 
a tested CD\c\ (k = 2) that exceeds the default CD\c\ (k = 2) or if the 
two optional tests are not conducted, assign CD\c\ (k = 2) the default 
value. The default CD\c\(k=2) is the same value as determined 
or assigned for the low-capacity cyclic-degradation coefficient, 
CD\c\ [or equivalently, CD\c\(k=1)].

[[Page 485]]



                Table 7--Cooling Mode Test Conditions for Units Having a Two-Capacity Compressor
----------------------------------------------------------------------------------------------------------------
                                     Air entering indoor  Air entering outdoor
                                     unit temperature (    unit temperature (
         Test description                  [deg]F)               [deg]F)        Compressor   Cooling air volume
                                   --------------------------------------------  capacity           rate
                                     Dry bulb   Wet bulb   Dry bulb   Wet bulb
----------------------------------------------------------------------------------------------------------------
A2 Test--required (steady, wet             80         67         95     \1\ 75        High  Cooling Full-
 coil).                                                                                      Load.\2\
B2 Test--required (steady, wet             80         67         82     \1\ 65        High  Cooling Full-
 coil).                                                                                      Load.\2\
B1 Test--required (steady, wet             80         67         82     \1\ 65         Low  Cooling Minimum.\3\
 coil).
C2 Test--optional (steady, dry-            80      (\4\)         82  .........        High  Cooling Full-
 coil).                                                                                      Load.\2\
D2 Test--optional (cyclic, dry-            80      (\4\)         82  .........        High  (\5\).
 coil).
C1 Test--optional (steady, dry-            80      (\4\)         82  .........         Low  Cooling Minimum.\3\
 coil).
D1 Test--optional (cyclic, dry-            80      (\4\)         82  .........         Low  (\6\).
 coil).
F1 Test--required (steady, wet             80         67         67   \1\ 53.5         Low  Cooling Minimum.\3\
 coil).
----------------------------------------------------------------------------------------------------------------
\1\ The specified test condition only applies if the unit rejects condensate to the outdoor coil.
\2\ Defined in section 3.1.4.1 of this appendix.
\3\ Defined in section 3.1.4.2 of this appendix.
\4\ The entering air must have a low enough moisture content so no condensate forms on the indoor coil. DOE
  recommends using an indoor air wet-bulb temperature of 57 [deg]F or less.
\5\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the
  same pressure or velocity as measured during the C2 Test.
\6\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the
  same pressure or velocity as measured during the C1 Test.

        3.2.4 Tests for a Unit Having a Variable-Speed Compressor

    a. Conduct five steady-state wet coil tests: The A2, 
EV, B2, B1, and F1 Tests. 
Use the two optional dry-coil tests, the steady-state G1 Test 
and the cyclic I1 Test, to determine the cooling mode cyclic 
degradation coefficient, CD\c\. If the two optional tests are 
conducted but yield a tested CDc that exceeds the default 
CDc or if the two optional tests are not conducted, assign 
CDc the default value of 0.25. Table 8 specifies test 
conditions for these seven tests. The compressor shall operate at the 
same cooling full speed, measured by RPM or power input frequency (Hz), 
for both the A2 and B2 tests. The compressor shall 
operate at the same cooling minimum speed, measured by RPM or power 
input frequency (Hz), for the B1, F1, 
G1, and I1 tests. Determine the cooling 
intermediate compressor speed cited in Table 8 using:

[GRAPHIC] [TIFF OMITTED] TR05JA17.012

where a tolerance of plus 5 percent or the next higher inverter 
          frequency step from that calculated is allowed.

    b. For units that modulate the indoor blower speed to adjust the 
sensible to total (S/T) cooling capacity ratio, use cooling full-load, 
cooling intermediate, and cooling minimum air volume rates that 
represent a normal installation. Additionally, if conducting the dry-
coil tests, operate the unit in the same S/T capacity control mode as 
used for the F1 Test.
    c. For multiple-split air conditioners and heat pumps (except where 
noted), the following procedures supersede the above requirements: For 
all Table 8 tests specified for a minimum compressor speed, at least one 
indoor unit must be turned off. The manufacturer shall designate the 
particular indoor unit(s) that is turned off. The manufacturer must also 
specify the compressor speed used for the Table 8 EV Test, a 
cooling-mode intermediate compressor speed that falls within \1/4\ and 
\3/4\ of the difference between the full and minimum cooling-mode 
speeds. The manufacturer should prescribe an intermediate speed that is 
expected to yield the highest EER for the given EV Test 
conditions and bracketed compressor speed range. The manufacturer can 
designate that one or more indoor units are turned off for the 
EV Test.

                                    Table 8--Cooling Mode Test Condition for Units Having a Variable-Speed Compressor
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                           Air entering indoor unit    Air entering outdoor unit
                                             temperature ( [deg]F)       temperature ( [deg]F)
            Test description             --------------------------------------------------------      Compressor speed         Cooling air volume rate
                                            Dry bulb      Wet bulb      Dry bulb      Wet bulb
--------------------------------------------------------------------------------------------------------------------------------------------------------
A2 Test--required (steady, wet coil)....            80            67            95        \1\ 75  Cooling Full..............  Cooling Full-Load.\2\

[[Page 486]]

 
B2 Test--required (steady, wet coil)....            80            67            82        \1\ 65  Cooling Full..............  Cooling Full-Load.\2\
EV Test--required (steady, wet coil)....            80            67            87        \1\ 69  Cooling Intermediate......  Cooling Intermediate.\3\
B1 Test--required (steady, wet coil)....            80            67            82        \1\ 65  Cooling Minimum...........  Cooling Minimum.\4\
F1 Test--required (steady, wet coil)....            80            67            67      \1\ 53.5  Cooling Minimum...........  Cooling Minimum.\4\
G1 Test \5\--optional (steady, dry-coil)            80         (\6\)            67  ............  Cooling Minimum...........  Cooling Minimum.\4\
I1 Test \5\--optional (cyclic, dry-coil)            80         (\6\)            67  ............  Cooling Minimum...........  (\6\).
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ The specified test condition only applies if the unit rejects condensate to the outdoor coil.
\2\ Defined in section 3.1.4.1 of this appendix.
\3\ Defined in section 3.1.4.3 of this appendix.
\4\ Defined in section 3.1.4.2 of this appendix.
\5\ The entering air must have a low enough moisture content so no condensate forms on the indoor coil. DOE recommends using an indoor air wet bulb
  temperature of 57 [deg]F or less.
\6\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the same pressure difference or velocity
  pressure as measured during the G1 Test.

 3.2.5 Cooling Mode Tests for Northern Heat Pumps With Triple-Capacity 
                               Compressors

    Test triple-capacity, northern heat pumps for the cooling mode in 
the same way as specified in section 3.2.3 of this appendix for units 
having a two-capacity compressor.

 3.2.6 Tests for an Air Conditioner or Heat Pump Having a Single Indoor 
     Unit Having Multiple Indoor Blowers and Offering Two Stages of 
                          Compressor Modulation

    Conduct the cooling mode tests specified in section 3.2.3 of this 
appendix.

3.3 Test Procedures for Steady-State Wet Coil Cooling Mode Tests (the A, 
                  A2, A1, B, B2, B1, EV, and F1 Tests)

    a. For the pretest interval, operate the test room reconditioning 
apparatus and the unit to be tested until maintaining equilibrium 
conditions for at least 30 minutes at the specified section 3.2 test 
conditions. Use the exhaust fan of the airflow measuring apparatus and, 
if installed, the indoor blower of the test unit to obtain and then 
maintain the indoor air volume rate and/or external static pressure 
specified for the particular test. Continuously record (see section 1.2 
of this appendix, Definitions):
    (1) The dry-bulb temperature of the air entering the indoor coil,
    (2) The water vapor content of the air entering the indoor coil,
    (3) The dry-bulb temperature of the air entering the outdoor coil, 
and
    (4) For the section 2.2.4 of this appendix cases where its control 
is required, the water vapor content of the air entering the outdoor 
coil.
    Refer to section 3.11 of this appendix for additional requirements 
that depend on the selected secondary test method.
    b. After satisfying the pretest equilibrium requirements, make the 
measurements specified in Table 3 of ANSI/ASHRAE 37-2009 for the indoor 
air enthalpy method and the user-selected secondary method. Make said 
Table 3 measurements at equal intervals that span 5 minutes or less. 
Continue data sampling until reaching a 30-minute period (e.g., seven 
consecutive 5-minute samples) where the test tolerances specified in 
Table 9 are satisfied. For those continuously recorded parameters, use 
the entire data set from the 30-minute interval to evaluate Table 9 
compliance. Determine the average electrical power consumption of the 
air conditioner or heat pump over the same 30-minute interval.
    c. Calculate indoor-side total cooling capacity and sensible cooling 
capacity as specified in sections 7.3.3.1 and 7.3.3.3 of ANSI/ASHRAE 37-
2009 (incorporated by reference, see Sec.  430.3). To calculate 
capacity, use the averages of the measurements (e.g. inlet and outlet 
dry bulb and wet bulb temperatures measured at the psychrometers) that 
are continuously recorded for the same 30-minute interval used as 
described above to evaluate compliance with test tolerances. Do not 
adjust the parameters used in calculating capacity for the permitted 
variations in test conditions. Evaluate air enthalpies based on the 
measured barometric pressure. Use the values of the specific heat of air 
given in section 7.3.3.1 of ANSI/ASHRAE 37-2009 (incorporated by 
reference, see Sec.  430.3) for calculation of the sensible cooling 
capacities. Assign the average total space cooling capacity, average 
sensible cooling capacity,

[[Page 487]]

and electrical power consumption over the 30-minute data collection 
interval to the variables Qc\k\(T), Qsc\k\(T) and 
Ec\k\(T), respectively. For these three variables, replace 
the ``T'' with the nominal outdoor temperature at which the test was 
conducted. The superscript k is used only when testing multi-capacity 
units.
    Use the superscript k=2 to denote a test with the unit operating at 
high capacity or full speed, k=1 to denote low capacity or minimum 
speed, and k=v to denote the intermediate speed.
    d. For coil-only system tests, decrease Qc\k\(T) by
    [GRAPHIC] [TIFF OMITTED] TR05JA17.013
    

    and increase Ec\k\(T) by,

    [GRAPHIC] [TIFF OMITTED] TR05JA17.014
    
where VIs is the average measured indoor air volume rate 
          expressed in units of cubic feet per minute of standard air 
          (scfm).

  Table 9--Test Operating and Test Condition Tolerances for Section 3.3
    Steady-State Wet Coil Cooling Mode Tests and Section 3.4 Dry Coil
                           Cooling Mode Tests
------------------------------------------------------------------------
                                      Test operating     Test condition
                                      tolerance \1\      tolerance \1\
------------------------------------------------------------------------
Indoor dry-bulb, [deg]F
    Entering temperature..........                2.0                0.5
    Leaving temperature...........                2.0
Indoor wet-bulb, [deg]F
    Entering temperature..........                1.0            \2\ 0.3
    Leaving temperature...........            \2\ 1.0
Outdoor dry-bulb, [deg]F
    Entering temperature..........                2.0                0.5
    Leaving temperature...........            \3\ 2.0
Outdoor wet-bulb, [deg]F
    Entering temperature..........                1.0            \4\ 0.3
    Leaving temperature...........            \3\ 1.0
External resistance to airflow,                  0.05           \5\ 0.02
 inches of water..................
Electrical voltage, % of rdg......                2.0                1.5
Nozzle pressure drop, % of rdg....                2.0
------------------------------------------------------------------------
\1\ See section 1.2 of this appendix, Definitions.
\2\ Only applies during wet coil tests; does not apply during steady-
  state, dry coil cooling mode tests.
\3\ Only applies when using the outdoor air enthalpy method.
\4\ Only applies during wet coil cooling mode tests where the unit
  rejects condensate to the outdoor coil.
\5\ Only applies when testing non-ducted units.

    e. For air conditioners and heat pumps having a constant-air-volume-
rate indoor blower, the five additional steps listed below are required 
if the average of the measured external static pressures exceeds the 
applicable sections 3.1.4 minimum (or target) external static pressure 
([Delta]Pmin) by 0.03 inches of water or more.
    (1) Measure the average power consumption of the indoor blower motor 
(Efan,1) and record the corresponding external static 
pressure ([Delta]P1) during or immediately following the 30-
minute interval used for determining capacity.
    (2) After completing the 30-minute interval and while maintaining 
the same test conditions, adjust the exhaust fan of the airflow 
measuring apparatus until the external static pressure increases to 
approximately [Delta]P1 + ([Delta]P1-
[Delta]Pmin).
    (3) After re-establishing steady readings of the fan motor power and 
external static pressure, determine average values for the indoor blower 
power (Efan,2) and the external static pressure 
([Delta]P2) by making measurements over a 5-minute interval.
    (4) Approximate the average power consumption of the indoor blower 
motor at [Delta]Pmin using linear extrapolation:

[[Page 488]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.015

    (5) Increase the total space cooling capacity, Qc\k\(T), 
by the quantity (Efan,1-Efan,min), when expressed 
on a Btu/h basis. Decrease the total electrical power, 
Ec\k\(T), by the same fan power difference, now expressed in 
watts.

  3.4 Test Procedures for the Steady-State Dry-Coil Cooling-Mode Tests 
                      (the C, C1, C2, and G1 Tests)

    a. Except for the modifications noted in this section, conduct the 
steady-state dry coil cooling mode tests as specified in section 3.3 of 
this appendix for wet coil tests. Prior to recording data during the 
steady-state dry coil test, operate the unit at least one hour after 
achieving dry coil conditions. Drain the drain pan and plug the drain 
opening. Thereafter, the drain pan should remain completely dry.
    b. Denote the resulting total space cooling capacity and electrical 
power derived from the test as Qss,dry and 
Ess,dry. With regard to a section 3.3 deviation, do not 
adjust Qss,dry for duct losses (i.e., do not apply section 
7.3.3.3 of ANSI/ASHRAE 37-2009). In preparing for the section 3.5 cyclic 
tests of this appendix, record the average indoor-side air volume rate, 
VI, specific heat of the air, Cp,a (expressed on dry air basis), 
specific volume of the air at the nozzles, v[min]n, humidity 
ratio at the nozzles, Wn, and either pressure difference or 
velocity pressure for the flow nozzles. For units having a variable-
speed indoor blower (that provides either a constant or variable air 
volume rate) that will or may be tested during the cyclic dry coil 
cooling mode test with the indoor blower turned off (see section 3.5 of 
this appendix), include the electrical power used by the indoor blower 
motor among the recorded parameters from the 30-minute test.
    c. If the temperature sensors used to provide the primary 
measurement of the indoor-side dry bulb temperature difference during 
the steady-state dry-coil test and the subsequent cyclic dry-coil test 
are different, include measurements of the latter sensors among the 
regularly sampled data. Beginning at the start of the 30-minute data 
collection period, measure and compute the indoor-side air dry-bulb 
temperature difference using both sets of instrumentation, [Delta]T (Set 
SS) and [Delta]T (Set CYC), for each equally spaced data sample. If 
using a consistent data sampling rate that is less than 1 minute, 
calculate and record minutely averages for the two temperature 
differences. If using a consistent sampling rate of one minute or more, 
calculate and record the two temperature differences from each data 
sample. After having recorded the seventh (i=7) set of temperature 
differences, calculate the following ratio using the first seven sets of 
values:
[GRAPHIC] [TIFF OMITTED] TR05JA17.016

    Each time a subsequent set of temperature differences is recorded 
(if sampling more frequently than every 5 minutes), calculate 
FCD using the most recent seven sets of values. Continue 
these calculations until the 30-minute period is completed or until a 
value for FCD is calculated that falls outside the allowable 
range of 0.94-1.06. If the latter occurs, immediately suspend the test 
and identify the cause for the disparity in the two temperature 
difference measurements. Recalibration of one or both sets of 
instrumentation may be required. If all the values for FCD 
are within the allowable range, save the final value of the ratio from 
the 30-minute test as FCD*. If the temperature sensors used 
to provide the primary measurement of the indoor-side dry bulb 
temperature difference during the steady-state dry-coil test and the 
subsequent cyclic dry-coil test are the same, set FCD*= 1.

 3.5 Test Procedures for the Cyclic Dry-Coil Cooling-Mode Tests (the D, 
                          D1, D2, and I1 Tests)

    After completing the steady-state dry-coil test, remove the outdoor 
air enthalpy method test apparatus, if connected, and begin manual OFF/
ON cycling of the unit's compressor. The test set-up should otherwise be 
identical to the set-up used during the steady-state dry coil test. When 
testing heat pumps, leave the reversing valve during the

[[Page 489]]

compressor OFF cycles in the same position as used for the compressor ON 
cycles, unless automatically changed by the controls of the unit. For 
units having a variable-speed indoor blower, the manufacturer has the 
option of electing at the outset whether to conduct the cyclic test with 
the indoor blower enabled or disabled. Always revert to testing with the 
indoor blower disabled if cyclic testing with the fan enabled is 
unsuccessful.
    a. For all cyclic tests, the measured capacity must be adjusted for 
the thermal mass stored in devices and connections located between 
measured points. Follow the procedure outlined in section 7.4.3.4.5 of 
ASHRAE 116-2010 (incorporated by reference, see Sec.  430.3) to ensure 
any required measurements are taken.
    b. For units having a single-speed or two-capacity compressor, cycle 
the compressor OFF for 24 minutes and then ON for 6 minutes 
([Delta][tau]cyc,dry = 0.5 hours). For units having a 
variable-speed compressor, cycle the compressor OFF for 48 minutes and 
then ON for 12 minutes ([Delta][tau]cyc,dry = 1.0 hours). 
Repeat the OFF/ON compressor cycling pattern until the test is 
completed. Allow the controls of the unit to regulate cycling of the 
outdoor fan. If an upturned duct is used, measure the dry-bulb 
temperature at the inlet of the device at least once every minute and 
ensure that its test operating tolerance is within 1.0 [deg]F for each 
compressor OFF period.
    c. Sections 3.5.1 and 3.5.2 of this appendix specify airflow 
requirements through the indoor coil of ducted and non-ducted indoor 
units, respectively. In all cases, use the exhaust fan of the airflow 
measuring apparatus (covered under section 2.6 of this appendix) along 
with the indoor blower of the unit, if installed and operating, to 
approximate a step response in the indoor coil airflow. Regulate the 
exhaust fan to quickly obtain and then maintain the flow nozzle static 
pressure difference or velocity pressure at the same value as was 
measured during the steady-state dry coil test. The pressure difference 
or velocity pressure should be within 2 percent of the value from the 
steady-state dry coil test within 15 seconds after airflow initiation. 
For units having a variable-speed indoor blower that ramps when cycling 
on and/or off, use the exhaust fan of the airflow measuring apparatus to 
impose a step response that begins at the initiation of ramp up and ends 
at the termination of ramp down.
    d. For units having a variable-speed indoor blower, conduct the 
cyclic dry coil test using the pull-thru approach described below if any 
of the following occur when testing with the fan operating:
    (1) The test unit automatically cycles off;
    (2) Its blower motor reverses; or
    (3) The unit operates for more than 30 seconds at an external static 
pressure that is 0.1 inches of water or more higher than the value 
measured during the prior steady-state test.
    For the pull-thru approach, disable the indoor blower and use the 
exhaust fan of the airflow measuring apparatus to generate the specified 
flow nozzles static pressure difference or velocity pressure. If the 
exhaust fan cannot deliver the required pressure difference because of 
resistance created by the unpowered indoor blower, temporarily remove 
the indoor blower.
    e. Conduct three complete compressor OFF/ON cycles with the test 
tolerances given in Table 10 satisfied. Calculate the degradation 
coefficient CD for each complete cycle. If all three 
CD values are within 0.02 of the average CD then 
stability has been achieved, and the highest CD value of 
these three shall be used. If stability has not been achieved, conduct 
additional cycles, up to a maximum of eight cycles total, until 
stability has been achieved between three consecutive cycles. Once 
stability has been achieved, use the highest CD value of the 
three consecutive cycles that establish stability. If stability has not 
been achieved after eight cycles, use the highest CD from 
cycle one through cycle eight, or the default CD, whichever 
is lower.
    f. With regard to the Table 10 parameters, continuously record the 
dry-bulb temperature of the air entering the indoor and outdoor coils 
during periods when air flows through the respective coils. Sample the 
water vapor content of the indoor coil inlet air at least every 2 
minutes during periods when air flows through the coil. Record external 
static pressure and the air volume rate indicator (either nozzle 
pressure difference or velocity pressure) at least every minute during 
the interval that air flows through the indoor coil. (These regular 
measurements of the airflow rate indicator are in addition to the 
required measurement at 15 seconds after flow initiation.) Sample the 
electrical voltage at least every 2 minutes beginning 30 seconds after 
compressor start-up. Continue until the compressor, the outdoor fan, and 
the indoor blower (if it is installed and operating) cycle off.
    g. For ducted units, continuously record the dry-bulb temperature of 
the air entering (as noted above) and leaving the indoor coil. Or if 
using a thermopile, continuously record the difference between these two 
temperatures during the interval that air flows through the indoor coil. 
For non-ducted units, make the same dry-bulb temperature measurements 
beginning when the compressor cycles on and ending when indoor coil 
airflow ceases.
    h. Integrate the electrical power over complete cycles of length 
[Delta][tau]cyc,dry. For ducted blower coil systems tested 
with the unit's indoor blower operating for the cycling test, integrate 
electrical power from indoor blower OFF to indoor blower OFF. For all 
other

[[Page 490]]

ducted units and for non-ducted units, integrate electrical power from 
compressor OFF to compressor OFF. (Some cyclic tests will use the same 
data collection intervals to determine the electrical energy and the 
total space cooling. For other units, terminate data collection used to 
determine the electrical energy before terminating data collection used 
to determine total space cooling.)

  Table 10--Test Operating and Test Condition Tolerances for Cyclic Dry
                         Coil Cooling Mode Tests
------------------------------------------------------------------------
                                          Test operating  Test condition
                                           tolerance \1\   tolerance \1\
------------------------------------------------------------------------
Indoor entering dry-bulb temperature,\2\             2.0             0.5
 [deg]F.................................
Indoor entering wet-bulb temperature,     ..............           (\3\)
 [deg]F.................................
Outdoor entering dry-bulb                            2.0             0.5
 temperature,\2\ [deg]F.................
External resistance to airflow,\2\                  0.05
 inches of water........................
Airflow nozzle pressure difference or                2.0         \4\ 2.0
 velocity pressure,\2\ % of reading.....
Electrical voltage,\5\ % of rdg.........             2.0             1.5
------------------------------------------------------------------------
\1\ See section 1.2 of this appendix, Definitions.
\2\ Applies during the interval that air flows through the indoor
  (outdoor) coil except for the first 30 seconds after flow initiation.
  For units having a variable-speed indoor blower that ramps, the
  tolerances listed for the external resistance to airflow apply from 30
  seconds after achieving full speed until ramp down begins.
\3\ Shall at no time exceed a wet-bulb temperature that results in
  condensate forming on the indoor coil.
\4\ The test condition shall be the average nozzle pressure difference
  or velocity pressure measured during the steady-state dry coil test.
\5\ Applies during the interval when at least one of the following--the
  compressor, the outdoor fan, or, if applicable, the indoor blower--are
  operating except for the first 30 seconds after compressor start-up.

    If the Table 10 tolerances are satisfied over the complete cycle, 
record the measured electrical energy consumption as ecyc,dry 
and express it in units of watt-hours. Calculate the total space cooling 
delivered, qcyc,dry, in units of Btu using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.017

Where,

VI, Cp,a, vn[min] (or vn), 
          Wn, and FCD* are the values recorded 
          during the section 3.4 dry coil steady-state test and
Tal([tau]) = dry bulb temperature of the air entering the 
          indoor coil at time [tau], [deg]F.
Ta2([tau]) = dry bulb temperature of the air leaving the 
          indoor coil at time [tau], [deg]F.
[tau]1 = for ducted units, the elapsed time when airflow is 
          initiated through the indoor coil; for non-ducted units, the 
          elapsed time when the compressor is cycled on, hr.
[tau]2 = the elapsed time when indoor coil airflow ceases, 
          hr.

    Adjust the total space cooling delivered, qcyc,dry, 
according to calculation method outlined in section 7.4.3.4.5 of ASHRAE 
116-2010 (incorporated by reference, see Sec.  430.3).

              3.5.1 Procedures When Testing Ducted Systems

    The automatic controls that are installed in the test unit must 
govern the OFF/ON cycling of the air moving equipment on the indoor side 
(exhaust fan of the airflow measuring apparatus and the indoor blower of 
the test unit). For ducted coil-only systems rated based on using a fan 
time-delay relay, control the indoor coil airflow according to the OFF 
delay listed by the manufacturer in the certification report. For ducted 
units having a variable-speed indoor blower that has been disabled (and 
possibly removed), start and stop the indoor airflow at the same 
instances as if the fan were enabled. For all other ducted coil-only 
systems, cycle the indoor coil airflow in unison with the cycling of the 
compressor. If air damper boxes are used, close them on the inlet and 
outlet side during the OFF period. Airflow through the indoor coil 
should stop within 3 seconds after the automatic controls of the test 
unit (act to) de-energize the indoor blower. For ducted coil-only 
systems (excluding the special case where a variable-speed fan is 
temporarily removed), increase ecyc,dry by the quantity,
[GRAPHIC] [TIFF OMITTED] TR05JA17.018


[[Page 491]]


    and decrease qcyc,dry by,
    [GRAPHIC] [TIFF OMITTED] TR05JA17.019
    
where VIs is the average indoor air volume rate from the 
          section 3.4 dry coil steady-state test and is expressed in 
          units of cubic feet per minute of standard air (scfm). For 
          units having a variable-speed indoor blower that is disabled 
          during the cyclic test, increase ecyc,dry and 
          decrease qcyc,dry based on:
a. The product of [[tau]2 - [tau]1] and the indoor 
          blower power measured during or following the dry coil steady-
          state test; or,
b. The following algorithm if the indoor blower ramps its speed when 
          cycling.

    (1) Measure the electrical power consumed by the variable-speed 
indoor blower at a minimum of three operating conditions: At the speed/
air volume rate/external static pressure that was measured during the 
steady-state test, at operating conditions associated with the midpoint 
of the ramp-up interval, and at conditions associated with the midpoint 
of the ramp-down interval. For these measurements, the tolerances on the 
airflow volume or the external static pressure are the same as required 
for the section 3.4 steady-state test.
    (2) For each case, determine the fan power from measurements made 
over a minimum of 5 minutes.
    (3) Approximate the electrical energy consumption of the indoor 
blower if it had operated during the cyclic test using all three power 
measurements. Assume a linear profile during the ramp intervals. The 
manufacturer must provide the durations of the ramp-up and ramp-down 
intervals. If the test setup instructions included with the unit by the 
manufacturer specifies a ramp interval that exceeds 45 seconds, use a 
45-second ramp interval nonetheless when estimating the fan energy.

          3.5.2 Procedures When Testing Non-Ducted Indoor Units

    Do not use airflow prevention devices when conducting cyclic tests 
on non-ducted indoor units. Until the last OFF/ON compressor cycle, 
airflow through the indoor coil must cycle off and on in unison with the 
compressor. For the last OFF/ON compressor cycle--the one used to 
determine ecyc,dry and qcyc,dry--use the exhaust 
fan of the airflow measuring apparatus and the indoor blower of the test 
unit to have indoor airflow start 3 minutes prior to compressor cut-on 
and end three minutes after compressor cutoff. Subtract the electrical 
energy used by the indoor blower during the 3 minutes prior to 
compressor cut-on from the integrated electrical energy, 
ecyc,dry. Add the electrical energy used by the indoor blower 
during the 3 minutes after compressor cutoff to the integrated cooling 
capacity, qcyc,dry. For the case where the non-ducted indoor 
unit uses a variable-speed indoor blower which is disabled during the 
cyclic test, correct ecyc,dry and qcyc,dry using 
the same approach as prescribed in section 3.5.1 of this appendix for 
ducted units having a disabled variable-speed indoor blower.

      3.5.3 Cooling-Mode Cyclic-Degradation Coefficient Calculation

    Use the two dry-coil tests to determine the cooling-mode cyclic-
degradation coefficient, CD\c\. Append ``(k=2)'' to the 
coefficient if it corresponds to a two-capacity unit cycling at high 
capacity. If the two optional tests are conducted but yield a tested 
CD\c\ that exceeds the default CD\c\ or if the two optional tests are 
not conducted, assign CD\c\ the default value of 0.25 for variable-speed 
compressor systems and outdoor units with no match, and 0.20 for all 
other systems. The default value for two-capacity units cycling at high 
capacity, however, is the low-capacity coefficient, i.e., 
CD\c\(k=2) = CD\c\. Evaluate CD\c\ 
using the above results and those from the section 3.4 dry-coil steady-
state test.
[GRAPHIC] [TIFF OMITTED] TR05JA17.020

where:

[[Page 492]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.021

the average energy efficiency ratio during the cyclic dry coil cooling 
          mode test, Btu/W[middot]h
          [GRAPHIC] [TIFF OMITTED] TR05JA17.022
          
the average energy efficiency ratio during the steady-state dry coil 
          cooling mode test, Btu/W[middot]h
          [GRAPHIC] [TIFF OMITTED] TR05JA17.023
          
the cooling load factor dimensionless

Round the calculated value for CD\c\ to the nearest 0.01. If 
          CD\c\ is negative, then set it equal to zero.

  3.6 Heating Mode Tests for Different Types of Heat Pumps, Including 
                         Heating-Only Heat Pumps

 3.6.1 Tests for a Heat Pump Having a Single-Speed Compressor and Fixed 
                         Heating Air Volume Rate

    This set of tests is for single-speed-compressor heat pumps that do 
not have a heating minimum air volume rate or a heating intermediate air 
volume rate that is different than the heating full load air volume 
rate. Conduct the optional high temperature cyclic (H1C) test to 
determine the heating mode cyclic-degradation coefficient, 
CD\h\. If this optional test is conducted but yields a tested 
CD\h\ that exceeds the default CD\h\ or if the 
optional test is not conducted, assign CD\h\ the default 
value of 0.25. Test conditions for the four tests are specified in Table 
10.

   Table 11--Heating Mode Test Conditions for Units Having a Single-Speed Compressor and a Fixed-Speed Indoor
                      Blower, a Constant Air Volume Rate Indoor Blower, or No Indoor Blower
----------------------------------------------------------------------------------------------------------------
                                  Air entering indoor unit      Air entering outdoor
                                   temperature ( [deg]F)         unit temperature (
       Test description       -------------------------------          [deg]F)           Heating air volume rate
                                                             --------------------------
                                 Dry bulb       Wet bulb        Dry bulb     Wet bulb
----------------------------------------------------------------------------------------------------------------
H1 Test (required, steady)...           70  60 \(max)\......           47           43  Heating Full-load.\1\
H1C Test (optional, cyclic)..           70  60 \(max)\......           47           43  (\2\)
H2 Test (required)...........           70  60 \(max)\......           35           33  Heating Full-load.\1\
H3 Test (required, steady)...           70  60 \(max)\......           17           15  Heating Full-load.\1\
----------------------------------------------------------------------------------------------------------------
\1\ Defined in section 3.1.4.4 of this appendix.f\2\ Maintain the airflow nozzles static pressure difference or
  velocity pressure during the ON period at the same pressure difference or velocity pressure as measured during
  the H1 Test.


[[Page 493]]

   3.6.2 Tests for a Heat Pump Having a Single-Speed Compressor and a 
Single Indoor Unit Having Either (1) a Variable Speed, Variable-Air-Rate 
Indoor Blower Whose Capacity Modulation Correlates With Outdoor Dry Bulb 
               Temperature or (2) Multiple Indoor Blowers

    Conduct five tests: Two high temperature tests (H12 and 
H11), one frost accumulation test (H22), and two 
low temperature tests (H32 and H31). Conducting an 
additional frost accumulation test (H21) is optional. Conduct 
the optional high temperature cyclic (H1C1) test to determine 
the heating mode cyclic-degradation coefficient, CD\h\. If 
this optional test is conducted but yields a tested CD\h\ 
that exceeds the default CD\h\ or if the optional test is not 
conducted, assign CD\h\ the default value of 0.25. Test 
conditions for the seven tests are specified in Table 12. If the 
optional H21 test is not performed, use the following 
equations to approximate the capacity and electrical power of the heat 
pump at the H21 test conditions:
[GRAPHIC] [TIFF OMITTED] TR05JA17.024

    The quantities Qhk=2(47), Ehk=2(47), Qhk=1(47), and 
Ehk=1(47) are determined from the H12 and 
H11 tests and evaluated as specified in section 3.7 of this 
appendix; the quantities Qhk=2(35) and Ehk=2(35) are determined from the 
H22 test and evaluated as specified in section 3.9 of this 
appendix; and the quantities Qhk=2(17), Ehk=2(17), Qhk=1(17), 
and Ehk=1(17), are determined from the H32 and 
H31 tests and evaluated as specified in section 3.10 of this 
appendix.

   Table 12--Table Heating Mode Test Conditions for Units With a Single-Speed Compressor That Meet the Section
                                         3.6.2 Indoor Unit Requirements
----------------------------------------------------------------------------------------------------------------
                                  Air entering indoor unit      Air entering outdoor
                                   temperature ( [deg]F)         unit temperature (
       Test description       -------------------------------          [deg]F)           Heating air volume rate
                                                             --------------------------
                                 Dry bulb       Wet bulb        Dry bulb     Wet bulb
----------------------------------------------------------------------------------------------------------------
H12 Test (required, steady)..           70  60 \(max)\......           47           43  Heating Full-load.\1\
H11 Test (required, steady)..           70  60 \(max)\......           47           43  Heating Minimum.\2\
H1C1 Test (optional, cyclic).           70  60 \(max)\......           47           43  (\3\)
H22 Test (required)..........           70  60 \(max)\......           35           33  Heating Full-load.\1\
H21 Test (optional)..........           70  60 \(max)\......           35           33  Heating Minimum.\2\
H32 Test (required, steady)..           70  60 \(max)\......           17           15  Heating Full-load.\1\
H31 Test (required, steady)..           70  60 \(max)\......           17           15  Heating Minimum.\2\
----------------------------------------------------------------------------------------------------------------
\1\ Defined in section 3.1.4.4 of this appendix.
\2\ Defined in section 3.1.4.5 of this appendix.
\3\ Maintain the airflow nozzles static pressure difference or velocity pressure during the ON period at the
  same pressure difference or velocity pressure as measured during the H11 test.


[[Page 494]]

   3.6.3 Tests for a Heat Pump Having a Two-Capacity Compressor (see 
  section 1.2 of this appendix, Definitions), Including Two-Capacity, 
   Northern Heat Pumps (see section 1.2 of this appendix, Definitions)

    a. Conduct one maximum temperature test (H01), two high 
temperature tests (H12and H11), one frost 
accumulation test (H22), and one low temperature test 
(H32). Conduct an additional frost accumulation test 
(H21) and low temperature test (H31) if both of 
the following conditions exist:
    (1) Knowledge of the heat pump's capacity and electrical power at 
low compressor capacity for outdoor temperatures of 37 [deg]F and less 
is needed to complete the section 4.2.3 of this appendix seasonal 
performance calculations; and
    (2) The heat pump's controls allow low-capacity operation at outdoor 
temperatures of 37 [deg]F and less.
    If the above two conditions are met, an alternative to conducting 
the H21 frost accumulation is to use the following equations 
to approximate the capacity and electrical power:
[GRAPHIC] [TIFF OMITTED] TR05JA17.306

    Determine the quantities Qhk=1 (47) and Ehk=1 
(47) from the H11 test and evaluate them according to section 
3.7 of this appendix. Determine the quantities Qhk=1 (17) and 
Ehk=1 (17) from the H31 test and evaluate them 
according to section 3.10 of this appendix.
    b. Conduct the optional high temperature cyclic test 
(H1C1) to determine the heating mode cyclic-degradation 
coefficient, CD\h\. If this optional test is conducted but 
yields a tested CD\h\ that exceeds the default 
CD\h\ or if the optional test is not conducted, assign 
CD\h\ the default value of 0.25. If a two-capacity heat pump 
locks out low capacity operation at lower outdoor temperatures, conduct 
the high temperature cyclic test (H1C 2) to determine the 
high-capacity heating mode cyclic-degradation coefficient, 
CD\h\ (k=2). If this optional test at high capacity is 
conducted but yields a tested CD\h\ (k = 2) that exceeds the 
default CD\h\ (k = 2) or if the optional test is not 
conducted, assign CD\h\ the default value. The default 
CD\h\ (k=2) is the same value as determined or assigned for 
the low-capacity cyclic-degradation coefficient, CD\h\ [or 
equivalently, CD\h\ (k=1)]. Table 13 specifies test 
conditions for these nine tests.

                Table 13--Heating Mode Test Conditions for Units Having a Two-Capacity Compressor
----------------------------------------------------------------------------------------------------------------
                                 Air entering indoor    Air entering outdoor
                                 unit temperature (      unit temperature (
       Test description                [deg]F)                 [deg]F)          Compressor   Heating air volume
                              ------------------------------------------------   capacity           rate
                                Dry bulb    Wet bulb    Dry bulb    Wet bulb
----------------------------------------------------------------------------------------------------------------
H01 Test (required, steady)..         70  60 \(max)\.         62         56.5  Low........   Heating Minimum.\1\
H12 Test (required, steady)..         70  60 \(max)\.         47           43  High.......   Heating Full-
                                                                                             Load.\2\
H1C2 Test (optional \7\,              70  60 \(max)\.         47           43  High.......  (\3\)
 cyclic).
H11 Test (required)..........         70  60 \(max)\.         47           43  Low........   Heating Minimum.\1\
H1C1 Test (optional, cyclic).         70  60 \(max)\.         47           43  Low........  (\4\)
H22 Test (required)..........         70  60 \(max)\.         35           33  High.......   Heating Full-
                                                                                             Load.\2\
H21 Test \5 6\ (required)....         70  60 \(max)\.         35           33  Low........   Heating Minimum.\1\
H32 Test (required, steady)..         70  60 \(max)\.         17           15  High.......   Heating Full-
                                                                                             Load.\2\
H31 Test \5\ (required,               70  60 \(max)\.         17           15  Low........   Heating Minimum.\1\
 steady).
----------------------------------------------------------------------------------------------------------------
\1\ Defined in section 3.1.4.5 of this appendix.
\2\ Defined in section 3.1.4.4 of this appendix.
\3\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the
  same pressure or velocity as measured during the H12 test.
\4\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the
  same pressure or velocity as measured during the H11 test.
\5\ Required only if the heat pump's performance when operating at low compressor capacity and outdoor
  temperatures less than 37 [deg]F is needed to complete the section 4.2.3 HSPF calculations.
\6\ If table note 5 applies, the section 3.6.3 equations for Qhk=1 (35) and Ehk=1 (17) may be used in lieu of
  conducting the H21 test.
\7\ Required only if the heat pump locks out low capacity operation at lower outdoor temperatures.


[[Page 495]]

     3.6.4 Tests for a Heat Pump Having a Variable-Speed Compressor

    a. Conduct one maximum temperature test (H01), two high 
temperature tests (H1N and H11), one frost 
accumulation test (H2V), and one low temperature test 
(H32). Conducting one or both of the following tests is 
optional: An additional high temperature test (H12) and an 
additional frost accumulation test (H22). If desired, conduct 
the optional maximum temperature cyclic (H0C1) test to 
determine the heating mode cyclic-degradation coefficient, 
CD\h\. If this optional test is conducted but yields a tested 
CD\h\ that exceeds the default CD\h\ or if the 
optional test is not conducted, assign CD\h\ the default 
value of 0.25. Test conditions for the eight tests are specified in 
Table 14. The compressor shall operate at the same heating full speed, 
measured by RPM or power input frequency (Hz), for the H12, 
H22 and H32 tests. For a cooling/heating heat 
pump, the compressor shall operate for the H1N test at a 
speed, measured by RPM or power input frequency (Hz), no lower than the 
speed used in the A2 test if the tested H12 
heating capacity is less than the tested cooling capacity in 
A2 test. The compressor shall operate at the same heating 
minimum speed, measured by RPM or power input frequency (Hz), for the 
H01, H1C1, and H11 tests. Determine the 
heating intermediate compressor speed cited in Table 14 using the 
heating mode full and minimum compressors speeds and:
[GRAPHIC] [TIFF OMITTED] TR05JA17.025

Where a tolerance on speed of plus 5 percent or the next higher inverter 
frequency step from the calculated value is allowed.
    b. If the H12 test is conducted, set the 47 [deg]F 
capacity and power input values used for calculation of HSPF equal to 
the measured values for that test:
[GRAPHIC] [TIFF OMITTED] TR05JA17.313

Where:

    Qhcalck=2(47) and Ehcalck=2(47) are the 
capacity and power input representing full-speed operation at 47 [deg]F 
for the HSPF calculations,
    Qhk=2(47) is the capacity measured in the H12 
test, and
    Ehk=2(47) is the power input measured in the 
H12 test.
    Evaluate the quantities Qhk=2(47) and from Ehk=2(47) according to 
section 3.7.
    Otherwise, if the H1N test is conducted using the same 
compressor speed (RPM or power input frequency) as the H32 
test, set the 47 [deg]F capacity and power input values used for 
calculation of HSPF equal to the measured values for that test:
[GRAPHIC] [TIFF OMITTED] TR05JA17.307

Where:

Qhcalck=2(47) and Ehcalck=2(47) are the capacity and power input 
          representing full-speed operation at 47 [deg]F for the HSPF 
          calculations,
Qhk=N(47) is the capacity measured in the H1N test, and
Ehk=N(47) is the power input measured in the H1N test.

    Evaluate the quantities Qhk=N(47) and from Ehk=N(47) according to 
section 3.7.
    Otherwise (if no high temperature test is conducted using the same 
speed (RPM or power input frequency) as the H32 test), 
calculate the 47 [deg]F capacity and power input values used for 
calculation of HSPF as follows:

[[Page 496]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.308

Where:

Qhcalck=2(47) and Ehcalck=2(47) are the capacity and power input 
          representing full-speed operation at 47 [deg]F for the HSPF 
          calculations,
Qhk=2(17) is the capacity measured in the H32 
          test,
Ehk=2(17) is the power input measured in the H32 
          test,
CSF is the capacity slope factor, equal to 0.0204/ [deg]F for split 
          systems and 0.0262/ [deg]F for single-package systems, and
PSF is the Power Slope Factor, equal to 0.00455/ [deg]F.

    c. If the H22 test is not done, use the following 
equations to approximate the capacity and electrical power at the 
H22 test conditions:
[GRAPHIC] [TIFF OMITTED] TR05JA17.309

Where:

Qhcalck=2(47) and Ehcalck=2(47) are the capacity 
          and power input representing full-speed operation at 47 [deg]F 
          for the HSPF calculations,calculated as described in section b 
          above.
Qhk=2(17) and Ehk=2(17) are the capacity and power 
          input measured in the H32 test.
    d. Determine the quantities Qhk=2(17) and Ehk=2(17) from the 
H32 test, determine the quantities Qhk=2(5) and Ehk=2(5) from 
the H42 test, and evaluate all four according to section 
3.10.

               Table 14--Heating Mode Test Conditions for Units Having a Variable-Speed Compressor
----------------------------------------------------------------------------------------------------------------
                               Air entering indoor    Air entering outdoor
                                unit temperature (     unit temperature (
      Test description               [deg]F)                 [deg]F)          Compressor speed     Heating air
                             -----------------------------------------------                       volume rate
                               Dry bulb   Wet bulb    Dry bulb    Wet bulb
----------------------------------------------------------------------------------------------------------------
H01 test (required, steady).         70  60\(max)\.         62         56.5  Heating minimum...  Heating
                                                                                                  minimum.\1\
H12 test (optional, steady).         70  60\(max)\.         47           43  Heating full \4\..  Heating full-
                                                                                                  load.\3\
H11 test (required, steady).         70  60\(max)\.         47           43  Heating minimum...  Heating
                                                                                                  minimum.\1\
H1N test (required, steady).         70  60\(max)\.         47           43  Heating full......  Heating full-
                                                                                                  load.\3\
H1C1 test (optional, cyclic)         70  60\(max)\.         47           43  Heating minimum...  (\2\)
H22 test (optional).........         70  60\(max)\.         35           33  Heating full \4\..  Heating full-
                                                                                                  load.\3\
H2V test (required).........         70  60\(max)\.         35           33  Heating             Heating
                                                                              intermediate.       intermediate.\
                                                                                                  5\
H32 test (required, steady).         70  60\(max)\.         17           15  Heating full......  Heating full-
                                                                                                  load.\3\
----------------------------------------------------------------------------------------------------------------
\1\ Defined in section 3.1.4.5 of this appendix.
\2\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during an ON period at the
  same pressure or velocity as measured during the H11 test.
\3\ Defined in section 3.1.4.4 of this appendix.
\4\ The same compressor speed used in the H32 test. The H12 test is not needed if the H1N test uses this same
  compressor speed.
\5\ Defined in section 3.1.4.6 of this appendix.

 3.6.5 Additional Test for a Heat Pump Having a Heat Comfort Controller

    Test any heat pump that has a heat comfort controller (see section 
1.2 of this appendix, Definitions) according to section 3.6.1, 3.6.2, or 
3.6.3, whichever applies, with the heat comfort controller disabled. 
Additionally, conduct the abbreviated test described in section 3.1.10 
of this appendix with the heat comfort controller active to determine 
the system's maximum supply air temperature. (Note: Heat pumps having a 
variable speed compressor and a heat comfort controller are not covered 
in the test procedure at this time.)

[[Page 497]]

 3.6.6 Heating Mode Tests for Northern Heat Pumps With Triple-Capacity 
                              Compressors.

    Test triple-capacity, northern heat pumps for the heating mode as 
follows:
    a. Conduct one maximum-temperature test (H01), two high-
temperature tests (H12 and H11), one frost 
accumulation test (H22), two low-temperature tests 
(H32, H33), and one minimum-temperature test 
(H43). Conduct an additional frost accumulation test 
(H21) and low-temperature test (H31) if both of 
the following conditions exist: (1) Knowledge of the heat pump's 
capacity and electrical power at low compressor capacity for outdoor 
temperatures of 37 [deg]F and less is needed to complete the section 
4.2.6 seasonal performance calculations; and (2) the heat pump's 
controls allow low-capacity operation at outdoor temperatures of 37 
[deg]F and less. If the above two conditions are met, an alternative to 
conducting the H21 frost accumulation test to determine 
Qhk=1(35) and Ehk=1(35) is to use the following equations to 
approximate this capacity and electrical power:
[GRAPHIC] [TIFF OMITTED] TR05JA17.310

    In evaluating the above equations, determine the quantities 
Qhk=1(47) from the H11 test and evaluate them according to 
section 3.7 of this appendix. Determine the quantities Qhk=1(17) and 
Ehk=1(17) from the H31 test and evaluate them 
according to section 3.10 of this appendix. Use the paired values of 
Qhk=1(35) and Ehk=1(35) derived from conducting 
the H21 frost accumulation test and evaluated as specified in 
section 3.9.1 of this appendix or use the paired values calculated using 
the above default equations, whichever contribute to a higher Region IV 
HSPF based on the DHRmin.
    b. Conducting a frost accumulation test (H23) with the 
heat pump operating at its booster capacity is optional. If this 
optional test is not conducted, determine Qh\k=3\(35) and Ehk=3(35) 
using the following equations to approximate this capacity and 
electrical power:
[GRAPHIC] [TIFF OMITTED] TR05JA17.311

Where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.026

    Determine the quantities Qhk=2(47) and Ehk=2(47) from the 
H12 test and evaluate them according to section 3.7 of this 
appendix. Determine the quantities Qhk=2(35) and Ehk=2(35) from the 
H22 test and evaluate them according to section 3.9.1 of this 
appendix. Determine the quantities Qhk=2(17) and Ehk=2(17) from the 
H32 test, determine the quantities Qh\k=3\(17) and Ehk=3(17) 
from the H33 test, and determine the quantities Qhk=3(5) and 
Ehk=3(5)

[[Page 498]]

from the H43 test. Evaluate all six quantities according to 
section 3.10 of this appendix. Use the paired values of Qhk=3(35) and 
Ehk=3(35) derived from conducting the H23 frost accumulation 
test and calculated as specified in section 3.9.1 of this appendix or 
use the paired values calculated using the above default equations, 
whichever contribute to a higher Region IV HSPF2 based on the DHRmin.
    c. Conduct the optional high-temperature cyclic test 
(H1C1) to determine the heating mode cyclic-degradation 
coefficient, CD\h\. A default value for CD\h\ may 
be used in lieu of conducting the cyclic. The default value of 
CD\h\ is 0.25. If a triple-capacity heat pump locks out low 
capacity operation at lower outdoor temperatures, conduct the high-
temperature cyclic test (H1C2) to determine the high-capacity 
heating mode cyclic-degradation coefficient, CD\h\ (k=2). The 
default CD\h\ (k=2) is the same value as determined or 
assigned for the low-capacity cyclic-degradation coefficient, 
CD\h\ [or equivalently, CD\h\ (k=1)]. Finally, if 
a triple-capacity heat pump locks out both low and high capacity 
operation at the lowest outdoor temperatures, conduct the low-
temperature cyclic test (H3C3) to determine the booster-
capacity heating mode cyclic-degradation coefficient, CD\h\ 
(k=3). The default CD\h\ (k=3) is the same value as 
determined or assigned for the high-capacity cyclic-degradation 
coefficient, CD\h\ [or equivalently, CD\h\ (k=2)]. 
Table 15 specifies test conditions for all 13 tests.

                                   Table 15--Heating Mode Test Conditions for Units With a Triple-Capacity Compressor
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                           Air entering indoor unit    Air entering outdoor
                                              temperature  [deg]F    unit temperature  [deg]F
             Test description             ----------------------------------------------------      Compressor capacity        Heating air volume rate
                                             Dry bulb     Wet bulb     Dry bulb     Wet bulb
--------------------------------------------------------------------------------------------------------------------------------------------------------
H01 Test (required, steady)..............           70    60\(max)\           62         56.5  Low.........................  Heating Minimum.\1\
H12 Test (required, steady)..............           70    60\(max)\           47           43  High........................  Heating Full-Load.\2\
H1C2 Test (optional,\8\ cyclic)..........           70    60\(max)\           47           43  High........................  (\3\).
H11 Test (required)......................           70    60\(max)\           47           43  Low.........................  Heating Minimum.\1\
H1C1 Test (optional, cyclic).............           70    60\(max)\           47           43  Low.........................  (\4\).
H23 Test (optional, steady)..............           70    60\(max)\           35           33  Booster.....................  Heating Full-Load.\2\
H22 Test (required)......................           70    60\(max)\           35           33  High........................  Heating Full-Load.\2\
H21 Test (required)......................           70    60\(max)\           35           33  Low.........................  Heating Minimum.\1\
H33 Test (required, steady)..............           70    60\(max)\           17           15  Booster.....................  Heating Full-Load.\2\
H3C3 Test\5 6\ (optional, cyclic)........           70    60\(max)\           17           15  Booster.....................  (\7\).
H32 Test (required, steady)..............           70    60\(max)\           17           15  High........................  Heating Full-Load.\2\
H31 Test\5\ (required, steady)...........           70    60\(max)\           17           15  Low.........................  Heating Minimum.\1\
H43 Test (required, steady)..............           70    60\(max)\            5     3\(max)\  Booster.....................  Heating Full-Load.\2\
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ Defined in section 3.1.4.5 of this appendix.
\2\ Defined in section 3.1.4.4 of this appendix.
\3\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the same pressure or velocity as measured
  during the H12 test.
\4\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the same pressure or velocity as measured
  during the H11 test.
\5\ Required only if the heat pump's performance when operating at low compressor capacity and outdoor temperatures less than 37 [deg]F is needed to
  complete the section 4.2.6 HSPF2 calculations.
\6\ If table note \5\ applies, the section 3.6.6 equations for Qhk=1(35) and Ehk=1(17) may be used in lieu of conducting the H21 test.
\7\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the same pressure or velocity as measured
  during the H33 test.
\8\ Required only if the heat pump locks out low capacity operation at lower outdoor temperatures.

3.6.7 Tests for a Heat Pump Having a Single Indoor Unit Having Multiple 
     Indoor Blowers and Offering Two Stages of Compressor Modulation

    Conduct the heating mode tests specified in section 3.6.3 of this 
appendix.

   3.7 Test Procedures for Steady-State Maximum Temperature and High 
  Temperature Heating Mode Tests (the H01, H1, H12, H11, and H1N Tests)

    a. For the pretest interval, operate the test room reconditioning 
apparatus and the heat pump until equilibrium conditions are maintained 
for at least 30 minutes at the specified section 3.6 test conditions. 
Use the exhaust fan of the airflow measuring apparatus and, if 
installed, the indoor blower of the heat pump to obtain and then 
maintain the indoor air volume rate and/or the external static pressure 
specified for the particular test. Continuously record the dry-bulb 
temperature of the air entering the indoor coil, and the dry-bulb 
temperature and water vapor content of the air entering the outdoor 
coil. Refer to section 3.11 of this appendix for additional requirements 
that depend on the selected secondary test method. After satisfying the 
pretest equilibrium requirements, make the measurements specified in 
Table 3 of ANSI/ASHRAE 37-2009 (incorporated by reference, see Sec.  
430.3) for the indoor air enthalpy method and the user-selected 
secondary method. Make said Table 3 measurements at equal intervals that 
span 5 minutes

[[Page 499]]

or less. Continue data sampling until a 30-minute period (e.g., seven 
consecutive 5-minute samples) is reached where the test tolerances 
specified in Table 16 are satisfied. For those continuously recorded 
parameters, use the entire data set for the 30-minute interval when 
evaluating Table 16 compliance. Determine the average electrical power 
consumption of the heat pump over the same 30-minute interval.

 Table 16--Test Operating and Test Condition Tolerances for Section 3.7
            and Section 3.10 Steady-State Heating Mode Tests
------------------------------------------------------------------------
                                      Test operating     Test condition
                                      tolerance \1\      tolerance \1\
------------------------------------------------------------------------
Indoor dry-bulb, [deg]F:
    Entering temperature..........                2.0                0.5
    Leaving temperature...........                2.0
Indoor wet-bulb, [deg]F:
    Entering temperature..........                1.0
    Leaving temperature...........                1.0
Outdoor dry-bulb, [deg]F:
    Entering temperature..........                2.0                0.5
    Leaving temperature...........            \2\ 2.0
Outdoor wet-bulb, [deg]F:
    Entering temperature..........                1.0                0.3
    Leaving temperature...........            \2\ 1.0
External resistance to airflow,                  0.05           \3\ 0.02
 inches of water..................
Electrical voltage, % of rdg......                2.0                1.5
Nozzle pressure drop, % of rdg....                2.0
------------------------------------------------------------------------
\1\ See section 1.2 of this appendix, Definitions.
\2\ Only applies when the Outdoor Air Enthalpy Method is used.
\3\ Only applies when testing non-ducted units.

    b. Calculate indoor-side total heating capacity as specified in 
sections 7.3.4.1 and 7.3.4.3 of ANSI/ASHRAE 37-2009 (incorporated by 
reference, see Sec.  430.3). To calculate capacity, use the averages of 
the measurements (e.g. inlet and outlet dry bulb temperatures measured 
at the psychrometers) that are continuously recorded for the same 30-
minute interval used as described above to evaluate compliance with test 
tolerances. Do not adjust the parameters used in calculating capacity 
for the permitted variations in test conditions. Assign the average 
space heating capacity and electrical power over the 30-minute data 
collection interval to the variables Qh\k\ and Eh\k\(T) respectively. 
The ``T'' and superscripted ``k'' are the same as described in section 
3.3 of this appendix. Additionally, for the heating mode, use the 
superscript to denote results from the optional H1N test, if 
conducted.
    c. For coil-only system heat pumps, increase Qh\k\(T) by
    [GRAPHIC] [TIFF OMITTED] TR05JA17.028
    
where Vis is the average measured indoor air volume rate 
expressed in units of cubic feet per minute of standard air (scfm). 
During the 30-minute data collection interval of a high temperature 
test, pay attention to preventing a defrost cycle. Prior to this time, 
allow the heat pump to perform a defrost cycle if automatically 
initiated by its own controls. As in all cases, wait for the heat pump's 
defrost controls to automatically terminate the defrost cycle. Heat 
pumps that undergo a defrost should operate in the heating mode for at 
least 10 minutes after defrost termination prior to beginning the 30-
minute data collection interval. For some heat pumps, frost may 
accumulate on the outdoor

[[Page 500]]

coil during a high temperature test. If the indoor coil leaving air 
temperature or the difference between the leaving and entering air 
temperatures decreases by more than 1.5 [deg]F over the 30-minute data 
collection interval, then do not use the collected data to determine 
capacity. Instead, initiate a defrost cycle. Begin collecting data no 
sooner than 10 minutes after defrost termination. Collect 30 minutes of 
new data during which the Table 16 test tolerances are satisfied. In 
this case, use only the results from the second 30-minute data 
collection interval to evaluate Qh\k\(47) and Eh\k\(47).
    d. If conducting the cyclic heating mode test, which is described in 
section 3.8 of this appendix, record the average indoor-side air volume 
rate, Vi, specific heat of the air, Cp,a (expressed on dry 
air basis), specific volume of the air at the nozzles, 
vn[min] (or vn), humidity ratio at the nozzles, 
Wn, and either pressure difference or velocity pressure for 
the flow nozzles. If either or both of the below criteria apply, 
determine the average, steady-state, electrical power consumption of the 
indoor blower motor (Efan,1):
    (1) The section 3.8 cyclic test will be conducted and the heat pump 
has a variable-speed indoor blower that is expected to be disabled 
during the cyclic test; or
    (2) The heat pump has a (variable-speed) constant-air volume-rate 
indoor blower and during the steady-state test the average external 
static pressure ([Delta]P1) exceeds the applicable section 
3.1.4.4 minimum (or targeted) external static pressure 
([Delta]Pmin) by 0.03 inches of water or more.
    Determine Efan,1 by making measurements during the 30-
minute data collection interval, or immediately following the test and 
prior to changing the test conditions. When the above ``2'' criteria 
applies, conduct the following four steps after determining 
Efan,1 (which corresponds to [Delta]P1):
    (i) While maintaining the same test conditions, adjust the exhaust 
fan of the airflow measuring apparatus until the external static 
pressure increases to approximately [Delta]P1 + 
([Delta]P1 - [Delta]Pmin).
    (ii) After re-establishing steady readings for fan motor power and 
external static pressure, determine average values for the indoor blower 
power (Efan,2) and the external static pressure 
([Delta]P2) by making measurements over a 5-minute interval.
    (iii) Approximate the average power consumption of the indoor blower 
motor if the 30-minute test had been conducted at [Delta]Pmin 
using linear extrapolation:
[GRAPHIC] [TIFF OMITTED] TR05JA17.029

    (iv) Decrease the total space heating capacity, Qhk(T), by the 
quantity (Efan,1 - Efan,min), when expressed on a 
Btu/h basis. Decrease the total electrical power, Ehk(T) by the same fan 
power difference, now expressed in watts.
    e. If the temperature sensors used to provide the primary 
measurement of the indoor-side dry bulb temperature difference during 
the steady-state dry-coil test and the subsequent cyclic dry-coil test 
are different, include measurements of the latter sensors among the 
regularly sampled data. Beginning at the start of the 30-minute data 
collection period, measure and compute the indoor-side air dry-bulb 
temperature difference using both sets of instrumentation, [Delta]T (Set 
SS) and [Delta]T (Set CYC), for each equally spaced data sample. If 
using a consistent data sampling rate that is less than 1 minute, 
calculate and record minutely averages for the two temperature 
differences. If using a consistent sampling rate of one minute or more, 
calculate and record the two temperature differences from each data 
sample. After having recorded the seventh (i=7) set of temperature 
differences, calculate the following ratio using the first seven sets of 
values:
[GRAPHIC] [TIFF OMITTED] TR05JA17.030

Each time a subsequent set of temperature differences is recorded (if 
sampling more frequently than every 5 minutes), calculate FCD using the 
most recent seven sets of values. Continue these calculations until the 
30-minute period is completed or until a value

[[Page 501]]

for FCD is calculated that falls outside the allowable range of 0.94-
1.06. If the latter occurs, immediately suspend the test and identify 
the cause for the disparity in the two temperature difference 
measurements. Recalibration of one or both sets of instrumentation may 
be required. If all the values for FCD are within the allowable range, 
save the final value of the ratio from the 30-minute test as FCD*. If 
the temperature sensors used to provide the primary measurement of the 
indoor-side dry bulb temperature difference during the steady-state dry-
coil test and the subsequent cyclic dry-coil test are the same, set 
FCD*= 1.

 3.8 Test Procedures for the Cyclic Heating Mode Tests (the H0C1, H1C, 
                          H1C1 and H1C2 Tests)

    a. Except as noted below, conduct the cyclic heating mode test as 
specified in section 3.5 of this appendix. As adapted to the heating 
mode, replace section 3.5 references to ``the steady-state dry coil 
test'' with ``the heating mode steady-state test conducted at the same 
test conditions as the cyclic heating mode test.'' Use the test 
tolerances in Table 17 rather than Table 10. Record the outdoor coil 
entering wet-bulb temperature according to the requirements given in 
section 3.5 of this appendix for the outdoor coil entering dry-bulb 
temperature. Drop the subscript ``dry'' used in variables cited in 
section 3.5 of this appendix when referring to quantities from the 
cyclic heating mode test. Determine the total space heating delivered 
during the cyclic heating test, qcyc, as specified in section 
3.5 of this appendix except for making the following changes:
    (1) When evaluating Equation 3.5-1, use the values of Vi, 
Cp,a,vn[min], (or vn), and 
Wn that were recorded during the section 3.7 steady-state 
test conducted at the same test conditions.
    (2) Calculate [Gamma] using
    [GRAPHIC] [TIFF OMITTED] TR05JA17.031
    
where FCD* is the value recorded during the section 3.7 steady-state 
test conducted at the same test condition.
    b. For ducted coil-only system heat pumps (excluding the special 
case where a variable-speed fan is temporarily removed), increase 
qcyc by the amount calculated using Equation 3.5-3. 
Additionally, increase ecyc by the amount calculated using 
Equation 3.5-2. In making these calculations, use the average indoor air 
volume rate (Vis) determined from the section 3.7 steady-
state heating mode test conducted at the same test conditions.
    c. For non-ducted heat pumps, subtract the electrical energy used by 
the indoor blower during the 3 minutes after compressor cutoff from the 
non-ducted heat pump's integrated heating capacity, qcyc.
    d. If a heat pump defrost cycle is manually or automatically 
initiated immediately prior to or during the OFF/ON cycling, operate the 
heat pump continuously until 10 minutes after defrost termination. After 
that, begin cycling the heat pump immediately or delay until the 
specified test conditions have been re-established. Pay attention to 
preventing defrosts after beginning the cycling process. For heat pumps 
that cycle off the indoor blower during a defrost cycle, make no effort 
here to restrict the air movement through the indoor coil while the fan 
is off. Resume the OFF/ON cycling while conducting a minimum of two 
complete compressor OFF/ON cycles before determining qcyc and 
ecyc.

      3.8.1 Heating Mode Cyclic-Degradation Coefficient Calculation

    Use the results from the required cyclic test and the required 
steady-state test that were conducted at the same test conditions to 
determine the heating mode cyclic-degradation coefficient 
CD\h\. Add ``(k=2)'' to the coefficient if it corresponds to 
a two-capacity unit cycling at high capacity. For the below calculation 
of the heating mode cyclic degradation coefficient, do not include the 
duct loss correction from section 7.3.3.3 of ANSI/ASHRAE 37-2009 
(incorporated by reference, see Sec.  430.3) in determining 
Qh\k\(Tcyc) (or qcyc). If the optional cyclic test 
is conducted but yields a tested CD\h\ that exceeds the 
default CD\h\ or if the optional test is not conducted, 
assign CD\h\ the default value of 0.25. The default value for 
two-capacity units cycling at high capacity, however, is the low-
capacity coefficient, i.e., CD\h\ (k=2) = CD\h\. 
The tested CD\h\ is calculated as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.032


[[Page 502]]


where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.033

the average coefficient of performance during the cyclic heating mode 
          test, dimensionless.
          [GRAPHIC] [TIFF OMITTED] TR05JA17.034
          
the average coefficient of performance during the steady-state heating 
          mode test conducted at the same test conditions--i.e., same 
          outdoor dry bulb temperature, Tcyc, and speed/
          capacity, k, if applicable--as specified for the cyclic 
          heating mode test, dimensionless.
          [GRAPHIC] [TIFF OMITTED] TR05JA17.035
          
the heating load factor, dimensionless.
Tcyc = the nominal outdoor temperature at which the cyclic 
          heating mode test is conducted, 62 or 47 [deg]F.
[Delta][tau]cyc = the duration of the OFF/ON intervals; 0.5 
          hours when testing a heat pump having a single-speed or two-
          capacity compressor and 1.0 hour when testing a heat pump 
          having a variable-speed compressor.

    Round the calculated value for CD\h\ to the nearest 0.01. 
If CD\h\ is negative, then set it equal to zero.

    Table 17--Test Operating and Test Condition Tolerances for Cyclic
                           Heating Mode Tests
------------------------------------------------------------------------
                                      Test operating     Test condition
                                      tolerance \1\      tolerance \1\
------------------------------------------------------------------------
Indoor entering dry-bulb                          2.0                0.5
 temperature,\2\ [deg]F...........
Indoor entering wet-bulb                          1.0
 temperature,\2\ [deg]F...........
Outdoor entering dry-bulb                         2.0                0.5
 temperature,\2\ [deg]F...........
Outdoor entering wet-bulb                         2.0                1.0
 temperature,\2\ [deg]F...........
External resistance to air-                      0.05
 flow,\2\ inches of water.........
Airflow nozzle pressure difference                2.0            \3\ 2.0
 or velocity pressure,\2\% of
 reading..........................
Electrical voltage,\4\ % of rdg...                2.0                1.5
------------------------------------------------------------------------
\1\ See section 1.2 of this appendix, Definitions.
\2\ Applies during the interval that air flows through the indoor
  (outdoor) coil except for the first 30 seconds after flow initiation.
  For units having a variable-speed indoor blower that ramps, the
  tolerances listed for the external resistance to airflow shall apply
  from 30 seconds after achieving full speed until ramp down begins.
\3\ The test condition shall be the average nozzle pressure difference
  or velocity pressure measured during the steady-state test conducted
  at the same test conditions.
\4\ Applies during the interval that at least one of the following--the
  compressor, the outdoor fan, or, if applicable, the indoor blower--are
  operating, except for the first 30 seconds after compressor start-up.


[[Page 503]]

 3.9 Test Procedures for Frost Accumulation Heating Mode Tests (the H2, 
                        H22, H2V, and H21 tests)

    a. Confirm that the defrost controls of the heat pump are set as 
specified in section 2.2.1 of this appendix. Operate the test room 
reconditioning apparatus and the heat pump for at least 30 minutes at 
the specified section 3.6 test conditions before starting the 
``preliminary'' test period. The preliminary test period must 
immediately precede the ``official'' test period, which is the heating 
and defrost interval over which data are collected for evaluating 
average space heating capacity and average electrical power consumption.
    b. For heat pumps containing defrost controls which are likely to 
cause defrosts at intervals less than one hour, the preliminary test 
period starts at the termination of an automatic defrost cycle and ends 
at the termination of the next occurring automatic defrost cycle. For 
heat pumps containing defrost controls which are likely to cause 
defrosts at intervals exceeding one hour, the preliminary test period 
must consist of a heating interval lasting at least one hour followed by 
a defrost cycle that is either manually or automatically initiated. In 
all cases, the heat pump's own controls must govern when a defrost cycle 
terminates.
    c. The official test period begins when the preliminary test period 
ends, at defrost termination. The official test period ends at the 
termination of the next occurring automatic defrost cycle. When testing 
a heat pump that uses a time-adaptive defrost control system (see 
section 1.2 of this appendix, Definitions), however, manually initiate 
the defrost cycle that ends the official test period at the instant 
indicated by instructions provided by the manufacturer. If the heat pump 
has not undergone a defrost after 6 hours, immediately conclude the test 
and use the results from the full 6-hour period to calculate the average 
space heating capacity and average electrical power consumption.
    For heat pumps that turn the indoor blower off during the defrost 
cycle, take steps to cease forced airflow through the indoor coil and 
block the outlet duct whenever the heat pump's controls cycle off the 
indoor blower. If it is installed, use the outlet damper box described 
in section 2.5.4.1 of this appendix to affect the blocked outlet duct.
    d. Defrost termination occurs when the controls of the heat pump 
actuate the first change in converting from defrost operation to normal 
heating operation. Defrost initiation occurs when the controls of the 
heat pump first alter its normal heating operation in order to eliminate 
possible accumulations of frost on the outdoor coil.
    e. To constitute a valid frost accumulation test, satisfy the test 
tolerances specified in Table 18 during both the preliminary and 
official test periods. As noted in Table 18, test operating tolerances 
are specified for two sub-intervals:
    (1) When heating, except for the first 10 minutes after the 
termination of a defrost cycle (sub-interval H, as described in Table 
18) and
    (2) When defrosting, plus these same first 10 minutes after defrost 
termination (sub-interval D, as described in Table 18). Evaluate 
compliance with Table 18 test condition tolerances and the majority of 
the test operating tolerances using the averages from measurements 
recorded only during sub-interval H. Continuously record the dry bulb 
temperature of the air entering the indoor coil, and the dry bulb 
temperature and water vapor content of the air entering the outdoor 
coil. Sample the remaining parameters listed in Table 18 at equal 
intervals that span 5 minutes or less.
    f. For the official test period, collect and use the following data 
to calculate average space heating capacity and electrical power. During 
heating and defrosting intervals when the controls of the heat pump have 
the indoor blower on, continuously record the dry-bulb temperature of 
the air entering (as noted above) and leaving the indoor coil. If using 
a thermopile, continuously record the difference between the leaving and 
entering dry-bulb temperatures during the interval(s) that air flows 
through the indoor coil. For coil-only system heat pumps, determine the 
corresponding cumulative time (in hours) of indoor coil airflow, 
[Delta][tau]a. Sample measurements used in calculating the 
air volume rate (refer to sections 7.7.2.1 and 7.7.2.2 of ANSI/ASHRAE 
37-2009) at equal intervals that span 10 minutes or less. (Note: In the 
first printing of ANSI/ASHRAE 37-2009, the second IP equation for 
Qmi should read:) Record the electrical energy consumed, 
expressed in watt-hours, from defrost termination to defrost 
termination, eDEF\k\(35), as well as the corresponding 
elapsed time in hours, [Delta][tau]FR.

        Table 18--Test Operating and Test Condition Tolerances for Frost Accumulation Heating Mode Tests
----------------------------------------------------------------------------------------------------------------
                                                                   Test operating tolerance \1\   Test condition
                                                                 --------------------------------  tolerance \1\
                                                                  Sub-interval H  Sub-interval D  Sub-interval H
                                                                        \2\             \3\             \2\
----------------------------------------------------------------------------------------------------------------
Indoor entering dry-bulb temperature, [deg]F....................             2.0         \4\ 4.0             0.5
Indoor entering wet-bulb temperature, [deg]F....................             1.0

[[Page 504]]

 
Outdoor entering dry-bulb temperature, [deg]F...................             2.0            10.0             1.0
Outdoor entering wet-bulb temperature, [deg]F...................             1.5  ..............             0.5
External resistance to airflow, inches of water.................            0.05  ..............        \5\ 0.02
Electrical voltage, % of rdg....................................             2.0  ..............             1.5
----------------------------------------------------------------------------------------------------------------
\1\ See section 1.2 of this appendix, Definitions.
\2\ Applies when the heat pump is in the heating mode, except for the first 10 minutes after termination of a
  defrost cycle.
\3\ Applies during a defrost cycle and during the first 10 minutes after the termination of a defrost cycle when
  the heat pump is operating in the heating mode.
\4\ For heat pumps that turn off the indoor blower during the defrost cycle, the noted tolerance only applies
  during the 10 minute interval that follows defrost termination.
\5\ Only applies when testing non-ducted heat pumps.

 3.9.1 Average Space Heating Capacity and Electrical Power Calculations

    a. Evaluate average space heating capacity, Qh\k\(35), when 
expressed in units of Btu per hour, using:
[GRAPHIC] [TIFF OMITTED] TR05JA17.036

Where,

Vi = the average indoor air volume rate measured during sub-interval H, 
          cfm.
Cp,a = 0.24 + 0.444 [middot] Wn, the constant 
          pressure specific heat of the air-water vapor mixture that 
          flows through the indoor coil and is expressed on a dry air 
          basis, Btu/lbmda [middot] [deg]F.
vn[min] = specific volume of the air-water vapor mixture at 
          the nozzle, ft\3\/lbmmx.
Wn = humidity ratio of the air-water vapor mixture at the 
          nozzle, lbm of water vapor per lbm of dry air.
[Delta][tau]FR = [tau]2 - [tau]1, the 
          elapsed time from defrost termination to defrost termination, 
          hr.
          [GRAPHIC] [TIFF OMITTED] TR05JA17.312
          
Tal([tau]) = dry bulb temperature of the air entering the 
          indoor coil at elapsed time [tau], [deg]F; only recorded when 
          indoor coil airflow occurs; assigned the value of zero during 
          periods (if any) where the indoor blower cycles off.
Ta2([tau]) = dry bulb temperature of the air leaving the 
          indoor coil at elapsed time [tau], [deg]F; only recorded when 
          indoor coil airflow occurs; assigned the value of zero during 
          periods (if any) where the indoor blower cycles off.
[tau]1 = the elapsed time when the defrost termination occurs 
          that begins the official test period, hr.
[tau]2 = the elapsed time when the next automatically 
          occurring defrost termination occurs, thus ending the official 
          test period, hr.
vn = specific volume of the dry air portion of the mixture 
          evaluated at the dry-bulb temperature, vapor content, and 
          barometric pressure existing at the nozzle, ft\3\ per lbm of 
          dry air.

    To account for the effect of duct losses between the outlet of the 
indoor unit and the section 2.5.4 dry-bulb temperature grid, adjust 
Qh\k\(35) in accordance with section 7.3.4.3 of ANSI/ASHRAE 37-2009 
(incorporated by reference, see Sec.  430.3).
    b. Evaluate average electrical power, Eh\k\(35), when expressed in 
units of watts, using:

[[Page 505]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.037

    For coil-only system heat pumps, increase Qh\k\(35) by,
    [GRAPHIC] [TIFF OMITTED] TR05JA17.038
    
and increase Eh\k\(35) by,
[GRAPHIC] [TIFF OMITTED] TR05JA17.039

where Vis is the average indoor air volume rate measured 
during the frost accumulation heating mode test and is expressed in 
units of cubic feet per minute of standard air (scfm).
    c. For heat pumps having a constant-air-volume-rate indoor blower, 
the five additional steps listed below are required if the average of 
the external static pressures measured during sub-interval H exceeds the 
applicable section 3.1.4.4, 3.1.4.5, or 3.1.4.6 minimum (or targeted) 
external static pressure ([Delta]Pmin) by 0.03 inches of 
water or more:
    (1) Measure the average power consumption of the indoor blower motor 
(Efan,1) and record the corresponding external static 
pressure ([Delta]P1) during or immediately following the 
frost accumulation heating mode test. Make the measurement at a time 
when the heat pump is heating, except for the first 10 minutes after the 
termination of a defrost cycle.
    (2) After the frost accumulation heating mode test is completed and 
while maintaining the same test conditions, adjust the exhaust fan of 
the airflow measuring apparatus until the external static pressure 
increases to approximately [Delta]P1 + ([Delta]P1 
- [Delta]Pmin).
    (3) After re-establishing steady readings for the fan motor power 
and external static pressure, determine average values for the indoor 
blower power (Efan,2) and the external static pressure 
([Delta]P2) by making measurements over a 5-minute interval.
    (4) Approximate the average power consumption of the indoor blower 
motor had the frost accumulation heating mode test been conducted at 
[Delta]Pmin using linear extrapolation:
[GRAPHIC] [TIFF OMITTED] TR05JA17.040

    (5) Decrease the total heating capacity, Qh\k\(35), by the quantity 
[(Efan,1-Efan,min) [middot] ([Delta][tau] 
a/[Delta][tau] FR], when expressed on a Btu/h 
basis. Decrease the total electrical power, Eh\k\(35), by the same 
quantity, now expressed in watts.

                       3.9.2 Demand Defrost Credit

    a. Assign the demand defrost credit, Fdef, that is used 
in section 4.2 of this appendix to the value of 1 in all cases except 
for heat pumps having a demand-defrost control system (see section 1.2 
of this appendix, Definitions). For such qualifying heat pumps, evaluate 
Fdef using,

[[Page 506]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.041

where:
[Delta][tau]def = the time between defrost terminations (in 
          hours) or 1.5, whichever is greater. A value of 6 must be 
          assigned to [Delta][tau]def if this limit is 
          reached during a frost accumulation test and the heat pump has 
          not completed a defrost cycle.
[Delta][tau]max = maximum time between defrosts as allowed by 
          the controls (in hours) or 12, whichever is less, as provided 
          in the certification report.

    b. For two-capacity heat pumps and for section 3.6.2 units, evaluate 
the above equation using the [Delta][tau]def that applies 
based on the frost accumulation test conducted at high capacity and/or 
at the heating full-load air volume rate. For variable-speed heat pumps, 
evaluate [Delta][tau]def based on the required frost 
accumulation test conducted at the intermediate compressor speed.

3.10 Test Procedures for Steady-State Low Temperature Heating Mode Tests 
                      (the H3, H32, and H31 Tests)

    Except for the modifications noted in this section, conduct the low 
temperature heating mode test using the same approach as specified in 
section 3.7 of this appendix for the maximum and high temperature tests. 
After satisfying the section 3.7 requirements for the pretest interval 
but before beginning to collect data to determine Qh\k\(17) and 
Eh\k\(17), conduct a defrost cycle. This defrost cycle may be manually 
or automatically initiated. The defrost sequence must be terminated by 
the action of the heat pump's defrost controls. Begin the 30-minute data 
collection interval described in section 3.7 of this appendix, from 
which Qh\k\(17) and Eh\k\(17) are determined, no sooner than 10 minutes 
after defrost termination. Defrosts should be prevented over the 30-
minute data collection interval.

      3.11 Additional Requirements for the Secondary Test Methodst

 3.11.1 If Using the Outdoor Air Enthalpy Method as the Secondary Test 
                                 Method

    a. For all cooling mode and heating mode tests, first conduct a test 
without the outdoor air-side test apparatus described in section 2.10.1 
of this appendix connected to the outdoor unit (``free outdoor air'' 
test).
    b. For the first section 3.2 steady-state cooling mode test and the 
first section 3.6 steady-state heating mode test, conduct a second test 
in which the outdoor-side apparatus is connected (``ducted outdoor air'' 
test). No other cooling mode or heating mode tests require the ducted 
outdoor air test so long as the unit operates the outdoor fan during all 
cooling mode steady-state tests at the same speed and all heating mode 
steady-state tests at the same speed. If using more than one outdoor fan 
speed for the cooling mode steady-state tests, however, conduct the 
ducted outdoor air test for each cooling mode test where a different fan 
speed is first used. This same requirement applies for the heating mode 
tests.

                     3.11.1.1 Free Outdoor Air Test

    a. For the free outdoor air test, connect the indoor air-side test 
apparatus to the indoor coil; do not connect the outdoor air-side test 
apparatus. Allow the test room reconditioning apparatus and the unit 
being tested to operate for at least one hour. After attaining 
equilibrium conditions, measure the following quantities at equal 
intervals that span 5 minutes or less:
    (1) The section 2.10.1 evaporator and condenser temperatures or 
pressures;
    (2) Parameters required according to the indoor air enthalpy method.
    Continue these measurements until a 30-minute period (e.g., seven 
consecutive 5-minute samples) is obtained where the Table 9 or Table 16, 
whichever applies, test tolerances are satisfied.
    b. For cases where a ducted outdoor air test is not required per 
section 3.11.1.b of this appendix, the free outdoor air test constitutes 
the ``official'' test for which validity is not based on comparison with 
a secondary test.
    c. For cases where a ducted outdoor air test is required per section 
3.11.1.b of this appendix, the following conditions must be met for the 
free outdoor air test to constitute a valid ``official'' test:
    (1) Achieve the energy balance specified in section 3.1.1 of this 
appendix for the ducted outdoor air test (i.e., compare the capacities 
determined using the indoor air enthalpy method and the outdoor air 
enthalpy method).
    (2) The capacities determined using the indoor air enthalpy method 
from the ducted outdoor air and free outdoor tests must agree within 2 
percent.

                    3.11.1.2 Ducted Outdoor Air Test

    a. The test conditions and tolerances for the ducted outdoor air 
test are the same as specified for the free outdoor air test described 
in Section 3.11.1.1 of this appendix.
    b. After collecting 30 minutes of steady-state data during the free 
outdoor air test,

[[Page 507]]

connect the outdoor air-side test apparatus to the unit for the ducted 
outdoor air test. Adjust the exhaust fan of the outdoor airflow 
measuring apparatus until averages for the evaporator and condenser 
temperatures, or the saturated temperatures corresponding to the 
measured pressures, agree within 0.5 [deg]F of the 
averages achieved during the free outdoor air test. Collect 30 minutes 
of steady-state data after re-establishing equilibrium conditions.
    c. During the ducted outdoor air test, at intervals of 5 minutes or 
less, measure the parameters required according to the indoor air 
enthalpy method and the outdoor air enthalpy method for the prescribed 
30 minutes.
    d. For cooling mode ducted outdoor air tests, calculate capacity 
based on outdoor air-enthalpy measurements as specified in sections 
7.3.3.2 and 7.3.3.3 of ANSI/ASHRAE 37-2009 (incorporated by reference, 
see Sec.  430.3). For heating mode ducted tests, calculate heating 
capacity based on outdoor air-enthalpy measurements as specified in 
sections 7.3.4.2 and 7.3.3.4.3 of the same ANSI/ASHRAE Standard. Adjust 
the outdoor-side capacity according to section 7.3.3.4 of ANSI/ASHRAE 
37-2009 to account for line losses when testing split systems. As 
described in section 8.6.2 of ANSI/ASHRAE 37-2009, use the outdoor air 
volume rate as measured during the ducted outdoor air tests to calculate 
capacity for checking the agreement with the capacity calculated using 
the indoor air enthalpy method.

3.11.2 If Using the Compressor Calibration Method as the Secondary Test 
                                 Method

    a. Conduct separate calibration tests using a calorimeter to 
determine the refrigerant flow rate. Or for cases where the superheat of 
the refrigerant leaving the evaporator is less than 5 [deg]F, use the 
calorimeter to measure total capacity rather than refrigerant flow rate. 
Conduct these calibration tests at the same test conditions as specified 
for the tests in this appendix. Operate the unit for at least one hour 
or until obtaining equilibrium conditions before collecting data that 
will be used in determining the average refrigerant flow rate or total 
capacity. Sample the data at equal intervals that span 5 minutes or 
less. Determine average flow rate or average capacity from data sampled 
over a 30-minute period where the Table 9 (cooling) or the Table 16 
(heating) tolerances are satisfied. Otherwise, conduct the calibration 
tests according to sections 5, 6, 7, and 8 of ASHRAE 23.1-2010 
(incorporated by reference, see Sec.  430.3); sections 5, 6, 7, 8, 9, 
and 11 of ASHRAE 41.9-2011 (incorporated by reference, see Sec.  430.3); 
and section 7.4 of ANSI/ASHRAE 37-2009 (incorporated by reference, see 
Sec.  430.3).
    b. Calculate space cooling and space heating capacities using the 
compressor calibration method measurements as specified in section 7.4.5 
and 7.4.6 respectively, of ANSI/ASHRAE 37-2009.

 3.11.3 If Using the Refrigerant-Enthalpy Method as the Secondary Test 
                                 Method

    Conduct this secondary method according to section 7.5 of ANSI/
ASHRAE 37-2009. Calculate space cooling and heating capacities using the 
refrigerant-enthalpy method measurements as specified in sections 7.5.4 
and 7.5.5, respectively, of the same ASHRAE Standard.

  3.12 Rounding of Space Conditioning Capacities for Reporting Purposes

    a. When reporting rated capacities, round them off as specified in 
Sec.  430.23 (for a single unit) and in 10 CFR 429.16 (for a sample).
    b. For the capacities used to perform the calculations in section 4 
of this appendix, however, round only to the nearest integer.

   3.13 Laboratory Testing to Determine Off Mode Average Power Ratings

    Voltage tolerances: As a percentage of reading, test operating 
tolerance shall be 2.0 percent and test condition tolerance shall be 1.5 
percent (see section 1.2 of this appendix for definitions of these 
tolerances).
    Conduct one of the following tests: If the central air conditioner 
or heat pump lacks a compressor crankcase heater, perform the test in 
section 3.13.1 of this appendix; if the central air conditioner or heat 
pump has a compressor crankcase heater that lacks controls and is not 
self-regulating, perform the test in section 3.13.1 of this appendix; if 
the central air conditioner or heat pump has a crankcase heater with a 
fixed power input controlled with a thermostat that measures ambient 
temperature and whose sensing element temperature is not affected by the 
heater, perform the test in section 3.13.1 of this appendix; if the 
central air conditioner or heat pump has a compressor crankcase heater 
equipped with self-regulating control or with controls for which the 
sensing element temperature is affected by the heater, perform the test 
in section 3.13.2 of this appendix.

   3.13.1 This Test Determines the Off Mode Average Power Rating for 
Central Air Conditioners and Heat Pumps That Lack a Compressor Crankcase 
Heater, or Have a Compressor Crankcase Heating System That Can Be Tested 
Without Control of Ambient Temperature During the Test. This Test Has No 
                     Ambient Condition Requirements

    a. Test Sample Set-up and Power Measurement: For coil-only systems, 
provide a furnace or modular blower that is compatible with the system 
to serve as an interface with the thermostat (if used for the test) and 
to provide low-voltage control circuit power.

[[Page 508]]

Make all control circuit connections between the furnace (or modular 
blower) and the outdoor unit as specified by the manufacturer's 
installation instructions. Measure power supplied to both the furnace or 
modular blower and power supplied to the outdoor unit. Alternatively, 
provide a compatible transformer to supply low-voltage control circuit 
power, as described in section 2.2.d of this appendix. Measure 
transformer power, either supplied to the primary winding or supplied by 
the secondary winding of the transformer, and power supplied to the 
outdoor unit. For blower coil and single-package systems, make all 
control circuit connections between components as specified by the 
manufacturer's installation instructions, and provide power and measure 
power supplied to all system components.
    b. Configure Controls: Configure the controls of the central air 
conditioner or heat pump so that it operates as if connected to a 
building thermostat that is set to the OFF position. Use a compatible 
building thermostat if necessary to achieve this configuration. For a 
thermostat-controlled crankcase heater with a fixed power input, bypass 
the crankcase heater thermostat if necessary to energize the heater.
    c. Measure P2x: If the unit has a crankcase heater time delay, make 
sure that time delay function is disabled or wait until delay time has 
passed. Determine the average power from non-zero value data measured 
over a 5-minute interval of the non-operating central air conditioner or 
heat pump and designate the average power as P2x, the heating season 
total off mode power.
    d. Measure Px for coil-only split systems and for blower coil split 
systems for which a furnace or a modular blower is the designated air 
mover: Disconnect all low-voltage wiring for the outdoor components and 
outdoor controls from the low-voltage transformer. Determine the average 
power from non-zero value data measured over a 5-minute interval of the 
power supplied to the (remaining) low-voltage components of the central 
air conditioner or heat pump, or low-voltage power, Px. This power 
measurement does not include line power supplied to the outdoor unit. It 
is the line power supplied to the air mover, or, if a compatible 
transformer is used instead of an air mover, it is the line power 
supplied to the transformer primary coil. If a compatible transformer is 
used instead of an air mover and power output of the low-voltage 
secondary circuit is measured, Px is zero.
    e. Calculate P2: Set the number of compressors equal to the unit's 
number of single-stage compressors plus 1.75 times the unit's number of 
compressors that are not single-stage.
    For single-package systems and blower coil split systems for which 
the designated air mover is not a furnace or modular blower, divide the 
heating season total off mode power (P2x) by the number of compressors 
to calculate P2, the heating season per-compressor off mode power. Round 
P2 to the nearest watt. The expression for calculating P2 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.042

    For coil-only split systems and blower coil split systems for which 
a furnace or a modular blower is the designated air mover, subtract the 
low-voltage power (Px) from the heating season total off mode power 
(P2x) and divide by the number of compressors to calculate P2, the 
heating season per-compressor off mode power. Round P2 to the nearest 
watt. The expression for calculating P2 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.043

    f. Shoulder-season per-compressor off mode power, P1: If the system 
does not have a crankcase heater, has a crankcase heater without 
controls that is not self-regulating, or has a value for the crankcase 
heater turn-on temperature (as certified in the DOE Compliance 
Certification Database) that is higher than 71 [deg]F, P1 is equal to 
P2.
    Otherwise, de-energize the crankcase heater (by removing the 
thermostat bypass or otherwise disconnecting only the power supply to 
the crankcase heater) and repeat the measurement as described in section 
3.13.1.c of this appendix. Designate the measured average power as P1x, 
the shoulder season total off mode power.

[[Page 509]]

    Determine the number of compressors as described in section 3.13.1.e 
of this appendix.
    For single-package systems and blower coil systems for which the 
designated air mover is not a furnace or modular blower, divide the 
shoulder season total off mode power (P1x) by the number of compressors 
to calculate P1, the shoulder season per-compressor off mode power. 
Round P1 to the nearest watt. The expression for calculating P1 is as 
follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.044

    For coil-only split systems and blower coil split systems for which 
a furnace or a modular blower is the designated air mover, subtract the 
low-voltage power (Px) from the shoulder season total off mode power 
(P1x) and divide by the number of compressors to calculate P1, the 
shoulder season per-compressor off mode power. Round P1 to the nearest 
watt. The expression for calculating P1 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.045

   3.13.2 This Test Determines the Off Mode Average Power Rating for 
 Central Air Conditioners and Heat Pumps for Which Ambient Temperature 
          Can Affect the Measurement of Crankcase Heater Power

    a. Test Sample Set-up and Power Measurement: Set up the test and 
measurement as described in section 3.13.1.a of this appendix.
    b. Configure Controls: Position a temperature sensor to measure the 
outdoor dry-bulb temperature in the air between 2 and 6 inches from the 
crankcase heater control temperature sensor or, if no such temperature 
sensor exists, position it in the air between 2 and 6 inches from the 
crankcase heater. Utilize the temperature measurements from this sensor 
for this portion of the test procedure. Configure the controls of the 
central air conditioner or heat pump so that it operates as if connected 
to a building thermostat that is set to the OFF position. Use a 
compatible building thermostat if necessary to achieve this 
configuration.
    Conduct the test after completion of the B, B1, or 
B2 test. Alternatively, start the test when the outdoor dry-
bulb temperature is at 82 [deg]F and the temperature of the compressor 
shell (or temperature of each compressor's shell if there is more than 
one compressor) is at least 81 [deg]F. Then adjust the outdoor 
temperature at a rate of change of no more than 20 [deg]F per hour and 
achieve an outdoor dry-bulb temperature of 72 [deg]F. Maintain this 
temperature within 2 [deg]F while making the power 
measurement, as described in section 3.13.2.c of this appendix.
    c. Measure P1x: If the unit has a crankcase heater time delay, make 
sure that time delay function is disabled or wait until delay time has 
passed. Determine the average power from non-zero value data measured 
over a 5-minute interval of the non-operating central air conditioner or 
heat pump and designate the average power as P1x, the shoulder season 
total off mode power. For units with crankcase heaters which operate 
during this part of the test and whose controls cycle or vary crankcase 
heater power over time, the test period shall consist of three complete 
crankcase heater cycles or 18 hours, whichever comes first. Designate 
the average power over the test period as P1x, the shoulder season total 
off mode power.
    d. Reduce outdoor temperature: Approach the target outdoor dry-bulb 
temperature by adjusting the outdoor temperature at a rate of change of 
no more than 20 [deg]F per hour. This target temperature is five degrees 
Fahrenheit less than the temperature specified by the manufacturer in 
the DOE Compliance Certification Database at which the crankcase heater 
turns on. Maintain the target temperature within 2 
[deg]F while making the power measurement, as described in section 
3.13.2.e of this appendix.
    e. Measure P2x: If the unit has a crankcase heater time delay, make 
sure that time delay function is disabled or wait until delay time has 
passed. Determine the average non-zero power of the non-operating 
central air conditioner or heat pump over a 5-minute interval and 
designate it as P2x, the heating season total off mode power. For units 
with crankcase heaters whose controls cycle or vary crankcase heater 
power over time, the test period shall consist of three complete 
crankcase heater cycles or 18 hours, whichever comes first. Designate 
the average power over the test period as P2x, the heating season total 
off mode power.

[[Page 510]]

    f. Measure Px for coil-only split systems and for blower coil split 
systems for which a furnace or modular blower is the designated air 
mover: Disconnect all low-voltage wiring for the outdoor components and 
outdoor controls from the low-voltage transformer. Determine the average 
power from non-zero value data measured over a 5-minute interval of the 
power supplied to the (remaining) low-voltage components of the central 
air conditioner or heat pump, or low-voltage power, Px.. This power 
measurement does not include line power supplied to the outdoor unit. It 
is the line power supplied to the air mover, or, if a compatible 
transformer is used instead of an air mover, it is the line power 
supplied to the transformer primary coil. If a compatible transformer is 
used instead of an air mover and power output of the low-voltage 
secondary circuit is measured, Px is zero.
    g. Calculate P1:
    Set the number of compressors equal to the unit's number of single-
stage compressors plus 1.75 times the unit's number of compressors that 
are not single-stage.
    For single-package systems and blower coil split systems for which 
the air mover is not a furnace or modular blower, divide the shoulder 
season total off mode power (P1x) by the number of compressors to 
calculate P1, the shoulder season per-compressor off mode power. Round 
to the nearest watt. The expression for calculating P1 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.046

    For coil-only split systems and blower coil split systems for which 
a furnace or a modular blower is the designated air mover, subtract the 
low-voltage power (Px) from the shoulder season total off mode power 
(P1x) and divide by the number of compressors to calculate P1, the 
shoulder season per-compressor off mode power. Round to the nearest 
watt. The expression for calculating P1 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.047

    h. Calculate P2:
    Determine the number of compressors as described in section 3.13.2.g 
of this appendix.
    For single-package systems and blower coil split systems for which 
the air mover is not a furnace, divide the heating season total off mode 
power (P2x) by the number of compressors to calculate P2, the heating 
season per-compressor off mode power. Round to the nearest watt. The 
expression for calculating P2 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.048

    For coil-only split systems and blower coil split systems for which 
a furnace or a modular blower is the designated air mover, subtract the 
low-voltage power (Px) from the heating season total off mode power 
(P2x) and divide by the number of compressors to calculate P2, the 
heating season per-compressor off mode power. Round to the nearest watt. 
The expression for calculating P2 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.049


[[Page 511]]



           4. Calculations of Seasonal Performance Descriptors

 4.1 Seasonal Energy Efficiency Ratio (SEER) Calculations. SEER must be 
   calculated as follows: For equipment covered under sections 4.1.2, 
    4.1.3, and 4.1.4 of this appendix, evaluate the seasonal energy 
                            efficiency ratio,
[GRAPHIC] [TIFF OMITTED] TR05JA17.050

where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.051

Tj = the outdoor bin temperature, [deg]F. Outdoor 
          temperatures are grouped or ``binned.'' Use bins of 5 [deg]F 
          with the 8 cooling season bin temperatures being 67, 72, 77, 
          82, 87, 92, 97, and 102 [deg]F.
j = the bin number. For cooling season calculations, j ranges from 1 to 
          8.

    Additionally, for sections 4.1.2, 4.1.3, and 4.1.4 of this appendix, 
use a building cooling load, BL(Tj). When referenced, 
evaluate BL(Tj) for cooling using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.052

where:
    Qck=2(95) = the space cooling capacity 
determined from the A2 test and calculated as specified in 
section 3.3 of this appendix, Btu/h.
1.1 = sizing factor, dimensionless.

    The temperatures 95 [deg]F and 65 [deg]F in the building load 
equation represent the selected outdoor design temperature and the zero-
load base temperature, respectively.

 4.1.1 SEER Calculations for a Blower Coil System Having a Single-Speed 
  Compressor and Either a Fixed-Speed Indoor Blower or a Constant-Air-
Volume-Rate Indoor Blower, or a Coil-Only System Air Conditioner or Heat 
                                  Pump

    a. Evaluate the seasonal energy efficiency ratio, expressed in units 
of Btu/watt-hour, using:

SEER = PLF(0.5) * EERB

where:

[[Page 512]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.053

PLF(0.5) = 1 - 0.5 [middot] CD\c\, the part-load performance 
          factor evaluated at a cooling load factor of 0.5, 
          dimensionless.
    b. Refer to section 3.3 of this appendix regarding the definition 
and calculation of Qc(82) and Ec(82). Evaluate the 
cooling mode cyclic degradation factor CD\c\ as specified in 
section 3.5.3 of this appendix.

  4.1.2 SEER Calculations for an Air Conditioner or Heat Pump Having a 
 Single-Speed Compressor and a Variable-Speed Variable-Air-Volume-Rate 
                              Indoor Blower

 4.1.2.1 Units Covered by Section 3.2.2.1 of This Appendix Where Indoor 
    Blower Capacity Modulation Correlates With the Outdoor Dry Bulb 
                               Temperature

    The manufacturer must provide information on how the indoor air 
volume rate or the indoor blower speed varies over the outdoor 
temperature range of 67 [deg]F to 102 [deg]F. Calculate SEER using 
Equation 4.1-1. Evaluate the quantity qc(Tj)/N in 
Equation 4.1-1 using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.054

where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.055

Qc(Tj) = the space cooling capacity of the test 
          unit when operating at outdoor temperature, Tj, 
          Btu/h.
nj/N = fractional bin hours for the cooling season; the ratio 
          of the number of hours during the cooling season when the 
          outdoor temperature fell within the range represented by bin 
          temperature Tj to the total number of hours in the 
          cooling season, dimensionless.

    a. For the space cooling season, assign nj/N as specified 
in Table 19. Use Equation 4.1-2 to calculate the building load, 
BL(Tj). Evaluate Qc(Tj) using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.056

where:

[[Page 513]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.057

the space cooling capacity of the test unit at outdoor temperature 
          Tj if operated at the cooling minimum air volume 
          rate, Btu/h.
          [GRAPHIC] [TIFF OMITTED] TR05JA17.058
          
the space cooling capacity of the test unit at outdoor temperature 
          Tj if operated at the Cooling full-load air volume 
          rate, Btu/h.

    b. For units where indoor blower speed is the primary control 
variable, FPck=1 denotes the fan speed used during 
the required A1 and B1 tests (see section 3.2.2.1 
of this appendix), FPck=2 denotes the fan speed used during 
the required A2 and B2 tests, and 
FPc(Tj) denotes the fan speed used by the unit 
when the outdoor temperature equals Tj. For units where 
indoor air volume rate is the primary control variable, the three 
FPc's are similarly defined only now being expressed in terms 
of air volume rates rather than fan speeds. Refer to sections 3.2.2.1, 
3.1.4 to 3.1.4.2, and 3.3 of this appendix regarding the definitions and 
calculations of Qck=1(82), 
Qck=1(95), Qck=2(82), and 
Qck=2(95).
[GRAPHIC] [TIFF OMITTED] TR05JA17.059

where:
PLFj = 1 - CD\c\ [middot] [1 - X(Tj)], 
          the part load factor, dimensionless.
Ec(Tj) = the electrical power consumption of the 
          test unit when operating at outdoor temperature Tj, 
          W.

    c. The quantities X(Tj) and nj/N are the same 
quantities as used in Equation 4.1.2-1. Evaluate the cooling mode cyclic 
degradation factor CD\c\ as specified in section 3.5.3 of 
this appendix.
    d. Evaluate Ec(Tj) using,

[[Page 514]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.060

    e. The parameters FPck=1, and 
FPck=2, and FPc(Tj) are the same 
quantities that are used when evaluating Equation 4.1.2-2. Refer to 
sections 3.2.2.1, 3.1.4 to 3.1.4.2, and 3.3 of this appendix regarding 
the definitions and calculations of Eck=1(82), 
Eck=1(95), Eck=2(82), and 
Eck=2(95).
    4.1.2.2 Units Covered by Section 3.2.2.2 of This Appendix Where 
Indoor Blower Capacity Modulation Is Used To Adjust the Sensible to 
Total Cooling Capacity Ratio. Calculate SEER as specified in section 
4.1.1 of this appendix.

  4.1.3 SEER Calculations for an Air Conditioner or Heat Pump Having a 
                         Two-Capacity Compressor

    Calculate SEER using Equation 4.1-1. Evaluate the space cooling 
capacity, Qck=1 (Tj), and electrical 
power consumption, Eck=1 (Tj), of the 
test unit when operating at low compressor capacity and outdoor 
temperature Tj using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.061

[GRAPHIC] [TIFF OMITTED] TR05JA17.062

where Qck=1 (82) and Eck=1 
          (82) are determined from the B1 test, 
          Qck=1 (67) and 
          Eck=1 (67) are determined from the 
          F1 test, and all four quantities are calculated as 
          specified in section 3.3 of this appendix. Evaluate the space 
          cooling capacity, Qck=2 (Tj), and 
          electrical power consumption, Eck=2 
          (Tj), of the test unit when operating at high 
          compressor capacity and outdoor temperature Tj 
          using,
          [GRAPHIC] [TIFF OMITTED] TR05JA17.063
          
          [GRAPHIC] [TIFF OMITTED] TR05JA17.064
          

[[Page 515]]


where Qck=2(95) and Eck=2(95) are determined from 
          the A2 test, Qck=2(82), and 
          Eck=2(82), are determined from the 
          B2test, and all are calculated as specified in 
          section 3.3 of this appendix.
    The calculation of Equation 4.1-1 quantities 
qc(Tj)/N and ec(Tj)/N 
differs depending on whether the test unit would operate at low capacity 
(section 4.1.3.1 of this appendix), cycle between low and high capacity 
(section 4.1.3.2 of this appendix), or operate at high capacity 
(sections 4.1.3.3 and 4.1.3.4 of this appendix) in responding to the 
building load. For units that lock out low capacity operation at higher 
outdoor temperatures, the outdoor temperature at which the unit locks 
out must be that specified by the manufacturer in the certification 
report so that the appropriate equations are used. Use Equation 4.1-2 to 
calculate the building load, BL(Tj), for each temperature 
bin.

 4.1.3.1 Steady-State Space Cooling Capacity at Low Compressor Capacity 
  Is Greater Than or Equal to the Building Cooling Load at Temperature 
       Tj, Qck=1(Tj) 
                      =BL(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.065

where:
Xk=1(Tj) = BL(Tj)/
          Qck=1(Tj), the cooling mode 
          low capacity load factor for temperature bin j, dimensionless.
PLFj = 1 - CD\c\ [middot] [1 - 
          Xk=1(Tj)], the part load factor, 
          dimensionless.
          [GRAPHIC] [TIFF OMITTED] TR05JA17.066
          
    Obtain the fractional bin hours for the cooling season, 
nj/N, from Table 19. Use Equations 4.1.3-1 and 4.1.3-2, 
respectively, to evaluate Qck=1(Tj) and 
Eck=1(Tj). Evaluate the cooling mode 
cyclic degradation factor CD\c\ as specified in section 3.5.3 
of this appendix.

                Table 19--Distribution of Fractional Hours Within Cooling Season Temperature Bins
----------------------------------------------------------------------------------------------------------------
                                                                                                  Fraction of of
                                                                        Bin       Representative       total
                          Bin number, j                             temperature     temperature     temperature
                                                                   range  [deg]F      for bin     bin hours, nj/
                                                                                      [deg]F             N
----------------------------------------------------------------------------------------------------------------
1...............................................................           65-69              67           0.214
2...............................................................           70-74              72           0.231
3...............................................................           75-79              77           0.216
4...............................................................           80-84              82           0.161
5...............................................................           85-89              87           0.104
6...............................................................           90-94              92           0.052
7...............................................................           95-99              97           0.018
8...............................................................         100-104             102           0.004
----------------------------------------------------------------------------------------------------------------

  4.1.3.2 Unit Alternates Between High (k=2) and Low (k=1) Compressor 
      Capacity To Satisfy the Building Cooling Load at Temperature 
       Tj, Qck=1(Tj) 
            BL(Tj) Qck=2(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.067


[[Page 516]]


[GRAPHIC] [TIFF OMITTED] TR05JA17.068

Xk=2(Tj) = 1 - Xk=1(Tj), the cooling 
          mode, high capacity load factor for temperature bin j, 
          dimensionless.

    Obtain the fractional bin hours for the cooling season, 
nj/N, from Table 19. Use Equations 4.1.3-1 and 4.1.3-2, 
respectively, to evaluate Qck=1(Tj) and 
Eck=1(Tj). Use Equations 4.1.3-3 and 
4.1.3-4, respectively, to evaluate Qck=2(Tj) and 
Eck=2(Tj).

    4.1.3.3 Unit Only Operates at High (k=2) Compressor Capacity at 
Temperature Tj and Its Capacity Is Greater Than the Building 
 Cooling Load, BL(Tj) Qck=2(Tj). This 
section applies to units that lock out low compressor capacity operation 
                     at higher outdoor temperatures.
[GRAPHIC] [TIFF OMITTED] TR05JA17.069

where:
Xk=2(Tj) = BL(Tj)/Qck=2(Tj), 
          the cooling mode high capacity load factor for temperature bin 
          j, dimensionless.
PLFj = 1 - CDc(k = 2) * [1 - Xk=2(Tj) the part 
          load factor, dimensionless.
          [GRAPHIC] [TIFF OMITTED] TR05JA17.070
          
4.1.3.4 Unit Must Operate Continuously at High (k=2) Compressor Capacity 
            at Temperature Tj, BL(Tj) 
               =Qck=2(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.071

    Obtain the fractional bin hours for the cooling season, 
nj/N, from Table 19. Use Equations 4.1.3-3 and 4.1.3-4, 
respectively, to evaluate Qck=2(Tj) and 
Eck=2(Tj).

[[Page 517]]

  4.1.4 SEER Calculations for an Air Conditioner or Heat Pump Having a 
                        Variable-Speed Compressor

    Calculate SEER using Equation 4.1-1. Evaluate the space cooling 
capacity, Qck=1(Tj), and electrical 
power consumption, Eck=1(Tj), of the 
test unit when operating at minimum compressor speed and outdoor 
temperature Tj. Use,
[GRAPHIC] [TIFF OMITTED] TR05JA17.072

[GRAPHIC] [TIFF OMITTED] TR05JA17.073

    where Qck=1(82) and 
Eck=1(82) are determined from the B1 
test, Qck=1(67) and 
Eck=1(67) are determined from the F1 test, and all 
four quantities are calculated as specified in section 3.3 of this 
appendix.
    Evaluate the space cooling capacity, 
Qck=2(Tj), and electrical power consumption, 
Eck=2(Tj), of the test unit when operating at full 
compressor speed and outdoor temperature Tj. Use Equations 
4.1.3-3 and 4.1.3-4, respectively, where Qck=2(95) and 
Eck=2(95) are determined from the A2 test, 
Qck=2(82) and Eck=2(82) are determined from the 
B2 test, and all four quantities are calculated as specified 
in section 3.3 of this appendix. Calculate the space cooling capacity, 
Qck=v(Tj), and electrical power 
consumption, Eck=v(Tj), of the test 
unit when operating at outdoor temperature Tj and the 
intermediate compressor speed used during the section 3.2.4 (and Table 
8) EV test of this appendix using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.074

[GRAPHIC] [TIFF OMITTED] TR05JA17.075

    where Qck=v(87) and 
Eck=v(87) are determined from the EV 
test and calculated as specified in section 3.3 of this appendix. 
Approximate the slopes of the k=v intermediate speed cooling capacity 
and electrical power input curves, MQ and ME, as 
follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.076

    Use Equations 4.1.4-1 and 4.1.4-2, respectively, to calculate 
Qck=1(87) and Eck=1(87).

 4.1.4.1 Steady-State Space Cooling Capacity When Operating at Minimum 
 Compressor Speed Is Greater Than or Equal to the Building Cooling Load 
at Temperature Tj, Qck=1(Tj) 
                      =BL(Tj)

[[Page 518]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.077

where:
Xk=1(Tj) = BL(Tj)/
          Qck=1(Tj), the cooling mode 
          minimum speed load factor for temperature bin j, 
          dimensionless.
PLFj = 1 - CD\c\ [middot] [1 - 
          Xk=1(Tj)], the part load factor, 
          dimensionless.
nj/N = fractional bin hours for the cooling season; the ratio 
          of the number of hours during the cooling season when the 
          outdoor temperature fell within the range represented by bin 
          temperature Tj to the total number of hours in the 
          cooling season, dimensionless.

    Obtain the fractional bin hours for the cooling season, 
nj/N, from Table 19. Use Equations 4.1.3-1 and 4.1.3-2, 
respectively, to evaluate Qc\k=l\ (Tj) and 
Ec\k=l\ (Tj). Evaluate the cooling mode cyclic 
degradation factor CD\c\ as specified in section 3.5.3 of 
this appendix.

4.1.4.2 Unit Operates at an Intermediate Compressor Speed (k=i) In Order 
           To Match the Building Cooling Load at Temperature 
        Tj,Qck=1(Tj) 
            BL(Tj) Qck=2(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.078

where:
Qck=i(Tj) = BL(Tj), the 
          space cooling capacity delivered by the unit in matching the 
          building load at temperature Tj, Btu/h. The 
          matching occurs with the unit operating at compressor speed k 
          = i.
          [GRAPHIC] [TIFF OMITTED] TR05JA17.079
          
EERk=i(Tj) = the steady-state energy efficiency 
          ratio of the test unit when operating at a compressor speed of 
          k = i and temperature Tj, Btu/h per W.

    Obtain the fractional bin hours for the cooling season, 
nj/N, from Table 19. For each temperature bin where the unit 
operates at an intermediate compressor speed, determine the energy 
efficiency ratio EERk=i(Tj) using,

    EERk=i(Tj) = A + B [middot] Tj + C 
[middot] Tj\2\.

    For each unit, determine the coefficients A, B, and C by conducting 
the following calculations once:
[GRAPHIC] [TIFF OMITTED] TR05JA17.080

where:
T1 = the outdoor temperature at which the unit, when 
          operating at minimum compressor speed, provides a space 
          cooling capacity that is equal to the building load 
          (Qck=l(Tl) = 
          BL(T1)), [deg]F. Determine T1 by 
          equating Equations 4.1.3-1 and 4.1-2 and solving for outdoor 
          temperature.
Tv = the outdoor temperature at which the unit, when 
          operating at the intermediate compressor speed used during the 
          section 3.2.4 EV test of this appendix, provides a 
          space cooling capacity that is equal to

[[Page 519]]

          the building load (Qck=v(Tv) 
          = BL(Tv)), [deg]F. Determine Tv by 
          equating Equations 4.1.4-3 and 4.1-2 and solving for outdoor 
          temperature.
T2 = the outdoor temperature at which the unit, when 
          operating at full compressor speed, provides a space cooling 
          capacity that is equal to the building load 
          (Qck=2(T2) = 
          BL(T2)), [deg]F. Determine T2 by 
          equating Equations 4.1.3-3 and 4.1-2 and solving for outdoor 
          temperature.
          [GRAPHIC] [TIFF OMITTED] TR05JA17.081
          
4.1.4.3 Unit Must Operate Continuously at Full (k=2) Compressor Speed at 
                   Temperature Tj, BL(Tj) 
  =Qck=2(Tj). Evaluate the 
                        Equation 4.1-1 Quantities
[GRAPHIC] [TIFF OMITTED] TR05JA17.082

as specified in section 4.1.3.4 of this appendix with the understanding 
that Qck=2(Tj) and 
Eck=2(Tj) correspond to full compressor 
speed operation and are derived from the results of the tests specified 
in section 3.2.4 of this appendix.

  4.1.5 SEER Calculations for an Air Conditioner or Heat Pump Having a 
             Single Indoor Unit With Multiple Indoor Blowers

    Calculate SEER using Eq. 4.1-1, where qc(Tj)/N and 
ec(Tj)/N are evaluated as specified in the applicable 
subsection.

   4.1.5.1 For Multiple Indoor Blower Systems That Are Connected to a 
                    Single, Single-Speed Outdoor Unit

    a. Calculate the space cooling capacity, Qck=1(Tj), and 
electrical power consumption, Eck=1(Tj), of the test unit 
when operating at the cooling minimum air volume rate and outdoor 
temperature Tj using the equations given in section 4.1.2.1 
of this appendix. Calculate the space cooling capacity, 
Qck=2(Tj), and electrical power consumption, 
Eck=2(Tj), of the test unit when operating at the cooling 
full-load air volume rate and outdoor temperature Tj using 
the equations given in section 4.1.2.1 of this appendix. In evaluating 
the section 4.1.2.1 equations, determine the quantities 
Qck=1(82) and Eck=1(82) from the B1 test, 
Qck=1(95) and Eck=1(95) from the Al test, 
Qck=2(82) and Eck=2(82) from the B2 test, 
andQck=2(95) and Eck=2(95) from the A2 test. 
Evaluate all eight quantities as specified in section 3.3 of this 
appendix. Refer to section 3.2.2.1 and Table 6 of this appendix for 
additional information on the four referenced laboratory tests.
    b. Determine the cooling mode cyclic degradation coefficient, 
CDc, as per sections 3.2.2.1 and 3.5 to 3.5.3 of this 
appendix. Assign this same value to CDc(K=2).
    c. Except for using the above values of Qck=1(Tj), 
Eck=1(Tj), Eck=2(Tj), Qck=2(Tj), 
CDc, and CDc (K=2), calculate the quantities 
qc(Tj)/N and ec(Tj)/N as 
specified in section 4.1.3.1 of this appendix for cases where 
Qck=1(Tj) =BL(Tj). For all other 
outdoor bin temperatures, Tj, calculate qc(Tj)/N 
and ec(Tj)/N as specified in section 4.1.3.3 of this appendix 
if Qck=2(Tj) BL (Tj) or as specified in 
section 4.1.3.4 of this appendix if Qck=2(Tj) 
<=BL(Tj).

4.1.5.2 Unit Operates at an Intermediate Compressor Speed (k=i) In Order 
           To Match the Building Cooling Load at Temperature 
        Tj,Qck=1(Tj) 
     j) ck=2(Tj)

[[Page 520]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.083

where,
Qck=i(Tj) = BL(Tj), the 
          space cooling capacity delivered by the unit in matching the 
          building load at temperature Tj, Btu/h. The 
          matching occurs with the unit operating at compressor speed k 
          = i.
          [GRAPHIC] [TIFF OMITTED] TR05JA17.084
          
EERk=i(Tj), the steady-state energy efficiency 
          ratio of the test unit when operating at a compressor speed of 
          k = i and temperature Tj, Btu/h per W.

    Obtain the fractional bin hours for the cooling season, 
nj/N, from Table 19. For each temperature bin where the unit 
operates at an intermediate compressor speed, determine the energy 
efficiency ratio EERk=i(Tj) using the following 
equations,
    For each temperature bin where 
Qck=1(Tj) j) 
ck=v(Tj),
[GRAPHIC] [TIFF OMITTED] TR05JA17.085

    For each temperature bin where 
Qck=v(Tj) <=BL(Tj) 
ck=2(Tj),
[GRAPHIC] [TIFF OMITTED] TR05JA17.086

Where:
EERk=1(Tj) is the steady-state energy efficiency 
          ratio of the test unit when operating at minimum compressor 
          speed and temperature Tj, Btu/h per W, calculated using 
          capacity Qck=1(Tj) calculated 
          using Equation 4.1.4-1 and electrical power consumption 
          Eck=1(Tj) calculated using 
          Equation 4.1.4-2;
EERk=v(Tj) is the steady-state energy 
          efficiency ratio of the test unit when operating at 
          intermediate compressor speed and temperature Tj, Btu/h per W, 
          calculated using capacity 
          Qck=v(Tj) calculated using 
          Equation 4.1.4-3 and electrical power consumption 
          Eck=v(Tj) calculated using 
          Equation 4.1.4-4;
EERk=2(Tj) is the steady-state energy efficiency 
          ratio of the test unit when operating at full compressor speed 
          and temperature Tj, Btu/h per W, calculated using capacity 
          Qck=2(Tj) and electrical 
          power consumption Eck=2(Tj), 
          both calculated as described in section 4.1.4; and
BL(Tj) is the building cooling load at temperature 
          Tj, Btu/h.

       4.2 Heating Seasonal Performance Factor (HSPF) Calculations

    Unless an approved alternative efficiency determination method is 
used, as set forth in 10 CFR 429.70(e), HSPF must be calculated as 
follows: Six generalized climatic regions are depicted in Figure 1 and 
otherwise defined in Table 20. For each of these regions and for each 
applicable standardized design heating requirement, evaluate the heating 
seasonal performance factor using,

[[Page 521]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.087

where:
e2(Tj)/N = The ratio of the electrical energy consumed by the 
          heat pump during periods of the space heating season when the 
          outdoor temperature fell within the range represented by bin 
          temperature Tj to the total number of hours in the 
          heating season (N), W. For heat pumps having a heat comfort 
          controller, this ratio may also include electrical energy used 
          by resistive elements to maintain a minimum air delivery 
          temperature (see 4.2.5).
RH(Tj)/N = The ratio of the electrical energy used for 
          resistive space heating during periods when the outdoor 
          temperature fell within the range represented by bin 
          temperature Tj to the total number of hours in the 
          heating season (N), W. Except as noted in section 4.2.5 of 
          this appendix, resistive space heating is modeled as being 
          used to meet that portion of the building load that the heat 
          pump does not meet because of insufficient capacity or because 
          the heat pump automatically turns off at the lowest outdoor 
          temperatures. For heat pumps having a heat comfort controller, 
          all or part of the electrical energy used by resistive heaters 
          at a particular bin temperature may be reflected in 
          eh(Tj)/N (see section 4.2.5 of this appendix).
Tj = the outdoor bin temperature, [deg]F. Outdoor 
          temperatures are ``binned'' such that calculations are only 
          performed based one temperature within the bin. Bins of 5 
          [deg]F are used.
nj/N= Fractional bin hours for the heating season; the ratio 
          of the number of hours during the heating season when the 
          outdoor temperature fell within the range represented by bin 
          temperature Tj to the total number of hours in the 
          heating season, dimensionless. Obtain nj/N values 
          from Table 20.
j = the bin number, dimensionless.
J = for each generalized climatic region, the total number of 
          temperature bins, dimensionless. Referring to Table 20, J is 
          the highest bin number (j) having a nonzero entry for the 
          fractional bin hours for the generalized climatic region of 
          interest.
Fdef = the demand defrost credit described in section 3.9.2 
          of this appendix, dimensionless.
BL(Tj) = the building space conditioning load corresponding 
          to an outdoor temperature of Tj; the heating season 
          building load also depends on the generalized climatic 
          region's outdoor design temperature and the design heating 
          requirement, Btu/h.

                                Table 20--Generalized Climatic Region Information
----------------------------------------------------------------------------------------------------------------
                                                                     Region No.
                                   -----------------------------------------------------------------------------
                                         I            II          III           IV           V            VI
----------------------------------------------------------------------------------------------------------------
Heating Load Hours, HLH...........          750        1,250        1,750        2,250        2,750       *2,750
Outdoor Design Temperature, TOD...           37           27           17            5          -10           30
----------------------------------------------------------------------------------------------------------------
j Tj ( [deg]F)                                               Fractional Bin Hours, nj/N
----------------------------------------------------------------------------------------------------------------
1 62..............................         .291         .215         .153         .132         .106         .113
2 57..............................         .239         .189         .142         .111         .092         .206
3 52..............................         .194         .163         .138         .103         .086         .215
4 47..............................         .129         .143         .137         .093         .076         .204
5 42..............................         .081         .112         .135         .100         .078         .141
6 37..............................         .041         .088         .118         .109         .087         .076
7 32..............................         .019         .056         .092         .126         .102         .034
8 27..............................         .005         .024         .047         .087         .094         .008
9 22..............................         .001         .008         .021         .055         .074         .003
10 17.............................            0         .002         .009         .036         .055            0
11 12.............................            0            0         .005         .026         .047            0
12 7..............................            0            0         .002         .013         .038            0
13 2..............................            0            0         .001         .006         .029            0
14 -3.............................            0            0            0         .002         .018            0
15 -8.............................            0            0            0         .001         .010            0
16 -13............................            0            0            0            0         .005            0
17 -18............................            0            0            0            0         .002            0
18 -23............................            0            0            0            0         .001            0
----------------------------------------------------------------------------------------------------------------
* Pacific Coast Region.


[[Page 522]]

    Evaluate the building heating load using
    [GRAPHIC] [TIFF OMITTED] TR05JA17.088
    
Where:

TOD = the outdoor design temperature, [deg]F. An outdoor 
          design temperature is specified for each generalized climatic 
          region in Table 20.
C = 0.77, a correction factor which tends to improve the agreement 
          between calculated and measured building loads, dimensionless.
DHR = the design heating requirement (see section 1.2 of this appendix, 
          Definitions), Btu/h.

    Calculate the minimum and maximum design heating requirements for 
each generalized climatic region as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.089

where Qh\k\(47) is expressed in units of Btu/h and otherwise defined as 
follows:
    a. For a single-speed heat pump tested as per section 3.6.1 of this 
appendix,Qh\k\(47) = Qh(47), the space heating capacity determined from 
the H1 test.
    b. For a section 3.6.2 single-speed heat pump or a two-capacity heat 
pump not covered by item d,Qh\k\(47) =Qhk=2(47), the space heating 
capacity determined from the H1 or H12 test.
    c. For a variable-speed heat pump,Qh\k\(47) =Qhk=N(47), the space 
heating capacity determined from the H1N test.
    d. For two-capacity, northern heat pumps (see section 1.2 of this 
appendix, Definitions),Q\k\h(47) =Qk=1h(47), the space 
heating capacity determined from the H11 test.
    For all heat pumps, HSPF accounts for the heating delivered and the 
energy consumed by auxiliary resistive elements when operating below the 
balance point. This condition occurs when the building load exceeds the 
space heating capacity of the heat pump condenser. For HSPF calculations 
for all heat pumps, see either section 4.2.1, 4.2.2, 4.2.3, or 4.2.4 of 
this appendix, whichever applies.
    For heat pumps with heat comfort controllers (see section 1.2 of 
this appendix, Definitions), HSPF also accounts for resistive heating 
contributed when operating above the heat-pump-plus-comfort-controller 
balance point as a result of maintaining a minimum supply temperature. 
For heat pumps having a heat comfort controller, see section 4.2.5 of 
this appendix for the additional steps required for calculating the 
HSPF.

[[Page 523]]



           Table 21--Standardized Design Heating Requirements
                                 [Btu/h]
------------------------------------------------------------------------
 
-------------------------------------------------------------------------
 5,000
 10,000
 15,000
 20,000
 25,000
 30,000
 35,000
 40,000
 50,000
 60,000
 70,000
 80,000
 90,000
100,000
110,000
130,000
------------------------------------------------------------------------

4.2.1 Additional Steps for Calculating the HSPF of a Blower Coil System 
  Heat Pump Having a Single-Speed Compressor and Either a Fixed-Speed 
Indoor Blower or a Constant-Air-Volume-Rate Indoor Blower Installed, or 
                      a Coil-Only System Heat Pump
[GRAPHIC] [TIFF OMITTED] TR05JA17.090

[GRAPHIC] [TIFF OMITTED] TR05JA17.091

Where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.092

whichever is less; the heating mode load factor for temperature bin j, 
          dimensionless.
Qh(Tj) = the space heating capacity of the heat pump when 
          operating at outdoor temperature Tj, Btu/h.
Eh(Tj) = the electrical power consumption of the heat pump 
          when operating at outdoor temperature Tj, W.
[delta](Tj) = the heat pump low temperature cut-out factor, 
          dimensionless.
PLFj = 1 - CD\h\ [middot] [1 -X(Tj)] 
          the part load factor, dimensionless.

    Use Equation 4.2-2 to determine BL(Tj). Obtain fractional 
bin hours for the heating season, nj/N, from Table 20. 
Evaluate the heating mode cyclic degradation factor CD\h\ as 
specified in section 3.8.1 of this appendix.
    Determine the low temperature cut-out factor using
    [GRAPHIC] [TIFF OMITTED] TR05JA17.093
    

[[Page 524]]


Where:
Toff = the outdoor temperature when the compressor is 
          automatically shut off, [deg]F. (If no such temperature 
          exists, Tj is always greater than Toff 
          and Ton).
Ton = the outdoor temperature when the compressor is 
          automatically turned back on, if applicable, following an 
          automatic shut-off, [deg]F.

    Calculate Qh(Tj) and Eh(Tj) using,
    [GRAPHIC] [TIFF OMITTED] TR05JA17.094
    
    [GRAPHIC] [TIFF OMITTED] TR05JA17.095
    
where Qh(47) and Eh(47) are determined from the H1 test and calculated 
as specified in section 3.7 of this appendix; Qh(35) and Eh(35) are 
determined from the H2 test and calculated as specified in section 3.9.1 
of this appendix; and Qh(17) and Eh(17) are determined from the H3 test 
and calculated as specified in section 3.10 of this appendix.

4.2.2 Additional Steps for Calculating the HSPF of a Heat Pump Having a 
 Single-Speed Compressor and a Variable-Speed, Variable-Air-Volume-Rate 
                              Indoor Blower

    The manufacturer must provide information about how the indoor air 
volume rate or the indoor blower speed varies over the outdoor 
temperature range of 65 [deg]F to -23 [deg]F. Calculate the quantities
[GRAPHIC] [TIFF OMITTED] TR05JA17.096

in Equation 4.2-1 as specified in section 4.2.1 of this appendix with 
the exception of replacing references to the H1C test and section 3.6.1 
of this appendix with the H1C1 test and section 3.6.2 of this 
appendix. In addition, evaluate the space heating capacity and 
electrical power consumption of the heat pump Qh(Tj) and 
Eh(Tj) using
[GRAPHIC] [TIFF OMITTED] TR05JA17.097

[GRAPHIC] [TIFF OMITTED] TR05JA17.098

where the space heating capacity and electrical power consumption at 
both low capacity (k=1) and high capacity (k=2) at outdoor temperature 
Tj are determined using

[[Page 525]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.099

[GRAPHIC] [TIFF OMITTED] TR05JA17.100

    For units where indoor blower speed is the primary control variable, 
FPhk=1 denotes the fan speed used during the required H11 and 
H31 tests (see Table 12), FPhk=2 denotes the fan speed used 
during the required H12, H22, and H32 
tests, and FPh(Tj) denotes the fan speed used by the unit 
when the outdoor temperature equals Tj. For units where 
indoor air volume rate is the primary control variable, the three FPh's 
are similarly defined only now being expressed in terms of air volume 
rates rather than fan speeds. Determine Qhk=1(47) and Ehk=1(47) from the 
H11 test, and Qhk=2(47) and Ehk=2(47) from the H12 
test. Calculate all four quantities as specified in section 3.7 of this 
appendix. Determine Qhk=1(35) and Ehk=1(35) as specified in section 
3.6.2 of this appendix; determine Qhk=2(35) and Ehk=2(35) and from the 
H22 test and the calculation specified in section 3.9 of this 
appendix. Determine Qhk=1(17) and Ehk=1(17) from the H31 
test, and Qhk=2(17) and Ehk=2(17) from the H32 test. 
Calculate all four quantities as specified in section 3.10 of this 
appendix.

4.2.3 Additional Steps for Calculating the HSPF of a Heat Pump Having a 
                         Two-Capacity Compressor

    The calculation of the Equation 4.2-1 quantities differ depending 
upon whether the heat pump would operate at low capacity (section 
4.2.3.1 of this appendix), cycle between low and high capacity (section 
4.2.3.2 of this appendix), or operate at high capacity (sections 4.2.3.3 
and 4.2.3.4 of this appendix) in responding to the building load. For 
heat pumps that lock out low capacity operation at low outdoor 
temperatures, the outdoor temperature at which the unit locks out must 
be that specified by the manufacturer in the certification report so 
that the appropriate equations can be selected.
[GRAPHIC] [TIFF OMITTED] TR05JA17.101

    a. Evaluate the space heating capacity and electrical power 
consumption of the heat pump when operating at low compressor capacity 
and outdoor temperature Tj using

[[Page 526]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.102

    b. Evaluate the space heating capacity and electrical power 
consumption (Qhk=2(Tj) and Ehk=2 (Tj)) of the heat 
pump when operating at high compressor capacity and outdoor temperature 
Tj by solving Equations 4.2.2-3 and 4.2.2-4, respectively, for k=2. 
Determine Qhk=1(62) and Ehk=1(62) from the H01 test, 
Qhk=1(47) and Ehk=1(47) from the H11 test, and Qhk=2(47) and 
Ehk=2(47) from the H12 test. Calculate all six quantities as 
specified in section 3.7 of this appendix. Determine Qhk=2(35) and 
Ehk=2(35) from the H22 test and, if required as described in 
section 3.6.3 of this appendix, determine Qhk=1(35) and Ehk=1(35) from 
the H21 test. Calculate the required 35 [deg]F quantities as 
specified in section 3.9 of this appendix. Determine Qhk=2(17) and 
Ehk=2(17) from the H32 test and, if required as described in 
section 3.6.3 of this appendix, determine Qhk=1(17) and Ehk=1(17) from 
the H31 test. Calculate the required 17 [deg]F quantities as 
specified in section 3.10 of this appendix.

   4.2.3.1 Steady-State Space Heating Capacity When Operating at Low 
  Compressor Capacity is Greater Than or Equal to the Building Heating 
        Load at Temperature Tj, Qhk=1(Tj) 
                      =BL(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.103

[GRAPHIC] [TIFF OMITTED] TR05JA17.104

Where:
Xk=1(Tj) = BL(Tj)/Qhk=1(Tj), the 
          heating mode low capacity load factor for temperature bin j, 
          dimensionless.
PLFj = 1 - CD\h\ [middot] [ 1 - 
          Xk=1(Tj) ], the part load factor, dimensionless.
[delta][min](Tj) = the low temperature cutoff factor, 
          dimensionless.

    Evaluate the heating mode cyclic degradation factor CD\h\ 
as specified in section 3.8.1 of this appendix.
    Determine the low temperature cut-out factor using
    [GRAPHIC] [TIFF OMITTED] TR05JA17.105
    
where Toff and Ton are defined in section 4.2.1 of 
this appendix. Use the calculations given in section 4.2.3.3 of this 
appendix, and not the above, if:

[[Page 527]]

    a. The heat pump locks out low capacity operation at low outdoor 
temperatures and
    b. Tj is below this lockout threshold temperature.

4.2.3.2 Heat Pump Alternates Between High (k=2) and Low (k=1) Compressor 
     Capacity To Satisfy the Building Heating Load at a Temperature 
         Tj, Qhk=1(Tj) j) 
                          j)
[GRAPHIC] [TIFF OMITTED] TR05JA17.106

Xk=2(Tj) = 1 - Xk=1(Tj) the heating mode, high 
          capacity load factor for temperaturebin j, 
          dimensionless.

    Determine the low temperature cut-out factor, 
[delta][min](Tj), using Equation 4.2.3-3.

  4.2.3.3 Heat Pump Only Operates at High (k=2) Compressor Capacity at 
Temperature Tj and its Capacity Is Greater Than the Building 
          Heating Load, BL(Tj) j)

    This section applies to units that lock out low compressor capacity 
operation at low outdoor temperatures.
[GRAPHIC] [TIFF OMITTED] TR05JA17.107

Where:

    Xk=2(Tj)= BL(Tj)/Qhk=2(Tj). PLFj = 
1 - CDh(k = 2) * [1 - Xk=1(Tj)

    If the H1C2 test described in section 3.6.3 and Table 13 
of this appendix is not conducted, set CD\h\ (k=2) equal to 
the default value specified in section 3.8.1 of this appendix.
    Determine the low temperature cut-out factor, 
[delta](Tj), using Equation 4.2.3-3.

  4.2.3.4 Heat Pump Must Operate Continuously at High (k=2) Compressor 
        Capacity at Temperature Tj, BL(Tj) 
                    =Qhk=2(Tj)

[[Page 528]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.108

4.2.4 Additional Steps for Calculating the HSPF of a Heat Pump Having a 
                        Variable-Speed Compressor

    Calculate HSPF using Equation 4.2-1. Evaluate the space heating 
capacity, Qhk=1(Tj), and electrical power consumption, 
Ehk=1(Tj), of the heat pump when operating at minimum 
compressor speed and outdoor temperature Tj using
[GRAPHIC] [TIFF OMITTED] TR05JA17.109

[GRAPHIC] [TIFF OMITTED] TR05JA17.110

where Qhk=1(62) and Ehk=1(62) are determined from the H01 
test, Qhk=1(47) and Ehk=1(47) are determined from the H11 
test, and all four quantities are calculated as specified in section 3.7 
of this appendix.
    Evaluate the space heating capacity, Qhk=2(Tj), and 
electrical power consumption, Ehk=2(Tj), of the heat pump 
when operating at full compressor speed and outdoor temperature 
Tj by solving Equations 4.2.2-3 and 4.2.2-4, respectively, 
for k=2. For Equation 4.2.2-3, use Qhcalck=2(47) to represent 
Qhk=2(47), and for Equation 4.2.2-4, use Ehcalck=2(47) to 
represent Ehcalck=2(47)--evaluate Qhcalck=2(47) 
and Ehcalck=2(47) as specified in section 3.6.4b of this 
appendix.
[GRAPHIC] [TIFF OMITTED] TR05JA17.111

[GRAPHIC] [TIFF OMITTED] TR05JA17.112

where Qhk=v(35) and Ehk=v(35) are determined from 
the H2V test and calculated as specified in section 3.9 of 
this appendix. Approximate the slopes of the k=v intermediate speed 
heating capacity and electrical power input curves, MQ and 
ME, as follows:

[[Page 529]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.113

 4.2.4.1 Steady-State Space Heating Capacity When Operating at Minimum 
 Compressor Speed Is Greater Than or Equal to the Building Heating Load 
           at Temperature Tj, Qhk=1(Tj 
                      =BL(Tj)

    Evaluate the Equation 4.2-1 quantities
    [GRAPHIC] [TIFF OMITTED] TR05JA17.114
    
as specified in section 4.2.3.1 of this appendix. Except now use 
Equations 4.2.4-1 and 4.2.4-2 to evaluate Qhk=1(Tj) and 
Ehk=1(Tj), respectively, and replace section 4.2.3.1 
references to ``low capacity'' and section 3.6.3 of this appendix with 
``minimum speed'' and section 3.6.4 of this appendix. Also, the last 
sentence of section 4.2.3.1 of this appendix does not apply.

4.2.4.2 Heat Pump Operates at an Intermediate Compressor Speed (k=i) in 
Order To Match the Building Heating Load at a Temperature Tj, 
      Qhk=1(Tj) j) j)

[[Page 530]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.115

and [delta](Tj) is evaluated using Equation 4.2.3-3 while,
Qhk=i(Tj) = BL(Tj), the space heating 
          capacity delivered by the unit in matching the building load 
          at temperature (Tj), Btu/h. The matching occurs 
          with the heat pump operating at compressor speed k=i.
COPk=i(Tj) = the steady-state coefficient of 
          performance of the heat pump when operating at compressor 
          speed k=i and temperature Tj, dimensionless.

    For each temperature bin where the heat pump operates at an 
intermediate compressor speed, determine 
COPk=i(Tj) using the following equations,
    For each temperature bin where Qhk=1(Tj) 
j) k=v(Tj),
[GRAPHIC] [TIFF OMITTED] TR05JA17.116

    For each temperature bin where Qhk=v(Tj) 
<=BL(Tj) j),
[GRAPHIC] [TIFF OMITTED] TR05JA17.117

Where:
COPhk=1(Tj) is the steady-state coefficient of performance of 
          the heat pump when operating at minimum compressor speed and 
          temperature Tj, dimensionless, calculated using capacity 
          Qhk=1(Tj) calculated using Equation 4.2.4-1 and 
          electrical power consumption Ehk=1(Tj) calculated 
          using Equation 4.2.4-2;
COPhk=v(Tj) is the steady-state coefficient of 
          performance of the heat pump when operating at intermediate 
          compressor speed and temperature Tj, dimensionless, calculated 
          using capacity Qhk=v(Tj) calculated 
          using Equation 4.2.4-3 and electrical power consumption 
          Ehk=v(Tj) calculated using Equation 
          4.2.4-4;
COPhk=2(Tj) is the steady-state coefficient of performance of 
          the heat pump when operating at full compressor speed and 
          temperature Tj, dimensionless, calculated using capacity 
          Qhk=2(Tj) and electrical power consumption 
          Ehk=2(Tj), both calculated as described in section 
          4.2.4; and
BL(Tj) is the building heating load at temperature 
          Tj, Btu/h.

[[Page 531]]

  4.2.4.3 Heat Pump Must Operate Continuously at Full (k=2) Compressor 
         Speed at Temperature Tj, BL(Tj) 
                    =Qhk=2(Tj)

    Evaluate the Equation 4.2-1 Quantities
    [GRAPHIC] [TIFF OMITTED] TR05JA17.118
    
as specified in section 4.2.3.4 of this appendix with the understanding 
that Qhk=2(Tj) and Ehk=2(Tj) correspond to full 
compressor speed operation and are derived from the results of the 
specified section 3.6.4 tests of this appendix.

            4.2.5 Heat Pumps Having a Heat Comfort Controller

    Heat pumps having heat comfort controllers, when set to maintain a 
typical minimum air delivery temperature, will cause the heat pump 
condenser to operate less because of a greater contribution from the 
resistive elements. With a conventional heat pump, resistive heating is 
only initiated if the heat pump condenser cannot meet the building load 
(i.e., is delayed until a second stage call from the indoor thermostat). 
With a heat comfort controller, resistive heating can occur even though 
the heat pump condenser has adequate capacity to meet the building load 
(i.e., both on during a first stage call from the indoor thermostat). As 
a result, the outdoor temperature where the heat pump compressor no 
longer cycles (i.e., starts to run continuously), will be lower than if 
the heat pump did not have the heat comfort controller.

 4.2.5.1 Blower Coil System Heat Pump Having a Heat Comfort Controller: 
   Additional Steps for Calculating the HSPF of a Heat Pump Having a 
  Single-Speed Compressor and Either a Fixed-Speed Indoor Blower or a 
Constant-Air-Volume-Rate Indoor Blower Installed, or a Coil-Only System 
                                Heat Pump

    Calculate the space heating capacity and electrical power of the 
heat pump without the heat comfort controller being active as specified 
in section 4.2.1 of this appendix (Equations 4.2.1-4 and 4.2.1-5) for 
each outdoor bin temperature, Tj, that is listed in Table 20. 
Denote these capacities and electrical powers by using the subscript 
``hp'' instead of ``h.'' Calculate the mass flow rate (expressed in 
pounds-mass of dry air per hour) and the specific heat of the indoor air 
(expressed in Btu/lbmda [middot] [deg]F) from the results of 
the H1 test using:
[GRAPHIC] [TIFF OMITTED] TR05JA17.119

where Vis, Vimx, v[min]n (or 
vn), and Wn are defined following Equation 3-1. 
For each outdoor bin temperature listed in Table 20, calculate the 
nominal temperature of the air leaving the heat pump condenser coil 
using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.120

    Evaluate eh(Tj/N), RH(Tj)/N, X(Tj), 
PLFj, and [delta](Tj) as specified in section 
4.2.1 of this appendix. For each bin calculation, use the space heating 
capacity and electrical power from Case 1 or Case 2, whichever applies.
    Case 1. For outdoor bin temperatures where 
To(Tj) is equal to or greater than TCC 
(the maximum supply temperature determined according to section 3.1.9 of 
this appendix), determine Qh(Tj) and Eh(Tj) as 
specified in section 4.2.1 of this appendix (i.e., Qh(Tj) = 
Qhp(Tj) and Ehp(Tj) = 
Ehp(Tj)). Note: Even though 
To(Tj) =Tcc, resistive 
heating

[[Page 532]]

may be required; evaluate Equation 4.2.1-2 for all bins.
    Case 2. For outdoor bin temperatures where 
To(Tj) Tcc, determine 
Qh(Tj) and Eh(Tj) using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.121

    Note: Even though To(Tj) Tcc, 
additional resistive heating may be required; evaluate Equation 4.2.1-2 
for all bins.

4.2.5.2 Heat Pump Having a Heat Comfort Controller: Additional Steps for 
Calculating the HSPF of a Heat Pump Having a Single-Speed Compressor and 
        a Variable-Speed, Variable-Air-Volume-Rate Indoor Blower

    Calculate the space heating capacity and electrical power of the 
heat pump without the heat comfort controller being active as specified 
in section 4.2.2 of this appendix (Equations 4.2.2-1 and 4.2.2-2) for 
each outdoor bin temperature, Tj, that is listed in Table 20. 
Denote these capacities and electrical powers by using the subscript 
``hp'' instead of ``h.'' Calculate the mass flow rate (expressed in 
pounds-mass of dry air per hour) and the specific heat of the indoor air 
(expressed in Btu/lbmda [middot] [deg]F) from the results of 
the H12 test using:
[GRAPHIC] [TIFF OMITTED] TR05JA17.122

where ViS, Vimx, v[min]n (or 
vn), and Wn are defined following Equation 3-1. 
For each outdoor bin temperature listed in Table 20, calculate the 
nominal temperature of the air leaving the heat pump condenser coil 
using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.123

    Evaluate eh(Tj)/N, RH(Tj)/N, X(Tj), 
PLFj, and [delta](Tj) as specified in section 
4.2.1 of this appendix with the exception of replacing references to the 
H1C test and section 3.6.1 of this appendix with the H1C1 
test and section 3.6.2 of this appendix. For each bin calculation, use 
the space heating capacity and electrical power from Case 1 or Case 2, 
whichever applies.
    Case 1. For outdoor bin temperatures where 
To(Tj) is equal to or greater than TCC 
(the maximum supply temperature determined according to section 3.1.9 of 
this appendix), determine Qh(Tj) and Eh(Tj) as 
specified in section 4.2.2 of this appendix (i.e. Qh(Tj) = 
Qhp(Tj) and Eh(Tj) = 
Ehp(Tj)). Note: Even though 
To(Tj) =TCC, resistive 
heating may be required; evaluate Equation 4.2.1-2 for all bins.
    Case 2. For outdoor bin temperatures where 
To(Tj) TCC, determine Qh(Tj) 
and Eh(Tj) using,

[[Page 533]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.124

    Note: Even though To(Tj) Tcc, 
additional resistive heating may be required; evaluate Equation 4.2.1-2 
for all bins.

 4.2.5.3 Heat Pumps Having a Heat Comfort Controller: Additional Steps 
for Calculating the HSPF of a Heat Pump Having a Two-Capacity Compressor

    Calculate the space heating capacity and electrical power of the 
heat pump without the heat comfort controller being active as specified 
in section 4.2.3 of this appendix for both high and low capacity and at 
each outdoor bin temperature, Tj, that is listed in Table 20. 
Denote these capacities and electrical powers by using the subscript 
``hp'' instead of ``h.'' For the low capacity case, calculate the mass 
flow rate (expressed in pounds-mass of dry air per hour) and the 
specific heat of the indoor air (expressed in Btu/lbmda 
[middot] [deg]F) from the results of the H11 test using:
[GRAPHIC] [TIFF OMITTED] TR05JA17.125

where Vis, Vimx, v[min]n (or 
vn), and Wn are defined following Equation 3-1. 
For each outdoor bin temperature listed in Table 20, calculate the 
nominal temperature of the air leaving the heat pump condenser coil when 
operating at low capacity using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.126

    Repeat the above calculations to determine the mass flow rate 
(mdak=2) and the specific heat of the indoor air 
(Cp,dak=2) when operating at high capacity by using the 
results of the H12 test. For each outdoor bin temperature 
listed in Table 20, calculate the nominal temperature of the air leaving 
the heat pump condenser coil when operating at high capacity using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.127

    Evaluate eh(Tj)/N, RH(Tj)/N, 
Xk=1(Tj), and/or Xk=2(Tj), 
PLFj, and [delta][min](Tj) or 
[delta][sec](Tj) as specified in section 4.2.3.1. 4.2.3.2, 
4.2.3.3, or 4.2.3.4 of this appendix, whichever applies, for each

[[Page 534]]

temperature bin. To evaluate these quantities, use the low-capacity 
space heating capacity and the low-capacity electrical power from Case 1 
or Case 2, whichever applies; use the high-capacity space heating 
capacity and the high-capacity electrical power from Case 3 or Case 4, 
whichever applies.
    Case 1. For outdoor bin temperatures where 
Tok=1(Tj) is equal to or greater than 
TCC (the maximum supply temperature determined according to 
section 3.1.9 of this appendix), determine 
Qhk=1(Tj) and Ehk=1(Tj) as 
specified in section 4.2.3 of this appendix (i.e., 
Qhk=1(Tj) = 
Qhpk=1(Tj) and 
Ehk=1(Tj) = 
Ehpk=1(Tj).
    Note: Even though Tok=1(Tj) 
=TCC, resistive heating may be required; evaluate 
RH(Tj)/N for all bins.
    Case 2. For outdoor bin temperatures where 
Tok=1(Tj) TCC, determine 
Qhk=1(Tj) and Ehk=1(Tj) 
using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.128

    Note: Even though Tok=1(Tj) 
=Tcc, additional resistive heating may be 
required; evaluate RH(Tj)/N for all bins.
    Case 3. For outdoor bin temperatures where 
Tok=2(Tj) is equal to or greater than 
TCC, determine Qhk=2(Tj) and 
Ehk=2(Tj) as specified in section 4.2.3 of this 
appendix (i.e., Qhk=2(Tj) = 
Qhpk=2(Tj) and 
Ehk=2(Tj) = 
Ehpk=2(Tj)).
    Note: Even though Tok=2(Tj) 
CC, resistive heating may be required; evaluate 
RH(Tj)/N for all bins.
    Case 4. For outdoor bin temperatures where 
Tok=2(Tj) CC, determine 
Qhk=2(Tj) and Ehk=2(Tj) 
using,

    [GRAPHIC] [TIFF OMITTED] TR05JA17.129
    
    Note: Even though Tok=2(Tj) 
cc, additional resistive heating may be required; evaluate 
RH(Tj)/N for all bins.


 4.2.5.4 Heat Pumps Having a Heat Comfort Controller: Additional Steps 
    for Calculating the HSPF of a Heat Pump Having a Variable-Speed 
                         Compressor. [Reserved]



4.2.6 Additional Steps for Calculating the HSPF of a Heat Pump Having a 
                       Triple-Capacity Compressor

    The only triple-capacity heat pumps covered are triple-capacity, 
northern heat pumps. For such heat pumps, the calculation of the Eq. 
4.2-1 quantities
[GRAPHIC] [TIFF OMITTED] TR05JA17.130


[[Page 535]]


differ depending on whether the heat pump would cycle on and off at low 
capacity (section 4.2.6.1 of this appendix), cycle on and off at high 
capacity (section 4.2.6.2 of this appendix), cycle on and off at booster 
capacity (section 4.2.6.3 of this appendix), cycle between low and high 
capacity (section 4.2.6.4 of this appendix), cycle between high and 
booster capacity (section 4.2.6.5 of this appendix), operate 
continuously at low capacity (4.2.6.6 of this appendix), operate 
continuously at high capacity (section 4.2.6.7 of this appendix), 
operate continuously at booster capacity (section 4.2.6.8 of this 
appendix), or heat solely using resistive heating (also section 4.2.6.8 
of this appendix) in responding to the building load. As applicable, the 
manufacturer must supply information regarding the outdoor temperature 
range at which each stage of compressor capacity is active. As an 
informative example, data may be submitted in this manner: At the low 
(k=1) compressor capacity, the outdoor temperature range of operation is 
40 [deg]F <= T <= 65 [deg]F; At the high (k=2) compressor capacity, the 
outdoor temperature range of operation is 20 [deg]F <= T <= 50 [deg]F; 
At the booster (k=3) compressor capacity, the outdoor temperature range 
of operation is -20 [deg]F <= T <= 30 [deg]F.
    a. Evaluate the space heating capacity and electrical power 
consumption of the heat pump when operating at low compressor capacity 
and outdoor temperature Tj using the equations given in section 4.2.3 of 
this appendix for Qhk=1(Tj) and Ehk=1 
(Tj)) In evaluating the section 4.2.3 equations, Determine 
Qhk=1(62) and Ehk=1(62) from the H01 
test, Qhk=1(47) and Ehk=1(47) from the 
H11 test, and Qhk=2(47) and Ehk=2(47) 
from the H12 test. Calculate all four quantities as specified 
in section 3.7 of this appendix. If, in accordance with section 3.6.6 of 
this appendix, the H31 test is conducted, calculate 
Qhk=1(17) and Ehk=1(17) as specified in section 
3.10 of this appendix and determine Qhk=1(35) and 
Ehk=1(35) as specified in section 3.6.6 of this appendix.
    b. Evaluate the space heating capacity and electrical power 
consumption (Qhk=2(Tj) and Ehk=2 
(Tj)) of the heat pump when operating at high compressor 
capacity and outdoor temperature Tj by solving Equations 4.2.2-3 and 
4.2.2-4, respectively, for k=2. Determine Qhk=1(62) and 
Ehk=1(62) from the H01 test, Qhk=1(47) 
and Ehk=1(47) from the H11 test, and 
Qhk=2(47) and Ehk=2(47) from the H12 
test, evaluated as specified in section 3.7 of this appendix. Determine 
the equation input for Qhk=2(35) and Ehk=2(35) 
from the H22, evaluated as specified in section 3.9.1 of this 
appendix. Also, determine Qhk=2(17) and Ehk=2(17) 
from the H32 test, evaluated as specified in section 3.10 of 
this appendix.
    c. Evaluate the space heating capacity and electrical power 
consumption of the heat pump when operating at booster compressor 
capacity and outdoor temperature Tj using
[GRAPHIC] [TIFF OMITTED] TR05JA17.131

Determine Qhk=3(17) and Ehk=3(17) from the 
H33 test and determine Qhk=2(5) and 
Ehk=3(5) from the H43 test. Calculate all four 
quantities as specified in section 3.10 of this appendix. Determine the 
equation input for Qhk=3(35) and Ehk=3(35) as 
specified in section 3.6.6 of this appendix.
4.2.6.1 Steady-State Space Heating Capacity when Operating at Low 
Compressor Capacity is Greater than or Equal to the Building Heating 
Load at Temperature Tj, Qhk=1(Tj) 
=BL(Tj)., and the heat pump permits low compressor 
capacity at Tj.
    Evaluate the quantities

[[Page 536]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.132

using Eqs. 4.2.3-1 and 4.2.3-2, respectively. Determine the equation 
inputs Xk=1(Tj), PLFj, and 
[delta][min](Tj) as specified in section 4.2.3.1 of this 
appendix. In calculating the part load factor, PLFj, use the 
low-capacity cyclic-degradation coefficient CD\h\, [or 
equivalently, CD\h\(k=1)] determined in accordance with 
section 3.6.6 of this appendix.


  4.2.6.2 Heat Pump Only Operates at High (k=2) Compressor Capacity at 
 Temperature Tj and Its Capacity Is Greater Than or Equal to 
              the Building Heating Load, BL(Tj) 
                    k=2(Tj)

    Evaluate the quantities
    [GRAPHIC] [TIFF OMITTED] TR05JA17.133
    
as specified in section 4.2.3.3 of this appendix. Determine the equation 
inputs Xk=2(Tj), PLFj, and 
[delta][min](Tj) as specified in section 4.2.3.3 of this 
appendix. In calculating the part load factor, PLFj, use the 
high-capacity cyclic-degradation coefficient, CD\h\(k=2) 
determined in accordance with section 3.6.6 of this appendix.


  4.2.6.3 Heat Pump Only Operates at High (k=3) Compressor Capacity at 
 Temperature Tj and Its Capacity Is Greater Than or Equal to 
              the Building Heating Load, BL(Tj) 
                    <=Qhk=3(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.134

where:
Xk=3(Tj) = BL(Tj)/Qhk=3 (Tj) and PLFj = 1-CDh (k = 3) * [1-Xk=3 (Tj)
Determine the low temperature cut-out factor, 
[delta][min](Tj), using Eq. 4.2.3-3. Use the booster-capacity 
cyclic-degradation coefficient, CD\h\(k=3) determined in 
accordance with section 3.6.6 of this appendix.


4.2.6.4 Heat Pump Alternates Between High (k=2) and Low (k=1) Compressor 
     Capacity to Satisfy the Building Heating Load at a Temperature 
   Tj, Qhk=1(Tj) j) 
                    k=2(Tj)

    Evaluate the quantities
    [GRAPHIC] [TIFF OMITTED] TR05JA17.135
    
as specified in section 4.2.3.2 of this appendix. Determine the equation 
inputs Xk=1(Tj), Xk=2(Tj), 
and [delta][min](Tj) as specified in section 4.2.3.2 of this 
appendix.
     


[[Page 537]]

   4.2.6.5 Heat Pump Alternates Between High (k=2) and Booster (k=3) 
     Compressor Capacity To Satisfy the Building Heating Load at a 
       Temperature Tj, Qhk=2(Tj) 
           j) k=3(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.136

and Xk=3(Tj) = Xk=2(Tj) = 
the heating mode, booster capacity load factor for temperature bin j, 
dimensionless. Determine the low temperature cut-out factor, 
[delta][min](Tj), using Eq. 4.2.3-3.


  4.2.6.6 Heat Pump Only Operates at Low (k=1) Capacity at Temperature 
 Tj and Its Capacity Is Less Than the Building Heating Load, 
      BL(Tj)  Qhk=1(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.137

where the low temperature cut-out factor, [delta][min](Tj), is 
calculated using Eq. 4.2.3-3.

4.2.6.7 Heat Pump Only Operates at High (k=2) Capacity at Temperature Tj 
    and Its Capacity Is Less Than the Building Heating Load, BL(Tj) 
                Qhk=2(Tj)

    Evaluate the quantities
    [GRAPHIC] [TIFF OMITTED] TR05JA17.138
    
as specified in section 4.2.3.4 of this appendix. Calculate 
[delta][sec](Tj) using the equation given in section 4.2.3.4 of this 
appendix.


4.2.6.8 Heat Pump Only Operates at Booster (k=3) Capacity at Temperature 
      Tj and Its Capacity Is Less Than the Building Heating Load, 
  BL(Tj)  Qhk=3(Tj) or the 
             System Converts to Using Only Resistive Heating


    [GRAPHIC] [TIFF OMITTED] TR05JA17.139
    
where [delta][sec](Tj) is calculated as specified in section 4.2.3.4 of 
this appendix if the heat pump is operating at its booster compressor 
capacity. If the heat pump system converts to using only resistive 
heating at outdoor temperature Tj, set 
[delta][min](Tj) equal to zero.


4.2.7 Additional Steps for Calculating the HSPF of a Heat Pump Having a 
             Single Indoor Unit With Multiple Indoor Blowers

    The calculation of the Eq. 4.2-1 quantities eh(Tj)/N and 
RH(Tj)/N are evaluated as specified in the applicable 
subsection.

[[Page 538]]

 4.2.7.1 For Multiple Indoor Blower Heat Pumps That Are Connected to a 
                   Singular, Single-Speed Outdoor Unit

    a. Calculate the space heating capacity, Qhk=1(Tj), and 
electrical power consumption, Ehk=1(Tj), of the heat pump 
when operating at the heating minimum air volume rate and outdoor 
temperature Tj using Eqs. 4.2.2-3 and 4.2.2-4, respectively. 
Use these same equations to calculate the space heating capacity, 
Qhk=2(Tj) and electrical power consumption, 
Ehk=2(Tj), of the test unit when operating at the heating 
full-load air volume rate and outdoor temperature Tj. In 
evaluating Eqs. 4.2.2-3 and 4.2.2- 4, determine the quantities 
Qhk=1(47) and Ehk=1(47) from the H11 
test; determine Qhk=2 (47) and Ehk=2(47) from the 
H12 test. Evaluate all four quantities according to section 
3.7 of this appendix. Determine the quantities Qhk=1(35) and 
Ehk=1(35) as specified in section 3.6.2 of this appendix. 
Determine Qhk=2(35) and Ehk=2(35) from the 
H22 frost accumulation test as calculated according to 
section 3.9.1 of this appendix. Determine the quantities 
Qhk=1(17) and Ehk=1(17) from the H31 
test, and Qhk=2(17) and Ehk=2(17) from the 
H32 test. Evaluate all four quantities according to section 
3.10 of this appendix. Refer to section 3.6.2 and Table 12 of this 
appendix for additional information on the referenced laboratory tests.
    b. Determine the heating mode cyclic degradation coefficient, CDh, 
as per sections 3.6.2 and 3.8 to 3.8.1 of this appendix. Assign this 
same value to CDh(k = 2).
    c. Except for using the above values of Qhk=1(Tj), 
Ehk=1(Tj), Qhk=2(Tj), Ehk=2(Tj), CDh, 
and CDh(k = 2), calculate the quantities eh(Tj)/N as 
specified in section 4.2.3.1 of this appendix for cases where 
Qhk=1(Tj) = BL(Tj). For all other 
outdoor bin temperatures, Tj, calculate eh(Tj)/N and RHh(Tj)/
N as specified in section 4.2.3.3 of this appendix if 
Qhk=2(Tj)  BL(Tj) or as specified in section 
4.2.3.4 of this appendix if Qhk=2(Tj) <= BL(Tj).

  4.2.7.2 For Multiple Indoor Blower Heat Pumps Connected to Either a 
 Single Outdoor Unit With a Two-capacity Compressor or to Two Separate 
Single-Speed Outdoor Units of Identical Model, calculate the quantities 
  eh(Tj)/N and RH(Tj)/N as specified in section 
                         4.2.3 of this appendix.

             4.3 Calculations of Off-mode Power Consumption

    For central air conditioners and heat pumps with a cooling capacity 
of:
    Less than 36,000 Btu/h, determine the off mode represented value, 
PW,OFF, with the following equation:
[GRAPHIC] [TIFF OMITTED] TR05JA17.140

greater than or equal to 36,000 Btu/h, calculate the capacity scaling 
factor according to:
[GRAPHIC] [TIFF OMITTED] TR05JA17.141

where QC(95) is the total cooling capacity at the A or A2 
test condition, and determine the off mode represented value, PW,OFF, 
with the following equation:
[GRAPHIC] [TIFF OMITTED] TR05JA17.142

          4.4 Rounding of SEER and HSPF for Reporting Purposes

    After calculating SEER according to section 4.1 of this appendix and 
HSPF according to section 4.2 of this appendix round the values off as 
specified per Sec.  430.23(m) of title 10 of the Code of Federal 
Regulations.

[[Page 539]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.143


[[Page 540]]


[GRAPHIC] [TIFF OMITTED] TR05JA17.144


    Table 22--Representative Cooling and Heating Load Hours for Each
                       Generalized Climatic Region
------------------------------------------------------------------------
                                           Cooling load    Heating load
             Climatic region                hours CLHR      hours HLHR
------------------------------------------------------------------------
I.......................................           2,400             750
II......................................           1,800           1,250
III.....................................           1,200           1,750
IV......................................             800           2,250
Rating Values...........................           1,000           2,080
V.......................................             400           2,750
VI......................................             200           2,750
------------------------------------------------------------------------

  4.5 Calculations of the SHR, Which Should Be Computed for Different 
   Equipment Configurations and Test Conditions Specified in Table 23

                 Table 23--Applicable Test Conditions For Calculation of the Sensible Heat Ratio
----------------------------------------------------------------------------------------------------------------
                                        Reference
      Equipment configuration         table Number    SHR computation with             Computed values
                                      of appendix M       results from
----------------------------------------------------------------------------------------------------------------
Units Having a Single-Speed                       4  B Test...............  SHR(B).
 Compressor and a Fixed-Speed
 Indoor blower, a Constant Air
 Volume Rate Indoor blower, or No
 Indoor blower.
Units Having a Single-Speed                       5  B2 and B1 Tests......  SHR(B1), SHR(B2).
 Compressor That Meet the section
 3.2.2.1 Indoor Unit Requirements.
Units Having a Two-Capacity                       6  B2 and B1 Tests......  SHR(B1), SHR(B2).
 Compressor.
Units Having a Variable-Speed                     7  B2 and B1 Tests......  SHR(B1), SHR(B2).
 Compressor.
----------------------------------------------------------------------------------------------------------------


[[Page 541]]

    The SHR is defined and calculated as follows:
    [GRAPHIC] [TIFF OMITTED] TR05JA17.145
    
Where both the total and sensible cooling capacities are determined from 
the same cooling mode test and calculated from data collected over the 
same 30-minute data collection interval.

         4.6 Calculations of the Energy Efficiency Ratio (EER).

    Calculate the energy efficiency ratio using.
    [GRAPHIC] [TIFF OMITTED] TR05JA17.146
    
where Qck(T) and Eck(T) are the space cooling capacity and electrical 
power consumption determined from the 30-minute data collection interval 
of the same steady-state wet coil cooling mode test and calculated as 
specified in section 3.3 of this appendix. Add the letter identification 
for each steady-state test as a subscript (e.g., EERA2) to differentiate 
among the resulting EER values.

[82 FR 1476, Jan. 5, 2017]



   Sec. Appendix M1 to Subpart B of Part 430--Uniform Test Method for 
 Measuring the Energy Consumption of Central Air Conditioners and Heat 
                                  Pumps

    Prior to January 1, 2023, any representations, including compliance 
certifications, made with respect to the energy use, power, or 
efficiency of central air conditioners and central air conditioning heat 
pumps must be based on the results of testing pursuant to appendix M of 
this subpart.
    On or after January 1, 2023, any representations, including 
compliance certifications, made with respect to the energy use, power, 
or efficiency of central air conditioners and central air conditioning 
heat pumps must be based on the results of testing pursuant to this 
appendix.

                         1 Scope and Definitions

                                1.1 Scope

    This test procedure provides a method of determining SEER2, EER2, 
HSPF2 and PW,OFF for central air conditioners and central air 
conditioning heat pumps including the following categories:
    (h) Split-system air conditioners, including single-split, multi-
head mini-split, multi-split (including VRF), and multi-circuit systems
    (i) Split-system heat pumps, including single-split, multi-head 
mini-split, multi-split (including VRF), and multi-circuit systems
    (j) Single-package air conditioners
    (k) Single-package heat pumps
    (l) Small-duct, high-velocity systems (including VRF)
    (m) Space-constrained products--air conditioners
    (n) Space-constrained products--heat pumps
    For the purposes of this appendix, the Department of Energy 
incorporates by reference specific sections of several industry 
standards, as listed in Sec.  430.3. In cases where

[[Page 542]]

there is a conflict, the language of the test procedure in this appendix 
takes precedence over the incorporated standards.
    All section references refer to sections within this appendix unless 
otherwise stated.

                             1.2 Definitions

    Airflow-control settings are programmed or wired control system 
configurations that control a fan to achieve discrete, differing ranges 
of airflow--often designated for performing a specific function (e.g., 
cooling, heating, or constant circulation)--without manual adjustment 
other than interaction with a user-operable control (i.e., a thermostat) 
that meets the manufacturer specifications for installed-use. For the 
purposes of this appendix, manufacturer specifications for installed-use 
are those found in the product literature shipped with the unit.
    Air sampling device is an assembly consisting of a manifold with 
several branch tubes with multiple sampling holes that draws an air 
sample from a critical location from the unit under test (e.g. indoor 
air inlet, indoor air outlet, outdoor air inlet, etc.).
    Airflow prevention device denotes a device that prevents airflow via 
natural convection by mechanical means, such as an air damper box, or by 
means of changes in duct height, such as an upturned duct.
    Aspirating psychrometer is a piece of equipment with a monitored 
airflow section that draws uniform airflow through the measurement 
section and has probes for measurement of air temperature and humidity.
    Blower coil indoor unit means an indoor unit either with an indoor 
blower housed with the coil or with a separate designated air mover such 
as a furnace or a modular blower (as defined in appendix AA to this 
subpart).
    Blower coil system refers to a split system that includes one or 
more blower coil indoor units.
    Cased coil means a coil-only indoor unit with external cabinetry.
    Ceiling-mount blower coil system means a split system for which a) 
the outdoor unit has a certified cooling capacity less than or equal to 
36,000 Btu/h; b) the indoor unit(s) is/are shipped with manufacturer-
supplied installation instructions that specify to secure the indoor 
unit only to the ceiling, within a furred-down space, or above a dropped 
ceiling of the conditioned space, with return air directly to the bottom 
of the unit without ductwork, or through the furred-down space, or 
optional insulated return air plenum that is shipped with the indoor 
unit; c) the installed height of the indoor unit is no more than 12 
inches (not including condensate drain lines) and the installed depth 
(in the direction of airflow) of the indoor unit is no more than 30 
inches; and d) supply air is discharged horizontally.
    Coefficient of Performance (COP) means the ratio of the average rate 
of space heating delivered to the average rate of electrical energy 
consumed by the heat pump. Determine these rate quantities from a single 
test or, if derived via interpolation, determine at a single set of 
operating conditions. COP is a dimensionless quantity. When determined 
for a ducted coil-only system, COP must be calculated using the default 
values for heat output and power input of a fan motor specified in 
sections 3.7 and 3.9.1 of this appendix.
    Coil-only indoor unit means an indoor unit that is distributed in 
commerce without an indoor blower or separate designated air mover. A 
coil-only indoor unit installed in the field relies on a separately 
installed furnace or a modular blower for indoor air movement.
    Coil-only system means a system that includes only (one or more) 
coil-only indoor units.
    Condensing unit removes the heat absorbed by the refrigerant to 
transfer it to the outside environment and consists of an outdoor coil, 
compressor(s), and air moving device.
    Constant-air-volume-rate indoor blower means a fan that varies its 
operating speed to provide a fixed air-volume-rate from a ducted system.
    Continuously recorded, when referring to a dry bulb measurement, dry 
bulb temperature used for test room control, wet bulb temperature, dew 
point temperature, or relative humidity measurements, means that the 
specified value must be sampled at regular intervals that are equal to 
or less than 15 seconds.
    Cooling load factor (CLF) means the ratio having as its numerator 
the total cooling delivered during a cyclic operating interval 
consisting of one ON period and one OFF period, and as its denominator 
the total cooling that would be delivered, given the same ambient 
conditions, had the unit operated continuously at its steady-state, 
space-cooling capacity for the same total time (ON + OFF) interval.
    Crankcase heater means any electrically powered device or mechanism 
for intentionally generating heat within and/or around the compressor 
sump volume. Crankcase heater control may be achieved using a timer or 
may be based on a change in temperature or some other measurable 
parameter, such that the crankcase heater is not required to operate 
continuously. A crankcase heater without controls operates continuously 
when the compressor is not operating.
    Cyclic Test means a test where the unit's compressor is cycled on 
and off for specific time intervals. A cyclic test provides half the 
information needed to calculate a degradation coefficient.

[[Page 543]]

    Damper box means a short section of duct having an air damper that 
meets the performance requirements of section 2.5.7 of this appendix.
    Degradation coefficient (CD) means a parameter used in calculating 
the part load factor. The degradation coefficient for cooling is denoted 
by CD\c\. The degradation coefficient for heating is denoted 
by CD\h\.
    Demand-defrost control system means a system that defrosts the heat 
pump outdoor coil-only when measuring a predetermined degradation of 
performance. The heat pump's controls either:
    (1) Monitor one or more parameters that always vary with the amount 
of frost accumulated on the outdoor coil (e.g., coil to air differential 
temperature, coil differential air pressure, outdoor fan power or 
current, optical sensors) at least once for every ten minutes of 
compressor ON-time when space heating; or
    (2) Operate as a feedback system that measures the length of the 
defrost period and adjusts defrost frequency accordingly. In all cases, 
when the frost parameter(s) reaches a predetermined value, the system 
initiates a defrost. In a demand-defrost control system, defrosts are 
terminated based on monitoring a parameter(s) that indicates that frost 
has been eliminated from the coil. (Note: Systems that vary defrost 
intervals according to outdoor dry-bulb temperature are not demand-
defrost systems.) A demand-defrost control system, which otherwise meets 
the requirements, may allow time-initiated defrosts if, and only if, 
such defrosts occur after 6 hours of compressor operating time.
    Design heating requirement (DHR) predicts the space heating load of 
a residence when subjected to outdoor design conditions. Estimates for 
the minimum and maximum DHR are provided for six generalized U.S. 
climatic regions in section 4.2 of this appendix.
    Dry-coil tests are cooling mode tests where the wet-bulb temperature 
of the air supplied to the indoor unit is maintained low enough that no 
condensate forms on the evaporator coil.
    Ducted system means an air conditioner or heat pump that is designed 
to be permanently installed equipment and delivers conditioned air to 
the indoor space through a duct(s). The air conditioner or heat pump may 
be either a split-system or a single-package unit.
    Energy efficiency ratio (EER) means the ratio of the average rate of 
space cooling delivered to the average rate of electrical energy 
consumed by the air conditioner or heat pump. Determine these rate 
quantities from a single test or, if derived via interpolation, 
determine at a single set of operating conditions. EER is expressed in 
units of
[GRAPHIC] [TIFF OMITTED] TR05JA17.147

When determined for a ducted coil-only system, EER must include, from 
this appendix, the section 3.3 and 3.5.1 default values for the heat 
output and power input of a fan motor. The represented value of EER 
determined in accordance with appendix M1 is EER2.
    Evaporator coil means an assembly that absorbs heat from an enclosed 
space and transfers the heat to a refrigerant.
    Heat pump means a kind of central air conditioner that utilizes an 
indoor conditioning coil, compressor, and refrigerant-to-outdoor air 
heat exchanger to provide air heating, and may also provide air cooling, 
air dehumidifying, air humidifying, air circulating, and air cleaning.
    Heat pump having a heat comfort controller means a heat pump with 
controls that can regulate the operation of the electric resistance 
elements to assure that the air temperature leaving the indoor section 
does not fall below a specified temperature. Heat pumps that actively 
regulate the rate of electric resistance heating when operating below 
the balance point (as the result of a second stage call from the 
thermostat) but do not operate to maintain a minimum delivery 
temperature are not considered as having a heat comfort controller.
    Heating load factor (HLF) means the ratio having as its numerator 
the total heating delivered during a cyclic operating interval 
consisting of one ON period and one OFF period, and its denominator the 
heating capacity measured at the same test conditions used for the 
cyclic test, multiplied by the total time interval (ON plus OFF) of the 
cyclic-test.
    Heating season means the months of the year that require heating, 
e.g., typically, and roughly, October through April.
    Heating seasonal performance factor 2 (HSPF2) means the total space 
heating required during the heating season, expressed in Btu, divided by 
the total electrical energy consumed by the heat pump system during the 
same season, expressed in watt-hours. The HSPF2 used to evaluate 
compliance with 10 CFR 430.32(c) is based on Region IV and the sampling 
plan stated in 10 CFR 429.16(a). HSPF2 is determined in accordance with 
appendix M1.
    Independent coil manufacturer (ICM) means a manufacturer that 
manufactures indoor

[[Page 544]]

units but does not manufacture single-package units or outdoor units.
    Indoor unit means a separate assembly of a split system that 
includes--
    (a) An arrangement of refrigerant-to-air heat transfer coil(s) for 
transfer of heat between the refrigerant and the indoor air,
    (b) A condensate drain pan, and may or may not include,
    (c) Sheet metal or plastic parts not part of external cabinetry to 
direct/route airflow over the coil(s),
    (d) A cooling mode expansion device,
    (e) External cabinetry, and
    (f) An integrated indoor blower (i.e. a device to move air including 
its associated motor). A separate designated air mover that may be a 
furnace or a modular blower (as defined in appendix AA to the subpart) 
may be considered to be part of the indoor unit. A service coil is not 
an indoor unit.
    Low-static blower coil system means a ducted multi-split or multi-
head mini-split system for which all indoor units produce greater than 
0.01 in. wc. and a maximum of 0.35 in. wc. external static pressure when 
operated at the cooling full-load air volume rate not exceeding 400 cfm 
per rated ton of cooling.
    Mid-static blower coil system means a ducted multi-split or multi-
head mini-split system for which all indoor units produce greater than 
0.20 in. wc. and a maximum of 0.65 in. wc. when operated at the cooling 
full-load air volume rate not exceeding 400 cfm per rated ton of 
cooling.
    Minimum-speed-limiting variable-speed heat pump means a heat pump 
for which the compressor speed (represented by revolutions per minute or 
motor power input frequency) is higher than its value for operation in a 
47 [deg]F ambient temperature for any bin temperature Tj for 
which the calculated heating load is less than the calculated 
intermediate-speed capacity.
    Mobile home blower coil system means a split system that contains an 
outdoor unit and an indoor unit that meet the following criteria:
    (1) Both the indoor and outdoor unit are shipped with manufacturer-
supplied installation instructions that specify installation only in a 
mobile home with the home and equipment complying with HUD Manufactured 
Home Construction Safety Standard 24 CFR part 3280;
    (2) The indoor unit cannot exceed 0.40 in. wc. when operated at the 
cooling full-load air volume rate not exceeding 400 cfm per rated ton of 
cooling; and
    (3) The indoor and outdoor unit each must bear a label in at least 
\1/4\ inch font that reads ``For installation only in HUD manufactured 
home per Construction Safety Standard 24 CFR part 3280.''
    Mobile home coil-only system means a coil-only split system that 
includes an outdoor unit and coil-only indoor unit that meet the 
following criteria:
    (1) The outdoor unit is shipped with manufacturer-supplied 
installation instructions that specify installation only for mobile 
homes that comply with HUD Manufactured Home Construction Safety 
Standard 24 CFR part 3280,
    (2) The coil-only indoor unit is shipped with manufacturer-supplied 
installation instructions that specify installation only in or with a 
mobile home furnace, modular blower, or designated air mover that 
complies with HUD Manufactured Home Construction Safety Standard 24 CFR 
part 3280, and has dimensions no greater than 20'' wide, 34'' high and 
21'' deep, and
    (3) The coil-only indoor unit and outdoor unit each has a label in 
at least \1/4\ inch font that reads ``For installation only in HUD 
manufactured home per Construction Safety Standard 24 CFR part 3280.''
    Multi-head mini-split system means a split system that has one 
outdoor unit and that has two or more indoor units connected with a 
single refrigeration circuit. The indoor units operate in unison in 
response to a single indoor thermostat.
    Multiple-circuit (or multi-circuit) system means a split system that 
has one outdoor unit and that has two or more indoor units installed on 
two or more refrigeration circuits such that each refrigeration circuit 
serves a compressor and one and only one indoor unit, and refrigerant is 
not shared from circuit to circuit.
    Multiple-split (or multi-split) system means a split system that has 
one outdoor unit and two or more coil-only indoor units and/or blower 
coil indoor units connected with a single refrigerant circuit. The 
indoor units operate independently and can condition multiple zones in 
response to at least two indoor thermostats or temperature sensors. The 
outdoor unit operates in response to independent operation of the indoor 
units based on control input of multiple indoor thermostats or 
temperature sensors, and/or based on refrigeration circuit sensor input 
(e.g., suction pressure).
    Nominal capacity means the capacity that is claimed by the 
manufacturer on the product name plate. Nominal cooling capacity is 
approximate to the air conditioner cooling capacity tested at A or 
A2 condition. Nominal heating capacity is approximate to the 
heat pump heating capacity tested in the H1N test.
    Non-ducted indoor unit means an indoor unit that is designed to be 
permanently installed, mounted on room walls and/or ceilings, and that 
directly heats or cools air within the conditioned space.
    Normalized Gross Indoor Fin Surface (NGIFS) means the gross fin 
surface area of the indoor unit coil divided by the cooling capacity 
measured for the A or A2 Test, whichever applies.

[[Page 545]]

    Off-mode power consumption means the power consumption when the unit 
is connected to its main power source but is neither providing cooling 
nor heating to the building it serves.
    Off-mode season means, for central air conditioners other than heat 
pumps, the shoulder season and the entire heating season; and for heat 
pumps, the shoulder season only.
    Outdoor unit means a separate assembly of a split system that 
transfers heat between the refrigerant and the outdoor air, and consists 
of an outdoor coil, compressor(s), an air moving device, and in addition 
for heat pumps, may include a heating mode expansion device, reversing 
valve, and/or defrost controls.
    Outdoor unit manufacturer (OUM) means a manufacturer of single-
package units, outdoor units, and/or both indoor units and outdoor 
units.
    Part-load factor (PLF) means the ratio of the cyclic EER (or COP for 
heating) to the steady-state EER (or COP), where both EERs (or COPs) are 
determined based on operation at the same ambient conditions.
    Seasonal energy efficiency ratio 2 (SEER2) means the total heat 
removed from the conditioned space during the annual cooling season, 
expressed in Btu's, divided by the total electrical energy consumed by 
the central air conditioner or heat pump during the same season, 
expressed in watt-hours. SEER2 is determined in accordance with appendix 
M1.
    Service coil means an arrangement of refrigerant-to-air heat 
transfer coil(s), condensate drain pan, sheet metal or plastic parts to 
direct/route airflow over the coil(s), which may or may not include 
external cabinetry and/or a cooling mode expansion device, distributed 
in commerce solely for replacing an uncased coil or cased coil that has 
already been placed into service, and that has been labeled ``for indoor 
coil replacement only'' on the nameplate and in manufacturer technical 
and product literature. The model number for any service coil must 
include some mechanism (e.g., an additional letter or number) for 
differentiating a service coil from a coil intended for an indoor unit.
    Shoulder season means the months of the year in between those months 
that require cooling and those months that require heating, e.g., 
typically, and roughly, April through May, and September through 
October.
    Single-package unit means any central air conditioner or heat pump 
that has all major assemblies enclosed in one cabinet.
    Single-split system means a split system that has one outdoor unit 
and one indoor unit connected with a single refrigeration circuit.
    Small-duct, high-velocity system means a split system for which all 
indoor units are blower coil indoor units that produce at least 1.2 
inches (of water column) of external static pressure when operated at 
the full-load air volume rate certified by the manufacturer of at least 
220 scfm per rated ton of cooling.
    Split system means any central air conditioner or heat pump that has 
at least two separate assemblies that are connected with refrigerant 
piping when installed. One of these assemblies includes an indoor coil 
that exchanges heat with the indoor air to provide heating or cooling, 
while one of the others includes an outdoor coil that exchanges heat 
with the outdoor air. Split systems may be either blower coil systems or 
coil-only systems.
    Standard Air means dry air having a mass density of 0.075 lb/ft\3\.
    Steady-state test means a test where the test conditions are 
regulated to remain as constant as possible while the unit operates 
continuously in the same mode.
    Temperature bin means the 5 [deg]F increments that are used to 
partition the outdoor dry-bulb temperature ranges of the cooling 
(=65 [deg]F) and heating (<65 [deg]F) seasons.
    Test condition tolerance means the maximum permissible difference 
between the average value of the measured test parameter and the 
specified test condition.
    Test operating tolerance means the maximum permissible range that a 
measurement may vary over the specified test interval. The difference 
between the maximum and minimum sampled values must be less than or 
equal to the specified test operating tolerance.
    Tested combination means a multi-head mini-split, multi-split, or 
multi-circuit system having the following features:
    (1) The system consists of one outdoor unit with one or more 
compressors matched with between two and five indoor units;
    (2) The indoor units must:
    (i) Collectively, have a nominal cooling capacity greater than or 
equal to 95 percent and less than or equal to 105 percent of the nominal 
cooling capacity of the outdoor unit;
    (ii) Each represent the highest sales volume model family, if this 
is possible while meeting all the requirements of this section. If this 
is not possible, one or more of the indoor units may represent another 
indoor model family in order that all the other requirements of this 
section are met.
    (iii) Individually not have a nominal cooling capacity greater than 
50 percent of the nominal cooling capacity of the outdoor unit, unless 
the nominal cooling capacity of the outdoor unit is 24,000 Btu/h or 
less;
    (iv) Operate at fan speeds consistent with manufacturer's 
specifications; and
    (v) All be subject to the same minimum external static pressure 
requirement while able to produce the same external static pressure

[[Page 546]]

at the exit of each outlet plenum when connected in a manifold 
configuration as required by the test procedure.
    (3) Where referenced, ``nominal cooling capacity'' means, for indoor 
units, the highest cooling capacity listed in published product 
literature for 95 [deg]F outdoor dry bulb temperature and 80 [deg]F dry 
bulb, 67 [deg]F wet bulb indoor conditions, and for outdoor units, the 
lowest cooling capacity listed in published product literature for these 
conditions. If incomplete or no operating conditions are published, use 
the highest (for indoor units) or lowest (for outdoor units) such 
cooling capacity available for sale.
    Time-adaptive defrost control system is a demand-defrost control 
system that measures the length of the prior defrost period(s) and uses 
that information to automatically determine when to initiate the next 
defrost cycle.
    Time-temperature defrost control systems initiate or evaluate 
initiating a defrost cycle only when a predetermined cumulative 
compressor ON-time is obtained. This predetermined ON-time is generally 
a fixed value (e.g., 30, 45, 90 minutes) although it may vary based on 
the measured outdoor dry-bulb temperature. The ON-time counter 
accumulates if controller measurements (e.g., outdoor temperature, 
evaporator temperature) indicate that frost formation conditions are 
present, and it is reset/remains at zero at all other times. In one 
application of the control scheme, a defrost is initiated whenever the 
counter time equals the predetermined ON-time. The counter is reset when 
the defrost cycle is completed.
    In a second application of the control scheme, one or more 
parameters are measured (e.g., air and/or refrigerant temperatures) at 
the predetermined, cumulative, compressor ON-time. A defrost is 
initiated only if the measured parameter(s) falls within a predetermined 
range. The ON-time counter is reset regardless of whether or not a 
defrost is initiated. If systems of this second type use cumulative ON-
time intervals of 10 minutes or less, then the heat pump may qualify as 
having a demand defrost control system (see definition).
    Triple-capacity, northern heat pump means a heat pump that provides 
two stages of cooling and three stages of heating. The two common stages 
for both the cooling and heating modes are the low capacity stage and 
the high capacity stage. The additional heating mode stage is the 
booster capacity stage, which offers the highest heating capacity output 
for a given set of ambient operating conditions.
    Triple-split system means a split system that is composed of three 
separate assemblies: An outdoor fan coil section, a blower coil indoor 
unit, and an indoor compressor section.
    Two-capacity (or two-stage) compressor system means a central air 
conditioner or heat pump that has a compressor or a group of compressors 
operating with only two stages of capacity. For such systems, low 
capacity means the compressor(s) operating at low stage, or at low load 
test conditions. The low compressor stage that operates for heating mode 
tests may be the same or different from the low compressor stage that 
operates for cooling mode tests. For such systems, high capacity means 
the compressor(s) operating at high stage, or at full load test 
conditions.
    Two-capacity, northern heat pump means a heat pump that has a 
factory or field-selectable lock-out feature to prevent space cooling at 
high-capacity. Two-capacity heat pumps having this feature will 
typically have two sets of ratings, one with the feature disabled and 
one with the feature enabled. The heat pump is a two-capacity northern 
heat pump only when this feature is enabled at all times. The certified 
indoor coil model number must reflect whether the ratings pertain to the 
lockout enabled option via the inclusion of an extra identifier, such as 
``+LO''. When testing as a two-capacity, northern heat pump, the lockout 
feature must remain enabled for all tests.
    Uncased coil means a coil-only indoor unit without external 
cabinetry.
    Variable refrigerant flow (VRF) system means a multi-split system 
with at least three compressor capacity stages, distributing refrigerant 
through a piping network to multiple indoor blower coil units each 
capable of individual zone temperature control, through proprietary zone 
temperature control devices and a common communications network. Note: 
Single-phase VRF systems less than 65,000 Btu/h are central air 
conditioners and central air conditioning heat pumps.
    Variable-speed compressor system means a central air conditioner or 
heat pump that has a compressor that uses a variable-speed drive to vary 
the compressor speed to achieve variable capacities. Wall-mount blower 
coil system means a split system air conditioner or heat pump for which:
    (a) The outdoor unit has a certified cooling capacity less than or 
equal to 36,000 Btu/h;
    (b) The indoor unit(s) is/are shipped with manufacturer-supplied 
installation instructions that specify mounting only by:
    (1) Securing the back side of the unit to a wall within the 
conditioned space, or
    (2) Securing the unit to adjacent wall studs or in an enclosure, 
such as a closet, such that the indoor unit's front face is flush with a 
wall in the conditioned space;
    (c) Has front air return without ductwork and is not capable of 
horizontal air discharge; and
    (d) Has a height no more than 45 inches, a depth (perpendicular to 
the wall) no more

[[Page 547]]

than 22 inches (including tubing connections), and a width no more than 
24 inches (parallel to the wall).
    Wet-coil test means a test conducted at test conditions that 
typically cause water vapor to condense on the test unit evaporator 
coil.

                    2 Testing Overview and Conditions

    (A) Test VRF systems using AHRI 1230-2010 (incorporated by 
reference, see Sec.  430.3) and appendix M. Where AHRI 1230-2010 refers 
to the appendix C therein substitute the provisions of this appendix. In 
cases where there is a conflict, the language of the test procedure in 
this appendix takes precedence over AHRI 1230-2010.
    For definitions use section 1 of appendix M and section 3 of AHRI 
1230-2010. For rounding requirements, refer to Sec.  430.23(m). For 
determination of certified ratings, refer to Sec.  429.16 of this 
chapter.
    For test room requirements, refer to section 2.1 of this appendix. 
For test unit installation requirements refer to sections 2.2.a, 2.2.b, 
2.2.c, 2.2.1, 2.2.2, 2.2.3.a, 2.2.3.c, 2.2.4, 2.2.5, and 2.4 to 2.12 of 
this appendix, and sections 5.1.3 and 5.1.4 of AHRI 1230-2010. The 
``manufacturer's published instructions,'' as stated in section 8.2 of 
ANSI/ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3) and 
``manufacturer's installation instructions'' discussed in this appendix 
mean the manufacturer's installation instructions that come packaged 
with or appear in the labels applied to the unit. This does not include 
online manuals. Installation instructions that appear in the labels 
applied to the unit take precedence over installation instructions that 
are shipped with the unit.
    For general requirements for the test procedure, refer to section 
3.1 of this appendix, except for sections 3.1.3 and 3.1.4, which are 
requirements for indoor air volume and outdoor air volume. For indoor 
air volume and outdoor air volume requirements, refer instead to section 
6.1.5 (except where section 6.1.5 refers to Table 8, refer instead to 
Table 4 of this appendix) and 6.1.6 of AHRI 1230-2010.
    For the test method, refer to sections 3.3 to 3.5 and 3.7 to 3.13 of 
this appendix. For cooling mode and heating mode test conditions, refer 
to section 6.2 of AHRI 1230-2010. For calculations of seasonal 
performance descriptors, refer to section 4 of this appendix.
    (B) For systems other than VRF, only a subset of the sections listed 
in this test procedure apply when testing and determining represented 
values for a particular unit. Table 1 shows the sections of the test 
procedure that apply to each system. This table is meant to assist 
manufacturers in finding the appropriate sections of the test procedure; 
the appendix sections rather than the table provide the specific 
requirements for testing, and given the varied nature of available 
units, manufacturers are responsible for determining which sections 
apply to each unit tested based on the model characteristics. To use 
this table, first refer to the sections listed under ``all units''. Then 
refer to additional requirements based on:
    (1) System configuration(s),
    (2) The compressor staging or modulation capability, and
    (3) Any special features.
    Testing requirements for space-constrained products do not differ 
from similar equipment that is not space-constrained and thus are not 
listed separately in this table. Air conditioners and heat pumps are not 
listed separately in this table, but heating procedures and calculations 
apply only to heat pumps.

[[Page 548]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.148


[[Page 549]]


[GRAPHIC] [TIFF OMITTED] TR05JA17.149


[[Page 550]]


[GRAPHIC] [TIFF OMITTED] TR05JA17.150

                       2.1 Test Room Requirements.

    a. Test using two side-by-side rooms: An indoor test room and an 
outdoor test room. For multiple-split, single-zone-multi-coil or multi-
circuit air conditioners and heat pumps, however, use as many indoor 
test rooms as needed to accommodate the total number of indoor units. 
These rooms must

[[Page 551]]

comply with the requirements specified in sections 8.1.2 and 8.1.3 of 
ANSI/ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3).
    b. Inside these test rooms, use artificial loads during cyclic tests 
and frost accumulation tests, if needed, to produce stabilized room air 
temperatures. For one room, select an electric resistance heater(s) 
having a heating capacity that is approximately equal to the heating 
capacity of the test unit's condenser. For the second room, select a 
heater(s) having a capacity that is close to the sensible cooling 
capacity of the test unit's evaporator. Cycle the heater located in the 
same room as the test unit evaporator coil ON and OFF when the test unit 
cycles ON and OFF. Cycle the heater located in the same room as the test 
unit condensing coil ON and OFF when the test unit cycles OFF and ON.

                2.2 Test Unit Installation Requirements.

    a. Install the unit according to section 8.2 of ANSI/ASHRAE 37-2009 
(incorporated by reference, see Sec.  430.3), subject to the following 
additional requirements:
    (1) When testing split systems, follow the requirements given in 
section 6.1.3.5 of AHRI 210/240-2008 (incorporated by reference, see 
Sec.  430.3). For the vapor refrigerant line(s), use the insulation 
included with the unit; if no insulation is provided, use insulation 
meeting the specifications for the insulation in the installation 
instructions included with the unit by the manufacturer; if no 
insulation is included with the unit and the installation instructions 
do not contain provisions for insulating the line(s), fully insulate the 
vapor refrigerant line(s) with vapor proof insulation having an inside 
diameter that matches the refrigerant tubing and a nominal thickness of 
at least 0.5 inches. For the liquid refrigerant line(s), use the 
insulation included with the unit; if no insulation is provided, use 
insulation meeting the specifications for the insulation in the 
installation instructions included with the unit by the manufacturer; if 
no insulation is included with the unit and the installation 
instructions do not contain provisions for insulating the line(s), leave 
the liquid refrigerant line(s) exposed to the air for air conditioners 
and heat pumps that heat and cool; or, for heating-only heat pumps, 
insulate the liquid refrigerant line(s) with insulation having an inside 
diameter that matches the refrigerant tubing and a nominal thickness of 
at least 0.5 inches. However, these requirements do not take priority 
over instructions for application of insulation for the purpose of 
improving refrigerant temperature measurement accuracy as required by 
sections 2.10.2 and 2.10.3 of this appendix. Insulation must be the same 
for the cooling and heating tests.
    (2) When testing split systems, if the indoor unit does not ship 
with a cooling mode expansion device, test the system using the device 
as specified in the installation instructions provided with the indoor 
unit. If none is specified, test the system using a fixed orifice or 
piston type expansion device that is sized appropriately for the system.
    (3) When testing triple-split systems (see section 1.2 of this 
appendix, Definitions), use the tubing length specified in section 
6.1.3.5 of AHRI 210/240-2008 (incorporated by reference, see Sec.  
430.3) to connect the outdoor coil, indoor compressor section, and 
indoor coil while still meeting the requirement of exposing 10 feet of 
the tubing to outside conditions;
    (4) When testing split systems having multiple indoor coils, connect 
each indoor blower coil unit to the outdoor unit using:
    (a) 25 feet of tubing, or
    (b) Tubing furnished by the manufacturer, whichever is longer.
    (5) When testing split systems having multiple indoor coils, expose 
at least 10 feet of the system interconnection tubing to the outside 
conditions. If they are needed to make a secondary measurement of 
capacity or for verification of refrigerant charge, install refrigerant 
pressure measuring instruments as described in section 8.2.5 of ANSI/
ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3). Section 
2.10 of this appendix specifies which secondary methods require 
refrigerant pressure measurements and section 2.2.5.5 of this appendix 
discusses use of pressure measurements to verify charge. At a minimum, 
insulate the low-pressure line(s) of a split system with insulation 
having an inside diameter that matches the refrigerant tubing and a 
nominal thickness of 0.5 inch.
    b. For units designed for both horizontal and vertical installation 
or for both up-flow and down-flow vertical installations, use the 
orientation for testing specified by the manufacturer in the 
certification report. Conduct testing with the following installed:
    (1) The most restrictive filter(s);
    (2) Supplementary heating coils; and
    (3) Other equipment specified as part of the unit, including all 
hardware used by a heat comfort controller if so equipped (see section 1 
of this appendix, Definitions). For small-duct, high-velocity systems, 
configure all balance dampers or restrictor devices on or inside the 
unit to fully open or lowest restriction.
    c. Testing a ducted unit without having an indoor air filter 
installed is permissible as long as the minimum external static pressure 
requirement is adjusted as stated in Table 4, note 3 (see section 3.1.4 
of this appendix). Except as noted in section 3.1.10 of this appendix, 
prevent the indoor air supplementary heating coils from operating during 
all tests. For uncased coils, create an enclosure using 1 inch 
fiberglass foil-faced ductboard having a nominal density of 6

[[Page 552]]

pounds per cubic foot. Or alternatively, construct an enclosure using 
sheet metal or a similar material and insulating material having a 
thermal resistance (``R'' value) between 4 and 6 hr [middot] ft\2\ 
[middot] [deg]F/Btu. Size the enclosure and seal between the coil and/or 
drainage pan and the interior of the enclosure as specified in 
installation instructions shipped with the unit. Also seal between the 
plenum and inlet and outlet ducts.
    d. When testing a coil-only system, install a toroidal-type 
transformer to power the system's low-voltage components, complying with 
any additional requirements for the transformer mentioned in the 
installation manuals included with the unit by the system manufacturer. 
If the installation manuals do not provide specifications for the 
transformer, use a transformer having the following features:
    (1) A nominal volt-amp rating such that the transformer is loaded 
between 25 and 90 percent of this rating for the highest level of power 
measured during the off mode test (section 3.13 of this appendix);
    (2) Designed to operate with a primary input of 230 V, single phase, 
60 Hz; and
    (3) That provides an output voltage that is within the specified 
range for each low-voltage component. Include the power consumption of 
the components connected to the transformer as part of the total system 
power consumption during the off mode tests; do not include the power 
consumed by the transformer when no load is connected to it.
    e. Test an outdoor unit with no match (i.e., that is not distributed 
in commerce with any indoor units) using a coil-only indoor unit with a 
single cooling air volume rate whose coil has:
    (1) Round tubes of outer diameter no less than 0.375 inches, and
    (2) A normalized gross indoor fin surface (NGIFS) no greater than 
1.0 square inch per British thermal unit per hour (sq. in./Btu/hr). 
NGIFS is calculated as follows:
    NGIFS = 2 x Lf x Wf x Nf / Qc(95)
where,

Lf = Indoor coil fin length in inches, also height of the 
          coil transverse to the tubes.

Wf = Indoor coil fin width in inches, also depth of the coil.

Nf = Number of fins.

Qc = the measured space cooling capacity of the tested outdoor unit/
          indoor unit combination as determined from the A2 
          or A Test whichever applies, Btu/h.

    f. If the outdoor unit or the outdoor portion of a single-package 
unit has a drain pan heater to prevent freezing of defrost water, 
energize the heater, subject to control to de-energize it when not 
needed by the heater's thermostat or the unit's control system, for all 
tests.
    g. If pressure measurement devices are connected to a cooling/
heating heat pump refrigerant circuit, the refrigerant charge 
Mt that could potentially transfer out of the connected 
pressure measurement systems (transducers, gauges, connections, and 
lines) between operating modes must be less than 2 percent of the 
factory refrigerant charge listed on the nameplate of the outdoor unit. 
If the outdoor unit nameplate has no listed refrigerant charge, or the 
heat pump is shipped without a refrigerant charge, use a factory 
refrigerant charge equal to 30 ounces per ton of certified cooling 
capacity. Use Equation 2.2-1 to calculate Mt for heat pumps 
that have a single expansion device located in the outdoor unit to serve 
each indoor unit, and use Equation 2.2-2 to calculate Mt for 
heat pumps that have two expansion devices per indoor unit.
[GRAPHIC] [TIFF OMITTED] TR05JA17.151

[GRAPHIC] [TIFF OMITTED] TR05JA17.152

where:

Vi (i=2,3,4 . . .) = the internal volume of the pressure 
          measurement system (pressure lines, fittings, and gauge and/or 
          transducer) at the location i (as indicated in Table 2), 
          (cubic inches)

fi (i=5,6) = 0 if the pressure measurement system is pitched 
          upwards from the pressure tap location to the gauge or 
          transducer, 1 if it is not.

r = the density associated with liquid refrigerant at 100 [deg]F bubble 
          point conditions (ounces per cubic inch)

                 Table 2--Pressure Measurement Locations
------------------------------------------------------------------------
                             Location
------------------------------------------------------------------------
Compressor Discharge.............................................      1
Between Outdoor Coil and Outdoor Expansion Valve(s)..............      2
Liquid Service Valve.............................................      3
Indoor Coil Inlet................................................      4

[[Page 553]]

 
Indoor Coil Outlet...............................................      5
Common Suction Port (i.e., vapor service valve)..................      6
Compressor Suction...............................................      7
------------------------------------------------------------------------

    Calculate the internal volume of each pressure measurement system 
using internal volume reported for pressure transducers and gauges in 
product literature, if available. If such information is not available, 
use the value of 0.1 cubic inch internal volume for each pressure 
transducer, and 0.2 cubic inches for each pressure gauge.
    In addition, for heat pumps that have a single expansion device 
located in the outdoor unit to serve each indoor unit, the internal 
volume of the pressure system at location 2 (as indicated in Table 2) 
must be no more than 1 cubic inches. Once the pressure measurement lines 
are set up, no change should be made until all tests are finished.

                     2.2.1 Defrost Control Settings

    Set heat pump defrost controls at the normal settings which most 
typify those encountered in generalized climatic region IV. (Refer to 
Figure 1 and Table 20 of section 4.2 of this appendix for information on 
region IV.) For heat pumps that use a time-adaptive defrost control 
system (see section 1.2 of this appendix, Definitions), the manufacturer 
must specify in the certification report the frosting interval to be 
used during frost accumulation tests and provide the procedure for 
manually initiating the defrost at the specified time.

2.2.2 Special Requirements for Units Having a Multiple-Speed Outdoor Fan

    Configure the multiple-speed outdoor fan according to the 
installation manual included with the unit by the manufacturer, and 
thereafter, leave it unchanged for all tests. The controls of the unit 
must regulate the operation of the outdoor fan during all lab tests 
except dry coil cooling mode tests. For dry coil cooling mode tests, the 
outdoor fan must operate at the same speed used during the required wet 
coil test conducted at the same outdoor test conditions.

  2.2.3 Special Requirements for Multi-Split Air Conditioners and Heat 
   Pumps and Ducted Systems Using a Single Indoor Section Containing 
 Multiple Indoor Blowers That Would Normally Operate Using Two or More 
                           Indoor Thermostats

    Because these systems will have more than one indoor blower and 
possibly multiple outdoor fans and compressor systems, references in 
this test procedure to a singular indoor blower, outdoor fan, and/or 
compressor means all indoor blowers, all outdoor fans, and all 
compressor systems that are energized during the test.
    a. Additional requirements for multi-split air conditioners and heat 
pumps. For any test where the system is operated at part load (i.e., one 
or more compressors ``off'', operating at the intermediate or minimum 
compressor speed, or at low compressor capacity), the manufacturer must 
designate in the certification report the indoor coil(s) that are not 
providing heating or cooling during the test. For variable-speed 
systems, the manufacturer must designate in the certification report at 
least one indoor unit that is not providing heating or cooling for all 
tests conducted at minimum compressor speed. For all other part-load 
tests, the manufacturer must choose to turn off zero, one, two, or more 
indoor units. The chosen configuration must remain unchanged for all 
tests conducted at the same compressor speed/capacity. For any indoor 
coil that is not providing heating or cooling during a test, cease 
forced airflow through this indoor coil and block its outlet duct.
    b. Additional requirements for ducted split systems with a single 
indoor unit containing multiple indoor blowers (or for single-package 
units with an indoor section containing multiple indoor blowers) where 
the indoor blowers are designed to cycle on and off independently of one 
another and are not controlled such that all indoor blowers are 
modulated to always operate at the same air volume rate or speed. For 
any test where the system is operated at its lowest capacity--i.e., the 
lowest total air volume rate allowed when operating the single-speed 
compressor or when operating at low compressor capacity--turn off indoor 
blowers accounting for at least one-third of the full-load air volume 
rate unless prevented by the controls of the unit. In such cases, turn 
off as many indoor blowers as permitted by the unit's controls. Where 
more than one option exists for meeting this ``off'' requirement, the 
manufacturer must indicate in its certification report which indoor 
blower(s) are turned off. The chosen configuration shall remain 
unchanged for all tests conducted at the same lowest capacity 
configuration. For any indoor coil turned off during a test, cease 
forced airflow through any outlet duct connected to a switched-off 
indoor blower.
    c. For test setups where the laboratory's physical limitations 
require use of more than the required line length of 25 feet as listed 
in section 2.2.a.(4) of this appendix, then the actual refrigerant line 
length used by the laboratory may exceed the required length and the 
refrigerant line length correction factors in Table 4 of AHRI 1230-2010 
are applied to the cooling capacity measured for each cooling mode test.

[[Page 554]]

2.2.4 Wet-Bulb Temperature Requirements for the Air Entering the Indoor 
                            and Outdoor Coils

                       2.2.4.1 Cooling Mode Tests

    For wet-coil cooling mode tests, regulate the water vapor content of 
the air entering the indoor unit so that the wet-bulb temperature is as 
listed in Tables 5 to 8. As noted in these same tables, achieve a wet-
bulb temperature during dry-coil cooling mode tests that results in no 
condensate forming on the indoor coil. Controlling the water vapor 
content of the air entering the outdoor side of the unit is not required 
for cooling mode tests except when testing:
    (1) Units that reject condensate to the outdoor coil during wet coil 
tests. Tables 5-8 list the applicable wet-bulb temperatures.
    (2) Single-package units where all or part of the indoor section is 
located in the outdoor test room. The average dew point temperature of 
the air entering the outdoor coil during wet coil tests must be within 
3.0 [deg]F of the average dew point temperature of 
the air entering the indoor coil over the 30-minute data collection 
interval described in section 3.3 of this appendix. For dry coil tests 
on such units, it may be necessary to limit the moisture content of the 
air entering the outdoor coil of the unit to meet the requirements of 
section 3.4 of this appendix.

                       2.2.4.2 Heating Mode Tests

    For heating mode tests, regulate the water vapor content of the air 
entering the outdoor unit to the applicable wet-bulb temperature listed 
in Tables 12 to 15. The wet-bulb temperature entering the indoor side of 
the heat pump must not exceed 60 [deg]F. Additionally, if the Outdoor 
Air Enthalpy test method (section 2.10.1 of this appendix) is used while 
testing a single-package heat pump where all or part of the outdoor 
section is located in the indoor test room, adjust the wet-bulb 
temperature for the air entering the indoor side to yield an indoor-side 
dew point temperature that is as close as reasonably possible to the dew 
point temperature of the outdoor-side entering air.

           2.2.5 Additional Refrigerant Charging Requirements

                2.2.5.1 Instructions to Use for Charging

    a. Where the manufacturer's installation instructions contain two 
sets of refrigerant charging criteria, one for field installations and 
one for lab testing, use the field installation criteria.
    b. For systems consisting of an outdoor unit manufacturer's outdoor 
section and indoor section with differing charging procedures, adjust 
the refrigerant charge per the outdoor installation instructions.
    c. For systems consisting of an outdoor unit manufacturer's outdoor 
unit and an independent coil manufacturer's indoor unit with differing 
charging procedures, adjust the refrigerant charge per the indoor unit's 
installation instructions. If instructions are provided only with the 
outdoor unit or are provided only with an independent coil 
manufacturer's indoor unit, then use the provided instructions.

                   2.2.5.2 Test(s) to Use for Charging

    a. Use the tests or operating conditions specified in the 
manufacturer's installation instructions for charging. The 
manufacturer's installation instructions may specify use of tests other 
than the A or A2 test for charging, but, unless the unit is a 
heating-only heat pump, determine the air volume rate by the A or 
A2 test as specified in section 3.1 of this appendix.
    b. If the manufacturer's installation instructions do not specify a 
test or operating conditions for charging or there are no manufacturer's 
instructions, use the following test(s):
    (1) For air conditioners or cooling and heating heat pumps, use the 
A or A2 test.
    (2) For cooling and heating heat pumps that do not operate in the H1 
or H12 test (e.g. due to shut down by the unit limiting 
devices) when tested using the charge determined at the A or 
A2 test, and for heating-only heat pumps, use the H1 or 
H12 test.

            2.2.5.3 Parameters to Set and Their Target Values

    a. Consult the manufacturer's installation instructions regarding 
which parameters (e.g., superheat) to set and their target values. If 
the instructions provide ranges of values, select target values equal to 
the midpoints of the provided ranges.
    b. In the event of conflicting information between charging 
instructions (i.e., multiple conditions given for charge adjustment 
where all conditions specified cannot be met), follow the following 
hierarchy.
    (1) For fixed orifice systems:
    (i) Superheat
    (ii) High side pressure or corresponding saturation or dew-point 
temperature
    (iii) Low side pressure or corresponding saturation or dew-point 
temperature
    (iv) Low side temperature
    (v) High side temperature
    (vi) Charge weight
    (2) For expansion valve systems:
    (i) Subcooling
    (ii) High side pressure or corresponding saturation or dew-point 
temperature
    (iii) Low side pressure or corresponding saturation or dew-point 
temperature

[[Page 555]]

    (iv) Approach temperature (difference between temperature of liquid 
leaving condenser and condenser average inlet air temperature)
    (v) Charge weight
    c. If there are no installation instructions and/or they do not 
provide parameters and target values, set superheat to a target value of 
12 [deg]F for fixed orifice systems or set subcooling to a target value 
of 10 [deg]F for expansion valve systems.

                       2.2.5.4 Charging Tolerances

    a. If the manufacturer's installation instructions specify 
tolerances on target values for the charging parameters, set the values 
within these tolerances.
    b. Otherwise, set parameter values within the following test 
condition tolerances for the different charging parameters:
    11. Superheat:  2.0 [deg]F
    12. Subcooling:  2.0 [deg]F
    13. High side pressure or corresponding saturation or dew point 
temperature:  4.0 psi or  
1.0 [deg]F
    14. Low side pressure or corresponding saturation or dew point 
temperature:  2.0 psi or  
0.8 [deg]F
    15. High side temperature:  2.0 [deg]F
    16. Low side temperature:  2.0 [deg]F
    17. Approach temperature:  1.0 [deg]F
    18. Charge weight:  2.0 ounce

                  2.2.5.5 Special Charging Instructions

    a. Cooling and Heating Heat Pumps
    If, using the initial charge set in the A or A2 test, the 
conditions are not within the range specified in manufacturer's 
installation instructions for the H1 or H12 test, make as 
small as possible an adjustment to obtain conditions for this test in 
the specified range. After this adjustment, recheck conditions in the A 
or A2 test to confirm that they are still within the 
specified range for the A or A2 test.

                        b. Single-Package Systems

    i. Unless otherwise directed by the manufacturer's installation 
instructions, install one or more refrigerant line pressure gauges 
during the setup of the unit, located depending on the parameters used 
to verify or set charge, as described:
    (1) Install a pressure gauge at the location of the service valve on 
the liquid line if charging is on the basis of subcooling, or high side 
pressure or corresponding saturation or dew point temperature;
    (2) Install a pressure gauge at the location of the service valve on 
the suction line if charging is on the basis of superheat, or low side 
pressure or corresponding saturation or dew point temperature.
    ii. Use methods for installing pressure gauge(s) at the required 
location(s) as indicated in manufacturer's instructions if specified.

           2.2.5.6 Near-Azeotropic and Zeotropic Refrigerants

    Perform charging of near-azeotropic and zeotropic refrigerants only 
with refrigerant in the liquid state.

               2.2.5.7 Adjustment of Charge Between Tests

    After charging the system as described in this test procedure, use 
the set refrigerant charge for all tests used to determine performance. 
Do not adjust the refrigerant charge at any point during testing. If 
measurements indicate that refrigerant charge has leaked during the 
test, repair the refrigerant leak, repeat any necessary set-up steps, 
and repeat all tests.

                       2.3 Indoor Air Volume Rates

    If a unit's controls allow for overspeeding the indoor blower 
(usually on a temporary basis), take the necessary steps to prevent 
overspeeding during all tests.

                           2.3.1 Cooling Tests

    a. Set indoor blower airflow-control settings (e.g., fan motor pin 
settings, fan motor speed) according to the requirements that are 
specified in section 3.1.4 of this appendix.
    b. Express the Cooling full-load air volume rate, the Cooling 
Minimum Air Volume Rate, and the Cooling Intermediate Air Volume Rate in 
terms of standard air.

                           2.3.2 Heating Tests

    a. Set indoor blower airflow-control settings (e.g., fan motor pin 
settings, fan motor speed) according to the requirements that are 
specified in section 3.1.4 of this appendix.
    b. Express the heating full-load air volume rate, the heating 
minimum air volume rate, the heating intermediate air volume rate, and 
the heating nominal air volume rate in terms of standard air.

            2.4 Indoor Coil Inlet and Outlet Duct Connections

    Insulate and/or construct the outlet plenum as described in section 
2.4.1 of this appendix and, if installed, the inlet plenum described in 
section 2.4.2 of this appendix with thermal insulation having a nominal 
overall resistance (R-value) of at least 19 hr[middot]ft\2\ [deg]F/Btu.

                 2.4.1 Outlet Plenum for the Indoor Unit

    a. Attach a plenum to the outlet of the indoor coil. (Note: For some 
packaged systems, the indoor coil may be located in the outdoor test 
room.)
    b. For systems having multiple indoor coils, or multiple indoor 
blowers within a single indoor section, attach a plenum to

[[Page 556]]

each indoor coil or indoor blower outlet. In order to reduce the number 
of required airflow measurement apparatuses (section 2.6 of this 
appendix), each such apparatus may serve multiple outlet plenums 
connected to a single common duct leading to the apparatus. More than 
one indoor test room may be used, which may use one or more common ducts 
leading to one or more airflow measurement apparatuses within each test 
room that contains multiple indoor coils. At the plane where each plenum 
enters a common duct, install an adjustable airflow damper and use it to 
equalize the static pressure in each plenum. The outlet air temperature 
grid(s) (section 2.5.4 of this appendix) and airflow measuring apparatus 
shall be located downstream of the inlet(s) to the common duct(s). For 
multiple-circuit (or multi-circuit) systems for which each indoor coil 
outlet is measured separately and its outlet plenum is not connected to 
a common duct connecting multiple outlet plenums, install the outlet air 
temperature grid and airflow measuring apparatus at each outlet plenum.
    c. For small-duct, high-velocity systems, install an outlet plenum 
that has a diameter that is equal to or less than the value listed in 
Table 3. The limit depends only on the Cooling full-load air volume rate 
(see section 3.1.4.1.1 of this appendix) and is effective regardless of 
the flange dimensions on the outlet of the unit (or an air supply plenum 
adapter accessory, if installed in accordance with the manufacturer's 
installation instructions).
    d. Add a static pressure tap to each face of the (each) outlet 
plenum, if rectangular, or at four evenly distributed locations along 
the circumference of an oval or round plenum. Create a manifold that 
connects the four static pressure taps. Figure 9 of ANSI/ASHRAE 37-2009 
(incorporated by reference, see Sec.  430.3) shows allowed options for 
the manifold configuration. The cross-sectional dimensions of plenum 
must be equal to the dimensions of the indoor unit outlet. See Figures 
7a, 7b, and 7c of ANSI/ASHRAE 37-2009 for the minimum length of the 
(each) outlet plenum and the locations for adding the static pressure 
taps for ducted blower coil indoor units and single-package systems. See 
Figure 8 of ANSI/ASHRAE 37-2009 for coil-only indoor units.

Table 3--Size of Outlet Plenum for Small-Duct High-Velocity Indoor Units
------------------------------------------------------------------------
                                                       Maximum diameter*
       Cooling full-load air volume rate (scfm)         of outlet plenum
                                                            (inches)
------------------------------------------------------------------------
<=500................................................                  6
501 to 700...........................................                  7
701 to 900...........................................                  8
901 to 1100..........................................                  9
1101 to 1400.........................................                 10
1401 to 1750.........................................                 11
------------------------------------------------------------------------
* If the outlet plenum is rectangular, calculate its equivalent diameter
  using (4A/P,) where A is the cross-sectional area and P is the
  perimeter of the rectangular plenum, and compare it to the listed
  maximum diameter.

                 2.4.2 Inlet Plenum for the Indoor Unit

    Install an inlet plenum when testing a coil-only indoor unit, a 
ducted blower coil indoor unit, or a single-package system. See Figures 
7b and 7c of ANSI/ASHRAE 37-2009 for cross-sectional dimensions, the 
minimum length of the inlet plenum, and the locations of the static-
pressure taps for ducted blower coil indoor units and single-package 
systems. See Figure 8 of ANSI/ASHRAE 37-2009 for coil-only indoor units. 
The inlet plenum duct size shall equal the size of the inlet opening of 
the air-handling (blower coil) unit or furnace. For a ducted blower coil 
indoor unit the set up may omit the inlet plenum if an inlet airflow 
prevention device is installed with a straight internally unobstructed 
duct on its outlet end with a minimum length equal to 1.5 times the 
square root of the cross-sectional area of the indoor unit inlet. See 
section 2.1.5.2 of this appendix for requirements for the locations of 
static pressure taps built into the inlet airflow prevention device. For 
all of these arrangements, make a manifold that connects the four 
static-pressure taps using one of the three configurations specified in 
section 2.4.1.d. of this appendix. Never use an inlet plenum when 
testing a non-ducted system.

    2.5 Indoor Coil Air Property Measurements and Airflow Prevention 
                                Devices.

    Follow instructions for indoor coil air property measurements as 
described in section 2.14 of this appendix, unless otherwise instructed 
in this section.
    a. Measure the dry-bulb temperature and water vapor content of the 
air entering and leaving the indoor coil. If needed, use an air sampling 
device to divert air to a sensor(s) that measures the water vapor 
content of the air. See section 5.3 of ANSI/ASHRAE 41.1-2013 
(incorporated by reference, see Sec.  430.3) for guidance on 
constructing an air sampling device. No part of the air sampling device 
or the tubing transferring the sampled air to the sensor must be within 
two inches of the test chamber floor, and the transfer tubing must be 
insulated. The sampling device may also be used for measurement of dry 
bulb temperature by transferring the sampled air to a remotely located

[[Page 557]]

sensor(s). The air sampling device and the remotely located temperature 
sensor(s) may be used to determine the entering air dry bulb temperature 
during any test. The air sampling device and the remotely located 
sensor(s) may be used to determine the leaving air dry bulb temperature 
for all tests except:
    (1) Cyclic tests; and
    (2) Frost accumulation tests.
    b. Install grids of temperature sensors to measure dry bulb 
temperatures of both the entering and leaving airstreams of the indoor 
unit. These grids of dry bulb temperature sensors may be used to measure 
average dry bulb temperature entering and leaving the indoor unit in all 
cases (as an alternative to the dry bulb sensor measuring the sampled 
air). The leaving airstream grid is required for measurement of average 
dry bulb temperature leaving the indoor unit for cyclic tests and frost 
accumulation tests. The grids are also required to measure the air 
temperature distribution of the entering and leaving airstreams as 
described in sections 3.1.8 of this appendix. Two such grids may be 
applied as a thermopile, to directly obtain the average temperature 
difference rather than directly measuring both entering and leaving 
average temperatures.
    c. Use of airflow prevention devices. Use an inlet and outlet air 
damper box, or use an inlet upturned duct and an outlet air damper box 
when conducting one or both of the cyclic tests listed in sections 3.2 
and 3.6 of this appendix on ducted systems. If not conducting any cyclic 
tests, an outlet air damper box is required when testing ducted and non-
ducted heat pumps that cycle off the indoor blower during defrost cycles 
and there is no other means for preventing natural or forced convection 
through the indoor unit when the indoor blower is off. Never use an 
inlet damper box or an inlet upturned duct when testing non-ducted 
indoor units. An inlet upturned duct is a length of ductwork installed 
upstream from the inlet such that the indoor duct inlet opening, facing 
upwards, is sufficiently high to prevent natural convection transfer out 
of the duct. If an inlet upturned duct is used, install a dry bulb 
temperature sensor near the inlet opening of the indoor duct at a 
centerline location not higher than the lowest elevation of the duct 
edges at the inlet, and ensure that any pair of 5-minute averages of the 
dry bulb temperature at this location, measured at least every minute 
during the compressor OFF period of the cyclic test, do not differ by 
more than 1.0 [deg]F.

2.5.1 Test Set-Up on the Inlet Side of the Indoor Coil: for Cases Where 
            the Inlet Airflow Prevention Device is Installed

    a. Install an airflow prevention device as specified in section 
2.5.1.1 or 2.5.1.2 of this appendix, whichever applies.
    b. For an inlet damper box, locate the grid of entering air dry-bulb 
temperature sensors, if used, and the air sampling device, or the sensor 
used to measure the water vapor content of the inlet air, at a location 
immediately upstream of the damper box inlet. For an inlet upturned 
duct, locate the grid of entering air dry-bulb temperature sensors, if 
used, and the air sampling device, or the sensor used to measure the 
water vapor content of the inlet air, at a location at least one foot 
downstream from the beginning of the insulated portion of the duct but 
before the static pressure measurement.
    2.5.1.1 If the section 2.4.2 inlet plenum is installed, construct 
the airflow prevention device having a cross-sectional flow area equal 
to or greater than the flow area of the inlet plenum. Install the 
airflow prevention device upstream of the inlet plenum and construct 
ductwork connecting it to the inlet plenum. If needed, use an adaptor 
plate or a transition duct section to connect the airflow prevention 
device with the inlet plenum. Insulate the ductwork and inlet plenum 
with thermal insulation that has a nominal overall resistance (R-value) 
of at least 19 hr [middot] ft\2\ [middot] [deg]F/Btu.
    2.5.1.2 If the section 2.4.2 inlet plenum is not installed, 
construct the airflow prevention device having a cross-sectional flow 
area equal to or greater than the flow area of the air inlet of the 
indoor unit. Install the airflow prevention device immediately upstream 
of the inlet of the indoor unit. If needed, use an adaptor plate or a 
short transition duct section to connect the airflow prevention device 
with the unit's air inlet. Add static pressure taps at the center of 
each face of a rectangular airflow prevention device, or at four evenly 
distributed locations along the circumference of an oval or round 
airflow prevention device. Locate the pressure taps at a distance from 
the indoor unit inlet equal to 0.5 times the square root of the cross 
sectional area of the indoor unit inlet. This location must be between 
the damper and the inlet of the indoor unit, if a damper is used. Make a 
manifold that connects the four static pressure taps using one of the 
configurations shown in Figure 9 of ANSI/ASHRAE 37-2009 (incorporated by 
reference, see Sec.  430.3). Insulate the ductwork with thermal 
insulation that has a nominal overall resistance (R-value) of at least 
19 hr[middot]ft\2\[middot] [deg]F/Btu.

2.5.2 Test Set-Up on the Inlet Side of the Indoor Unit: for Cases Where 
                No Airflow Prevention Device is Installed

    If using the section 2.4.2 inlet plenum and a grid of dry bulb 
temperature sensors, mount the grid at a location upstream of the static 
pressure taps described in section 2.4.2 of this appendix, preferably at 
the entrance plane of the inlet plenum. If the section 2.4.2

[[Page 558]]

inlet plenum is not used (i.e. for non-ducted units) locate a grid 
approximately 6 inches upstream of the indoor unit inlet. In the case of 
a system having multiple non-ducted indoor units, do this for each 
indoor unit. Position an air sampling device, or the sensor used to 
measure the water vapor content of the inlet air, immediately upstream 
of the (each) entering air dry-bulb temperature sensor grid. If a grid 
of sensors is not used, position the entering air sampling device (or 
the sensor used to measure the water vapor content of the inlet air) as 
if the grid were present.

        2.5.3 Indoor Coil Static Pressure Difference Measurement

    Fabricate pressure taps meeting all requirements described in 
section 6.5.2 of ANSI/ASHRAE 37-2009 (incorporated by reference, see 
Sec.  430.3) and illustrated in Figure 2A of AMCA 210-2007 (incorporated 
by reference, see Sec.  430.3), however, if adhering strictly to the 
description in section 6.5.2 of ANSI/ASHRAE 37-2009, the minimum 
pressure tap length of 2.5 times the inner diameter of Figure 2A of AMCA 
210-2007 is waived. Use a differential pressure measuring instrument 
that is accurate to within 0.01 inches of water 
and has a resolution of at least 0.01 inches of water to measure the 
static pressure difference between the indoor coil air inlet and outlet. 
Connect one side of the differential pressure instrument to the 
manifolded pressure taps installed in the outlet plenum. Connect the 
other side of the instrument to the manifolded pressure taps located in 
either the inlet plenum or incorporated within the airflow prevention 
device. For non-ducted systems that are tested with multiple outlet 
plenums, measure the static pressure within each outlet plenum relative 
to the surrounding atmosphere.

         2.5.4 Test Set-Up on the Outlet Side of the Indoor Coil

    a. Install an interconnecting duct between the outlet plenum 
described in section 2.4.1 of this appendix and the airflow measuring 
apparatus described below in section 2.6 of this appendix. The cross-
sectional flow area of the interconnecting duct must be equal to or 
greater than the flow area of the outlet plenum or the common duct used 
when testing non-ducted units having multiple indoor coils. If needed, 
use adaptor plates or transition duct sections to allow the connections. 
To minimize leakage, tape joints within the interconnecting duct (and 
the outlet plenum). Construct or insulate the entire flow section with 
thermal insulation having a nominal overall resistance (R-value) of at 
least 19 hr[middot]ft\2\[middot] [deg]F/Btu.
    b. Install a grid(s) of dry-bulb temperature sensors inside the 
interconnecting duct. Also, install an air sampling device, or the 
sensor(s) used to measure the water vapor content of the outlet air, 
inside the interconnecting duct. Locate the dry-bulb temperature grid(s) 
upstream of the air sampling device (or the in-duct sensor(s) used to 
measure the water vapor content of the outlet air). Turn off the sampler 
fan motor during the cyclic tests. Air leaving an indoor unit that is 
sampled by an air sampling device for remote water-vapor-content 
measurement must be returned to the interconnecting duct at a location:
    (1) Downstream of the air sampling device;
    (2) On the same side of the outlet air damper as the air sampling 
device; and
    (3) Upstream of the section 2.6 airflow measuring apparatus.

        2.5.4.1 Outlet Air Damper Box Placement and Requirements

    If using an outlet air damper box (see section 2.5 of this 
appendix), the leakage rate from the combination of the outlet plenum, 
the closed damper, and the duct section that connects these two 
components must not exceed 20 cubic feet per minute when a negative 
pressure of 1 inch of water column is maintained at the plenum's inlet.

       2.5.4.2 Procedures to Minimize Temperature Maldistribution

    Use these procedures if necessary to correct temperature 
maldistributions. Install a mixing device(s) upstream of the outlet air, 
dry-bulb temperature grid (but downstream of the outlet plenum static 
pressure taps). Use a perforated screen located between the mixing 
device and the dry-bulb temperature grid, with a maximum open area of 40 
percent. One or both items should help to meet the maximum outlet air 
temperature distribution specified in section 3.1.8 of this appendix. 
Mixing devices are described in sections 5.3.2 and 5.3.3 of ANSI/ASHRAE 
41.1-2013 and section 5.2.2 of ASHRAE 41.2-1987 (RA 1992) (incorporated 
by reference, see Sec.  430.3).

                     2.5.4.3 Minimizing Air Leakage

    For small-duct, high-velocity systems, install an air damper near 
the end of the interconnecting duct, just prior to the transition to the 
airflow measuring apparatus of section 2.6 of this appendix. To minimize 
air leakage, adjust this damper such that the pressure in the receiving 
chamber of the airflow measuring apparatus is no more than 0.5 inch of 
water higher than the surrounding test room ambient. If applicable, in 
lieu of installing a separate damper, use the outlet air damper box of 
sections 2.5 and 2.5.4.1 of this appendix if it allows variable 
positioning. Also apply these steps to any conventional indoor blower 
unit that creates a static pressure within the receiving chamber

[[Page 559]]

of the airflow measuring apparatus that exceeds the test room ambient 
pressure by more than 0.5 inches of water column.

                 2.5.5 Dry Bulb Temperature Measurement

    a. Measure dry bulb temperatures as specified in sections 4, 5.3, 6, 
and 7 of ANSI/ASHRAE 41.1-2013 (incorporated by reference, see Sec.  
430.3).
    b. Distribute the sensors of a dry-bulb temperature grid over the 
entire flow area. The required minimum is 9 sensors per grid.

                  2.5.6 Water Vapor Content Measurement

    Determine water vapor content by measuring dry-bulb temperature 
combined with the air wet-bulb temperature, dew point temperature, or 
relative humidity. If used, construct and apply wet-bulb temperature 
sensors as specified in sections 4, 5, 6, 7.2, 7.3, and 7.4 of ASHRAE 
41.6-2014 (incorporated by reference, see Sec.  430.3). The temperature 
sensor (wick removed) must be accurate to within 0.2 [deg]F. If used, apply dew point hygrometers as 
specified in sections 4, 5, 6, 7.1, and 7.4 of ASHRAE 41.6-2014. The dew 
point hygrometers must be accurate to within 0.4 
[deg]F when operated at conditions that result in the evaluation of dew 
points above 35 [deg]F. If used, a relative humidity (RH) meter must be 
accurate to within 0.7% RH. Other means to 
determine the psychrometric state of air may be used as long as the 
measurement accuracy is equivalent to or better than the accuracy 
achieved from using a wet-bulb temperature sensor that meets the above 
specifications.

              2.5.7 Air Damper Box Performance Requirements

    If used (see section 2.5 of this appendix), the air damper box(es) 
must be capable of being completely opened or completely closed within 
10 seconds for each action.

                     2.6 Airflow Measuring Apparatus

    a. Fabricate and operate an airflow measuring apparatus as specified 
in section 6.2 and 6.3 of ANSI/ASHRAE 37-2009 (incorporated by 
reference, see Sec.  430.3). Place the static pressure taps and position 
the diffusion baffle (settling means) relative to the chamber inlet as 
indicated in Figure 12 of AMCA 210-07 and/or Figure 14 of ASHRAE 41.2-
1987 (RA 1992) (incorporated by reference, see Sec.  430.3). When 
measuring the static pressure difference across nozzles and/or velocity 
pressure at nozzle throats using electronic pressure transducers and a 
data acquisition system, if high frequency fluctuations cause 
measurement variations to exceed the test tolerance limits specified in 
section 9.2 and Table 2 of ANSI/ASHRAE 37-2009, dampen the measurement 
system such that the time constant associated with response to a step 
change in measurement (time for the response to change 63% of the way 
from the initial output to the final output) is no longer than five 
seconds.
    b. Connect the airflow measuring apparatus to the interconnecting 
duct section described in section 2.5.4 of this appendix. See sections 
6.1.1, 6.1.2, and 6.1.4, and Figures 1, 2, and 4 of ANSI/ASHRAE 37-2009; 
and Figures D1, D2, and D4 of AHRI 210/240-2008 (incorporated by 
reference, see Sec.  430.3) with Addendum 1 and 2 for illustrative 
examples of how the test apparatus may be applied within a complete 
laboratory set-up. Instead of following one of these examples, an 
alternative set-up may be used to handle the air leaving the airflow 
measuring apparatus and to supply properly conditioned air to the test 
unit's inlet. The alternative set-up, however, must not interfere with 
the prescribed means for measuring airflow rate, inlet and outlet air 
temperatures, inlet and outlet water vapor contents, and external static 
pressures, nor create abnormal conditions surrounding the test unit. 
(Note: Do not use an enclosure as described in section 6.1.3 of ANSI/
ASHRAE 37-2009 when testing triple-split units.)

                      2.7 Electrical Voltage Supply

    Perform all tests at the voltage specified in section 6.1.3.2 of 
AHRI 210/240-2008 (incorporated by reference, see Sec.  430.3) for 
``Standard Rating Tests.'' If either the indoor or the outdoor unit has 
a 208V or 200V nameplate voltage and the other unit has a 230V nameplate 
rating, select the voltage supply on the outdoor unit for testing. 
Otherwise, supply each unit with its own nameplate voltage. Measure the 
supply voltage at the terminals on the test unit using a volt meter that 
provides a reading that is accurate to within 1.0 
percent of the measured quantity.

              2.8 Electrical Power and Energy Measurements

    a. Use an integrating power (watt-hour) measuring system to 
determine the electrical energy or average electrical power supplied to 
all components of the air conditioner or heat pump (including auxiliary 
components such as controls, transformers, crankcase heater, integral 
condensate pump on non-ducted indoor units, etc.). The watt-hour 
measuring system must give readings that are accurate to within 0.5 percent. For cyclic tests, this accuracy is required 
during both the ON and OFF cycles. Use either two different scales on 
the same watt-hour meter or two separate watt-hour meters. Activate the 
scale or meter having the lower power rating within 15 seconds after 
beginning an OFF cycle. Activate the scale or meter having the higher 
power rating within 15 seconds prior to beginning an ON cycle. For 
ducted blower coil systems, the ON cycle lasts from compressor ON to 
indoor blower OFF. For ducted coil-only systems, the ON

[[Page 560]]

cycle lasts from compressor ON to compressor OFF. For non-ducted units, 
the ON cycle lasts from indoor blower ON to indoor blower OFF. When 
testing air conditioners and heat pumps having a variable-speed 
compressor, avoid using an induction watt/watt-hour meter.
    b. When performing section 3.5 and/or 3.8 cyclic tests on non-ducted 
units, provide instrumentation to determine the average electrical power 
consumption of the indoor blower motor to within 1.0 percent. If required according to sections 3.3, 3.4, 
3.7, 3.9.1 of this appendix, and/or 3.10 of this appendix, this same 
instrumentation requirement (to determine the average electrical power 
consumption of the indoor blower motor to within 1.0 percent) applies when testing air conditioners and 
heat pumps having a variable-speed constant-air-volume-rate indoor 
blower or a variable-speed, variable-air-volume-rate indoor blower.

                          2.9 Time Measurements

    Make elapsed time measurements using an instrument that yields 
readings accurate to within 0.2 percent.

   2.10 Test Apparatus for the Secondary Space Conditioning Capacity 
                               Measurement

    For all tests, use the indoor air enthalpy method to measure the 
unit's capacity. This method uses the test set-up specified in sections 
2.4 to 2.6 of this appendix. In addition, for all steady-state tests, 
conduct a second, independent measurement of capacity as described in 
section 3.1.1 of this appendix. For split systems, use one of the 
following secondary measurement methods: outdoor air enthalpy method, 
compressor calibration method, or refrigerant enthalpy method. For 
single-package units, use either the outdoor air enthalpy method or the 
compressor calibration method as the secondary measurement.

                   2.10.1 Outdoor Air Enthalpy Method

    a. To make a secondary measurement of indoor space conditioning 
capacity using the outdoor air enthalpy method, do the following:
    (1) Measure the electrical power consumption of the test unit;
    (2) Measure the air-side capacity at the outdoor coil; and
    (3) Apply a heat balance on the refrigerant cycle.
    b. The test apparatus required for the outdoor air enthalpy method 
is a subset of the apparatus used for the indoor air enthalpy method. 
Required apparatus includes the following:
    (1) On the outlet side, an outlet plenum containing static pressure 
taps (sections 2.4, 2.4.1, and 2.5.3 of this appendix),
    (2) An airflow measuring apparatus (section 2.6 of this appendix),
    (3) A duct section that connects these two components and itself 
contains the instrumentation for measuring the dry-bulb temperature and 
water vapor content of the air leaving the outdoor coil (sections 2.5.4, 
2.5.5, and 2.5.6 of this appendix), and
    (4) On the inlet side, a sampling device and temperature grid 
(section 2.11.b of this appendix).
    c. During the free outdoor air tests described in sections 3.11.1 
and 3.11.1.1 of this appendix, measure the evaporator and condenser 
temperatures or pressures. On both the outdoor coil and the indoor coil, 
solder a thermocouple onto a return bend located at or near the midpoint 
of each coil or at points not affected by vapor superheat or liquid 
subcooling. Alternatively, if the test unit is not sensitive to the 
refrigerant charge, install pressure gages to the access valves or to 
ports created from tapping into the suction and discharge lines 
according to sections 7.4.2 and 8.2.5 of ANSI/ASHRAE 37-2009. Use this 
alternative approach when testing a unit charged with a zeotropic 
refrigerant having a temperature glide in excess of 1 [deg]F at the 
specified test conditions.

                  2.10.2 Compressor Calibration Method

    Measure refrigerant pressures and temperatures to determine the 
evaporator superheat and the enthalpy of the refrigerant that enters and 
exits the indoor coil. Determine refrigerant flow rate or, when the 
superheat of the refrigerant leaving the evaporator is less than 5 
[deg]F, total capacity from separate calibration tests conducted under 
identical operating conditions. When using this method, install 
instrumentation and measure refrigerant properties according to section 
7.4.2 and 8.2.5 of ANSI/ASHRAE 37-2009 (incorporated by reference, see 
Sec.  430.3). If removing the refrigerant before applying refrigerant 
lines and subsequently recharging, use the steps in 7.4.2 of ANSI/ASHRAE 
37-2009 in addition to the methods of section 2.2.5 of this appendix to 
confirm the refrigerant charge. Use refrigerant temperature and pressure 
measuring instruments that meet the specifications given in sections 
5.1.1 and 5.2 of ANSI/ASHRAE 37-2009.

                   2.10.3 Refrigerant Enthalpy Method

    For this method, calculate space conditioning capacity by 
determining the refrigerant enthalpy change for the indoor coil and 
directly measuring the refrigerant flow rate. Use section 7.5.2 of ANSI/
ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3) for the 
requirements for this method, including the additional instrumentation 
requirements, and information on placing the flow

[[Page 561]]

meter and a sight glass. Use refrigerant temperature, pressure, and flow 
measuring instruments that meet the specifications given in sections 
5.1.1, 5.2, and 5.5.1 of ANSI/ASHRAE 37-2009. Refrigerant flow 
measurement device(s), if used, must be either elevated at least two 
feet from the test chamber floor or placed upon insulating material 
having a total thermal resistance of at least R-12 and extending at 
least one foot laterally beyond each side of the device(s)' exposed 
surfaces.

            2.11 Measurement of Test Room Ambient Conditions

    Follow instructions for setting up air sampling device and 
aspirating psychrometer as described in section 2.14 of this appendix, 
unless otherwise instructed in this section.
    a. If using a test set-up where air is ducted directly from the 
conditioning apparatus to the indoor coil inlet (see Figure 2, Loop Air-
Enthalpy Test Method Arrangement, of ANSI/ASHRAE 37-2009 (incorporated 
by reference, see Sec.  430.3)), add instrumentation to permit 
measurement of the indoor test room dry-bulb temperature.
    b. On the outdoor side, use one of the following two approaches, 
except that approach (1) is required for all evaporatively cooled units 
and units that transfer condensate to the outdoor unit for evaporation 
using condenser heat.
    (1) Use sampling tree air collection on all air-inlet surfaces of 
the outdoor unit.
    (2) Use sampling tree air collection on one or more faces of the 
outdoor unit and demonstrate air temperature uniformity as follows. 
Install a grid of evenly distributed thermocouples on each air-
permitting face on the inlet of the outdoor unit. Install the 
thermocouples on the air sampling device, locate them individually or 
attach them to a wire structure. If not installed on the air sampling 
device, install the thermocouple grid 6 to 24 inches from the unit. 
Evenly space the thermocouples across the coil inlet surface and install 
them to avoid sampling of discharge air or blockage of air 
recirculation. The grid of thermocouples must provide at least 16 
measuring points per face or one measurement per square foot of inlet 
face area, whichever is less. Construct this grid and use as per section 
5.3 of ANSI/ASHRAE 41.1-2013 (incorporated by reference, see Sec.  
430.3). The maximum difference between the average temperatures measured 
during the test period of any two pairs of these individual 
thermocouples located at any of the faces of the inlet of the outdoor 
unit, must not exceed 2.0 [deg]F, otherwise use approach (1).
    Locate the air sampling devices at the geometric center of each 
side; the branches may be oriented either parallel or perpendicular to 
the longer edges of the air inlet area. Size the air sampling devices in 
the outdoor air inlet location such that they cover at least 75% of the 
face area of the side of the coil that they are measuring.
    Review air distribution at the test facility point of supply to the 
unit and remediate as necessary prior to the beginning of testing. 
Mixing fans can be used to ensure adequate air distribution in the test 
room. If used, orient mixing fans such that they are pointed away from 
the air intake so that the mixing fan exhaust does not affect the 
outdoor coil air volume rate. Particular attention should be given to 
prevent the mixing fans from affecting (enhancing or limiting) 
recirculation of condenser fan exhaust air back through the unit. Any 
fan used to enhance test room air mixing shall not cause air velocities 
in the vicinity of the test unit to exceed 500 feet per minute.
    The air sampling device may be larger than the face area of the side 
being measured. Take care, however, to prevent discharge air from being 
sampled. If an air sampling device dimension extends beyond the inlet 
area of the unit, block holes in the air sampling device to prevent 
sampling of discharge air. Holes can be blocked to reduce the region of 
coverage of the intake holes both in the direction of the trunk axis or 
perpendicular to the trunk axis. For intake hole region reduction in the 
direction of the trunk axis, block holes of one or more adjacent pairs 
of branches (the branches of a pair connect opposite each other at the 
same trunk location) at either the outlet end or the closed end of the 
trunk. For intake hole region reduction perpendicular to the trunk axis, 
block off the same number of holes on each branch on both sides of the 
trunk.
    Connect a maximum of four (4) air sampling devices to each 
aspirating psychrometer. In order to proportionately divide the flow 
stream for multiple air sampling devices for a given aspirating 
psychrometer, the tubing or conduit conveying sampled air to the 
psychrometer must be of equivalent lengths for each air sampling device. 
Preferentially, the air sampling device should be hard connected to the 
aspirating psychrometer, but if space constraints do not allow this, the 
assembly shall have a means of allowing a flexible tube to connect the 
air sampling device to the aspirating psychrometer. Insulate and route 
the tubing or conduit to prevent heat transfer to the air stream. 
Insulate any surface of the air conveying tubing in contact with 
surrounding air at a different temperature than the sampled air with 
thermal insulation with a nominal thermal resistance (R-value) of at 
least 19 hr  ft\2\  [deg]F/Btu. 
Alternatively the conduit may have lower thermal resistance if 
additional sensor(s) are used to measure dry bulb temperature at the 
outlet of each air sampling device. No part of the air sampling device 
or the tubing conducting the sampled air to the sensors may be within 
two inches of the test chamber floor.

[[Page 562]]

    Take pairs of measurements (e.g. dry bulb temperature and wet bulb 
temperature) used to determine water vapor content of sampled air in the 
same location.

                 2.12 Measurement of Indoor Blower Speed

    When required, measure fan speed using a revolution counter, 
tachometer, or stroboscope that gives readings accurate to within 1.0 percent.

                 2.13 Measurement of Barometric Pressure

    Determine the average barometric pressure during each test. Use an 
instrument that meets the requirements specified in section 5.2 of ANSI/
ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3).

    2.14 Air Sampling Device and Aspirating Psychrometer Requirements

    Make air temperature measurements in accordance with ANSI/ASHRAE 
41.1-2013 (incorporated by reference, see Sec.  430.3), unless otherwise 
instructed in this section.

                 2.14.1 Air Sampling Device Requirements

    The air sampling device is intended to draw in a sample of the air 
at the critical locations of a unit under test. Construct the device 
from stainless steel, plastic or other suitable, durable materials. It 
shall have a main flow trunk tube with a series of branch tubes 
connected to the trunk tube. Holes must be on the side of the sampler 
facing the upstream direction of the air source. Use other sizes and 
rectangular shapes, and scale them accordingly with the following 
guidelines:
    1. Minimum hole density of 6 holes per square foot of area to be 
sampled.
    2. Sampler branch tube pitch (spacing) of 6  3 
in.
    3. Manifold trunk to branch diameter ratio having a minimum of 3:1 
ratio.
    4. Distribute hole pitch (spacing) equally over the branch (\1/2\ 
pitch from the closed end to the nearest hole).
    5. Maximum individual hole to branch diameter ratio of 1:2 (1:3 
preferred).
    The minimum average velocity through the air sampling device holes 
must be 2.5 ft/s as determined by evaluating the sum of the open area of 
the holes as compared to the flow area in the aspirating psychrometer.

                     2.14.2 Aspirating Psychrometer

    The psychrometer consists of a flow section and a fan to draw air 
through the flow section and measures an average value of the sampled 
air stream. At a minimum, the flow section shall have a means for 
measuring the dry bulb temperature (typically, a resistance temperature 
device (RTD) and a means for measuring the humidity (RTD with wetted 
sock, chilled mirror hygrometer, or relative humidity sensor). The 
aspirating psychrometer shall include a fan that either can be adjusted 
manually or automatically to maintain required velocity across the 
sensors.
    Construct the psychrometer using suitable material which may be 
plastic (such as polycarbonate), aluminum or other metallic materials. 
Construct all psychrometers for a given system being tested, using the 
same material. Design the psychrometers such that radiant heat from the 
motor (for driving the fan that draws sampled air through the 
psychrometer) does not affect sensor measurements. For aspirating 
psychrometers, velocity across the wet bulb sensor must be 1000  200 ft/min. For all other psychrometers, velocity must 
be as specified by the sensor manufacturer.

                          3 Testing Procedures

                        3.1 General Requirements

    If, during the testing process, an equipment set-up adjustment is 
made that would have altered the performance of the unit during any 
already completed test, then repeat all tests affected by the 
adjustment. For cyclic tests, instead of maintaining an air volume rate, 
for each airflow nozzle, maintain the static pressure difference or 
velocity pressure during an ON period at the same pressure difference or 
velocity pressure as measured during the steady-state test conducted at 
the same test conditions.
    Use the testing procedures in this section to collect the data used 
for calculating
    (1) Performance metrics for central air conditioners and heat pumps 
during the cooling season;
    (2) Performance metrics for heat pumps during the heating season; 
and
    (3) Power consumption metric(s) for central air conditioners and 
heat pumps during the off mode season(s).

                3.1.1 Primary and Secondary Test Methods

    For all tests, use the indoor air enthalpy method test apparatus to 
determine the unit's space conditioning capacity. The procedure and data 
collected, however, differ slightly depending upon whether the test is a 
steady-state test, a cyclic test, or a frost accumulation test. The 
following sections described these differences. For full-capacity 
cooling-mode test and (for a heat pump) the full-capacity heating-mode 
test, use one of the acceptable secondary methods specified in section 
2.10 of this appendix to determine indoor space conditioning capacity. 
Calculate this secondary check of capacity according to section 3.11 of 
this appendix. The two capacity measurements must agree to within 6 
percent to constitute a valid test. For this capacity comparison, use 
the Indoor Air Enthalpy Method capacity that is calculated in section 
7.3 of ANSI/ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3)

[[Page 563]]

(and, if testing a coil-only system, compare capacities before making 
the after-test fan heat adjustments described in section 3.3, 3.4, 3.7, 
and 3.10 of this appendix). However, include the appropriate section 3.3 
to 3.5 and 3.7 to 3.10 fan heat adjustments within the indoor air 
enthalpy method capacities used for the section 4 seasonal calculations 
of this appendix.

             3.1.2 Manufacturer-Provided Equipment Overrides

    Where needed, the manufacturer must provide a means for overriding 
the controls of the test unit so that the compressor(s) operates at the 
specified speed or capacity and the indoor blower operates at the 
specified speed or delivers the specified air volume rate.

                 3.1.3 Airflow Through the Outdoor Coil

    For all tests, meet the requirements given in section 6.1.3.4 of 
AHRI 210/240-2008 (incorporated by reference, see Sec.  430.3) when 
obtaining the airflow through the outdoor coil.

                          3.1.3.1 Double-Ducted

    For products intended to be installed with the outdoor airflow 
ducted, install the unit with outdoor coil ductwork installed per 
manufacturer installation instructions. The unit must operate between 
0.10 and 0.15 in H2O external static pressure. Make external 
static pressure measurements in accordance with ANSI/ASHRAE 37-2009 
section 6.4 and 6.5.

                  3.1.4 Airflow Through the Indoor Coil

    Determine airflow setting(s) before testing begins. Unless otherwise 
specified within this or its subsections, make no changes to the airflow 
setting(s) after initiation of testing.

                3.1.4.1 Cooling Full-Load Air Volume Rate

      3.1.4.1.1 Cooling Full-Load Air Volume Rate for Ducted Units

    Identify the certified Cooling full-load air volume rate and 
certified instructions for setting fan speed or controls. If there is no 
certified Cooling full-load air volume rate, use a value equal to the 
certified cooling capacity of the unit times 400 scfm per 12,000 Btu/h. 
If there are no instructions for setting fan speed or controls, use the 
as-shipped settings. Use the following procedure to confirm and, if 
necessary, adjust the Cooling full-load air volume rate and the fan 
speed or control settings to meet each test procedure requirement:
    a. For all ducted blower coil systems, except those having a 
constant-air-volume-rate indoor blower:
    Step (1) Operate the unit under conditions specified for the A (for 
single-stage units) or A2 test using the certified fan speed 
or controls settings, and adjust the exhaust fan of the airflow 
measuring apparatus to achieve the certified Cooling full-load air 
volume rate;
    Step (2) Measure the external static pressure;
    Step (3) If this external static pressure is equal to or greater 
than the applicable minimum external static pressure cited in Table 4, 
the pressure requirement is satisfied; proceed to step 7 of this 
section. If this external static pressure is not equal to or greater 
than the applicable minimum external static pressure cited in Table 4, 
proceed to step 4 of this section;
    Step (4) Increase the external static pressure by adjusting the 
exhaust fan of the airflow measuring apparatus until either
    (i) The applicable Table 4 minimum is equaled or
    (ii) The measured air volume rate equals 90 percent or less of the 
Cooling full-load air volume rate, whichever occurs first;
    Step (5) If the conditions of step 4 (i) of this section occur 
first, the pressure requirement is satisfied; proceed to step 7 of this 
section. If the conditions of step 4 (ii) of this section occur first, 
proceed to step 6 of this section;
    Step (6) Make an incremental change to the setup of the indoor 
blower (e.g., next highest fan motor pin setting, next highest fan motor 
speed) and repeat the evaluation process beginning above, at step 1 of 
this section. If the indoor blower setup cannot be further changed, 
increase the external static pressure by adjusting the exhaust fan of 
the airflow measuring apparatus until the applicable Table 4 minimum is 
equaled; proceed to step 7 of this section;
    Step (7) The airflow constraints have been satisfied. Use the 
measured air volume rate as the Cooling full-load air volume rate. Use 
the final fan speed or control settings for all tests that use the 
Cooling full-load air volume rate.
    b. For ducted blower coil systems with a constant-air-volume-rate 
indoor blower. For all tests that specify the Cooling full-load air 
volume rate, obtain an external static pressure as close to (but not 
less than) the applicable Table 4 value that does not cause automatic 
shutdown of the indoor blower or air volume rate variation 
QVar, defined as follows, greater than 10 percent.

[[Page 564]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.153


Where:

Qmax = maximum measured airflow value

Qmin = minimum measured airflow value

QVar = airflow variance, percent

    Additional test steps as described in section 3.3.e of this appendix 
are required if the measured external static pressure exceeds the target 
value by more than 0.03 inches of water.
    c. For coil-only indoor units. For the A or A2 Test, 
(exclusively), the pressure drop across the indoor coil assembly must 
not exceed 0.30 inches of water. If this pressure drop is exceeded, 
reduce the air volume rate until the measured pressure drop equals the 
specified maximum. Use this reduced air volume rate for all tests that 
require the Cooling full-load air volume rate.

Table 4--Minimum External Static Pressure for Ducted Blower Coil Systems
------------------------------------------------------------------------
                                                              Minimum
                                                             external
                     Product variety                          static
                                                           pressure (in.
                                                               wc.)
------------------------------------------------------------------------
Conventional (i.e., all central air conditioners and                0.50
 heat pumps not otherwise listed in this table).........
Ceiling-mount and Wall-mount............................            0.30
Mobile Home.............................................            0.30
Low Static..............................................            0.10
Mid Static..............................................            0.30
Small Duct, High Velocity...............................            1.15
Space-constrained.......................................            0.30
------------------------------------------------------------------------
\1\ For ducted units tested without an air filter installed, increase
  the applicable tabular value by 0.08 inches of water.
\2\ See section 1.2, Definitions, to determine for which Table 4 product
  variety and associated minimum external static pressure requirement
  equipment qualifies.
\3\ If a closed-loop, air-enthalpy test apparatus is used on the indoor
  side, limit the resistance to airflow on the inlet side of the indoor
  blower coil to a maximum value of 0.1 inch of water.

    d. For ducted systems having multiple indoor blowers within a single 
indoor section, obtain the full-load air volume rate with all indoor 
blowers operating unless prevented by the controls of the unit. In such 
cases, turn on the maximum number of indoor blowers permitted by the 
unit's controls. Where more than one option exists for meeting this 
``on'' indoor blower requirement, which indoor blower(s) are turned on 
must match that specified in the certification report. Conduct section 
3.1.4.1.1 setup steps for each indoor blower separately. If two or more 
indoor blowers are connected to a common duct as per section 2.4.1 of 
this appendix, temporarily divert their air volume to the test room when 
confirming or adjusting the setup configuration of individual indoor 
blowers. The allocation of the system's full-load air volume rate 
assigned to each ``on'' indoor blower must match that specified by the 
manufacturer in the certification report.

    3.1.4.1.2 Cooling Full-Load Air Volume Rate for Non-Ducted Units

    For non-ducted units, the Cooling full-load air volume rate is the 
air volume rate that results during each test when the unit is operated 
at an external static pressure of zero inches of water.

                 3.1.4.2 Cooling Minimum Air Volume Rate

    Identify the certified cooling minimum air volume rate and certified 
instructions for setting fan speed or controls. If there is no certified 
cooling minimum air volume rate, use the final indoor blower control 
settings as determined when setting the cooling full-load air volume 
rate, and readjust the exhaust fan of the airflow measuring apparatus if 
necessary to reset to the cooling full load air volume obtained in 
section 3.1.4.1 of this appendix. Otherwise, calculate the target 
external static pressure and follow instructions a, b, c, d, or e of 
this section. The target external static pressure, 
[Delta]Pst_i, for any test ``i'' with a specified air volume 
rate not equal to the Cooling full-load air volume rate is determined as 
follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.154

Where:

[Delta]Pst_i = target minimum external static pressure for 
          test i;


[[Page 565]]


[Delta]Pst_full = minimum external static pressure for test A 
          or A2 (Table 4);

Qi = air volume rate for test i; and

Qfull = Cooling full-load air volume rate as measured after 
          setting and/or adjustment as described in section 3.1.4.1.1 of 
          this appendix.

    a. For a ducted blower coil system without a constant-air-volume 
indoor blower, adjust for external static pressure as follows:
    Step (1) Operate the unit under conditions specified for the 
B1 test using the certified fan speed or controls settings, 
and adjust the exhaust fan of the airflow measuring apparatus to achieve 
the certified cooling minimum air volume rate;
    Step (2) Measure the external static pressure;
    Step (3) If this pressure is equal to or greater than the minimum 
external static pressure computed above, the pressure requirement is 
satisfied; proceed to step 7 of this section. If this pressure is not 
equal to or greater than the minimum external static pressure computed 
above, proceed to step 4 of this section;
    Step (4) Increase the external static pressure by adjusting the 
exhaust fan of the airflow measuring apparatus until either
    (i) The pressure is equal to the minimum external static pressure 
computed above or
    (ii) The measured air volume rate equals 90 percent or less of the 
cooling minimum air volume rate, whichever occurs first;
    Step (5) If the conditions of step 4 (i) of this section occur 
first, the pressure requirement is satisfied; proceed to step 7 of this 
section. If the conditions of step 4 (ii) of this section occur first, 
proceed to step 6 of this section;
    Step (6) Make an incremental change to the setup of the indoor 
blower (e.g., next highest fan motor pin setting, next highest fan motor 
speed) and repeat the evaluation process beginning above, at step 1 of 
this section. If the indoor blower setup cannot be further changed, 
increase the external static pressure by adjusting the exhaust fan of 
the airflow measuring apparatus until it equals the minimum external 
static pressure computed above; proceed to step 7 of this section;
    Step (7) The airflow constraints have been satisfied. Use the 
measured air volume rate as the cooling minimum air volume rate. Use the 
final fan speed or control settings for all tests that use the cooling 
minimum air volume rate.
    b. For ducted units with constant-air-volume indoor blowers, conduct 
all tests that specify the cooling minimum air volume rate--(i.e., the 
A1, B1, C1, F1, and 
G1 Tests)--at an external static pressure that does not cause 
an automatic shutdown of the indoor blower or air volume rate variation 
QVar, defined in section 3.1.4.1.1.b of this appendix, 
greater than 10 percent, while being as close to, but not less than the 
target minimum external static pressure. Additional test steps as 
described in section 3.3.e of this appendix are required if the measured 
external static pressure exceeds the target value by more than 0.03 
inches of water.
    c. For ducted two-capacity coil-only systems, the cooling minimum 
air volume rate is the higher of--
    (1) The rate specified by the installation instructions included 
with the unit by the manufacturer; or
    (2) 75 percent of the cooling full-load air volume rate. During the 
laboratory tests on a coil-only (fanless) system, obtain this cooling 
minimum air volume rate regardless of the pressure drop across the 
indoor coil assembly.
    d. For non-ducted units, the cooling minimum air volume rate is the 
air volume rate that results during each test when the unit operates at 
an external static pressure of zero inches of water and at the indoor 
blower setting used at low compressor capacity (two-capacity system) or 
minimum compressor speed (variable-speed system). For units having a 
single-speed compressor and a variable-speed variable-air-volume-rate 
indoor blower, use the lowest fan setting allowed for cooling.
    e. For ducted systems having multiple indoor blowers within a single 
indoor section, operate the indoor blowers such that the lowest air 
volume rate allowed by the unit's controls is obtained when operating 
the lone single-speed compressor or when operating at low compressor 
capacity while meeting the requirements of section 2.2.3.2 of this 
appendix for the minimum number of blowers that must be turned off. 
Using the target external static pressure and the certified air volume 
rates, follow the procedures described in section 3.1.4.2.a of this 
appendix if the indoor blowers are not constant-air-volume indoor 
blowers or as described in section 3.1.4.2.b of this appendix if the 
indoor blowers are not constant-air-volume indoor blowers. The sum of 
the individual ``on'' indoor blowers' air volume rates is the cooling 
minimum air volume rate for the system.

              3.1.4.3 Cooling Intermediate Air Volume Rate

    Identify the certified cooling intermediate air volume rate and 
certified instructions for setting fan speed or controls. If there is no 
certified cooling intermediate air volume rate, use the final indoor 
blower control settings as determined when setting the cooling full load 
air volume rate, and readjust the exhaust fan of the airflow measuring 
apparatus if necessary to reset to the cooling full load air volume 
obtained in section 3.1.4.1 of this appendix. Otherwise, calculate 
target minimum external static pressure as described in section 3.1.4.2 
of this appendix, and set the air volume rate as follows.

[[Page 566]]

    a. For a ducted blower coil system without a constant-air-volume 
indoor blower, adjust for external static pressure as described in 
section 3.1.4.2.a of this appendix for cooling minimum air volume rate.
    b. For a ducted blower coil system with a constant-air-volume indoor 
blower, conduct the EV Test at an external static pressure 
that does not cause an automatic shutdown of the indoor blower or air 
volume rate variation QVar, defined in section 3.1.4.1.1.b of 
this appendix, greater than 10 percent, while being as close to, but not 
less than the target minimum external static pressure. Additional test 
steps as described in section 3.3.e of this appendix are required if the 
measured external static pressure exceeds the target value by more than 
0.03 inches of water.
    c. For non-ducted units, the cooling intermediate air volume rate is 
the air volume rate that results when the unit operates at an external 
static pressure of zero inches of water and at the fan speed selected by 
the controls of the unit for the EV Test conditions.

                3.1.4.4 Heating Full-Load Air Volume Rate

3.1.4.4.1 Ducted Heat Pumps Where the Heating and Cooling Full-Load Air 
                        Volume Rates Are the Same

    a. Use the Cooling full-load air volume rate as the heating full-
load air volume rate for:
    (1) Ducted blower coil system heat pumps that do not have a 
constant-air-volume indoor blower, and that operate at the same airflow-
control setting during both the A (or A2) and the H1 (or 
H12) Tests;
    (2) Ducted blower coil system heat pumps with constant-air-flow 
indoor blowers that provide the same airflow for the A (or 
A2) and the H1 (or H12) Tests; and
    (3) Ducted heat pumps that are tested with a coil-only indoor unit 
(except two-capacity northern heat pumps that are tested only at low 
capacity cooling--see section 3.1.4.4.2 of this appendix).
    b. For heat pumps that meet the above criteria ``1'' and ``3,'' no 
minimum requirements apply to the measured external or internal, 
respectively, static pressure. Use the final indoor blower control 
settings as determined when setting the Cooling full-load air volume 
rate, and readjust the exhaust fan of the airflow measuring apparatus if 
necessary to reset to the cooling full-load air volume obtained in 
section 3.1.4.1 of this appendix. For heat pumps that meet the above 
criterion ``2,'' test at an external static pressure that does not cause 
an automatic shutdown of the indoor blower or air volume rate variation 
QVar, defined in section 3.1.4.1.1.b of this appendix, 
greater than 10 percent, while being as close to, but not less than, the 
same Table 4 minimum external static pressure as was specified for the A 
(or A2) cooling mode test. Additional test steps as described 
in section 3.9.1.c of this appendix are required if the measured 
external static pressure exceeds the target value by more than 0.03 
inches of water.

3.1.4.4.2 Ducted Heat Pumps Where the Heating and Cooling Full-Load Air 
 Volume Rates Are Different Due to Changes in Indoor Blower Operation, 
              i.e. Speed Adjustment by the System Controls

    Identify the certified heating full-load air volume rate and 
certified instructions for setting fan speed or controls. If there is no 
certified heating full-load air volume rate, use the final indoor blower 
control settings as determined when setting the cooling full-load air 
volume rate, and readjust the exhaust fan of the airflow measuring 
apparatus if necessary to reset to the cooling full-load air volume 
obtained in section 3.1.4.1 of this appendix. Otherwise, calculate the 
target minimum external static pressure as described in section 3.1.4.2 
of this appendix and set the air volume rate as follows.
    a. For ducted blower coil system heat pumps that do not have a 
constant-air-volume indoor blower, adjust for external static pressure 
as described in section 3.1.4.2.a of this appendix for cooling minimum 
air volume rate.
    b. For ducted heat pumps tested with constant-air-volume indoor 
blowers installed, conduct all tests that specify the heating full-load 
air volume rate at an external static pressure that does not cause an 
automatic shutdown of the indoor blower or air volume rate variation 
QVar, defined in section 3.1.4.1.1.b of this appendix, 
greater than 10 percent, while being as close to, but not less than the 
target minimum external static pressure. Additional test steps as 
described in section 3.9.1.c of this appendix are required if the 
measured external static pressure exceeds the target value by more than 
0.03 inches of water.
    c. When testing ducted, two-capacity blower coil system northern 
heat pumps (see section 1.2 of this appendix, Definitions), use the 
appropriate approach of the above two cases. For coil-only system 
northern heat pumps, the heating full-load air volume rate is the lesser 
of the rate specified by the manufacturer in the installation 
instructions included with the unit or 133 percent of the cooling full-
load air volume rate. For this latter case, obtain the heating full-load 
air volume rate regardless of the pressure drop across the indoor coil 
assembly.
    d. For ducted systems having multiple indoor blowers within a single 
indoor section, obtain the heating full-load air volume rate using the 
same ``on'' indoor blowers as used for the Cooling full-load air volume 
rate. Using the target external static pressure and the certified air 
volume rates, follow the procedures as described in section 3.1.4.4.2.a 
of this appendix if the indoor blowers are not

[[Page 567]]

constant-air-volume indoor blowers or as described in section 
3.1.4.4.2.b of this appendix if the indoor blowers are constant-air-
volume indoor blowers. The sum of the individual ``on'' indoor blowers' 
air volume rates is the heating full-load air volume rate for the 
system.

                3.1.4.4.3 Ducted Heating-Only Heat Pumps

    Identify the certified heating full-load air volume rate and 
certified instructions for setting fan speed or controls. If there is no 
certified heating full-load air volume rate, use a value equal to the 
certified heating capacity of the unit times 400 scfm per 12,000 Btu/h. 
If there are no instructions for setting fan speed or controls, use the 
as-shipped settings.
    a. For all ducted heating-only blower coil system heat pumps, except 
those having a constant-air-volume-rate indoor blower. Conduct the 
following steps only during the first test, the H1 or H12 
test:
    Step (1) Adjust the exhaust fan of the airflow measuring apparatus 
to achieve the certified heating full-load air volume rate.
    Step (2) Measure the external static pressure.
    Step (3) If this pressure is equal to or greater than the Table 4 
minimum external static pressure that applies given the heating-only 
heat pump's rated heating capacity, the pressure requirement is 
satisfied; proceed to step 7 of this section. If this pressure is not 
equal to or greater than the applicable Table 4 minimum external static 
pressure, proceed to step 4 of this section;
    Step (4) Increase the external static pressure by adjusting the 
exhaust fan of the airflow measuring apparatus until either--
    (i) The pressure is equal to the applicable Table 4 minimum external 
static pressure; or
    (ii) The measured air volume rate equals 90 percent or less of the 
heating full-load air volume rate, whichever occurs first;
    Step (5) If the conditions of step 4 (i) of this section occur 
first, the pressure requirement is satisfied; proceed to step 7 of this 
section. If the conditions of step 4 (ii) of this section occur first, 
proceed to step 6 of this section;
    Step (6) Make an incremental change to the setup of the indoor 
blower (e.g., next highest fan motor pin setting, next highest fan motor 
speed) and repeat the evaluation process beginning above, at step 1 of 
this section. If the indoor blower setup cannot be further changed, 
increase the external static pressure by adjusting the exhaust fan of 
the airflow measuring apparatus until it equals the applicable Table 4 
minimum external static pressure; proceed to step 7 of this section;
    Step (7) The airflow constraints have been satisfied. Use the 
measured air volume rate as the heating full-load air volume rate. Use 
the final fan speed or control settings for all tests that use the 
heating full-load air volume rate.
    b. For ducted heating-only blower coil system heat pumps having a 
constant-air-volume-rate indoor blower. For all tests that specify the 
heating full-load air volume rate, obtain an external static pressure 
that does not cause an automatic shutdown of the indoor blower or air 
volume rate variation QVar, defined in section 3.1.4.1.1.b of 
this section, greater than 10 percent, while being as close to, but not 
less than, the applicable Table 4 minimum. Additional test steps as 
described in section 3.9.1.c of this appendix are required if the 
measured external static pressure exceeds the target value by more than 
0.03 inches of water.
    c. For ducted heating-only coil-only system heat pumps in the H1 or 
H12 Test, (exclusively), the pressure drop across the indoor 
coil assembly must not exceed 0.30 inches of water. If this pressure 
drop is exceeded, reduce the air volume rate until the measured pressure 
drop equals the specified maximum. Use this reduced air volume rate for 
all tests that require the heating full-load air volume rate.

3.1.4.4.4 Non-Ducted Heat Pumps, Including Non-Ducted Heating-Only Heat 
                                  Pumps

    For non-ducted heat pumps, the heating full-load air volume rate is 
the air volume rate that results during each test when the unit operates 
at an external static pressure of zero inches of water.

                 3.1.4.5 Heating Minimum Air Volume Rate

 3.1.4.5.1 Ducted Heat Pumps Where the Heating and Cooling Minimum Air 
                        Volume Rates are the Same

    a. Use the cooling minimum air volume rate as the heating minimum 
air volume rate for:
    (1) Ducted blower coil system heat pumps that do not have a 
constant-air-volume indoor blower, and that operates at the same 
airflow-control setting during both the A1 and the 
H11 tests;
    (2) Ducted blower coil system heat pumps with constant-air-flow 
indoor blowers installed that provide the same airflow for the 
A1 and the H11 Tests; and
    (3) Ducted coil-only system heat pumps.
    b. For heat pumps that meet the above criteria ``1'' and ``3,'' no 
minimum requirements apply to the measured external or internal, 
respectively, static pressure. Use the final indoor blower control 
settings as determined when setting the cooling minimum air volume rate, 
and readjust the exhaust fan of the airflow measuring apparatus if 
necessary to reset to the cooling minimum air volume

[[Page 568]]

rate obtained in section 3.1.4.2 of this appendix. For heat pumps that 
meet the above criterion ``2,'' test at an external static pressure that 
does not cause an automatic shutdown of the indoor blower or air volume 
rate variation QVar, defined in section 3.1.4.1.1.b, greater 
than 10 percent, while being as close to, but not less than, the same 
target minimum external static pressure as was specified for the 
A1 cooling mode test. Additional test steps as described in 
section 3.9.1.c of this appendix are required if the measured external 
static pressure exceeds the target value by more than 0.03 inches of 
water.

 3.1.4.5.2 Ducted Heat Pumps Where the Heating and Cooling Minimum Air 
 Volume Rates Are Different Due to Indoor Blower Operation, i.e. Speed 
                    Adjustment by the System Controls

    Identify the certified heating minimum air volume rate and certified 
instructions for setting fan speed or controls. If there is no certified 
heating minimum air volume rate, use the final indoor blower control 
settings as determined when setting the cooling minimum air volume rate, 
and readjust the exhaust fan of the airflow measuring apparatus if 
necessary to reset to the cooling minimum air volume obtained in section 
3.1.4.2 of this appendix. Otherwise, calculate the target minimum 
external static pressure as described in section 3.1.4.2 of this 
appendix.
    a. For ducted blower coil system heat pumps that do not have a 
constant-air-volume indoor blower, adjust for external static pressure 
as described in section 3.1.4.2.a of this appendix for cooling minimum 
air volume rate.
    b. For ducted heat pumps tested with constant-air-volume indoor 
blowers installed, conduct all tests that specify the heating minimum 
air volume rate--(i.e., the H01, H11, 
H21, and H31 Tests)--at an external static 
pressure that does not cause an automatic shutdown of the indoor blower 
while being as close to, but not less than the air volume rate variation 
QVar, defined in section 3.1.4.1.1.b of this appendix, 
greater than 10 percent, while being as close to, but not less than the 
target minimum external static pressure. Additional test steps as 
described in section 3.9.1.c of this appendix are required if the 
measured external static pressure exceeds the target value by more than 
0.03 inches of water.
    c. For ducted two-capacity blower coil system northern heat pumps, 
use the appropriate approach of the above two cases.
    d. For ducted two-capacity coil-only system heat pumps, use the 
cooling minimum air volume rate as the heating minimum air volume rate. 
For ducted two-capacity coil-only system northern heat pumps, use the 
cooling full-load air volume rate as the heating minimum air volume 
rate. For ducted two-capacity heating-only coil-only system heat pumps, 
the heating minimum air volume rate is the higher of the rate specified 
by the manufacturer in the test setup instructions included with the 
unit or 75 percent of the heating full-load air volume rate. During the 
laboratory tests on a coil-only system, obtain the heating minimum air 
volume rate without regard to the pressure drop across the indoor coil 
assembly.
    e. For non-ducted heat pumps, the heating minimum air volume rate is 
the air volume rate that results during each test when the unit operates 
at an external static pressure of zero inches of water and at the indoor 
blower setting used at low compressor capacity (two-capacity system) or 
minimum compressor speed (variable-speed system). For units having a 
single-speed compressor and a variable-speed, variable-air-volume-rate 
indoor blower, use the lowest fan setting allowed for heating.
    f. For ducted systems with multiple indoor blowers within a single 
indoor section, obtain the heating minimum air volume rate using the 
same ``on'' indoor blowers as used for the cooling minimum air volume 
rate. Using the target external static pressure and the certified air 
volume rates, follow the procedures as described in section 3.1.4.5.2.a 
of this appendix if the indoor blowers are not constant-air-volume 
indoor blowers or as described in section 3.1.4.5.2.b of this appendix 
if the indoor blowers are constant-air-volume indoor blowers. The sum of 
the individual ``on'' indoor blowers' air volume rates is the heating 
full-load air volume rate for the system.

              3.1.4.6 Heating Intermediate Air Volume Rate

    Identify the certified heating intermediate air volume rate and 
certified instructions for setting fan speed or controls. If there is no 
certified heating intermediate air volume rate, use the final indoor 
blower control settings as determined when setting the heating full-load 
air volume rate, and readjust the exhaust fan of the airflow measuring 
apparatus if necessary to reset to the cooling full-load air volume 
obtained in section 3.1.4.2 of this appendix. Calculate the target 
minimum external static pressure as described in section 3.1.4.2 of this 
appendix.
    a. For ducted blower coil system heat pumps that do not have a 
constant-air-volume indoor blower, adjust for external static pressure 
as described in section 3.1.4.2.a of this appendix for cooling minimum 
air volume rate.
    b. For ducted heat pumps tested with constant-air-volume indoor 
blowers installed, conduct the H2V Test at an external static 
pressure that does not cause an automatic shutdown of the indoor blower 
or air volume rate variation QVar, defined in section 
3.1.4.1.1.b of this appendix, greater than 10 percent, while being as 
close to, but not less

[[Page 569]]

than the target minimum external static pressure. Additional test steps 
as described in section 3.9.1.c of this appendix are required if the 
measured external static pressure exceeds the target value by more than 
0.03 inches of water.
    c. For non-ducted heat pumps, the heating intermediate air volume 
rate is the air volume rate that results when the heat pump operates at 
an external static pressure of zero inches of water and at the fan speed 
selected by the controls of the unit for the H2V Test 
conditions.

                 3.1.4.7 Heating Nominal Air Volume Rate

    The manufacturer must specify the heating nominal air volume rate 
and the instructions for setting fan speed or controls. Calculate target 
minimum external static pressure as described in section 3.1.4.2 of this 
appendix. Make adjustments as described in section 3.14.6 of this 
appendix for heating intermediate air volume rate so that the target 
minimum external static pressure is met or exceeded.

 3.1.5 Indoor Test Room Requirement When the Air Surrounding the Indoor 
Unit is Not Supplied From the Same Source as the Air Entering the Indoor 
                                  Unit

    If using a test set-up where air is ducted directly from the air 
reconditioning apparatus to the indoor coil inlet (see Figure 2, Loop 
Air-Enthalpy Test Method Arrangement, of ANSI/ASHRAE 37-2009 
(incorporated by reference, see Sec.  430.3)), maintain the dry bulb 
temperature within the test room within 5.0 [deg]F 
of the applicable sections 3.2 and 3.6 dry bulb temperature test 
condition for the air entering the indoor unit. Dew point must be within 
2 [deg]F of the required inlet conditions.

                   3.1.6 Air Volume Rate Calculations

    For all steady-state tests and for frost accumulation (H2, 
H21, H22, H2V) tests, calculate the air 
volume rate through the indoor coil as specified in sections 7.7.2.1 and 
7.7.2.2 of ANSI/ASHRAE 37-2009. When using the outdoor air enthalpy 
method, follow sections 7.7.2.1 and 7.7.2.2 of ANSI/ASHRAE 37-2009 
(incorporated by reference, see Sec.  430.3) to calculate the air volume 
rate through the outdoor coil. To express air volume rates in terms of 
standard air, use:
[GRAPHIC] [TIFF OMITTED] TR05JA17.155

Where:

Vis = air volume rate of standard (dry) air, (ft\3\/
          min)da

Vimx = air volume rate of the air-water vapor mixture, 
          (ft\3\/min)mx

vn[min] = specific volume of air-water vapor mixture at the 
          nozzle, ft\3\ per lbm of the air-water vapor mixture

Wn = humidity ratio at the nozzle, lbm of water vapor per lbm 
          of dry air

0.075 = the density associated with standard (dry) air, (lbm/ft\3\)

vn = specific volume of the dry air portion of the mixture 
          evaluated at the dry-bulb temperature, vapor content, and 
          barometric pressure existing at the nozzle, ft\3\ per lbm of 
          dry air.

    Note: In the first printing of ANSI/ASHRAE 37-2009, the second IP 
equation for Qmi should read,
[GRAPHIC] [TIFF OMITTED] TR05JA17.156

                           3.1.7 Test Sequence

    Before making test measurements used to calculate performance, 
operate the equipment for the ``break-in'' period specified in the 
certification report, which may not exceed 20 hours. Each compressor of 
the unit must undergo this ``break-in'' period. When testing a ducted 
unit (except if a heating-only heat pump), conduct the A or 
A2 Test first to establish the cooling full-load air volume 
rate. For ducted heat pumps where the heating and cooling full-load air 
volume rates are different, make the first heating mode test one that 
requires the heating full-load air volume rate. For ducted heating-only 
heat pumps, conduct the H1 or H12 Test first to establish the 
heating full-load air volume rate. When conducting a cyclic test,

[[Page 570]]

always conduct it immediately after the steady-state test that requires 
the same test conditions. For variable-speed systems, the first test 
using the cooling minimum air volume rate should precede the 
EV Test, and the first test using the heating minimum air 
volume rate must precede the H2V Test. The test laboratory 
makes all other decisions on the test sequence.

   3.1.8 Requirement for the Air Temperature Distribution Leaving the 
                               Indoor Coil

    For at least the first cooling mode test and the first heating mode 
test, monitor the temperature distribution of the air leaving the indoor 
coil using the grid of individual sensors described in sections 2.5 and 
2.5.4 of this appendix. For the 30-minute data collection interval used 
to determine capacity, the maximum spread among the outlet dry bulb 
temperatures from any data sampling must not exceed 1.5 [deg]F. Install 
the mixing devices described in section 2.5.4.2 of this appendix to 
minimize the temperature spread.

  3.1.9 Requirement for the Air Temperature Distribution Entering the 
                              Outdoor Coil

    Monitor the Temperatures of the Air Entering the Outdoor Coil Using 
Air Sampling Devices and/or Temperature Sensor Grids, Maintaining the 
Required Tolerances, if Applicable, as Described in section 2.11 of this 
appendix

         3.1.10 Control of Auxiliary Resistive Heating Elements

    Except as noted, disable heat pump resistance elements used for 
heating indoor air at all times, including during defrost cycles and if 
they are normally regulated by a heat comfort controller. For heat pumps 
equipped with a heat comfort controller, enable the heat pump resistance 
elements only during the below-described, short test. For single-speed 
heat pumps covered under section 3.6.1 of this appendix, the short test 
follows the H1 or, if conducted, the H1C Test. For two-capacity heat 
pumps and heat pumps covered under section 3.6.2 of this appendix, the 
short test follows the H12 Test. Set the heat comfort 
controller to provide the maximum supply air temperature. With the heat 
pump operating and while maintaining the heating full-load air volume 
rate, measure the temperature of the air leaving the indoor-side 
beginning 5 minutes after activating the heat comfort controller. Sample 
the outlet dry-bulb temperature at regular intervals that span 5 minutes 
or less. Collect data for 10 minutes, obtaining at least 3 samples. 
Calculate the average outlet temperature over the 10-minute interval, 
TCC.

3.2 Cooling Mode Tests for Different Types of Air Conditioners and Heat 
                                  Pumps

  3.2.1 Tests for a System Having a Single-Speed Compressor and Fixed 
                         Cooling Air Volume Rate

    This set of tests is for single-speed-compressor units that do not 
have a cooling minimum air volume rate or a cooling intermediate air 
volume rate that is different than the cooling full load air volume 
rate. Conduct two steady-state wet coil tests, the A and B Tests. Use 
the two optional dry-coil tests, the steady-state C Test and the cyclic 
D Test, to determine the cooling mode cyclic degradation coefficient, 
CD\c\. If the two optional tests are conducted but yield a 
tested CD\c\ that exceeds the default CD\c\ or if 
the two optional tests are not conducted, assign CD\c\ the 
default value of 0.25 (for outdoor units with no match) or 0.2 (for all 
other systems). Table 5 specifies test conditions for these four tests.

                  Table 5--Cooling Mode Test Conditions for Units Having a Single-Speed Compressor and a Fixed Cooling Air Volume Rate
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                               Air entering indoor unit        Air entering outdoor unit
                                                 temperature ( [deg]F)           temperature ( [deg]F)
             Test description              ----------------------------------------------------------------            Cooling air volume rate
                                               Dry bulb        Wet bulb        Dry bulb        Wet bulb
--------------------------------------------------------------------------------------------------------------------------------------------------------
A Test--required (steady, wet coil).......              80              67              95          \1\ 75  Cooling full-load \2\.
B Test--required (steady, wet coil).......              80              67              82          \1\ 65  Cooling full-load \2\.
C Test--optional (steady, dry coil).......              80           (\3\)              82  ..............  Cooling full-load \2\.
D Test--optional (cyclic, dry coil).......              80           (\3\)              82  ..............  (\4\).
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ The specified test condition only applies if the unit rejects condensate to the outdoor coil.
\2\ Defined in section 3.1.4.1 of this appendix.
\3\ The entering air must have a low enough moisture content so no condensate forms on the indoor coil. (It is recommended that an indoor wet-bulb
  temperature of 57 [deg]F or less be used.)
\4\ Maintain the airflow nozzles static pressure difference or velocity pressure during the ON period at the same pressure difference or velocity
  pressure as measured during the C Test.


[[Page 571]]

3.2.2 Tests for a Unit Having a Single-Speed Compressor Where the Indoor 
  Section Uses a Single Variable-Speed Variable-Air-Volume Rate Indoor 
                    Blower or Multiple Indoor Blowers

   3.2.2.1 Indoor Blower Capacity Modulation That Correlates With the 
 Outdoor Dry Bulb Temperature or Systems With a Single Indoor Coil but 
                         Multiple Indoor Blowers

    Conduct four steady-state wet coil tests: The A2, 
A1, B2, and B1 tests. Use the two 
optional dry-coil tests, the steady-state C1 test and the 
cyclic D1 test, to determine the cooling mode cyclic 
degradation coefficient, CD\c\. If the two optional tests are 
conducted but yield a tested CD\c\ that exceeds the default 
CD\c\ or if the two optional tests are not conducted, assign 
CD\c\ the default value of 0.2.

    3.2.2.2 Indoor Blower Capacity Modulation Based on Adjusting the 
              Sensible to Total(S/T) Cooling Capacity Ratio

    The testing requirements are the same as specified in section 3.2.1 
of this appendix and Table 5. Use a cooling full-load air volume rate 
that represents a normal installation. If performed, conduct the steady-
state C Test and the cyclic D Test with the unit operating in the same 
S/T capacity control mode as used for the B Test.

  Table 6--Cooling Mode Test Conditions for Units With a Single-Speed Compressor That Meet the Section 3.2.2.1
                                            Indoor Unit Requirements
----------------------------------------------------------------------------------------------------------------
                                   Air entering indoor unit        Air entering outdoor unit
                                     temperature ( [deg]F)           temperature ( [deg]F)         Cooling air
       Test description        ----------------------------------------------------------------    volume rate
                                   Dry bulb        Wet bulb        Dry bulb        Wet bulb
----------------------------------------------------------------------------------------------------------------
A2 Test--required (steady, wet              80              67              95          \1\ 75  Cooling full-
 coil).                                                                                          load \2\.
A1 Test--required (steady, wet              80              67              95          \1\ 75  Cooling minimum
 coil).                                                                                          \3\.
B2 Test--required (steady, wet              80              67              82          \1\ 65  Cooling full-
 coil).                                                                                          load \2\.
B1 Test--required (steady, wet              80              67              82          \1\ 65  Cooling minimum
 coil).                                                                                          \3\.
C1 Test\4\--optional (steady,               80           (\4\)              82  ..............  Cooling minimum
 dry coil).                                                                                      \3\.
D1 Test\4\--optional (cyclic,               80           (\4\)              82  ..............  (\5\).
 dry coil).
----------------------------------------------------------------------------------------------------------------
\1\ The specified test condition only applies if the unit rejects condensate to the outdoor coil.
\2\ Defined in section 3.1.4.1 of this appendix.
\3\ Defined in section 3.1.4.2 of this appendix.
\4\ The entering air must have a low enough moisture content so no condensate forms on the indoor coil. (It is
  recommended that an indoor wet-bulb temperature of 57 [deg]F or less be used.)
\5\ Maintain the airflow nozzles static pressure difference or velocity pressure during the ON period at the
  same pressure difference or velocity pressure as measured during the C1 Test.

 3.2.3 Tests for a Unit Having a Two-Capacity Compressor. (See Section 
                   1.2 of This Appendix, Definitions)

    a. Conduct four steady-state wet coil tests: the A2, 
B2, B1, and F1 Tests. Use the two 
optional dry-coil tests, the steady-state C1 Test and the 
cyclic D1 Test, to determine the cooling-mode cyclic-
degradation coefficient, CD\c\. If the two optional tests are 
conducted but yield a tested CD\c\ that exceeds the default 
CD\c\ or if the two optional tests are not conducted, assign 
CD\c\ the default value of 0.2. Table 7 specifies test 
conditions for these six tests.
    b. For units having a variable-speed indoor blower that is modulated 
to adjust the sensible to total (S/T) cooling capacity ratio, use 
cooling full-load and cooling minimum air volume rates that represent a 
normal installation. Additionally, if conducting the dry-coil tests, 
operate the unit in the same S/T capacity control mode as used for the 
B1 Test.
    c. Test two-capacity, northern heat pumps (see section 1.2 of this 
appendix, Definitions) in the same way as a single speed heat pump with 
the unit operating exclusively at low compressor capacity (see section 
3.2.1 of this appendix and Table 5).
    d. If a two-capacity air conditioner or heat pump locks out low-
capacity operation at higher outdoor temperatures, then use the two dry-
coil tests, the steady-state C2 Test and the cyclic 
D2 Test, to determine the cooling-mode cyclic-degradation 
coefficient that only applies to on/off cycling from high capacity, 
CD\c\(k=2). If the two optional tests are conducted but yield 
a tested CD\c\(k = 2) that exceeds the default 
CD\c\(k = 2) or if the two optional tests are not conducted, 
assign CD\c\(k = 2) the default value. The default 
CD\c\(k=2) is the same value as determined or

[[Page 572]]

assigned for the low-capacity cyclic-degradation coefficient, 
CD\c\ [or equivalently, CD\c\(k=1)].

                Table 7--Cooling Mode Test Conditions for Units Having a Two-Capacity Compressor
----------------------------------------------------------------------------------------------------------------
                                     Air entering indoor  Air entering outdoor
                                     unit temperature (    unit temperature (
         Test description                  [deg]F)               [deg]F)        Compressor   Cooling air volume
                                   --------------------------------------------  capacity           rate
                                     Dry bulb   Wet bulb   Dry bulb   Wet bulb
----------------------------------------------------------------------------------------------------------------
A2 Test--required (steady, wet             80         67         95     \1\ 75        High  Cooling Full-
 coil).                                                                                      Load.\2\
B2 Test--required (steady, wet             80         67         82     \1\ 65        High  Cooling Full-
 coil).                                                                                      Load.\2\
B1 Test--required (steady, wet             80         67         82     \1\ 65         Low  Cooling Minimum.\3\
 coil).
C2 Test--optional (steady, dry-            80      (\4\)         82  .........        High  Cooling Full-
 coil).                                                                                      Load.\2\
D2 Test--optional (cyclic, dry-            80      (\4\)         82  .........        High  (\5\).
 coil).
C1 Test--optional (steady, dry-            80      (\4\)         82  .........         Low  Cooling Minimum.\3\
 coil).
D1 Test--optional (cyclic, dry-            80      (\4\)         82  .........         Low  (\6\).
 coil).
F1 Test--required (steady, wet             80         67         67   \1\ 53.5         Low  Cooling Minimum.\3\
 coil).
----------------------------------------------------------------------------------------------------------------
\1\ The specified test condition only applies if the unit rejects condensate to the outdoor coil.
\2\ Defined in section 3.1.4.1 of this appendix.
\3\ Defined in section 3.1.4.2 of this appendix.
\4\ The entering air must have a low enough moisture content so no condensate forms on the indoor coil. DOE
  recommends using an indoor air wet-bulb temperature of 57 [deg]F or less.
\5\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the
  same pressure or velocity as measured during the C2 Test.
\6\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the
  same pressure or velocity as measured during the C1 Test.

        3.2.4 Tests for a Unit Having a Variable-Speed Compressor

    a. Conduct five steady-state wet coil tests: The A2, 
EV, B2, B1, and F1 Tests. 
Use the two optional dry-coil tests, the steady-state G1 Test 
and the cyclic I1 Test, to determine the cooling mode cyclic 
degradation coefficient, CD\c\. If the two optional tests are 
conducted but yield a tested CD\c\ that exceeds the default 
CD\c\ or if the two optional tests are not conducted, assign 
CD\c\ the default value of 0.25. Table 8 specifies test 
conditions for these seven tests. The compressor shall operate at the 
same cooling full speed, measured by RPM or power input frequency (Hz), 
for both the A2 and B2 tests. The compressor shall 
operate at the same cooling minimum speed, measured by RPM or power 
input frequency (Hz), for the B1, F1, 
G1, and I1 tests. Determine the cooling 
intermediate compressor speed cited in Table 8 using:
[GRAPHIC] [TIFF OMITTED] TR05JA17.157

where a tolerance of plus 5 percent or the next higher inverter 
frequency step from that calculated is allowed.
    b. For units that modulate the indoor blower speed to adjust the 
sensible to total (S/T) cooling capacity ratio, use cooling full-load, 
cooling intermediate, and cooling minimum air volume rates that 
represent a normal installation. Additionally, if conducting the dry-
coil tests, operate the unit in the same S/T capacity control mode as 
used for the F1 Test.
    c. For multiple-split air conditioners and heat pumps (except where 
noted), the following procedures supersede the above requirements: For 
all Table 8 tests specified for a minimum compressor speed, turn off at 
least one indoor unit. The manufacturer shall designate the particular 
indoor unit(s) that is turned off. The manufacturer must also specify 
the compressor speed used for the Table 8 EV Test, a cooling-
mode intermediate compressor speed that falls within \1/4\ and \3/4\ of 
the difference between the full and minimum cooling-mode speeds. The 
manufacturer should prescribe an intermediate speed that is expected to 
yield the highest EER for the given EV Test conditions and 
bracketed compressor speed range. The manufacturer can designate that 
one or more indoor units are turned off for the EV Test.

[[Page 573]]



                                    Table 8--Cooling Mode Test Condition for Units Having a Variable-Speed Compressor
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                           Air entering indoor unit    Air entering outdoor unit
                                             temperature ( [deg]F)       temperature ( [deg]F)
            Test description             --------------------------------------------------------      Compressor speed         Cooling air volume rate
                                            Dry bulb      Wet bulb      Dry bulb      Wet bulb
--------------------------------------------------------------------------------------------------------------------------------------------------------
A2 Test--required (steady, wet coil)....            80            67            95        \1\ 75  Cooling Full..............  Cooling Full-Load.\2\
B2 Test--required (steady, wet coil)....            80            67            82        \1\ 65  Cooling Full..............  Cooling Full-Load.\2\
EV Test--required (steady, wet coil)....            80            67            87        \1\ 69  Cooling Intermediate......  Cooling Intermediate.\3\
B1 Test--required (steady, wet coil)....            80            67            82        \1\ 65  Cooling Minimum...........  Cooling Minimum.\4\
F1 Test--required (steady, wet coil)....            80            67            67      \1\ 53.5  Cooling Minimum...........  Cooling Minimum.\4\
G1 Test \5\--optional (steady, dry-coil)            80         (\6\)            67  ............  Cooling Minimum...........  Cooling Minimum.\4\
I1 Tes t\5\--optional (cyclic, dry-coil)            80         (\6\)            67  ............  Cooling Minimum...........  (\6\).
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ The specified test condition only applies if the unit rejects condensate to the outdoor coil.
\2\ Defined in section 3.1.4.1 of this appendix.
\3\ Defined in section 3.1.4.3 of this appendix.
\4\ Defined in section 3.1.4.2 of this appendix.
\5\ The entering air must have a low enough moisture content so no condensate forms on the indoor coil. DOE recommends using an indoor air wet bulb
  temperature of 57 [deg]F or less.
\6\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the same pressure difference or velocity
  pressure as measured during the G1 Test.

 3.2.5 Cooling Mode Tests for Northern Heat Pumps With Triple-Capacity 
                               Compressors

    Test triple-capacity, northern heat pumps for the cooling mode in 
the same way as specified in section 3.2.3 of this appendix for units 
having a two-capacity compressor.

 3.2.6 Tests for an Air Conditioner or Heat Pump Having a Single Indoor 
     Unit Having Multiple Indoor Blowers and Offering Two Stages of 
                          Compressor Modulation

    Conduct the cooling mode tests specified in section 3.2.3 of this 
appendix.

3.3 Test Procedures for Steady-State Wet Coil Cooling Mode Tests (the A, 
     A2, A1, B, B2, B1, 
                 EV, and F1 Tests)

    a. For the pretest interval, operate the test room reconditioning 
apparatus and the unit to be tested until maintaining equilibrium 
conditions for at least 30 minutes at the specified section 3.2 test 
conditions. Use the exhaust fan of the airflow measuring apparatus and, 
if installed, the indoor blower of the test unit to obtain and then 
maintain the indoor air volume rate and/or external static pressure 
specified for the particular test. Continuously record (see section 1.2 
of this appendix, Definitions):
    (1) The dry-bulb temperature of the air entering the indoor coil,
    (2) The water vapor content of the air entering the indoor coil,
    (3) The dry-bulb temperature of the air entering the outdoor coil, 
and
    (4) For the section 2.2.4 of this appendix cases where its control 
is required, the water vapor content of the air entering the outdoor 
coil.
    Refer to section 3.11 of this appendix for additional requirements 
that depend on the selected secondary test method.
    b. After satisfying the pretest equilibrium requirements, make the 
measurements specified in Table 3 of ANSI/ASHRAE 37-2009 for the indoor 
air enthalpy method and the user-selected secondary method. Make said 
Table 3 measurements at equal intervals that span 5 minutes or less. 
Continue data sampling until reaching a 30-minute period (e.g., seven 
consecutive 5-minute samples) where the test tolerances specified in 
Table 9 are satisfied. For those continuously recorded parameters, use 
the entire data set from the 30-minute interval to evaluate Table 9 
compliance. Determine the average electrical power consumption of the 
air conditioner or heat pump over the same 30-minute interval.
    c. Calculate indoor-side total cooling capacity and sensible cooling 
capacity as specified in sections 7.3.3.1 and 7.3.3.3 of ANSI/ASHRAE 37-
2009 (incorporated by reference, see Sec.  430.3). To calculate 
capacity, use the averages of the measurements (e.g. inlet and outlet 
dry bulb and wet bulb temperatures measured at the psychrometers) that 
are continuously recorded for the same 30-minute interval used as 
described above to evaluate compliance with test tolerances. Do not 
adjust the parameters used in calculating capacity for the permitted 
variations in test conditions. Evaluate air enthalpies based on the 
measured barometric pressure. Use the values of the specific heat of air 
given in section 7.3.3.1 of ANSI/ASHRAE 37-2009 (incorporated by 
reference, see Sec.  430.3)

[[Page 574]]

for calculation of the sensible cooling capacities. Assign the average 
total space cooling capacity, average sensible cooling capacity, and 
electrical power consumption over the 30-minute data collection interval 
to the variables Qc\k\(T), Qsc\k\(T) and 
Ec\k\(T), respectively. For these three variables, replace 
the ``T'' with the nominal outdoor temperature at which the test was 
conducted. The superscript k is used only when testing multi-capacity 
units. Use the superscript k=2 to denote a test with the unit operating 
at high capacity or full speed, k=1 to denote low capacity or minimum 
speed, and k=v to denote the intermediate speed.
    d. For mobile home and space-constrained ducted coil-only system 
tests, decrease Qc\k\(T) by
[GRAPHIC] [TIFF OMITTED] TR05JA17.158

where Vis is the average measured indoor air volume rate 
expressed in units of cubic feet per minute of standard air (scfm).
    For non-mobile, non-space-constrained home ducted coil-only system 
tests, decrease Qc\k\(T) by
[GRAPHIC] [TIFF OMITTED] TR05JA17.159

where Vis is the average measured indoor air volume rate 
expressed in units of cubic feet per minute of standard air (scfm).

  Table 9--Test Operating and Test Condition Tolerances for Section 3.3
    Steady-State Wet Coil Cooling Mode Tests and Section 3.4 Dry Coil
                           Cooling Mode Tests
------------------------------------------------------------------------
                                          Test operating  Test condition
                                           tolerance \1\   tolerance \1\
------------------------------------------------------------------------
Indoor dry-bulb, [deg]F
    Entering temperature................             2.0             0.5
    Leaving temperature.................             2.0
Indoor wet-bulb, [deg]F
    Entering temperature................             1.0         \2\ 0.3
    Leaving temperature.................         \2\ 1.0
Outdoor dry-bulb, [deg]F
    Entering temperature................             2.0             0.5
    Leaving temperature.................         \3\ 2.0
Outdoor wet-bulb, [deg]F
    Entering temperature................             1.0         \4\ 0.3
    Leaving temperature.................         \3\ 1.0
External resistance to airflow, inches              0.05        \5\ 0.02
 of water...............................
Electrical voltage, % of reading........             2.0             1.5

[[Page 575]]

 
Nozzle pressure drop, % of reading......             2.0
------------------------------------------------------------------------
\1\ See section 1.2 of this appendix, Definitions.
\2\ Only applies during wet coil tests; does not apply during steady-
  state, dry coil cooling mode tests.
\3\ Only applies when using the outdoor air enthalpy method.
\4\ Only applies during wet coil cooling mode tests where the unit
  rejects condensate to the outdoor coil.
\5\ Only applies when testing non-ducted units.

    e. For air conditioners and heat pumps having a constant-air-volume-
rate indoor blower, the five additional steps listed below are required 
if the average of the measured external static pressures exceeds the 
applicable sections 3.1.4 minimum (or target) external static pressure 
([Delta]Pmin) by 0.03 inches of water or more.
    (1) Measure the average power consumption of the indoor blower motor 
(Efan,1) and record the corresponding external static 
pressure ([Delta]P1) during or immediately following the 30-
minute interval used for determining capacity.
    (2) After completing the 30-minute interval and while maintaining 
the same test conditions, adjust the exhaust fan of the airflow 
measuring apparatus until the external static pressure increases to 
approximately [Delta]P1 + ([Delta]P1 - 
[Delta]Pmin).
    (3) After re-establishing steady readings of the fan motor power and 
external static pressure, determine average values for the indoor blower 
power (Efan,2) and the external static pressure 
([Delta]P2) by making measurements over a 5-minute interval.
    (4) Approximate the average power consumption of the indoor blower 
motor at [Delta]Pmin using linear extrapolation:
[GRAPHIC] [TIFF OMITTED] TR05JA17.160

    (5) Increase the total space cooling capacity, Qc\k\(T), 
by the quantity (Efan,1 - Efan,min), when 
expressed on a Btu/h basis. Decrease the total electrical power, 
Ec\k\(T), by the same fan power difference, now expressed in 
watts.

  3.4 Test Procedures for the Steady-State Dry-Coil Cooling-Mode Tests 
     (the C, C1, C2, and G1 Tests)

    a. Except for the modifications noted in this section, conduct the 
steady-state dry coil cooling mode tests as specified in section 3.3 of 
this appendix for wet coil tests. Prior to recording data during the 
steady-state dry coil test, operate the unit at least one hour after 
achieving dry coil conditions. Drain the drain pan and plug the drain 
opening. Thereafter, the drain pan should remain completely dry.
    b. Denote the resulting total space cooling capacity and electrical 
power derived from the test as Qss,dry and 
Ess,dry. With regard to a section 3.3 deviation, do not 
adjust Qss,dry for duct losses (i.e., do not apply section 
7.3.3.3 of ANSI/ASHRAE 37-2009). In preparing for the section 3.5 cyclic 
tests of this appendix, record the average indoor-side air volume rate, 
Vi, specific heat of the air, Cp,a (expressed on dry air basis), 
specific volume of the air at the nozzles, v[min]n, humidity 
ratio at the nozzles, Wn, and either pressure difference or 
velocity pressure for the flow nozzles. For units having a variable-
speed indoor blower (that provides either a constant or variable air 
volume rate) that will or may be tested during the cyclic dry coil 
cooling mode test with the indoor blower turned off (see section 3.5 of 
this appendix), include the electrical power used by the indoor blower 
motor among the recorded parameters from the 30-minute test.
    c. If the temperature sensors used to provide the primary 
measurement of the indoor-side dry bulb temperature difference during 
the steady-state dry-coil test and the subsequent cyclic dry-coil test 
are different, include measurements of the latter sensors among the 
regularly sampled data. Beginning at the start of the 30-minute data 
collection period, measure and compute the indoor-side air dry-bulb 
temperature difference using both sets of instrumentation, [Delta]T (Set 
SS) and [Delta]T (Set CYC), for each equally spaced data sample. If 
using a consistent data sampling rate that is less than 1 minute, 
calculate and record minutely averages for the two temperature 
differences. If using a consistent sampling rate of one minute or more, 
calculate and record the two temperature differences from each data 
sample. After having recorded the seventh (i=7) set of temperature 
differences, calculate the following ratio using the first seven sets of 
values:

[[Page 576]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.161

Each time a subsequent set of temperature differences is recorded (if 
sampling more frequently than every 5 minutes), calculate FCD using the 
most recent seven sets of values. Continue these calculations until the 
30-minute period is completed or until a value for FCD is calculated 
that falls outside the allowable range of 0.94-1.06. If the latter 
occurs, immediately suspend the test and identify the cause for the 
disparity in the two temperature difference measurements. Recalibration 
of one or both sets of instrumentation may be required. If all the 
values for FCD are within the allowable range, save the final value of 
the ratio from the 30-minute test as FCD*. If the temperature sensors 
used to provide the primary measurement of the indoor-side dry bulb 
temperature difference during the steady-state dry-coil test and the 
subsequent cyclic dry-coil test are the same, set FCD*= 1.

 3.5 Test Procedures for the Cyclic Dry-Coil Cooling-Mode Tests (the D, 
         D1, D2, and I1 Tests)

    After completing the steady-state dry-coil test, remove the outdoor 
air enthalpy method test apparatus, if connected, and begin manual OFF/
ON cycling of the unit's compressor. The test set-up should otherwise be 
identical to the set-up used during the steady-state dry coil test. When 
testing heat pumps, leave the reversing valve during the compressor OFF 
cycles in the same position as used for the compressor ON cycles, unless 
automatically changed by the controls of the unit. For units having a 
variable-speed indoor blower, the manufacturer has the option of 
electing at the outset whether to conduct the cyclic test with the 
indoor blower enabled or disabled. Always revert to testing with the 
indoor blower disabled if cyclic testing with the fan enabled is 
unsuccessful.
    a. For all cyclic tests, the measured capacity must be adjusted for 
the thermal mass stored in devices and connections located between 
measured points. Follow the procedure outlined in section 7.4.3.4.5 of 
ASHRAE 116-2010 (incorporated by reference, see Sec.  430.3) to ensure 
any required measurements are taken.
    b. For units having a single-speed or two-capacity compressor, cycle 
the compressor OFF for 24 minutes and then ON for 6 minutes 
([Delta][tau]cyc,dry = 0.5 hours). For units having a 
variable-speed compressor, cycle the compressor OFF for 48 minutes and 
then ON for 12 minutes ([Delta][tau]cyc,dry = 1.0 hours). 
Repeat the OFF/ON compressor cycling pattern until the test is 
completed. Allow the controls of the unit to regulate cycling of the 
outdoor fan. If an upturned duct is used, measure the dry-bulb 
temperature at the inlet of the device at least once every minute and 
ensure that its test operating tolerance is within 1.0 [deg]F for each 
compressor OFF period.
    c. Sections 3.5.1 and 3.5.2 of this appendix specify airflow 
requirements through the indoor coil of ducted and non-ducted indoor 
units, respectively. In all cases, use the exhaust fan of the airflow 
measuring apparatus (covered under section 2.6 of this appendix) along 
with the indoor blower of the unit, if installed and operating, to 
approximate a step response in the indoor coil airflow. Regulate the 
exhaust fan to quickly obtain and then maintain the flow nozzle static 
pressure difference or velocity pressure at the same value as was 
measured during the steady-state dry coil test. The pressure difference 
or velocity pressure should be within 2 percent of the value from the 
steady-state dry coil test within 15 seconds after airflow initiation. 
For units having a variable-speed indoor blower that ramps when cycling 
on and/or off, use the exhaust fan of the airflow measuring apparatus to 
impose a step response that begins at the initiation of ramp up and ends 
at the termination of ramp down.
    d. For units having a variable-speed indoor blower, conduct the 
cyclic dry coil test using the pull-thru approach described below if any 
of the following occur when testing with the fan operating:
    (1) The test unit automatically cycles off;
    (2) Its blower motor reverses; or
    (3) The unit operates for more than 30 seconds at an external static 
pressure that is 0.1 inches of water or more higher than the value 
measured during the prior steady-state test.
    For the pull-thru approach, disable the indoor blower and use the 
exhaust fan of the airflow measuring apparatus to generate the specified 
flow nozzles static pressure difference or velocity pressure. If the 
exhaust fan cannot deliver the required pressure difference because of 
resistance created by the unpowered indoor blower, temporarily remove 
the indoor blower.
    e. Conduct three complete compressor OFF/ON cycles with the test 
tolerances given in Table 10 satisfied. Calculate the degradation 
coefficient CD for each complete cycle. If all three 
CD values are within 0.02 of the average CD then 
stability has been achieved, use the highest CD value of 
these three. If

[[Page 577]]

stability has not been achieved, conduct additional cycles, up to a 
maximum of eight cycles, until stability has been achieved between three 
consecutive cycles. Once stability has been achieved, use the highest 
CD value of the three consecutive cycles that establish 
stability. If stability has not been achieved after eight cycles, use 
the highest CD from cycle one through cycle eight, or the 
default CD, whichever is lower.
    f. With regard to the Table 10 parameters, continuously record the 
dry-bulb temperature of the air entering the indoor and outdoor coils 
during periods when air flows through the respective coils. Sample the 
water vapor content of the indoor coil inlet air at least every 2 
minutes during periods when air flows through the coil. Record external 
static pressure and the air volume rate indicator (either nozzle 
pressure difference or velocity pressure) at least every minute during 
the interval that air flows through the indoor coil. (These regular 
measurements of the airflow rate indicator are in addition to the 
required measurement at 15 seconds after flow initiation.) Sample the 
electrical voltage at least every 2 minutes beginning 30 seconds after 
compressor start-up. Continue until the compressor, the outdoor fan, and 
the indoor blower (if it is installed and operating) cycle off.
    g. For ducted units, continuously record the dry-bulb temperature of 
the air entering (as noted above) and leaving the indoor coil. Or if 
using a thermopile, continuously record the difference between these two 
temperatures during the interval that air flows through the indoor coil. 
For non-ducted units, make the same dry-bulb temperature measurements 
beginning when the compressor cycles on and ending when indoor coil 
airflow ceases.
    h. Integrate the electrical power over complete cycles of length 
[Delta][tau]cyc,dry. For ducted blower coil systems tested 
with the unit's indoor blower operating for the cycling test, integrate 
electrical power from indoor blower OFF to indoor blower OFF. For all 
other ducted units and for non-ducted units, integrate electrical power 
from compressor OFF to compressor OFF. (Some cyclic tests will use the 
same data collection intervals to determine the electrical energy and 
the total space cooling. For other units, terminate data collection used 
to determine the electrical energy before terminating data collection 
used to determine total space cooling.)

  Table 10--Test Operating and Test Condition Tolerances for Cyclic Dry
                         Coil Cooling Mode Tests
------------------------------------------------------------------------
                                          Test operating  Test condition
                                           tolerance \1\   tolerance \1\
------------------------------------------------------------------------
Indoor entering dry-bulb temperature,\2\             2.0             0.5
 [deg]F.................................
Indoor entering wet-bulb temperature,     ..............           (\3\)
 [deg]F.................................
Outdoor entering dry-bulb                            2.0             0.5
 temperature,\2\ [deg]F.................
External resistance to airflow,\2\                  0.05  ..............
 inches of water........................
Airflow nozzle pressure difference or                2.0         \4\ 2.0
 velocity pressure,\2\% of reading......
Electrical voltage,\5\ % of reading.....             2.0             1.5
------------------------------------------------------------------------
\1\ See section 1.2 of this appendix, Definitions.
\2\ Applies during the interval that air flows through the indoor
  (outdoor) coil except for the first 30 seconds after flow initiation.
  For units having a variable-speed indoor blower that ramps, the
  tolerances listed for the external resistance to airflow apply from 30
  seconds after achieving full speed until ramp down begins.
\3\ Shall at no time exceed a wet-bulb temperature that results in
  condensate forming on the indoor coil.
\4\ The test condition must be the average nozzle pressure difference or
  velocity pressure measured during the steady-state dry coil test.
\5\ Applies during the interval when at least one of the following--the
  compressor, the outdoor fan, or, if applicable, the indoor blower--are
  operating except for the first 30 seconds after compressor start-up.

    If the Table 10 tolerances are satisfied over the complete cycle, 
record the measured electrical energy consumption as ecyc,dry 
and express it in units of watt-hours. Calculate the total space cooling 
delivered, qcyc,dry, in units of Btu using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.162

Where,

Vi, Cp,a, vn[min] (or vn), 
          Wn, and FCD* are the values recorded during the 
          section 3.4 dry coil steady-state test and

Tal([tau]) = dry bulb temperature of the air entering the 
          indoor coil at time [tau], [deg]F.

Ta2([tau]) = dry bulb temperature of the air leaving the 
          indoor coil at time [tau], [deg]F.

[tau]1 = for ducted units, the elapsed time when airflow is 
          initiated through the indoor coil; for non-ducted units, the 
          elapsed time when the compressor is cycled on, hr.


[[Page 578]]


[tau]2 = the elapsed time when indoor coil airflow ceases, 
          hr.

    Adjust the total space cooling delivered, qcyc,dry, 
according to calculation method outlined in section 7.4.3.4.5 of ASHRAE 
116-2010 (incorporated by reference, see Sec.  430.3).

              3.5.1 Procedures When Testing Ducted Systems

    The automatic controls that are installed in the test unit must 
govern the OFF/ON cycling of the air moving equipment on the indoor side 
(exhaust fan of the airflow measuring apparatus and the indoor blower of 
the test unit). For ducted coil-only systems rated based on using a fan 
time-delay relay, control the indoor coil airflow according to the OFF 
delay listed by the manufacturer in the certification report. For ducted 
units having a variable-speed indoor blower that has been disabled (and 
possibly removed), start and stop the indoor airflow at the same 
instances as if the fan were enabled. For all other ducted coil-only 
systems, cycle the indoor coil airflow in unison with the cycling of the 
compressor. If air damper boxes are used, close them on the inlet and 
outlet side during the OFF period. Airflow through the indoor coil 
should stop within 3 seconds after the automatic controls of the test 
unit (act to) de-energize the indoor blower. For mobile home and space-
constrained ducted coil-only systems increase ecyc,dry by the 
quantity,
[GRAPHIC] [TIFF OMITTED] TR05JA17.163

[GRAPHIC] [TIFF OMITTED] TR05JA17.164

where Vis is the average indoor air volume rate from the 
section 3.4 dry coil steady-state test and is expressed in units of 
cubic feet per minute of standard air (scfm). For ducted non-mobile, 
non-space-constrained home coil-only units increase ecyc,dry 
by the quantity,
[GRAPHIC] [TIFF OMITTED] TR05JA17.165

[GRAPHIC] [TIFF OMITTED] TR05JA17.166

where Vis is the average indoor air volume rate from the 
section 3.4 dry coil steady-state test and is expressed in units of 
cubic feet per minute of standard air (scfm). For units having a 
variable-speed indoor blower that is disabled during the cyclic test, 
increase ecyc,dry and decrease qcyc,dry based on:
    a. The product of [[tau]2 - [tau] 1] and the 
indoor blower power measured during or following the dry coil steady-
state test; or,
    b. The following algorithm if the indoor blower ramps its speed when 
cycling.
    (1) Measure the electrical power consumed by the variable-speed 
indoor blower at a minimum of three operating conditions: at the speed/
air volume rate/external static pressure that was measured during the 
steady-state test, at operating conditions associated with the midpoint 
of the ramp-up interval, and at conditions associated with the midpoint 
of the ramp-down interval. For these measurements, the tolerances on the 
airflow volume or the external static pressure are the same as required 
for the section 3.4 steady-state test.
    (2) For each case, determine the fan power from measurements made 
over a minimum of 5 minutes.
    (3) Approximate the electrical energy consumption of the indoor 
blower if it had operated during the cyclic test using all three

[[Page 579]]

power measurements. Assume a linear profile during the ramp intervals. 
The manufacturer must provide the durations of the ramp-up and ramp-down 
intervals. If the test setup instructions included with the unit by the 
manufacturer specifies a ramp interval that exceeds 45 seconds, use a 
45-second ramp interval nonetheless when estimating the fan energy.

          3.5.2 Procedures When Testing Non-Ducted Indoor Units

    Do not use airflow prevention devices when conducting cyclic tests 
on non-ducted indoor units. Until the last OFF/ON compressor cycle, 
airflow through the indoor coil must cycle off and on in unison with the 
compressor. For the last OFF/ON compressor cycle--the one used to 
determine ecyc,dry and qcyc,dry--use the exhaust 
fan of the airflow measuring apparatus and the indoor blower of the test 
unit to have indoor airflow start 3 minutes prior to compressor cut-on 
and end three minutes after compressor cutoff. Subtract the electrical 
energy used by the indoor blower during the 3 minutes prior to 
compressor cut-on from the integrated electrical energy, 
ecyc,dry. Add the electrical energy used by the indoor blower 
during the 3 minutes after compressor cutoff to the integrated cooling 
capacity, qcyc,dry. For the case where the non-ducted indoor 
unit uses a variable-speed indoor blower which is disabled during the 
cyclic test, correct ecyc,dry and qcyc,dry using 
the same approach as prescribed in section 3.5.1 of this appendix for 
ducted units having a disabled variable-speed indoor blower.

      3.5.3 Cooling-Mode Cyclic-Degradation Coefficient Calculation

    Use the two dry-coil tests to determine the cooling-mode cyclic-
degradation coefficient, CD\c\. Append ``(k=2)'' to the 
coefficient if it corresponds to a two-capacity unit cycling at high 
capacity. If the two optional tests are conducted but yield a tested 
CD\c\ that exceeds the default CD\c\ or if the two 
optional tests are not conducted, assign CD\c\ the default 
value of 0.25 for variable-speed compressor systems and outdoor units 
with no match, and 0.20 for all other systems. The default value for 
two-capacity units cycling at high capacity, however, is the low-
capacity coefficient, i.e., CD\c\(k=2) = CD\c\. 
Evaluate CD\c\ using the above results and those from the 
section 3.4 dry-coil steady-state test.
[GRAPHIC] [TIFF OMITTED] TR05JA17.167

Where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.168

the average energy efficiency ratio during the cyclic dry coil cooling 
mode test, Btu/W[middot]h
[GRAPHIC] [TIFF OMITTED] TR05JA17.169

the average energy efficiency ratio during the steady-state dry coil 
cooling mode test, Btu/W[middot]h

[[Page 580]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.170

the cooling load factor dimensionless
    Round the calculated value for CD\c\ to the nearest 0.01. 
If CD\c\ is negative, then set it equal to zero.

  3.6 Heating Mode Tests for Different Types of Heat Pumps, Including 
                         Heating-Only Heat Pumps

 3.6.1 Tests for a Heat Pump Having a Single-Speed Compressor and Fixed 
                         Heating Air Volume Rate

    This set of tests is for single-speed-compressor heat pumps that do 
not have a heating minimum air volume rate or a heating intermediate air 
volume rate that is different than the heating full load air volume 
rate. Conducting a very low temperature test (H4) is optional. Conduct 
the optional high temperature cyclic (H1C) test to determine the heating 
mode cyclic-degradation coefficient, CD\h\. If this optional 
test is conducted but yields a tested CD\h\ that exceeds the 
default CD\h\ or if the optional test is not conducted, 
assign CD\h\ the default value of 0.25. Test conditions for 
the five tests are specified in Table 11 of this section.

   Table 11--Heating Mode Test Conditions for Units Having a Single-Speed Compressor and a Fixed-Speed Indoor
                         Blower, a Constant Air Volume Rate Indoor Blower, or Coil-Only
----------------------------------------------------------------------------------------------------------------
                                  Air entering indoor unit      Air entering outdoor
                                   temperature ( [deg]F)         unit temperature (
       Test description       -------------------------------          [deg]F)           Heating air volume rate
                                                             --------------------------
                                 Dry bulb       Wet bulb        Dry bulb     Wet bulb
----------------------------------------------------------------------------------------------------------------
H1 Test (required, steady)...           70  60\(max)\.......           47           43  Heating Full-load.\1\
H1C Test (optional, cyclic)..           70  60\(max)\.......           47           43  (\2\).
H2 Test (required)...........           70  60\(max)\.......           35           33  Heating Full-load.\1\
H3 Test (required, steady)...           70  60\(max)\.......           17           15  Heating Full-load.\1\
H4 Test (optional, steady)...           70  60\(max)\.......            5     3\(max)\  Heating Full-load.\1\
----------------------------------------------------------------------------------------------------------------
\1\ Defined in section 3.1.4.4 of this appendix.
\2\ Maintain the airflow nozzles static pressure difference or velocity pressure during the ON period at the
  same pressure difference or velocity pressure as measured during the H1 Test.

   3.6.2 Tests for a Heat Pump Having a Single-Speed Compressor and a 
Single Indoor Unit Having Either (1) a Variable-Speed, Variable-Air-Rate 
Indoor Blower Whose Capacity Modulation Correlates With Outdoor Dry Bulb 
               Temperature or (2) Multiple Indoor Blowers

    Conduct five tests: Two high temperature tests (H12 and 
H11), one frost accumulation test (H22), and two 
low temperature tests (H32 and H31). Conducting an 
additional frost accumulation test (H21) and a very low 
temperature test (H42) is optional. Conduct the optional high 
temperature cyclic (H1C1) test to determine the heating mode 
cyclic-degradation coefficient, CD\h\. If this optional test 
is conducted but yields a tested CD\h\ that exceeds the 
default CD\h\ or if the optional test is not conducted, 
assign CD\h\ the default value of 0.25. Test conditions for 
the seven tests are specified in Table 12. If the optional 
H21 test is not performed, use the following equations to 
approximate the capacity and electrical power of the heat pump at the 
H21 test conditions:
[GRAPHIC] [TIFF OMITTED] TR05JA17.171

where,

[[Page 581]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.172

The quantities Q AEbhk=2(47), E AEbhk=2(47), Q AEbhk=1(47), and E 
AEbhk=1(47) are determined from the H12 and H11 
tests and evaluated as specified in section 3.7 of this appendix; the 
quantities Q AEbhk=2(35) and E AEbhk=2(35) are determined from the 
H22 test and evaluated as specified in section 3.9 of this 
appendix; and the quantities Q AEbhk=2(17), E AEbhk=2(17), Q 
AEbhk=1(17), and E AEbhk=1(17), are determined from the H32 
and H31 tests and evaluated as specified in section 3.10 of 
this appendix.

   Table 12--Heating Mode Test Conditions for Units With a Single-Speed Compressor That Meet the Section 3.6.2
                                            Indoor Unit Requirements
----------------------------------------------------------------------------------------------------------------
                                  Air entering indoor unit      Air entering outdoor
                                   temperature ( [deg]F)         unit temperature (
       Test description       -------------------------------          [deg]F)           Heating air volume rate
                                                             --------------------------
                                 Dry bulb       Wet bulb        Dry bulb     Wet bulb
----------------------------------------------------------------------------------------------------------------
H12 Test (required, steady)..           70  60\(max)\.......           47           43  Heating Full-load.\1\
H11 Test (required, steady)..           70  60\(max)\.......           47           43  Heating Minimum.\2\
H1C1 Test (optional, cyclic).           70  60\(max)\.......           47           43  (\3\).
H22 Test (required)..........           70  60\(max)\.......           35           33  Heating Full-load.\1\
H21 Test (optional)..........           70  60\(max)\.......           35           33  Heating Minimum.\2\
H32 Test (required, steady)..           70  60\(max)\.......           17           15  Heating Full-load.\1\
H31 Test (required, steady)..           70  60\(max)\.......           17           15  Heating Minimum.\2\
H42 Test (optional, steady)..           70  60\(max)\.......            5     3\(max)\  Heating Full-load.\1\
----------------------------------------------------------------------------------------------------------------
\1\ Defined in section 3.1.4.4 of this appendix.
\2\ Defined in section 3.1.4.5 of this appendix.
\3\ Maintain the airflow nozzles static pressure difference or velocity pressure during the ON period at the
  same pressure difference or velocity pressure as measured during the H11 test.

   3.6.3 Tests for a Heat Pump Having a Two-Capacity Compressor (see 
  Section 1.2 of This Appendix, Definitions), Including Two-Capacity, 
   Northern Heat Pumps (see Section 1.2 of This Appendix, Definitions)

    a. Conduct one maximum temperature test (H01), two high 
temperature tests (H12 and H11), one frost 
accumulation test (H22), and one low temperature test 
(H32). Conducting a very low temperature test 
(H42) is optional. Conduct an additional frost accumulation 
test (H21) and low temperature test (H31) if both 
of the following conditions exist:
    (1) Knowledge of the heat pump's capacity and electrical power at 
low compressor capacity for outdoor temperatures of 37 [deg]F and less 
is needed to complete the section 4.2.3 of this appendix seasonal 
performance calculations; and
    (2) The heat pump's controls allow low-capacity operation at outdoor 
temperatures of 37 [deg]F and less.
    If the two conditions in a.(1) and a.(2) of this section are met, an 
alternative to conducting the H21 frost accumulation is to 
use the following equations to approximate the capacity and electrical 
power:
[GRAPHIC] [TIFF OMITTED] TR05JA17.173

    Determine the quantities Qhk=1 (47) and Ehk=1 (47) from the 
H11 test and evaluate them according to section 3.7 of this 
appendix. Determine the quantities Qhk=1 (17) and

[[Page 582]]

Ehk=1 (17) from the H31 test and evaluate them according to 
section 3.10 of this appendix.
    b. Conduct the optional high temperature cyclic test 
(H1C1) to determine the heating mode cyclic-degradation 
coefficient, CD\h\. If this optional test is conducted but 
yields a tested CD\h\ that exceeds the default 
CD\h\ or if the optional test is not conducted, assign 
CD\h\ the default value of 0.25. If a two-capacity heat pump 
locks out low capacity operation at lower outdoor temperatures, conduct 
the high temperature cyclic test (H1C2) to determine the 
high-capacity heating mode cyclic-degradation coefficient, 
CD\h\ (k=2). If this optional test at high capacity is 
conducted but yields a tested CD\h\ (k = 2) that exceeds the 
default CD\h\ (k = 2) or if the optional test is not 
conducted, assign CD\h\ the default value. The default 
CD\h\ (k=2) is the same value as determined or assigned for 
the low-capacity cyclic-degradation coefficient, CD\h\ [or 
equivalently, CD\h\ (k=1)]. Table 13 specifies test 
conditions for these nine tests.

                Table 13--Heating Mode Test Conditions for Units Having a Two-Capacity Compressor
----------------------------------------------------------------------------------------------------------------
                                 Air entering indoor    Air entering outdoor
                                 unit temperature (      unit temperature (
       Test description                [deg]F)                 [deg]F)          Compressor   Heating air volume
                              ------------------------------------------------   capacity           rate
                                Dry bulb    Wet bulb    Dry bulb    Wet bulb
----------------------------------------------------------------------------------------------------------------
H01 Test (required, steady)..         70  60 \(max)\.         62         56.5  Low........  Heating Minimum.\1\
H12 Test (required, steady)..         70  60 \(max)\.         47           43  High.......  Heating Full-
                                                                                             Load.\2\
H1C2 Test (optional \7\,              70  60 \(max)\.         47           43  High.......  (\3\)
 cyclic).
H11 Test (required)..........         70  60 \(max)\.         47           43  Low........  Heating Minimum.\1\
H1C1 Test (optional, cyclic).         70  60 \(max)\.         47           43  Low........  (\4\)
H22 Test (required)..........         70  60 \(max)\.         35           33  High.......  Heating Full-
                                                                                             Load.\2\
H21 Test\5 6\ (required).....         70  60 (max)...         35           33  Low........  Heating Minimum.\1\
H32 Test (required, steady)..         70  60 \(max)\.         17           15  High.......  Heating Full-
                                                                                             Load.\2\
H31 Test \5\ (required,               70  60 \(max)\.         17           15  Low........  Heating Minimum.\1\
 steady).
H42 Test (Optional, steady)..         70  60 \(max)\.          5    3 \(max)\  High.......  Heating Full-
                                                                                             Load.\2\
----------------------------------------------------------------------------------------------------------------
\1\ Defined in section 3.1.4.5 of this appendix.
\2\ Defined in section 3.1.4.4 of this appendix.
\3\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the
  same pressure or velocity as measured during the H12 test.
\4\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the
  same pressure or velocity as measured during the H11 test.
\5\ Required only if the heat pump's performance when operating at low compressor capacity and outdoor
  temperatures less than 37 [deg]F is needed to complete the section 4.2.3 HSPF2 calculations.
\6\ If table note 5 applies, the section 3.6.3 equations for Qhk=1 (35) and Ehk=1 (17) may be used in lieu of
  conducting the H21 test.
\7\ Required only if the heat pump locks out low capacity operation at lower outdoor temperatures.

     3.6.4 Tests for a Heat Pump Having a Variable-Speed Compressor

    a. Conduct one maximum temperature test (H01), two high 
temperature tests (H1N and H11), one frost 
accumulation test (H2V), and one low temperature test 
(H32). Conducting one or more of the following tests is 
optional: An additional high temperature test (H12), an 
additional frost accumulation test (H22), and a very low 
temperature test (H42). Conduct the optional high temperature 
cyclic (H1C1) test to determine the heating mode cyclic-
degradation coefficient, CD\h\. If this optional test is 
conducted but yields a tested CD\h\ that exceeds the default 
CD\h\ or if the optional test is not conducted, assign 
CD\h\ the default value of 0.25. Test conditions for the nine 
tests are specified in Table 14. The compressor shall operate at the 
same heating full speed, measured by RPM or power input frequency (Hz), 
as the maximum speed at which the system controls would operate the 
compressor in normal operation in 17 [deg]F ambient temperature, for the 
H12, H22 and H32 Tests. The compressor 
shall operate for the H1N test at the maximum speed at which 
the system controls would operate the compressor in normal operation in 
47 [deg]F ambient temperature. The compressor shall operate at the same 
heating minimum speed, measured by RPM or power input frequency (Hz), 
for the H01, H1C1, and H11 Tests. 
Determine the heating intermediate compressor speed cited in Table 14 
using the heating mode full and minimum compressors speeds and:
[GRAPHIC] [TIFF OMITTED] TR05JA17.174


[[Page 583]]


Where a tolerance of plus 5 percent or the next higher inverter 
frequency step from that calculated is allowed.
    b. If one of the high temperature tests (H12 or 
H1N) is conducted using the same compressor speed (RPM or 
power input frequency) as the H32 test, set the 47 [deg]F 
capacity and power input values used for calculation of HSPF2 equal to 
the measured values for that test:
[GRAPHIC] [TIFF OMITTED] TR05JA17.175

Where:

Qhcalck=2(47) and Ehcalck=2(47) are the capacity 
          and power input representing full-speed operation at 47 [deg]F 
          for the HSPF2 calculations,

Qhk=2(47) is the capacity measured in the high temperature 
          test (H12 or H1N) which used the same 
          compressor speed as the H32 test, and
Ehk=2(47) is the power input measured in the high temperature 
          test (H12 or H1N) which used the same 
          compressor speed as the H32 test.
    Evaluate the quantities Qhk=2(47) and from 
Ehk=2(47) according to section 3.7.
    Otherwise (if no high temperature test is conducted using the same 
speed (RPM or power input frequency) as the H32 test), 
calculate the 47 [deg]F capacity and power input values used for 
calculation of HSPF2 as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.176

Where:

Qhcalck=2(47) and Ehcalck=2(47) are the capacity 
          and power input representing full-speed operation at 47 [deg]F 
          for the HSPF2 calculations,
Qhk=2(17) is the capacity measured in the H32 
          test,
Ehk=2(17) is the power input measured in the H32 
          test,

CSF is the capacity slope factor, equal to 0.0204/ [deg]F for split 
          systems and 0.0262/ [deg]F for single-package systems, and

PSF is the Power Slope Factor, equal to 0.00455/ [deg]F.

    c. If the H22 test is not done, use the following 
equations to approximate the capacity and electrical power at the 
H22 test conditions:
[GRAPHIC] [TIFF OMITTED] TR05JA17.177

Where:
    Qhcalck=2(47) and Ehcalck=2(47) are the 
capacity and power input representing full-speed operation at 47 [deg]F 
for the HSPF2 calculations, calculated as described in section b above.
    Qhk=2(17) and Ehk=2(17) are the capacity and power input measured in 
the H32 test.
    d. Determine the quantities Qhk=2(17) and Ehk=2(17) from the 
H32 test, determine the quantities Qhk=2(5) and Ehk=2(5) from 
the H42 test, and evaluate all four according to section 
3.10.

[[Page 584]]



               Table 14--Heating Mode Test Conditions for Units Having a Variable-Speed Compressor
----------------------------------------------------------------------------------------------------------------
                               Air entering indoor    Air entering outdoor
                                unit temperature (     unit temperature (
      Test description               [deg]F)                 [deg]F)          Compressor speed     Heating air
                             -----------------------------------------------                       volume rate
                               Dry bulb   Wet bulb    Dry bulb    Wet bulb
----------------------------------------------------------------------------------------------------------------
H01 test (required, steady).         70  60 \(max)\         62         56.5  Heating Minimum...  Heating
                                                                                                  Minimum.\1\
H12 test (optional, steady).         70  60 \(max)\         47           43  Heating Full \4\..  Heating Full-
                                                                                                  Load.\3\
H11 test (required, steady).         70  60\(max)\.         47           43  Heating Minimum...  Heating
                                                                                                  Minimum.\1\
H1N test (required, steady).         70  60\(max)\.         47           43  Heating Full \5\..  Heating Full-
                                                                                                  Load.\3\
H1C1 test (optional, cyclic)         70  60\(max)\.         47           43  Heating Minimum...  (\2\)
H22 test (optional).........         70  60 \(max)\         35           33  Heating Full \4\..  Heating Full-
                                                                                                  Load.\3\
H2V test (required).........         70  60 \(max)\         35           33  Heating             Heating
                                                                              Intermediate.       Intermediate.\
                                                                                                  6\
H32 test (required, steady).         70  60 \(max)\         17           15  Heating Full \4\..  Heating Full-
                                                                                                  Load.\3\
H42 test (optional, steady).         70  60 \(max)\          5    3 \(max)\  Heating Full......  Heating Full-
                                                                                                  Load.\3\
----------------------------------------------------------------------------------------------------------------
\1\ Defined in section 3.1.4.5 of this appendix.
\2\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during an ON period at the
  same pressure or velocity as measured during the H11 test.
\3\ Defined in section 3.1.4.4 of this appendix.
\4\ Maximum speed that the system controls would operate the compressor in normal operation in 17 [deg]F ambient
  temperature. The H12 test is not needed if the H1N test uses this same compressor speed.
\5\ Maximum speed that the system controls would operate the compressor in normal operation in 47 [deg]F ambient
  temperature.
\6\ Defined in section 3.1.4.6 of this appendix.

    e. For multiple-split heat pumps (only), the following procedures 
supersede the above requirements. For all Table 14 tests specified for a 
minimum compressor speed, turn off at least one indoor unit. The 
manufacturer shall designate the particular indoor unit(s) that is 
turned off. The manufacturer must also specify the compressor speed used 
for the Table 14 H2V test, a heating mode intermediate 
compressor speed that falls within \1/4\ and \3/4\ of the difference 
between the full and minimum heating mode speeds. The manufacturer 
should prescribe an intermediate speed that is expected to yield the 
highest COP for the given H2V test conditions and bracketed 
compressor speed range. The manufacturer can designate that one or more 
specific indoor units are turned off for the H2V test.

 3.6.5 Additional Test for a Heat Pump Having a Heat Comfort Controller

    Test any heat pump that has a heat comfort controller (see section 
1.2 of this appendix, Definitions) according to section 3.6.1, 3.6.2, or 
3.6.3, whichever applies, with the heat comfort controller disabled. 
Additionally, conduct the abbreviated test described in section 3.1.9 of 
this appendix with the heat comfort controller active to determine the 
system's maximum supply air temperature. ( Note: heat pumps having a 
variable-speed compressor and a heat comfort controller are not covered 
in the test procedure at this time.)

 3.6.6 Heating Mode Tests for Northern Heat Pumps with Triple-Capacity 
                               Compressors

    Test triple-capacity, northern heat pumps for the heating mode as 
follows:
    a. Conduct one maximum temperature test (H01), two high 
temperature tests (H12 and H11), one frost 
accumulation test (H22), two low temperature tests 
(H32, H33), and one very low temperature test 
(H43). Conduct an additional frost accumulation test 
(H21) and low temperature test (H31) if both of 
the following conditions exist: (1) Knowledge of the heat pump's 
capacity and electrical power at low compressor capacity for outdoor 
temperatures of 37 [deg]F and less is needed to complete the section 
4.2.6 seasonal performance calculations; and (2) the heat pump's 
controls allow low capacity operation at outdoor temperatures of 37 
[deg]F and less. If the above two conditions are met, an alternative to 
conducting the H21 frost accumulation test to determine 
Qhk=1(35) and Ehk=1(35) is to use the following equations to approximate 
this capacity and electrical power:
[GRAPHIC] [TIFF OMITTED] TR05JA17.178


[[Page 585]]


    In evaluating the above equations, determine the quantities 
Qhk=1(47) from the H11 test and evaluate them according to 
section 3.7 of this appendix. Determine the quantities Qhk=1(17) and 
Ehk=1(17) from the H31 test and evaluate them according to 
section 3.10 of this appendix. Use the paired values of Qhk=1(35) and 
Ehk=1(35) derived from conducting the H21 frost accumulation 
test and evaluated as specified in section 3.9.1 of this appendix or use 
the paired values calculated using the above default equations, 
whichever contribute to a higher Region IV HSPF2 based on the DHRmin.
    b. Conducting a frost accumulation test (H23) with the 
heat pump operating at its booster capacity is optional. If this 
optional test is not conducted, determine Qhk=3(35) and 
Ehk=3(35) using the following equations to approximate this 
capacity and electrical power:
[GRAPHIC] [TIFF OMITTED] TR05JA17.179

Where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.180

    Determine the quantities Qhk=2(47) and 
Ehk=2(47) from the H12 test and evaluate them 
according to section 3.7 of this appendix. Determine the quantities 
Qhk=2(35) and Ehk=2(35) from the H22 
test and evaluate them according to section 3.9.1 of this appendix. 
Determine the quantities Qhk=2(17) and Ehk=2(17) 
from the H32 test, determine the quantities 
Qhk=3(17) and Ehk=3(17) from the H33 
test, and determine the quantities Qhk=3(5) and 
Ehk=3(5) from the H43 test. Evaluate all six 
quantities according to section 3.10 of this appendix. Use the paired 
values of Qhk=3(35) and Ehk=3(35) derived from 
conducting the H23 frost accumulation test and calculated as 
specified in section 3.9.1 of this appendix or use the paired values 
calculated using the above default equations, whichever contribute to a 
higher Region IV HSPF2 based on the DHRmin.
    c. Conduct the optional high temperature cyclic test 
(H1C1) to determine the heating mode cyclic-degradation 
coefficient, CD\h\. A default value for CD\h\ of 
0.25 may be used in lieu of conducting the cyclic. If a triple-capacity 
heat pump locks out low capacity operation at lower outdoor 
temperatures, conduct the high temperature cyclic test (H1C2) 
to determine the high capacity heating mode cyclic-degradation 
coefficient, CD\h\ (k=2). The default CD\h\ (k=2) 
is the same value as determined or assigned for the low-capacity cyclic-
degradation coefficient, CD\h\ [or equivalently, 
CD\h\ (k=1)]. Finally, if a triple-capacity heat pump locks 
out both low and high capacity operation at the lowest outdoor 
temperatures, conduct the low temperature cyclic test (H3C3) 
to determine the booster-capacity heating mode cyclic-degradation 
coefficient, CD\h\ (k=3). The default CD\h\ (k=3) 
is the same value as determined or assigned for the high capacity 
cyclic-degradation coefficient, CD\h\ [or equivalently, 
CD\h\ (k=2)]. Table 15 specifies test conditions for all 13 
tests.

[[Page 586]]



                                   Table 15--Heating Mode Test Conditions for Units With a Triple-Capacity Compressor
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                           Air entering indoor unit    Air entering outdoor
                                              temperature  [deg]F    unit temperature  [deg]F
             Test description             ----------------------------------------------------      Compressor capacity        Heating air volume rate
                                             Dry bulb     Wet bulb     Dry bulb     Wet bulb
--------------------------------------------------------------------------------------------------------------------------------------------------------
H01 Test (required, steady)..............           70    60\(max)\           62         56.5  Low.........................  Heating Minimum \1\
H12 Test (required, steady)..............           70    60\(max)\           47           43  High........................  Heating Full-Load \2\
H1C2 Test (optional,\8\ cyclic)..........           70    60\(max)\           47           43  High........................  (\3\)
H11 Test (required)......................           70    60\(max)\           47           43  Low.........................  Heating Minimum \1\
H1C1 Test (optional, cyclic).............           70    60\(max)\           47           43  Low.........................  (\4\)
H23 Test (optional, steady)..............           70    60\(max)\           35           33  Booster.....................  Heating Full-Load \2\
H22 Test (required)......................           70    60\(max)\           35           33  High........................  Heating Full-Load \2\
H21 Test (required)......................           70    60\(max)\           35           33  Low.........................  Heating Minimum \1\
H33 Test (required, steady)..............           70    60\(max)\           17           15  Booster.....................  Heating Full-Load \2\
H3C3 Test\5 6\ (optional, cyclic)........           70      60(max)           17           15  Booster.....................  (\7\)
H32 Test (required, steady)..............           70    60\(max)\           17           15  High........................  Heating Full-Load \2\
H31 Test \5\ (required, steady)..........           70    60\(max)\           17           15  Low.........................  Heating Minimum \1\
H43 Test (required, steady)..............           70    60\(max)\            5     3\(max)\  Booster.....................  Heating Full-Load \2\
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ Defined in section 3.1.4.5 of this appendix.
\2\ Defined in section 3.1.4.4 of this appendix.
\3\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the same pressure or velocity as measured
  during the H12 test.
\4\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the same pressure or velocity as measured
  during the H11 test.
\5\ Required only if the heat pump's performance when operating at low compressor capacity and outdoor temperatures less than 37 [deg]F is needed to
  complete the section 4.2.6 HSPF2 calculations.
\6\ If table note \5\ applies, the section 3.6.6 equations for Qhk=1(35) and Ehk=1(17) may be used in lieu of conducting the H21 test.
\7\ Maintain the airflow nozzle(s) static pressure difference or velocity pressure during the ON period at the same pressure or velocity as measured
  during the H33 test.
\8\ Required only if the heat pump locks out low capacity operation at lower outdoor temperatures

3.6.7 Tests for a Heat Pump Having a Single Indoor Unit Having Multiple 
Indoor Blowers and Offering Two Stages of Compressor Modulation. Conduct 
   the Heating Mode Tests Specified in Section 3.6.3 of this Appendix

   3.7 Test Procedures for Steady-State Maximum Temperature and High 
Temperature Heating Mode Tests (the H01, H1, H12, 
                H11, and H1N tests)

    a. For the pretest interval, operate the test room reconditioning 
apparatus and the heat pump until equilibrium conditions are maintained 
for at least 30 minutes at the specified section 3.6 test conditions. 
Use the exhaust fan of the airflow measuring apparatus and, if 
installed, the indoor blower of the heat pump to obtain and then 
maintain the indoor air volume rate and/or the external static pressure 
specified for the particular test. Continuously record the dry-bulb 
temperature of the air entering the indoor coil, and the dry-bulb 
temperature and water vapor content of the air entering the outdoor 
coil. Refer to section 3.11 of this appendix for additional requirements 
that depend on the selected secondary test method. After satisfying the 
pretest equilibrium requirements, make the measurements specified in 
Table 3 of ANSI/ASHRAE 37-2009 (incorporated by reference, see Sec.  
430.3) for the indoor air enthalpy method and the user-selected 
secondary method. Make said Table 3 measurements at equal intervals that 
span 5 minutes or less. Continue data sampling until a 30-minute period 
(e.g., seven consecutive 5-minute samples) is reached where the test 
tolerances specified in Table 16 are satisfied. For those continuously 
recorded parameters, use the entire data set for the 30-minute interval 
when evaluating Table 16 compliance. Determine the average electrical 
power consumption of the heat pump over the same 30-minute interval.

 Table 16--Test Operating and Test Condition Tolerances for Section 3.7
            and Section 3.10 Steady-State Heating Mode Tests
------------------------------------------------------------------------
                                          Test operating  Test condition
                                           tolerance \1\   tolerance \1\
------------------------------------------------------------------------
Indoor dry-bulb, [deg]F:
    Entering temperature................             2.0             0.5
    Leaving temperature.................             2.0
Indoor wet-bulb, [deg]F:
    Entering temperature................             1.0
    Leaving temperature.................             1.0
Outdoor dry-bulb, [deg]F:
    Entering temperature................             2.0             0.5

[[Page 587]]

 
    Leaving temperature.................          \2\2.0
Outdoor wet-bulb, [deg]F:
    Entering temperature................             1.0             0.3
    Leaving temperature.................         \2\ 1.0
External resistance to airflow, inches              0.05        \3\ 0.02
 of water...............................
Electrical voltage, % of reading........             2.0             1.5
Nozzle pressure drop, % of reading......             2.0
------------------------------------------------------------------------
\1\ See section 1.2 of this appendix, Definitions.
\2\ Only applies when the Outdoor Air Enthalpy Method is used.
\3\ Only applies when testing non-ducted units.

    b. Calculate indoor-side total heating capacity as specified in 
sections 7.3.4.1 and 7.3.4.3 of ANSI/ASHRAE 37-2009 (incorporated by 
reference, see Sec.  430.3). To calculate capacity, use the averages of 
the measurements (e.g. inlet and outlet dry bulb temperatures measured 
at the psychrometers) that are continuously recorded for the same 30-
minute interval used as described above to evaluate compliance with test 
tolerances. Do not adjust the parameters used in calculating capacity 
for the permitted variations in test conditions. Assign the average 
space heating capacity and electrical power over the 30-minute data 
collection interval to the variables Qh\k\ and Eh\k\(T) respectively. 
The ``T'' and superscripted ``k'' are the same as described in section 
3.3 of this appendix. Additionally, for the heating mode, use the 
superscript to denote results from the optional H1N test, if 
conducted.
    c. For mobile home and space-constrained coil-only system heat 
pumps, increase Qh\k\(T) by
[GRAPHIC] [TIFF OMITTED] TR05JA17.181

where Vis is the average measured indoor air volume rate 
expressed in units of cubic feet per minute of standard air (scfm).
    For non-mobile home, non-space-constrained coil-only system heat 
pumps, increase Qh\k\(T) by
[GRAPHIC] [TIFF OMITTED] TR05JA17.182


[[Page 588]]


where Vis is the average measured indoor air volume rate 
expressed in units of cubic feet per minute of standard air (scfm). 
During the 30-minute data collection interval of a high temperature 
test, pay attention to preventing a defrost cycle. Prior to this time, 
allow the heat pump to perform a defrost cycle if automatically 
initiated by its own controls. As in all cases, wait for the heat pump's 
defrost controls to automatically terminate the defrost cycle. Heat 
pumps that undergo a defrost cycle should operate in the heating mode 
for at least 10 minutes after defrost termination prior to beginning the 
30-minute data collection interval. For some heat pumps, frost may 
accumulate on the outdoor coil during a high temperature test. If the 
indoor coil leaving air temperature or the difference between the 
leaving and entering air temperatures decreases by more than 1.5 [deg]F 
over the 30-minute data collection interval, then do not use the 
collected data to determine capacity. Instead, initiate a defrost cycle. 
Begin collecting data no sooner than 10 minutes after defrost 
termination. Collect 30 minutes of new data during which the Table 16 
test tolerances are satisfied. In this case, use only the results from 
the second 30-minute data collection interval to evaluate Qh\k\(47) and 
Eh\k\(47).
    d. If conducting the cyclic heating mode test, which is described in 
section 3.8 of this appendix, record the average indoor-side air volume 
rate, Vi, specific heat of the air, Cp,a (expressed on dry 
air basis), specific volume of the air at the nozzles, 
vn[min] (or vn), humidity ratio at the nozzles, 
Wn, and either pressure difference or velocity pressure for 
the flow nozzles. If either or both of the below criteria apply, 
determine the average, steady-state, electrical power consumption of the 
indoor blower motor (Efan,1):
    (1) The section 3.8 cyclic test will be conducted and the heat pump 
has a variable-speed indoor blower that is expected to be disabled 
during the cyclic test; or
    (2) The heat pump has a (variable-speed) constant-air volume-rate 
indoor blower and during the steady-state test the average external 
static pressure ([Delta]P1) exceeds the applicable section 
3.1.4.4 minimum (or targeted) external static pressure 
([Delta]Pmin) by 0.03 inches of water or more.
    Determine Efan,1 by making measurements during the 30-
minute data collection interval, or immediately following the test and 
prior to changing the test conditions. When the above ``2'' criteria 
applies, conduct the following four steps after determining 
Efan,1 (which corresponds to [Delta]P1):
    (i) While maintaining the same test conditions, adjust the exhaust 
fan of the airflow measuring apparatus until the external static 
pressure increases to approximately [Delta]P1 + 
([Delta]P1 - [Delta]Pmin).
    (ii) After re-establishing steady readings for fan motor power and 
external static pressure, determine average values for the indoor blower 
power (Efan,2) and the external static pressure 
([Delta]P2) by making measurements over a 5-minute interval.
    (iii) Approximate the average power consumption of the indoor blower 
motor if the 30-minute test had been conducted at [Delta]Pmin 
using linear extrapolation:
[GRAPHIC] [TIFF OMITTED] TR05JA17.183

    (iv) Decrease the total space heating capacity, Qh\k\(T), by the 
quantity (Efan,1 - Efan,min), when expressed on a 
Btu/h basis. Decrease the total electrical power, Eh\k\(T) by the same 
fan power difference, now expressed in watts.
    e. If the temperature sensors used to provide the primary 
measurement of the indoor-side dry bulb temperature difference during 
the steady-state dry-coil test and the subsequent cyclic dry-coil test 
are different, include measurements of the latter sensors among the 
regularly sampled data. Beginning at the start of the 30-minute data 
collection period, measure and compute the indoor-side air dry-bulb 
temperature difference using both sets of instrumentation, [Delta]T (Set 
SS) and [Delta]T (Set CYC), for each equally spaced data sample. If 
using a consistent data sampling rate that is less than 1 minute, 
calculate and record minutely averages for the two temperature 
differences. If using a consistent sampling rate of one minute or more, 
calculate and record the two temperature differences from each data 
sample. After having recorded the seventh (i=7) set of temperature 
differences, calculate the following ratio using the first seven sets of 
values:

[[Page 589]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.184

Each time a subsequent set of temperature differences is recorded (if 
sampling more frequently than every 5 minutes), calculate FCD 
using the most recent seven sets of values. Continue these calculations 
until the 30-minute period is completed or until a value for 
FCD is calculated that falls outside the allowable range of 
0.94-1.06. If the latter occurs, immediately suspend the test and 
identify the cause for the disparity in the two temperature difference 
measurements. Recalibration of one or both sets of instrumentation may 
be required. If all the values for FCD are within the 
allowable range, save the final value of the ratio from the 30-minute 
test as FCD*. If the temperature sensors used to provide the 
primary measurement of the indoor-side dry bulb temperature difference 
during the steady-state dry-coil test and the subsequent cyclic dry-coil 
test are the same, set FCD*= 1.

       3.8 Test Procedures for the Cyclic Heating Mode Tests (the 
    H0C1, H1C, H1C1 and H1C2 Tests).

    a. Except as noted below, conduct the cyclic heating mode test as 
specified in section 3.5 of this appendix. As adapted to the heating 
mode, replace section 3.5 references to ``the steady-state dry coil 
test'' with ``the heating mode steady-state test conducted at the same 
test conditions as the cyclic heating mode test.'' Use the test 
tolerances in Table 17 rather than Table 10. Record the outdoor coil 
entering wet-bulb temperature according to the requirements given in 
section 3.5 of this appendix for the outdoor coil entering dry-bulb 
temperature. Drop the subscript ``dry'' used in variables cited in 
section 3.5 of this appendix when referring to quantities from the 
cyclic heating mode test. If available, use electric resistance heaters 
(see section 2.1 of this appendix) to minimize the variation in the 
inlet air temperature. Determine the total space heating delivered 
during the cyclic heating test, qcyc, as specified in section 
3.5 of this appendix except for making the following changes:
    (1) When evaluating Equation 3.5-1, use the values of Vi, 
Cp,a,vn[min], (or vn), and 
Wn that were recorded during the section 3.7 steady-state 
test conducted at the same test conditions.
    (2) Calculate
    [GRAPHIC] [TIFF OMITTED] TR05JA17.185
    
where FCD* is the value recorded during the section 3.7 
steady-state test conducted at the same test condition.
    b. For ducted coil-only system heat pumps (excluding the special 
case where a variable-speed fan is temporarily removed), increase 
qcyc by the amount calculated using Equation 3.5-3. 
Additionally, increase ecyc by the amount calculated using 
Equation 3.5-2. In making these calculations, use the average indoor air 
volume rate (Vis) determined from the section 3.7 steady-
state heating mode test conducted at the same test conditions.
    c. For non-ducted heat pumps, subtract the electrical energy used by 
the indoor blower during the 3 minutes after compressor cutoff from the 
non-ducted heat pump's integrated heating capacity, qcyc.
    d. If a heat pump defrost cycle is manually or automatically 
initiated immediately prior to or during the OFF/ON cycling, operate the 
heat pump continuously until 10 minutes after defrost termination. After 
that, begin cycling the heat pump immediately or delay until the 
specified test conditions have been re-established. Pay attention to 
preventing defrosts after beginning the cycling process. For heat pumps 
that cycle off the indoor blower during a defrost cycle, make no effort 
here to restrict the air movement through the indoor coil while the fan 
is off. Resume the OFF/ON cycling while conducting a minimum of two 
complete compressor OFF/ON cycles before determining qcyc and 
ecyc.

      3.8.1 Heating Mode Cyclic-Degradation Coefficient Calculation

    Use the results from the required cyclic test and the required 
steady-state test that were conducted at the same test conditions to 
determine the heating mode cyclic-degradation coefficient CDh. Add 
``(k=2)'' to the coefficient if it corresponds to a two-capacity unit 
cycling at high capacity. For the below calculation of the heating mode 
cyclic degradation coefficient, do not include the duct loss correction 
from section 7.3.3.3 of

[[Page 590]]

ANSI/ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3) in 
determining Qh\k\(Tcyc) (or qcyc). If the optional 
cyclic test is conducted but yields a tested CDh that exceeds the 
default CDh or if the optional test is not conducted, assign CDh the 
default value of 0.25. The default value for two-capacity units cycling 
at high capacity, however, is the low-capacity coefficient, i.e., CDh 
(k=2) = CDh. The tested CDh is calculated as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.186

Where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.187

the average coefficient of performance during the cyclic heating mode 
test, dimensionless.
[GRAPHIC] [TIFF OMITTED] TR05JA17.188

the average coefficient of performance during the steady-state heating 
mode test conducted at the same test conditions--i.e., same outdoor dry 
bulb temperature, Tcyc, and speed/capacity, k, if 
applicable--as specified for the cyclic heating mode test, 
dimensionless.
[GRAPHIC] [TIFF OMITTED] TR05JA17.189

the heating load factor, dimensionless.

Tcyc = the nominal outdoor temperature at which the cyclic 
          heating mode test is conducted, 62 or 47 [deg]F.

[Delta][tau]cyc = the duration of the OFF/ON intervals; 0.5 
          hours when testing a heat pump having a single-speed or two-
          capacity compressor and 1.0 hour when testing a heat pump 
          having a variable-speed compressor.

    Round the calculated value for CDh to the nearest 0.01. If CDh is 
negative, then set it equal to zero.

    Table 17--Test Operating and Test Condition Tolerances for Cyclic
                           Heating Mode Tests
------------------------------------------------------------------------
                                          Test operating  Test condition
                                           tolerance \1\   tolerance \1\
------------------------------------------------------------------------
Indoor entering dry-bulb temperature,\2\             2.0             0.5
 [deg]F.................................
Indoor entering wet-bulb temperature,\2\             1.0
 [deg]F.................................
Outdoor entering dry-bulb                            2.0             0.5
 temperature,\2\ [deg]F.................
Outdoor entering wet-bulb                            2.0             1.0
 temperature,\2\ [deg]F.................

[[Page 591]]

 
External resistance to air-flow,\2\                 0.05
 inches of water........................
Airflow nozzle pressure difference or                2.0         \3\ 2.0
 velocity pressure,\2\% of reading......
Electrical voltage,\4\% of reading......             2.0             1.5
------------------------------------------------------------------------
\1\ See section 1.2 of this appendix, Definitions.
\2\ Applies during the interval that air flows through the indoor
  (outdoor) coil except for the first 30 seconds after flow initiation.
  For units having a variable-speed indoor blower that ramps, the
  tolerances listed for the external resistance to airflow shall apply
  from 30 seconds after achieving full speed until ramp down begins.
\3\ The test condition must be the average nozzle pressure difference or
  velocity pressure measured during the steady-state test conducted at
  the same test conditions.
\4\ Applies during the interval that at least one of the following--the
  compressor, the outdoor fan, or, if applicable, the indoor blower--are
  operating, except for the first 30 seconds after compressor start-up.

 3.9 Test Procedures for Frost Accumulation Heating Mode Tests (the H2, 
       H22, H2V, and H21 Tests).

    a. Confirm that the defrost controls of the heat pump are set as 
specified in section 2.2.1 of this appendix. Operate the test room 
reconditioning apparatus and the heat pump for at least 30 minutes at 
the specified section 3.6 test conditions before starting the 
``preliminary'' test period. The preliminary test period must 
immediately precede the ``official'' test period, which is the heating 
and defrost interval over which data are collected for evaluating 
average space heating capacity and average electrical power consumption.
    b. For heat pumps containing defrost controls which are likely to 
cause defrosts at intervals less than one hour, the preliminary test 
period starts at the termination of an automatic defrost cycle and ends 
at the termination of the next occurring automatic defrost cycle. For 
heat pumps containing defrost controls which are likely to cause 
defrosts at intervals exceeding one hour, the preliminary test period 
must consist of a heating interval lasting at least one hour followed by 
a defrost cycle that is either manually or automatically initiated. In 
all cases, the heat pump's own controls must govern when a defrost cycle 
terminates.
    c. The official test period begins when the preliminary test period 
ends, at defrost termination. The official test period ends at the 
termination of the next occurring automatic defrost cycle. When testing 
a heat pump that uses a time-adaptive defrost control system (see 
section 1.2 of this appendix, Definitions), however, manually initiate 
the defrost cycle that ends the official test period at the instant 
indicated by instructions provided by the manufacturer. If the heat pump 
has not undergone a defrost after 6 hours, immediately conclude the test 
and use the results from the full 6-hour period to calculate the average 
space heating capacity and average electrical power consumption.
    For heat pumps that turn the indoor blower off during the defrost 
cycle, take steps to cease forced airflow through the indoor coil and 
block the outlet duct whenever the heat pump's controls cycle off the 
indoor blower. If it is installed, use the outlet damper box described 
in section 2.5.4.1 of this appendix to affect the blocked outlet duct.
    d. Defrost termination occurs when the controls of the heat pump 
actuate the first change in converting from defrost operation to normal 
heating operation. Defrost initiation occurs when the controls of the 
heat pump first alter its normal heating operation in order to eliminate 
possible accumulations of frost on the outdoor coil.
    e. To constitute a valid frost accumulation test, satisfy the test 
tolerances specified in Table 18 during both the preliminary and 
official test periods. As noted in Table 18, test operating tolerances 
are specified for two sub-intervals:
    (1) When heating, except for the first 10 minutes after the 
termination of a defrost cycle (sub-interval H, as described in Table 
18) and
    (2) When defrosting, plus these same first 10 minutes after defrost 
termination (sub-interval D, as described in Table 18). Evaluate 
compliance with Table 18 test condition tolerances and the majority of 
the test operating tolerances using the averages from measurements 
recorded only during sub-interval H. Continuously record the dry bulb 
temperature of the air entering the indoor coil, and the dry bulb 
temperature and water vapor content of the air entering the outdoor 
coil. Sample the remaining parameters listed in Table 18 at equal 
intervals that span 5 minutes or less.
    f. For the official test period, collect and use the following data 
to calculate average space heating capacity and electrical power. During 
heating and defrosting intervals when the controls of the heat pump have 
the indoor blower on, continuously record the dry-bulb temperature of 
the air entering (as noted above) and leaving the indoor coil. If using 
a thermopile, continuously record the difference between the leaving and 
entering dry-bulb temperatures during the interval(s) that air flows 
through the indoor coil. For

[[Page 592]]

coil-only system heat pumps, determine the corresponding cumulative time 
(in hours) of indoor coil airflow, [Delta][tau]a. Sample 
measurements used in calculating the air volume rate (refer to sections 
7.7.2.1 and 7.7.2.2 of ANSI/ASHRAE 37-2009) at equal intervals that span 
10 minutes or less. (Note: In the first printing of ANSI/ASHRAE 37-2009, 
the second IP equation for Qmi should read:) Record the 
electrical energy consumed, expressed in watt-hours, from defrost 
termination to defrost termination, eDEF\k\(35), as well as 
the corresponding elapsed time in hours, [Delta][tau]FR.

        Table 18--Test Operating and Test Condition Tolerances for Frost Accumulation Heating Mode Tests
----------------------------------------------------------------------------------------------------------------
                                                                   Test operating tolerance \1\   Test condition
                                                                 --------------------------------  tolerance \1\
                                                                  Sub-interval H  Sub-interval D  Sub-interval H
                                                                        \2\             \3\             \2\
----------------------------------------------------------------------------------------------------------------
Indoor entering dry-bulb temperature, [deg]F....................             2.0         \4\ 4.0             0.5
Indoor entering wet-bulb temperature, [deg]F....................             1.0
Outdoor entering dry-bulb temperature, [deg]F...................             2.0            10.0             1.0
Outdoor entering wet-bulb temperature, [deg]F...................             1.5  ..............             0.5
External resistance to airflow, inches of water.................            0.05  ..............        \5\ 0.02
Electrical voltage, % of reading................................             2.0  ..............             1.5
----------------------------------------------------------------------------------------------------------------
\1\ See section 1.2 of this appendix, Definitions.
\2\ Applies when the heat pump is in the heating mode, except for the first 10 minutes after termination of a
  defrost cycle.
\3\ Applies during a defrost cycle and during the first 10 minutes after the termination of a defrost cycle when
  the heat pump is operating in the heating mode.
\4\ For heat pumps that turn off the indoor blower during the defrost cycle, the noted tolerance only applies
  during the 10 minute interval that follows defrost termination.
\5\ Only applies when testing non-ducted heat pumps.

 3.9.1 Average Space Heating Capacity and Electrical Power Calculations

    a. Evaluate average space heating capacity, Qh\k\(35), when 
expressed in units of Btu per hour, using:
[GRAPHIC] [TIFF OMITTED] TR05JA17.190

where,
Vi = the average indoor air volume rate measured during sub-interval H, 
          cfm.
Cp,a = 0.24 + 0.444 [middot] Wn, the constant 
          pressure specific heat of the air-water vapor mixture that 
          flows through the indoor coil and is expressed on a dry air 
          basis, Btu/lbmda [middot] [deg]F.
vn[min] = specific volume of the air-water vapor mixture at 
          the nozzle, ft\3\/lbmmx.
Wn = humidity ratio of the air-water vapor mixture at the 
          nozzle, lbm of water vapor per lbm of dry air.
[Delta][tau]FR = [tau]2 - [tau]1, the 
          elapsed time from defrost termination to defrost termination, 
          hr.
          [GRAPHIC] [TIFF OMITTED] TR05JA17.191
          
Tal([tau]) = dry bulb temperature of the air entering the 
          indoor coil at elapsed time [tau], [deg]F; only recorded when 
          indoor coil airflow occurs; assigned the value of zero during 
          periods (if any) where the indoor blower cycles off.
Ta2([tau]) = dry bulb temperature of the air leaving the 
          indoor coil at elapsed time [tau], [deg]F; only recorded when 
          indoor coil airflow occurs; assigned the value of zero during 
          periods (if any) where the indoor blower cycles off.
[tau]1 = the elapsed time when the defrost termination occurs 
          that begins the official test period, hr.

[[Page 593]]

[tau]2 = the elapsed time when the next automatically 
          occurring defrost termination occurs, thus ending the official 
          test period, hr.
vn = specific volume of the dry air portion of the mixture 
          evaluated at the dry-bulb temperature, vapor content, and 
          barometric pressure existing at the nozzle, ft\3\ per lbm of 
          dry air.
    To account for the effect of duct losses between the outlet of the 
indoor unit and the section 2.5.4 dry-bulb temperature grid, adjust 
Qh\k\(35) in accordance with section 7.3.4.3 of ANSI/ASHRAE 37-2009 
(incorporated by reference, see Sec.  430.3).
    b. Evaluate average electrical power, Eh\k\(35), when expressed in 
units of watts, using:
[GRAPHIC] [TIFF OMITTED] TR05JA17.192

For mobile home and space-constrained coil-only system heat pumps, 
increase Qh\k\(35) by
[GRAPHIC] [TIFF OMITTED] TR05JA17.193

    where Vis is the average measured indoor air volume rate 
expressed in units of cubic feet per minute of standard air (scfm).
    For non-mobile home, non-space-constrained coil-only system heat 
pumps, increase Qh\k\(35) by
[GRAPHIC] [TIFF OMITTED] TR05JA17.194

where Vis is the average measured indoor air volume rate 
expressed in units of cubic feet per minute of standard air (scfm).

    c. For heat pumps having a constant-air-volume-rate indoor blower, 
the five additional steps listed below are required if the average of 
the external static pressures measured during sub-interval H exceeds the 
applicable section 3.1.4.4, 3.1.4.5, or 3.1.4.6 minimum (or targeted) 
external static pressure ([Delta]Pmin) by 0.03 inches of 
water or more:
    (1) Measure the average power consumption of the indoor blower motor 
(Efan,1) and record the corresponding external static 
pressure ([Delta]P1) during or immediately following the 
frost accumulation heating mode

[[Page 594]]

test. Make the measurement at a time when the heat pump is heating, 
except for the first 10 minutes after the termination of a defrost 
cycle.
    (2) After the frost accumulation heating mode test is completed and 
while maintaining the same test conditions, adjust the exhaust fan of 
the airflow measuring apparatus until the external static pressure 
increases to approximately [Delta]P1 + ([Delta]P1 
- [Delta]Pmin).
    (3) After re-establishing steady readings for the fan motor power 
and external static pressure, determine average values for the indoor 
blower power (Efan,2) and the external static pressure 
([Delta]P2) by making measurements over a 5-minute interval.
    (4) Approximate the average power consumption of the indoor blower 
motor had the frost accumulation heating mode test been conducted at 
[Delta]Pmin using linear extrapolation:
[GRAPHIC] [TIFF OMITTED] TR05JA17.195

    (5) Decrease the total heating capacity, Qh\k\(35), by the quantity 
[(Efan,1 - Efan,min)[middot] ([Delta][tau] 
a/[Delta][tau] FR], when expressed on a Btu/h 
basis. Decrease the total electrical power, Eh\k\(35), by the same 
quantity, now expressed in watts.

                       3.9.2 Demand Defrost Credit

    a. Assign the demand defrost credit, Fdef, that is used 
in section 4.2 of this appendix to the value of 1 in all cases except 
for heat pumps having a demand-defrost control system (see section 1.2 
of this appendix, Definitions). For such qualifying heat pumps, evaluate 
Fdef using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.196

where:
[Delta][tau]def = the time between defrost terminations (in 
          hours) or 1.5, whichever is greater. Assign a value of 6 to 
          [Delta][tau]def if this limit is reached during a 
          frost accumulation test and the heat pump has not completed a 
          defrost cycle.
[Delta][tau]max = maximum time between defrosts as allowed by 
          the controls (in hours) or 12, whichever is less, as provided 
          in the certification report.

    b. For two-capacity heat pumps and for section 3.6.2 units, evaluate 
the above equation using the [Delta][tau]def that applies 
based on the frost accumulation test conducted at high capacity and/or 
at the heating full-load air volume rate. For variable-speed heat pumps, 
evaluate [Delta][tau]def based on the required frost 
accumulation test conducted at the intermediate compressor speed.

   3.10 Test Procedures for Steady-State Low Temperature and Very Low 
Temperature Heating Mode Tests (the H3, H32, H31, 
      H33, H4, H42, and H43 Tests)

    Except for the modifications noted in this section, conduct the low 
temperature and very low temperature heating mode tests using the same 
approach as specified in section 3.7 of this appendix for the maximum 
and high temperature tests. After satisfying the section 3.7 
requirements for the pretest interval but before beginning to collect 
data to determine the capacity and power input, conduct a defrost cycle. 
This defrost cycle may be manually or automatically initiated. Terminate 
the defrost sequence using the heat pump's defrost controls. Begin the 
30-minute data collection interval described in section 3.7 of this 
appendix, from which the capacity and power input are determined, no 
sooner than 10 minutes after defrost termination. Defrosts should be 
prevented over the 30-minute data collection interval.

       3.11 Additional Requirements for the Secondary Test Methods

 3.11.1 If Using the Outdoor Air Enthalpy Method as the Secondary Test 
                                 Method.

    a. For all cooling mode and heating mode tests, first conduct a test 
without the outdoor air-side test apparatus described in section 2.10.1 
of this appendix connected to the outdoor unit (``free outdoor air'' 
test).
    b. For the first section 3.2 steady-state cooling mode test and the 
first section 3.6 steady-state heating mode test, conduct a

[[Page 595]]

second test in which the outdoor-side apparatus is connected (``ducted 
outdoor air'' test). No other cooling mode or heating mode tests require 
the ducted outdoor air test so long as the unit operates the outdoor fan 
during all cooling mode steady-state tests at the same speed and all 
heating mode steady-state tests at the same speed. If using more than 
one outdoor fan speed for the cooling mode steady-state tests, however, 
conduct the ducted outdoor air test for each cooling mode test where a 
different fan speed is first used. This same requirement applies for the 
heating mode tests.

                     3.11.1.1 Free Outdoor Air Test

    a. For the free outdoor air test, connect the indoor air-side test 
apparatus to the indoor coil; do not connect the outdoor air-side test 
apparatus. Allow the test room reconditioning apparatus and the unit 
being tested to operate for at least one hour. After attaining 
equilibrium conditions, measure the following quantities at equal 
intervals that span 5 minutes or less:
    (1) The section 2.10.1 evaporator and condenser temperatures or 
pressures;
    (2) Parameters required according to the Indoor Air Enthalpy Method.
    Continue these measurements until a 30-minute period (e.g., seven 
consecutive 5-minute samples) is obtained where the Table 9 or Table 16, 
whichever applies, test tolerances are satisfied.
    b. For cases where a ducted outdoor air test is not required per 
section 3.11.1.b of this appendix, the free outdoor air test constitutes 
the ``official'' test for which validity is not based on comparison with 
a secondary test.
    c. For cases where a ducted outdoor air test is required per section 
3.11.1.b of this appendix, the following conditions must be met for the 
free outdoor air test to constitute a valid ``official'' test:
    (1) The energy balance specified in section 3.1.1 of this appendix 
is achieved for the ducted outdoor air test (i.e., compare the 
capacities determined using the indoor air enthalpy method and the 
outdoor air enthalpy method).
    (2) The capacities determined using the indoor air enthalpy method 
from the ducted outdoor air and free outdoor air tests must agree within 
2 percent.

                    3.11.1.2 Ducted Outdoor Air Test

    a. The test conditions and tolerances for the ducted outdoor air 
test are the same as specified for the official test, where the official 
test is the free outdoor air test described in section 3.11.1.1 of this 
appendix.
    b. After collecting 30 minutes of steady-state data during the free 
outdoor air test, connect the outdoor air-side test apparatus to the 
unit for the ducted outdoor air test. Adjust the exhaust fan of the 
outdoor airflow measuring apparatus until averages for the evaporator 
and condenser temperatures, or the saturated temperatures corresponding 
to the measured pressures, agree within 0.5 [deg]F 
of the averages achieved during the free outdoor air test. Collect 30 
minutes of steady-state data after re-establishing equilibrium 
conditions.
    c. During the ducted outdoor air test, at intervals of 5 minutes or 
less, measure the parameters required according to the indoor air 
enthalpy method and the outdoor air enthalpy method for the prescribed 
30 minutes.
    d. For cooling mode ducted outdoor air tests, calculate capacity 
based on outdoor air-enthalpy measurements as specified in sections 
7.3.3.2 and 7.3.3.3 of ANSI/ASHRAE 37-2009 (incorporated by reference, 
see Sec.  430.3). For heating mode ducted tests, calculate heating 
capacity based on outdoor air-enthalpy measurements as specified in 
sections 7.3.4.2 and 7.3.3.4.3 of the same ANSI/ASHRAE Standard. Adjust 
the outdoor-side capacity according to section 7.3.3.4 of ANSI/ASHRAE 
37-2009 to account for line losses when testing split systems. As 
described in section 8.6.2 of ANSI/ASHRAE 37-2009, use the outdoor air 
volume rate as measured during the ducted outdoor air tests to calculate 
capacity for checking the agreement with the capacity calculated using 
the indoor air enthalpy method.

3.11.2 If Using the Compressor Calibration Method as the Secondary Test 
                                 Method

    a. Conduct separate calibration tests using a calorimeter to 
determine the refrigerant flow rate. Or for cases where the superheat of 
the refrigerant leaving the evaporator is less than 5 [deg]F, use the 
calorimeter to measure total capacity rather than refrigerant flow rate. 
Conduct these calibration tests at the same test conditions as specified 
for the tests in this appendix. Operate the unit for at least one hour 
or until obtaining equilibrium conditions before collecting data that 
will be used in determining the average refrigerant flow rate or total 
capacity. Sample the data at equal intervals that span 5 minutes or 
less. Determine average flow rate or average capacity from data sampled 
over a 30-minute period where the Table 9 (cooling) or the Table 16 
(heating) tolerances are satisfied. Otherwise, conduct the calibration 
tests according to sections 5, 6, 7, and 8 of ASHRAE 23.1-2010 
(incorporated by reference, see Sec.  430.3); sections 5, 6, 7, 8, 9, 
and 11 of ASHRAE 41.9-2011 (incorporated by reference, see Sec.  430.3); 
and section 7.4 of ANSI/ASHRAE 37-2009 (incorporated by reference, see 
Sec.  430.3).
    b. Calculate space cooling and space heating capacities using the 
compressor calibration method measurements as specified in section 7.4.5 
and 7.4.6 respectively, of ANSI/ASHRAE 37-2009.

[[Page 596]]

 3.11.3 If Using the Refrigerant-Enthalpy Method as the Secondary Test 
                                 Method

    Conduct this secondary method according to section 7.5 of ANSI/
ASHRAE 37-2009. Calculate space cooling and heating capacities using the 
refrigerant-enthalpy method measurements as specified in sections 7.5.4 
and 7.5.5, respectively, of the same ANSI/ASHRAE Standard.

  3.12 Rounding of Space Conditioning Capacities for Reporting Purposes

    a. When reporting rated capacities, round them off as specified in 
Sec.  430.23 (for a single unit) and in 10 CFR 429.16 (for a sample).
    b. For the capacities used to perform the calculations in section 4 
of this appendix, however, round only to the nearest integer.

   3.13 Laboratory Testing To Determine Off Mode Average Power Ratings

    Voltage tolerances: As a percentage of reading, test operating 
tolerance must be 2.0 percent and test condition tolerance must be 1.5 
percent (see section 1.2 of this appendix for definitions of these 
tolerances).
    Conduct one of the following tests: If the central air conditioner 
or heat pump lacks a compressor crankcase heater, perform the test in 
section 3.13.1 of this appendix; if the central air conditioner or heat 
pump has a compressor crankcase heater that lacks controls and is not 
self-regulating, perform the test in section 3.13.1 of this appendix; if 
the central air conditioner or heat pump has a crankcase heater with a 
fixed power input controlled with a thermostat that measures ambient 
temperature and whose sensing element temperature is not affected by the 
heater, perform the test in section 3.13.1 of this appendix; if the 
central air conditioner or heat pump has a compressor crankcase heater 
equipped with self-regulating control or with controls for which the 
sensing element temperature is affected by the heater, perform the test 
in section 3.13.2 of this appendix.

   3.13.1 This Test Determines the Off Mode Average Power Rating for 
Central Air Conditioners and Heat Pumps That Lack a Compressor Crankcase 
Heater, or Have a Compressor Crankcase Heating System That Can Be Tested 
Without Control of Ambient Temperature During the Test. This Test Has No 
                     Ambient Condition Requirements

    a. Test Sample Set-up and Power Measurement: For coil-only systems, 
provide a furnace or modular blower that is compatible with the system 
to serve as an interface with the thermostat (if used for the test) and 
to provide low-voltage control circuit power. Make all control circuit 
connections between the furnace (or modular blower) and the outdoor unit 
as specified by the manufacturer's installation instructions. Measure 
power supplied to both the furnace (or modular blower) and power 
supplied to the outdoor unit. Alternatively, provide a compatible 
transformer to supply low-voltage control circuit power, as described in 
section 2.2.d of this appendix. Measure transformer power, either 
supplied to the primary winding or supplied by the secondary winding of 
the transformer, and power supplied to the outdoor unit. For blower coil 
and single-package systems, make all control circuit connections between 
components as specified by the manufacturer's installation instructions, 
and provide power and measure power supplied to all system components.
    b. Configure Controls: Configure the controls of the central air 
conditioner or heat pump so that it operates as if connected to a 
building thermostat that is set to the OFF position. Use a compatible 
building thermostat if necessary to achieve this configuration. For a 
thermostat-controlled crankcase heater with a fixed power input, bypass 
the crankcase heater thermostat if necessary to energize the heater.
    c. Measure P2x: If the unit has a crankcase heater time delay, make 
sure that time-delay function is disabled or wait until delay time has 
passed. Determine the average power from non-zero value data measured 
over a 5-minute interval of the non-operating central air conditioner or 
heat pump and designate the average power as P2x, the heating season 
total off mode power.
    d. Measure Px for coil-only split systems and for blower coil split 
systems for which a furnace or a modular blower is the designated air 
mover: Disconnect all low-voltage wiring for the outdoor components and 
outdoor controls from the low-voltage transformer. Determine the average 
power from non-zero value data measured over a 5-minute interval of the 
power supplied to the (remaining) low-voltage components of the central 
air conditioner or heat pump, or low-voltage power, Px. This power 
measurement does not include line power supplied to the outdoor unit. It 
is the line power supplied to the air mover, or, if a compatible 
transformer is used instead of an air mover, it is the line power 
supplied to the transformer primary coil. If a compatible transformer is 
used instead of an air mover and power output of the low-voltage 
secondary circuit is measured, Px is zero.
    e. Calculate P2: Set the number of compressors equal to the unit's 
number of single-stage compressors plus 1.75 times the unit's number of 
compressors that are not single-stage.
    For single-package systems and blower coil split systems for which 
the designated air mover is not a furnace or modular blower, divide the 
heating season total off mode power (P2x) by the number of compressors 
to

[[Page 597]]

calculate P2, the heating season per-compressor off mode power. Round P2 
to the nearest watt. The expression for calculating P2 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.197

    For coil-only split systems and blower coil split systems for which 
a furnace or a modular blower is the designated air mover, subtract the 
low-voltage power (Px) from the heating season total off mode power (Px) 
and divide by the number of compressors to calculate P2, the heating 
season per-compressor off mode power. Round P2 to the nearest watt. The 
expression for calculating P2 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.198

    f. Shoulder-season per-compressor off mode power, P1: If the system 
does not have a crankcase heater, has a crankcase heater without 
controls that is not self-regulating, or has a value for the crankcase 
heater turn-on temperature (as certified to DOE) that is higher than 71 
[deg]F, P1 is equal to P2.
    Otherwise, de-energize the crankcase heater (by removing the 
thermostat bypass or otherwise disconnecting only the power supply to 
the crankcase heater) and repeat the measurement as described in section 
3.13.1.c of this appendix. Designate the measured average power as P1x, 
the shoulder season total off mode power.
    Determine the number of compressors as described in section 3.13.1.e 
of this appendix.
    For single-package systems and blower coil systems for which the 
designated air mover is not a furnace or modular blower, divide the 
shoulder season total off mode power (P1x) by the number of compressors 
to calculate P1, the shoulder season per-compressor off mode power. 
Round P1 to the nearest watt. The expression for calculating P1 is as 
follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.199

    For coil-only split systems and blower coil split systems for which 
a furnace or a modular blower is the designated air mover, subtract the 
low-voltage power (Px) from the shoulder season total off mode power 
(P1x) and divide by the number of compressors to calculate P1, the 
shoulder season per-compressor off mode power. Round P1 to the nearest 
watt. The expression for calculating P1 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.200

   3.13.2 This Test Determines the Off Mode Average Power Rating for 
 Central Air Conditioners and Heat Pumps for Which Ambient Temperature 
          Can Affect the Measurement of Crankcase Heater Power

    a. Test Sample Set-up and Power Measurement: set up the test and 
measurement as described in section 3.13.1.a of this appendix.
    b. Configure Controls: Position a temperature sensor to measure the 
outdoor dry-bulb temperature in the air between 2 and 6 inches from the 
crankcase heater control temperature sensor or, if no such temperature 
sensor exists, position it in the air between 2 and 6 inches from the 
crankcase heater. Utilize the temperature measurements from this sensor 
for this portion of the test procedure. Configure the controls of the 
central air conditioner or heat pump so that it operates as if connected 
to a building thermostat that is set to the OFF position.

[[Page 598]]

Use a compatible building thermostat if necessary to achieve this 
configuration.
    Conduct the test after completion of the B, B1, or 
B2 test. Alternatively, start the test when the outdoor dry-
bulb temperature is at 82 [deg]F and the temperature of the compressor 
shell (or temperature of each compressor's shell if there is more than 
one compressor) is at least 81 [deg]F. Then adjust the outdoor 
temperature and achieve an outdoor dry-bulb temperature of 72 [deg]F. If 
the unit's compressor has no sound blanket, wait at least 4 hours after 
the outdoor temperature reaches 72 [deg]F. Otherwise, wait at least 8 
hours after the outdoor temperature reaches 72 [deg]F. Maintain this 
temperature within 2 [deg]F while the compressor 
temperature equilibrates and while making the power measurement, as 
described in section 3.13.2.c of this appendix.
    c. Measure P1x: If the unit has a crankcase heater time delay, make 
sure that time-delay function is disabled or wait until delay time has 
passed. Determine the average power from non-zero value data measured 
over a 5-minute interval of the non-operating central air conditioner or 
heat pump and designate the average power as P1x, the shoulder season 
total off mode power. For units with crankcase heaters which operate 
during this part of the test and whose controls cycle or vary crankcase 
heater power over time, the test period shall consist of three complete 
crankcase heater cycles or 18 hours, whichever comes first. Designate 
the average power over the test period as P1x, the shoulder season total 
off mode power.
    d. Reduce outdoor temperature: Approach the target outdoor dry-bulb 
temperature by adjusting the outdoor temperature. This target 
temperature is five degrees Fahrenheit less than the temperature 
certified by the manufacturer as the temperature at which the crankcase 
heater turns on. If the unit's compressor has no sound blanket, wait at 
least 4 hours after the outdoor temperature reaches the target 
temperature. Otherwise, wait at least 8 hours after the outdoor 
temperature reaches the target temperature. Maintain the target 
temperature within 2 [deg]F while the compressor 
temperature equilibrates and while making the power measurement, as 
described in section 3.13.2.e of this appendix.
    e. Measure P2x: If the unit has a crankcase heater time delay, make 
sure that time-delay function is disabled or wait until delay time has 
passed. Determine the average non-zero power of the non-operating 
central air conditioner or heat pump over a 5-minute interval and 
designate it as P2x, the heating season total off mode power. For units 
with crankcase heaters whose controls cycle or vary crankcase heater 
power over time, the test period shall consist of three complete 
crankcase heater cycles or 18 hours, whichever comes first. Designate 
the average power over the test period as P2x, the heating season total 
off mode power.
    f. Measure Px for coil-only split systems and for blower coil split 
systems for which a furnace or modular blower is the designated air 
mover: Disconnect all low-voltage wiring for the outdoor components and 
outdoor controls from the low-voltage transformer. Determine the average 
power from non-zero value data measured over a 5-minute interval of the 
power supplied to the (remaining) low-voltage components of the central 
air conditioner or heat pump, or low-voltage power, Px. This power 
measurement does not include line power supplied to the outdoor unit. It 
is the line power supplied to the air mover, or, if a 
compatible transformer is used instead of an air mover, it is the line 
power supplied to the transformer primary coil. If a compatible 
transformer is used instead of an air mover and power output of the low-
voltage secondary circuit is measured, Px is zero.
    g. Calculate P1:
    Set the number of compressors equal to the unit's number of single-
stage compressors plus 1.75 times the unit's number of compressors that 
are not single-stage.
    For single-package systems and blower coil split systems for which 
the air mover is not a furnace or modular blower, divide the shoulder 
season total off mode power (P1x) by the number of compressors to 
calculate P1, the shoulder season per-compressor off mode power. Round 
to the nearest watt. The expression for calculating P1 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.201

    For coil-only split systems and blower coil split systems for which 
a furnace or a modular blower is the designated air mover, subtract the 
low-voltage power (Px) from the shoulder season total off mode power 
(P1x) and divide by the number of compressors to calculate P1, the 
shoulder season per-compressor off mode power. Round to the nearest 
watt. The expression for calculating P1 is as follows:

[[Page 599]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.202

    h. Calculate P2:
    Determine the number of compressors as described in section 3.13.2.g 
of this appendix.
    For, single-package systems and blower coil split systems for which 
the air mover is not a furnace, divide the heating season total off mode 
power (P2x) by the number of compressors to calculate P2, the heating 
season per-compressor off mode power. Round to the nearest watt. The 
expression for calculating P2 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.203

    For coil-only split systems and blower coil split systems for which 
a furnace or a modular blower is the designated air mover, subtract the 
low-voltage power (Px) from the heating season total off mode power 
(P2x) and divide by the number of compressors to calculate P2, the 
heating season per-compressor off mode power. Round to the nearest watt. 
The expression for calculating P2 is as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.204

           4 Calculations of Seasonal Performance Descriptors

        4.1 Seasonal Energy Efficiency Ratio (SEER2) Calculations

    Calculate SEER2 as follows: For equipment covered under sections 
4.1.2, 4.1.3, and 4.1.4 of this appendix, evaluate the seasonal energy 
efficiency ratio,
[GRAPHIC] [TIFF OMITTED] TR05JA17.205

where,

[[Page 600]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.206

Tj = the outdoor bin temperature, [deg]F. Outdoor 
          temperatures are grouped or ``binned.'' Use bins of 5 [deg]F 
          with the 8 cooling season bin temperatures being 67, 72, 77, 
          82, 87, 92, 97, and 102 [deg]F.
j = the bin number. For cooling season calculations, j ranges from 1 to 
          8.
    Additionally, for sections 4.1.2, 4.1.3, and 4.1.4 of this appendix, 
use a building cooling load, BL(Tj). When referenced, 
evaluate BL(Tj) for cooling using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.207

where:
Qck=2(95) = the space cooling capacity determined from the 
          A2 test and calculated as specified in section 3.3 
          of this appendix, Btu/h.
1.1 = sizing factor, dimensionless.
The temperatures 95 [deg]F and 65 [deg]F in the building load equation 
          represent the selected outdoor design temperature and the 
          zero-load base temperature, respectively.
V is a factor equal to 0.93 for variable-speed heat pumps and otherwise 
          equal to 1.0.

4.1.1 SEER2 Calculations for a Blower Coil System Having a Single-Speed 
  Compressor and Either a Fixed-Speed Indoor Blower or a Constant-Air-
   Volume-Rate Indoor Blower, or a Single-Speed Coil-Only System Air 
                        Conditioner or Heat Pump

    a. Evaluate the seasonal energy efficiency ratio, expressed in units 
of Btu/watt-hour, using:
    SEER2 = PLF(0.5) * EERB
where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.208


[[Page 601]]


PLF(0.5) = 1 - 0.5 [middot] CD\c\, the part-load performance 
          factor evaluated at a cooling load factor of 0.5, 
          dimensionless.
    b. Refer to section 3.3 of this appendix regarding the definition 
and calculation of Qc(82) and Ec(82). Evaluate the 
cooling mode cyclic degradation factor CD\c\ as specified in 
section 3.5.3 of this appendix.

 4.1.2 SEER2 Calculations for an Air Conditioner or Heat Pump Having a 
 Single-Speed Compressor and a Variable-Speed Variable-Air-Volume-Rate 
                              Indoor Blower

 4.1.2.1 Units Covered by Section 3.2.2.1 of This Appendix Where Indoor 
    Blower Capacity Modulation Correlates With the Outdoor Dry Bulb 
                               Temperature

    The manufacturer must provide information on how the indoor air 
volume rate or the indoor blower speed varies over the outdoor 
temperature range of 67 [deg]F to 102 [deg]F. Calculate SEER2 using 
Equation 4.1-1. Evaluate the quantity qc(Tj)/N in 
Equation 4.1-1 using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.209

where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.210

Qc(Tj) = the space cooling capacity of the test 
          unit when operating at outdoor temperature, Tj, 
          Btu/h.
nj/N = fractional bin hours for the cooling season; the ratio 
          of the number of hours during the cooling season when the 
          outdoor temperature fell within the range represented by bin 
          temperature Tj to the total number of hours in the 
          cooling season, dimensionless.
    a. For the space cooling season, assign nj/N as specified 
in Table 19. Use Equation 4.1-2 to calculate the building load, 
BL(Tj). Evaluate Qc(Tj) using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.211

where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.212

the space cooling capacity of the test unit at outdoor temperature 
          Tj if operated at the cooling minimum air volume 
          rate, Btu/h.

[[Page 602]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.213

the space cooling capacity of the test unit at outdoor temperature 
          Tj if operated at the Cooling full-load air volume 
          rate, Btu/h.
    b. For units where indoor blower speed is the primary control 
variable, FPck=1 denotes the fan speed used during the 
required A1 and B1 tests (see section 3.2.2.1 of 
this appendix), FPck=2 denotes the fan speed used during the 
required A2 and B2 tests, and 
FPc(Tj) denotes the fan speed used by the unit 
when the outdoor temperature equals Tj. For units where 
indoor air volume rate is the primary control variable, the three 
FPc's are similarly defined only now being expressed in terms 
of air volume rates rather than fan speeds. Refer to sections 3.2.2.1, 
3.1.4 to 3.1.4.2, and 3.3 of this appendix regarding the definitions and 
calculations of Qck=1(82), Qck=1(95),Qc 
k=2(82), and Qck=2(95).


    Calculate ec(Tj)/N in Equation 4.1-1 using, 
Equation 4.1.2-3
[GRAPHIC] [TIFF OMITTED] TR05JA17.214

where:
PLFj = 1 - CD\c\ [middot] [1 - X(Tj)], 
          the part load factor, dimensionless.
Ec(Tj) = the electrical power consumption of the 
          test unit when operating at outdoor temperature Tj, 
          W.
    c. The quantities X(Tj) and nj/N are the same 
quantities as used in Equation 4.1.2-1. Evaluate the cooling mode cyclic 
degradation factor CD\c\ as specified in section 3.5.3 of 
this appendix.
    d. Evaluate Ec(Tj) using,
    [GRAPHIC] [TIFF OMITTED] TR05JA17.215
    
the electrical power consumption of the test unit at outdoor temperature 
Tj if operated at the cooling minimum air volume rate, W.
[GRAPHIC] [TIFF OMITTED] TR05JA17.216

    e. The parameters FPck=1, and FPck=2, and 
FPc(Tj) are the same quantities that are used when 
evaluating Equation 4.1.2-2. Refer to sections 3.2.2.1, 3.1.4 to 
3.1.4.2, and 3.3 of this

[[Page 603]]

appendix regarding the definitions and calculations of 
Eck=1(82), Eck=1(95), Eck=2(82), and 
Eck=2(95).

 4.1.2.2 Units Covered by Section 3.2.2.2 of This Appendix Where Indoor 
   Blower Capacity Modulation is Used to Adjust the Sensible to Total 
                         Cooling Capacity Ratio

    Calculate SEER2 as specified in section 4.1.1 of this appendix.

 4.1.3 SEER2 Calculations for an Air Conditioner or Heat Pump Having a 
                         Two-Capacity Compressor

    Calculate SEER2 using Equation 4.1-1. Evaluate the space cooling 
capacity, Qck=1 (Tj), and electrical power 
consumption, Eck=1 (Tj), of the test unit when 
operating at low compressor capacity and outdoor temperature 
Tj using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.217

[GRAPHIC] [TIFF OMITTED] TR05JA17.218

where Qck=1 (82) and Eck=1 (82) are determined 
from the B1 test, Qck=1 (67) and Eck=1 
(67) are determined from the F1 test, and all four quantities 
are calculated as specified in section 3.3 of this appendix. Evaluate 
the space cooling capacity, Qck=2 (Tj), and 
electrical power consumption, Eck=2 (Tj), of the 
test unit when operating at high compressor capacity and outdoor 
temperature Tj using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.219

[GRAPHIC] [TIFF OMITTED] TR05JA17.220

where Qck=2(95) and Eck=2(95) are determined from 
the A2 test, Qck=2(82), and Eck=2(82), 
are determined from the B2 test, and all are calculated as 
specified in section 3.3 of this appendix.
    The calculation of Equation 4.1-1 quantities 
qc(Tj)/N and ec(Tj)/N 
differs depending on whether the test unit would operate at low capacity 
(section 4.1.3.1 of this appendix), cycle between low and high capacity 
(section 4.1.3.2 of this appendix), or operate at high capacity 
(sections 4.1.3.3 and 4.1.3.4 of this appendix) in responding to the 
building load. For units that lock out low capacity operation at higher 
outdoor temperatures, the outdoor temperature at which the unit locks 
out must be that specified by the manufacturer in the certification 
report so that the appropriate equations are used. Use Equation 4.1-2 to 
calculate the building load, BL(Tj), for each temperature 
bin.

 4.1.3.1 Steady-state Space Cooling Capacity at Low Compressor Capacity 
  Is Greater Than or Equal to the Building Cooling Load at Temperature 
             Tj, Qck=1(Tj) 
                      =BL(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.221

Where:

Xk=1(Tj) = BL(Tj)/Qck=1(Tj), 
          the cooling mode low capacity load factor for temperature bin 
          j, dimensionless.
PLFj = 1 - CD\c\ [middot] [1 - 
          Xk=1(Tj)], the part load factor, dimensionless.
    nj/N = fractional bin hours for the cooling season; the 
ratio of the number of hours during the cooling season when the outdoor 
temperature fell within the range represented by bin temperature 
Tj to the total number of hours in the cooling season, 
dimensionless.
    Obtain the fractional bin hours for the cooling season, 
nj/N, from Table 19. Use Equations 4.1.3-1 and 4.1.3-2, 
respectively, to evaluate Qck=1(Tj) and 
Eck=1(Tj). Evaluate the cooling mode cyclic 
degradation factor CD\c\ as specified in section 3.5.3 of 
this appendix.

                Table 19--Distribution of Fractional Hours Within Cooling Season Temperature Bins
----------------------------------------------------------------------------------------------------------------
                                                                                                  Fraction of of
                                                                        Bin       Representative       total
                          Bin number, j                             temperature     temperature     temperature
                                                                   range [deg]F   for bin [deg]F  bin hours, nj/
                                                                                                         N
----------------------------------------------------------------------------------------------------------------
1...............................................................           65-69              67           0.214
2...............................................................           70-74              72           0.231
3...............................................................           75-79              77           0.216

[[Page 604]]

 
4...............................................................           80-84              82           0.161
5...............................................................           85-89              87           0.104
6...............................................................           90-94              92           0.052
7...............................................................           95-99              97           0.018
8...............................................................         100-104             102           0.004
----------------------------------------------------------------------------------------------------------------

  4.1.3.2 Unit Alternates Between High (k=2) and Low (k=1) Compressor 
      Capacity to Satisfy the Building Cooling Load at Temperature 
   Tj, Qck=1(Tj) <(BL(Tj) 
                    <(Qck=2(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.222

Where:

[GRAPHIC] [TIFF OMITTED] TR05JA17.223

    Xk=2(Tj) = 1 - Xk=1(Tj), the cooling mode, 
high capacity load factor for temperature bin j, dimensionless.
    Obtain the fractional bin hours for the cooling season, 
nj/N, from Table 19. Use Equations 4.1.3-1 and 4.1.3-2, 
respectively, to evaluate Qck=1(Tj) and 
Eck=1(Tj). Use Equations 4.1.3-3 and 4.1.3-4, 
respectively, to evaluate Qck=2(Tj) and 
Eck=2(Tj).

    4.1.3.3 Unit Only Operates at High (k=2) Compressor Capacity at 
Temperature Tj and Its Capacity Is Greater Than the Building 
 Cooling Load, BL(Tj) ck=2(Tj). This 
section applies to units that lock out low compressor capacity operation 
                     at higher outdoor temperatures.
[GRAPHIC] [TIFF OMITTED] TR05JA17.224

Where,

    Xk=2(Tj) = BL(Tj)/
Qck=2(Tj), the cooling mode high capacity load 
factor for temperature bin j, dimensionless.
PLFj = 1-CDc(k = 2) * [1-Xk=2(Tj)], the part load factor, 
          dimensionless.
    Obtain the fractional bin hours for the cooling season, 
nj/N, from Table 19. Use Equations 4.1.3-3 and 4.1.3-4, 
respectively, to evaluate Qck=2 (Tj) and 
Eck=2 (Tj). If the C2 and D2 
tests described in section 3.2.3 and Table 7 of this appendix are not 
conducted, set CD\c\


[[Page 605]]

(k=2) equal to the default value specified in section 3.5.3 of this 
appendix.

4.1.3.4 Unit Must Operate Continuously at High (k=2) Compressor Capacity 
            at Temperature Tj, BL(Tj) 
               =Qck=2(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.225

Obtain the fractional bin hours for the cooling season, nj/N, 
from Table 19. Use Equations 4.1.3-3 and 4.1.3-4, respectively, to 
evaluate Qck=2(Tj) and 
Eck=2(Tj).

 4.1.4 SEER2 Calculations for an Air Conditioner or Heat Pump Having a 
                        Variable-Speed Compressor

    Calculate SEER2 using Equation 4.1-1. Evaluate the space cooling 
capacity, Qck=1(Tj), and electrical power 
consumption, Eck=1(Tj), of the test unit when 
operating at minimum compressor speed and outdoor temperature 
Tj. Use,
[GRAPHIC] [TIFF OMITTED] TR05JA17.226

[GRAPHIC] [TIFF OMITTED] TR05JA17.227

where Qck=1(82) and Eck=1(82) are determined from 
the B1 test, Qck=1(67) and Eck=1(67) 
are determined from the F1 test, and all four quantities are calculated 
as specified in section 3.3 of this appendix. Evaluate the space cooling 
capacity, Qck=2(Tj), and electrical power 
consumption, Eck=2(Tj), of the test unit when 
operating at full compressor speed and outdoor temperature 
Tj. Use Equations 4.1.3-3 and 4.1.3-4, respectively, where 
Qck=2(95) and Eck=2(95) are determined from the 
A2 test, Qck=2(82) and Eck=2(82) are 
determined from the B2 test, and all four quantities are 
calculated as specified in section 3.3 of this appendix. Calculate the 
space cooling capacity, Qck=v(Tj), and 
electrical power consumption, 
Eck=v(Tj), of the test unit when 
operating at outdoor temperature Tj and the intermediate 
compressor speed used during the section 3.2.4 (and Table 8) 
EV test of this appendix using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.228

[GRAPHIC] [TIFF OMITTED] TR05JA17.229

where Qck=v(87) and 
Eck=v(87) are determined from the EV 
test and calculated as specified in section 3.3 of this appendix. 
Approximate the slopes of the k=v intermediate speed cooling capacity 
and electrical power input curves, MQ and ME, as 
follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.230


[[Page 606]]


[GRAPHIC] [TIFF OMITTED] TR05JA17.231

    Use Equations 4.1.4-1 and 4.1.4-2, respectively, to calculate 
Qck=1(87) and Eck=1(87).
    4.1.4.1 Steady-state space cooling capacity when operating at 
minimum compressor speed is greater than or equal to the building 
cooling load at temperature Tj, 
Qck=1(Tj) =BL(Tj).
[GRAPHIC] [TIFF OMITTED] TR05JA17.232

Where:

Xk=1(Tj) = BL(Tj)/Qck=1(Tj), 
          the cooling mode minimum speed load factor for temperature bin 
          j, dimensionless.
PLFj = 1 - CD\c\ [middot] [1 - 
          Xk=1(Tj)], the part load factor, dimensionless.
nj/N = fractional bin hours for the cooling season; the ratio 
          of the number of hours during the cooling season when the 
          outdoor temperature fell within the range represented by bin 
          temperature Tj to the total number of hours in the 
          cooling season, dimensionless.
    Obtain the fractional bin hours for the cooling season, 
nj/N, from Table 19. Use Equations 4.1.3-1 and 4.1.3-2, 
respectively, to evaluate Qc\k=l\ (Tj) and 
Ec\k=l\ (Tj). Evaluate the cooling mode cyclic 
degradation factor CD\c\ as specified in section 3.5.3 of 
this appendix.
    4.1.4.2 Unit operates at an intermediate compressor speed (k=i) in 
order to match the building cooling load at temperature Tj, 
Qck=1(Tj) j) 
ck=2(Tj).
[GRAPHIC] [TIFF OMITTED] TR05JA17.233

Where:

Qck=i(Tj) = BL(Tj), the 
          space cooling capacity delivered by the unit in matching the 
          building load at temperature Tj, Btu/h. The 
          matching occurs with the unit operating at compressor speed k 
          = i.
          [GRAPHIC] [TIFF OMITTED] TR05JA17.234
          
EERk=i(Tj) = the steady-state energy efficiency 
          ratio of the test unit when operating at a compressor speed of 
          k = i and temperature Tj, Btu/h per W.

[[Page 607]]

    Obtain the fractional bin hours for the cooling season, 
nj/N, from Table 19 of this section. For each temperature bin 
where the unit operates at an intermediate compressor speed, determine 
the energy efficiency ratio EERk=i(Tj) using the 
following equations,
    For each temperature bin where Qck=1(Tj) 
j) ck=v(Tj),
[GRAPHIC] [TIFF OMITTED] TR05JA17.235

    For each temperature bin where 
Qck=v(Tj) <=BL(Tj) 
ck=2(Tj),
[GRAPHIC] [TIFF OMITTED] TR05JA17.236

Where:

    EERk=1(Tj) is the steady-state energy efficiency ratio of 
the test unit when operating at minimum compressor speed and temperature 
Tj, Btu/h per W, calculated using capacity 
Qck=1(Tj) calculated using Equation 4.1.4-1 and 
electrical power consumption Eck=1(Tj) calculated 
using Equation 4.1.4-2;
    EERk=v(Tj) is the steady-state energy 
efficiency ratio of the test unit when operating at intermediate 
compressor speed and temperature Tj, Btu/h per W, calculated using 
capacity Qck=v(Tj) calculated using 
Equation 4.1.4-3 and electrical power consumption 
Eck=v(Tj) calculated using Equation 
4.1.4-4;
    EER2k=2(Tj) is the steady-state energy efficiency ratio 
of the test unit when operating at full compressor speed and temperature 
Tj, Btu/h per W, calculated using capacity 
Qck=2(Tj) and electrical power consumption 
Eck=2(Tj), both calculated as described in section 
4.1.4; and
    BL(Tj) is the building cooling load at temperature 
Tj, Btu/h.
    4.1.4.3 Unit must operate continuously at full (k=2) compressor 
speed at temperature Tj, BL(Tj) 
=Qck=2(Tj). Evaluate the Equation 4.1-1 
quantities
[GRAPHIC] [TIFF OMITTED] TR05JA17.237

as specified in section 4.1.3.4 of this appendix with the understanding 
that Qck=2(Tj) and Eck=2(Tj) 
correspond to full compressor speed operation and are derived from the 
results of the tests specified in section 3.2.4 of this appendix.

 4.1.5 SEER2 Calculations for an Air Conditioner or Heat Pump Having a 
             Single Indoor Unit With Multiple Indoor Blowers

    Calculate SEER2 using Eq. 4.1-1, where qc(Tj)/N and 
ec(Tj)/N are evaluated as specified in the applicable 
subsection.

   4.1.5.1 For Multiple Indoor Blower Systems That Are Connected to a 
                    Single, Single-Speed Outdoor Unit

    a. Calculate the space cooling capacity, Qck=1(Tj), and 
electrical power consumption, Eck=1(Tj), of the test unit 
when operating at the cooling minimum air volume rate and outdoor 
temperature Tj using the equations given in section 4.1.2.1 
of this appendix. Calculate the space cooling capacity, 
Qck=2(Tj), and electrical power consumption, 
Eck=2(Tj), of the test unit when operating at the cooling 
full-load air volume rate and outdoor temperature Tj using 
the equations given in section 4.1.2.1 of this appendix. In evaluating 
the section 4.1.2.1 equations, determine the quantities 
Qck=1(82) and Eck=1(82) from the B1 test, 
Qck=1(95) and Eck=1(95) from the Al test, 
Qck=2(82) and Eck=2(82) from the B2 test, and 
Qck=2(95) and Eck=2(95) from the A2 
test. Evaluate all eight quantities as specified in section 3.3. Refer 
to section 3.2.2.1 and Table 6 for additional information on the four 
referenced laboratory tests.

[[Page 608]]

    b. Determine the cooling mode cyclic degradation coefficient, 
CD\c\, as per sections 3.2.2.1 and 3.5 to 3.5.3 of this 
appendix. Assign this same value to CD\c\(K=2).
    c. Except for using the above values of Qck=1(Tj), 
Eck=1(Tj), Eck=2(Tj), Qck=2(Tj), 
CD\c\, and CD\c\ (K=2), calculate the quantities 
qc(Tj)/N and ec(Tj)/N as 
specified in section 4.1.3.1 of this appendix for cases where 
Qck=1(Tj) = BL(Tj). For all other 
outdoor bin temperatures, Tj, calculate qc(Tj)/N 
and ec(Tj)/N as specified in section 4.1.3.3 of this appendix 
if Qck=2(Tj)  BL (Tj) or as specified 
in section 4.1.3.4 of this appendix if Qck=2(Tj) <= 
BL(Tj).

4.1.5.2 For Multiple Indoor Blower Systems That Are Connected to Either 
a Lone Outdoor Unit Having a Two-Capacity Compressor or Two Separate But 
  Identical Model Single-Speed Outdoor Units. Calculate the Quantities 
  qc(Tj)/N and ec(Tj)/N as Specified in Section 
                         4.1.3 of This Appendix

     4.2 Heating Seasonal Performance Factor 2 (HSPF2) Calculations

    Unless an approved alternative efficiency determination method is 
used, as set forth in 10 CFR 429.70(e). Calculate HSPF2 as follows: Six 
generalized climatic regions are depicted in Figure 1 and otherwise 
defined in Table 20. For each of these regions and for each applicable 
standardized design heating requirement, evaluate the heating seasonal 
performance factor using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.238

Where:

eh(Tj)/N = The ratio of the electrical energy consumed by the 
          heat pump during periods of the heating season when the 
          outdoor temperature fell within the range represented by bin 
          temperature Tj to the total number of hours in the 
          heating season (N), W. For heat pumps having a heat comfort 
          controller, this ratio may also include electrical energy used 
          by resistive elements to maintain a minimum air delivery 
          temperature (see 4.2.5).
RH(Tj)/N = The ratio of the electrical energy used for 
          resistive space heating during periods when the outdoor 
          temperature fell within the range represented by bin 
          temperature Tj to the total number of hours in the 
          heating season (N), W. Except as noted in section 4.2.5 of 
          this appendix, resistive space heating is modeled as being 
          used to meet that portion of the building load that the heat 
          pump does not meet because of insufficient capacity or because 
          the heat pump automatically turns off at the lowest outdoor 
          temperatures. For heat pumps having a heat comfort controller, 
          all or part of the electrical energy used by resistive heaters 
          at a particular bin temperature may be reflected in 
          eh(Tj)/N (see section 4.2.5 of this appendix).
Tj = the outdoor bin temperature, [deg]F. Outdoor 
          temperatures are ``binned'' such that calculations are only 
          performed based one temperature within the bin. Bins of 5 
          [deg]F are used.
nj/N = Fractional bin hours for the heating season; the ratio 
          of the number of hours during the heating season when the 
          outdoor temperature fell within the range represented by bin 
          temperature Tj to the total number of hours in the 
          heating season, dimensionless. Obtain nj/N values 
          from Table 20.
j = the bin number, dimensionless.
J = for each generalized climatic region, the total number of 
          temperature bins, dimensionless. Referring to Table 20, J is 
          the highest bin number (j) having a nonzero entry for the 
          fractional bin hours for the generalized climatic region of 
          interest.
Fdef = the demand defrost credit described in section 3.9.2 
          of this appendix, dimensionless.
BL(Tj) = the building space conditioning load corresponding 
          to an outdoor temperature of Tj; the heating season 
          building load also depends on the generalized climatic 
          region's outdoor design temperature and the design heating 
          requirement, Btu/h.

                                Table 20--Generalized Climatic Region Information
----------------------------------------------------------------------------------------------------------------
           Region Number                 I            II          III           IV           V           * VI
----------------------------------------------------------------------------------------------------------------
Heating Load Hours, HLH...........          493          857         1247         1701         2202         1842
Outdoor Design Temperature, TOD...           37           27           17            5          -10           30

[[Page 609]]

 
Heating Load Line Equation Slope           1.10         1.06         1.30         1.15         1.16         1.11
 Factor, C........................
Variable-speed Slope Factor, CVS..         1.03         0.99         1.21         1.07         1.08         1.03
Zero-Load Temperature, Tzl........           58           57           56           55           55           57
                                   -----------------------------------------------------------------------------
 j Tj ( [deg]F)...................                           Fractional Bin Hours, nj/N
----------------------------------------------------------------------------------------------------------------
 1 62.............................            0            0            0            0            0            0
 2 57.............................         .239            0            0            0            0            0
 3 52.............................         .194         .163         .138         .103         .086         .215
 4 47.............................         .129         .143         .137         .093         .076         .204
 5 42.............................         .081         .112         .135         .100         .078         .141
 6 37.............................         .041         .088         .118         .109         .087         .076
 7 32.............................         .019         .056         .092         .126         .102         .034
 8 27.............................         .005         .024         .047         .087         .094         .008
 9 22.............................         .001         .008         .021         .055         .074         .003
10 17.............................            0         .002         .009         .036         .055            0
11 12.............................            0            0         .005         .026         .047            0
12 7..............................            0            0         .002         .013         .038            0
13 2..............................            0            0         .001         .006         .029            0
14 -3.............................            0            0            0         .002         .018            0
15 -8.............................            0            0            0         .001         .010            0
16 -13............................            0            0            0            0         .005            0
17 -18............................            0            0            0            0         .002            0
18 -23............................            0            0            0            0         .001            0
----------------------------------------------------------------------------------------------------------------
* Pacific Coast Region.

    Evaluate the building heating load using
    [GRAPHIC] [TIFF OMITTED] TR05JA17.239
    
where,

Tj = the outdoor bin temperature, [deg]F
Tzl = the zero-load temperature, [deg]F, which varies by 
          climate region according to Table 20
C = the slope (adjustment) factor, which varies by climate region 
          according to Table 20
Qc(95[deg]F) = the cooling capacity at 95 [deg]F determined 
          from the A or A2 test,Btu/h
For heating-only heat pump units, replace Qc(95[deg]F) in 
          Equation 4.2-2 with Qh(47[deg]F)
Qh(47[deg]F)= the heating capacity at 47 [deg]F determined 
          from the H, H12 or H1N test, Btu/h.

    a. For all heat pumps, HSPF2 accounts for the heating delivered and 
the energy consumed by auxiliary resistive elements when operating below 
the balance point. This condition occurs when the building load exceeds 
the space heating capacity of the heat pump condenser. For HSPF2 
calculations for all heat pumps, see either section 4.2.1, 4.2.2, 4.2.3, 
or 4.2.4 of this appendix, whichever applies.
    b. For heat pumps with heat comfort controllers (see section 1.2 of 
this appendix, Definitions), HSPF2 also accounts for resistive heating 
contributed when operating above the heat-pump-plus-comfort-controller 
balance point as a result of maintaining a minimum supply temperature. 
For heat pumps having a heat comfort controller, see section 4.2.5 of 
this appendix for the additional steps required for calculating the 
HSPF2.

4.2.1 Additional Steps for Calculating the HSPF2 of a Blower Coil System 
  Heat Pump Having a Single-Speed Compressor and Either a Fixed-Speed 
 Indoor Blower or a Constant-Air-Volume-Rate Indoor Blower, or a Single-
                    Speed Coil-Only System Heat Pump
[GRAPHIC] [TIFF OMITTED] TR05JA17.240


[[Page 610]]


[GRAPHIC] [TIFF OMITTED] TR05JA17.241

Where:
[GRAPHIC] [TIFF OMITTED] TR05JA17.242


whichever is less; the heating mode load factor for temperature bin j, 
          dimensionless.
Qh(Tj) = the space heating capacity of the heat pump when 
          operating at outdoor temperature Tj, Btu/h.
Eh(Tj) = the electrical power consumption of the heat pump 
          when operating at outdoor temperature Tj, W.
[delta](Tj) = the heat pump low temperature cut-out factor, 
          dimensionless.
PLFj = 1 - CDh [middot] [1 -X(Tj)] the part load 
          factor, dimensionless.

    Use Equation 4.2-2 to determine BL(Tj). Obtain fractional 
bin hours for the heating season, nj/N, from Table 20. 
Evaluate the heating mode cyclic degradation factor CDh as specified in 
section 3.8.1 of this appendix.
    Determine the low temperature cut-out factor using
    [GRAPHIC] [TIFF OMITTED] TR05JA17.243
    

Where:

Toff = the outdoor temperature when the compressor is 
          automatically shut off, [deg]F. (If no such temperature 
          exists, Tj is always greater than Toff 
          and Ton).
    Ton = the outdoor temperature when the compressor is 
automatically turned back on, if applicable, following an automatic 
shut-off, [deg]F.
    If the H4 test is not conducted, calculate Qh(Tj) and 
Eh(Tj) using
[GRAPHIC] [TIFF OMITTED] TR05JA17.244

[GRAPHIC] [TIFF OMITTED] TR05JA17.245


[[Page 611]]


where Qh(47) and Eh(47) are determined from the H1 test and calculated 
          as specified in section 3.7 of this appendix; Qh(35) and 
          Eh(35) are determined from the H2 test and calculated as 
          specified in section 3.9.1 of this appendix; and Qh(17) and 
          Eh(17) are determined from the H3 test and calculated as 
          specified in section 3.10 of this appendix.
    If the H4 test is conducted, calculate Qh(Tj) and 
Eh(Tj) using
[GRAPHIC] [TIFF OMITTED] TR05JA17.246

[GRAPHIC] [TIFF OMITTED] TR05JA17.247

where Qh(47) and Eh(47) are determined from the H1 test and calculated 
          as specified in section 3.7 of this appendix; Qh(35) and 
          Eh(35) are determined from the H2 test and calculated as 
          specified in section 3.9.1 of this appendix; Qh(17) and Eh(17) 
          are determined from the H3 test and calculated as specified in 
          section 3.10 of this appendix; Qh(5) and Eh(5) are determined 
          from the H4 test and calculated as specified in section 3.10 
          of this appendix.

4.2.2 Additional Steps for Calculating the HSPF2 of a Heat Pump Having a 
 Single-Speed Compressor and a Variable-Speed, Variable-Air-Volume-Rate 
                              Indoor Blower

    The manufacturer must provide information about how the indoor air 
volume rate or the indoor blower speed varies over the outdoor 
temperature range of 65 [deg]F to -23 [deg]F. Calculate the quantities
[GRAPHIC] [TIFF OMITTED] TR05JA17.248

in Equation 4.2-1 as specified in section 4.2.1 of this appendix with 
          the exception of replacing references to the H1C test and 
          section 3.6.1 of this appendix with the H1C1 test 
          and section 3.6.2 of this appendix. In addition, evaluate the 
          space heating capacity and electrical power consumption of the 
          heat pump Qh(Tj) and Eh(Tj) using

[[Page 612]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.249

[GRAPHIC] [TIFF OMITTED] TR05JA17.250

where the space heating capacity and electrical power consumption at low 
          capacity (k=1) at outdoor temperature Tj are determined using
          [GRAPHIC] [TIFF OMITTED] TR05JA17.251
          
          [GRAPHIC] [TIFF OMITTED] TR05JA17.252
          
    If the H42 test is not conducted, calculate the space 
heating capacity and electrical power consumption at high capacity (k=2) 
at outdoor temperature Tj using Equations 4.2.2-3 and 4.2.2-4 for k=2.
    If the H42 test is conducted, calculate the space heating 
capacity and electrical power consumption at high capacity (k=2) at 
outdoor temperature Tj using Equations 4.2.2-5 and 4.2.2-6.
[GRAPHIC] [TIFF OMITTED] TR05JA17.253

[GRAPHIC] [TIFF OMITTED] TR05JA17.254


[[Page 613]]


    For units where indoor blower speed is the primary control variable, 
FPhk=1 denotes the fan speed used during the required H11 and 
H31 tests (see Table 12), FPhk=2 denotes the fan speed used 
during the required H12, H22, and H32 
tests, and FPh(Tj) denotes the fan speed used by the unit 
when the outdoor temperature equals Tj. For units where 
indoor air volume rate is the primary control variable, the three FPh's 
are similarly defined only now being expressed in terms of air volume 
rates rather than fan speeds. Determine Qhk=1(47) and Ehk=1(47) from the 
H11 test, and Qhk=2(47) and Ehk=2(47) from the H12 
test. Calculate all four quantities as specified in section 3.7 of this 
appendix. Determine Qhk=1(35) and Ehk=1(35) as specified in section 
3.6.2 of this appendix; determine Qhk=2(35) and Ehk=2(35) and from the 
H22 test and the calculation specified in section 3.9 of this 
appendix. Determine Qhk=1(17) and Ehk=1(17 from the H31 test, 
and Qhk=2(17) and Ehk=2(17) from the H32 test. Calculate all 
four quantities as specified in section 3.10 of this appendix. Determine 
Qhk=2(5) and Ehk=2(5) from the H42 test and the calculation 
specified in section 3.10 of this appendix.

4.2.3 Additional Steps for Calculating the HSPF2 of a Heat Pump Having a 
                         Two-Capacity Compressor

    The calculation of the Equation 4.2-1 quantities differ depending 
upon whether the heat pump would operate at low capacity (section 
4.2.3.1 of this appendix), cycle between low and high capacity (section 
4.2.3.2 of this appendix), or operate at high capacity (sections 4.2.3.3 
and 4.2.3.4 of this appendix) in responding to the building load. For 
heat pumps that lock out low capacity operation at low outdoor 
temperatures, the outdoor temperature at which the unit locks out must 
be that specified by the manufacturer in the certification report so 
that the appropriate equations can be selected.
[GRAPHIC] [TIFF OMITTED] TR05JA17.255

    a. Evaluate the space heating capacity and electrical power 
consumption of the heat pump when operating at low compressor capacity 
and outdoor temperature Tj using
[GRAPHIC] [TIFF OMITTED] TR05JA17.256

    b. If the H42 test is not conducted, evaluate the space 
heating capacity and electrical power consumption 
(Qhk=2(Tj) and Ehk=2 (Tj)) 
of the heat pump when operating at high compressor capacity and outdoor 
temperature Tj by solving Equations 4.2.2-3 and 4.2.2-4, respectively, 
for k=2. If the H42 test is conducted, evaluate the space 
heating capacity and electrical power consumption 
(Qhk=2(Tj) and Ehk=2 (Tj)) 
of the heat pump when operating at high compressor capacity and outdoor 
temperature Tj using Equations 4.2.2-5 and 4.2.2-6, respectively.
    Determine Qhk=1(62) and Ehk=1(62) from the 
H01 test, Qhk=1(47) and Ehk=1(47) from 
the H11 test, and Qhk=2(47) and 
Ehk=2(47) from the H12

[[Page 614]]

test. Calculate all six quantities as specified in section 3.7 of this 
appendix. Determine Qhk=2(35) and Ehk=2(35) from 
the H22 test and, if required as described in section 3.6.3 
of this appendix, determine Qhk=1(35) and 
Ehk=1(35) from the H21 test. Calculate the 
required 35 [deg]F quantities as specified in section 3.9 in this 
appendix. Determine Qhk=2(17) and Ehk=2(17) from 
the H32 test and, if required as described in section 3.6.3 
of this appendix, determine Qhk=1(17) and 
Ehk=1(17) from the H31 test. Calculate the 
required 17 [deg]F quantities as specified in section 3.10 of this 
appendix. Determine Qhk=2(5) and Ehk=2(5) from the 
H42 test and the calculation specified in section 3.10 of 
this appendix.

   4.2.3.1 Steady-State Space Heating Capacity When Operating at Low 
  Compressor Capacity Is Greater Than or Equal to the Building Heating 
   Load at Temperature Tj, Qhk=1(Tj) 
                      =BL(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.257

[GRAPHIC] [TIFF OMITTED] TR05JA17.258


Where:

Xk=1(Tj) = BL(Tj)/Qhk=1(Tj), 
          the heating mode low capacity load factor for temperature bin 
          j, dimensionless.
PLFj = 1 - CDh [middot] [ 1 - Xk=1(Tj) ], the part 
          load factor, dimensionless.

[delta][min](Tj) = the low temperature cutoff factor, 
          dimensionless.
    Evaluate the heating mode cyclic degradation factor CDh as specified 
in section 3.8.1 of this appendix.
    Determine the low temperature cut-out factor using
    [GRAPHIC] [TIFF OMITTED] TR05JA17.259
    


where Toff and Ton are defined in section 4.2.1 of 
this appendix. Use the calculations given in section 4.2.3.3 of this 
appendix, and not the above, if:
    a. The heat pump locks out low capacity operation at low outdoor 
temperatures and
    b. Tj is below this lockout threshold temperature.

[[Page 615]]

4.2.3.2 Heat Pump Alternates Between High (k=2) and Low (k=1) Compressor 
     Capacity To Satisfy the Building Heating Load at a Temperature 
    Tj, Qhk=1(Tj) BL(Tj) 
                     Qhk=2(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.260


Xk=2(Tj) = 1 - Xk=1(Tj) the 
heating mode, high capacity load factor for temperature bin 
j, dimensionless.

    Determine the low temperature cut-out factor, 
[delta][min](Tj), using Equation 4.2.3-3.

  4.2.3.3 Heat Pump Only Operates at High (k=2) Compressor Capacity at 
Temperature Tj and its Capacity Is Greater Than the Building 
Heating Load, BL(Tj) < Qhk=2(Tj). This 
Section Applies to Units That Lock Out Low Compressor Capacity Operation 
                       at Low Outdoor Temperatures
[GRAPHIC] [TIFF OMITTED] TR05JA17.261


where:

    Xk=2(Tj)= BL(Tj)/
Qhk=2(Tj). PLFj = 1 - 
C\h\D(k = 2) * [1 - Xk=2(Tj)]
    If the H1C2 test described in section 3.6.3 and Table 13 
of this appendix is not conducted, set CDh (k=2) equal to the default 
value specified in section 3.8.1 of this appendix.
    Determine the low temperature cut-out factor, 
[delta](Tj), using Equation 4.2.3-3.

[[Page 616]]

  4.2.3.4 Heat Pump Must Operate Continuously at High (k=2) Compressor 
        Capacity at Temperature Tj, BL(Tj) 
                    =Qhk=2(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.262

4.2.4 Additional Steps for Calculating the HSPF2 of a Heat Pump Having a 
     Variable-Speed Compressor. Calculate HSPF2 Using Equation 4.2-1
[GRAPHIC] [TIFF OMITTED] TR05JA17.263

    a. Minimum Compressor Speed. Evaluate the space heating capacity, 
Qhk=1(Tj), and electrical power consumption, 
Ehk=1(Tj), of the heat pump when operating at minimum 
compressor speed and outdoor temperature Tj using
[GRAPHIC] [TIFF OMITTED] TR05JA17.264

[GRAPHIC] [TIFF OMITTED] TR05JA17.265


where Qhk=1(62) and Ehk=1(62) are determined from the H01 
test, Qhk=1(47) and Ehk=1(47) are determined from the H11 
test, and all four quantities are calculated as specified in section 3.7 
of this appendix.
    b. Minimum Compressor Speed for Minimum-speed-limiting Variable-
speed Heat Pumps: Evaluate the space heating capacity, 
Qhk=1(Tj), and electrical power consumption, 
Ehk=1(Tj), of the heat pump when operating at minimum 
compressor speed and outdoor temperature Tj using Equation 
4.2.4-3

[[Page 617]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.266

[GRAPHIC] [TIFF OMITTED] TR05JA17.267


where Qhk=1(62) and Ehk=1(62) are determined from the H01 
test, Qhk=1(47) and Ehk=1(47) are determined from the H11 
test, and all four quantities are calculated as specified in section 3.7 
of this appendix; Qhk=v(35) and Ehk=v(35) are 
determined from the H2v test and are calculated as specified 
in section 3.9 of this appendix; and Qhk=v(Tj) and 
Ehk=v(Tj) are calculated using equations 4.2.4-5 
and 4.2.4-6, respectively.
    c. Full Compressor Speed for Heat Pumps for which the H42 
test is not Conducted. Evaluate the space heating capacity, 
Qhk=2(Tj), and electrical power consumption, 
Ehk=2(Tj), of the heat pump when operating at full compressor 
speed and outdoor temperature Tj by solving Equations 4.2.2-3 
and 4.2.2-4, respectively, for k=2, using Qhcalck=2(47) to 
represent Qhk=2(47) and Ehcalck=2(47) to represent Ehk=2(47) 
(see section 3.6.4.b of this appendix regarding determination of the 
capacity and power input used in the HSPF2 calculations to represent the 
H12 Test). Determine Qhk=2(35) and Ehk=2(35) from the 
H22 test and the calculations specified in section 3.9 or, if 
the H22 test is not conducted, by conducting the calculations 
specified in section 3.6.4. Determine Qhk=2(17) and Ehk=2(17) from the 
H32 test and the methods specified in section 3.10 of this 
appendix.
    d. Full Compressor Speed for Heat Pumps for which the H42 
test is Conducted. For Tj above 17 [deg]F, evaluate the space 
heating capacity, Qhk=2(Tj), and electrical power 
consumption, Ehk=2(Tj), of the heat pump when operating at 
full compressor speed as described above for heat pumps for which the 
H42 is not conducted. For Tj between 5 [deg]F and 
17 [deg]F, evaluate the space heating capacity, Qhk=2(Tj), 
and electrical power consumption, Ehk=2(Tj), of the heat pump 
when operating at full compressor speed using the following equations:
[GRAPHIC] [TIFF OMITTED] TR05JA17.268


Determine Qhk=2(17) and Ehk=2(17) from the H32 test, and 
Qhk=2(5) and Ehk=2(5) from the H42 test, using the methods 
specified in section 3.10 of this appendix for all four values. For 
Tj below 5 [deg]F, evaluate the space heating capacity, 
Qhk=2(Tj), and electrical power consumption, 
Ehk=2(Tj), of the heat pump when operating at full compressor 
speed using the following equations:

[[Page 618]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.269


Determine Qhcalck=2(47) and Ehcalck=2(47) as 
described in section 3.6.4.b of this appendix. Determine Qhk=2(17) and 
Ehk=2(17) from the H32 test, using the methods specified in 
section 3.10 of this appendix.
    e. Intermediate Compressor Speed. Calculate the space heating 
capacity, Qhk=v(Tj), and electrical power 
consumption, Ehk=v(Tj), of the heat pump when 
operating at outdoor temperature Tj and the intermediate 
compressor speed used during the section 3.6.4 H2V test using
[GRAPHIC] [TIFF OMITTED] TR05JA17.270

[GRAPHIC] [TIFF OMITTED] TR05JA17.271


where Qhk=v(35) and Ehk=v(35) are determined from 
the H2V test and calculated as specified in section 3.9 of 
this appendix. Approximate the slopes of the k=v intermediate speed 
heating capacity and electrical power input curves, MQ and 
ME, as follows:
[GRAPHIC] [TIFF OMITTED] TR05JA17.272

    Use Equations 4.2.4-1 and 4.2.4-2, respectively, to calculate 
Qhk=1(35) and Ehk=1(35), whether or not the heat pump is a minimum-
speed-limiting variable-speed heat pump.

 4.2.4.1 Steady-State Space Heating Capacity When Operating at Minimum 
 Compressor Speed Is Greater Than or Equal to the Building Heating Load 
           at Temperature Tj, Qhk=1(Tj 
                      =BL(Tj)

    Evaluate the Equation 4.2-1 quantities
    [GRAPHIC] [TIFF OMITTED] TR05JA17.273
    

as specified in section 4.2.3.1 of this appendix. Except now use 
Equations 4.2.4-1 and 4.2.4-2 (for heat pumps that are not minimum-
speed-limiting) or Equations 4.3.4-3 and 4.2.4-4 (for minimum-speed-
limiting variable-speed heat pumps) to evaluate Qhk=1(Tj) and 
Ehk=1(Tj), respectively, and replace section 4.2.3.1 
references to ``low capacity'' and section 3.6.3 of this appendix with 
``minimum speed'' and

[[Page 619]]

section 3.6.4 of this appendix. Also, the last sentence of section 
4.2.3.1 of this appendix does not apply.

4.2.4.2 Heat Pump Operates at an Intermediate Compressor Speed (k=i) in 
Order To Match the Building Heating Load at a Temperature Tj, 
      Qhk=1(Tj) j) j)

    Calculate
    [GRAPHIC] [TIFF OMITTED] TR05JA17.274
    

and [delta](Tj) is evaluated using Equation 4.2.3-3 while, 
Qhk=i(Tj) = BL(Tj), the space heating 
capacity delivered by the unit in matching the building load at 
temperature (Tj), Btu/h. The matching occurs with the heat 
pump operating at compressor speed k=i. COPk=i(Tj) 
= the steady-state coefficient of performance of the heat pump when 
operating at compressor speed k=i and temperature Tj, 
dimensionless.
    For each temperature bin where the heat pump operates at an 
intermediate compressor speed, determine 
COPk=i(Tj) using the following equations,
    For each temperature bin where Qhk=1(Tj) 
j) k=v(Tj),
[GRAPHIC] [TIFF OMITTED] TR05JA17.275

    For each temperature bin where Qhk=v(Tj) 
<=BL(Tj) j),
[GRAPHIC] [TIFF OMITTED] TR05JA17.276

Where:
COPhk=1(Tj) is the steady-state coefficient of performance of 
the heat pump when operating at minimum compressor speed and temperature 
Tj, dimensionless, calculated using capacity Qhk=1(Tj) 
calculated using Equation 4.2.4-1 or 4.2.4-3 and electrical power 
consumption Ehk=1(Tj) calculated using Equation 4.2.4-2 or 
4.2.4-4;
COPhk=v(Tj) is the steady-state coefficient of 
performance of the heat pump when operating at intermediate compressor 
speed and temperature Tj, dimensionless, calculated using capacity 
Qhk=v(Tj) calculated using Equation 4.2.4-5 and 
electrical power consumption Ehk=v(Tj) calculated 
using Equation 4.2.4-6;
    COPhk=2(Tj) is the steady-state coefficient of 
performance of the heat pump when operating at full compressor speed and 
temperature Tj, dimensionless, calculated using capacity 
Qhk=2(Tj) and electrical power consumption 
Ehk=2(Tj), both calculated as described in section 4.2.4; and
    BL(Tj) is the building heating load at temperature 
Tj, Btu/h.

[[Page 620]]

  4.2.4.3 Heat Pump Must Operate Continuously at Full (k=2) Compressor 
         Speed at Temperature Tj, BL(Tj) 
=Qhk=2(Tj). Evaluate the Equation 4.2-1 Quantities
[GRAPHIC] [TIFF OMITTED] TR05JA17.277


as specified in section 4.2.3.4 of this appendix with the understanding 
that Qhk=2(Tj) and Ehk=2(Tj) correspond to full 
compressor speed operation and are derived from the results of the 
specified section 3.6.4 tests of this appendix.

            4.2.5 Heat Pumps Having a Heat Comfort Controller

    Heat pumps having heat comfort controllers, when set to maintain a 
typical minimum air delivery temperature, will cause the heat pump 
condenser to operate less because of a greater contribution from the 
resistive elements. With a conventional heat pump, resistive heating is 
only initiated if the heat pump condenser cannot meet the building load 
(i.e., is delayed until a second stage call from the indoor thermostat). 
With a heat comfort controller, resistive heating can occur even though 
the heat pump condenser has adequate capacity to meet the building load 
(i.e., both on during a first stage call from the indoor thermostat). As 
a result, the outdoor temperature where the heat pump compressor no 
longer cycles (i.e., starts to run continuously), will be lower than if 
the heat pump did not have the heat comfort controller.

 4.2.5.1 Blower Coil System Heat Pump Having a Heat Comfort Controller: 
   Additional Steps for Calculating the HSPF2 of a Heat Pump Having a 
  Single-Speed Compressor and Either a Fixed-Speed Indoor Blower or a 
  Constant-Air-Volume-Rate Indoor Blower Installed, or a Single-Speed 
                       Coil-Only System Heat Pump

    Calculate the space heating capacity and electrical power of the 
heat pump without the heat comfort controller being active as specified 
in section 4.2.1 of this appendix (Equations 4.2.1-4 and 4.2.1-5) for 
each outdoor bin temperature, Tj, that is listed in Table 20. 
Denote these capacities and electrical powers by using the subscript 
``hp'' instead of ``h.'' Calculate the mass flow rate (expressed in 
pounds-mass of dry air per hour) and the specific heat of the indoor air 
(expressed in Btu/lbmda [middot] [deg]F) from the results of 
the H1 test using:
[GRAPHIC] [TIFF OMITTED] TR05JA17.278


where VIs, VImx, v[min]n (or 
vn), and Wn are defined following Equation 3-1. 
For each outdoor bin temperature listed in Table 20, calculate the 
nominal temperature of the air leaving the heat pump condenser coil 
using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.279


[[Page 621]]


    Evaluate eh(Tj/N), RH(Tj)/N, X(Tj), 
PLFj, and [delta](Tj) as specified in section 
4.2.1 of this appendix. For each bin calculation, use the space heating 
capacity and electrical power from Case 1 or Case 2, whichever applies.
    Case 1. For outdoor bin temperatures where 
To(Tj) is equal to or greater than TCC 
(the maximum supply temperature determined according to section 3.1.9 of 
this appendix), determine Qh(Tj) and Eh(Tj) as 
specified in section 4.2.1 of this appendix (i.e., Qh(Tj) = 
Qhp(Tj) and Ehp(Tj) = 
Ehp(Tj)).
    Note: Even though To(Tj) 
=Tcc, resistive heating may be required; evaluate 
Equation 4.2.1-2 for all bins.

Case 2. For outdoor bin temperatures where To(Tj) 
Tcc, determine Qh(Tj) and 
Eh(Tj) using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.280

    Note: Even though To(Tj) cc, 
additional resistive heating may be required; evaluate Equation 4.2.1-2 
for all bins.

4.2.5.2 Heat Pump Having a Heat Comfort Controller: Additional Steps for 
 Calculating the HSPF2 of a Heat Pump Having a Single-Speed Compressor 
      and a Variable-Speed, Variable-Air-Volume-Rate Indoor Blower

    Calculate the space heating capacity and electrical power of the 
heat pump without the heat comfort controller being active as specified 
in section 4.2.2 of this appendix (Equations 4.2.2-1 and 4.2.2-2) for 
each outdoor bin temperature, Tj, that is listed in Table 20. 
Denote these capacities and electrical powers by using the subscript 
``hp'' instead of ``h.'' Calculate the mass flow rate (expressed in 
pounds-mass of dry air per hour) and the specific heat of the indoor air 
(expressed in Btu/lbmda [middot] [deg]F) from the results of 
the H12 test using:
[GRAPHIC] [TIFF OMITTED] TR05JA17.281


where VIS, VImx, v[min]n (or 
vn), and Wn are defined following Equation 3-1. 
For each outdoor bin temperature listed in Table 20, calculate the 
nominal temperature of the air leaving the heat pump condenser coil 
using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.282


[[Page 622]]


    Evaluate eh(Tj)/N, RH(Tj)/N, X(Tj), 
PLFj, and [delta](Tj) as specified in section 
4.2.1 of this appendix with the exception of replacing references to the 
H1C test and section 3.6.1 of this appendix with the H1C1 
test and section 3.6.2 of this appendix. For each bin calculation, use 
the space heating capacity and electrical power from Case 1 or Case 2, 
whichever applies.
    Case 1. For outdoor bin temperatures where 
To(Tj) is equal to or greater than TCC 
(the maximum supply temperature determined according to section 3.1.9 of 
this appendix), determine Qh(Tj) and Eh(Tj) as 
specified in section 4.2.2 of this appendix (i.e. Qh(Tj) = 
Qhp(Tj) and Eh(Tj) = 
Ehp(Tj)). Note: Even though 
To(Tj) =TCC, resistive 
heating may be required; evaluate Equation 4.2.1-2 for all bins.
    Case 2. For outdoor bin temperatures where 
To(Tj) CC, determine 
Qh(Tj) and Eh(Tj) using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.283

    Note: Even though To(Tj) cc, 
additional resistive heating may be required; evaluate Equation 4.2.1-2 
for all bins.

 4.2.5.3 Heat Pumps Having a Heat Comfort Controller: Additional Steps 
     for Calculating the HSPF2 of a Heat Pump Having a Two-Capacity 
                               Compressor

    Calculate the space heating capacity and electrical power of the 
heat pump without the heat comfort controller being active as specified 
in section 4.2.3 of this appendix for both high and low capacity and at 
each outdoor bin temperature, Tj, that is listed in Table 20. 
Denote these capacities and electrical powers by using the subscript 
``hp'' instead of ``h.'' For the low capacity case, calculate the mass 
flow rate (expressed in pounds-mass of dry air per hour) and the 
specific heat of the indoor air (expressed in Btu/lbmda 
[middot] [deg]F) from the results of the H11 test using:
[GRAPHIC] [TIFF OMITTED] TR05JA17.284


where Vis, Vimx, v[min]n (or 
vn), and Wn are defined following Equation 3-1. 
For each outdoor bin temperature listed in Table 20, calculate the 
nominal temperature of the air leaving the heat pump condenser coil when 
operating at low capacity using,

[[Page 623]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.285

    Repeat the above calculations to determine the mass flow rate 
(mdak=2) and the specific heat of the indoor air 
(Cp,dak=2) when operating at high capacity by 
using the results of the H12 test. For each outdoor bin 
temperature listed in Table 20, calculate the nominal temperature of the 
air leaving the heat pump condenser coil when operating at high capacity 
using,
[GRAPHIC] [TIFF OMITTED] TR05JA17.286

    Evaluate eh(Tj)/N, RH(Tj)/N, 
Xk=1(Tj), and/or Xk=2(Tj), 
PLFj, and [delta][min](Tj) or 
[delta][sec](Tj) as specified in section 4.2.3.1. 4.2.3.2, 
4.2.3.3, or 4.2.3.4 of this appendix, whichever applies, for each 
temperature bin. To evaluate these quantities, use the low-capacity 
space heating capacity and the low-capacity electrical power from Case 1 
or Case 2, whichever applies; use the high-capacity space heating 
capacity and the high-capacity electrical power from Case 3 or Case 4, 
whichever applies.
    Case 1. For outdoor bin temperatures where 
Tok=1(Tj) is equal to or greater than 
TCC (the maximum supply temperature determined according to 
section 3.1.9 of this appendix), determine 
Qhk=1(Tj) and Ehk=1(Tj) as 
specified in section 4.2.3 of this appendix (i.e., 
Qhk=1(Tj) = 
Qhpk=1(Tj) and 
Ehk=1(Tj) = 
Ehpk=1(Tj).
    Note: Even though Tok=1(Tj) 
=TCC, resistive heating may be required; evaluate 
RH(Tj)/N for all bins.
    Case 2. For outdoor bin temperatures where 
Tok=1(Tj) TCC, determine 
Qhk=1(Tj) and Ehk=1(Tj) 
using,


Qhk=\1\(Tj) = Qhpk=\1\(Tj) + QCCk=\1\(Tj) Ehk=\1\(Tj) = Ehpk=\1\(Tj) + 
ECCk=\1\(Tj)

    where,

    [GRAPHIC] [TIFF OMITTED] TR05JA17.287
    
    Note: Even though Tok=1(Tj) 
=Tcc, additional resistive heating may be 
required; evaluate RH(Tj)/N for all bins.
    Case 3. For outdoor bin temperatures where 
Tok=2(Tj) is equal to or greater than 
TCC, determine Qhk=2(Tj) and 
Ehk=2(Tj) as specified in section 4.2.3 of this 
appendix (i.e., Qhk=2(Tj) = 
Qhpk=2(Tj) and 
Ehk=2(Tj) = 
Ehpk=2(Tj)).
    Note: Even though Tok=2(Tj) 
CC, resistive heating may be required; evaluate 
RH(Tj)/N for all bins.
    Case 4. For outdoor bin temperatures where 
Tok=2(Tj) CC, determine 
Qhk=2(Tj) and Ehk=2(Tj) 
using,


Qhk=\2\(Tj) = Qhpk=\2\(Tj) + QCCk=\2\(Tj) Ehk=\2\(Tj) = Ehpk=\2\(Tj) + 
ECCk=\2\(Tj)
    where,


[[Page 624]]


[GRAPHIC] [TIFF OMITTED] TR05JA17.288

    Note: Even though Tok=2(Tj) 
Tcc, additional resistive heating may be required; evaluate 
RH(Tj)/N for all bins.

 4.2.5.4 Heat Pumps Having a Heat Comfort Controller: Additional Steps 
    for Calculating the HSPF2 of a Heat Pump Having a Variable-Speed 
                          Compressor [Reserved]



4.2.6 Additional Steps for Calculating the HSPF2 of a Heat Pump Having a 
                       Triple-Capacity Compressor

    The only triple-capacity heat pumps covered are triple-capacity, 
northern heat pumps. For such heat pumps, the calculation of the Eq. 
4.2-1 quantities
[GRAPHIC] [TIFF OMITTED] TR05JA17.289


differ depending on whether the heat pump would cycle on and off at low 
capacity (section 4.2.6.1 of this appendix), cycle on and off at high 
capacity (section 4.2.6.2 of this appendix), cycle on and off at booster 
capacity (section 4.2.6.3 of this appendix), cycle between low and high 
capacity (section 4.2.6.4 of this appendix), cycle between high and 
booster capacity (section 4.2.6.5 of this appendix), operate 
continuously at low capacity (section 4.2.6.6 of this appendix), operate 
continuously at high capacity (section 4.2.6.7 of this appendix), 
operate continuously at booster capacity (section 4.2.6.8 of this 
appendix), or heat solely using resistive heating (also section 4.2.6.8 
of this appendix) in responding to the building load. As applicable, the 
manufacturer must supply information regarding the outdoor temperature 
range at which each stage of compressor capacity is active. As an 
informative example, data may be submitted in this manner: At the low 
(k=1) compressor capacity, the outdoor temperature range of operation is 
40 [deg]F <= T <= 65 [deg]F; At the high (k=2) compressor capacity, the 
outdoor temperature range of operation is 20 [deg]F <= T <= 50 [deg]F; 
At the booster (k=3) compressor capacity, the outdoor temperature range 
of operation is -20 [deg]F <= T <= 30 [deg]F.
    a. Evaluate the space heating capacity and electrical power 
consumption of the heat pump when operating at low compressor capacity 
and outdoor temperature Tj using the equations given in 
section 4.2.3 of this appendix for Qhk=1(Tj) and 
Ehk=1 (Tj)) In evaluating the section 4.2.3 
equations, Determine Qhk=1(62) and Ehk=1(62) from 
the H01 test, Qhk=1(47) and Ehk=1(47) 
from the H11 test, and Qhk=2(47) and 
Ehk=2(47) from the H12 test. Calculate all four 
quantities as specified in section 3.7 of this appendix. If, in 
accordance with section 3.6.6 of this appendix, the H31 test 
is conducted, calculate Qhk=1(17) and Ehk=1(17) as 
specified in section 3.10 of this appendix and determine 
Qhk=1(35) and Ehk=1(35) as specified in section 
3.6.6 of this appendix.
    b. Evaluate the space heating capacity and electrical power 
consumption (Qhk=2(Tj) and Ehk=2 
(Tj)) of the heat pump when operating at high compressor 
capacity and outdoor temperature Tj by solving Equations 4.2.2-3 and 
4.2.2-4, respectively, for k=2. Determine Qhk=1(62) and 
Ehk=1(62) from the H01 test, Qhk=1(47) 
and Ehk=1(47) from the H11 test, and 
Qhk=2(47) and Ehk=2(47) from the H12 
test, evaluated as specified in section 3.7 of this appendix. Determine 
the equation input for Qhk=2(35) and Ehk=2(35) 
from the H22,test evaluated as specified in section 3.9.1 of 
this appendix. Also, determine Qhk=2(17) and 
Ehk=2(17) from the H32 test, evaluated as 
specified in section 3.10 of this appendix.

[[Page 625]]

    c. Evaluate the space heating capacity and electrical power 
consumption of the heat pump when operating at booster compressor 
capacity and outdoor temperature Tj using

    [GRAPHIC] [TIFF OMITTED] TR05JA17.290
    
    Determine Qhk=3(17) and Ehk=3(17) from the 
H33 test and determine Qhk=2(5) and 
Ehk=3(5) from the H43 test. Calculate all four 
quantities as specified in section 3.10 of this appendix. Determine the 
equation input for Qhk=3(35) and Ehk=3(35) as 
specified in section 3.6.6 of this appendix.


   4.2.6.1 Steady-State Space Heating Capacity When Operating at Low 
  Compressor Capacity Is Greater Than or Equal to the Building Heating 
   Load at Temperature Tj, Qhk=1(Tj) 
=BL(Tj)., and the Heat Pump Permits Low Compressor 
           Capacity at Tj. Evaluate the Quantities
[GRAPHIC] [TIFF OMITTED] TR05JA17.291


using Eqs. 4.2.3-1 and 4.2.3-2, respectively. Determine the equation 
inputs Xk=1(Tj), PLFj, and 
[delta][min](Tj) as specified in section 4.2.3.1. In 
calculating the part load factor, PLFj, use the low-capacity 
cyclic-degradation coefficient CDh, [or equivalently, CDh(k=1)] 
determined in accordance with section 3.6.6 of this appendix.

  4.2.6.2 Heat Pump Only Operates at High (k=2) Compressor Capacity at 
 Temperature Tj and Its Capacity Is Greater Than or Equal to 
              the Building Heating Load, BL(Tj) 
                    k=2(Tj)

    Evaluate the quantities
    [GRAPHIC] [TIFF OMITTED] TR05JA17.292
    

as specified in section 4.2.3.3 of this appendix. Determine the equation 
inputs Xk=2(Tj), PLFj, and 
[delta][min](Tj) as specified in section 4.2.3.3 of this 
appendix. In calculating the part load factor, PLFj, use the 
high-capacity cyclic-degradation coefficient, CDh(k=2) determined in 
accordance with section 3.6.6 of this appendix.

[[Page 626]]

  4.2.6.3 Heat Pump Only Operates at High (k=3) Compressor Capacity at 
 Temperature Tj and its Capacity Is Greater Than or Equal to 
              the Building Heating Load, BL(Tj) 
                    <=Qhk=3(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.293


Determine the low temperature cut-out factor, 
[delta][min](Tj), using Eq. 4.2.3-3. Use the booster-capacity 
cyclic-degradation coefficient, CDh(k=3) determined in accordance with 
section 3.6.6 of this appendix.


4.2.6.4 Heat Pump Alternates Between High (k=2) and Low (k=1) Compressor 
     Capacity To Satisfy the Building Heating Load at a Temperature 
   Tj, Qhk=1(Tj) j) 
                    k=2(Tj)

    Evaluate the quantities
    [GRAPHIC] [TIFF OMITTED] TR05JA17.294
    

as specified in section 4.2.3.2 of this appendix. Determine the equation 
inputs Xk=1(Tj), Xk=2(Tj), 
and [delta][min](Tj) as specified in section 4.2.3.2 of this 
appendix.


   4.2.6.5 Heat Pump Alternates Between High (k=2) and Booster (k=3) 
     Compressor Capacity To Satisfy the Building Heating Load at a 
       Temperature Tj, Qhk=2(Tj) 
           j) k=3(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.295


and Xk=3(Tj) = Xk=2(Tj) = 
the heating mode, booster capacity load factor for temperature bin j, 
dimensionless. Determine the low temperature cut-out factor, 
[delta][min](Tj), using Eq. 4.2.3-3.

[[Page 627]]

  4.2.6.6 Heat Pump Only Operates at Low (k=1) Capacity at Temperature 
 Tj and Its Capacity Is Less Than the Building Heating Load, 
      BL(Tj)  Qhk=1(Tj)
[GRAPHIC] [TIFF OMITTED] TR05JA17.296


where the low temperature cut-out factor, [delta][min](Tj), 
is calculated using Eq. 4.2.3-3.


 4.2.6.7 Heat Pump Only Operates at High (k=2) Capacity at Temperature 
 Tj and Its Capacity Is Less Than the Building Heating Load, 
      BL(Tj)  Qhk=2(Tj)

    Evaluate the quantities

    [GRAPHIC] [TIFF OMITTED] TR05JA17.297
    

as specified in section 4.2.3.4 of this appendix. Calculate 
[delta][sec](Tj) using the equation given in section 4.2.3.4 
of this appendix.

4.2.6.8 Heat Pump Only Operates at Booster (k=3) Capacity at Temperature 
 Tj and Its Capacity Is Less Than the Building Heating Load, 
  BL(Tj)  Qhk=3(Tj) or the 
             System Converts To Using Only Resistive Heating


    [GRAPHIC] [TIFF OMITTED] TR05JA17.298
    

where [delta][sec](Tj) is calculated as specified in section 
4.2.3.4 of this appendix if the heat pump is operating at its booster 
compressor capacity. If the heat pump system converts to using only 
resistive heating at outdoor temperature Tj, set 
[delta][min](Tj) equal to zero.


4.2.7 Additional Steps for Calculating the HSPF2 of a Heat Pump Having a 
Single Indoor Unit With Multiple Indoor Blowers. The Calculation of the 
  Eq. 4.2-1 Quantities eh(Tj)/N and RH(Tj)/N Are 
           Evaluated as Specified in the Applicable Subsection



 4.2.7.1 For Multiple Indoor Blower Heat Pumps That Are Connected to a 
                   Singular, Single-Speed Outdoor Unit

    a. Calculate the space heating capacity, Qhk=1 (Tj), and 
electrical power consumption, Ehk=1 (Tj), of the heat pump 
when operating at the heating minimum air volume rate and outdoor 
temperature Tj using Eqs. 4.2.2-3 and 4.2.2-4, respectively. 
Use these same equations to calculate the space heating capacity, 
Qhk=2 (Tj) and electrical power consumption, Ehk=2 
(Tj), of the test unit when operating at the heating full-load air 
volume rate and outdoor temperature Tj. In evaluating Eqs. 
4.2.2-3 and 4.2.2- 4, determine the quantities Qhk=1(47) and 
Ehk=1(47) from the H11 test; determine 
Qhk=2(47) and Ehk=2(47) from the H12 test. 
Evaluate all four quantities according to section 3.7 of this appendix. 
Determine the quantities Qhk=1(35) and Ehk=1(35) 
as specified in section 3.6.2 of this appendix. Determine 
Qhk=2(35) and Ehk=2(35) from the H22 frost 
accumulation test as calculated according to section 3.9.1 of this 
appendix. Determine the quantities Qhk=1(17) and Ehk=1(17) from the 
H31 test, and Qhk=2(17) and Ehk=2(17) from the H32 
test. Evaluate all four quantities according to section 3.10 of this 
appendix. Refer to section 3.6.2 and Table 12 of this appendix for 
additional information on the referenced laboratory tests.

[[Page 628]]

    b. Determine the heating mode cyclic degradation coefficient, CDh, 
as per sections 3.6.2 and 3.8 to 3.8.1 of this appendix. Assign this 
same value to CDh(k = 2).
    c. Except for using the above values of Qhk=1(Tj), Ehk=1(Tj), 
Qhk=2(Tj), Ehk=2(Tj), CDh, and CDh(k = 2), calculate the 
quantities eh(Tj)/N as specified in section 4.2.3.1 of this 
appendix for cases where Qhk=1(Tj) = 
BL(Tj). For all other outdoor bin temperatures, 
Tj, calculate eh(Tj)/N and RHh(Tj)/N as specified in section 
4.2.3.3 of this appendix if Qhk=2(Tj)  BL(Tj) or 
as specified in section 4.2.3.4 of this appendix if Qhk=2(Tj) <= 
BL(Tj).


  4.2.7.2 For Multiple Indoor Blower Heat Pumps Connected to Either a 
 Single Outdoor Unit With a Two-Capacity Compressor or to Two Separate 
but Identical Model Single-Speed Outdoor Units. Calculate the Quantities 
 eh(Tj)/N and RH(Tj)/N as Specified in 
                     Section 4.2.3 of This Appendix



             4.3 Calculations of Off-Mode Power Consumption

    For central air conditioners and heat pumps with a cooling capacity 
of: Less than 36,000 Btu/h, determine the off mode represented value, 
PW,OFF, with the following equation:

    [GRAPHIC] [TIFF OMITTED] TR05JA17.299
    

greater than or equal to 36,000 Btu/h, calculate the capacity scaling 
factor according to:

    [GRAPHIC] [TIFF OMITTED] TR05JA17.300
    

where, QC(95) is the total cooling capacity at the A or A2 
test condition, and determine the off mode represented value, PW,OFF, 
with the following equation:

    [GRAPHIC] [TIFF OMITTED] TR05JA17.301
    
         4.4 Rounding of SEER2 and HSPF2 for Reporting Purposes

    After calculating SEER2 according to section 4.1 of this appendix 
and HSPF2 according to section 4.2 of this appendix round the values off 
as specified per Sec.  430.23(m) of title 10 of the Code of Federal 
Regulations.

[[Page 629]]

[GRAPHIC] [TIFF OMITTED] TR05JA17.302



    Table 21--Representative Cooling and Heating Load Hours for Each
                       Generalized Climatic Region
------------------------------------------------------------------------
                                                  Cooling      Heating
                Climatic region                  load hours   load hours
                                                    CLHR         HLHR
------------------------------------------------------------------------
I.............................................        2,400          493
II............................................        1,800          857
III...........................................        1,200        1,247
IV............................................          800        1,701
Rating Values.................................        1,000        1,572
V.............................................          400        2,202
VI............................................          200        1,842
------------------------------------------------------------------------

  4.5 Calculations of the SHR, Which Should Be Computed for Different 
   Equipment Configurations and Test Conditions Specified in Table 22.

                 Table 22--Applicable Test Conditions for Calculation of the Sensible Heat Ratio
----------------------------------------------------------------------------------------------------------------
                                        Reference
      Equipment configuration         table number    SHR computation with             Computed values
                                      of Appendix M       results from
----------------------------------------------------------------------------------------------------------------
Units Having a Single-Speed                       4  B Test...............  SHR(B).
 Compressor and a Fixed-Speed
 Indoor Blower, a Constant Air
 Volume Rate Indoor Blower, or
 Single-Speed Coil-Only.
Units Having a Single-Speed                       5  B2 and B1 Tests......  SHR(B1), SHR(B2).
 Compressor That Meet the section
 3.2.2.1 Indoor Unit Requirements.
Units Having a Two-Capacity                       6  B2 and B1 Tests......  SHR(B1), SHR(B2).
 Compressor.
Units Having a Variable-Speed                     7  B2 and B1 Tests......  SHR(B1), SHR(B2).
 Compressor.
----------------------------------------------------------------------------------------------------------------


[[Page 630]]

    The SHR is defined and calculated as follows:
    [GRAPHIC] [TIFF OMITTED] TR05JA17.303
    
    Where both the total and sensible cooling capacities are determined 
from the same cooling mode test and calculated from data collected over 
the same 30-minute data collection interval.

          4.6 Calculations of the Energy Efficiency Ratio (EER)

    Calculate the energy efficiency ratio using,
    [GRAPHIC] [TIFF OMITTED] TR05JA17.304
    

where Qck(T) and Eck(T) are the space cooling capacity and electrical 
power consumption determined from the 30-minute data collection interval 
of the same steady-state wet coil cooling mode test and calculated as 
specified in section 3.3 of this appendix. Add the letter identification 
for each steady-state test as a subscript (e.g., EERA2) to differentiate 
among the resulting EER values. The represented value of EER is 
determined from the A or A2 test, whichever is applicable. 
The represented value of EER determined in accordance with this appendix 
is called EER2.

[82 FR 1533, Jan. 5, 2017]



   Sec. Appendix N to Subpart B of Part 430--Uniform Test Method for 
        Measuring the Energy Consumption of Furnaces and Boilers

    Note: Prior to July 13, 2016, representations with respect to the 
energy use or efficiency of residential furnaces and boilers, including 
compliance certifications, must be based on testing conducted in 
accordance with either this appendix as it now appears or appendix N as 
it appeared at 10 CFR part 430, subpart B revised as of January 1, 2016.
    After July 13, 2016, representations with respect to energy use or 
efficiency of residential furnaces and boilers, including compliance 
certifications, must be based on testing conducted in accordance with 
this appendix.

    1.0 Scope. The scope of this appendix is as specified in section 2 
of ASHRAE 103-1993 (incorporated by reference, see Sec.  430.3).
    For purposes of this appendix, the Department of Energy incorporates 
by reference several industry standards, either in whole or in part, as 
listed in Sec.  430.3. In cases where there is a conflict, the language 
of the test procedure in this appendix takes precedence over the 
incorporated standards.
    2.0 Definitions. Definitions include those specified in section 3 of 
ASHRAE 103-1993 (incorporated by reference, see Sec.  430.3) and the 
following additional and modified definitions.
    2.1 Active mode means the condition in which the furnace or boiler 
is connected to the power source, and at least one of the

[[Page 631]]

burner, electric resistance elements, or any electrical auxiliaries such 
as blowers or pumps, are activated.
    2.2 Boiler pump means a pump installed on a boiler and that is 
separate from the circulating water pump.
    2.3 Control means a device used to regulate the operation of a piece 
of equipment and the supply of fuel, electricity, air, or water.
    2.4 Draft inducer means a fan incorporated in the furnace or boiler 
that either draws or forces air into the combustion chamber.
    2.5 Gas valve means an automatic or semi-automatic device consisting 
essentially of a valve and operator that controls the gas supply to the 
burner(s) during normal operation of an appliance. The operator may be 
actuated by application of gas pressure on a flexible diaphragm, by 
electrical means, by mechanical means or by other means.
    2.6 Installation and operation (I&O) manual means instructions for 
installing, commissioning, and operating the furnace or boiler, which 
are supplied with the product when shipped by the manufacturer.
    2.7 Isolated combustion system means a system where a unit is 
installed within the structure, but isolated from the heated space. A 
portion of the jacket heat from the unit is lost, and air for 
ventilation, combustion and draft control comes from outside the heated 
space.
    2.8 Multi-position furnace means a furnace that can be installed in 
more than one airflow configuration (i.e., upflow or horizontal; 
downflow or horizontal; upflow or downflow; and upflow, or downflow, or 
horizontal).
    2.9 Off mode means a mode in which the furnace or boiler is 
connected to a mains power source and is not providing any active mode 
or standby mode function, and where the mode may persist for an 
indefinite time. The existence of an off switch in off position (a 
disconnected circuit) is included within the classification of off mode.
    2.10 Off switch means the switch on the furnace or boiler that, when 
activated, results in a measurable change in energy consumption between 
the standby and off modes.
    2.11 Oil control valve means an automatically or manually operated 
device consisting of an oil valve for controlling the fuel supply to a 
burner to regulate burner input.
    2.12 Standby mode means any mode in which the furnace or boiler is 
connected to a mains power source and offers one or more of the 
following space heating functions that may persist:
    a. To facilitate the activation of other modes (including activation 
or deactivation of active mode) by remote switch (including thermostat 
or remote control), internal or external sensors, or timer;
    b. Continuous functions, including information or status displays or 
sensor based functions.
    2.13 Thermal stack damper means a type of stack damper that relies 
exclusively upon the changes in temperature in the stack gases to open 
or close the damper.
    3.0 Classifications. Classifications are as specified in section 4 
of ASHRAE 103-1993 (incorporated by reference, see Sec.  430.3).
    4.0 Requirements. Requirements are as specified in section 5 of 
ASHRAE 103-1993 (incorporated by reference, see Sec.  430.3).
    5.0 Instruments. Instruments must be as specified in section 6 of 
ASHRAE 103-1993 (incorporated by reference, see Sec.  430.3).
    6.0 Apparatus. The apparatus used in conjunction with the furnace or 
boiler during the testing must be as specified in section 7 of ASHRAE 
103-1993 (incorporated by reference, see Sec.  430.3) except for 
sections 7.1, 7.2.2.2, 7.2.2.5, 7.2.3.1, and 7.8; and as specified in 
sections 6.1 through 6.5 of this appendix.
    6.1 General.
    a. Install the furnace or boiler in the test room in accordance with 
the I&O manual, as defined in section 2.6 of this appendix, except that 
if provisions within this appendix are specified, then the provisions 
herein drafted and prescribed by DOE govern. If the I&O manual and any 
additional provisions of this appendix are not sufficient for testing a 
furnace or boiler, the manufacturer must request a waiver from the test 
procedure pursuant to 10 CFR 430.27.
    b. If the I&O manual indicates the unit should not be installed with 
a return duct, then the return (inlet) duct specified in section 7.2.1 
of ASHRAE 103-1993 (incorporated by reference, see Sec.  430.3) is not 
required.
    c. Test multi-position furnaces in the least efficient 
configuration. Testing of multi-position furnaces in other 
configurations is permitted if energy use or efficiency is represented 
pursuant to the requirements in 10 CFR part 429.
    d. The apparatuses described in section 6 of this appendix are used 
in conjunction with the furnace or boiler during testing. Each piece of 
apparatus shall conform to material and construction specifications 
listed in this appendix and in ASHRAE 103-1993 (incorporated by 
reference, see Sec.  430.3), and the reference standards cited in this 
appendix and in ASHRAE 103-1993.
    e. Test rooms containing equipment must have suitable facilities for 
providing the utilities (including but not limited to environmental 
controls, sufficient fluid source(s), applicable measurement equipment, 
and any other technology or tools) necessary for performance of the test 
and must be able to maintain conditions within the limits specified in 
section 6 of this appendix.
    6.2 Forced-air central furnaces (direct vent and direct exhaust).

[[Page 632]]

    a. Units not equipped with a draft hood or draft diverter must be 
provided with the minimum-length vent configuration recommended in the 
I&O manual or a 5-ft flue pipe if there is no recommendation provided in 
the I&O manual (see Figure 4 of ASHRAE 103-1993 (incorporated by 
reference, see Sec.  430.3)). For a direct exhaust system, insulate the 
minimum-length vent configuration or the 5-ft flue pipe with insulation 
having an R-value not less than 7 and an outer layer of aluminum foil. 
For a direct vent system, see section 7.5 of ASHRAE 103-1993 for 
insulation requirements.
    b. For units with power burners, cover the flue collection box with 
insulation having an R-value of not less than 7 and an outer layer of 
aluminum foil before the cool-down and heat-up tests described in 
sections 9.5 and 9.6 of ASHRAE 103-1993 (incorporated by reference, see 
Sec.  430.3), respectively. However, do not apply the insulation for the 
jacket loss test (if conducted) described in section 8.6 of ASHRAE 103-
1993 or the steady-state test described in section 9.1 of ASHRAE 103-
1993.
    c. For power-vented units, insulate the shroud surrounding the 
blower impeller with insulation having an R-value of not less than 7 and 
an outer layer of aluminum foil before the cool-down and heat-up tests 
described in sections 9.5 and 9.6, respectively, of ASHRAE 103-1993 
(incorporated by reference, see Sec.  430.3). Do not apply the 
insulation for the jacket loss test (if conducted) described in section 
8.6 of ASHRAE 103-1993 or the steady-state test described in section 9.1 
of ASHRAE 103-1993. Do not insulate the blower motor or block the 
airflow openings that facilitate the cooling of the combustion blower 
motor or bearings.
    6.3 Downflow furnaces. Install an internal section of vent pipe the 
same size as the flue collar for connecting the flue collar to the top 
of the unit, if not supplied by the manufacturer. Do not insulate the 
internal vent pipe during the jacket loss test (if conducted) described 
in section 8.6 of ASHRAE 103-1993 (incorporated by reference, see Sec.  
430.3) or the steady-state test described in section 9.1 of ASHRAE 103-
1993. Do not insulate the internal vent pipe before the cool-down and 
heat-up tests described in sections 9.5 and 9.6, respectively, of ASHRAE 
103-1993. If the vent pipe is surrounded by a metal jacket, do not 
insulate the metal jacket. Install a 5-ft test stack of the same cross-
sectional area or perimeter as the vent pipe above the top of the 
furnace. Tape or seal around the junction connecting the vent pipe and 
the 5-ft test stack. Insulate the 5-ft test stack with insulation having 
an R-value not less than 7 and an outer layer of aluminum foil. (See 
Figure 3-E of ASHRAE 103-1993.)
    6.4 Units with draft hoods or draft diverters. Install the stack 
damper in accordance with the I&O manual. Install 5 feet of stack above 
the damper.
    a. For units with an integral draft diverter, cover the 5-ft stack 
with insulation having an R-value of not less than 7 and an outer layer 
of aluminum foil.
    b. For units with draft hoods, insulate the flue pipe between the 
outlet of the furnace and the draft hood with insulation having an R-
value of not less than 7 and an outer layer of aluminum foil.
    c. For units with integral draft diverters that are mounted in an 
exposed position (not inside the overall unit cabinet), cover the 
diverter boxes (excluding any openings through which draft relief air 
flows) before the beginning of any test (including jacket loss test) 
with insulation having an R-value of not less than 7 and an outer layer 
of aluminum foil.
    d. For units equipped with integral draft diverters that are 
enclosed within the overall unit cabinet, insulate the draft diverter 
box with insulation as described in section 6.4.c before the cool-down 
and heat-up tests described in sections 9.5 and 9.6, respectively, of 
ASHRAE 103-1993 (incorporated by reference, see Sec.  430.3). Do not 
apply the insulation for the jacket loss test (if conducted) described 
in section 8.6 of ASHRAE 103-1993 or the steady-state test described in 
section 9.1 of ASHRAE 103-1993.
    6.5 Condensate collection. Attach condensate drain lines to the unit 
as specified in the I&O manual. Maintain a continuous downward slope of 
drain lines from the unit. Additional precautions (such as eliminating 
any line configuration or position that would otherwise restrict or 
block the flow of condensate or checking to ensure a proper connection 
with condensate drain spout that allows for unobstructed flow) must be 
taken to facilitate uninterrupted flow of condensate during the test. 
Collection containers must be glass or polished stainless steel to 
facilitate removal of interior deposits. The collection container must 
have a vent opening to the atmosphere.
    7.0 Testing conditions. The testing conditions must be as specified 
in section 8 of ASHRAE 103-1993 (incorporated by reference, see Sec.  
430.3), except for section 8.2.1.3, 8.3.3.1, 8.4.1.1, 8.4.1.1.2, 
8.4.1.2, 8.4.2.1.4, 8.4.2.1.6, 8.6.1.1, 8.7.2, and 8.8.3; and as 
specified in sections 7.1 to 7.10 of this appendix, respectively.
    7.1 Fuel supply, gas. In conducting the tests specified herein, 
gases with characteristics as shown in Table 1 of ASHRAE 103-1993 
(incorporated by reference, see Sec.  430.3) shall be used. Maintain the 
gas supply, ahead of all controls for a furnace, at a test pressure 
between the normal and increased values shown in Table 1 of ASHRAE 103-
1993. Maintain the regulator outlet pressure at a level approximating 
that recommended in the I&O manual, as defined in section 2.6 of

[[Page 633]]

this appendix, or, in the absence of such recommendation, to the nominal 
regulator settings used when the product is shipped by the manufacturer. 
Use a gas having a specific gravity as shown in Table 1 of ASHRAE 103-
1993 and with a higher heating value within 5% of 
the higher heating value shown in Table 1 of ASHRAE 103-1993. Determine 
the actual higher heating value in Btu per standard cubic foot for the 
gas to be used in the test within an error no greater than 1%.
    7.2 Installation of piping. Install piping equipment in accordance 
with the I&O manual. In the absence of such specification, install 
piping in accordance with section 8.3.1.1 of ASHRAE 103-1993 
(incorporated by reference, see Sec.  430.3).
    7.3 Gas burner. Adjust the burners of gas-fired furnaces and boilers 
to their maximum Btu input ratings at the normal test pressure specified 
by section 7.1 of this appendix. Correct the burner input rate to 
reflect gas characteristics at a temperature of 60 [deg]F and 
atmospheric pressure of 30 in of Hg and adjust down to within 2 percent of the hourly Btu nameplate input rating 
specified by the manufacturer as measured during the steady-state 
performance test in section 8 of this appendix. Set the primary air 
shutters in accordance with the I&O manual to give a good flame at this 
condition. If, however, the setting results in the deposit of carbon on 
the burners during any test specified herein, the tester shall adjust 
the shutters and burners until no more carbon is deposited and shall 
perform the tests again with the new settings (see Figure 9 of ASHRAE 
103-1993 (incorporated by reference, see Sec.  430.3)). After the 
steady-state performance test has been started, do not make additional 
adjustments to the burners during the required series of performance 
tests specified in section 9 of ASHRAE 103-1993. If a vent-limiting 
means is provided on a gas pressure regulator, keep it in place during 
all tests.
    7.4 Modulating gas burner adjustment at reduced input rate. For gas-
fired furnaces and boilers equipped with modulating-type controls, 
adjust the controls to operate the unit at the nameplate minimum input 
rate. If the modulating control is of a non-automatic type, adjust the 
control to the setting recommended in the I&O manual. In the absence of 
such recommendation, the midpoint setting of the non-automatic control 
shall be used as the setting for determining the reduced fuel input 
rate. Start the furnace or boiler by turning the safety control valve to 
the ``ON'' position. For boilers, use a supply water temperature that 
will allow for continuous operation without shutoff by the control. If 
necessary to achieve such continuous operation, supply water may be 
increased above 120 [deg]F; in such cases, gradually increase the supply 
water temperature to determine what minimum supply water temperature, 
with a 20 [deg]F temperature rise across the boiler, will be needed to 
adjust for the minimum input rate at the reduced input rate control 
setting. Monitor regulated gas pressure out of the modulating control 
valve (or entering the burner) to determine when no further reduction of 
gas pressure results. The flow rate of water through the boiler shall be 
adjusted to achieve a 20 [deg]F temperature rise.
    7.5 Oil burner. Adjust the burners of oil-fired furnaces or boilers 
to give a CO2 reading specified in the I&O manual and an 
hourly Btu input during the steady-state performance test described in 
section 8 of this appendix. Ensure the hourly BTU input is within 2% of the normal hourly Btu input rating as specified in 
the I&O manual. Smoke in the flue may not exceed a No. 1 smoke during 
the steady-state performance test as measured by the procedure in ASTM 
D2156R13 (incorporated by reference, see Sec.  430.3). Maintain the 
average draft over the fire and in the flue during the steady-state 
performance test at the value specified in the I&O manual. Do not allow 
draft fluctuations exceeding 0.005 in. water. Do not make additional 
adjustments to the burner during the required series of performance 
tests. The instruments and measuring apparatus for this test are 
described in section 6 of this appendix and shown in Figure 8 of ASHRAE 
103-1993 (incorporated by reference, see Sec.  430.3).
    7.6 Adjust air throughputs to achieve a temperature rise that is the 
higher of a and b, below, unless c applies. A tolerance of 2 [deg]F is permitted.
    a. 15 [deg]F less than the nameplate maximum temperature rise or
    b. 15 [deg]F higher than the minimum temperature rise specified in 
the I&O manual.
    c. A furnace with a non-adjustable air temperature rise range and an 
automatically controlled airflow that does not permit a temperature rise 
range of 30 [deg]F or more must be tested at the midpoint of the rise 
range.
    7.7 Establish the temperature rise specified in section 7.6 of this 
appendix by adjusting the circulating airflow. This adjustment must be 
accomplished by symmetrically restricting the outlet air duct and 
varying blower speed selection to obtain the desired temperature rise 
and minimum external static pressure, as specified in Table 4 of ASHRAE 
103-1993 (incorporated by reference, see Sec.  430.3). If the required 
temperature rise cannot be obtained at the minimum specified external 
static pressure by adjusting blower speed selection and duct outlet 
restriction, then the following applies.
    a. If the resultant temperature rise is less than the required 
temperature rise, vary the blower speed by gradually adjusting the 
blower voltage so as to maintain the minimum external static pressure 
listed in Table

[[Page 634]]

4 of ASHRAE 103-1993 (incorporated by reference, see Sec.  430.3). The 
airflow restrictions shall then remain unchanged. If static pressure 
must be varied to prevent unstable blower operation, then increase the 
static pressure until blower operation is stabilized, except that the 
static pressure must not exceed the maximum external static pressure as 
specified by the manufacturer in the I&O manual.
    b. If the resultant temperature rise is greater than the required 
temperature rise, then the unit can be tested at a higher temperature 
rise value, but one not greater than nameplate maximum temperature rise. 
In order not to exceed the maximum temperature rise, the speed of a 
direct-driven blower may be increased by increasing the circulating air 
blower motor voltage.
    7.8 Measurement of jacket surface temperature. Divide the jacket of 
the furnace or boiler into 6-inch squares when practical, and otherwise 
into 36-square-inch regions comprising 4 inch by 9 inch or 3 inch by 12 
inch sections, and determine the surface temperature at the center of 
each square or section with a surface thermocouple. Record the surface 
temperature of the 36-square-inch areas in groups where the temperature 
differential of the 36-square-inch areas is less than 10 [deg]F for 
temperature up to 100 [deg]F above room temperature, and less than 20 
[deg]F for temperatures more than 100 [deg]F above room temperature. For 
forced-air central furnaces, the circulating air blower compartment is 
considered as part of the duct system, and no surface temperature 
measurement of the blower compartment needs to be recorded for the 
purpose of this test. For downflow furnaces, measure all cabinet surface 
temperatures of the heat exchanger and combustion section, including the 
bottom around the outlet duct and the burner door, using the 36-square-
inch thermocouple grid. The cabinet surface temperatures around the 
blower section do not need to be measured (See Figure 3-E of ASHRAE 103-
1993 (incorporated by reference, see Sec.  430.3)).
    7.9 Installation of vent system. Keep the vent or air intake system 
supplied by the manufacturer in place during all tests. Test units 
intended for installation with a variety of vent pipe lengths with the 
minimum vent length as specified in the I&O manual, or a 5-ft. flue pipe 
if there are no recommendations in the I&O manual. Do not connect a 
furnace or boiler employing a direct vent system to a chimney or 
induced-draft source. Vent combustion products solely by using the 
venting incorporated in the furnace or boiler and the vent or air intake 
system supplied by the manufacturer. For units that are not designed to 
significantly preheat the incoming air, see section 7.5 of this appendix 
and Figure 4a or 4b of ASHRAE 103-1993 (incorporated by reference, see 
Sec.  430.3). For units that do significantly preheat the incoming air, 
see Figure 4c or 4d of ASHRAE 103-1993.
    7.10 Additional optional method of testing for determining DP and DF 
for furnaces and boilers. On units whose design is such that there is no 
measurable airflow through the combustion chamber and heat exchanger 
when the burner(s) is (are) off as determined by the optional test 
procedure in section 7.10.1 of this appendix, DF and 
DP may be set equal to 0.05.
    7.10.1 Optional test method for indicating the absence of flow 
through the heat exchanger. Manufacturers may use the following test 
protocol to determine whether air flows through the combustion chamber 
and heat exchanger when the burner(s) is (are) off. The minimum default 
draft factor (as allowed per sections 8.8.3 and 9.10 of ASHRAE 103-1993 
(incorporated by reference, see Sec.  430.3)) may be used only for units 
determined pursuant to this protocol to have no airflow through the 
combustion chamber and heat exchanger.
    7.10.1.1 Test apparatus. Use a smoke stick that produces smoke that 
is easily visible and has a density less than or approximately equal to 
air. Use a smoke stick that produces smoke that is non-toxic to the test 
personnel and produces gas that is unreactive with the environment in 
the test chamber.
    7.10.1.2 Test conditions. Minimize all air currents and drafts in 
the test chamber, including turning off ventilation if the test chamber 
is mechanically ventilated. Wait at least two minutes following the 
termination of the furnace or boiler on-cycle before beginning the 
optional test method for indicating the absence of flow through the heat 
exchanger.
    7.10.1.3 Location of the test apparatus. After all air currents and 
drafts in the test chamber have been eliminated or minimized, position 
the smoke stick based on the following equipment configuration: (a) For 
horizontal combustion air intakes, approximately 4 inches from the 
vertical plane at the termination of the intake vent and 4 inches below 
the bottom edge of the combustion air intake; or (b) for vertical 
combustion air intakes, approximately 4 inches horizontal from vent 
perimeter at the termination of the intake vent and 4 inches down 
(parallel to the vertical axis of the vent). In the instance where the 
boiler combustion air intake is closer than 4 inches to the floor, place 
the smoke device directly on the floor without impeding the flow of 
smoke.
    7.10.1.4 Duration of test. Establish the presence of smoke from the 
smoke stick and then monitor the direction of the smoke flow for no less 
than 30 seconds.
    7.10.1.5 Test results. During visual assessment, determine whether 
there is any draw of smoke into the combustion air intake vent.

[[Page 635]]

    If absolutely no smoke is drawn into the combustion air intake, the 
furnace or boiler meets the requirements to allow use of the minimum 
default draft factor pursuant to section 8.8.3 and/or section 9.10 of 
ASHRAE 103-1993 (incorporated by reference, see Sec.  430.3).
    If there is any smoke drawn into the intake, proceed with the 
methods of testing as prescribed in section 8.8 of ASHRAE 103-1993.
    8.0 Test procedure. Conduct testing and measurements as specified in 
section 9 of ASHRAE 103-1993 (incorporated by reference, see Sec.  
430.3) except for sections 9.1.2.2.1, 9.1.2.2.2, 9.5.1.1, 9.5.1.2.1, 
9.5.1.2.2, 9.5.2.1, 9.7.4, and 9.10; and as specified in sections 8.1 
through 8.11 of this appendix. Section 8.4 of this appendix may be used 
in lieu of section 9.2 of ASHRAE 103-1993.
    8.1 Fuel input. For gas units, measure and record the steady-state 
gas input rate in Btu/hr, including pilot gas, corrected to standard 
conditions of 60 [deg]F and 30 in. Hg. Use measured values of gas 
temperature and pressure at the meter and barometric pressure to correct 
the metered gas flow rate to the above standard conditions. For oil 
units, measure and record the steady-state fuel input rate.
    8.2 Electrical input. For furnaces and boilers, during the steady-
state test, perform a single measurement of all of the electrical power 
involved in burner operation (PE), including energizing the ignition 
system, controls, gas valve or oil control valve, and draft inducer, if 
applicable. For boilers, the measurement of PE must include the boiler 
pump if so equipped. If the boiler pump does not operate during the 
measurement of PE, add the boiler pump nameplate power to the 
measurement of PE. If the boiler pump nameplate power is not available, 
use 0.13 kW.
    For furnaces, during the steady-state test, perform a single 
measurement of the electrical power to the circulating air blower (BE). 
For hot water boilers, use the circulating water pump nameplate power 
for BE, or if the pump nameplate power is not available, use 0.13 kW.
    8.3 Input to interrupted ignition device. For burners equipped with 
an interrupted ignition device, record the nameplate electric power used 
by the ignition device, PEIG, or record that PEIG 
= 0.4 kW if no nameplate power input is provided. Record the nameplate 
ignition device on-time interval, tIG, or, if the nameplate 
does not provide the ignition device on-time interval, measure the on-
time interval with a stopwatch at the beginning of the test, starting 
when the burner is turned on. Set tIG = 0 and PEIG 
= 0 if the device on-time interval is less than or equal to 5 seconds 
after the burner is on.
    8.4 Optional test procedures for condensing furnaces and boilers, 
measurement of condensate during the establishment of steady-state 
conditions. For units with step-modulating or two-stage controls, 
conduct the test at both the maximum and reduced inputs. In lieu of 
collecting the condensate immediately after the steady state conditions 
have been reached as required by section 9.2 of ASHRAE 103-1993 
(incorporated by reference, see Sec.  430.3), condensate may be 
collected during the establishment of steady state conditions as defined 
by section 9.1.2.1 of ASHRAE 103-1993. Perform condensate collection for 
at least 30 minutes. Measure condensate mass immediately at the end of 
the collection period to prevent evaporation loss from the sample. 
Record fuel input for the 30-minute condensate collection test period. 
Observe and record fuel higher heating value (HHV), temperature, and 
pressures necessary for determining fuel energy input (Qc,ss). Measure 
the fuel quantity and HHV with errors no greater than 1%. The humidity 
for the room air shall at no time exceed 80%. Determine the mass of 
condensate for the establishment of steady state conditions (Mc,ss) in 
pounds by subtracting the tare container weight from the total container 
and condensate weight measured at the end of the 30-minute condensate 
collection test period.
    8.5 Cool-down test for gas- and oil-fueled gravity and forced-air 
central furnaces without stack dampers. Turn off the main burner after 
completing steady-state testing, and measure the flue gas temperature by 
means of the thermocouple grid described in section 7.6 of ASHRAE 103-
1993 (incorporated by reference, see Sec.  430.3) at 1.5 minutes 
(TF,OFF(t3)) and 9 minutes 
(TF,OFF(t4)) after shutting off the burner. When 
taking these temperature readings, the integral draft diverter must 
remain blocked and insulated, and the stack restriction must remain in 
place. On atmospheric systems with an integral draft diverter or draft 
hood and equipped with either an electromechanical inlet damper or an 
electromechanical flue damper that closes within 10 seconds after the 
burner shuts off to restrict the flow through the heat exchanger in the 
off-cycle, bypass or adjust the control for the electromechanical damper 
so that the damper remains open during the cool-down test.
    For furnaces that employ post-purge, measure the length of the post-
purge period with a stopwatch. Record the time from burner ``OFF'' to 
combustion blower ``OFF'' (electrically de-energized) as tP. 
If the measured tP is less than or equal to 30 seconds, set 
tP at 0 and conduct the cool-down test as if there is no 
post-purge. If tP is prescribed by the I&O manual or measured 
to be greater than 180 seconds, stop the combustion blower at 180 
seconds and use that value for tP. Measure the flue gas 
temperature by means of the thermocouple grid described in section 7.6 
of ASHRAE 103-1993 at the end of the post-purge period, 
tP(TF,OFF (tP)), and at the time (1.5 + 
tP) minutes (TF,OFF(t3)) and (9.0 +

[[Page 636]]

tP) minutes (TF,OFF(t4)) after the main 
burner shuts off.
    8.6 Cool-down test for gas- and oil-fueled gravity and forced-air 
central furnaces without stack dampers and with adjustable fan control. 
For a furnace with adjustable fan control, measure the time delay 
between burner shutdown and blower shutdown, t\+\. This time delay, 
t\+\, will be 3.0 minutes for non-condensing furnaces or 1.5 minutes for 
condensing furnaces or until the supply air temperature drops to a value 
of 40 [deg]F above the inlet air temperature, whichever results in the 
longest fan on-time. For a furnace without adjustable fan control or 
with the type of adjustable fan control whose range of adjustment does 
not allow for the time delay, t\+\, specified above, bypass the fan 
control and manually control the fan to allow for the appropriate delay 
time as specified in section 9.5.1.2 of ASHRAE 103-1993 (incorporated by 
reference, see Sec.  430.3). For a furnace that employs a single motor 
to drive both the power burner and the indoor air circulating blower, 
the power burner and indoor air circulating blower must be stopped at 
the same time
    8.7 Cool-down test for gas- and oil-fueled boilers without stack 
dampers. After steady-state testing has been completed, turn the main 
burner(s) ``OFF'' and measure the flue gas temperature at 3.75 minutes 
(temperature designated as TF,OFF(t3)) and 22.5 
minutes (temperature designated as TF,OFF(t4)) 
after the burner shut-off using the thermocouple grid described in 
section 7.6 of ASHRAE 103-1993 (incorporated by reference, see Sec.  
430.3).
    a. During this off-period, for units that do not have pump delay 
after shut-off, do not allow any water to circulate through the hot 
water boilers.
    b. For units that have pump delay on shut-off, except those having 
pump controls sensing water temperature, the unit control must stop the 
pump. Measure and record the time between burner shut-off and pump shut-
off (t\+\) to the nearest second.
    c. For units having pump delay controls that sense water 
temperature, operate the pump for 15 minutes and record t\+\ as 15 
minutes. While the pump is operating, maintain the inlet water 
temperature and flow rate at the same values as used during the steady-
state test, as specified in sections 9.1 and 8.4.2.3 of ASHRAE 103-1993 
(incorporated by reference, see Sec.  430.3).
    d. For boilers that employ post-purge, measure the length of the 
post-purge period with a stopwatch. Record the time from burner ``OFF'' 
to combustion blower ``OFF'' (electrically de-energized) as 
tP. If tP is prescribed by the I&O manual or 
measured to be greater than 180 seconds, stop the combustion blower at 
180 seconds and use that value for tP. Measure the flue gas 
temperature by means of the thermocouple grid described in section 7.6 
of ASHRAE 103-1993 at the end of the post-purge period tP 
(TF,OFF(tP)) and at (3.75 + tP) minutes 
(TF,OFF(t3)) and (22.5 + tP) minutes 
(TF,OFF(t4)) after the main burner shuts off. If 
the measured tP is less than or equal to 30 seconds, record 
tP as 0 and conduct the cool-down test as if there is no 
post-purge.
    8.8 Direct measurement of off-cycle losses testing method. 
[Reserved]
    8.9 Calculation options. The rate of the flue gas mass flow through 
the furnace and the factors DP, DF, and 
DS are calculated by the equations in sections 11.6.1, 
11.6.2, 11.6.3, 11.6.4, 11.7.1, and 11.7.2 of ASHRAE 103-1993 
(incorporated by reference, see Sec.  430.3). On units whose design is 
such that there is no measurable airflow through the combustion chamber 
and heat exchanger when the burner(s) is (are) off (as determined by the 
optional test procedure in section 7.10 of this appendix), DF 
and DP may be set equal to 0.05.
    8.10 Optional test procedures for condensing furnaces and boilers 
that have no off-period flue losses. For units that have applied the 
test method in section 7.10 of this appendix to determine that no 
measurable airflow exists through the combustion chamber and heat 
exchanger during the burner off-period and having post-purge periods of 
less than 5 seconds, the cool-down and heat-up tests specified in 
sections 9.5 and 9.6 of ASHRAE 103-1993 (incorporated by reference, see 
Sec.  430.3) may be omitted. In lieu of conducting the cool-down and 
heat-up tests, the tester may use the losses determined during the 
steady-state test described in section 9.1 of ASHRAE 103-1993 when 
calculating heating seasonal efficiency, EffyHS.
    8.11 Measurement of electrical standby and off mode power.
    8.11.1 Standby power measurement. With all electrical auxiliaries of 
the furnace or boiler not activated, measure the standby power 
(PW,SB) in accordance with the procedures in IEC 62301 
(incorporated by reference, see Sec.  430.3), except that section 8.5, 
Room Ambient Temperature, of ASHRAE 103-1993 (incorporated by reference, 
see Sec.  430.3) and the voltage provision of section 8.2.1.4, 
Electrical Supply, of ASHRAE 103-1993 shall apply in lieu of the 
corresponding provisions of IEC 62301 at section 4.2, Test room, and the 
voltage specification of section 4.3, Power supply. Frequency shall be 
60Hz. Clarifying further, IEC 62301 section 4.4, Power measurement 
instruments, and section 5, Measurements, apply in lieu of ASHRAE 103-
1993 section 6.10, Energy Flow Rate. Measure the wattage so that all 
possible standby mode wattage for the entire appliance is recorded, not 
just the standby mode wattage of a single auxiliary. Round the recorded 
standby power (PW,SB) to the second decimal place, except for 
loads greater than or equal to 10W, which must be recorded to at least 
three significant figures.
    8.11.2 Off mode power measurement. If the unit is equipped with an 
off switch or there

[[Page 637]]

is an expected difference between off mode power and standby mode power, 
measure off mode power (PW,OFF) in accordance with 
the standby power procedures in IEC 62301 (incorporated by reference, 
see Sec.  430.3), except that section 8.5, Room Ambient Temperature, of 
ASHRAE 103-1993 (incorporated by reference, see Sec.  430.3) and the 
voltage provision of section 8.2.1.4, Electrical Supply, of ASHRAE 103-
1993 shall apply in lieu of the corresponding provisions of IEC 62301 at 
section 4.2, Test room, and the voltage specification of section 4.3, 
Power supply. Frequency shall be 60Hz. Clarifying further, IEC 62301 
section 4.4, Power measurement instruments, and section 5, Measurements, 
apply for this measurement in lieu of ASHRAE 103-1993 section 6.10, 
Energy Flow Rate. Measure the wattage so that all possible off mode 
wattage for the entire appliance is recorded, not just the off mode 
wattage of a single auxiliary. If there is no expected difference in off 
mode power and standby mode power, let PW,OFF = 
PW,SB, in which case no separate measurement of off mode 
power is necessary. Round the recorded off mode power 
(PW,OFF) to the second decimal place, except for loads 
greater than or equal to 10W, in which case round the recorded value to 
at least three significant figures.
    9.0 Nomenclature. Nomenclature includes the nomenclature specified 
in section 10 of ASHRAE 103-1993 (incorporated by reference, see Sec.  
430.3) and the following additional variables:

Effmotor = Efficiency of power burner motor
PEIG = Electrical power to the interrupted ignition device, 
          kW
RT,a = RT,F if flue gas is measured
= RT,S if stack gas is measured
RT,F = Ratio of combustion air mass flow rate to 
          stoichiometric air mass flow rate
RT,S = Ratio of the sum of combustion air and relief air mass 
          flow rate to stoichiometric air mass flow rate
tIG = Electrical interrupted ignition device on-time, min.
Ta,SS,X = TF,SS,X if flue gas temperature is 
          measured, [deg]F
= TS,SS,X if stack gas temperature is measured, [deg]F
yIG = Ratio of electrical interrupted ignition device on-time 
          to average burner on-time
yP = Ratio of power burner combustion blower on-time to 
          average burner on-time
ESO = Average annual electric standby mode and off mode 
          energy consumption, in kilowatt-hours
PW,OFF = Furnace or boiler off mode power, in watts
PW,SB = Furnace or boiler standby mode power, in watts

    10.0 Calculation of derived results from test measurements. Perform 
calculations as specified in section 11 of ASHRAE 103-1993 (incorporated 
by reference, see Sec.  430.3), except for sections 11.5.11.1, 
11.5.11.2, and appendices B and C; and as specified in sections 10.1 
through 10.11 and Figure 1 of this appendix.
    10.1 Annual fuel utilization efficiency. The annual fuel utilization 
efficiency (AFUE) is as defined in sections 11.2.12 (non-condensing 
systems), 11.3.12 (condensing systems), 11.4.12 (non-condensing 
modulating systems) and 11.5.12 (condensing modulating systems) of 
ASHRAE 103-1993 (incorporated by reference, see Sec.  430.3), except for 
the definition for the term EffyHS in the defining equation 
for AFUE. EffyHS is defined as:

EffyHS = heating seasonal efficiency as defined in sections 
          11.2.11 (non-condensing systems), 11.3.11 (condensing 
          systems), 11.4.11 (non-condensing modulating systems) and 
          11.5.11 (condensing modulating systems) of ASHRAE 103-1993, 
          except that for condensing modulating systems sections 
          11.5.11.1 and 11.5.11.2 are replaced by sections 10.2 and 10.3 
          of this appendix. EffyHS is based on the 
          assumptions that all weatherized warm air furnaces or boilers 
          are located outdoors, that non-weatherized warm air furnaces 
          are installed as isolated combustion systems, and that non-
          weatherized boilers are installed indoors.

    10.2 Part-load efficiency at reduced fuel input rate. If the option 
in section 8.10 of this appendix is not employed, calculate the part-
load efficiency at the reduced fuel input rate, EffyU,R, for 
condensing furnaces and boilers equipped with either step-modulating or 
two-stage controls, expressed as a percent and defined as:
[GRAPHIC] [TIFF OMITTED] TR15JA16.016


    If the option in section 8.10 of this appendix is employed, 
calculate EffyU,R as follows:

[[Page 638]]

[GRAPHIC] [TIFF OMITTED] TR15JA16.017

Where:
LL,A = value as defined in section 11.2.7 of ASHRAE 103-1993 
          (incorporated by reference, see Sec.  430.3)
LG = value as defined in section 11.3.11.1 of ASHRAE 103-
          1993, at reduced input rate,
LC = value as defined in section 11.3.11.2 of ASHRAE 103-1993 
          at reduced input rate,
LJ = value as defined in section 11.4.8.1.1 of ASHRAE 103-
          1993 at maximum input rate,
tON = value as defined in section 11.4.9.11 of ASHRAE 103-
          1993,
QP = pilot fuel input rate determined in accordance with 
          section 9.2 of ASHRAE 103-1993 in Btu/h,
QIN = value as defined in section 11.4.8.1.1 of ASHRAE 103-
          1993,
tOFF = value as defined in section 11.4.9.12 of ASHRAE 103-
          1993 at reduced input rate,
LS,ON = value as defined in section 11.4.10.5 of ASHRAE 103-
          1993 at reduced input rate,
LS,OFF = value as defined in section 11.4.10.6 of ASHRAE 103-
          1993 at reduced input rate,
LI,ON = value as defined in section 11.4.10.7 of ASHRAE 103-
          1993 at reduced input rate,
LI,OFF = value as defined in section 11.4.10.8 of ASHRAE 103-
          1993 at reduced input rate,
CJ = jacket loss factor and equal to:
    = 0.0 for furnaces or boilers intended to be installed indoors
    = 1.7 for furnaces intended to be installed as isolated combustion 
systems
    = 2.4 for boilers (other than finned-tube boilers) intended to be 
installed as isolated combustion systems
    = 3.3 for furnaces intended to be installed outdoors
    = 4.7 for boilers (other than finned-tube boilers) intended to be 
installed outdoors
    = 1.0 for finned-tube boilers intended to be installed outdoors
    = 0.5 for finned-tube boilers intended to be installed in isolated 
combustion system applications
LS,SS = value as defined in section 11.4.6 of ASHRAE 103-1993 
          at reduced input rate,
CS = value as defined in section 11.3.10.1 of ASHRAE 103-1993 
          at reduced input rate.

    10.3 Part-Load Efficiency at Maximum Fuel Input Rate. If the option 
in section 8.10 of this appendix is not employed, calculate the part-
load efficiency at maximum fuel input rate, EffyU,H, for 
condensing furnaces and boilers equipped with two-stage controls, 
expressed as a percent and defined as:
[GRAPHIC] [TIFF OMITTED] TR15JA16.014


    If the option in section 8.10 of this appendix is employed, 
calculate EffyU,H as follows:
[GRAPHIC] [TIFF OMITTED] TR15JA16.015

Where:

LL,A = value as defined in section 11.2.7 of ASHRAE 103-1993 
          (incorporated by reference, see Sec.  430.3),
LG = value as defined in section 11.3.11.1 of ASHRAE 103-1 at 
          maximum input rate,
LC = value as defined in section 11.3.11.2 of ASHRAE 103-1993 
          at maximum input rate,
LJ = value as defined in section 11.4.8.1.1 of ASHRAE 103-
          1993 at maximum input rate,
tON = value as defined in section 11.4.9.11 of ASHRAE 103-
          1993,
QP = pilot fuel input rate determined in accordance with 
          section 9.2 of ASHRAE 103-1993 in Btu/h,
QIN = value as defined in section 11.4.8.1.1 of ASHRAE 103-
          1993,
tOFF = value as defined in section 11.4.9.12 of ASHRAE 103-
          1993 at maximum input rate,
LS,ON = value as defined in section 11.4.10.5 of ASHRAE 103-
          1993 at maximum input rate,

[[Page 639]]

LS,OFF = value as defined in section 11.4.10.6 of ASHRAE 103-
          1993 at maximum input rate,
LI,ON = value as defined in section 11.4.10.7 of ASHRAE 103-
          1993 at maximum input rate,
LI,OFF = value as defined in section 11.4.10.8 of ASHRAE 103-
          1993 at maximum input rate,
CJ = value as defined in section 10.2 of this appendix,
LS,SS = value as defined in section 11.4.6 of ASHRAE 103-1993 
          at maximum input rate,
CS = value as defined in section 11.4.10.1 of ASHRAE 103-1993 
          at maximum input rate.

    10.4 National average burner operating hours, average annual fuel 
energy consumption, and average annual auxiliary electrical energy 
consumption for gas or oil furnaces and boilers.
    10.4.1 National average number of burner operating hours. For 
furnaces and boilers equipped with single-stage controls, the national 
average number of burner operating hours is defined as:

BOHSS = 2,080 (0.77) (A) DHR - 2,080 (B)

Where:

2,080 = national average heating load hours
0.77 = adjustment factor to adjust the calculated design heating 
          requirement and heating load hours to the actual heating load 
          experienced by the heating system
A = 100,000/[341,300 (yP PE + yIG PEIG 
          + y BE) + (QIN - QP) EffyHS], 
          for forced draft unit, indoors
    = 100,000/[341,300 (yP PE Effmotor + 
yIG PEIG + y BE) + (QIN - 
QP) EffyHS], for forced draft unit, isolated 
combustion system,
    = 100,000/[341,300 (yP PE (1 - Effmotor) + 
yIG PEIG + y BE) + (QIN - 
QP) EffyHS], for induced draft unit, indoors, and
    = 100,000/[341,300 (yIG PEIG + y BE) + 
(QIN - QP) EffyHS], for induced draft 
unit, isolated combustion system.
DHR = typical design heating requirements as listed in Table 8 (in kBtu/
          h) of ASHRAE 103-1993 (incorporated by reference, see Sec.  
          430.3), using the proper value of QOUT defined in 
          11.2.8.1 of ASHRAE 103-1993.
B = 2 QP (EffyHS) (A)/100,000

Where:

Effmotor = nameplate power burner motor efficiency provided 
          by the manufacturer,
    = 0.50, an assumed default power burner efficiency if not provided 
by the manufacturer.
100,000 = factor that accounts for percent and kBtu
yP = ratio of induced or forced draft blower on-time to 
          average burner on-time, as follows:
    1 for units without post-purge;
    1 + (tP/3.87) for single stage furnaces with post purge;
    1 + (tP/10) for two-stage and step modulating furnaces 
with post purge;
    1 + (tP/9.68) for single stage boilers with post purge; 
or
    1 + (tP/15) for two stage and step modulating boilers 
with post purge.
PE = all electrical power related to burner operation at full load 
          steady-state operation, including electrical ignition device 
          if energized, controls, gas valve or oil control valve, draft 
          inducer, and boiler pump, as determined in section 8.2 of this 
          appendix.
yIG = ratio of burner interrupted ignition device on-time to 
          average burner on-time, as follows:
    0 for burners not equipped with interrupted ignition device;
    (tIG/3.87) for single-stage furnaces or boilers;
    (tIG/10) for two-stage and step modulating furnaces;
    (tIG/9.68) for single stage boilers; or
    (tIG/15) for two stage and step modulating boilers.
PEIG = electrical input rate to the interrupted ignition 
          device on burner (if employed), as defined in section 8.3 of 
          this appendix
y = ratio of blower or pump on-time to average burner on-time, as 
          follows:
    1 for furnaces without fan delay or boilers without a pump delay;
    1 + (t\+\ - t-)/3.87 for single-stage furnaces with fan 
delay;
    1 + (t\+\ - t-)/10 for two-stage and step modulating 
furnaces with fan delay;
    1 + (t\+\/9.68) for single-stage boilers with pump delay;
    1 + (t\+\/1.5) for two-stage and step modulating boilers with pump 
delay.
BE = circulating air fan or water pump electrical energy input rate at 
          full-load steady-state operation as defined in section 8.2 of 
          this appendix.
tP = post-purge time as defined in section 8.5 (furnace) or 
          section 8.7 (boiler) of this appendix
    = 0 if tP is equal to or less than 30 second
tIG = on-time of the burner interrupted ignition device, as 
          defined in section 8.3 of this appendix
QIN = as defined in section 11.2.8.1 of ASHRAE 103-1993
QP = as defined in section 11.2.11 of ASHRAE 103-1993
EffyHS = as defined in section 11.2.11 (non-condensing 
          systems) or section 11.3.11.3 (condensing systems) of ASHRAE 
          103-1993, percent, and calculated on the basis of:
    isolated combustion system installation, for non-weatherized warm 
air furnaces;
    indoor installation, for non-weatherized boilers; or

[[Page 640]]

    outdoor installation, for furnaces and boilers that are weatherized.
2 = ratio of the average length of the heating season in hours to the 
          average heating load hours
t\+\ = delay time between burner shutoff and the blower or pump shutoff 
          measured as defined in section 9.5.1.2 of ASHRAE 103-1993 
          (furnace) or section 8.7 of this appendix (boiler).
t- = as defined in section 9.6.1 of ASHRAE 103-1993

    10.4.1.1 For furnaces and boilers equipped with two stage or step 
modulating controls the average annual energy used during the heating 
season, EM, is defined as:

EM = (QIN - QP) BOHSS + 
          (8,760 - 4,600) QP

Where:

QIN = as defined in 11.4.8.1.1 of ASHRAE 103-1993 
          (incorporated by reference, see Sec.  430.3)
QP = as defined in 11.4.12 of ASHRAE 103-1993
BOHSS = as defined in section 10.4.1 of this appendix, in 
          which the weighted EffyHS as defined in 11.4.11.3 
          or 11.5.11.3 of ASHRAE 103-1993 is used for calculating the 
          values of A and B, the term DHR is based on the value of 
          QOUT defined in 11.4.8.1.1 or 11.5.8.1.1 of ASHRAE 
          103-1993, and the term (yPPE + 
          yIGPEIG + yBE) in the factor A is 
          increased by the factor R, which is defined as:
R = 2.3 for two stage controls
    = 2.3 for step modulating controls when the ratio of minimum-to-
maximum output is greater than or equal to 0.5
    = 3.0 for step modulating controls when the ratio of minimum-to-
maximum output is less than 0.5
A = 100,000/[341,300 (yP PE + yIG PEIG 
          + y BE) R + (QIN - QP) 
          EffyHS], for forced draft unit, indoors
    = 100,000/[341,300 (yP PE Effmotor + 
yIG PEIG + y BE) R + (QIN - 
QP) EffyHS], for forced draft unit, isolated 
combustion system,
    = 100,000/[341,300 (yP PE (1 - Effmotor) + 
yIG PEIG + y BE) R + (QIN - 
QP) EffyHS], for induced draft unit, indoors, and
    = 100,000/[341,300 (yIG PEIG + y BE) R + 
(QIN - QP) EffyHS], for induced draft 
unit, isolated combustion system.

Where:

Effmotor = nameplate power burner motor efficiency provided 
          by the manufacturer,
    = 0.50, an assumed default power burner efficiency if not provided 
by the manufacturer.
EffyHS = as defined in 11.4.11.3 or 11.5.11.3 of ASHRAE 103-
          1993, and calculated on the basis of:
    isolated combustion system installation, for non-weatherized warm 
air furnaces;
    indoor installation, for non-weatherized boilers; or
    outdoor installation, for furnaces and boilers that are weatherized.
8,760 = total number of hours per year
4,600 = as defined in 11.4.12 of ASHRAE 103-1993
    10.4.1.2 For furnaces and boilers equipped with two-stage or step-
modulating controls, the national average number of burner operating 
hours at the reduced operating mode (BOHR) is defined as:

BOHR = XR EM/QIN,R

Where:

XR = as defined in 11.4.8.7 of ASHRAE 103-1993 (incorporated 
          by reference, see Sec.  430.3)
EM = as defined in section 10.4.1.1 of this appendix
QIN,R = as defined in 11.4.8.1.2 of ASHRAE 103-1993

    10.4.1.3 For furnaces and boilers equipped with two-stage controls, 
the national average number of burner operating hours at the maximum 
operating mode (BOHH) is defined as:

BOHH = XH EM/QIN

Where:

XH = as defined in 11.4.8.6 of ASHRAE 103-1993 (incorporated 
          by reference, see Sec.  430.3)
EM = as defined in section 10.4.1.1 of this appendix
QIN = as defined in section 11.4.8.1.1 of ASHRAE 103-1993

    10.4.1.4 For furnaces and boilers equipped with step-modulating 
controls, the national average number of burner operating hours at the 
modulating operating mode (BOHM) is defined as:

BOHM = XH EM/QIN,M

Where:

XH = as defined in 11.4.8.6 of ASHRAE 103-1993 (incorporated 
          by reference, see Sec.  430.3)
EM = as defined in section 10.4.1.1 of this appendix
QIN,M = QOUT,M/(EffySS,M/100)
QOUT,M = as defined in 11.4.8.10 or 11.5.8.10 of ASHRAE 103-
          1993, as appropriate
EffySS,M = as defined in 11.4.8.8 or 11.5.8.8 of ASHRAE 103-
          1993, as appropriate, in percent
100 = factor that accounts for percent

    10.4.2 Average annual fuel energy consumption for gas or oil fueled 
furnaces or boilers. For furnaces or boilers equipped with single-stage 
controls, the average annual fuel energy consumption (EF) is 
expressed in Btu per year and defined as:

EF = BOHSS (QIN - QP) + 
          8,760 QP

Where:

BOHSS = as defined in section 10.4.1 of this appendix

[[Page 641]]

QIN = as defined in section 11.2.8.1 of ASHRAE 103-1993 
          (incorporated by reference, see Sec.  430.3)
QP = as defined in section 11.2.11 of ASHRAE 103-1993
8,760 = as defined in section 10.4.1.1 of this appendix

    10.4.2.1 For furnaces or boilers equipped with either two-stage or 
step modulating controls, EF is defined as:

EF = EM + 4,600 QP

Where:

EM = as defined in section 10.4.1.1 of this appendix
4,600 = as defined in section 11.4.12 of ASHRAE 103-1993
QP = as defined in section 11.2.11 of ASHRAE 103-1993

    10.4.3 Average annual auxiliary electrical energy consumption for 
gas or oil-fueled furnaces or boilers. For furnaces and boilers equipped 
with single-stage controls, the average annual auxiliary electrical 
consumption (EAE) is expressed in kilowatt-hours and defined 
as:

EAE = BOHSS (yP PE + yIG 
          PEIG + yBE) + ESO

Where:

BOHSS = as defined in section 10.4.1 of this appendix
yP = as defined in section 10.4.1 of this appendix
PE = as defined in section 10.4.1 of this appendix
yIG = as defined in section 10.4.1 of this appendix
PEIG = as defined in section 10.4.1 of this appendix
y = as defined in section 10.4.1 of this appendix
BE = as defined in section 10.4.1 of this appendix
ESO = as defined in section 10.11 of this appendix

    10.4.3.1 For furnaces or boilers equipped with two-stage controls, 
EAE is defined as:

EAE = BOHR (yP PER + 
          yIG PEIG + yBER) + 
          BOHH (yP PEH + yIG 
          PEIG + y BEH) + ESO

Where:

BOHR = as defined in section 10.4.1.2 of this appendix
yP = as defined in section 10.4.1 of this appendix
PER = as defined in section 8.2 of this appendix and measured 
          at the reduced fuel input rate
yIG = as defined in section 10.4.1 of this appendix
PEIG = as defined in section 10.4.1 of this appendix
y = as defined in section 10.4.1 of this appendix
BER = as defined in section 8.2 of this appendix and measured 
          at the reduced fuel input rate
BOHH = as defined in section 10.4.1.3 of this appendix
PEH = as defined in section 8.2 of this appendix and measured 
          at the maximum fuel input rate
BEH = as defined in section 8.2 of this appendix and measured 
          at the maximum fuel input rate
ESO = as defined in section 10.11 of this appendix

    10.4.3.2 For furnaces or boilers equipped with step-modulating 
controls, EAE is defined as:

EAE = BOHR (yP PER + 
          yIG PEIG + y BER) + 
          BOHM (yP PEH + yIG 
          PEIG + y BEH) + ESO

Where:

BOHR = as defined in section 10.4.1.2 of this appendix
yP = as defined in section 10.4.1 of this appendix
PER = as defined in section 8.2 of this appendix and measured 
          at the reduced fuel input rate
yIG = as defined in section 10.4.1 of this appendix
PEIG = as defined in section 10.4.1 of this appendix
y = as defined in section 10.4.1 of this appendix
BER = as defined in section 8.2 of this appendix and measured 
          at the reduced fuel input rate
BOHM = as defined in 10.4.1.4 of this appendix
PEH = as defined in section 8.2 of this appendix and measured 
          at the maximum fuel input rate
BEH = as defined in section 8.2 of this appendix and measured 
          at the maximum fuel input rate
ESO = as defined in section 10.11 of this appendix

    10.5 Average annual electric energy consumption for electric 
furnaces or boilers. For electric furnaces and boilers, the average 
annual electrical energy consumption (EE) is expressed in 
kilowatt-hours and defined as:

EE = 100 (2,080) (0.77) DHR/(3.412 AFUE) + ESO

Where:

100 = to express a percent as a decimal
2,080 = as defined in section 10.4.1 of this appendix
0.77 = as defined in section 10.4.1 of this appendix
DHR = as defined in section 10.4.1 of this appendix
3.412 = conversion factor from watt-hours to Btu
AFUE = as defined in section 11.1 of ASHRAE 103-1993 (incorporated by 
          reference, see Sec.  430.3), in percent, and calculated on the 
          basis of:
    isolated combustion system installation, for non-weatherized warm 
air furnaces;
    indoor installation, for non-weatherized boilers; or

[[Page 642]]

    outdoor installation, for furnaces and boilers that are weatherized.
ESO = as defined in section 10.11 of this appendix.

    10.6 Energy factor.
    10.6.1 Energy factor for gas or oil furnaces and boilers. Calculate 
the energy factor, EF, for gas or oil furnaces and boilers defined as, 
in percent:

EF = (EF - 4,600 (QP))(EffyHS)/
          (EF + 3,412 (EAE))

Where:

EF = average annual fuel consumption as defined in section 
          10.4.2 of this appendix
4,600 = as defined in section 11.4.12 of ASHRAE 103-1993 (incorporated 
          by reference, see Sec.  430.3)
QP = pilot fuel input rate determined in accordance with 
          section 9.2 of ASHRAE 103-1993 in Btu/h
EffyHS = annual fuel utilization efficiency as defined in 
          sections 11.2.11, 11.3.11, 11.4.11 or 11.5.11 of ASHRAE 103-
          1993, in percent, and calculated on the basis of:
    isolated combustion system installation, for non-weatherized warm 
air furnaces;
    indoor installation, for non-weatherized boilers; or
    outdoor installation, for furnaces and boilers that are weatherized.
3,412 = conversion factor from kW to Btu/h
EAE = as defined in section 10.4.3 of this appendix

    10.6.2 Energy factor for electric furnaces and boilers. The energy 
factor, EF, for electric furnaces and boilers is defined as:

EF = AFUE

Where:

AFUE = annual fuel utilization efficiency as defined in section 10.4.3 
          of this appendix, in percent

    10.7 Average annual energy consumption for furnaces and boilers 
located in a different geographic region of the United States and in 
buildings with different design heating requirements.
    10.7.1 Average annual fuel energy consumption for gas or oil-fueled 
furnaces and boilers located in a different geographic region of the 
United States and in buildings with different design heating 
requirements. For gas or oil-fueled furnaces and boilers, the average 
annual fuel energy consumption for a specific geographic region and a 
specific typical design heating requirement (EFR) is 
expressed in Btu per year and defined as:

EFR = (EF - 8,760 QP) (HLH/2,080) + 
          8,760 QP

Where:

EF = as defined in section 10.4.2 of this appendix
8,760 = as defined in section 10.4.1.1 of this appendix
QP = as defined in section 11.2.11 of ASHRAE 103-1993 
          (incorporated by reference, see Sec.  430.3)
HLH = heating load hours for a specific geographic region determined 
          from the heating load hour map in Figure 1 of this appendix
2,080 = as defined in section 10.4.1 of this appendix

    10.7.2 Average annual auxiliary electrical energy consumption for 
gas or oil-fueled furnaces and boilers located in a different geographic 
region of the United States and in buildings with different design 
heating requirements. For gas or oil-fueled furnaces and boilers, the 
average annual auxiliary electrical energy consumption for a specific 
geographic region and a specific typical design heating requirement 
(EAER) is expressed in kilowatt-hours and defined as:

EAER = (EAE - ESO) (HLH/2080) + 
          ESOR

Where:

EAE = as defined in section 10.4.3 of this appendix
ESO = as defined in section 10.11 of this appendix
HLH = as defined in section 10.7.1 of this appendix
2,080 = as defined in section 10.4.1 of this appendix
ESOR = as defined in section 10.7.3 of this appendix.

    10.7.3 Average annual electric energy consumption for electric 
furnaces and boilers located in a different geographic region of the 
United States and in buildings with different design heating 
requirements. For electric furnaces and boilers, the average annual 
electric energy consumption for a specific geographic region and a 
specific typical design heating requirement (EER) is 
expressed in kilowatt-hours and defined as:

EER = 100 (0.77) DHR HLH/(3.412 AFUE) + ESOR

Where:

100 = as defined in section 10.4.3 of this appendix
0.77 = as defined in section 10.4.1 of this appendix
DHR = as defined in section 10.4.1 of this appendix
HLH = as defined in section 10.7.1 of this appendix
3.412 = as defined in section 10.4.3 of this appendix
AFUE = as defined in section 10.4.3 of this appendix
ESOR = ESO as defined in section 10.11 of this 
          appendix, except that in the equation for ESO, the 
          term BOH is multiplied by the expression (HLH/2080) to get the 
          appropriate regional accounting of standby mode and off mode 
          loss.

    10.8 Annual energy consumption for mobile home furnaces

[[Page 643]]

    10.8.1 National average number of burner operating hours for mobile 
home furnaces (BOHSS). BOHSS is the same as in section 10.4.1 
of this appendix, except that the value of EffyHS in the 
calculation of the burner operating hours, BOHSS, is 
calculated on the basis of a direct vent unit with system number 9 or 
10.
    10.8.2 Average annual fuel energy for mobile home furnaces (EF). 
EF is same as in section 10.4.2 of this appendix except that 
the burner operating hours, BOHSS, is calculated as specified 
in section 10.8.1 of this appendix.
    10.8.3 Average annual auxiliary electrical energy consumption for 
mobile home furnaces (EAE). EAE is the same as in section 
10.4.3 of this appendix, except that the burner operating hours, 
BOHSS, is calculated as specified in section 10.8.1 of this 
appendix.
    10.9 Calculation of sales weighted average annual energy consumption 
for mobile home furnaces. To reflect the distribution of mobile homes to 
geographical regions with average HLHMHF values different 
from 2,080, adjust the annual fossil fuel and auxiliary electrical 
energy consumption values for mobile home furnaces using the following 
adjustment calculations.
    10.9.1 For mobile home furnaces, the sales weighted average annual 
fossil fuel energy consumption is expressed in Btu per year and defined 
as:
EF,MHF = (EF - 8,760 QP) 
          HLHMHF/2,080 + 8,760 QP

Where:

EF = as defined in section 10.8.2 of this appendix
8,760 = as defined in section 10.4.1.1 of this appendix
QP = as defined in section 10.2 of this appendix
HLHMHF = 1880, sales weighted average heating load hours for 
          mobile home furnaces
2,080 = as defined in section 10.4.1 of this appendix

    10.9.2 For mobile home furnaces, the sales-weighted-average annual 
auxiliary electrical energy consumption is expressed in kilowatt-hours 
and defined as:

EAE,MHF = EAE HLHMHF/2,080

Where:

EAE = as defined in section 10.8.3 of this appendix
HLHMHF = as defined in section 10.9.1 of this appendix
2,080 = as defined in section 10.4.1 of this appendix

    10.10 Direct determination of off-cycle losses for furnaces and 
boilers equipped with thermal stack dampers. [Reserved]
    10.11 Average annual electrical standby mode and off mode energy 
consumption. Calculate the annual electrical standby mode and off mode 
energy consumption (ESO) in kilowatt-hours, defined as:

ESO = (PW,SB (4160 - BOH) + 4600 
          PW,OFF) K
Where:

PW,SB = furnace or boiler standby mode power, in watts, as 
          measured in section 8.11.1 of this appendix
4,160 = average heating season hours per year
BOH = total burner operating hours as calculated in section 10.4 of this 
          appendix for gas or oil-fueled furnaces or boilers. Where for 
          gas or oil-fueled furnaces and boilers equipped with single-
          stage controls, BOH = BOHSS; for gas or oil-fueled 
          furnaces and boilers equipped with two-stage controls, BOH = 
          (BOHR + BOHH); and for gas or oil-fueled 
          furnaces and boilers equipped with step-modulating controls, 
          BOH = (BOHR + BOHM). For electric 
          furnaces and boilers, BOH = 100(2080)(0.77)DHR/(Ein 
          3.412(AFUE))
4,600 = as defined in section 11.4.12 of ASHRAE 103-1993 (incorporated 
          by reference, see Sec.  430.3)
PW,OFF = furnace or boiler off mode power, in watts, as 
          measured in section 8.11.2 of this appendix
K = 0.001 kWh/Wh, conversion factor from watt-hours to kilowatt-hours

Where:

100 = to express a percent as a decimal
2,080 = as defined in section 10.4.1 of this appendix
0.77 = as defined in section 10.4.1 of this appendix
DHR = as defined in section 10.4.1 of this appendix
Ein = steady-state electric rated power, in kilowatts, from 
          section 9.3 of ASHRAE 103-1993
3.412 = as defined in section 10.4.3 of this appendix
AFUE = as defined in section 11.1 of ASHRAE 103-1993 in percent

[[Page 644]]

[GRAPHIC] [TIFF OMITTED] TR15JA16.018


[81 FR 2647, Jan. 15, 2016]



   Sec. Appendix O to Subpart B of Part 430--Uniform Test Method for 
    Measuring the Energy Consumption of Vented Home Heating Equipment

    Note: On and after July 6, 2015, any representations made with 
respect to the energy use or efficiency of vented home heating equipment 
must be made in accordance with the results of testing pursuant to this 
appendix. On and after this date, if a manufacturer makes 
representations of standby mode and off mode energy consumption, then 
testing must also include the provisions of this appendix related to 
standby mode and off mode energy consumption. Until July 6, 2015, 
manufacturers must test vented home heating equipment in accordance with 
this appendix or appendix O as it appeared at 10 CFR part 430, subpart B 
revised as of January 1, 2014. Any representations made with respect to 
the energy use or efficiency of such vented home heating equipment must 
be made in accordance with whichever version is selected. DOE notes 
that, because testing under this appendix O is required as of July 6, 
2015, manufacturers may wish to begin using this test procedure 
immediately.

                             1.0 Definitions

    1.1 ``Active mode'' means the condition during the heating season in 
which the vented heater is connected to the power source, and either the 
burner or any electrical auxiliary is activated.
    1.2 ``Air shutter'' means an adjustable device for varying the size 
of the primary air inlet(s) to the combustion chamber power burner.
    1.3 ``Air tube'' means a tube which carries combustion air from the 
burner fan to the burner nozzle for combustion.
    1.4 ``Barometic draft regulator or barometric damper'' means a 
mechanical device designed to maintain a constant draft in a vented 
heater.
    1.5 ``Condensing vented heater'' means a vented heater that, during 
the laboratory tests prescribed in this appendix, condenses part of the 
water vapor in the flue gases.
    1.6 ``Draft hood'' means an external device which performs the same 
function as an integral draft diverter, as defined in section 1.17 of 
this appendix.

[[Page 645]]

    1.7 ``Electro-mechanical stack damper'' means a type of stack damper 
which is operated by electrical and/or mechanical means.
    1.8 ``Excess air'' means air which passes through the combustion 
chamber and the vented heater flues in excess of that which is 
theoretically required for complete combustion.
    1.9 ``Flue'' means a conduit between the flue outlet of a vented 
heater and the integral draft diverter, draft hood, barometric damper or 
vent terminal through which the flue gases pass prior to the point of 
draft relief.
    1.10 ``Flue damper'' means a device installed between the furnace 
and the integral draft diverter, draft hood, barometric draft regulator, 
or vent terminal which is not equipped with a draft control device, 
designed to open the venting system when the appliance is in operation 
and to close the venting system when the appliance is in a standby 
condition.
    1.11 ``Flue gases'' means reaction products resulting from the 
combustion of a fuel with the oxygen of the air, including the inerts 
and any excess air.
    1.12 ``Flue losses'' means the sum of sensible and latent heat 
losses above room temperature of the flue gases leaving a vented heater.
    1.13 ``Flue outlet'' means the opening provided in a vented heater 
for the exhaust of the flue gases from the combustion chamber.
    1.14 ``Heat input'' (Qin) means the rate of energy 
supplied in a fuel to a vented heater operating under steady-state 
conditions, expressed in Btu's per hour. It includes any input energy to 
the pilot light and is obtained by multiplying the measured rate of fuel 
consumption by the measured higher heating value of the fuel.
    1.15 ``Heating capacity'' (Qout) means the rate of useful 
heat output from a vented heater, operating under steady-state 
conditions, expressed in Btu's per hour. For room and wall heaters, it 
is obtained by multiplying the ``heat input'' (Qin) by the 
steady-state efficency ([eta]ss) divided by 100. For floor 
furnaces, it is obtained by multiplying (A) the ``heat input'' 
(Qin) by (B) the steady-state efficiency divided by 100, 
minus the quantity (2.8) (Lj) divided by 100, where 
Lj is the jacket loss as determined in section 3.2 of this 
appendix.
    1.16 ``Higher heating value'' (HHV) means the heat produced per unit 
of fuel when complete combustion takes place at constant pressure and 
the products of combustion are cooled to the initial temperature of the 
fuel and air and when the water vapor formed during combustion is 
condensed. The higher heating value is usually expressed in Btu's per 
pound, Btu's per cubic foot for gaseous fuel, or Btu's per gallon for 
liquid fuel.
    1.17 ``IEC 62301 (Second Edition)'' means the test standard 
published by the International Electrotechnical Commission, titled 
``Household electrical appliances--Measurement of standby power,'' 
Publication 62301 Edition 2.0 2011-01 (incorporated by reference; see 
Sec.  430.3).
    1.18 ``Induced draft'' means a method of drawing air into the 
combustion chamber by mechanical means.
    1.19 ``Infiltration parameter'' means that portion of unconditioned 
outside air drawn into the heated space as a consequence of loss of 
conditioned air through the exhaust system of a vented heater.
    1.20 ``Integral draft diverter'' means a device which is an integral 
part of a vented heater, designed to: (1) Provide for the exhaust of the 
products of combustion in the event of no draft, back draft, or stoppage 
beyond the draft diverter, (2) prevent a back draft from entering the 
vented heater, and (3) neutralize the stack action of the chimney or gas 
vent upon the operation of the vented heater.
    1.21 ``Manually controlled vented heaters'' means either gas or oil 
fueled vented heaters equipped without thermostats.
    1.22 ``Modulating control'' means either a step-modulating or two-
stage control.
    1.23 ``Off mode'' means the condition during the non-heating season 
in which the vented heater is connected to the power source, and neither 
the burner nor any electrical auxiliary is activated.
    1.24 ``Power burner'' means a vented heater burner which supplies 
air for combustion at a pressure exceeding atmospheric pressure, or a 
burner which depends on the draft induced by a fan incorporated in the 
furnace for proper operation.
    1.25 ``Reduced heat input rate'' means the factory adjusted lowest 
reduced heat input rate for vented home heating equipment equipped with 
either two stage thermostats or step-modulating thermostats.
    1.26 ``Seasonal off switch'' means the control device, such as a 
lever or toggle, on the vented heater that affects a difference in off 
mode energy consumption as compared to standby mode consumption.
    1.27 ``Single-stage thermostat'' means a thermostat that cycles a 
burner at the maximum heat input rate and off.
    1.28 ``Stack'' means the portion of the exhaust system downstream of 
the integral draft diverter, draft hood or barometric draft regulator.
    1.29 ``Stack damper'' means a device installed downstream of the 
integral draft diverter, draft hood, or barometric draft regulator, 
designed to open the venting system when the appliance is in operation 
and to close off the venting system when the appliance is in the standby 
condition.
    1.30 ``Stack gases'' means the flue gases combined with dilution air 
that enters at the integral draft diverter, draft hood or barometric 
draft regulator.

[[Page 646]]

    1.31 ``Standby mode'' means the condition during the heating season 
in which the vented heater is connected to the power source, and neither 
the burner nor any electrical auxiliary is activated.
    1.32 ``Steady-state conditions for vented home heating equipment'' 
means equilibrium conditions as indicated by temperature variations of 
not more than 5 [deg]F (2.8C) in the flue gas temperature for units 
equipped with draft hoods, barometric draft regulators or direct vent 
systems, in three successive readings taken 15 minutes apart or not more 
than 3 [deg]F (1.7C) in the stack gas temperature for units equipped 
with integral draft diverters in three successive readings taken 15 
minutes apart.
    1.33 ``Step-modulating control'' means a control that either cycles 
off and on at the low input if the heating load is light, or gradually, 
increases the heat input to meet any higher heating load that cannot be 
met with the low firing rate.
    1.34 ``Thermal stack damper'' means a type of stack damper which is 
dependent for operation exclusively upon the direct conversion of 
thermal energy of the stack gases into movement of the damper plate.
    1.35 ``Two stage control'' means a control that either cycles a 
burner at the reduced heat input rate and off or cycles a burner at the 
maximum heat input rate and off.
    1.36 ``Vaporizing-type oil burner'' means a device with an oil 
vaporizing bowl or other receptacle designed to operate by vaporizing 
liquid fuel oil by the heat of combustion and mixing the vaporized fuel 
with air.
    1.37 ``Vent/air intake terminal'' means a device which is located on 
the outside of a building and is connected to a vented heater by a 
system of conduits. It is composed of an air intake terminal through 
which the air for combustion is taken from the outside atmosphere and a 
vent terminal from which flue gases are discharged.
    1.38 ``Vent limiter'' means a device which limits the flow of air 
from the atmospheric diaphragm chamber of a gas pressure regulator to 
the atmosphere. A vent limiter may be a limiting orifice or other 
limiting device.
    1.39 ``Vent pipe'' means the passages and conduits in a direct vent 
system through which gases pass from the combustion chamber to the 
outdoor air.

                         2.0 Testing conditions.

    2.1 Installation of test unit.
    2.1.1 Vented wall furnaces (including direct vent systems). Install 
non-direct vent gas fueled vented wall furnaces as specified in section 
8.1.3 and figure 7 or figure 10 of ANSI Z21.86 (incorporated by 
reference, see Sec.  430.3). Install direct vent gas fueled vented wall 
furnaces as specified in section 6.1.3 and figure 6 of ANSI Z21.86 
(incorporated by reference, see Sec.  430.3). Install oil fueled vented 
wall furnaces as specified in section 36.1 of UL 730 (incorporated by 
reference, see Sec.  430.3).
    2.1.2 Vented floor furnaces. Install vented floor furnaces for test 
as specified in section 38.1 of UL 729 (incorporated by reference, see 
Sec.  430.3).
    2.1.3 Vented room heaters. Install vented room heaters for test in 
accordance with the manufacturer's installation and operations (I&O) 
manual provided with the unit.
    2.2 Flue and stack requirements.
    2.2.1 Gas fueled vented home heating equipment employing integral 
draft diverters and draft hoods (excluding direct vent systems). Attach 
to, and vertically above the outlet of gas fueled vented home heating 
equipment employing draft diverters or draft hoods with vertically 
discharging outlets, a five (5) foot long test stack having a cross 
sectional area the same size as the draft diverter outlet.
    Attach to the outlet of vented heaters having a horizontally 
discharging draft diverter or draft hood outlet a 90 degree elbow, and a 
five (5) foot long vertical test stack. A horizontal section of pipe may 
be used on the floor furnace between the diverter and the elbow if 
necessary to clear any framing used in the installation. Use the minimum 
length of pipe possible for this section. Use stack, elbow, and 
horizontal section with same cross sectional area as the diverter 
outlet.
    2.2.2 Oil fueled vented home heating equipment (excluding direct 
vent systems). Use flue connections for oil fueled vented floor furnaces 
as specified in section 38.2 of UL 729, sections 36.2 of UL 730 for oil 
fueled vented wall furnaces, and sections 37.1.2 and 37.1.3 of UL 896 
(all incorporated by reference, see Sec.  430.3) for oil fueled vented 
room heaters.
    2.2.3 Direct vent systems. Have the exhaust/air intake system 
supplied by the manufacturer in place during all tests. Test units 
intended for installation with a variety of vent pipe lengths with the 
minimum length recommended by the manufacturer. Do not connect a heater 
employing a direct vent system to a chimney or induced draft source. 
Vent the gas solely on the provision for venting incorporated in the 
heater and the vent/air intake system supplied with it.
    2.2.4 Condensing vented heater, additional flue requirements. The 
flue pipe installation must not allow condensate formed in the flue pipe 
to flow back into the unit. An initial downward slope from the unit's 
exit, an offset with a drip leg, annular collection rings, or drain 
holes must be included in the flue pipe installation without disturbing 
normal flue gas flow. Flue gases should not flow out of the drain with 
the condensate. For condensing vented heaters that do not include means 
for collection of condensate, a means to collect condensate must be 
supplied by the test lab for the purposes of testing.
    2.3 Fuel supply.

[[Page 647]]

    2.3.1 Natural gas. For a gas fueled vented heater, maintain the gas 
supply to the unit under test at a normal inlet test pressure 
immediately ahead of all controls at 7 to 10 inches water column. 
Maintain the regulator outlet pressure at normal test pressure 
approximately at that recommended by the manufacturer. Use natural gas 
having a specific gravity of approximately 0.65 and a higher heating 
value within 5 percent of 1,025 Btu's per standard 
cubic foot. Determine the actual higher heating value in Btu's per 
standard cubic foot for the natural gas to be used in the test with an 
error no greater than one percent.
    2.3.2 Propane gas. For a propane-gas fueled vented heater, maintain 
the gas supply to the unit under test at a normal inlet pressure of 11 
to 13 inches water column and a specific gravity of approximately 1.53. 
Maintain the regulator outlet pressure, on units so equipped, 
approximately at that recommended by the manufacturer. Use propane 
having a specific gravity of approximately 1.53 and a higher heating 
value within 5 percent of 2,500 Btu's per standard 
cubic foot. Determine the actual higher heating value in Btu's per 
standard cubic foot for the propane to be used in the test
    2.3.3 Other test gas. Use other test gases with characteristics as 
described in Table 4 of ANSI Z21.86 (incorporated by reference, see 
Sec.  430.3). Use gases with a measured higher heating value within 
5 percent of the values specified in the Tables 
section of ANSIZ21.86. Determine the actual higher heating value of the 
gas used in the test with an error no greater than one percent.
    2.3.4 Oil supply. For an oil fueled vented heater, use No. 1 fuel 
oil (kerosene) for vaporizing-type burners and either No. 1 or No. 2 
fuel oil, as specified by the manufacturer in the I&O manual provided 
with the unit, for mechanical atomizing type burners. Use test fuel 
conforming to the specifications given in Tables 2 and 3 of ASHRAE 103-
2007 (incorporated by reference, see Sec.  430.3). Measure the higher 
heating value of the test fuel within 1 percent.
    2.3.5 Electrical supply. For auxiliary electric components of a 
vented heater, maintain the electrical supply to the test unit within 
one percent of the nameplate voltage for the entire test cycle. If a 
voltage range is used for nameplate voltage, maintain the electrical 
supply within one percent of the mid-point of the nameplate voltage 
range.
    2.4 Burner adjustments.
    2.4.1 Gas burner adjustments. Adjust the burners of gas fueled 
vented heaters to their maximum Btu ratings at the test pressure 
specified in section 2.3 of this appendix. Correct the burner volumetric 
flow rate to 60 [deg]F (15.6C) and 30 inches of mercury barometric 
pressure, set the fuel flow rate to obtain a heat rate of within 2 percent of the hourly Btu rating specified by the 
manufacturer as measured after 15 minutes of operation starting with all 
parts of the vented heater at room temperature. Set the primary air 
shutters in accordance with the manufacturer's recommendations to give a 
good flame at this adjustment. Do not allow the deposit of carbon during 
any test specified herein.
    If a vent limiting means is provided on a gas pressure regulator, 
have it in place during all tests.
    For gas fueled heaters with modulating controls adjust the controls 
to operate the heater at the maximum fuel input rate. Set the thermostat 
control to the maximum setting. Start the heater by turning the safety 
control valve to the ``on'' position. In order to prevent modulation of 
the burner at maximum input, place the thermostat sensing element in a 
temperature control bath which is held at a temperature below the 
maximum set point temperature of the control.
    For gas fueled heaters with modulating controls adjust the controls 
to operate the heater at the reduced fuel input rate. Set the thermostat 
control to the minimum setting. Start the heater by turning the safety 
control valve to the ``on'' position. If ambient test room temperature 
is above the lowest control set point temperature, initiate burner 
operation by placing the thermostat sensing element in a temperature 
control bath that is held at a temperature below the minimum set point 
temperature of the control.
    2.4.2 Oil burner adjustments. Adjust the burners of oil fueled 
vented heaters to give the CO2 reading recommended by the 
manufacturer and an hourly Btu input, during the steady-state 
performance test described below, which is within 2 percent of the heater manufacturer's specified normal 
hourly Btu input rating. On units employing a power burner, do not allow 
smoke in the flue to exceed a No. 1 smoke during the steady-state 
performance test as measured by the procedure in ASTM D2156 
(incorporated by reference, see Sec.  430.3). If, on units employing a 
power burner, the smoke in the flue exceeds a No. 1 smoke during the 
steady-state test, readjust the burner to give a lower smoke reading, 
and, if necessary a lower CO2 reading, and start all tests 
over. Maintain the average draft over the fire and in the flue during 
the steady-state performance test at that recommended by the 
manufacturer within 0.005 inches of water gauge. 
Do not make additional adjustments to the burner during the required 
series of performance tests. The instruments and measuring apparatus for 
this test are described in section 6 and shown in Figure 8 of ASHRAE 
103-2007 (incorporated by reference, see Sec.  430.3).
    2.5 Circulating air adjustments.
    2.5.1 Forced air vented wall furnaces (including direct vent 
systems). During testing, maintain the air flow through the heater as 
specified by the manufacturer in the I&O manual provided with the unit 
and operate

[[Page 648]]

the vented heater with the outlet air temperature between 80 [deg]F and 
130 [deg]F above room temperature. If adjustable air discharge registers 
are provided, adjust them so as to provide the maximum possible air 
restriction. Measure air discharge temperature as specified in section 
8.7 of ANSI Z21.86 (incorporated by reference, see Sec.  430.3).
    2.5.2 Fan type vented room heaters and floor furnaces. During tests 
on fan type furnaces and heaters, adjust the air flow through the heater 
as specified by the manufacturer. If adjustable air discharge registers 
are provided, adjust them to provide the maximum possible air 
restriction.
    2.6 Location of temperature measuring instrumentation.
    2.6.1 Gas fueled vented home heating equipment (including direct 
vent systems). For units employing an integral draft diverter, install 
nine thermocouples, wired in parallel, in a horizontal plane in the five 
foot test stack located one foot from the test stack inlet. Equalize the 
length of all thermocouple leads before paralleling. Locate one 
thermocouple in the center of the stack. Locate eight thermocouples 
along imaginary lines intersecting at right angles in this horizontal 
plane at points one third and two thirds of the distance between the 
center of the stack and the stack wall.
    For units which employ a direct vent system, locate at least one 
thermocouple at the center of each flue way exiting the heat exchanger. 
Provide radiation shields if the thermocouples are exposed to burner 
radiation.
    For units which employ a draft hood or units which employ a direct 
vent system which does not significantly preheat the incoming combustion 
air, install nine thermocouples, wired in parallel, in a horizontal 
plane located within 12 inches (304.8 mm) of the heater outlet and 
upstream of the draft hood on units so equipped. Locate one thermocouple 
in the center of the pipe and eight thermocouples along imaginary lines 
intersecting at right angles in this horizontal plane at points one 
third and two thirds of the distance between the center of the pipe and 
the pipe wall.
    For units which employ direct vent systems that significantly 
preheat the incoming combustion air, install nine thermocouples, wired 
in parallel, in a plane parallel to and located within 6 inches (152.4 
mm) of the vent/air intake terminal. Equalize the length of all 
thermocouple leads before paralleling. Locate one thermocouple in the 
center of the vent pipe and eight thermocouples along imaginary lines 
intersecting at right angles in this plane at points one third and two 
thirds of the distance between the center of the flue pipe and the pipe 
wall.
    Use bead-type thermocouples having wire size not greater than No. 24 
American Wire Gauge (AWG). If there is a possibility that the 
thermocouples could receive direct radiation from the fire, install 
radiation shields on the fire side of the thermocouples only and 
position the shields so that they do not touch the thermocouple 
junctions.
    Install thermocouples for measuring conditioned warm air temperature 
as described in Part VIII section 8.7 of ANSI Z21.86 (incorporated by 
reference, see Sec.  430.3). Establish the temperature of the inlet air 
by means of single No. 24 AWG bead-type thermocouple, suitably shielded 
from direct radiation and located in the center of the plane of each 
inlet air opening.
    2.6.2 Oil fueled vented home heating equipment (including direct 
vent systems). Install nine thermocouples, wired in parallel and having 
equal length leads, in a plane perpendicular to the axis of the flue 
pipe. Locate this plane at the position shown in Figure 36.4 of UL 730, 
or Figure 38.1 and 38.2 of UL 729 (incorporated by reference, see Sec.  
430.3) for a single thermocouple, except that on direct vent systems 
which significantly preheat the incoming combustion air, it shall be 
located within 6 inches (152.5 mm) of the outlet of the vent/air intake 
terminal. Locate one thermocouple in the center of the flue pipe and 
eight thermocouples along imaginary lines intersecting at right angles 
in this plane at points one third and two thirds of the distance between 
the center of the pipe and pipe wall.
    Use bead-type thermocouples having a wire size not greater than No. 
24 AWG. If there is a possibility that the thermocouples could receive 
direct radiation from the fire, install radiation shields on the fire 
side of the thermocouples only and position the shields so that they do 
not touch the thermocouple junctions.
    Install thermocouples for measuring the conditioned warm air 
temperature as described in sections 37.5.8 through 37.5.18 of UL 730 
(incorporated by reference, see Sec.  430.3). Establish the temperature 
of the inlet air by means of a single No. 24 AWG bead-type thermocouple, 
suitably shielded from direct radiation and located in the center of the 
plane of each inlet air opening.
    2.7 Combustion measurement instrumentation. Analyze the samples of 
stack and flue gases for vented heaters to determine the concentration 
by volume of carbon dioxide present in the dry gas with instrumentation 
which will result in a reading having an accuracy of 0.1 percentage points.
    2.8 Energy flow instrumentation. Install one or more instruments, 
which measure the rate of gas flow or fuel oil supplied to the vented 
heater, and if appropriate, the electrical energy with an error no 
greater than one percent.
    2.9 Room ambient temperature. The room ambient temperature shall be 
the arithmetic average temperature of the test area, determined by 
measurement with four No. 24

[[Page 649]]

AWG bead-type thermocouples with junctions shielded against radiation, 
located approximately at 90-degree positions on a circle circumscribing 
the heater or heater enclosure under test, in a horizontal plane 
approximately at the vertical midpoint of the appliance or test 
enclosure, and with the junctions approximately 24 inches from sides of 
the heater or test enclosure and located so as not to be affected by 
other than room air.
    The value TRA is the room ambient temperature measured at 
the last of the three successive readings taken 15 minutes apart 
described in section 3.1.1 or 3.1.2 as applicable. During the time 
period required to perform all the testing and measurement procedures 
specified in section 3.0 of this appendix, maintain the room ambient 
temperature within 5 [deg]F (2.8 C) of the value TRA. At no time during 
these tests shall the room ambient temperature exceed 100 [deg]F (37.8 
C) or fall below 65 [deg]F (18.3 C).
    Locate a thermocouple at each elevation of draft relief inlet 
opening and combustion air inlet opening at a distance of approximately 
24 inches from the inlet openings. The temperature of the air for 
combustion and the air for draft relief shall not differ more than 
5 [deg]F from the room ambient temperature as 
measured above at any point in time. This requirement for combustion air 
inlet temperature does not need to be met once the burner is shut off 
during the testing described in sections 3.3 and 3.6 of this appendix.
    2.10 Equipment used to measure mass flow rate in flue and stack. The 
tracer gas chosen for this task should have a density which is less than 
or approximately equal to the density of air. Use a gas unreactive with 
the environment to be encountered. Using instrumentation of either the 
batch or continuous type, measure the concentration of tracer gas with 
an error no greater than 2 percent of the value of the concentration 
measured.
    2.11 Equipment with multiple control modes. For equipment that has 
both manual and automatic thermostat control modes, test the unit 
according to the procedure for its automatic control mode, i.e. single-
stage, two stage, or step-modulating.

                      3.0 Testing and measurements.

    3.1 Steady-state testing.
    3.1.1 Gas fueled vented home heating equipment (including direct 
vent systems). Set up the vented heater as specified in sections 2.1, 
2.2, and 2.3 of this appendix. The draft diverter shall be in the normal 
open condition and the stack shall not be insulated. (Insulation of the 
stack is no longer required for the vented heater test.) Begin the 
steady-state performance test by operating the burner and the 
circulating air blower, on units so equipped, with the adjustments 
specified by sections 2.4.1 and 2.5 of this appendix, until steady-state 
conditions are attained as indicated by three successive readings taken 
15 minutes apart with a temperature variation of not more than 3 [deg]F (1.7 C) in the stack gas temperature for vented 
heaters equipped with draft diverters or 5 [deg]F 
(2.8 C) in the flue gas temperature for vented heaters equipped with 
either draft hoods or direct vent systems. The measurements described in 
this section are to coincide with the last of these 15 minute readings.
    On units employing draft diverters, measure the room temperature 
(TRA) as described in section 2.9 of this appendix and 
measure the steady-state stack gas temperature (TS,SS) using 
the nine thermocouples located in the 5 foot test stack as specified in 
section 2.6.1 of this appendix. Secure a sample of the stack gases in 
the plane where TS,SS is measured or within 3.5 feet 
downstream of this plane. Determine the concentration by volume of 
carbon dioxide (XCO2S) present in the dry stack gas. If the 
location of the gas sampling differs from the temperature measurement 
plane, there shall be no air leaks through the stack between these two 
locations.
    On units employing draft hoods or direct vent systems, measure the 
room temperature (TRA) as described in section 2.9 of this 
appendix and measure the steady-state flue gas temperature 
(TF,SS), using the nine thermocouples located in the flue 
pipe as described in section 2.6.1 of this appendix. Secure a sample of 
the flue gas in the plane of temperature measurement and determine the 
concentration by volume of CO2 (XCO2F) present in 
dry flue gas. In addition, for units employing draft hoods, secure a 
sample of the stack gas in a horizontal plane in the five foot test 
stack located one foot from the test stack inlet; and determine the 
concentration by volume of CO2 (XCO2S) present in 
dry stack gas.
    Determine the steady-state heat input rate (Qin) including pilot gas 
by multiplying the measured higher heating value of the test gas by the 
steady-state gas input rate corrected to standard conditions of 60 
[deg]F and 30 inches of mercury. Use measured values of gas temperature 
and pressure at the meter and the barometric pressure to correct the 
metered gas flow rate to standard conditions.
    After the above test measurements have been completed on units 
employing draft diverters, secure a sample of the flue gases at the exit 
of the heat exchanger(s) and determine the concentration of 
CO2 (XCO2F) present. In obtaining this sample of 
flue gas, move the sampling probe around or use a sample probe with 
multiple sampling ports in order to assure that an average value is 
obtained for the CO2 concentration. For units with multiple 
heat exchanger outlets, measure the CO2 concentration in a 
sample from each outlet to obtain the average CO2

[[Page 650]]

concentration for the unit. A manifold (parallel connected sampling 
tubes) may be used to obtain this sample.
    For heaters with single-stage thermostat control (wall mounted 
electric thermostats), determine the steady-state efficiency at the 
maximum fuel input rate as specified in section 2.4 of this appendix.
    For gas fueled vented heaters equipped with either two stage control 
or step-modulating control, determine the steady-state efficiency at the 
maximum fuel input rate and at the reduced fuel input rate, as specified 
in section 2.4.1 of this appendix.
    For manually controlled gas fueled vented heaters with various input 
rates, determine the steady-state efficiency at a fuel input rate that 
is within 5 percent of 50 percent of the maximum 
rated fuel input rate as indicated on the nameplate of the unit or in 
the manufacturer's installation and operation manual shipped with the 
unit. If the heater is designed to use a control that precludes 
operation at other than maximum rated fuel input rate (single firing 
rate) determine the steady state efficiency at the maximum rated fuel 
input rate only.
    3.1.2 Oil fueled vented home heating equipment (including direct 
vent systems). Set up and adjust the vented heater as specified in 
sections 2.1, 2.2, and 2.3.4 of this appendix. Begin the steady-state 
performance test by operating the burner and the circulating air blower, 
on units so equipped, with the adjustments specified by sections 2.4.2 
and 2.5 of this appendix, until steady-state conditions are attained as 
indicated by a temperature variation of not more than 5 [deg]F (2.8 C) in the flue gas temperature in three 
successive readings taken 15 minutes apart. The measurements described 
in this section are to coincide with the last of these 15 minutes 
readings.
    For units equipped with power burners, do not allow smoke in the 
flue to exceed a No. 1 smoke during the steady-state performance test as 
measured by the procedure described in ASTM D2156 (incorporated by 
reference, see Sec.  430.3). Maintain the average draft over the fire 
and in the breeching during the steady-state performance test at that 
recommended by the manufacturer 0.005 inches of 
water gauge.
    Measure the room temperature (TRA) as described in 
section 2.9 of this appendix. Measure the steady-state flue gas 
temperature (TF,SS) using nine thermocouples located in the 
flue pipe as described in section 2.6.2 of this appendix. From the plane 
where TF,SS was measured, collect a sample of the flue gas 
and determine the concentration by volume of CO2 
(XCO2F) present in dry flue gas. Measure and record the 
steady-state heat input rate (Qin).
    For manually controlled oil fueled vented heaters, determine the 
steady-state efficiency at a fuel input rate that is within 5 percent of 50 percent of the maximum fuel input rate; 
or, if the design of the heater is such that the fuel input rate cannot 
be set to 5 percent of 50 percent of the maximum 
rated fuel input rate, determine the steady-state efficiency at the 
minimum rated fuel input rate as measured in section 3.1.2 of this 
appendix for manually controlled oil fueled vented heaters.
    3.1.3 Auxiliary Electric Power Measurement. Allow the auxiliary 
electrical system of a gas or oil vented heater to operate for at least 
five minutes before recording the maximum auxiliary electric power 
measurement from the wattmeter. Record the maximum electric power 
(PE) expressed in kilowatts. For vented heaters with 
modulating controls, the recorded (PE) shall be maximum 
measured electric power multiplied by the following factor (R). For two 
stage controls, R = 1.3. For step modulating controls, R = 1.4 when the 
ratio of minimum-to-maximum fuel input is greater than or equal to 0.7, 
R = 1.7 when the ratio of minimum-to-maximum fuel input is less than 0.7 
and greater than or equal to 0.5, and R = 2.2 when the ratio of minimum-
to-maximum fuel input is less than 0.5.
    3.2 Jacket loss measurement. Conduct a jacket loss test for vented 
floor furnaces. Measure the jacket loss (Lj) in accordance 
with ASHRAE 103-2007 section 8.6 (incorporated by reference, see Sec.  
430.3), applying the provisions for furnaces and not the provisions for 
boilers.
    3.3 Measurement of the off-cycle losses for vented heaters equipped 
with thermal stack dampers. Unless specified otherwise, the thermal 
stack damper should be at the draft diverter exit collar. Attach a five 
foot length of bare stack to the outlet of the damper. Install 
thermocouples as specified in section 2.6.1 of this appendix.
    For vented heaters equipped with single-stage thermostats, measure 
the off-cycle losses at the maximum fuel input rate. For vented heaters 
equipped with two stage thermostats, measure the off-cycle losses at the 
maximum fuel input rate and at the reduced fuel input rate. For vented 
heaters equipped with step-modulating thermostats, measure the off-cycle 
losses at the reduced fuel input rate.
    Allow the vented heater to heat up to a steady-state condition. Feed 
a tracer gas at a constant metered rate into the stack directly above 
and within one foot above the stack damper. Record tracer gas flow rate 
and temperature. Measure the tracer gas concentration in the stack at 
several locations in a horizontal plane through a cross-section of the 
stack at a point sufficiently above the stack damper to ensure that the 
tracer gas is well mixed in the stack.
    Continuously measure the tracer gas concentration and temperature 
during a 10-minute cool-down period. Shut the burner off

[[Page 651]]

and immediately begin measuring tracer gas concentration in the stack, 
stack temperature, room temperature, and barometric pressure. Record 
these values as the midpoint of each one-minute interval between burner 
shut-down and ten minutes after burner shut-down. Meter response time 
and sampling delay time shall be considered in timing these 
measurements.
    3.4 Measurement of the effectiveness of electro-mechanical stack 
dampers. For vented heaters equipped with electro-mechanical stack 
dampers, measure the cross sectional area of the stack (As), 
the net area of the damper plate (Ao), and the angle that the 
damper plate makes when closed with a plane perpendicular to the axis of 
the stack ([Omega]). The net area of the damper plate means the area of 
the damper plate minus the area of any holes through the damper plate.
    3.5 Pilot light measurement.
    3.5.1 Measure the energy input rate to the pilot light 
(QP) with an error no greater than 3 percent for vented 
heaters so equipped.
    3.5.2 For manually controlled heaters where the pilot light is 
designed to be turned off by the user when the heater is not in use, 
that is, turning the control to the OFF position will shut off the gas 
supply to the burner(s) and to the pilot light, the measurement of 
QP is not needed. This provision applies only if an 
instruction to turn off the unit is provided on the heater near the gas 
control valve (e.g. by label) by the manufacturer.

    3.6 Optional procedure for determining Dp' DF' 
and Ds for systems for all types of vented heaters. For all 
types of vented heaters, Dp' DF' and DS 
can be measured by the following optional cool down test.
    Conduct a cool down test by letting the unit heat up until steady-
state conditions are reached, as indicated by temperature variation of 
not more than 5 [deg]F (2.8 [deg]C) in the flue gas temperature in three 
successive readings taken 15 minutes apart, and then shutting the unit 
off with the stack or flue damper controls by-passed or adjusted so that 
the stack or flue damper remains open during the resulting cool down 
period. If a draft was maintained on oil fueled units in the flue pipe 
during the steady-state performance test described in section 3.1 of 
this appendix, maintain the same draft (within a range of -.001 to + 
.005 inches of water gauge of the average steady-state draft) during 
this cool down period.
    Measure the flue gas mass flow rate (mF,OFF) during the 
cool down test described above at a specific off-period flue gas 
temperature and corrected to obtain its value at the steady-state flue 
gas temperature (TF,SS), using the procedure described below.
    Within one minute after the unit is shut off to start the cool down 
test for determining DF, begin feeding a tracer gas into the 
combustion chamber at a constant flow rate of VT, and at a 
point which will allow for the best possible mixing with the air flowing 
through the chamber. (On units equipped with an oil fired power burner, 
the best location for injecting this tracer gas appears to be through a 
hole drilled in the air tube.) Periodically measure the value of 
VT with an instantaneously reading flow meter having an 
accuracy of 3 percent of the quantity measured. 
Maintain VT at less than 1 percent of the air flow rate 
through the furnace. If a combustible tracer gas is used, there should 
be a delay period between the time the burner gas is shut off and the 
time the tracer gas is first injected to prevent ignition of the tracer 
gas.
    Between 5 and 6 minutes after the unit is shut off to start the cool 
down test, measure at the exit of the heat exchanger the average flue 
gas temperature, T*F,Off. At the same instant the flue gas 
temperature is measured, also measure the percent volumetric 
concentration of tracer gas CT in the flue gas in the same 
plane where T*F,Off is determined. Obtain the concentration 
of tracer gas using an instrument which will result in an accuracy of 
2 percent in the value of CT measured. 
If use of a continuous reading type instrument results in a delay time 
between drawing of a sample and its analysis, this delay should be taken 
into account so that the temperature measurement and the measurement of 
tracer gas concentration coincide. In addition, determine the 
temperature of the tracer gas entering the flow meter (TT) 
and the barometric pressure (PB).
    The rate of the flue gas mass flow through the vented heater and the 
factors DP, DF, and DS are calculated 
by the equations in sections 4.5.1 through 4.5.3 of this appendix.
    3.6.1 Procedure for determining (DF and DP) of 
vented home heating equipment with no measurable airflow. On units whose 
design is such that there is no measurable airflow through the 
combustion chamber and heat exchanger when the burner(s) is off (as 
determined by the test procedure in section 3.6.2 of this appendix), 
DF and DP may be set equal to 0.05.
    3.6.2 Test Method to Determine Whether the Use of the Default Draft 
Factors (DF and DP) of 0.05 is Allowed. 
Manufacturers may use the following test protocol to determine whether 
air flows through the combustion chamber and heat exchanger when the 
burner(s) is off using a smoke stick device. The default draft factor of 
0.05 (as allowed per section 3.6.1 of this appendix) may be used only 
for units determined pursuant to this protocol to have no air flow 
through the combustion chamber and heat exchanger.
    3.6.2.1 Test Conditions. Wait for two minutes following the 
termination of the vented heater's on-cycle.
    3.6.2.2 Location of Test Apparatus
    3.6.2.2.1 After all air currents and drafts in the test chamber have 
been minimized, position the operable smoke stick/pencil as

[[Page 652]]

specified, based on the following equipment configuration: for 
horizontal combustion air intakes, approximately 4 inches from the 
vertical plane at the termination of the intake vent and 4 inches below 
the bottom edge of the combustion air intake, or for vertical combustion 
air intakes, approximately 4 inches horizontal from vent perimeter at 
the termination of the intake vent and 4 inches down (parallel to the 
vertical axis of the vent). In the instance where the boiler combustion 
air intake is closer than 4 inches to the floor, place the smoke device 
directly on the floor without impeding the flow of smoke.
    3.6.2.2.2 Monitor the presence and the direction of the smoke flow.
    3.6.2.3 Duration of Test. Continue monitoring the release of smoke 
for no less than 30 seconds.
    3.6.2.4 Test Results
    3.6.2.4.1 During visual assessment, determine whether there is any 
draw of smoke into the combustion air intake.
    3.6.2.4.2 If absolutely no smoke is drawn into the combustion air 
intake, the vented heater meets the requirements to allow use of the 
default draft factor of 0.05 pursuant to Section 8.8.3 and/or 9.10 of 
ASHRAE 103-2007 (incorporated by reference, see Sec.  430.3).
    3.6.2.4.3 If there is any smoke drawn into the intake, use of 
default draft factor of 0.05 is prohibited. Proceed with the methods of 
testing as prescribed in section 3.6 of this appendix, or select the 
appropriate default draft factor from Table 1.
    3.7 Measurement of electrical standby mode and off mode power.
    3.7.1 Standby power measurements. With all electrical auxiliaries of 
the vented heater not activated, measure the standby power 
(PW,SB) in accordance with the procedures in IEC 62301 
(Second Edition) (incorporated by reference, see Sec.  430.3), except 
that section 2.9, Room ambient temperature, and the voltage provision of 
section 2.3.5, Electrical supply, of this appendix shall apply in lieu 
of the IEC 62301 (Second Edition) corresponding sections 4.2, Test room, 
and 4.3, Power supply. Clarifying further, the IEC 62301 (Second 
Edition) sections 4.4, Power measuring instruments, and section 5, 
Measurements, shall apply in lieu of section 2.8, Energy flow 
instrumentation, of this appendix. Measure the wattage so that all 
possible standby mode wattage for the entire appliance is recorded, not 
just the standby mode wattage of a single auxiliary. The recorded 
standby power (PW,SB) shall be rounded to the second decimal 
place, and for loads greater than or equal to 10W, at least three 
significant figures shall be reported.
    3.7.2 Off mode power measurement. If the unit is equipped with a 
seasonal off switch or there is an expected difference between off mode 
power and standby mode power, measure off mode power (PW,OFF) 
in accordance with the standby power procedures in IEC 62301 (Second 
Edition) (incorporated by reference, see Sec.  430.3), except that 
section 2.9, Room ambient temperature, and the voltage provision of 
section 2.3.5, Electrical supply, of this appendix shall apply in lieu 
of the IEC 62301 (Second Edition) corresponding sections 4.2, Test room, 
and 4.3, Power supply. Clarifying further, the IEC 62301 (Second 
Edition) sections 4.4, Power measuring instruments, and section 5, 
Measurements, shall apply in lieu of section 2.8, Energy flow 
instrumentation, of this appendix. Measure the wattage so that all 
possible off mode wattage for the entire appliance is recorded, not just 
the off mode wattage of a single auxiliary. If there is no expected 
difference in off mode power and standby mode power, let 
PW,OFF = PW,SB, in which case no separate 
measurement of off mode power is necessary. The recorded off mode power 
(PW,OFF) shall be rounded to the second decimal place, and 
for loads greater than or equal to 10W, at least three significant 
figures shall be reported.
    3.8 Condensing vented heaters--measurement of condensate under 
steady-state and cyclic conditions. Attach condensate drain lines to the 
vented heater as specified in the manufacturer's I&O manual provided 
with the unit. The test unit shall be level prior to all testing. A 
continuous downward slope of drain lines from the unit shall be 
maintained. The drain lines must facilitate uninterrupted flow of 
condensate during the test. The condensate collection container must be 
glass or polished stainless steel to facilitate removal of interior 
deposits. The collection container shall have a vent opening to the 
atmosphere, be dried prior to each use, and be at room ambient 
temperature. The humidity of the room air shall at no time exceed 80 
percent relative humidity. For condensing units not designed for 
collecting and draining condensate, drain lines must be provided during 
testing that meet the criteria set forth in this section 3.8. Units 
employing manual controls and units not tested under the optional tracer 
gas procedures of sections 3.3 and 3.6 of this appendix shall only 
conduct the steady-state condensate collection test.
    3.8.1 Steady-state condensate collection test. Begin steady-state 
condensate collection concurrently with or immediately after completion 
of the steady-state testing of section 3.1 of this appendix. The steady-
state condensate collection period shall be 30 minutes. Condensate mass 
shall be measured immediately at the end of the collection period to 
minimize evaporation loss from the sample. Record fuel input during the 
30-minute condensate collection steady-state test period. Measure and 
record fuel higher heating value (HHV), temperature, and pressures 
necessary for determining fuel energy input (Qc,ss). The fuel 
quantity and HHV shall be measured

[[Page 653]]

with errors no greater than 1 percent. Determine 
the mass of condensate for the steady-state test (Mc,ss) in 
pounds by subtracting the tare container weight from the total container 
and condensate weight measured at the end of the 30-minute condensate 
collection test period. The error associated with the mass measurement 
instruments shall not exceed 0.5 percent of the 
quantity measured.
    For units with step-modulating or two stage controls, the steady-
state condensate collection test shall be conducted at both the maximum 
and reduced input rates.
    3.8.2 Cyclic condensate collection tests. If existing controls do 
not allow for cyclical operation of the tested unit, control devices 
shall be installed to allow cyclical operation of the vented heater. Run 
three consecutive test cycles. For each cycle, operate the unit until 
flue gas temperatures at the end of each on-cycle, rounded to the 
nearest whole number, are within 5 [deg]F of each other for two 
consecutive cycles. On-cycle and off-cycle times are 4 minutes and 13 
minutes respectively. Control of ON and OFF operation actions shall be 
within 6 seconds of the scheduled time. For fan-
type vented heaters, maintain circulating air adjustments as specified 
in section 2.5 of this appendix. Begin condensate collection at one 
minute before the on-cycle period of the first test cycle. Remove the 
container one minute before the end of each off-cycle period. Measure 
condensate mass for each test-cycle. The error associated with the mass 
measurement instruments shall not exceed 0.5 
percent of the quantity measured.
    Fuel input shall be recorded during the entire test period starting 
at the beginning of the on-time period of the first cycle to the 
beginning of the on-time period of the second cycle, from the beginning 
of the on-time period of the second cycle to the beginning of the on-
time period of the third cycle, etc., for each of the test cycles. Fuel 
HHV, temperature, and pressure necessary for determining fuel energy 
input, Qc, shall be recorded. Determine the mass of 
condensate for each cycle, Mc, in pounds. If at the end of 
three cycles, the sample standard deviation is within 20 percent of the 
mean value for three cycles, use total condensate collected in the three 
cycles as Mc; if not, continue collection for an additional 
three cycles and use the total condensate collected for the six cycles 
as Mc. Determine the fuel energy input, Qc, during 
the three or six test cycles, expressed in Btu.

                            4.0 Calculations.

    4.1 Annual fuel utilization efficiency for gas fueled or oil fueled 
vented home heating equipment equipped without manual controls or with 
multiple control modes as per 2.11 and without thermal stack dampers. 
The following procedure determines the annual fuel utilization 
efficiency for gas fueled or oil fueled vented home heating equipment 
equipped without manual controls and without thermal stack dampers.
    4.1.1 System number. Obtain the system number from Table 1 of this 
appendix.
    4.1.2 Off-cycle flue gas draft factor. Based on the system number, 
determine the off-cycle flue gas draft factor (DF) from Table 
1 of this appendix or the test method and calculations of sections 3.6 
and 4.5 of this appendix.
    4.1.3 Off-cycle stack gas draft factor. Based on the system number, 
determine the off-cycle stack gas draft factor (Ds) from 
Table 1 of this appendix or from the test method and calculations of 
sections 3.6 and 4.5 of this appendix,.
    4.1.4 Pilot fraction. Calculate the pilot fraction (PF) 
expressed as a decimal and defined as:

PF = QP/Qin

where:

QP = as defined in 3.5 of this appendix
Qin = as defined in 3.1 of this appendix at the maximum fuel 
          input rate

    4.1.5 Jacket loss for floor furnaces. Determine the jacket loss 
(Lj) expressed as a percent and measured in accordance with 
section 3.2 of this appendix. For other vented heaters Lj = 
0.0.
    4.1.6 Latent heat loss. For non-condensing vented heaters, obtain 
the latent heat loss (LL,A) from Table 2 of this appendix. 
For condensing vented heaters, calculate a modified latent heat loss 
(LL,A*) as follows:
    For steady-state conditions:

LL,A*= LL,A-LG,SS + LC,SS

where:

LL,A = Latent heat loss, based on fuel type, from Table 2 of 
          this appendix,
LG,SS = Steady-state latent heat gain due to condensation as 
          determined in section 4.1.6.1 of this appendix, and
LC,SS = Steady-state heat loss due to hot condensate going 
          down the drain as determined in 4.1.6.2 of this appendix.
For cyclic conditions: (only for vented heaters tested under the 
          optional tracer gas procedures of section 3.3 or 3.6)

LL,A*= LL,A-LG + LC

where:

LL,A = Latent heat loss, based on fuel type, from Table 2 of 
          this appendix,
LG = Latent heat gain due to condensation under cyclic 
          conditions as determined in section 4.1.6.3 of this appendix, 
          and
LC = Heat loss due to hot condensate going down the drain 
          under cyclic conditions as determined in section 4.1.6.4 of 
          this appendix.

    4.1.6.1 Latent heat gain due to condensation under steady-state 
conditions. Calculate the

[[Page 654]]

latent heat gain (LG,SS) expressed as a percent and defined 
as:
[GRAPHIC] [TIFF OMITTED] TR06JA15.017

where:

100 = conversion factor to express a decimal as a percent,
1053.3 = latent heat of vaporization of water, Btu per pound,
Mc,ss = mass of condensate for the steady-state test as 
          determined in section 3.8.1 of this appendix, pounds, and
Qc,ss = fuel energy input for steady-state test as determined 
          in section 3.8.1 of this appendix, Btu.

    4.1.6.2 Heat loss due to hot condensate going down the drain under 
steady-state conditions. Calculate the steady-state heat loss due to hot 
condensate going down the drain (LC,SS) expressed as a 
percent and defined as:
[GRAPHIC] [TIFF OMITTED] TR06JA15.018

where:

LG,SS = Latent heat gain due to condensation under steady-
          state conditions as defined in section 4.1.6.1 of this 
          appendix,
1.0 = specific heat of water, Btu/lb- [deg]F,
TF,SS = Flue (or stack) gas temperature as defined in section 
          3.1 of this appendix, [deg]F,
70 = assumed indoor temperature, [deg]F,
0.45 = specific heat of water vapor, Btu/lb- [deg]F, and
45 = average outdoor temperature for vented heaters, [deg]F.
    4.1.6.3 Latent heat gain due to condensation under cyclic 
conditions. (only for vented heaters tested under the optional tracer 
gas procedures of section 3.3 or 3.6 of this appendix) Calculate the 
latent heat gain (LG) expressed as a percent and defined as:
[GRAPHIC] [TIFF OMITTED] TR06JA15.019

where:

100 = conversion factor to express a decimal as a percent,
1053.3 = latent heat of vaporization of water, Btu per pound,
Mc = mass of condensate for the cyclic test as determined in 
          3.8.2 of this appendix, pounds, and
Qc = fuel energy input for cyclic test as determined in 3.8.2 
          of this appendix, Btu.

    4.1.6.4 Heat loss due to hot condensate going down the drain under 
cyclic conditions. (only for vented heaters tested under the optional 
tracer gas procedures of section 3.3 or 3.6 of this appendix) Calculate 
the cyclic heat loss due to hot condensate going down the drain 
(LC) expressed as a percent and defined as:
[GRAPHIC] [TIFF OMITTED] TR06JA15.020


[[Page 655]]


where:

LG = Latent heat gain due to condensation under cyclic 
          conditions as defined in section 4.1.6.3 of this appendix,
1.0 = specific heat of water, Btu/lb- [deg]F,
TF,SS = Flue (or stack) gas temperature as defined in section 
          3.1 of this appendix,
70 = assumed indoor temperature, [deg]F,
0.45 = specific heat of water vapor, Btu/lb- [deg]F, and
45 = average outdoor temperature for vented heaters, [deg]F.
    4.1.7 Ratio of combustion air mass flow rate to stoichiometric air 
mass flow rate. Determine the ratio of combustion air mass flow rate to 
stoichiometric air mass flow rate (RT,F), and defined as:

RT,F = A + B/XCO2F

where:

A = as determined from Table 2 of this appendix
B = as determined from Table 2 of this appendix
XCO2F = as defined in 3.1 of this appendix

    4.1.8 Ratio of combustion and relief air mass flow rate to 
stoichiometric air mass flow rate. For vented heaters equipped with 
either an integral draft diverter or a draft hood, determine the ratio 
of combustion and relief air mass flow rate to stoichiometric air mass 
flow rate (RT,S), and defined as:

RT,S = A + [B/XCO2S]

where:

A = as determined from Table 2 of this appendix,
B = as determined from Table 2 of this appendix, and
XCO2S = as defined in section 3.1 of this appendix.

    4.1.9 Sensible heat loss at steady-state operation. For vented 
heaters equipped with either an integral draft diverter or a draft hood, 
determine the sensible heat loss at steady-state operation 
(LS,SS,A) expressed as a percent and defined as:

where:

LS,SS,A = C(RT,S + D)(TS,SS-
TRA)
C = as determined from Table 2 of this appendix
RT,S = as defined in 4.1.8 of this appendix
D = as determined from Table 2 of this appendix
TS,SS = as defined in 3.1 of this appendix
TRA = as defined in 2.9 of this appendix

    For vented heaters equipped without an integral draft diverter, 
determine (LS,SS,A) expressed as a percent and defined as:

LS,SS,A = C(RT,F + D)(TF,SS-
          TRA)

where:

C = as determined from Table 2 of this appendix
RT,F = as defined in 4.1.7 of this appendix
D = as determined from Table 2 of this appendix
TF,SS = as defined in 3.1 of this appendix
TRA = as defined in 2.9 of this appendix

    4.1.10 Steady-state efficiency. For vented heaters equipped with 
single-stage thermostats, calculate the steady-state efficiency 
(excluding jacket loss), [eta]SS, expressed in percent and 
defined as:

[eta]SS = 100-LL,A-LS,SS,A

where:

LL,A = latent heat loss, as defined in section 4.1.6 of this 
          appendix (for condensing vented heaters LL,A* for 
          steady-state conditions), and
LS,SS,A = sensible heat loss at steady-state operation, as 
          defined in section 4.1.9 of this appendix.

    For vented heaters equipped with either two stage controls or with 
step-modulating controls, calculate the steady-state efficiency at the 
reduced fuel input rate, [eta]SS-L, expressed in percent and 
defined as:

[eta]SS-L = 100-LL,A-LS,SS,A

where:

LL,A = latent heat loss, as defined in section 4.1.6 of this 
          appendix (for condensing vented heaters LL,A* for 
          steady-state conditions at the reduced firing rate), and
LS,SS,A = sensible heat loss at steady-state operation, as 
          defined in section 4.1.9 of this appendix, in which 
          LS,SS,A is determined at the reduced fuel input 
          rate.

    For vented heaters equipped with two stage controls, calculate the 
steady-state efficiency at the maximum fuel input rate, 
[eta]SS-H, expressed in percent and defined as:

[eta]SS-H = 100-LL,A-LS,SS,A

where:

LL,A = latent heat loss, as defined in section 4.1.6 of this 
          appendix (for condensing vented heaters LL,A* for 
          steady-state conditions at the maximum fuel input rate), and
LS,SS,A = sensible heat loss at steady-state operation, as 
          defined in section 4.1.9 of this appendix, in which 
          LS,SS,A is measured at the maximum fuel input rate.

    For vented heaters equipped with step-modulating thermostats, 
calculate the weighted-average steady-state efficiency in the modulating 
mode, [eta]SS-MOD, expressed in percent and defined as:

[[Page 656]]

[GRAPHIC] [TIFF OMITTED] TR06JA15.021

where:

[eta]SS-H = steady-state efficiency at the maximum fuel input 
          rate, as defined in section 4.1.10 of this appendix,
[eta]SS-L = steady-state efficiency at the reduced fuel input 
          rate, as defined in section 4.1.10 of this appendix,
TOA* = average outdoor temperature for vented heaters with 
          step-modulating thermostats operating in the modulating mode 
          and is obtained from Table 3 or Figure 1 of this appendix, and
TC = balance point temperature which represents a temperature 
          used to apportion the annual heating load between the reduced 
          input cycling mode and either the modulating mode or maximum 
          input cycling mode and is obtained either from Table 3 of this 
          appendix or calculated by the following equation:

TC = 65-[(65-15)R]

where:

65 = average outdoor temperature at which a vented heater starts 
          operating,
15 = national average outdoor design temperature for vented heaters, and
R = ratio of reduced to maximum heat output rates, as defined in section 
          4.1.13 of this appendix.

    4.1.11 Reduced heat output rate. For vented heaters equipped with 
either two stage thermostats or step-modulating thermostats, calculate 
the reduced heat output rate
(Qred-out) defined as:

Qred-out = [eta]SS-L Qred-in

where:

[eta]SS-L = as defined in 4.1.10 of this appendix
Qred-in = the reduced fuel input rate

    4.1.12 Maximum heat output rate. For vented heaters equipped with 
either two stage thermostats or step-modulating thermostas, calculate 
the maximum heat output rate (Qmax-out) defined as:

Qmax,out = hSS,H Qmax,in

where:

[eta]SS-H = as defined in 4.1.10 of this appendix
Qmax-in = the maximum fuel input rate

    4.1.13 Ratio of reduced to maximum heat output rates. For vented 
heaters equipped with either two stage thermostats or step-modulating 
thermostats, calculate the ratio of reduced to maximum heat output rates 
(R) expressed as a decimal and defined as:

R = Qred-out/Qmax-out

where:

Qred-out = as defined in 4.1.11 of this appendix
Qmax-out = as defined in 4.1.12 of this appendix

    4.1.14 Fraction of heating load at reduced operating mode. For 
vented heaters equipped with either two stage thermostats or step-
modulating thermostats, determine the fraction of heating load at the 
reduced operating mode (X1) expressed as a decimal and listed 
in Table 3 of this appendix or obtained from Figure 2 of this appendix.
    4.1.15 Fraction of heating load at maximum operating mode or 
noncycling mode. For vented heaters equipped with either two stage 
thermostats or step-modulating thermostats, determine the fraction of 
heating load at the maximum operating mode or noncycling mode 
(X2) expressed as a decimal and listed in Table 3 of this 
appendix or obtained from Figure 2 of this appendix.
    4.1.16 Weighted-average steady-state efficiency. For vented heaters 
equipped with single-stage thermostats, the weighted-average steady-
state efficiency ([eta]SS-WT) is equal to [eta]SS, 
as defined in section 4.1.10 of this appendix. For vented heaters 
equipped with two stage thermostats, [eta]SS-WT is defined 
as:

[eta]SS-WT = X1[eta]SS-L + 
          X2[eta]SS-H

where:

X1 = as defined in section 4.1.14 of this appendix
[eta]SS-L = as defined in section 4.1.10 of this appendix
X2 = as defined in section 4.1.15 of this appendix
[eta]SS-H = as defined in section 4.1.10 of this appendix
    For vented heaters equipped with step-modulating controls, 
[eta]SS-WT is defined as:

[eta]SS-WT = X1[eta]SS-L + 
          X2[eta]SS-MOD

where:

X1 = as defined in section 4.1.14 of this appendix
[eta]SS-L = as defined in section 4.1.10 of this appendix
X2 = as defined in section 4.1.15 of this appendix
[eta]SS-MOD = as defined in section 4.1.10 of this appendix

    4.1.17 Annual fuel utilization efficiency. Calculate the annual fuel 
utilization efficiency (AFUE) expressed as percent and defined as:

AFUE=[0.968[eta]SS - WT] - 1.78DF - 
          1.89DS - 129PF - 2.8 LJ + 
          1.81

where:

[eta]SS-WT = as defined in 4.1.16 of this appendix

[[Page 657]]

DF = as defined in 4.1.2 of this appendix
DS = as defined in 4.1.3 of this appendix
PF = as defined in 4.1.4 of this appendix
LJ = as defined in 4.1.5 of this appendix

    4.2 Annual fuel utilization efficiency for gas or oil fueled vented 
home heating equipment equipped with manual controls. The following 
procedure determines the annual fuel utilization efficiency for gas or 
oil fueled vented home heating equipment equipped with manual controls.
    4.2.1 Average ratio of stack gas mass flow rate to flue gas mass 
flow rate at steady-state operation. For vented heaters equipped with 
either direct vents or direct exhaust or that are outdoor units, the 
average ratio of stack gas mass flow rate to flue gas mass flow rate at 
steady-state operation (S/F) shall be equal to unity. (S/F = 1) For all 
other types of vented heaters, calculate (S/F) defined as:
[GRAPHIC] [TIFF OMITTED] TR06JA15.022

where:

RT,S = as defined in section 4.1.8 of this appendix with 
          XCO2s as measured in section 3.1. of this appendix
RT,F = as defined in section 4.1.7 of this appendix with 
          XCO2F as measured in section 3.1. of this appendix
    4.2.2 Multiplication factor for infiltration loss during burner on-
cycle. Calculate the multiplication factor for infiltration loss during 
burner on-cycle (KI,ON) defined as:
[GRAPHIC] [TIFF OMITTED] TR06JA15.023

where:

100 = converts a decimal fraction into a percent
0.24 = specific heat of air
A/F = stoichiometric air/fuel ratio, determined in accordance with Table 
          2 of this appendix
S/F = as defined in section 4.2.1 of this appendix
0.7 = infiltration parameter
RT,F = as defined in section 4.1.7 of this appendix
HHVA = average higher heating value of the test fuel, 
          determined in accordance with Table 2 of this appendix

    4.2.3 On-cycle infiltration heat loss. Calculate the on-cycle 
infiltration heat loss (LI,ON) expressed as a percent and 
defined as:

LI,ON = KI,ON (70-45)

where:

KI,ON = as defined in 4.2.2 of this appendix
70 = average indoor temperature
45 = average outdoor temperature

    4.2.4 Weighted-average steady-state efficiency.
    4.2.4.1 For manually controlled heaters with various input rates the 
weighted average steady-state efficiency ([eta]SS-WT), is 
determined as follows:
[eta]SS-WT = 100-LL,A-LS,SS,A

where:
LL,A = latent heat loss, as defined in section 4.1.6 of this 
          appendix (for condensing vented heaters, LL,A* for 
          steady-state conditions), and
LS,SS,A = steady-state efficiency at the reduced fuel input 
          rate, as defined in section 4.1.9 of this appendix and where 
          LL,A and LS,SS,A are determined:
    (1) at 50 percent of the maximum fuel input rate as measured in 
either section 3.1.1 of this appendix for manually controlled gas vented 
heaters or section 3.1.2 of this appendix for manually controlled oil 
vented heaters, or
    (2) at the minimum fuel input rate as measured in either section 
3.1.1 of this appendix for manually controlled gas vented heaters or 
section 3.1.2 of this appendix for manually controlled oil vented 
heaters if the design of the heater is such that the 5 percent of 50 percent of the maximum fuel input rate 
cannot be set, provided this minimum rate is no greater than \2/3\ of 
the maximum input rate of the heater.
    4.2.4.2 For manually controlled heater with one single firing rate 
the weighted average steady-state efficiency is the steady-state 
efficiency measured at the single firing rate.

[[Page 658]]

    4.2.5 Part-load fuel utilization efficiency. Calculate the part-load 
fuel utilization efficiency ([eta]u) expressed as a percent 
and defined as:

[eta]u = [eta]SS-WT-LI,ON

where:

[eta]SS-WT = as defined in 4.2.4 of this appendix
LI,ON = as defined in 4.2.3 of this appendix

    4.2.6 Annual Fuel Utilization Efficiency.
    4.2.6.1 For manually controlled vented heaters, calculate the AFUE 
expressed as a percent and defined as:
[GRAPHIC] [TIFF OMITTED] TR12MY97.040

where:

2,950 = average number of heating degree days
[eta]SS = as defined as [eta]SS-WT in 4.2.4 of 
          this appendix
[eta]u = as defined in 4.2.5 of this appendix
Qin-max = as defined as Qin at the maximum fuel 
          input rate, as defined in 3.1 of this appendix
4,600 = average number of non-heating season hours per year
QP = as defined in 3.5 of this appendix
2.083 = (65 - 15) / 24 = 50 / 24
65 = degree day base temperature, [deg]F
15 = national average outdoor design temperature for vented heaters as 
          defined in section 4.1.10 of this appendix
24 = number of hours in a day

    4.2.6.2 For manually controlled vented heaters where the pilot light 
can be turned off by the user when the heater is not in use as described 
in section 3.5.2, calculate the AFUE expressed as a percent and defined 
as:

AFUE=[eta]u

where:

[eta]u = as defined in section 4.2.5 of this appendix

    4.3 Annual fuel utilization efficiency by the tracer gas method. The 
annual fuel utilization efficiency shall be determined by the following 
tracer gas method for all vented heaters equipped with thermal stack 
dampers.
    4.3.1 On-cycle sensible heat loss. For vented heaters equipped with 
single-stage thermostats, calculate the on-cycle sensible heat loss 
(LS,ON) expressed as a percent and defined as:

LS,ON = LS,SS,A

where:

LS,SS,A = as defined in section 4.1.9 of this appendix
For vented heaters equipped with two stage thermostats, calculate 
          LS,ON defined as:

LS,ON = X1LS,SS,A-red + 
          X2LS,SS,A-max

where:

X1 = as defined in section 4.1.14 of this appendix
LS,SS,A-red = as defined as LS,SS,A in section 
          4.1.9 of this appendix at the reduced fuel input rate
X2 = as defined in section 4.1.15 of this appendix
LS,SS,A-max = as defined as LS,SS,A in section 
          4.1.9 of this appendix at the maximum fuel input rate
    For vented heaters with step-modulating controls, calculate 
LS,ON defined as:

LS,ON = X1LS,SS,A-red + 
          X2LS,SS,A-avg

where:
X1 = as defined in section 4.1.14 of this appendix
LLS,SS,A-red = as defined in section 4.3.1 of this appendix
X2 = as defined in section 4.1.15 of this appendix
LS,SS,A-avg = average sensible heat loss for step-modulating 
          vented heaters operating in the modulating mode
          [GRAPHIC] [TIFF OMITTED] TR06JA15.024
          
where:

LS,SS,A-avg = as defined in section 4.3.1 of this appendix
TC = as defined in section 4.1.10 of this appendix
TOA* = as defined in section 4.1.10 of this appendix

[[Page 659]]

15 = as defined in section 4.1.10 of this appendix
    4.3.2 On-cycle infiltration heat loss. For vented heaters equipped 
with single-stage thermostats, calculate the on-cycle infiltration heat 
loss (LI,ON) expressed as a percent and defined as:

LI,ON = KI,ON(70-45)

where:

KI,ON = as defined in section 4.2.2 of this appendix
70 = as defined in section 4.2.3 of this appendix
45 = as defined in section 4.2.3 of this appendix
    For vented heaters equipped with two stage thermostats, calculate 
LI,ON defined as:

LI,ON = X1KI,ON-Max(70-TOA*) 
          + X2KI,ON,red(70-TOA)

where:

X1 = as defined in section 4.1.14 of this appendix
KI,ON-max = as defined as KI,ON in section 4.2.2 
          of this appendix at the maximum heat input rate
70 = as defined in section 4.2.3 of this appendix
TOA* = as defined in section 4.3.4 of this appendix
KI,ON,red = as defined as KI,ON in section 4.2.2 
          of this appendix at the minimum heat input rate
TOA = as defined in section 4.3.4 of this appendix
X2 = as defined in section 4.1.15 of this appendix
    For vented heaters equipped with step-modulating thermostats, 
calculate LI,ON defined as:

LI,ON = X1KI,ON-avg(70-TOA*) 
          + X2KI,ON,red(70-TOA)

where:

X1 = as defined in section 4.1.14 of this appendix
[GRAPHIC] [TIFF OMITTED] TR06JA15.025

70 = as defined in section 4.2.3 of this appendix
TOA* = as defined in section 4.3.4 of this appendix
X2 = as defined in section 4.1.15 of this appendix
TOA = as defined in section 4.3.4 of this appendix

    4.3.3 Off-cycle sensible heat loss. For vented heaters equipped with 
single-stage thermostats, calculate the off-cycle sensible heat loss 
(LS,OFF) at the maximum fuel input rate. For vented heaters 
equipped with step-modulating thermostats, calculate LS,OFF 
defined as:
LS,OFF = X1 LS,OFF,red

where:

X1 = as defined in section 4.1.14 of this appendix, and
LS,OFF,red = as defined as LS,OFF in section 4.3.3 
          of this appendix at the reduced fuel input rate.

    For vented heaters equipped with two stage controls, calculate 
LS,OFF defined as:
LS,OFF = X1 LS,OFF,red + X2 
          LS,OFF,Max

where:

X1 = as defined in section 4.1.14 of this appendix,
LS,OFF,red = as defined as LS,OFF in section 4.3.3 
          of this appendix at the reduced fuel input rate,
X2 = as defined in section 4.1.15 of this appendix, and
LS,OFF,Max = as defined as LS,OFF in section 4.3.3 
          of this appendix at the maximum fuel input rate.

    Calculate the off-cycle sensible heat loss (LS,OFF) 
expressed as a percent and defined as:
[GRAPHIC] [TIFF OMITTED] TR06JA15.026


where:

100 = conversion factor for percent,
0.24 = specific heat of air in Btu per pound-- [deg]F,
Qin = fuel input rate, as defined in section 3.1 of this 
          appendix in Btu per minute (as appropriate for the firing 
          rate),
ton = average burner on-time per cycle and is 20 minutes,

[[Page 660]]

[Sigma] mS,OFF (TS,OFF -TRA) = 
          summation of the ten values (for single-stage or step-
          modulating models) or twenty values (for two tage models) of 
          the quantity, mS,OFF (TS,OFF -
          TRA), measured in accordance with section 3.3 of 
          this appendix, and
mS,OFF = stack gas mass flow rate pounds per minute.
[GRAPHIC] [TIFF OMITTED] TR06JA15.027


TS,OFF = stack gas temperature measured in accordance with 
          section 3.3 of this appendix,
TRA = average room temperature measured in accordance with 
          section 3.3 of this appendix,
PB = barometric pressure in inches of mercury,
VT = flow rate of the tracer gas through the stack in cubic 
          feet per minute,
CT* = concentration by volume of the active tracer gas in the 
          mixture in percent and is 100 when the tracer gas is a single 
          component gas,
CT = concentration by volume of the active tracer gas in the 
          diluted stack gas in percent,
TT = temperature of the tracer gas entering the flow meter in 
          degrees Fahrenheit, and
(TT + 460) = absolute temperature of the tracer gas entering 
          the flow meter in degrees Rankine.

    4.3.4 Average outdoor temperature. For vented heaters equipped with 
single-stage thermostats, the average outdoor temperature 
(TOA) is 45 [deg]F. For vented heaters equipped with either 
two stage thermostats or step-modulating thermostats, TOA 
during the reduced operating mode is obtained from Table 3 or Figure 1 
of this appendix. For vented heaters equipped with two stage 
thermostats, TOA* during the maximum operating mode is 
obtained from Table 3 or Figure 1 of this appendix.
    4.3.5 Off-cycle infiltration heat loss. For vented heaters equipped 
with single stage thermostats, calculate the off-cycle infiltration heat 
loss (LI,OFF) at the maximum fuel input rate. For vented 
heaters equipped with step-modulating thermostats, calculate 
LI,OFF defined as:

LI,OFF = X1LI,OFF,red

where:

X1 = as defined in section 4.1.14 of this appendix
LI,OFF,red = as defined in LI,OFF in section 4.3.5 
          of this appendix at the reduced fuel input rate

    For vented heaters equipped with two stage thermostats, calculate 
LI,OFF defined as:

LI,OFF = X1LI,OFF,red + 
          X2LI,OFF,max

where:

X1 = as defined in section 4.1.14 of this appendix
LI,OFF,red = as defined as LI,OFF in section 4.3.5 
          of this appendix at the reduced fuel input rate
X2 = as defined in section 4.1.15 of this appendix
LI,OFF,Max = as defined as LI,OFF in section 4.3.5 
          of this appendix at the maximum fuel input rate

    Calculate the off-cycle infiltration heat loss (LI,OFF) 
expressed as a percent and defined as:
[GRAPHIC] [TIFF OMITTED] TR06JA15.028


where:

100 = conversion factor for percent
0.24 = specific heat of air in Btu per pound-- [deg]F
1.3 = dimensionless factor for converting laboratory measured stack flow 
          to typical field conditions
0.7 = infiltration parameter
70 = assumed average indoor air temperature, [deg]F
TOA = average outdoor temperature as defined in section 4.3.4 
          of this appendix
Qin = fuel input rate, as defined in section 3.1 of this 
          appendix in Btu per minute (as appropriate for the firing 
          rate)
ton = average burner on-time per cycle and is 20 minutes
[Sigma] mS,OFF = summation of the twenty values of the 
          quantity, mS,OFF, measured in accordance with 
          section 3.3 of this appendix

[[Page 661]]

mS,OFF = as defined in section 4.3.3 of this appendix

    4.3.6 Part-load fuel utilization efficiency. Calculate the part-load 
fuel utilization efficiency ([eta]u) expressed as a percent 
and defined as:
[GRAPHIC] [TIFF OMITTED] TR06JA15.029


where:

Cj = 2.8, adjustment factor,
Lj = jacket loss as defined in section 4.1.5,
LL,A = Latent heat loss, as defined in section 4.1.6 of this 
          appendix (for condensing vented heaters LL,A* for 
          cyclic conditions),
ton = Average burner on time which is 20 minutes,
LS,ON = On-cycle sensible heat loss, as defined in section 
          4.3.1 of this appendix,
LS,OFF = Off-cycle sensible heat loss, as defined in section 
          4.3.3 of this appendix,
LI,ON = On-cycle infiltration heat loss, as defined in 
          section 4.3.2 of this appendix,
LI,OFF = Off-cycle infiltration heat loss, as defined in 
          section 4.3.5 of this appendix,
PF = Pilot fraction, as defined in section 4.1.4 of this 
          appendix, and
tOFF = average burner off-time per cycle, which is 20 
          minutes.

    4.3.7 Annual Fuel Utilization Efficiency.
    Calculate the AFUE expressed as a percent and defined as:
    [GRAPHIC] [TIFF OMITTED] TR12MY97.041
    
where:

2,950 = average number of heating degree days
[eta]SS-WT = as defined in 4.1.16 of this appendix
[eta]u = as defined in 4.3.6 of this appendix
Qin-max = as defined in 4.2.6 of this appendix
4,600 = as specified in 4.2.6 of this appendix
QP = as defined in 3.5 of this appendix
2.083 = as specified in 4.2.6 of this appendix

    4.4 Stack damper effectiveness for vented heaters equipped with 
electro-mechanical stack dampers. Determine the stack damper 
effectiveness for vented heaters equipped with electro-mechanical stack 
dampers (Do), defined as:

Do = 1.62 [1--AD cos [Omega]/AS]

where:

AD = as defined in 3.4 of this appendix
[Omega] = as defined in 3.4 of this appendix
AS = as defined in 3.4 of this appendix

    4.5 Addition requirements for vented home heating equipment using 
indoor air for combustion and draft control. For vented home heating 
equipment using indoor air for combustion and draft control, 
DF, as described in section 4.1.2 of this appendix, and 
DS, as described in section 4.1.3 of this appendix, shall be 
determined from Table 1 of this appendix.
    4.5.1 Optional procedure for determining DP for vented home heating 
equipment. Calculate the ratio (DP) of the rate of flue gas 
mass through the vented heater during the off-period, 
MF,OFF(TF,SS), to the rate of flue gas mass flow 
during the on-period, MF,SS(TF,SS), and defined 
as:

DP = MF,OFF(TF,SS)/
          MF,SS(TF,SS)

    For vented heaters in which no draft is maintained during the 
steady-state or cool down tests, MF,OFF(TF,SS) is 
defined as:
[GRAPHIC] [TIFF OMITTED] TR06JA15.030

    For oil fueled vented heaters in which an imposed draft is 
maintained, as described in section 3.6 of this appendix, 
MF,OFF(TF,SS) is defined as:


[[Page 662]]


MF,OFF(TF,SS) = 
          MF,OFF(T*F,OFF)

where:

TF,SS = as defined in section 3.1.1 of this appendix,
T*F,OFF = flue gas temperature during the off-period measured 
          in accordance with section 3.6 of this appendix in degrees 
          Fahrenheit, and
TRA = as defined in section 2.9 of this appendix.
[GRAPHIC] [TIFF OMITTED] TR06JA15.031

PB = barometric pressure measured in accordance with section 
          3.6 of this appendix in inches of mercury,
VT = flow rate of tracer gas through the vented heater 
          measured in accordance with section 3.6 of this appendix in 
          cubic feet per minute,
CT = concentration by volume of tracer gas present in the 
          flue gas sample measured in accordance with section 3.6 of 
          this appendix in percent,
CT* = concentration by volume of the active tracer gas in the 
          mixture in percent and is 100 when the tracer gas is a single 
          component gas,
TT = the temperature of the tracer gas entering the flow 
          meter measured in accordance with section 3.6 of this appendix 
          in degrees Fahrenheit, and
(TT + 460) = absolute temperature of the tracer gas entering 
          the flow meter in degrees Rankine.
MF,SS(TF,SS) = Qin[RT,F(A/F) 
          + 1]/[60HHVA]
Qin = as defined in section 3.1 of this appendix,
RT,F = as defined in section 4.1.7 of this appendix,
A/F = as defined in section 4.2.2 of this appendix, and
HHVA = as defined in section 4.2.2 of this appendix.

    4.5.2 Optional procedure for determining off-cycle draft factor for 
flue gas flow for vented heaters. For systems numbered 1 through 10, 
calculate the off-cycle draft factor for flue gas flow (DF) 
defined as:
DF = DP
For systems numbered 11 or 12: DF = DP 
          DO
For systems complying with section 3.6.1 or 3.6.2, DF = 0.05

Where:

DP = as defined in section 4.5.1. of this appendix, and
DO = as defined in section 4.4 of this appendix.
    4.5.3 Optional procedure for determining off-cycle draft factor for 
stack gas flow for vented heaters. Calculate the off-cycle draft factor 
for stack gas flow (DS) defined as:
For systems numbered 1 or 2: DS = 1.0
For systems numbered 3 or 4: DS = (DP + 0.79)/1.4
For systems numbered 5 or 6: DS = DO
For systems numbered 7 or 8 and if DO(S/F)<1:DS = 
          DO DP
For systems numbered 7 or 8 and if DO(S/F)1:
DS = DO DP + [0.85-DO 
          DP] [DO(S/F)-1]/[S/F-1]

where:

DP = as defined in section 4.5.1 or 3.6.1 of this appendix, 
          as applicable
DO = as defined in section 4.4 of this appendix

    4.6 Annual energy consumption.
    4.6.1 National average number of burner operating hours. For vented 
heaters equipped with single stage controls or manual controls, the 
national average number of burner operating hours (BOH) is defined as:

BOHSS = 1,416AFA DHR-1,416 B

where:

1,416 = national average heating load hours for vented heaters based on 
          2,950 degree days and 15 [deg]F outdoor design temperature
AF = 0.7067, adjustment factor to adjust the calculated 
          design heating requirement and heating load hours to the 
          actual heating load experienced by the heating system
DHR = typical design heating requirements based on QOUT, from 
          Table 4 of this appendix.
QOUT = [([eta]SS/100)-Cj 
          (Lj/100)] Qin
Lj = jacket loss as defined in 4.1.5 of this appendix
Cj = 2.8, adjustment factor as defined in 4.3.6 of this 
          appendix
[eta]SS = steady-state efficiency as defined in 4.1.10 of 
          this appendix, percent
Qin = as defined in 3.1 of this appendix at the maximum fuel 
          input rate
A = 100,000/[341,300PE + (Qin-
          QP)[eta]u]
B = 2.938(QP) [eta]u A/100,000
100,000 = factor that accounts for percent and kBtu
PE = as defined in 3.1.3 of this appendix
QP = as defined in 3.5 of this appendix

[[Page 663]]

[eta]u = as defined in 4.3.6 of this appendix for vented 
          heaters using the tracer gas method, percent
     = as defined in 4.2.5 of this appendix for manually controlled 
vented heaters, percent
     = 2,950 AFUE[eta]SS Qin/[2,950 
[eta]SS Qin--AFUE(2.083)(4,600)QP], for 
vented heaters equipped without manual controls and without thermal 
stack dampers and not using the optional tracer gas method, where:
AFUE = as defined in 4.1.17 of this appendix, percent
2,950 = average number of heating degree days as defined in 4.2.6 of 
          this appendix
4,600 = average number of non-heating season hours per year as defined 
          in 4.2.6 of this appendix
2.938 = (4,160/1,416) = ratio of the average length of the heating 
          season in hours to the average heating load hours
2.083 = as specified in 4.2.6 of this appendix

    4.6.1.1 For vented heaters equipped with two stage or step 
modulating controls the national average number of burner operating 
hours at the reduced operating mode is defined as:

BOHR = X1EM/Qred-in

where:

X1 = as defined in 4.1.14 of this appendix
Qred-in = as defined in 4.1.11 of this appendix
EM = average annual energy used during the heating season
     = (Qin-QP)BOHSS + (8,760-
4,600)QP
Qin = as defined in 3.1 of this appendix at the maximum fuel 
          input rate
QP = as defined in 3.5 of this appendix
BOHSS = as defined in 4.6.1 of this appendix, in which the 
          term PE in the factor A is increased by the factor 
          R, which is defined in 3.1.3 of this appendix as:
R = 1.3 for two stage controls
     = 1.4 for step modulating controls when the ratio of minimum-to-
maximum fuel input is greater than or equal to 0.7
     = 1.7 for step modulating controls when the ratio of minimum-to-
maximum fuel input is less than 0.7 and greater than or equal to 0.5
     = 2.2 for step modulating controls when the ratio of minimum-to-
maximum fuel input is less than 0.5
A = 100,000/[341,300 PE R + (Qin - 
          QP)[eta]u]
8,760 = total number of hours per year
4,600 = as specified in 4.2.6 of this appendix

    4.6.1.2 For vented heaters equipped with two stage or step 
modulating controls the national average number of burner operating 
hours at the maximum operating mode (BOHH) is defined as:

BOHH = X2EM/Qin

where:

X2 = as defined in 4.1.15 of this appendix
EM = average annual energy used during the heating season
     = (Qin-QP)BOHSS + (8,760-
4,600)QP
Qin = as defined in 3.1 of this appendix at the maximum fuel 
          input rate

    4.6.2 Average annual fuel energy for gas or oil fueled vented 
heaters. For vented heaters equipped with single stage controls or 
manual controls, the average annual fuel energy consumption 
(EF) is expressed in Btu per year and defined as:

EF = BOHSS (Qin-QP) + 8,760 
          QP

where:

BOHSS = as defined in 4.6.1 of this appendix
Qin = as defined in 3.1 of this appendix
QP = as defined in 3.5 of this appendix
8,760 = as specified in 4.6.1 of this appendix

    4.6.2.1 For vented heaters equipped with either two stage or step 
modulating controls EF is defined as:

EF = EM + 4,600QP

where:

EM = as defined in 4.6.1.2 of this appendix
4,600 = as specified 4.2.6 of this appendix
QP = as defined in 3.5 of this appendix

    4.6.3 Average annual auxiliary electrical energy consumption for 
vented heaters. For vented heaters with single-stage controls or manual 
controls, the average annual auxiliary electrical consumption 
(EAE) is expressed in kilowatt-hours and defined as:

EAE = BOHSSPE + ESO

Where:

BOHSS = as defined in 4.6.1 of this appendix
PE = as defined in 3.1.3 of this appendix
ESO = as defined in 4.7 of this appendix

    4.6.3.1 For vented heaters with two-stage or modulating controls, 
EAE is defined as:

EAE = (BOHR + BOHH)PE + 
          ESO

Where:

BOHR = as defined in 4.6.1 of this appendix
BOHH = as defined in 4.6.1 of this appendix
PE = as defined in 3.1.3 of this appendix
ESO = as defined in 4.7 of this appendix

    4.6.4 Average annual energy consumption for vented heaters located 
in a different geographic region of the United States and in buildings 
with different design heating requirements.
    4.6.4.1 Average annual fuel energy consumption for gas or oil fueled 
vented home heaters located in a different geographic region of the 
United States and in buildings with different design heating 
requirements. For gas or oil fueled vented heaters the average annual 
fuel energy consumption for a specific geographic region and a specific 
typical design heating requirement (EFR) is expressed in Btu 
per year and defined as:

EFR = (EF-8,760 QP)(HLH/1,416) + 
          8,760QP

where:


[[Page 664]]


EF = as defined in 4.6.2 of this appendix
8,760 = as specified in 4.6.1 of this appendix
QP = as defined in 3.5 of this appendix
HLH = heating load hours for a specific geographic region determined 
          from the heating load hour map in Figure 3 of this appendix
1,416 = as specified in 4.6.1 of this appendix

    4.6.4.2 Average annual auxiliary electrical energy consumption for 
gas or oil fueled vented home heaters located in a different geographic 
region of the United States and in buildings with different design 
heating requirements. For gas or oil fueled vented home heaters the 
average annual auxiliary electrical energy consumption for a specific 
geographic region and a specific typical design heating requirement 
(EAER) is expressed in kilowatt-hours and defined as:

EAER = EAE HLH/1,416

where:

EAE = as defined in 4.6.3 of this appendix
HLH = as defined in 4.6.4.1 of this appendix
1,416 = as specified in 4.6.1 of this appendix

   Table 1--Off-Cycle Draft Factors for Flue Gas Flow (DF) and for Stack Gas Flow (DS) for Vented Home Heating
                                Equipment Equipped Without Thermal Stack Dampers
----------------------------------------------------------------------------------------------------------------
                                                                                            Venting system type
 System number            (DF)                     (DS)                 Burner type                 \1\
----------------------------------------------------------------------------------------------------------------
1.............  1.0....................  1.0....................  Atmospheric...........  Draft hood or
                                                                                           diverter.
2.............  0.4....................  1.0....................  Power.................  Draft hood or
                                                                                           diverter.
3.............  1.0....................  1.0....................  Atmospheric...........  Barometric draft
                                                                                           regulator.
4.............  0.4....................  0.85...................  Power.................  Barometric draft
                                                                                           regulator.
5.............  1.0....................  DO.....................  Atmospheric...........  Draft hood or diverter
                                                                                           with damper.
6.............  0.4....................  DO.....................  Power.................  Draft hood or diverter
                                                                                           with damper.
7.............  1.0....................  DO.....................  Atmospheric...........  Barometric draft
                                                                                           regulator with
                                                                                           damper.
8.............  0.4....................  DODP...................  Power.................  Barometric draft
                                                                                           regulator with
                                                                                           damper.
9.............  1.0....................  0......................  Atmospheric...........  Direct vent.
10............  0.4....................  0......................  Power.................  Direct vent.
11............  DO.....................  0......................  Atmospheric...........  Direct vent with
                                                                                           damper.
12............  0.4 DO.................  0......................  Power.................  Direct vent with
                                                                                           damper.
----------------------------------------------------------------------------------------------------------------
\1\ Venting systems listed with dampers means electromechanical dampers only.


Table 2--Values of Higher Heating Value (HHV(A), Stoichiometric Air/Fuel (A/F), Latent Heat Loss (LL,A) and Fuel-
                             Specified Parameters (A, B, C, and D) for Typical Fuels
----------------------------------------------------------------------------------------------------------------
                                                     HHVA
                      Fuels                        (Btu/lb)    A/F      LL,A      A        B        C        D
----------------------------------------------------------------------------------------------------------------
No. 1 oil........................................    19,800    14.56     6.55   0.0679    14.22   0.0179   0.167
No. 2 oil........................................    19,500    14.49     6.50   0.0667    14.34   0.0181   0.167
Natural gas......................................    20,120    14.45     9.55   0.0919    10.96   0.0175   0.171
Manufactured gas.................................    18,500    11.81    10.14   0.0965    10.10   0.0155   0.235
Propane..........................................    21,500    15.58     7.99   0.0841    12.60   0.0177   0.151
Butane...........................................    20,000    15.36     7.79   0.0808    12.93   0.0180   0.143
----------------------------------------------------------------------------------------------------------------


 Table 3--Fraction of Heating Load at Reduced Operating Mode (X1) and at
   Maximum Operating Mode (X2), Average Outdoor Temperatures (TOA and
  TOA*), and Balance Point Temperature (TC) for Vented Heaters Equipped
    With Either Two-Stage Thermostats or Step-Modulating Thermostats
------------------------------------------------------------------------
        Heat output ratio \a\            X1     X2    TOA    TOA*    TC
------------------------------------------------------------------------
0.20 to 0.24.........................    .12    .88     57     40     53
0.25 to 0.29.........................    .16    .84     56     39     51
0.30 to 0.34.........................    .20    .80     54     38     49
0.35 to 0.39.........................    .30    .70     53     36     46
0.40 to 0.44.........................    .36    .64     52     35     44
0.45 to 0.49.........................    .43    .57     51     34     42
0.50 to 0.54.........................    .52    .48     50     32     39
0.55 to 0.59.........................    .60    .40     49     30     37
0.60 to 0.64.........................    .70    .30     48     29     34
0.65 to 0.69.........................    .76    .24     47     27     32
0.70 to 0.74.........................    .84    .16     46     25     29
0.75 to 0.79.........................    .88    .12     46     22     27
0.80 to 0.84.........................    .94    .06     45     20     23
0.85 to 0.89.........................    .96    .04     45     18     21
0.90 to 0.94.........................    .98    .02     44     16     19
0.95 to 0.99.........................    .99    .01     44     13     17
------------------------------------------------------------------------
\a\ The heat output ratio means the ratio of minimum to maximum heat
  output rates as defined in 4.1.13.


[[Page 665]]


  Table 4--Average Design Heating Requirements for Vented Heaters With
                       Different Output Capacities
------------------------------------------------------------------------
                                                               Average
                                                               design
       Vented heaters output capacity Qout--(Btu/hr)           heating
                                                            requirements
                                                              (kBtu/hr)
------------------------------------------------------------------------
5,000-7,499...............................................           5.0
7,500-10,499..............................................           7.5
10,500-13,499.............................................          10.0
13,500-16,499.............................................          12.5
16,500-19,499.............................................          15.0
19,500-22,499.............................................          17.5
22,500-26,499.............................................          20.5
26,500-30,499.............................................          23.5
30,500-34,499.............................................          26.5
34,500-38,499.............................................          30.0
38,500-42,499.............................................          33.5
42,500-46,499.............................................          36.5
46,500-51,499.............................................          40.0
51,500-56,499.............................................          44.0
56,500-61,499.............................................          48.0
61,500-66,499.............................................          52.0
66,500-71,499.............................................          56.0
71,500-76,500.............................................          60.0
------------------------------------------------------------------------


[[Page 666]]

[GRAPHIC] [TIFF OMITTED] TC04OC91.069


[[Page 667]]

[GRAPHIC] [TIFF OMITTED] TC04OC91.070


[[Page 668]]

[GRAPHIC] [TIFF OMITTED] TR12MY97.042

    4.7 Average annual electric standby mode and off mode energy 
consumption.
    Calculate the annual electric standby mode and off mode energy 
consumption, ESO, defined as, in kilowatt-hours:

ESO = ((PW,SB * (4160--BOH)) + (PW,OFF 
          * 4600)) * K

Where:

PW,SB = vented heater standby mode power, in watts, as 
measured in section 3.7 of this appendix
4160 = average heating season hours per year
PW,OFF = vented heater off mode power, in watts, as measured 
          in section 3.7 of this appendix

[[Page 669]]

4600 = average non-heating season hours per year
K = 0.001 kWh/Wh, conversion factor for watt-hours to kilowatt-hours
BOH = burner operating hours as calculated in section 4.6.1 of this 
          appendix where for single-stage controls or manual controls 
          vented heaters BOH = BOHSS and for vented heaters 
          equipped with two-stage or modulating controls BOH = 
          (BOHR + BOHH).

[49 FR 12169, Mar. 28, 1984, as amended at 62 FR 26162, May 12, 1997; 77 
FR 74571, Dec. 17, 2012; 80 FR 806, Jan. 6, 2015]



   Sec. Appendix P to Subpart B of Part 430--Uniform Test Method for 
            Measuring the Energy Consumption of Pool Heaters

    Note: On and after July 6, 2015, any representations made with 
respect to the energy use or efficiency of all pool heaters must be made 
in accordance with the results of testing pursuant to this appendix. On 
and after this date, if a manufacturer makes representations of standby 
mode and off mode energy consumption, then testing must also include the 
provisions of this appendix related to standby mode and off mode energy 
consumption. Until July 6, 2015, manufacturers must test gas-fired pool 
heaters in accordance with this appendix, or appendix P as it appeared 
at 10 CFR part 430, subpart B revised as of January 1, 2014. Any 
representations made with respect to the energy use or efficiency of 
such pool heaters must be in accordance with whichever version is 
selected. DOE notes that, because testing under this appendix P must be 
completed as of July 6, 2015, manufacturers may wish to begin using this 
test procedure immediately.
    1. Definitions.
    1.1 Active mode means the condition during the pool heating season 
in which the pool heater is connected to the power source, and the main 
burner, electric resistance element, or heat pump is activated to heat 
pool water.
    1.2 Coefficient of performance (COP), as applied to heat pump pool 
heaters, means the ratio of heat output in kW to the total power input 
in kW.
    1.3 Electric heat pump pool heater means an appliance designed for 
heating nonpotable water and employing a compressor, water-cooled 
condenser, and outdoor air coil.
    1.4 Electric resistance pool heater means an appliance designed for 
heating nonpotable water and employing electric resistance heating 
elements.
    1.5 Fossil fuel-fired pool heater means an appliance designed for 
heating nonpotable water and employing natural gas or oil burners.
    1.6 Hybrid pool heater means an appliance designed for heating 
nonpotable water and employing both a heat pump (compressor, water-
cooled condenser, and outdoor air coil) and a fossil fueled burner as 
heating sources.
    1.7 Off mode means the condition during the pool non-heating season 
in which the pool heater is connected to the power source, and neither 
the main burner, nor the electric resistance elements, nor the heat pump 
is activated, and the seasonal off switch, if present, is in the ``off'' 
position.
    1.8 Seasonal off switch means a switch that results in different 
energy consumption in off mode as compared to standby mode.
    1.9 Standby mode means the condition during the pool heating season 
in which the pool heater is connected to the power source, and neither 
the main burner, nor the electric resistance elements, nor the heat pump 
is activated.
    2. Test method.
    2.1 Active mode.
    2.1.1 Fossil fuel-fired pool heaters. The test method for testing 
fossil fuel-fired pool heaters in active mode is as specified in section 
2.10 of ANSI Z21.56 (incorporated by reference, see Sec.  430.3), with 
the following additional clarifications.
    1. Burner input rate is adjusted as specified in section 2.3.3 of 
ANSI Z21.56,
    2. Equilibrium is defined as in section 9.1.3 of ASHRAE 146 
(incorporated by reference; see Sec.  430.3)
    3. Units are only to be tested using a recirculating loop and a pump 
if: the use of the recirculating loop and pump are listed as required; a 
minimum flow rate is specified in the installation or operation manual 
provided with the unit; the pump is packaged with the unit by the 
manufacturer; or such use is required for testing.
    4. A water temperature rise of less than 40 [deg]F is allowed only 
as specified in the installation or operation manual(s) provided with 
the unit.
    2.1.2 Electric resistance pool heaters. The test method for testing 
electric resistance pool heaters in active mode is as specified in 
ASHRAE 146 (incorporated by reference; see Sec.  430.3).
    2.1.3 Electric heat pump pool heaters. The test method for testing 
electric heat pump pool heaters in active mode is as specified in AHRI 
1160 (incorporated by reference; see Sec.  430.3), which references 
ASHRAE 146 (incorporated by reference; see Sec.  430.3).
    2.1.4 Hybrid pool heaters. [Reserved]
    2.2 Standby mode. The test method for testing the energy consumption 
of pool heaters in standby mode is as described in sections 3 through 5 
of this appendix.
    2.3 Off mode.
    2.3.1 Pool heaters with a seasonal off switch. For pool heaters with 
a seasonal off switch, no off mode test is required.
    2.3.2 Pool heaters without a seasonal off switch. For pool heaters 
without a seasonal off switch, the test method for testing the

[[Page 670]]

energy consumption of the pool heater is as described in sections 3 
through 5 of this appendix.
    3. Test conditions.
    3.1 Active mode.
    3.1.1 Fossil fuel-fired pool heaters. Establish the test conditions 
specified in section 2.10 of ANSI Z21.56 (incorporated by reference; see 
Sec.  430.3).
    3.1.2 Electric resistance pool heaters. Establish the test 
conditions specified in section 9.1.4 of ASHRAE 146 (incorporated by 
reference; see Sec.  430.3).
    3.1.3 Electric heat pump pool heaters. Establish the test conditions 
specified in section 5 of AHRI 1160. The air temperature surrounding the 
unit shall be at the ``High Air Temperature--Mid Humidity (63% RH)'' 
level specified in section 6 of AHRI 1160 (incorporated by reference, 
see Sec.  430.3) (80.6 [deg]F [27.0 [deg]C] Dry-Bulb, 71.2 [deg]F [21.8 
[deg]C]).
    3.1.4 Hybrid pool heaters. [Reserved]
    3.2 Standby mode and off mode. After completing the active mode 
tests described in sections 3.1 and 4.1 of this appendix, reduce the 
thermostat setting to a low enough temperature to put the pool heater 
into standby mode. Reapply the energy sources and operate the pool 
heater in standby mode for 60 minutes.
    4. Measurements
    4.1 Active mode
    4.1.1 Fossil fuel-fired pool heaters. Measure the quantities 
delineated in section 2.10 of ANSI Z21.56 (incorporated by reference; 
see Sec.  430.3). The measurement of energy consumption for oil-fired 
pool heaters in Btu is to be carried out in appropriate units (e.g., 
gallons).
    4.1.2 Electric resistance pool heaters. Measure the quantities 
delineated in section 9.1.4 of ASHRAE 146 (incorporated by reference; 
see Sec.  430.3) during and at the end of the 30-minute period when 
water is flowing through the pool heater.
    4.1.3 Electric heat pump pool heaters. Measure the quantities 
delineated in section 9.1.1 and Table 2 of ASHRAE 146 (incorporated by 
reference; see Sec.  430.3). Record the elapsed time, tHP, 
from the start of electric power metering to the end, in minutes.
    4.1.4 Hybrid pool heaters. [Reserved]
    4.2 Standby mode. For all pool heaters, record the average electric 
power consumption during the standby mode test, PW,SB, in W, 
in accordance with section 5 of IEC 62301 (incorporated by reference; 
see Sec.  430.3). For fossil fuel-fired pool heaters, record the fossil 
fuel energy consumption during the standby test, Qp, in Btu. 
(Milli-volt electrical consumption need not be considered in units so 
equipped.) Ambient temperature and voltage specifications in section 4.1 
of this appendix shall apply to this standby mode testing. Round the 
recorded standby power (PW,SB) to the second decimal place, 
and for loads greater than or equal to 10 W, record at least three 
significant figures.
    4.3 Off mode.
    4.3.1 Pool heaters with a seasonal off switch. For pool heaters with 
a seasonal off switch, the average electric power consumption during the 
off mode, PW,OFF = 0, and the fossil fuel energy consumed 
during the off mode, Qoff = 0.
    4.3.2 Pool heaters without a seasonal off switch. For all pool 
heaters without a seasonal off switch, record the average electric power 
consumption during the standby/off mode test, PW,OFF = 
PW,SB, in W, in accordance with section 5 of IEC 62301 
(incorporated by reference; see Sec.  430.3). For fossil fuel-fired pool 
heaters without a seasonal off switch, record the fossil fuel energy 
consumption during the off mode test, Qoff (= Qp), 
in Btu. (Milli-volt electrical consumption need not be considered in 
units so equipped.) Ambient temperature and voltage specifications in 
section 4.1 of this appendix shall apply to this off mode testing. Round 
the recorded off mode power (PW,OFF) to the second decimal 
place, and for loads greater than or equal to 10 W, record at least 
three significant figures.
    5. Calculations.
    5.1 Thermal efficiency.
    5.1.1 Fossil fuel-fired pool heaters. Calculate the thermal 
efficiency, Et (expressed as a percent), as specified in 
section 2.10 of ANSI Z21.56 (incorporated by reference; see Sec.  
430.3). The expression of fuel consumption for oil-fired pool heaters 
shall be in Btu.
    5.1.2 Electric resistance pool heaters. Calculate the thermal 
efficiency, Et (expressed as a percent), as specified in 
section 11.1 of ASHRAE 146 (incorporated by reference; see Sec.  430.3).
    5.1.3 Electric heat pump pool heaters. Calculate the COP according 
to section 11.1 of ASHRAE 146. Calculate the thermal efficiency, 
Et (expressed as a percent): Et = COP.
    5.1.4 Hybrid pool heaters. [Reserved]
    5.2 Average annual fossil fuel energy for pool heaters. For electric 
resistance and electric heat pump pool heaters, the average annual fuel 
energy for pool heaters, EF = 0.
    For fossil fuel-fired pool heaters, the average annual fuel energy 
for pool heaters, EF, is defined as:

EF = BOH QIN + (POH-BOH)QPR + (8760 - 
          POH) Qoff,R

Where:

BOH = average number of burner operating hours = 104 h,
POH = average number of pool operating hours = 4,464 h,
QIN = rated fuel energy input as defined according to section 
          2.10.1 or section 2.10.2 of ANSI, Z21.56 (incorporated by 
          reference; see Sec.  430.3), as appropriate. (For electric 
          resistance and electric heat pump pool heaters, QIN 
          = 0.),

[[Page 671]]

QPR = average energy consumption rate of continuously 
          operating pilot light, if employed, = (QP/1 h),
QP = energy consumption of continuously operating pilot 
          light, if employed, as measured in section 4.2 of this 
          appendix, in Btu,
8760 = number of hours in one year,
Qoff,R = average off mode fossil fuel energy consumption rate 
          = Qoff/(1 h), and
Qoff = off mode energy consumption as defined in section 4.3 
          of this appendix.
    5.3 Average annual electrical energy consumption for pool heaters. 
The average annual electrical energy consumption for pool heaters, 
EAE, is expressed in Btu and defined as:
(1) EAE = EAE,active + EAE,standby,off
(2) EAE,active = BOH * PE
(3) EAE,standby,off = (POH-BOH) PW,SB(Btu/h) + 
          (8760-POH) PW,OFF(Btu/h)

where:

EAE,active = electrical consumption in the active mode,
EAE,standby,off = auxiliary electrical consumption in the 
          standby mode and off mode,
PE = 2Ec, for fossil fuel-fired heaters tested according to 
          section 2.10.1 of ANSI Z21.56 (incorporated by reference; see 
          Sec.  430.3) and for electric resistance pool heaters, in Btu/
          h,
= 3.412 PErated, for fossil fuel-fired heaters tested 
          according to section 2.10.2 of ANSI Z21.56, in Btu/h,
= Ec,HP * (60/tHP), for electric heat pump pool 
          heaters, in Btu/h.
Ec = electrical consumption in Btu per 30 min. This includes 
          the electrical consumption (converted to Btus) of the pool 
          heater and, if present, a recirculating pump during the 30-
          minute thermal efficiency test. The 30-minute thermal 
          efficiency test is defined in section 2.10.1 of ANSI Z21.56 
          for fossil fuel-fired pool heaters and section 9.1.4 of ASHRAE 
          146 (incorporated by reference; see Sec.  430.3) for electric 
          resistance pool heaters.
2 = conversion factor to convert unit from per 30 min. to per h.
PErated = nameplate rating of auxiliary electrical equipment 
          of heater, in Watts
Ec,HP = electrical consumption of the electric heat pump pool 
          heater (converted to equivalent unit of Btu), including the 
          electrical energy to the recirculating pump if used, during 
          the thermal efficiency test, as defined in section 9.1 of 
          ASHRAE 146, in Btu.
tHP = elapsed time of data recording during the thermal 
          efficiency test on electric heat pump pool heater, as defined 
          in section 9.1 of ASHRAE 146, in minutes.
BOH = as defined in section 5.2 of this appendix,
POH = as defined in section 5.2 of this appendix,
PW,SB (Btu/h) = electrical energy consumption rate during 
          standby mode expressed in Btu/h = 3.412 PW,SB, Btu/
          h,
PW,SB = as defined in section 4.2 of this appendix,
PW,OFF (Btu/h) = electrical energy consumption rate during 
          off mode expressed in Btu/h = 3.412 PW,OFF, Btu/h, 
          and
PW,OFF = as defined in section 4.3 of this appendix.
    5.4 Integrated thermal efficiency.
    5.4.1 Calculate the seasonal useful output of the pool heater as:
EOUT = BOH[(Et/100)(QIN + PE)]

where:

BOH = as defined in section 5.2 of this appendix,
Et = thermal efficiency as defined in section 5.1 of this 
          appendix,
QIN = as defined in section 5.2 of this appendix,
PE = as defined in section 5.3 of this appendix, and
100 = conversion factor, from percent to fraction.
    5.4.2 Calculate the annual input to the pool heater as:
EIN = EF + EAE

where:

EF = as defined in section 5.2 of this appendix, and
EAE = as defined in section 5.3 of this appendix.
    5.4.3 Calculate the pool heater integrated thermal efficiency 
(TEI) (in percent).
TEI = 100(EOUT/EIN)

where:

EOUT = as defined in section 5.4.1 of this appendix,
EIN = as defined in section 5.4.2 of this appendix, and
100 = conversion factor, from fraction to percent.

[80 FR 813, Jan. 6, 2015]



   Sec. Appendix Q to Subpart B of Part 430--Uniform Test Method for 
      Measuring the Energy Consumption of Fluorescent Lamp Ballasts

    Note regarding effective date: After October 14, 2020 and prior to 
March 15, 2021 any representations with respect to energy use or 
efficiency of fluorescent lamp ballasts must be in accordance with the 
results of testing pursuant to this appendix or the test procedures as 
they appeared in appendix Q to this subpart revised as of January 1, 
2020. On or after March 15, 2021, any representations, including 
certifications of compliance for ballasts subject to any energy 
conservation standard, made with respect to the energy use or efficiency 
of fluorescent lamp ballasts must be

[[Page 672]]

made in accordance with the results of testing pursuant to this 
appendix.

                      0. Incorporation by Reference

    DOE incorporated by reference ANSI C78.81-2016, ANSI C78.375A, ANSI 
C78.901-2016, ANSI C82.1, ANSI 82.2, ANSI 82.3, ANSI 82.11, ANSI C82.13, 
ANSI 82.77, IEC 60081, and IEC 62301, each in their entirety in Sec.  
430.3; however, only enumerated provisions of ANSI C78.375A, ANSI C82.2, 
and IEC 62301 are applicable to this appendix, as follows:
    (a) ANSI C78.375A, as follows:
    (i) Section 4, Ambient conditions for temperature measurement, as 
specified in section 2.4.2 of this appendix; and
    (ii) Section 9, Electrical instruments, as specified in sections 
2.2.1, 2.2.2, and 2.2.3 of this appendix.
    (b) ANSI C82.2, as follows:
    (i) Section 3, Pertinent measurements, as specified in section 2.4.1 
of this appendix;
    (ii) Section 4, Electrical supply characteristics--test ballast 
measurement circuits, as specified in section 2.4.1 of this appendix; 
and
    (iii) Section 7, Test measurements circuits, as specified in 
sections 2.5.6, 2.5.7, and 2.5.8 of this appendix.
    (c) IEC 62301 as follows:
    (i) Section 5, Measurements, as specified in sections 3.4.3 and 
3.4.4 of this appendix.

                             1. Definitions

    1.1. Average total lamp arc power means the sample mean of the total 
lamp arc power of the ballast units tested.
    1.2. Dimming ballast means a ballast that is designed and marketed 
to vary its output and that can achieve an output less than or equal to 
50 percent of its maximum electrical output.
    1.3. High frequency ballast is as defined in ANSI C82.13 
(incorporated by reference; see Sec.  430.3).
    1.4. Instant-start is the starting method used in instant-start 
systems as defined in ANSI C82.13, as typically indicated on publicly 
available documents of a fluorescent lamp ballast (e.g., product 
literature, catalogs, and packaging labels).
    1.5. Low-frequency ballast is a fluorescent lamp ballast that 
operates at a supply frequency of 50 to 60 Hz and operates the lamp at 
the same frequency as the supply.
    1.6. Programmed-start is the starting method used in a programmed-
start system as defined in ANSI C82.13, as typically indicated on 
publicly available documents of a fluorescent lamp ballast (e.g., 
product literature, catalogs, and packaging labels).
    1.7. Rapid-start is the starting method used in rapid-start type 
systems as defined in ANSI C82.13, as typically indicated on publicly 
available documents of a fluorescent lamp ballast (e.g., product 
literature, catalogs, and packaging labels).
    1.8. Reference lamp is a fluorescent lamp that meets the operating 
conditions of a reference lamp as defined by ANSI C82.13.
    1.9. Residential ballast means a fluorescent lamp ballast that meets 
Federal Communications Commission (FCC) consumer limits as set forth in 
47 CFR part 18 and is designed and marketed for use only in residential 
applications.
    1.10. RMS is the root mean square of a varying quantity.
    1.11 Sign Ballast means a ballast that has an Underwriters 
Laboratories Inc. Type 2 rating and is designed and marketed for use 
only in outdoor signs.

     2. Active Mode Procedure for Measuring BLE at Full Light Output

    2.1. Where ANSI C82.2 (incorporated by reference; see Sec.  430.3) 
references ANSI C82.1, use ANSI C82.1 (incorporated by reference; see 
Sec.  430.3) for testing low-frequency ballasts and use ANSI C82.11 
(incorporated by reference; see Sec.  430.3) for testing high-frequency 
ballasts. In addition when applying ANSI C82.2, use the standards ANSI 
C78.375A, ANSI C78.81-2016, ANSI C82.1, ANSI C82.11, ANSI C82.13, ANSI 
C82.3, ANSI C82.77, and ANSI C78.901-2016 (incorporated by reference; 
see Sec.  430.3) instead of the normative references in ANSI 82.2. 
Specifications in referenced standards that are recommended, that 
``shall'' or ``should'' be met, or that are not clearly mandatory, are 
mandatory. In cases where there is a conflict between any industry 
standard(s) and this appendix, the language of the test procedure in 
this appendix takes precedence over the industry standard(s).

                            2.2. Instruments

    2.2.1. All instruments must meet the specifications of section 9 of 
ANSI C78.375A.
    2.2.2. Power Analyzer. In addition to the specifications in section 
9 of ANSI C78.375A, the power analyzer must have a maximum 100 pF 
capacitance to ground and frequency response between 40 Hz and 1 MHz.
    2.2.3. Current Probe. In addition to the specifications in section 9 
of ANSI C78.375A, the current probe must be galvanically isolated and 
have frequency response between 40 Hz and 20 MHz.

                             2.3. Test Setup

    2.3.1. Connect the ballast to a main power source and to the 
fluorescent lamp(s) as specified in this section. Ensure the ballast is 
connected to fluorescent lamp(s) according to any manufacturer's wiring 
instructions on or sold with each unit (including those provided 
online). To test a low-frequency ballast, follow ANSI C82.1 but 
disregard section 5.3 of ANSI C82.1. To test a high-frequency

[[Page 673]]

ballast, follow ANSI C82.11 but disregard sections 5.3.1 and 5.13 and 
Annex D of ANSI C82.11.
    2.3.2. In the test setup, all wires used in the apparatus, including 
any wires from the ballast to the lamps and from the lamps to the 
measuring devices, must meet the following specifications:
    2.3.2.1. Use the wires provided by the ballast manufacturer and only 
the minimum wire length necessary to reach both ends of each lamp. If 
the wire lengths supplied with the ballast are too short to reach both 
ends of each lamp, add the minimum additional wire length necessary to 
reach both ends of each lamp, using wire of the same wire gauge(s) as 
the wire supplied with the ballast. If no wiring is provided with the 
ballast, use 18 gauge or thicker wire.
    2.3.2.2. Keep wires loose. Do not shorten or allow bundling of any 
wires. Separate all wires from each other, and ground them to prevent 
parasitic capacitance.
    2.3.3. Test each ballast with only one fluorescent lamp type. Select 
the one type of fluorescent lamp for testing as follows:
    2.3.3.1. Each fluorescent lamp must meet the specifications of a 
reference lamp as defined by ANSI C82.13, be seasoned at least 12 hours, 
and be stabilized as specified in 2.5.2.1 of this appendix. Test each 
reference lamp with a reference ballast that meets the criteria of ANSI 
C82.3. For low frequency ballasts that operate:
    (a) 32 W 4-foot medium bipin T8 lamps, use the following reference 
lamp specifications: 30.8 W, arc wattage; 1.7 W, approximate cathode 
wattage (with 3.6 V on each cathode); 32.5 W, total wattage; 137 V, 
voltage; 0.265 A, current. Test the selected reference lamp with the 
following reference ballast specifications: 300 V, rated input voltage; 
0.265 A, reference current; 910 ohms, impedance. Use the following 
cathode heat requirements for rapid start: 3.6 V nominal, voltage; 2.5 V 
min, 4.4 V max, limits during operation; 11.0 ohms  0.1 ohms, dummy load resistor; 3.4 V min, 4.5 V max, 
voltage across dummy load.
    (b) 59 W 8-foot single pin T8 lamps, use the following reference 
lamp specifications: 60.1 W, arc wattage; 270.3 V, voltage; 0.262 A, 
current. Test the selected reference lamp with the following reference 
ballast specifications: 625 V, rated input voltage; 0.260 A, reference 
current; 1960 ohms, impedance.
    (c) 32 W 2-foot U-shaped medium bipin T8 lamps, use the following 
reference lamp specifications: 30.5 W, arc wattage; 1.7 W, approximate 
cathode wattage (with 3.6 V on each cathode); 32.2 W, total wattage; 137 
V, voltage; 0.265 A, current. Test the selected reference lamp with the 
following reference ballast specifications: 300 V, rated input voltage; 
0.265 A, reference current; 910 ohms, impedance. Use the following 
cathode heat requirements for rapid start: 3.6 V nominal, voltage; 2.5 V 
min, 4.4 V max, limits during operation; 11.0 ohms  0.1 ohms, dummy load resistor; 3.4 V min, 4.5 V max, 
voltage across dummy load.
    2.3.3.2 For any sign ballast designed and marketed to operate both 
T8 and T12 lamps, use a T12 lamp as specified in Table 1 of this 
appendix.
    2.3.3.3. For any ballast designed and marketed to operate lamps of 
multiple base types, select lamp(s) of one base type, in the following 
order of decreasing preference: Medium bipin, miniature bipin, single 
pin, or recessed double contact.
    2.3.3.4. After selecting the base type (per section 2.3.3.3), select 
the diameter of the reference lamp. Any ballast designed and marketed to 
operate lamps of multiple diameters, except for any sign ballast capable 
of operating both T8 and T12 lamps, must be tested with lamps of one of 
those diameters, selected in the following order of decreasing 
preference: T8, T5, or T12.
    2.3.3.5. Connect the ballast to the maximum number of lamps (lamp 
type as determined by 2.3.3.2, 2.3.3.3, and 2.3.3.4 of this section) the 
ballast is designed and marketed to operate simultaneously.
    For any ballast designed and marketed to operate both 4-foot medium 
bipin lamps and 2-foot U-shaped lamps, test with the maximum number of 
4-foot medium bipin lamp(s).
    2.3.3.6. Test each ballast with the lamp type specified in Table A 
of this section that corresponds to the lamp diameter and base type the 
ballast is designed and marketed to operate.

             Table 1 to Section 2.3.3.6--Lamp-and-Ballast Pairings and Frequency Adjustment Factors
----------------------------------------------------------------------------------------------------------------
                                                        Lamp type                   Frequency adjustment factor
                                       ------------------------------------------            ([beta])
             Ballast type                                                        -------------------------------
                                         Lamp diameter and base    Nominal lamp                        High-
                                                                      wattage     Low- frequency     frequency
----------------------------------------------------------------------------------------------------------------
Ballasts that operate straight-shaped   T8 MBP (Data Sheet 7881-              32            0.94             1.0
 lamps (commonly referred to as 4-foot   ANSI-1005-4) *.                      34            0.93             1.0
 medium bipin lamps) with medium bipin  T12 MBP (Data Sheet 7881-
 bases and a nominal overall length of   ANSI-1006-1) *.
 48 inches.

[[Page 674]]

 
Ballasts that operate U-shaped lamps    T8 MBP (Data Sheet 78901-             32            0.94             1.0
 (commonly referred to as 2-foot U-      ANSI-4027-2) *.                      34            0.93             1.0
 shaped lamps) with medium bipin bases  T12 MBP **..............
 and a nominal overall length between
 22 and 25 inches.
Ballasts that operate lamps (commonly   T8 HO RDC (Data Sheet                 86            0.92             1.0
 referred to as 8-foot-high output       7881-ANSI-1501-2) *.                 95            0.94             1.0
 lamps) with recessed double contact    T12 HO RDC (Data Sheet
 bases and a nominal overall length of   7881-ANSI-1017-1) *.
 96 inches.
Ballasts that operate lamps (commonly   T8 slimline SP (Data                  59            0.95             1.0
 referred to as 8-foot slimline lamps)   Sheet 7881-ANSI-1505-1)              60            0.94             1.0
 with single pin bases and a nominal     *.
 overall length of 96 inches.           T12 slimline SP (Data
                                         Sheet 7881-ANSI-3006-1)
                                         *.
Ballasts that operate straight-shaped   T5 SO Mini-BP (Data                   28            0.95             1.0
 lamps (commonly referred to as 4-foot   Sheet 60081-IEC-6640-7)
 miniature bipin standard output         *.
 lamps) with miniature bipin bases and
 a nominal length between 45 and 48
 inches.
Ballasts that operate straight-shaped   T5 HO Mini-BP (Data                   54            0.95             1.0
 lamps (commonly referred to as 4-foot   Sheet 60081-IEC-6840-6)
 miniature bipin high output lamps)      *.
 with miniature bipin bases and a
 nominal length between 45 and 48
 inches.
Sign ballasts that operate lamps        T8 HO RDC (Data Sheet                 86            0.92             1.0
 (commonly referred to as 8-foot high    7881-ANSI-1501-2) *.       [dagger] 110            0.94             1.0
 output lamps) with recessed double     T12 HO RDC (Data Sheet
 contact bases and a nominal overall     7881-ANSI-1019-1) *.
 length of 96 inches.
----------------------------------------------------------------------------------------------------------------
MBP, Mini-BP, RDC, and SP represent medium bipin, miniature bipin, recessed double contact, and single pin,
  respectively.
* Data Sheet corresponds to ANSI C78.81-2016, ANSI C78.901-2016, or IEC 60081 page number (incorporated by
  reference; see Sec.   430.3).
** No ANSI or IEC Data Sheet exists for 34 W T12 MBP U-shaped lamps. For ballasts designed and marketed to
  operate only T12 2-foot U-shaped lamps with MBP bases and a nominal overall length between 22 and 25 inches,
  select T12 U-shaped lamps designed and marketed as having a nominal wattage of 34 W.
[dagger] This lamp type is commonly marketed as 110 W; however, the ANSI C78.81-2016 Data Sheet (incorporated by
  reference; see Sec.   430.3) lists nominal wattage of 113 W. Test with specifications for operation at 0.800
  amperes (A).

                          2.3.4. Test Circuits

    2.3.4.1. The power analyzer test setup must have exactly n + 1 
channels, where n is the maximum number of lamps (lamp type as 
determined by sections 2.3.3.2, 2.3.3.3, and 2.3.3.4 of this appendix) a 
ballast is designed and marketed to operate. Use the minimum number of 
power analyzers possible during testing. Synchronize all power 
analyzers. A system may be used to synchronize the power analyzers.
    2.3.4.2. Lamp Arc Voltage. Attach leads from the power analyzer to 
each fluorescent lamp according to Figure 1 of this section for rapid- 
and programmed-start ballasts; Figure 2 of this section for instant-
start ballasts operating single pin (SP) lamps; and Figure 3 of this 
section for instant-start ballasts operating medium bipin (MBP), 
miniature bipin (mini-BP), or recessed double contact (RDC) lamps. The 
programmed- and rapid-start ballast test setup includes two 1000 ohm 
resistors placed in parallel with the lamp pins to create a midpoint 
from which to measure lamp arc voltage.
    2.3.4.3. Lamp Arc Current. Position a current probe on each 
fluorescent lamp according to Figure 1 of this section for rapid- and 
programmed-start ballasts; Figure 2 of this section for instant-start 
ballasts operating SP lamps; and Figure 3 of this section for instant-
start ballasts operating MBP, mini-BP, and RDC lamps.
    For the lamp arc current measurement, set the full transducer ratio 
in the power analyzer to match the current probe to the power analyzer.

[[Page 675]]

[GRAPHIC] [TIFF OMITTED] TR14SE20.006

Where: Iin is the current through the current transducer, 
          Vout is the voltage out of the transducer, 
          Rin is the power analyzer impedance, and 
          Rs is the current probe output impedance.
          [GRAPHIC] [TIFF OMITTED] TR14SE20.007
          
                          2.4. Test Conditions

    2.4.1. Establish and maintain test conditions for testing 
fluorescent lamp ballasts in accordance with sections 3 and 4 of ANSI 
C82.2.
    2.4.2. Room Temperature and Air Circulation. Maintain the test area 
at 25 1 [deg]C, with minimal air movement as 
defined in section 4 of ANSI C78.375A.
    2.4.3. Input Voltage. For any ballast designed and marketed for 
operation at only

[[Page 676]]

one input voltage, test at that specified voltage. For any ballast that 
is neither a residential ballast nor a sign ballast but is designed and 
marketed for operation at multiple voltages, test the ballast at 277 V 
0.1%. For any residential ballast or sign ballast 
designed and marketed for operation at multiple voltages, test the 
ballast at 120 V 0.1%.

                            2.5. Test Method

    2.5.1. Connect the ballast to the selected fluorescent lamps (as 
determined in section 2.3.3 of this appendix) and to measurement 
instrumentation as specified in the Test Setup in section 2.3 of this 
appendix.
    2.5.2. Determine stable operating conditions according to Option 1 
or Option 2.
    2.5.2.1. Option 1. Operate the ballast for at least 15 minutes 
before determining stable operating conditions. Determine stable 
operating conditions by measuring lamp arc voltage, current, and power 
once per minute in accordance with the setup described in section 2.3 of 
this appendix. The system is stable once the difference between the 
maximum and minimum for each value of lamp arc voltage, current, and 
power divided by the average value of the measurements do not exceed one 
percent over a four minute moving window. Once stable operating 
conditions are reached, measure each of the parameters described in 
sections 2.5.3 through 2.5.9 of this appendix.
    2.5.2.2 Option 2. Determine stable operating conditions for lamp arc 
voltage, current, and power according to steps 1 through 6 of section 
D.2.1 in Annex D of ANSI C82.11.
    2.5.3. Lamp Arc Voltage. Measure lamp arc voltage in volts (RMS) 
using the setup in section 2.3.4.2.
    2.5.4. Lamp Arc Current. Measure lamp arc current in amps (RMS) 
using the setup in section 2.3.4.3 of this appendix.
    2.5.5. Lamp Arc Power. The power analyzer must calculate output 
power by using the measurements from sections 2.5.3 and 2.5.4 of this 
appendix.
    2.5.6. Input Power. Measure the input power in watts to the ballast 
in accordance with section 7 of ANSI C82.2 (disregard references to 
Figure 1 and Figure 3).
    2.5.7. Input Voltage. Measure the input voltage in volts (RMS) to 
the ballast in accordance with section 7 of ANSI C82.2 (disregard 
references to Figure 1 and Figure 3).
    2.5.8. Input Current. Measure the input current in amps (RMS) to the 
ballast in accordance with section 7 of ANSI C82.2 (disregard references 
to Figure 1 and Figure 3).
    2.5.9. Lamp Operating Frequency. Measure the frequency of the 
waveform delivered from the ballast to any lamp used in the test in 
accordance with the setup in section 2.3 of this appendix.

                            2.6. Calculations

    2.6.1. Calculate ballast luminous efficiency (BLE) as follows (do 
not round values of total lamp arc power and input power prior to 
calculation):
[GRAPHIC] [TIFF OMITTED] TR14SE20.008

Where: Total Lamp Arc Power is the sum of the lamp arc powers for all 
          lamps operated by the ballast as measured in section 2.5.5 of 
          this appendix, Input Power is as determined by section 2.5.6 
          of this appendix, and [beta] is equal to the frequency 
          adjustment factor in Table 1 of this appendix.

    2.6.2. Calculate Power Factor (PF) as follows (do not round values 
of input power, input voltage, and input current prior to calculation):
[GRAPHIC] [TIFF OMITTED] TR14SE20.009

Where: Input Power is measured in accordance with section 2.5.6 of this 
          appendix, Input Voltage is measured in accordance with section 
          2.5.7 of this appendix, and Input Current is measured in 
          accordance with section 2.5.8 of this appendix.

                        3. Standby Mode Procedure

    3.1. The measurement of standby mode power is required to be 
performed only if a manufacturer makes any representations with respect 
to the standby mode power use of the fluorescent lamp ballast. When 
there

[[Page 677]]

is a conflict, the language of the test procedure in this appendix takes 
precedence over IEC 62301 (incorporated by reference; see Sec.  430.3). 
Specifications in referenced standards that are not clearly mandatory 
are mandatory. Manufacturer's instructions, such as ``instructions for 
use'' referenced in IEC 62301 mean the manufacturer's instructions that 
come packaged with or appear on the unit, including on a label. It may 
include an online manual if specifically referenced (e.g., by date or 
version number) either on a label or in the packaged instructions. 
Instructions that appear on the unit take precedence over instructions 
available electronically, such as through the internet.

                             3.2. Test Setup

    3.2.1. Take all measurements with instruments as specified in 
section 2.2 of this appendix. Fluorescent lamp ballasts that are 
designed and marketed for connection to control devices must be tested 
with all commercially available compatible control devices connected in 
all possible configurations. For each configuration, a separate 
measurement of standby power must be made in accordance with section 3.4 
of this appendix.
    3.2.2. Connect each ballast to the maximum number of lamp(s) as 
specified in section 2.3 (specifications in 2.3.3.1 are optional) of 
this appendix. Note: ballast operation with reference lamp(s) is not 
required.

                          3.3. Test Conditions

    3.3.1. Establish and maintain test conditions in accordance with 
section 2.4 of this appendix.

                    3.4. Test Method and Measurements

    3.4.1. Turn on all of the lamps at full light output.
    3.4.2. Send a signal to the ballast instructing it to have zero 
light output using the appropriate ballast communication protocol or 
system for the ballast being tested.
    3.4.3. Stabilize the ballast prior to measurement using one of the 
methods as specified in section 5 of IEC 62301.
    3.4.4. Measure the standby mode energy consumption in watts using 
one of the methods as specified in section 5 of IEC 62301.

[85 FR 56494, Sept. 14, 2020]



   Sec. Appendix R to Subpart B of Part 430--Uniform Test Method for 
 Measuring Average Lamp Efficacy (LE), Color Rendering Index (CRI), and 
          Correlated Color Temperature (CCT) of Electric Lamps

    1. Scope: This appendix applies to the measurement of lamp lumens, 
electrical characteristics, CRI, and CCT for general service fluorescent 
lamps, and to the measurement of lamp lumens, electrical characteristics 
for general service incandescent lamps and incandescent reflector lamps.
    2. Definitions
    2.1 To the extent that definitions in the referenced IESNA and CIE 
standards do not conflict with the DOE definitions, the definitions 
specified in section 3.0 of IES LM-9 (incorporated by reference; see 
Sec.  430.3), section 3.0 of IESNA LM-20 (incorporated by reference; see 
Sec.  430.3), section 3.0 and the Glossary of IES LM-45 (incorporated by 
reference; see Sec.  430.3), section 2 of IESNA LM-58 (incorporated by 
reference; see Sec.  430.3), and Appendix 1 of CIE 13.3 (incorporated by 
reference; see Sec.  430.3) shall be included.
2.2 ANSI Standard means a standard developed by a committee accredited 
by the American National Standards Institute (ANSI).
    2.3 CIE means the International Commission on Illumination.
    2.4 CRI means Color Rendering Index as defined in Sec.  430.2.
    2.5 IESNA means the Illuminating Engineering Society of North 
America.
    2.6 Lamp efficacy means the ratio of measured lamp lumen output in 
lumens to the measured lamp electrical power input in watts, rounded to 
the nearest tenth, in units of lumens per watt.
    2.7 Lamp lumen output means the total luminous flux produced by the 
lamp, at the reference condition, in units of lumens.
    2.8 Lamp electrical power input means the total electrical power 
input to the lamp, including both arc and cathode power where 
appropriate, at the reference condition, in units of watts.
    2.9 Reference condition means the test condition specified in IES 
LM-9 for general service fluorescent lamps, in IESNA LM-20 for 
incandescent reflector lamps, and in IES LM-45 for general service 
incandescent lamps.

                           3. Test Conditions

    3.1 General Service Fluorescent Lamps: For general service 
fluorescent lamps, the ambient conditions of the test and the electrical 
circuits, reference ballasts, stabilization requirements, instruments, 
detectors, and photometric test procedure and test report shall be as 
described in the relevant sections of IES LM-9 (incorporated by 
reference; see Sec.  430.3).
    3.2 General Service Incandescent Lamps: For general service 
incandescent lamps, the selection and seasoning (initial burn-in) of the 
test lamps, the equipment and instrumentation, and the test conditions 
shall be as described in IES LM-45 (incorporated by reference; see Sec.  
430.3).
    3.3 Incandescent Reflector Lamps: For incandescent reflector lamps, 
the selection and

[[Page 678]]

seasoning (initial burn-in) of the test lamps, the equipment and 
instrumentation, and the test conditions shall conform to sections 4.2 
and 5.0 of IESNA LM-20 (incorporated by reference; see Sec.  430.3).

                    4. Test Methods and Measurements

    All lumen measurements made with instruments calibrated to the 
devalued NIST lumen after January 1, 1996, shall be multiplied by 1.011.
    4.1 General Service Fluorescent Lamps
    4.1.1 The measurement procedure shall be as described in IES LM-9 
(incorporated by reference; see Sec.  430.3), except that lamps shall be 
operated at the appropriate voltage and current conditions as described 
in ANSI C78.375 (incorporated by reference; see Sec.  430.3) and in ANSI 
C78.81 (incorporated by reference; see Sec.  430.3) or ANSI C78.901 
(incorporated by reference; see Sec.  430.3), and lamps shall be 
operated using the appropriate reference ballast at input voltage 
specified by the reference circuit as described in ANSI C82.3 
(incorporated by reference; see Sec.  430.3). If, for a lamp, both low-
frequency and high-frequency reference ballast settings are included in 
ANSI C78.81 or ANSI C78.901, the lamp shall be operated using the low-
frequency reference ballast.
    4.1.2 For lamps not listed in ANSI C78.81 (incorporated by 
reference; see Sec.  430.3) nor in ANSI C78.901 (incorporated by 
reference; see Sec.  430.3), the lamp shall be operated using the 
following reference ballast settings:
    4.1.2.1 4-Foot medium bi-pin lamps shall be operated using the 
following reference ballast settings: T10 or T12 lamps are to use 236 
volts, 0.43 amps, and 439 ohms; T8 lamps are to use 300 volts, 0.265 
amps, and 910 ohms.
    4.1.2.2 2-Foot U-shaped lamps shall be operated using the following 
reference ballast settings: T12 lamps are to use 236 volts, 0.430 amps, 
and 439 ohms; T8 lamps are to use 300 volts, 0.265 amps, and 910 ohms.
    4.1.2.3 8-foot slimline lamps shall be operated using the following 
reference ballast settings:
    (a) T12 lamps: 625 volts, 0.425 amps, and 1280 ohms.
    (b) T8 lamps: 625 volts, 0.260 amps, and 1960 ohms.
    4.1.2.4 8-foot high output lamps shall be operated using the 
following reference ballast settings:
    (a) T12 lamps: 400 volts, 0.800 amps, and 415 ohms.
    (b) T8 lamps: 450 volts, 0.395 amps, and 595 ohms.
    4.1.2.5 4-foot miniature bipin standard output or high output lamps 
shall be operated using the following reference ballast settings:
    (a) Standard Output: 329 volts, 0.170 amps, and 950 ohms.
    (b) High Output: 235 volts, 0.460 amps, and 255 ohms.
    4.1.3 Lamp lumen output (lumens) and lamp electrical power input 
(watts), at the reference condition, shall be measured and recorded. 
Lamp efficacy shall be determined by computing the ratio of the measured 
lamp lumen output and lamp electrical power input at equilibrium for the 
reference condition.
    4.2 General Service Incandescent Lamps
    4.2.1 The measurement procedure shall be as described in IES LM-45 
(incorporated by reference; see Sec.  430.3). Lamps shall be operated at 
the rated voltage as defined in Sec.  430.2.
    4.2.2 The test procedure shall conform to sections 6 and 7 of IES 
LM-45, and the lumen output of the lamp shall be determined in 
accordance with section 7 of IES LM-45. Lamp electrical power input in 
watts shall be measured and recorded. Lamp efficacy shall be determined 
by computing the ratio of the measured lamp lumen output and lamp 
electrical power input at equilibrium for the reference condition. The 
test report shall conform to section 8 of IES LM-45.
    4.2.3 The measurement procedure for testing the lifetime of general 
service incandescent lamps shall be as described in IESNA LM-49 
(incorporated by reference; see Sec.  430.3). The lifetime measurement 
shall be taken by measuring the operating time of a lamp, expressed in 
hours, not including any off time. The percentage of the sample size 
that meets the minimum rated lifetime shall be recorded. The lamp shall 
be deemed to meet minimum rated lifetime standards if greater than 50 
percent of the sample size specified in Sec.  429.27 meets the minimum 
rated lifetime.
    4.2.3.1 Accelerated lifetime testing is not allowed. The second 
paragraph of section 6.1 of IESNA LM-49 is to be disregarded.
    4.3 Incandescent Reflector Lamps
    4.3.1 The measurement procedure shall be as described in IESNA LM-20 
(see 10 CFR 430.22). Lamps shall be operated at the rated voltage as 
defined in Sec.  430.2.
    4.3.2. Lamp lumen output shall be determined as total forward 
lumens, and may be measured in an integrating sphere at the reference 
condition in accordance with Sec.  7.2 of IESNA LM-20 (incorporated by 
reference; see Sec.  430.3) or from an average intensity distribution 
curve measured at the reference condition specified in Sec.  6.0 of 
IESNA LM-20. Lamp electrical power input in watts shall be measured and 
recorded.
    4.3.3 Lamp efficacy shall be determined by computing the ratio of 
the measured lamp lumen output and lamp electrical power input at 
equilibrium for the reference condition. The test report shall conform 
to section 10.0 of IES LM-20 (incorporated by reference; see Sec.  
430.3).
    4.4 Determination of Color Rendering Index and Correlated Color 
Temperature

    4.4.1 The CRI shall be determined in accordance with the method 
specified in CIE 13.3 (incorporated by reference; see Sec.  430.3) for

[[Page 679]]

general service fluorescent lamps. The CCT shall be determined in 
accordance with the method specified in IES LM-9 (incorporated by 
reference; see Sec.  430.3) and rounded to the nearest 10 kelvin for 
general service fluorescent lamps. The CCT shall be determined in 
accordance with the CIE 15 (incorporated by reference; see Sec.  430.3) 
for incandescent lamps. The required spectroradiometric measurement and 
characterization shall be conducted in accordance with the methods set 
forth in IESNA LM-58 (incorporated by reference; see Sec.  430.3).
    4.4.2 The test report shall include a description of the test 
conditions, equipment, measured lamps, spectroradiometric measurement 
results, and CRI and CCT determinations.

[62 FR 29240, May 29, 1997, as amended at 74 FR 34177, July 14, 2009; 77 
FR 4217, Jan. 27, 2012]



   Sec. Appendix S to Subpart B of Part 430--Uniform Test Method for 
       Measuring the Water Consumption of Faucets and Showerheads

    Note: After April 21, 2014, any representations made with respect to 
the water consumption of showerheads or faucets must be made in 
accordance with the results of testing pursuant to this appendix.
    Manufacturers conducting tests of showerheads or faucets November 
22, 2013 and prior to April 21, 2014, must conduct such test in 
accordance with either this appendix or appendix S as it appeared at 10 
CFR part 430, subpart B, appendix S, in the 10 CFR parts 200 to 499 
edition revised as of January 1, 2013. Any representations made with 
respect to the water consumption of such showerheads or faucets must be 
in accordance with whichever version is selected. Given that after April 
21, 2014 representations with respect to the water consumption of 
showerheads and faucets must be made in accordance with tests conducted 
pursuant to this appendix, manufacturers may wish to begin using this 
test procedure as soon as possible.
    1. Scope: This appendix covers the test requirements used to measure 
the hydraulic performance of faucets and showerheads.

                      2. Flow Capacity Requirements

    a. Faucets--The test procedures to measure the water flow rate for 
faucets, expressed in gallons per minute (gpm) and liters per minute (L/
min), or gallons per cycle (gal/cycle) and liters per cycle (L/cycle), 
shall be conducted in accordance with the test requirements specified in 
section 5.4, Flow Rate, of ASME A112.18.1-2012 (incorporated by 
reference, see Sec.  430.3). Measurements shall be recorded at the 
resolution of the test instrumentation. Calculations shall be rounded 
off to the same number of significant digits as the previous step. The 
final water consumption value shall be rounded to one decimal place for 
non-metered faucets, or two decimal places for metered faucets.
    b. Showerheads--The test procedures to measure the water flow rate 
for showerheads, expressed in gallons per minute (gpm) and liters per 
minute (L/min), shall be conducted in accordance with the test 
requirements specified in section 5.4, Flow Rate, of the ASME A112.18.1-
2012 (incorporated by reference, see Sec.  430.3). Measurements shall be 
recorded at the resolution of the test instrumentation. Calculations 
shall be rounded off to the same number of significant digits as the 
previous step. The final water consumption value shall be rounded to one 
decimal place. If the time/volume method of section 5.4.2.2(d) is used, 
the container must be positioned as to collect all water flowing from 
the showerhead, including any leakage from the ball joint.

[63 FR 13316, Mar. 18, 1998, as amended at 78 FR 62986, Oct. 23, 2013]



   Sec. Appendix T to Subpart B of Part 430--Uniform Test Method for 
      Measuring the Water Consumption of Water Closets and Urinals

    Note: After April 21, 2014, any representations made with respect to 
the water consumption of water closets or urinals must be made in 
accordance with the results of testing pursuant to this appendix.
    Manufacturers conducting tests of water closets or urinals after 
November 22, 2013 and prior to April 21, 2014, must conduct such test in 
accordance with either this appendix or appendix T as it appeared at 10 
CFR part 430, subpart B, appendix S, in the 10 CFR parts 200 to 499 
edition revised as of January 1, 2013. Any representations made with 
respect to the water consumption of such water closets or urinals must 
be in accordance with whichever version is selected. Given that after 
April 21, 2014 representations with respect to the water consumption of 
water closets and urinals must be made in accordance with tests 
conducted pursuant to this appendix, manufacturers may wish to begin 
using this test procedure as soon as possible.
    1. Scope: This appendix covers the test requirements used to measure 
the hydraulic performances of water closets and urinals.

               2. Test Apparatus and General Instructions

    a. The test apparatus and instructions for testing water closets 
shall conform to the requirements specified in section 7.1, General, 
subsections 7.1.1, 7.1.2, 7.1.3, 7.1.4, and 7.1.5 of


[[Page 680]]

ASME A112.19.2-2008 (incorporated by reference, see Sec.  430.3). The 
flushometer valve used in the water consumption test shall represent the 
maximum design flush volume of the water closet. Measurements shall be 
recorded at the resolution of the test instrumentation. Calculations of 
water consumption for each tested unit shall be rounded off to the same 
number of significant digits as the previous step.
    b. The test apparatus and instructions for testing urinals shall 
conform to the requirements specified in section 8.2, Test Apparatus and 
General Instructions, subsections 8.2.1, 8.2.2, and 8.2.3 of ASME 
A112.19.2-2008 (incorporated by reference, see Sec.  430.3). The 
flushometer valve used in the water consumption test shall represent the 
maximum design flush volume of the urinal. Measurements shall be 
recorded at the resolution of the test instrumentation. Calculations of 
water consumption for each tested unit shall be rounded off to the same 
number of significant digits as the previous step.

                           3. Test Measurement

    a. Water closets:
    (i) The measurement of the water flush volume for water closets, 
expressed in gallons per flush (gpf) and liters per flush (Lpf), shall 
be conducted in accordance with the test requirements specified in 
section 7.4, Water Consumption Test, of ASME A112.19.2-2008 
(incorporated by reference, see Sec.  430.3). For dual-flush water 
closets, the measurement of the water flush volume shall be conducted 
separately for the full-flush and reduced-flush modes and in accordance 
with the test requirements specified section 7.4, Water Consumption 
Test, of ASME A112.19.2-2008.
    (ii) Static pressure requirements: The water consumption tests of 
siphonic and blowout water closets shall be conducted at two static 
pressures. For flushometer valve water closets with a siphonic bowl, the 
test pressures shall be 80 psi and 35 psi. For flushometer valve water 
closets with a blowout bowl, the test pressures shall be 80 psi and 45 
psi. The test shall be run three times at each pressure as specified in 
section 7.4.3 ``Procedure,'' of ASME A112.19.2-2008 (incorporated by 
reference, see Sec.  430.3). The final measured flush volume for each 
tested unit shall be the average of the total flush volumes recorded at 
each test pressure as specified in section 7.4.5 ``Performance,'' of 
ASME A112.19.2-2008.
    (iii) Flush volume and tank trim component adjustments: For gravity 
flush tank water closets, trim components that can be adjusted to cause 
an increase in flush volume, including (but not limited to) the flapper 
valve, fill valve, and tank water level, shall be set in accordance with 
the printed installation instructions supplied by the manufacturer. If 
the installation instructions for the model to be tested do not specify 
trim setting adjustments, these trim components shall be adjusted to the 
maximum water use setting so that the maximum flush volume is produced 
without causing the water closet to malfunction or leak. The water level 
in the tank shall be set to the maximum water line designated in the 
printed installation instructions supplied by the manufacturer or the 
designated water line on the tank itself, whichever is higher. If the 
printed installation instructions or the water closet tank do not 
indicate a water level, the water level shall be adjusted to 10.1 inches below the top of the overflow tube or 10.1 inches below the top rim of the water-containing 
vessel (for gravity flush tank water closets that do not contain an 
overflow tube) for each designated pressure specified in Table 5 of ASME 
A112.19.2-2008 (incorporated by reference, see Sec.  430.3).
    b. Urinals--The measurement of water flush volume for urinals, 
expressed in gallons per flush (gpf) and liters per flush (Lpf), shall 
be conducted in accordance with the test requirements specified in 
section 8.6, Water Consumption Test, of ASME A112.19.2-2008 
(incorporated by reference, see Sec.  430.3). The final measured flush 
volume for each tested unit shall be the average of the total flush 
volumes recorded at each test pressure as specified in section 8.6.4 
``Performance,'' of ASME A112.19.2-2008.

[63 FR 13317, Mar. 18, 1998, as amended at 78 FR 62987, Oct. 23, 2013]



   Sec. Appendix U to Subpart B of Part 430--Uniform Test Method for 
            Measuring the Energy Consumption of Ceiling Fans

    Prior to January 23, 2017, manufacturers must make any 
representations with respect to the energy use or efficiency of ceiling 
fans as specified in Section 2 of this appendix (other than hugger 
ceiling fans, multi-mount ceiling fans in the hugger configuration, and 
large-diameter ceiling fans) in accordance with the results of testing 
pursuant either to this appendix, or to the applicable test requirements 
set forth in 10 CFR parts 429 and 430, as they appeared in the 10 CFR 
parts 200 to 499 edition revised as of January 1, 2016. On or after 
January 23, 2017, manufacturers of ceiling fans, as specified in Section 
2 of this appendix, must make any representations with respect to energy 
use or efficiency in accordance with the results of testing pursuant to 
this appendix.
    1. Definitions:
    1.1. 20% speed means the ceiling fan speed at which the blade RPM 
are measured to be 20% of the blade RPM measured at high speed.
    1.2. 40% speed means the ceiling fan speed at which the blade RPM 
are measured to be

[[Page 681]]

40% of the blade RPM measured at high speed.
    1.3. 60% speed means the ceiling fan speed at which the blade RPM 
are measured to be 60% of the blade RPM measured at high speed.
    1.4. 80% speed means the ceiling fan speed at which the blade RPM 
are measured to be 80% of the blade RPM measured at high speed.
    1.5. Airflow means the rate of air movement at a specific fan-speed 
setting expressed in cubic feet per minute (CFM).
    1.6. Belt-driven ceiling fan means a ceiling fan with a series of 
one or more fan heads, each driven by a belt connected to one or more 
motors that are located outside of the fan head.
    1.7. Blade span means the diameter of the largest circle swept by 
any part of the fan blade assembly, including any blade attachments.
    1.8. Ceiling fan efficiency means the ratio of the total airflow to 
the total power consumption, in units of cubic feet per minute per watt 
(CFM/W).
    1.9. Centrifugal ceiling fan means a ceiling fan for which the 
primary airflow direction is in the same plane as the rotation of the 
fan blades.
    1.10. High speed means the highest available ceiling fan speed, 
i.e., the fan speed corresponding to the maximum blade revolutions per 
minute (RPM).
    1.11. High-speed small-diameter ceiling fan means a small-diameter 
ceiling fan that is not a very-small-diameter ceiling fan, highly-
decorative ceiling fan or belt-driven ceiling fan and that has a blade 
thickness of less than 3.2 mm at the edge or a maximum tip speed greater 
than the applicable limit specified in the table in this definition.

                       High-Speed Small-Diameter Ceiling Fan Blade and Tip Speed Criteria
----------------------------------------------------------------------------------------------------------------
                                                     Thickness (t) of edges of          Tip speed threshold
                                                              blades             -------------------------------
                Airflow direction                --------------------------------                    feet per
                                                        Mm             inch             m/s           minute
----------------------------------------------------------------------------------------------------------------
Downward-only...................................    4.8  t  t = 3.2        eq>= 1/8
Downward-only...................................  t =  t =            20.3           4,000
                                                             4.8            3/16
Reversible......................................    4.8  t  t = 3.2        eq>= 1/8
Reversible......................................  t =  t =            16.3           3,200
                                                             4.8            3/16
----------------------------------------------------------------------------------------------------------------

    1.12. Highly-decorative ceiling fan means a ceiling with a maximum 
rotational speed of 90 RPM and less than 1,840 CFM airflow at high 
speed, as determined by sections 3 and 4 of this appendix.
    1.13. Hugger ceiling fan means a low-speed small-diameter ceiling 
fan that is not a very-small-diameter ceiling fan, highly-decorative 
ceiling fan or belt-driven ceiling fan; for which the lowest point on 
the fan blades is less than or equal to 10 inches from the ceiling.
    1.14. Large-diameter ceiling fan means a ceiling fan that is greater 
than seven feet in diameter.
    1.15. Low speed means the lowest available ceiling fan speed, i.e., 
the fan speed corresponding to the minimum, non-zero, blade RPM.
    1.16. Low-speed small-diameter ceiling fan means a small-diameter 
ceiling fan that has a blade thickness greater than or equal to 3.2 mm 
at the edge and a maximum tip speed less than or equal to the applicable 
limit specified in the table in this definition.

                        Low-Speed Small-Diameter Ceiling Fan Blade and Tip Speed Criteria
----------------------------------------------------------------------------------------------------------------
                                                     Thickness (t) of edges of          Tip speed threshold
                                                              blades             -------------------------------
                Airflow direction                --------------------------------                    feet per
                                                        Mm             inch             m/s           minute
----------------------------------------------------------------------------------------------------------------
Reversible......................................    4.8  t  t = 3.2        eq>= 1/8
Reversible......................................  t =  t =            16.3           3,200
                                                             4.8            3/16
----------------------------------------------------------------------------------------------------------------

    1.17. Multi-head ceiling fan means a ceiling fan with more than one 
fan head, i.e., more than one set of rotating fan blades.
    1.18. Multi-mount ceiling fan means a low-speed small-diameter 
ceiling fan that can be mounted in the configurations associated with 
both the standard and hugger ceiling fans.
    1.19. Oscillating ceiling fan means a ceiling fan containing one or 
more fan heads for which the axis of rotation of the fan blades cannot 
remain in a fixed position relative to the ceiling. Such fans have no 
inherent means by which to disable the oscillating function separate 
from the fan blade rotation.

[[Page 682]]

    1.20. Small-diameter ceiling fan means a ceiling fan that is less 
than or equal to seven feet in diameter.
    1.21. Standard ceiling fan means a low-speed small-diameter ceiling 
fan that is not a very-small-diameter ceiling fan, highly-decorative 
ceiling fan or belt-driven ceiling fan; for which the lowest point on 
fan blades is greater than 10 inches from the ceiling.
    1.22. Total airflow means the sum of the product of airflow and 
hours of operation at all tested speeds. For multi-head fans, this 
includes the airflow from all fan heads.
    1.23. Very-small-diameter ceiling fan means a small-diameter ceiling 
fan that is not a highly-decorative ceiling fan or belt-driven ceiling 
fan; and has one or more fan heads, each of which has a blade span of 18 
inches or less.
    2. Scope:
    The provisions in this appendix apply to ceiling fans except:
    (1) Ceiling fans where the plane of rotation of a ceiling fan's 
blades is not less than or equal to 45 degrees from horizontal, or 
cannot be adjusted based on the manufacturer's specifications to be less 
than or equal to 45 degrees from horizontal;
    (2) Centrifugal ceiling fans;
    (3) Belt-driven ceiling fans; and
    (4) Oscillating ceiling fans.
    3. General Instructions, Test Apparatus, and Test Measurement:
    The test apparatus and test measurement used to determine energy 
performance depend on the ceiling fan's blade span. For each tested 
ceiling fan, measure the lateral distance from the center of the axis of 
rotation of the fan blades to the furthest fan blade edge from the 
center of the axis of rotation, and multiply this distance by two. The 
blade span for a basic model of ceiling fan is then calculated as the 
arithmetic mean of this distance across each ceiling fan in the sample, 
rounded to the nearest inch.
    3.1. General instructions.
    3.1.1. Record measurements at the resolution of the test 
instrumentation. Round off calculations to the number of significant 
digits present at the resolution of the test instrumentation, except for 
blade span, which is rounded to the nearest inch. Round the final 
ceiling fan efficiency value to the nearest whole number as follows:
    3.1.1.1. A fractional number at or above the midpoint between the 
two consecutive whole numbers shall be rounded up to the higher of the 
two whole numbers; or
    3.1.1.2. A fractional number below the midpoint between the two 
consecutive whole numbers shall be rounded down to the lower of the two 
whole numbers.
    3.1.2. For multi-head ceiling fans, the effective blade span is the 
blade span (as specified in section 3) of an individual fan head, if all 
fan heads are the same size. If the fan heads are of varying sizes, the 
effective blade span is the blade span (as specified in section 3) of 
the largest fan head.
    3.2. Test apparatus for low-speed small-diameter and high-speed 
small-diameter ceiling fans: All instruments are to have accuracies 
within 1% of reading, except for the air velocity 
sensors, which must have accuracies within 5% of 
reading or 2 feet per minute (fpm), whichever is greater. Equipment is 
to be calibrated at least once a year to compensate for variation over 
time.
    3.2.1. Air Delivery Room Requirements
    (1) The air delivery room dimensions are to be 20  0.75 feet x 20  0.75 feet with an 
11  0.75 foot-high ceiling. The control room shall 
be constructed external to the air delivery room.
    (2) The ceiling shall be constructed of sheet rock or stainless 
plate. The walls must be of adequate thickness to maintain the specified 
temperature and humidity during the test. The paint used on the walls, 
as well as the paint used on the ceiling material, must be of a type 
that minimizes absorption of humidity and that keeps the temperature of 
the room constant during the test (e.g., oil-based paint).
    (3) The room must not have any ventilation other than an air 
conditioning and return system used to control the temperature and 
humidity of the room. The construction of the room must ensure 
consistent air circulation patterns within the room. Vents must have 
electronically-operated damper doors controllable from a switch outside 
of the testing room.
    3.2.2. Equipment Set-Up
    (1) Make sure the transformer power is off. Hang the ceiling fan to 
be tested directly from the ceiling, according to the manufacturer's 
installation instructions. Hang all non-multi-mount ceiling fans in the 
fan configuration that minimizes the distance between the ceiling and 
the lowest point of the fan blades. Hang and test multi-mount fans in 
two configurations: The configuration associated with the definitions of 
a standard fan that minimizes the distance between the ceiling and the 
lowest point of the fan blades and the configuration associated with the 
definition of a hugger fan that minimizes the distance between the 
ceiling and the lowest point of the fan blades.
    (2) Connect wires as directed by manufacturer's wiring instructions. 
Note: Assemble fan prior to the test; lab personnel must follow the 
instructions provided with the fan by the fan manufacturer. Balance the 
fan blade assembly in accordance with the manufacturer's instructions to 
avoid excessive vibration of the motor assembly (at any speed) during 
operation.
    (3) With the ceiling fan installed, adjust the height of the air 
velocity sensors to ensure the vertical distance between the lowest 
point on the ceiling fan blades and the air velocity sensors is 43 
inches.

[[Page 683]]

    (4) Either a rotating sensor arm or four fixed sensor arms can be 
used to take airflow measurements along four axes, labeled A-D. Axes A, 
B, C, and D are at 0, 90, 180, and 270 degree positions. Axes A-D must 
be perpendicular to the four walls of the room. See Figure 1 of this 
appendix.
[GRAPHIC] [TIFF OMITTED] TR25JY16.005

    (5) Minimize the amount of exposed wiring. Store all sensor lead 
wires under the floor, if possible.
    (6) Place the sensors at intervals of 4  
0.0625 inches along a sensor arm, starting with the first sensor at the 
point where the four axes intersect. Do not touch the actual sensor 
prior to testing. Use enough sensors to record air delivery within a 
circle 8 inches larger in diameter than the blade span of the ceiling 
fan being tested. The experimental set-up is shown in Figure 2 of this 
appendix.
[GRAPHIC] [TIFF OMITTED] TR25JY16.006


[[Page 684]]


    (7) Table 1 of this appendix shows the appropriate number of sensors 
needed per each of four axes (including the first sensor at the 
intersection of the axes) for common fan sizes.

    Table 1 to Appendix U to Subpart B of Part 430: Sensor Selection
                              Requirements
------------------------------------------------------------------------
     Fan blade span * (inches)                Number of sensors
------------------------------------------------------------------------
                       36                                    6
                       42                                    7
                       44                                    7
                       48                                    7
                       52                                    8
                       54                                    8
                       56                                    8
                       60                                    9
                       72                                   10
                       84                                   12
------------------------------------------------------------------------
* The fan sizes listed are illustrative and do not restrict which
  ceiling fan sizes can be tested.

    (8) Install an RPM (revolutions per minute) meter, or tachometer, to 
measure RPM of the ceiling fan blades.
    (9) Use an RMS sensor capable of measuring power with an accuracy of 
1% to measure ceiling fan power consumption. If 
the ceiling fan operates on multi-phase power input, measure the active 
(real) power in all phases simultaneously. Measure test voltage within 
6'' of the connection supplied with the ceiling fan.
    (10) Complete any conditioning instructions provided in the ceiling 
fan's instruction or installation manual must be completed prior to 
conducting testing.
    3.2.3. Multi-Head Ceiling Fan Test Set-Up
    Hang a multi-headed ceiling fan from the ceiling such that one of 
the ceiling fan heads is centered directly over sensor 1 (i.e., at the 
intersection of axes A, B, C, and D). The distance between the lowest 
point any of the fan blades of the centered fan head can reach and the 
air velocity sensors is to be such that it is the same as for all other 
small-diameter ceiling fans (see Figure 2 of this appendix). If the 
multi-head ceiling fan has an oscillating function (i.e., the fan heads 
change their axis of rotation relative to the ceiling) that can be 
switched off, switch it off prior to taking airflow measurements. If any 
multi-head fan does not come with the blades preinstalled, install fan 
blades only on the fan head that will be directly centered over the 
intersection of the sensor axes. (Even if the fan heads in a multi-head 
ceiling fan would typically oscillate when the blades are installed on 
all fan heads, the ceiling fan is subject to this test procedure if the 
centered fan head does not oscillate when it is the only fan head with 
the blades installed.) If the fan blades are preinstalled on all fan 
heads, measure airflow in accordance with section 3.3 except only turn 
on the centered fan head. Measure the power consumption measurements are 
to be made separately, with the fan blades installed on all fan heads 
and with any oscillating function, if present, switched on.
    3.2.4. Test Set-Up for Ceiling Fans with Airflow Not Directly 
Downward
    For ceiling fans where the airflow is not directly downward, adjust 
the ceiling fan head such that the airflow is as vertical as possible 
prior to testing. For ceiling fans where a fully vertical orientation of 
airflow cannot be achieved, orient the ceiling fan (or fan head, if the 
ceiling fan is a multi-head fan) such that any remaining tilt is aligned 
along one of the four sensor axes. Instead of measuring the air velocity 
for only those sensors directly beneath the ceiling fan, the air 
velocity is to be measured at all sensors along that axis, as well as 
the axis oriented 180 degrees with respect to that axis. For example, if 
the tilt is oriented along axis A, air velocity measurements are to be 
taken for all sensors along the A-C axis. No measurements would need to 
be taken along the B-D axis in this case. All other aspects of test set-
up remain unchanged from sections 3 through 3.2.2.
    3.3. Active mode test measurement for low-speed small-diameter and 
high-speed small-diameter ceiling fans.
    3.3.1. Test conditions to be followed when testing:
    (1) Maintain the room temperature at 70 degrees  5 degrees Fahrenheit and the room humidity at 50% 
 5% relative humidity during the entire test 
process.
    (2) If present, the ceiling fan light fixture is to be installed but 
turned off during testing.
    (3) If present, any heater is to be installed but turned off during 
testing.
    (4) If present, turn off any oscillating function causing the axis 
of rotation of the fan head(s) to change relative to the ceiling during 
operation prior to taking airflow measurements. Turn on any oscillating 
function prior to taking power measurements.
    (5) The supply voltage shall be:
    (i) 120 V if the ceiling fan's minimum rated voltage is 120 V or the 
lowest rated voltage range contains 120 V,
    (ii) 240 V if the ceiling fan's minimum rated voltage is 240 V or 
the lowest rated voltage range contains 240 V, or
    (iii) The ceiling fan's minimum rated voltage (if a voltage range is 
not given) or the mean of the lowest rated voltage range, in all other 
cases. The test voltage shall not vary by more than 1% during the tests.
    (6) Test ceiling fans rated for operation with only a single- or 
multi-phase power supply with single- or multi-phase electricity, 
respectively. Measure active (real) power in all phases continuously 
when testing. Test ceiling fans capable of operating with single- and 
multi-phase electricity with single-

[[Page 685]]

phase electricity. DOE will allow manufacturers of ceiling fans capable 
of operating with single- and multi-phase electricity to test such fans 
with multi-phase power and make representations of efficiency associated 
with both single and multi-phase electricity if a manufacturer desires 
to do so, but the test results in the multi-phase configuration will not 
be valid to assess compliance with any amended energy conservation 
standard.
    (7) Conduct the test with the fan connected to a supply circuit at 
the rated frequency.
    (8) Measure power input at a point that includes all power-consuming 
components of the ceiling fan (but without any attached light kit or 
heater energized).
    3.3.2. Airflow and Power Consumption Testing Procedure:
    Measure the airflow (CFM) and power consumption (W) for HSSD ceiling 
fans until stable measurements are achieved, measuring at high speed 
only. Measure the airflow and power consumption for LSSD ceiling fans 
until stable measurements are achieved, measuring first at low speed and 
then at high speed. Airflow and power consumption measurements are 
considered stable if:
    (1) The average air velocity for all axes for each sensor varies by 
less than 5% compared to the average air velocity measured for that same 
sensor in a successive set of air velocity measurements, and
    (2) Average power consumption varies by less than 1% in a successive 
set of power consumption measurements. These stability criteria are 
applied differently to ceiling fans with airflow not directly downward. 
See section 4.1.2 of this appendix.
    Step 1: Set the first sensor arm (if using four fixed arms) or 
single sensor arm (if using a single rotating arm) to the 0 degree 
Position (Axis A). If necessary, use a marking as reference. If using a 
single rotating arm, adjust the sensor arm alignment until it is at the 
0 degree position by remotely controlling the antenna rotator.
    Step 2: Set software up to read and record air velocity, expressed 
in feet per minute (FPM) in 1 second intervals. (Temperature does not 
need to be recorded in 1 second intervals.) Record current barometric 
pressure.
    Step 3: Allow test fan to run 15 minutes at rated voltage and at 
high speed if the ceiling fan is an HSSD ceiling fan. If the ceiling fan 
is an LSSD ceiling fan, allow the test fan to run 15 minutes at the 
rated voltage and at low speed. Turn off all forced-air environmental 
conditioning equipment entering the chamber (e.g., air conditioning), 
close all doors and vents, and wait an additional 3 minutes prior to 
starting test session.
    Step 4: Begin recording readings. Take 100 airflow velocity readings 
(100 seconds run-time) and save these data. If using a rotating sensor 
arm, this is axis A. For all fans except multi-head fans and fans 
capable of oscillating, measure power during the interval that air 
velocity measurements are taken. Record the average value of the power 
measurement in watts (W).
    Step 5: Similarly, take 100 air velocity readings (100 seconds run-
time) for Axes B, C, and D; save these data as well. Measure power as 
described in Step 4. If using four fixed sensor arms, take the readings 
for all sensor arms simultaneously.
    Step 6: Repeat Steps 4 and 5 until stable measurements are achieved.
    Step 7: Repeat steps 1 through 6 above on high fan speed for LSSD 
ceiling fans. Note: Ensure that temperature and humidity readings are 
maintained within the required tolerances for the duration of the test 
(all tested speeds). Forced-air environmental conditioning equipment may 
be used and doors and vents may be opened between test sessions to 
maintain environmental conditions.
    Step 8: If testing a multi-mount ceiling fan, repeat steps 1 through 
7 with the ceiling fan in the ceiling fan configuration (associated with 
either hugger or standard ceiling fans) not already tested.
    If a multi-head ceiling fan includes more than one category of 
ceiling fan head, then test at least one of each unique category. A fan 
head with different construction that could affect air movement or power 
consumption, such as housing, blade pitch, or motor, would constitute a 
different category of fan head.
    Step 9: For multi-head ceiling fans, measure active (real) power 
consumption in all phases simultaneously at each speed continuously for 
100 seconds with all fan heads turned on, and record the average value 
at each speed in watts (W).
    For ceiling fans with an oscillating function, measure active (real) 
power consumption in all phases simultaneously at each speed 
continuously for 100 seconds with the oscillating function turned on. 
Record the average value of the power measurement in watts (W).
    For both multi-head ceiling fans and fans with an oscillating 
function, repeat power consumption measurement until stable power 
measurements are achieved.
    3.4. Test apparatus for large-diameter ceiling fans:
    The test apparatus and instructions for testing large-diameter 
ceiling fans must conform to the requirements specified in sections 3 
through 7 of AMCA 230-15 (incorporated by reference, see Sec.  430.3), 
with the following modifications:
    3.4.1. The test procedure is applicable to large-diameter ceiling 
fans up to 24 feet in diameter.
    3.4.2. A ``ceiling fan'' is defined as in 10 CFR 430.2.
    3.4.3. The supply voltage shall be (1) 120 V if the ceiling fan's 
minimum rated voltage is

[[Page 686]]

120 V or the lowest rated voltage range contains 120 V, (2) 240 V if the 
ceiling fan's minimum rated voltage is 240 V or the lowest rated voltage 
range contains 240 V, or (3) the ceiling fan's minimum rated voltage (if 
a voltage range is not given) or the mean of the lowest rated voltage 
range, in all other cases.
    3.4.4. Test ceiling fans rated for operation with only a single- or 
multi-phase power supply with single- or multi-phase electricity, 
respectively. Test ceiling fans capable of operating with single- and 
multi-phase electricity with multi-phase electricity. DOE will allow 
manufacturers of ceiling fans capable of operating with single- and 
multi-phase electricity to test such fans with single-phase power and 
make representations of efficiency associated with both single and 
multi-phase electricity if a manufacturer desires to do so, but the test 
results in the single-phase configuration will not be valid to assess 
compliance with any amended energy conservation standard.
    3.5. Active mode test measurement for large-diameter ceiling fans:
    (1) Calculate the airflow (CFM) and measure the active (real) power 
consumption (W) in all phases simultaneously for ceiling fans at the 
speeds specified in Table 2.

       Table 2 to Appendix U to Subpart B of Part 430--Speeds To Be Tested for Large-Diameter Ceiling Fans
----------------------------------------------------------------------------------------------------------------
                                                                                                    Efficiency
                                                                                                      metric
            Available speeds               Number of speeds to test      Which speeds to test      weighting for
                                                                                                   each speed **
                                                                                                        (%)
----------------------------------------------------------------------------------------------------------------
1.......................................  All.......................  All.......................             100
2.......................................  All.......................  All.......................              50
3.......................................  All.......................  All.......................              33
4.......................................  All.......................  All.......................              25
5.......................................  All.......................  All.......................              20
6+ (discrete)...........................  5.........................  5 fastest speeds..........              20
Infinite (continuous) *.................  5.........................  High speed................              20
                                                                      80% speed.................
                                                                      60% speed.................
                                                                      40% speed.................
                                                                      20% speed.................
----------------------------------------------------------------------------------------------------------------
* This corresponds to a ceiling fan, such as a ceiling fan with a variable-frequency drive (VFD) that operates
  over a continuous (rather than discrete) range of speeds.
** All tested speeds are to be weighted equally. Therefore, the weighting shown here for a ceiling fan with
  three available speeds is approximate.

    (2) When testing at speeds other than high speed (i.e., X% speed 
where X is 80, 60, 40, or 20) for ceiling fans that can operate over an 
infinite number of speeds (e.g., ceiling fans with VFDs), ensure the 
average measured RPM is within the greater of 1% of the average RPM at 
high speed or 1 RPM. For example, if the average measured RPM at high 
speed is 50 RPM, for testing at 80% speed the average measured RPM 
should be between 39 RPM and 41 RPM. If the average measured RPM falls 
outside of this tolerance, adjust the ceiling fan speed and repeat the 
test. Calculate the airflow and measure the active (real) power 
consumption in all phases simultaneously in accordance with the test 
requirements specified in sections 8 and 9, AMCA 230-15 (incorporated by 
reference, see Sec.  430.3), with the following modifications:
    3.5.1. Measure active (real) power consumption in all phases 
simultaneously at a point that includes all power-consuming components 
of the ceiling fan (but without any attached light kit or heater 
energized).
    3.5.2. Measure active (real) power consumption in all phases 
simultaneously continuously at the rated voltage that represents normal 
operation over the time period for which the load differential test is 
conducted.
    3.6. Test measurement for standby power consumption.
    (1) Measure standby power consumption if the ceiling fan offers one 
or more of the following user-oriented or protective functions:
    [ballot] [ballot]o The ability to facilitate the activation or 
deactivation of other functions (including active mode) by remote switch 
(including remote control), internal sensor, or timer.
    [ballot] Continuous functions, including information or status 
displays (including clocks), or sensor-based functions.
    (2) Measure standby power consumption after completion of active 
mode testing and after the active mode functionality has been switched 
off (i.e., the rotation of the ceiling fan blades is no longer 
energized). The ceiling fan must remain connected to the main power 
supply and be in the same configuration as in active mode (i.e., any 
ceiling fan light fixture should still be attached). Measure standby 
power consumption according to sections 4 and 5.3.1 through 5.3.2 of IEC 
62301-

[[Page 687]]

U (incorporated by reference, see Sec.  430.3) with the following 
modifications:
    3.6.1. Allow 3 minutes between switching off active mode 
functionality and beginning the standby power test. (No additional time 
before measurement is required.)
    3.6.2. Simultaneously in all phases, measure active (real) power 
consumption continuously for 100 seconds, and record the average value 
of the standby power measurement in watts (W).
    3.6.3. Determine power consumption according to section 5.3.2 of IEC 
62301-U, or by using the following average reading method. Note that a 
shorter measurement period may be possible using the sample method in 
section 5.3.2 of IEC 62301-U.
    (1) Connect the product to the power supply and power measuring 
instrument.
    (2) Select the mode to be measured (which may require a sequence of 
operations and could require waiting for the product to automatically 
enter the desired mode) and then monitor the power.
    (3) Calculate the average power using either the average power 
method or the accumulated energy method. For the average power method, 
where the power measuring instrument can record true average power over 
an operator selected period, the average power is taken directly from 
the power measuring instrument. For the accumulated energy method, 
determine the average power by dividing the measured energy by the time 
for the monitoring period. Use units of watt-hours and hours for both 
methods to determine average power in watts.
    4. Calculation of Ceiling Fan Efficiency From the Test Results:
    (1) The efficacy of a ceiling fan is the ceiling fan efficiency (as 
defined in section 1 of this appendix). Calculate two ceiling fan 
efficiencies for multi-mount ceiling fans: One efficiency corresponds to 
the ceiling fan mounted in the configuration associated with the 
definition of a hugger ceiling fan, and the other efficiency corresponds 
to the ceiling fan mounted in the configuration associated with the 
definition of a standard ceiling fan.
    (2) Calculate fan efficiency using the average of both sets of 
airflow and power measurements from the successive sets of measurements 
that meet the stability criteria.
    (3) To calculate the measured airflow for HSSD and LSSD ceiling 
fans, multiply the average air velocity measurement at each sensor from 
section 3.3 of this appendix (for high speed for HSSD ceiling fans, and 
for high and low speeds for LSSD ceiling fans) with the sensor's 
effective area (explained below), and then sum the products to obtain 
the overall measured airflow at the tested speed. Using the airflow and 
the power consumption measurements from sections 3.3 and 3.5 of this 
appendix (for all tested settings for large-diameter ceiling fans) 
calculate the efficiency for any ceiling fan as follows:
[GRAPHIC] [TIFF OMITTED] TR25JY16.007

Where:

CFMi = airflow at speed i,
OHi = operating hours at speed i,
Wi = power consumption at speed i,
OHSb = operating hours in standby mode, and
WSb = power consumption in standby mode.

    (4) Table 3 of this appendix specifies the daily hours of operation 
to be used in calculating ceiling fan efficiency:

  Table 3 to Appendix U to Subpart B of Part 430--Daily Operating Hours
                 for Calculating Ceiling Fan Efficiency
------------------------------------------------------------------------
                                            No standby     With standby
------------------------------------------------------------------------
               Daily Operating Hours for LSSD Ceiling Fans
------------------------------------------------------------------------
High Speed..............................             3.4             3.4
Low Speed...............................             3.0             3.0
Standby Mode............................             0.0            17.6
Off Mode................................            17.6             0.0
------------------------------------------------------------------------
               Daily Operating Hours for HSSD Ceiling Fans
------------------------------------------------------------------------
High Speed..............................            12.0            12.0
Standby Mode............................             0.0            12.0
Off Mode................................            12.0             0.0
------------------------------------------------------------------------
          Daily Operating Hours for Large-Diameter Ceiling Fans
------------------------------------------------------------------------
Active Mode *...........................            12.0            12.0
Standby Mode............................             0.0            12.0
Off Mode................................            12.0             0.0
------------------------------------------------------------------------
* The active mode hours must be apportioned equally across the number of
  active mode speeds tested (e.g., if four speeds are tested, 25% of the
  active mode hours are apportioned to each speed).

    (5) Calculate the effective area corresponding to each sensor used 
in the test

[[Page 688]]

method for small-diameter ceiling fans with the following equations:
    (6) For sensor 1, the sensor located directly underneath the center 
of the ceiling fan, the effective width of the circle is 2 inches, and 
the effective area is:
[GRAPHIC] [TIFF OMITTED] TR25JY16.008

    (7) For the sensors between sensor 1 and the last sensor used in the 
measurement, the effective area has a width of 4 inches. If a sensor is 
a distance d, in inches, from sensor 1, then the effective area is:
[GRAPHIC] [TIFF OMITTED] TR25JY16.009

    (8) For the last sensor, the width of the effective area depends on 
the horizontal displacement between the last sensor and the point on the 
ceiling fan blades furthest radially from the center of the fan. The 
total area included in an airflow calculation is the area of a circle 8 
inches larger in diameter than the ceiling fan blade span (as specified 
in section 3 of this appendix).
    (9) Therefore, for example, for a 42-inch ceiling fan, the last 
sensor is 3 inches beyond the end of the ceiling fan blades. Because 
only the area within 4 inches of the end of the ceiling fan blades is 
included in the airflow calculation, the effective width of the circle 
corresponding to the last sensor would be 3 inches. The calculation for 
the effective area corresponding to the last sensor would then be:
[GRAPHIC] [TIFF OMITTED] TR25JY16.010

    (10) For a 46-inch ceiling fan, the effective area of the last 
sensor would have a width of 5 inches, and the effective area would be:
[GRAPHIC] [TIFF OMITTED] TR25JY16.011

    4.1.1. Ceiling fan efficiency calculations for multi-head ceiling 
fans
    To determine the airflow at a given speed for a multi-head ceiling 
fan, sum the measured airflow for each fan head included in the ceiling 
fan (a single airflow measurement can be applied to identical fan heads, 
but at least one of each unique fan head must be tested). The power 
consumption is the measured power consumption with all fan heads on. 
Using the airflow and power consumption measurements from section 3.3 of 
this appendix, calculate ceiling fan efficiency for a multi-head ceiling 
fan as follows:
[GRAPHIC] [TIFF OMITTED] TR25JY16.012

Where:

CFMi = sum of airflow at a given speed for each head,

[[Page 689]]

OHi = operating hours at a given speed,
Wi = total power consumption at a given speed,
OHSb = operating hours in standby mode, and
WSb = power consumption in standby mode.

    4.1.2. Ceiling fan efficiency calculations for ceiling fans with 
airflow not directly downward
    Using a set of sensors that cover the same diameter as if the 
airflow were directly downward, the airflow at each speed should be 
calculated based on the continuous set of sensors with the largest air 
velocity measurements. This continuous set of sensors must be along the 
axis that the ceiling fan tilt is directed in (and along the axis that 
is 180 degrees from the first axis). For example, a 42-inch fan tilted 
toward axis A may create the pattern of air velocity shown in Figure 3 
of this appendix. As shown in Table 1 of this appendix, a 42-inch fan 
would normally require 7 active sensors. However because the fan is not 
directed downward, all sensors must record data. In this case, because 
the set of sensors corresponding to maximum air velocity are centered 3 
sensor positions away from the sensor 1 along the A axis, substitute the 
air velocity at A axis sensor 4 for the average air velocity at sensor 
1. Take the average of the air velocity at A axis sensors 3 and 5 as a 
substitute for the average air velocity at sensor 2, take the average of 
the air velocity at A axis sensors 2 and 6 as a substitute for the 
average air velocity at sensor 3, etc. Lastly, take the average of the 
air velocities at A axis sensor 10 and C axis sensor 4 as a substitute 
for the average air velocity at sensor 7. Stability criteria apply after 
these substitutions. For example, air velocity stability at sensor 7 are 
determined based on the average of average air velocity at A axis sensor 
10 and C axis sensor 4 in successive measurements. Any air velocity 
measurements made along the B-D axis are not included in the calculation 
of average air velocity.
[GRAPHIC] [TIFF OMITTED] TR25JY16.013


[81 FR 48639, July 25, 2016; 81 FR 54721, Aug. 17, 2016]




   Sec. Appendix V to Subpart B of Part 430--Uniform Test Method for 
  Measuring the Energy Consumption of Ceiling Fan Light Kits With Pin-
                   Based Sockets for Fluorescent Lamps

    Prior to June 21, 2016, manufacturers must make any representations 
with respect to the energy use or efficiency of ceiling fan light kits 
with pin-based sockets for fluorescent lamps in accordance with the 
results of testing pursuant to this Appendix V or the procedures in 
Appendix V as it appeared at 10 CFR part 430, subpart B, Appendix V, in 
the 10 CFR parts 200 to 499 edition revised as of January 1, 2015. On or 
after June 21, 2016, manufacturers must make any representations with 
respect to energy use or efficiency of ceiling fan light kits with pin-
based sockets for fluorescent lamps in accordance with the results of 
testing pursuant to this appendix to demonstrate compliance with the 
energy conservation standards at 10 CFR 430.32(s)(3).
    Alternatively, manufacturers may make representations based on 
testing in accordance with appendix V1 to this subpart, provided that 
such representations demonstrate compliance with the amended energy 
conservation standards. Manufacturers must make all representations with 
respect to energy use or efficiency in accordance with whichever version 
is selected for testing.
    1. Scope: This appendix contains test requirements to measure the 
energy performance of ceiling fan light kits (CFLKs) with pin-based 
sockets that are packaged with fluorescent lamps.
    2. Definitions
    2.1. Input power means the measured total power used by all lamp(s) 
and ballast(s) of the CFLK during operation, expressed in watts (W) and 
measured using the lamp and ballast packaged with the CFLK.

[[Page 690]]

    2.2. Lamp ballast platform means a pairing of one ballast with one 
or more lamps that can operate simultaneously on that ballast. Each 
unique combination of manufacturer, basic model numbers of the ballast 
and lamp(s), and the quantity of lamps that operate on the ballast, 
corresponds to a unique platform.
    2.3. Lamp lumens means a measurement of lumen output or luminous 
flux measured using the lamps and ballasts shipped with the CFLK, 
expressed in lumens.
    2.4. System efficacy means the ratio of measured lamp lumens to 
measured input power, expressed in lumens per watt, and is determined 
for each unique lamp ballast platform packaged with the CFLK.
    3. Test Apparatus and General Instructions:
    The test apparatus and instructions for testing pin-based 
fluorescent lamps packaged with ceiling fan light kits that have pin-
based sockets must conform to the following requirements:

------------------------------------------------------------------------
 
------------------------------------------------------------------------
Any lamp satisfying this description:       must be tested on the lamp
                                             ballast platform packaged
                                             with the CFLK in accordance
                                             with the requirements of:
Compact fluorescent lamp..................  sections 4-6 of IES LM-66-14
                                             (incorporated by reference,
                                             see Sec.   430.3)
Any other fluorescent lamp................  sections 4-7 of IES LM-9-09
                                             (incorporated by reference,
                                             see Sec.   430.3)
------------------------------------------------------------------------

    4. Test Measurement and Calculations:
    Measure system efficacy as follows and express the result in lumens 
per watt:

------------------------------------------------------------------------
                 Lamp type                             Method
------------------------------------------------------------------------
Compact fluorescent lamp..................  Measure system efficacy
                                             according to section 6 of
                                             IES LM-66-14 (incorporated
                                             by reference; see Sec.
                                             430.3). Use of a
                                             goniophotometer is not
                                             permitted.
Any other fluorescent lamp................  Measure system efficacy
                                             according to section 7 of
                                             IES LM-9-09 (incorporated
                                             by reference; see Sec.
                                             430.3). Use of a
                                             goniophotometer is not
                                             permitted.
------------------------------------------------------------------------


[80 FR 80226, Dec. 24, 2015]




   Sec. Appendix V1 to Subpart B of Part 430--Uniform Test Method for 
Measuring the Energy Consumption of Ceiling Fan Light Kits Packaged With 
   Other Fluorescent Lamps (not Compact Fluorescent Lamps or General 
     Service Fluorescent Lamps), Packaged With Other SSL Lamps (not 
         Integrated LED Lamps), or With Integrated SSL Circuitry

    Note: Any representations about the energy use or efficiency of any 
ceiling fan light kit packaged with fluorescent lamps other than compact 
fluorescent lamps or general service fluorescent lamps, packaged with 
SSL products other than integrated LED lamps, or with integrated SSL 
circuitry made on or after the compliance date of any amended energy 
conservation standards must be based on testing pursuant to this 
appendix. Manufacturers may make representations based on testing in 
accordance with this appendix prior to the compliance date of any 
amended energy conservation standards, provided that such 
representations demonstrate compliance with the amended energy 
conservation standards.
    1. Scope: This appendix establishes the test requirements to measure 
the energy efficiency of all ceiling fan light kits (CFLKs) packaged 
with fluorescent lamps other than compact fluorescent lamps or general 
service fluorescent lamps, packaged with SSL products other than 
integrated LED lamps, or with integrated SSL circuitry.
    2. Definitions
    2.1. CFLK with integrated SSL circuitry means a CFLK that has SSL 
light sources, drivers, heat sinks, or intermediate circuitry (such as 
wiring between a replaceable driver and a replaceable light source) that 
are not consumer replaceable.
    2.2. Covers means materials used to diffuse or redirect light 
produced by an SSL light source in CFLKs with integrated SSL circuitry.
    2.3. Other (non-CFL and non-GSFL) fluorescent lamp means a low-
pressure mercury electric-discharge lamp in which a fluorescing coating 
transforms some of the ultraviolet energy generated by the mercury 
discharge into light, including but not limited to circline fluorescent 
lamps, and excluding any compact fluorescent lamp and any general 
service fluorescent lamp.
    2.4. Other SSL products means an integrated unit consisting of a 
light source, driver, heat sink, and intermediate circuitry that uses 
SSL technology (such as light-emitting diodes or organic light-emitting 
diodes) and is consumer replaceable in a CFLK. The term does not include 
LED lamps with ANSI-standard bases. Examples of other SSL products 
include OLED lamps, LED lamps with

[[Page 691]]

non-ANSI-standard bases, such as Zhaga interfaces, and LED light 
engines.
    2.5. Solid-State Lighting (SSL) means technology where light is 
emitted from a solid object--a block of semiconductor--rather than from 
a filament or plasma, as in the case of incandescent and fluorescent 
lighting. This includes inorganic light-emitting diodes (LEDs) and 
organic light-emitting diodes (OLEDs).
    3. Test Conditions and Measurements
    For any CFLK that utilizes consumer replaceable lamps, measure the 
lamp efficacy of each basic model of lamp packaged with the CFLK. For 
any CFLK only with integrated SSL circuitry, measure the luminaire 
efficacy of the CFLK. For any CFLK that includes both consumer 
replaceable lamps and integrated SSL circuitry, measure both the lamp 
efficacy of each basic model of lamp packaged with the CFLK and the 
luminaire efficacy of the CFLK with all consumer replaceable lamps 
removed. Take measurements at full light output. Do not use a 
goniophotometer. For each test, use the test procedures in the table 
below. CFLKs with integrated SSL circuitry and consumer replaceable 
covers may be measured with their covers removed but must otherwise be 
measured according to the table below.

------------------------------------------------------------------------
                                Lamp or luminaire     Referenced test
      Lighting technology       efficacy measured        procedure
------------------------------------------------------------------------
Other (non-CFL and non-GSFL)    Lamp Efficacy....  IES LM-9-09, sections
 fluorescent lamps.                                 4-7.*
Other SSL products............  Lamp Efficacy....  IES LM-79-08,
                                                    sections 2-9.2.*
CFLKs with integrated SSL       Luminaire          IES LM-79-08,
 circuitry.                      Efficacy.          sections 2-9.2.
------------------------------------------------------------------------
* (incorporated by reference, see Sec.   430.3)


[80 FR 80227, Dec. 24, 2015]



   Sec. Appendix W to Subpart B of Part 430--Uniform Test Method for 
      Measuring the Energy Consumption of Compact Fluorescent Lamps

    Note: Before February 27, 2017, any representations, including 
certifications of compliance, made with respect to the energy use or 
efficiency of medium base compact fluorescent lamps must be made in 
accordance with the results of testing pursuant either to this appendix, 
or to the applicable test requirements set forth in 10 CFR parts 429 and 
430 as they appeared in the 10 CFR parts 200 to 499 annual edition 
revised as of January 1, 2016.
    On or after February 27, 2017, any representations, including 
certifications of compliance (if required), made with respect to the 
energy use or efficiency of CFLs must be made in accordance with the 
results of testing pursuant to this appendix.
    1. Scope:
    1.1. Integrated compact fluorescent lamps.
    1.1.1. This appendix specifies the test methods required to measure 
the initial lamp efficacy, lumen maintenance at 1,000 hours, lumen 
maintenance at 40 percent of lifetime, time to failure, power factor, 
correlated color temperature (CCT), color rendering index (CRI), and 
start time of an integrated compact fluorescent lamp.
    1.1.2. This appendix describes how to conduct rapid cycle stress 
testing for integrated compact fluorescent lamps.
    1.1.3. This appendix specifies test methods required to measure 
standby mode energy consumption applicable to integrated CFLs capable of 
operation in standby mode (as defined in Sec.  430.2), such as those 
that can be controlled wirelessly.
    1.2. Non-integrated compact fluorescent lamps.
    1.2.1. This appendix specifies the test methods required to measure 
the initial lamp efficacy, lumen maintenance at 40 percent of lifetime, 
time to failure, CCT, and CRI for non-integrated compact fluorescent 
lamps.
    2. Definitions:
    2.1. Ballasted adapter means a ballast that is not permanently 
attached to a compact fluorescent lamp, has no consumer-replaceable 
components, and serves as an adapter by incorporating both a lamp socket 
and a lamp base.
    2.2. Hybrid compact fluorescent lamp means a compact fluorescent 
lamp that incorporates one or more supplemental light sources of 
different technology.
    2.3. Initial lamp efficacy means the lamp efficacy (as defined in 
Sec.  430.2) at the end of the seasoning period, as calculated pursuant 
to section 3.2.2.9 of this appendix.
    2.4. Integrated compact fluorescent lamp means an integrally 
ballasted compact fluorescent lamp that contains all components 
necessary for the starting and stable operation of the lamp, contains an 
ANSI standard base, does not include any replaceable or interchangeable 
parts, and is capable of being connected directly to a branch circuit 
through a corresponding ANSI standard lamp-holder (socket).
    2.5. Labeled wattage means the highest wattage marked on the lamp 
and/or lamp packaging.
    2.6. Lumen maintenance means the lumen output measured at a given 
time in the life of the lamp and expressed as a percentage of the 
measured initial lumen output.

[[Page 692]]

    2.7. Measured initial input power means the input power to the lamp, 
measured at the end of the lamp seasoning period, and expressed in watts 
(W).
    2.8. Measured initial lumen output means the lumen output of the 
lamp measured at the end of the lamp seasoning period, expressed in 
lumens (lm).
    2.9. Non-integrated compact fluorescent lamp means a compact 
fluorescent lamp that is not an integrated compact fluorescent lamp.
    2.10. Percent variability means the result of dividing the 
difference between the maximum and minimum values by the average value 
for a contiguous set of separate time-averaged light output values 
spanning the specified time period. For a waveform of measured light 
output values, the time-averaged light output is computed over one full 
cycle of sinusoidal input voltage, as a moving average where the 
measurement interval is incremented by one sample for each successive 
measurement value.
    2.11. Power factor means the measured input power (watts) divided by 
the product of the measured RMS input voltage (volts) and the measured 
RMS input current (amps).
    2.12. Rated input voltage means the voltage(s) marked on the lamp as 
the intended operating voltage or, if not marked on the lamp, 120 V.
    2.13. Start plateau means the first 100 millisecond period of 
operation during which the percent variability does not exceed 5 
percent.
    2.14. Start time means the time, measured in milliseconds, between 
the application of power to the compact fluorescent lamp and the 
beginning of the start plateau.
    2.15. Time to failure means the time elapsed between first use and 
the point at which the compact fluorescent lamp (for a hybrid CFL, the 
primary light source) ceases to produce measureable lumen output.
    3. Active Mode Test Procedures
    3.1. General Instructions.
    3.1.1. In cases where there is a conflict, the language of the test 
procedure in this appendix takes precedence over any materials 
incorporated by reference.
    3.1.2. Maintain lamp operating orientation throughout seasoning and 
testing, including storage and handling between tests.
    3.1.3. Season CFLs prior to photometric and electrical testing in 
accordance with sections 4, 5, 6.1, and 6.2.2.1 of IES LM-54-12 
(incorporated by reference, see Sec.  430.3). Season the CFL for a 
minimum of 100 hours in accordance with section 6.2.2.1 of IES LM-54-12. 
During the 100 hour seasoning period, cycle the CFL (operate the lamps 
for 180 minutes, 20 minutes off) as specified in section 6.4 of IES LM-
65-14 (incorporated by reference; see Sec.  430.3).
    3.1.3.1. Unit operating time during seasoning may be counted toward 
time to failure, lumen maintenance at 40 percent of lifetime of a 
compact fluorescent lamp (as defined in Sec.  430.2), and lumen 
maintenance at 1,000 hours if the required operating cycle and test 
conditions for time to failure testing per section 3.3.1 of this 
appendix are satisfied.
    3.1.3.2. If a lamp breaks, becomes defective, fails to stabilize, 
exhibits abnormal behavior (such as swirling), or stops producing light 
prior to the end of the seasoning period, the lamp must be replaced with 
a new unit. If a lamp exhibits one of the conditions listed in the 
previous sentence after the seasoning period, the lamp's measurements 
must be included in the sample. Record number of lamps replaced, if any.
    3.1.4. Conduct all testing with the lamp operating at labeled 
wattage. This requirement applies to all CFLs, including those that are 
dimmable or multi-level.
    3.1.5. Operate the CFL at the rated input voltage throughout 
testing. For a CFL with multiple rated input voltages including 120 
volts, operate the CFL at 120 volts. If a CFL with multiple rated input 
voltages is not rated for 120 volts, operate the CFL at the highest 
rated input voltage.
    3.1.6. Test CFLs packaged with ballasted adapters or designed 
exclusively for use with ballasted adapters as non-integrated CFLs, with 
no ballasted adapter in the circuit.
    3.1.7. Conduct all testing of hybrid CFLs with all supplemental 
light sources in the lamp turned off, if possible. Before taking 
measurements, verify that the lamp has stabilized in the operating mode 
that corresponds to its primary light source.
    3.2. Test Procedures for Determining Initial Lamp Efficacy, Lumen 
Maintenance, CCT, CRI, and Power Factor.
    Determine initial lamp efficacy, lumen maintenance at 40 percent of 
lifetime of a compact fluorescent lamp (as defined in in Sec.  430.2), 
CCT, and CRI for integrated and non-integrated CFLs. Determine lumen 
maintenance at 1,000 hours and power factor for integrated CFLs only.
    3.2.1. Test Conditions and Setup
    3.2.1.1. Test half of the units in the sample in the base up 
position, and half of the units in the base down position; if the 
position is restricted by the manufacturer, test the units in the 
manufacturer-specified position.
    3.2.1.2. Establish ambient conditions, power supply, auxiliary 
equipment, circuit setup, lamp connections, and instrumentation in 
accordance with the specifications in sections (and corresponding 
subsections) 4.0, 5.0 and 6.0 of IES LM-66-14 (incorporated by 
reference; see Sec.  430.3), except maintain ambient temperature at 25 
 1 [deg]C (77  1.8 [deg]F).
    3.2.1.3. Non-integrated CFLs must adhere to the reference ballast 
requirements in section 5.2 of IES LM-66 (incorporated by reference; see 
Sec.  430.3).
    3.2.1.3.1. Test non-integrated lamps rated for operation on and 
having reference ballast

[[Page 693]]

characteristics for either low frequency or high frequency circuits 
(e.g., many preheat start lamps) at low frequency.
    3.2.1.3.2. For low frequency operation, test non-integrated lamps 
rated for operation on either preheat start (starter) or rapid start (no 
starter) circuits on preheat.
    3.2.1.3.3. Operate non-integrated CFLs not listed in ANSI C78.901-
2014 (incorporated by reference; see Sec.  430.3) using the following 
reference ballast settings:
    3.2.1.3.3.1. Operate 25-28 W, T5 twin 2G11-based lamps that are 
lower wattage replacements of 40 W, T5 twin 2G11-based lamps using the 
following reference ballast settings: 60 Hz, 400 volts, 0.270 amps, and 
1240 ohms.
    3.2.1.3.3.2. Operate 14-15 W, T4 quad G24q-2-based lamps that are 
lower wattage replacements of 18 W, T4 quad G24q-2-based lamps using the 
following reference ballast settings: 60 Hz, 220 volts, 0.220 amps, and 
815 ohms.
    3.2.1.3.3.3. Operate 21 W, T4 quad G24q-3-based lamps that are lower 
wattage replacements of 26 W, T4 quad G24q-3-based lamps using the 
following reference ballast settings: 60 Hz, 220 volts, 0.315 amps, and 
546 ohms.
    3.2.1.3.3.4. Operate 21 W, T4 quad G24d-3-based lamps that are lower 
wattage replacements of 26 W, T4 quad G24d-3-based lamps using the 
following reference ballast settings: 60 Hz, 220 volts, 0.315 amps, and 
546 ohms.
    3.2.1.3.3.5. Operate 21 W, T4 multi (6) GX24q-3-based lamps that are 
lower wattage replacements of 26 W, T4 multi (6) GX24q-3-based lamps 
using the following reference ballast settings: 60 Hz, 220 volts, 0.315 
amps, and 546 ohms.
    3.2.1.3.3.6. Operate 27-28 W, T4 multi (6) GX24q-3-based lamps that 
are lower wattage replacements of 32 W, T4 multi (6) GX24q-3-based lamps 
using the following reference ballast settings: 20-26 kHz, 200 volts, 
0.320 amps, and 315 ohms.
    3.2.1.3.3.7. Operate 33-38 W, T4 multi (6) GX24q-4-based lamps that 
are lower wattage replacements of 42 W, T4 multi (6) GX24q-4-based lamps 
using the following reference ballast settings: 20-26 kHz, 270 volts, 
0.320 amps, and 420 ohms.
    3.2.1.3.3.8. Operate 10 W, T4 square GR10q-4-based lamps using the 
following reference ballast settings: 60 Hz, 236 volts, 0.165 amps, and 
1,200 ohms.
    3.2.1.3.3.9. Operate 16 W, T4 square GR10q-4-based lamps using the 
following reference ballast settings: 60 Hz, 220 volts, 0.195 amps, and 
878 ohms.
    3.2.1.3.3.10. Operate 21 W, T4 square GR10q-4-based lamps using the 
following reference ballast settings: 60 Hz, 220 volts, 0.260 amps, and 
684 ohms.
    3.2.1.3.3.11. Operate 28 W, T6 square GR10q-4-based lamps using the 
following reference ballast settings: 60 Hz, 236 volts, 0.320 amps, and 
578 ohms.
    3.2.1.3.3.12. Operate 38 W, T6 square GR10q-4-based lamps using the 
following reference ballast settings: 60 Hz, 236 volts, 0.430 amps, and 
439 ohms.
    3.2.1.3.3.13. Operate 55 W, T6 square GRY10q-3-based lamps using the 
following reference ballast settings: 60 Hz, 236 volts, 0.430 amps, and 
439 ohms.
    3.2.1.3.3.14. For all other lamp designs not listed in ANSI C78.901-
2014 (incorporated by reference; see Sec.  430.3) or section 3.2.1.3.3 
of this appendix:
    3.2.1.3.3.14.1. If the lamp is a lower wattage replacement of a lamp 
with specifications in ANSI C78.901-2014, use the reference ballast 
characteristics of the corresponding higher wattage lamp replacement in 
ANSI C78.901-2014.
    3.2.1.3.3.14.2. For all other lamps, use the reference ballast 
characteristics in ANSI C78.901-2014 for a lamp with the most similar 
shape, diameter, and base specifications, and next closest wattage.
    3.2.2. Test Methods, Measurements, and Calculations
    3.2.2.1. Season CFLs. (See section 3.1.3 of this appendix.)
    3.2.2.2. Stabilize CFLs as specified in section 6.2.1 of IES LM-66 
(incorporated by reference; see Sec.  430.3).
    3.2.2.3. Measure the input power (in watts), the input voltage (in 
volts), and the input current (in amps) as specified in section 5.0 of 
IES LM-66 (incorporated by reference; see Sec.  430.3).
    3.2.2.4. Measure initial lumen output as specified in section 6.3.1 
of IES LM-66 (incorporated by reference; see Sec.  430.3) and in 
accordance with IESNA LM-78-07 (incorporated by reference; see Sec.  
430.3).
    3.2.2.5. Measure lumen output at 1,000 hours as specified in section 
6.3.1 of IES LM-66 (incorporated by reference; see Sec.  430.3) and in 
accordance with IESNA LM-78-07 (incorporated by reference; see Sec.  
430.3).
    3.2.2.6. Measure lumen output at 40 percent of lifetime of a compact 
fluorescent lamp (as defined in 10 CFR 430.2) as specified in section 
6.3.1 of IES LM-66 (incorporated by reference; see Sec.  430.3) and in 
accordance with IESNA LM-78-07 (incorporated by reference; see Sec.  
430.3).
    3.2.2.7. Determine CCT as specified in section 6.4 of IES LM-66 
(incorporated by reference; see Sec.  430.3) and in accordance with CIE 
15 (incorporated by reference; see Sec.  430.3).
    3.2.2.8. Determine CRI as specified in section 6.4 of IES LM-66 
(incorporated by reference; see Sec.  430.3) and in accordance with CIE 
13.3 (incorporated by reference; see Sec.  430.3).
    3.2.2.9. Determine initial lamp efficacy by dividing measured 
initial lumen output by the measured initial input power.

[[Page 694]]

    3.2.2.10. Determine lumen maintenance at 1,000 hours by dividing 
measured lumen output at 1,000 hours by the measured initial lumen 
output.
    3.2.2.11. Determine lumen maintenance at 40 percent of lifetime of a 
compact fluorescent lamp (as defined in Sec.  430.2) by dividing 
measured lumen output at 40 percent of lifetime of a compact fluorescent 
lamp (as defined in Sec.  430.2) by the measured initial lumen output.
    3.2.2.12. Determine power factor by dividing the measured input 
power (watts) by the product of measured RMS input voltage (volts) and 
measured RMS input current (amps).
    3.3. Test Method for Time to Failure and Rapid Cycle Stress Test.
    Determine time to failure for integrated and non-integrated CFLs. 
Conduct rapid cycle stress testing for integrated CFLs only. Disregard 
section 3.0 of IES LM-65-14.
    3.3.1. Test Conditions and Setup
    3.3.1.1. Test half of the units in the base up position and half of 
the units in the base down position; if the position is restricted by 
the manufacturer, test in the manufacturer-specified position.
    3.3.1.2. Establish the ambient and physical conditions and 
electrical conditions in accordance with the specifications in sections 
4.0 and 5.0 of IES LM-65-14 (incorporated by reference; see Sec.  
430.3). Do not, however, test lamps in fixtures or luminaires.
    3.3.1.3. Non-integrated CFLs must adhere to ballast requirements as 
specified in section 3.2.1.3 of this appendix.
    3.3.2. Test Methods and Measurements
    3.3.2.1. Season CFLs. (See section 3.1.3 of this appendix.)
    3.3.2.2. Measure time to failure of CFLs as specified in section 6.0 
of IES LM-65-14 (incorporated by reference; see Sec.  430.3).
    3.3.2.3. Conduct rapid cycle stress testing of integrated CFLs as 
specified in section 6.0 of IES LM-65-14 (incorporated by reference; see 
Sec.  430.3), except cycle the lamp continuously with each cycle 
consisting of one 5-minute ON period followed by one 5-minute OFF 
period.
    3.4. Test Method for Start Time.
    Determine start time for integrated CFLs only.
    3.4.1. Test Conditions and Setup
    3.4.1.1. Test all units in the base up position; if the position is 
restricted by the manufacturer, test units in the manufacturer-specified 
position.
    3.4.1.2. Establish the ambient conditions, power supply, auxiliary 
equipment, circuit setup, lamp connections, and instrumentation in 
accordance with the specifications in sections 4.0 and 5.0 of IES LM-66 
(incorporated by reference; see Sec.  430.3), except maintain ambient 
temperature at 25  1 [deg]C (77  1.8 [deg]F).
    3.4.2. Test Methods and Measurement
    3.4.2.1. Season CFLs. (See section 3.1.3 of this appendix.)
    3.4.2.2. After seasoning, store units at 25  5 
[deg]C ambient temperature for a minimum of 16 hours prior to the test, 
after which the ambient temperature must be 25  1 
[deg]C for a minimum of 2 hours immediately prior to the test. Any units 
that have been off for more than 24 hours must be operated for a minimum 
of 3.0 hours and then be turned off for 16 to 24 hours prior to testing.
    3.4.2.3. Connect multichannel oscilloscope with data storage 
capability to record input voltage to CFL and light output. Set 
oscilloscope to trigger at 10 V lamp input voltage. Set oscilloscope 
vertical scale such that vertical resolution is 1 percent of measured 
initial light output or finer. Set oscilloscope to sample the light 
output waveform at a minimum rate of 2 kHz.
    3.4.2.4. Operate the CFL at the rated voltage and frequency.
    3.4.2.5. Upon the commencement of start time testing, record sampled 
light output until start plateau has been determined.
    3.4.2.6. Calculate the time-averaged light output value at least 
once every millisecond where the time-averaged light output is computed 
over one full cycle of sinusoidal input voltage, as a moving average 
where the measurement interval is incremented by one sample for each 
successive measurement value.
    3.4.2.7. Determine start time.
    4. Standby Mode Test Procedure
    Measure standby mode energy consumption for only integrated CFLs 
that are capable of operating in standby mode. The standby mode test 
method in this section may be completed before or after the active test 
method for determining lumen output, input power, CCT, CRI, and power 
factor in section 3 of this appendix. The standby mode test method in 
this section must be completed before the active mode test method for 
determining time to failure in section 3.3 of this appendix. The standby 
mode test method must be completed in accordance with applicable 
provisions in section 3.1.
    4.1. Test Conditions and Setup
    4.1.1. Position half of the units in the sample in the base up 
position and half of the units in the base down position; if the 
position is restricted by the manufacturer, test units in the 
manufacturer-specified position.
    4.1.2. Establish the ambient conditions (including air flow), power 
supply, electrical settings, and instrumentation in accordance with the 
specifications in sections 4.0, 5.0 and 6.0 of IES LM-66 (incorporated 
by reference; see Sec.  430.3), except maintain ambient temperature at 
25  1 [deg]C (77  1.8 
[deg]F).
    4.2. Test Methods, Measurements, and Calculations
    4.2.1. Season CFLs. (See section 3.1.3 of this appendix.)

[[Page 695]]

    4.2.2. Connect the integrated CFL to the manufacturer-specified 
wireless control network (if applicable) and configure the integrated 
CFL in standby mode by sending a signal to the integrated CFL 
instructing it to have zero light output. The integrated CFL must remain 
connected to the network throughout the entire duration of the test.
    4.2.3. Stabilize the integrated CFL prior to measurement as 
specified in section 5 of IEC 62301-W (incorporated by reference; see 
Sec.  430.3).
    4.2.4. Measure the standby mode energy consumption in watts as 
specified in section 5 of IEC 62301-W (incorporated by reference; see 
Sec.  430.3).

[81 FR 59418, Aug. 29, 2016]



   Sec. Appendix X to Subpart B of Part 430--Uniform Test Method for 
            Measuring the Energy Consumption of Dehumidifiers

    Note: After January 27, 2016, any representations made with respect 
to the energy use or efficiency of portable dehumidifiers must be made 
in accordance with the results of testing pursuant to this appendix.
    Until January 27, 2016, manufacturers must either test portable 
dehumidifiers in accordance with this appendix, or the previous version 
of this appendix as it appeared in the Code of Federal Regulations on 
January 1, 2015. DOE notes that, because testing under this appendix X 
must be completed as of January 27, 2016, manufacturers may wish to 
begin using this test procedure immediately.
    Alternatively, manufacturers may certify compliance with any amended 
energy conservation standards for portable dehumidifiers prior to the 
compliance date of those amended energy conservation standards by 
testing in accordance with appendix X1. Any representations made with 
respect to the energy use or efficiency of such portable dehumidifiers 
must be in accordance with whichever version is selected.
    Any representations made on or after the compliance date of any 
amended energy conservation standards, with respect to the energy use or 
efficiency of portable or whole-home dehumidifiers, must be made in 
accordance with the results of testing pursuant to appendix X1.

                                1. Scope

    This appendix covers the test requirements used to measure the 
energy performance of dehumidifiers.

                             2. Definitions

    2.1 ANSI/AHAM DH-1 means the test standard published by the American 
National Standards Institute and the Association of Home Appliance 
Manufacturers, titled ``Dehumidifiers,'' ANSI/AHAM DH-1-2008, 
(incorporated by reference; see Sec.  430.3).
    2.2 Active mode means a mode in which a dehumidifier is connected to 
a mains power source, has been activated, and is performing the main 
functions of removing moisture from air by drawing moist air over a 
refrigerated coil using a fan, or circulating air through activation of 
the fan without activation of the refrigeration system.
    2.3 Combined low-power mode means the aggregate of available modes 
other than dehumidification mode.
    2.4 Dehumidification mode means an active mode in which a 
dehumidifier:
    (1) Has activated the main moisture removal function according to 
the humidistat, humidity sensor signal, or control setting; and
    (2) Has either activated the refrigeration system or activated the 
fan or blower without activation of the refrigeration system.
    2.5 Energy factor for dehumidifiers means a measure of energy 
efficiency of a dehumidifier calculated by dividing the water removed 
from the air by the energy consumed, measured in liters per kilowatt-
hour (L/kWh).
    2.6 IEC 62301 means the test standard published by the International 
Electrotechnical Commission, titled ``Household electrical appliances--
Measurement of standby power,'' Publication 62301 (Edition 2.0 2011-01) 
(incorporated by reference; see Sec.  430.3).
    2.7 Inactive mode means a standby mode that facilitates the 
activation of active mode by remote switch (including remote control), 
internal sensor other than humidistat or humidity sensor, or timer, or 
that provides continuous status display.
    2.8 Off mode means a mode in which the dehumidifier is connected to 
a mains power source and is not providing any active mode or standby 
mode function, and where the mode may persist for an indefinite time. An 
indicator that only shows the user that the dehumidifier is in the off 
position is included within the classification of an off mode.
    2.9 Off-cycle mode means a standby mode in which the dehumidifier:
    (1) Has cycled off its main function by humidistat or humidity 
sensor;
    (2) Does not have its fan or blower operating; and
    (3) Will reactivate the main function according to the humidistat or 
humidity sensor signal.
    2.10 Product capacity for dehumidifiers means a measure of the 
ability of the dehumidifier to remove moisture from its surrounding 
atmosphere, measured in pints collected per 24 hours of operation under 
the specified ambient conditions.
    2.11 Standby mode means any modes where the dehumidifier is 
connected to a mains power source and offers one or more of the

[[Page 696]]

following user-oriented or protective functions which may persist for an 
indefinite time:
    (1) To facilitate the activation of other modes (including 
activation or deactivation of active mode) by remote switch (including 
remote control), internal sensor, or timer;
    (2) Continuous functions, including information or status displays 
(including clocks) or sensor-based functions. A timer is a continuous 
clock function (which may or may not be associated with a display) that 
provides regular scheduled tasks (e.g., switching) and that operates on 
a continuous basis.

               3. Test Apparatus and General Instructions

    3.1 Active mode. The test apparatus and instructions for testing 
dehumidifiers in dehumidification mode shall conform to the requirements 
specified in Section 3, ``Definitions,'' Section 4, ``Instrumentation,'' 
and Section 5, ``Test Procedure,'' of ANSI/AHAM DH-1 (incorporated by 
reference, see Sec.  430.3), with the following exceptions.
    3.1.1 Psychrometer placement. Place the psychrometer perpendicular 
to, and 1 ft. in front of, the center of the intake grille. For 
dehumidifiers with multiple intake grilles, place a separate sampling 
tree perpendicular to, and 1 ft. in front of, the center of each intake 
grille, with the samples combined and connected to a single psychrometer 
using a minimal length of insulated ducting. The psychrometer shall be 
used to monitor inlet conditions of one test unit only.
    3.1.2 Condensate collection. If means are provided on the 
dehumidifier for draining condensate away from the cabinet, collect the 
condensate in a substantially closed vessel to prevent re-evaporation, 
and place the collection vessel on the weight-measuring instrument. If 
no means for draining condensate away from the cabinet are provided, 
disable any automatic shutoff of dehumidification mode operation that is 
activated when the collection container is full, and collect any 
overflow in a pan. The pan must be covered as much as possible to 
prevent re-evaporation without impeding the collection of overflow 
water. Place both the dehumidifier and the overflow pan on the weight-
measuring instrument for direct reading of the condensate weight during 
the test. Do not use any internal pump to drain the condensate unless 
such pump operation is provided for by default in dehumidification mode.
    3.1.3 Control settings. If the dehumidifier has a control setting 
for continuous operation in dehumidification mode, select that setting. 
Otherwise, set the controls to the lowest available relative humidity 
level and, if the dehumidifier has a user-adjustable fan speed, select 
the maximum fan speed setting.
    3.1.4 Recording and rounding. Record measurements at the resolution 
of the test instrumentation. Round calculated values to the same number 
of significant digits as the previous step. Round the final capacity, 
energy factor and integrated energy factor values to two decimal places.
    3.2 Standby mode and off mode.
    3.2.1 Installation requirements. For the standby mode and off mode 
testing, the dehumidifier shall be installed in accordance with Section 
5, Paragraph 5.2 of IEC 62301 (incorporated by reference, see Sec.  
430.3), disregarding the provisions regarding batteries and the 
determination, classification, and testing of relevant modes.
    3.2.2 Electrical energy supply.
    3.2.2.1 Electrical supply. For the standby mode and off mode 
testing, maintain the electrical supply voltage and frequency indicated 
in Section 7.1.3, ``Standard Test Voltage,'' of ANSI/AHAM DH-1, 
(incorporated by reference, see Sec.  430.3). The electrical supply 
frequency shall be maintained 1 percent.
    3.2.2.2 Supply voltage waveform. For the standby mode and off mode 
testing, maintain the electrical supply voltage waveform indicated in 
Section 4, Paragraph 4.3.2 of IEC 62301, (incorporated by reference; see 
Sec.  430.3).
    3.2.3 Standby mode and off mode watt meter. The watt meter used to 
measure standby mode and off mode power consumption shall meet the 
requirements specified in Section 4, Paragraph 4.4 of IEC 62301 
(incorporated by reference, see Sec.  430.3).
    3.2.4 Standby mode and off mode ambient temperature. For standby 
mode and off mode testing, maintain room ambient air temperature 
conditions as specified in Section 4, Paragraph 4.2 of IEC 62301 
(incorporated by reference; see Sec.  430.3).

                           4. Test Measurement

    4.1 Active mode. Measure the energy consumption in dehumidification 
mode, EDM, expressed in kilowatt-hours (kWh), the energy 
factor, expressed in liters per kilowatt-hour (L/kWh), and product 
capacity, expressed in pints per day (pints/day), in accordance with the 
test requirements specified in Section 7, ``Capacity Test and Energy 
Consumption Test,'' of ANSI/AHAM DH-1 (incorporated by reference, see 
Sec.  430.3).
    4.2 Standby mode and off mode. Establish the testing conditions set 
forth in section 3.2 of this appendix, ensuring that the dehumidifier 
does not enter active mode during the test. For dehumidifiers that take 
some time to enter a stable state from a higher power state as discussed 
in Section 5, Paragraph 5.1, Note 1 of IEC 62301, (incorporated by 
reference; see Sec.  430.3), allow sufficient time for the dehumidifier 
to reach the lower power state before proceeding with the test 
measurement. Follow the test procedure specified in Section 5, Paragraph 
5.3.2 of IEC 62301 for testing in each possible mode as described in 
sections 4.2.1 and 4.2.2 of this appendix.

[[Page 697]]

    4.2.1 If the dehumidifier has an inactive mode, as defined in 
section 2.7 of this appendix, but not an off mode, as defined in section 
2.8 of this appendix, measure and record the average inactive mode power 
of the dehumidifier, PIA, in watts. Otherwise, if the 
dehumidifier has an off mode, as defined in section 2.8 of this 
appendix, measure and record the average off mode power of the 
dehumidifier, POM, in watts.
    4.2.2 If the dehumidifier has an off-cycle mode, as defined in 
section 2.9 of this appendix, measure and record the average off-cycle 
mode power of the dehumidifier, POC, in watts.

        5. Calculation of Derived Results From Test Measurements

    5.1 Annual combined low-power mode energy consumption. Calculate the 
annual combined low-power mode energy consumption for dehumidifiers, 
ETLP, expressed in kilowatt-hours per year, according to the 
following:

ETLP = [(PIO x SIO) + (POC x 
          SOC)] x K

Where:

PIO = PIA, dehumidifier inactive mode power, or 
          POM, dehumidifier off mode power in watts, as 
          measured in section 4.2.1 of this appendix.
POC = dehumidifier off-cycle mode power in watts, as measured 
          in section 4.2.2 of this appendix.
SIO = 1,840.5 dehumidifier inactive mode or off mode annual 
          hours.
SOC = 1,840.5 dehumidifier off-cycle mode annual hours.
K = 0.001 kWh/Wh conversion factor for watt-hours to kilowatt-hours.

    5.2 Integrated energy factor. Calculate the integrated energy 
factor, IEF, expressed in liters per kilowatt-hour, rounded to two 
decimal places, according to the following:

IEF = LW/[EDM + ((ETLP/1095) x 6)]

Where:

LW = water removed from the air during the 6-hour 
          dehumidification mode test in liters, as measured in section 
          4.1 of this appendix.
EDM = energy consumption during the 6-hour dehumidification 
          mode test in kilowatt-hours, as measured in section 4.1 of 
          this appendix.
ETLP = annual combined low-power mode energy consumption in 
          kilowatt-hours per year, as calculated in section 5.1 of this 
          appendix.
1,095 = dehumidification mode annual hours, used to convert 
          ETLP to combined low-power mode energy consumption 
          per hour of dehumidification mode.
6 = hours per dehumidification mode test, used to convert combined low-
          power mode energy consumption per hour of dehumidification 
          mode for integration with dehumidification mode energy 
          consumption.

[77 FR 65995, Oct. 31, 2012, redesignated and amended at 79 FR 7370, 
Feb. 7, 2014; 80 FR 45825, July 31, 2015]



   Sec. Appendix X1 to Subpart B of Part 430--Uniform Test Method for 
            Measuring the Energy Consumption of Dehumidifiers

    Note: Manufacturers may certify compliance with any amended energy 
conservation standards for portable dehumidifiers prior to the 
compliance date of those amended energy conservation standards by 
testing in accordance with this appendix. Any representations made with 
respect to the energy use or efficiency of such portable dehumidifiers 
must be in accordance with either appendix X or this appendix, whichever 
version is selected for testing and compliance with standards.
    Any representations made on or after the compliance date of any 
amended energy conservation standards, with respect to the energy use or 
efficiency of portable or whole-home dehumidifiers, must be made in 
accordance with the results of testing pursuant to this appendix.

                                1. Scope

    This appendix covers the test requirements used to measure the 
energy performance of dehumidifiers.

                             2. Definitions

    2.1 ANSI/AHAM DH-1 means the test standard published by the American 
National Standards Institute and the Association of Home Appliance 
Manufacturers, titled ``Dehumidifiers,'' ANSI/AHAM DH-1-2008 
(incorporated by reference; see Sec.  430.3).
    2.2 ANSI/AMCA 210 means the test standard published by ANSI, the 
American Society of Heating, Refrigeration and Air-Conditioning 
Engineers, and the Air Movement and Control Association International, 
Inc., titled ``Laboratory Methods of Testing Fans for Aerodynamic 
Performance Rating,'' ANSI/ASHRAE 51-07/ANSI/AMCA 210-07 (incorporated 
by reference; see Sec.  430.3).
    2.3 ANSI/ASHRAE 41.1 means the test standard published by ANSI and 
ASHRAE, titled ``Standard Method for Temperature Measurement,'' ANSI/
ASHRAE 41.1-2013 (incorporated by reference; see Sec.  430.3).
    2.4 Active mode means a mode in which a dehumidifier is connected to 
a mains power source, has been activated, and is performing the main 
functions of removing moisture from air by drawing moist air over a 
refrigerated coil using a fan or circulating air through activation of 
the fan without activation of the refrigeration system.

[[Page 698]]

    2.5 Combined low-power mode means the aggregate of available modes 
other than dehumidification mode.
    2.6 Dehumidification mode means an active mode in which a 
dehumidifier:
    (1) Has activated the main moisture removal function according to 
the humidistat, humidity sensor signal, or control setting; and
    (2) Has either activated the refrigeration system or activated the 
fan or blower without activation of the refrigeration system.
    2.7 Energy factor for dehumidifiers means a measure of energy 
efficiency of a dehumidifier calculated by dividing the water removed 
from the air by the energy consumed, measured in liters per kilowatt-
hour (L/kWh).
    2.8 External static pressure (ESP) means the process air outlet 
static pressure minus the process air inlet static pressure, measured in 
inches of water column (in. w.c.).
    2.9 IEC 62301 means the test standard published by the International 
Electrotechnical Commission, titled ``Household electrical appliances--
Measurement of standby power,'' Publication 62301 (Edition 2.0 2011-01) 
(incorporated by reference; see Sec.  430.3).
    2.10 Inactive mode means a standby mode that facilitates the 
activation of active mode by remote switch (including remote control), 
internal sensor other than humidistat or humidity sensor, or timer, or 
that provides continuous status display.
    2.11 Off mode means a mode in which the dehumidifier is connected to 
a mains power source and is not providing any active mode or standby 
mode function, and where the mode may persist for an indefinite time. An 
indicator that only shows the user that the dehumidifier is in the off 
position is included within the classification of an off mode.
    2.12 Off-cycle mode means a mode in which the dehumidifier:
    (1) Has cycled off its main moisture removal function by humidistat 
or humidity sensor;
    (2) May or may not operate its fan or blower; and
    (3) Will reactivate the main moisture removal function according to 
the humidistat or humidity sensor signal.
    2.13 Process air means the air supplied to the dehumidifier from the 
dehumidified space and discharged to the dehumidified space after some 
of the moisture has been removed by means of the refrigeration system.
    2.14 Product capacity for dehumidifiers means a measure of the 
ability of the dehumidifier to remove moisture from its surrounding 
atmosphere, measured in pints collected per 24 hours of operation under 
the specified ambient conditions.
    2.15 Product case volume for whole-home dehumidifiers means a 
measure of the rectangular volume that the product case occupies, 
exclusive of any duct attachment collars or other external components.
    2.16 Reactivation air means the air drawn from unconditioned space 
to remove moisture from the desiccant wheel of a refrigerant-desiccant 
dehumidifier and discharged to unconditioned space.
    2.17 Standby mode means any modes where the dehumidifier is 
connected to a mains power source and offers one or more of the 
following user-oriented or protective functions which may persist for an 
indefinite time:
    (1) To facilitate the activation of other modes (including 
activation or deactivation of active mode) by remote switch (including 
remote control), internal sensor, or timer;
    (2) Continuous functions, including information or status displays 
(including clocks) or sensor-based functions. A timer is a continuous 
clock function (which may or may not be associated with a display) that 
provides regular scheduled tasks (e.g., switching) and that operates on 
a continuous basis.

               3. Test Apparatus and General Instructions

    3.1 Active mode.
    3.1.1 Portable dehumidifiers and whole-home dehumidifiers other than 
refrigerant-desiccant dehumidifiers. The test apparatus and instructions 
for testing in dehumidification mode and off-cycle mode must conform to 
the requirements specified in Section 3, ``Definitions,'' Section 4, 
``Instrumentation,'' and Section 5, ``Test Procedure,'' of ANSI/AHAM DH-
1 (incorporated by reference, see Sec.  430.3), with the following 
exceptions. Note that if a product is able to operate as both a portable 
and whole-home dehumidifier by means of installation or removal of an 
optional ducting kit, it must be tested and rated for both 
configurations.
    3.1.1.1 Testing configuration for whole-home dehumidifiers other 
than refrigerant-desiccant dehumidifiers. Test dehumidifiers, other than 
refrigerant-desiccant dehumidifiers, with ducting attached to the 
process air outlet port. The duct configuration and component placement 
must conform to the requirements specified in section 3.1.3 of this 
appendix and Figure 1 or Figure 3, except that the flow straightener and 
dry-bulb temperature and relative humidity instruments are not required. 
Maintain the external static pressure in the process air flow and 
measure the external static pressure as specified in section 3.1.2.2.3.1 
of this appendix.
    3.1.1.2 Relative humidity instrumentation. A relative humidity 
sensor with an accuracy within 1 percent relative humidity may be used 
in place of an aspirating psychrometer. When using a relative humidity 
sensor for testing, disregard the wet-bulb test tolerances in Table 1 of 
ANSI/AHAM DH-1 (incorporated by reference, see Sec.  430.3), the average 
relative humidity over the test period must

[[Page 699]]

be within 2 percent of the relative humidity setpoint, and all 
individual relative humidity readings must be within 5 percent of the 
relative humidity setpoint. When using a relative humidity sensor 
instead of an aspirating psychrometer, use a dry-bulb temperature sensor 
that meets the accuracy as required in section 4.1 of ANSI/AHAM DH-1.
    3.1.1.3 Instrumentation placement. Place the aspirating psychrometer 
or relative humidity and dry-bulb temperature sensors perpendicular to, 
and 1 ft. in front of, the center of the process air intake grille. When 
using an aspirating psychrometer, for dehumidifiers with multiple 
process air intake grilles, place a separate sampling tree perpendicular 
to, and 1 ft. in front of, the center of each process air intake grille, 
with the samples combined and connected to a single psychrometer using a 
minimal length of insulated ducting. The psychrometer shall be used to 
monitor inlet conditions of one test unit only. When using relative 
humidity and dry-bulb temperature sensors, for dehumidifiers with 
multiple process air intake grilles, place a relative humidity sensor 
and dry-bulb temperature sensor perpendicular to, and 1 ft. in front of, 
the center of each process air intake grille.
    3.1.1.4 Condensate collection. If means are provided on the 
dehumidifier for draining condensate away from the cabinet, collect the 
condensate in a substantially closed vessel to prevent re-evaporation 
and place the vessel on the weight-measuring instrument. If no means for 
draining condensate away from the cabinet are provided, disable any 
automatic shutoff of dehumidification mode operation that is activated 
when the collection container is full and collect any overflow in a pan. 
Select a collection pan large enough to ensure that all water that 
overflows from the full internal collection container during the rating 
test period is captured by the collection pan. Cover the pan as much as 
possible to prevent re-evaporation without impeding the collection of 
overflow water. Place both the dehumidifier and the overflow pan on the 
weight-measuring instrument for direct reading of the condensate weight 
collected during the rating test. Do not use any internal pump to drain 
the condensate into a substantially closed vessel unless such pump 
operation is provided for by default in dehumidification mode.
    3.1.1.5 Control settings. If the dehumidifier has a control setting 
for continuous operation in dehumidification mode, select that control 
setting. Otherwise, set the controls to the lowest available relative 
humidity level, and if the dehumidifier has a user-adjustable fan speed, 
select the maximum fan speed setting. Do not use any external controls 
for the dehumidifier settings.
    3.1.1.6 Run-in period. Perform a single run-in period during which 
the compressor operates for a cumulative total of at least 24 hours 
prior to dehumidification mode testing.
    3.1.2 Refrigerant-desiccant dehumidifiers. The test apparatus and 
instructions for testing refrigerant-desiccant dehumidifiers in 
dehumidification mode must conform to the requirements specified in 
Section 3, ``Definitions,'' Section 4, ``Instrumentation,'' and Section 
5, ``Test Procedure,'' of ANSI/AHAM DH-1 (incorporated by reference, see 
Sec.  430.3), except as follows.
    3.1.2.1 Testing configuration. Test refrigerant-desiccant 
dehumidifiers with ducting attached to the process air inlet and outlet 
ports and the reactivation air inlet port. The duct configuration and 
components must conform to the requirements specified in section 3.1.3 
of this appendix and Figure 1 through Figure 3. Install a cell-type 
airflow straightener that conforms to the specifications in Section 
5.2.1.6, ``Airflow straightener'', and Figure 6A, ``Flow Straightener--
Cell Type'', of ANSI/AMCA 210 (incorporated by reference, see Sec.  
430.3) in each duct consistent with Figure 1 through Figure 3.
    3.1.2.2 Instrumentation.
    3.1.2.2.1 Temperature. Install dry-bulb temperature sensors in a 
grid centered in the duct, with the plane of the grid perpendicular to 
the axis of the duct. Determine the number and locations of the sensors 
within the grid according to Section 5.3.5, ``Centers of Segments--
Grids,'' of ANSI/ASHRAE 41.1 (incorporated by reference, see Sec.  
430.3).
    3.1.2.2.2 Relative humidity. Measure relative humidity with a duct-
mounted, relative humidity sensor with an accuracy within 1 percent relative humidity. Place the relative humidity 
sensor at the duct centerline within 1 inch of the dry-bulb temperature 
grid plane.
    3.1.2.2.3 Pressure. The pressure instruments used to measure the 
external static pressure and velocity pressures must have an accuracy 
within 0.01 in. w.c. and a resolution of no more 
than 0.01 in. w.c.
    3.1.2.2.3.1 External static pressure. Measure static pressures in 
each duct using pitot-static tube traverses that conform with the 
specifications in Section 4.3.1, ``Pitot Traverse,'' of ANSI/AMCA 210 
(incorporated by reference, see Sec.  430.3), with pitot-static tubes 
that conform with the specifications in Section 4.2.2, ``Pitot-Static 
Tube,'' of ANSI/AMCA, except that only two intersecting and 
perpendicular rows of pitot-static tube traverses shall be used. Record 
the static pressure within the test duct as measured at the pressure tap 
in the manifold of the traverses that averages the individual static 
pressures at each pitot-static tube. Calculate duct pressure losses 
between the unit under test and the plane of each static pressure 
measurement in accordance with section 7.5.2, ``Pressure Losses,'' of 
ANSI/AMCA 210. The external static pressure is the difference

[[Page 700]]

between the measured inlet and outlet static pressure measurements, 
minus the sum of the inlet and outlet duct pressure losses. For any port 
with no duct attached, use a static pressure of 0.00 in. w.c. with no 
duct pressure loss in the calculation of external static pressure. 
During dehumidification mode testing, the external static pressure must 
equal 0.20 in. w.c.  0.02 in. w.c.
    3.1.2.2.3.2 Velocity pressure. Measure velocity pressures using the 
same pitot traverses as used for measuring external static pressure, and 
which are specified in section 3.1.2.2.3.1 of this appendix. Determine 
velocity pressures at each pitot-static tube in a traverse as the 
difference between the pressure at the impact pressure tap and the 
pressure at the static pressure tap. Calculate volumetric flow rates in 
each duct in accordance with Section 7.3.1, ``Velocity Traverse,'' of 
ANSI/AMCA 210 (incorporated by reference, see Sec.  430.3).
    3.1.2.2.4 Weight. No weight-measuring instruments are required.
    3.1.2.3 Control settings. If the dehumidifier has a control setting 
for continuous operation in dehumidification mode, select that control 
setting. Otherwise, set the controls to the lowest available relative 
humidity level, and if the dehumidifier has a user-adjustable fan speed, 
select the maximum fan speed setting. Do not use any external controls 
for the dehumidifier settings.
    3.1.2.4 Run-in period. Perform a single run-in period during which 
the compressor operates for a cumulative total of at least 24 hours 
prior to dehumidification mode testing.
    3.1.3 Ducting for whole-home dehumidifiers. Cover and seal with tape 
any port designed for intake of air from outside or unconditioned space, 
other than for supplying reactivation air for refrigerant-desiccant 
dehumidifiers. Use only ducting constructed of galvanized mild steel and 
with a 10-inch diameter. Position inlet and outlet ducts either 
horizontally or vertically to accommodate the default dehumidifier port 
orientation. Install all ducts with the axis of the section interfacing 
with the dehumidifier perpendicular to plane of the collar to which each 
is attached. If manufacturer-recommended collars do not measure 10 
inches in diameter, use transitional pieces to connect the ducts to the 
collars. The transitional pieces must not contain any converging element 
that forms an angle with the duct axis greater than 7.5 degrees or a 
diverging element that forms an angle with the duct axis greater than 
3.5 degrees. Install mechanical throttling devices in each outlet duct 
consistent with Figure 1 and Figure 3 to adjust the external static 
pressure and in the inlet reactivation air duct for a refrigerant-
desiccant dehumidifier. Cover the ducts with thermal insulation having a 
minimum R value of 6 h-ft\2\ - [deg]F/Btu (1.1 m\2\ - K/W). Seal seams 
and edges with tape.

[[Page 701]]

[GRAPHIC] [TIFF OMITTED] TR31JY15.007


[[Page 702]]


[GRAPHIC] [TIFF OMITTED] TR31JY15.008


[[Page 703]]


[GRAPHIC] [TIFF OMITTED] TR31JY15.009

    3.1.4 Recording and rounding. When testing either a portable 
dehumidifier or a whole-home dehumidifier, record measurements at the 
resolution of the test instrumentation. Record measurements for portable 
dehumidifiers and whole-home dehumidifiers other than refrigerant-
desiccant dehumidifiers at intervals no greater than 10 minutes. Record 
measurements for refrigerant-desiccant dehumidifiers at intervals no 
greater than 1 minute. Round off calculations to the same number of 
significant digits as the previous step. Round the final product 
capacity, energy factor and integrated energy factor values to two 
decimal places, and for whole-home dehumidifiers, round the final 
product case volume to one decimal place.
    3.2 Inactive mode and off mode.
    3.2.1 Installation requirements. For the inactive mode and off mode 
testing, install the dehumidifier in accordance with Section 5, 
Paragraph 5.2 of IEC 62301 (incorporated by reference, see Sec.  430.3), 
disregarding the provisions regarding batteries and the determination, 
classification, and testing of relevant modes.
    3.2.2 Electrical energy supply.

[[Page 704]]

    3.2.2.1 Electrical supply. For the inactive mode and off mode 
testing, maintain the electrical supply voltage and frequency indicated 
in Section 7.1.3, ``Standard Test Voltage,'' of ANSI/AHAM DH-1 
(incorporated by reference, see Sec.  430.3). The electrical supply 
frequency shall be maintained 1 percent.
    3.2.2.2 Supply voltage waveform. For the inactive mode and off mode 
testing, maintain the electrical supply voltage waveform indicated in 
Section 4, Paragraph 4.3.2 of IEC 62301 (incorporated by reference, see 
Sec.  430.3).
    3.2.3 Inactive mode, off mode, and off-cycle mode wattmeter. The 
wattmeter used to measure inactive mode, off mode, and off-cycle mode 
power consumption must meet the requirements specified in Section 4, 
Paragraph 4.4 of IEC 62301 (incorporated by reference, see Sec.  430.3).
    3.2.4 Inactive mode and off mode ambient temperature. For inactive 
mode and off mode testing, maintain room ambient air temperature 
conditions as specified in Section 4, Paragraph 4.2 of IEC 62301 
(incorporated by reference, see Sec.  430.3).
    3.3 Case dimensions for whole-home dehumidifiers. Measure case 
dimensions using equipment with a resolution of no more than 0.1 in.

                           4. Test Measurement

    4.1 Dehumidification mode.
    4.1.1 Portable dehumidifiers and whole-home dehumidifiers other than 
refrigerant-desiccant dehumidifiers. Measure the energy consumption in 
dehumidification mode, EDM, expressed in kilowatt-hours 
(kWh), the average relative humidity, Ht, either as measured 
using a relative humidity sensor or using the tables provided below when 
using an aspirating psychrometer, and the product capacity, 
Ct, expressed in pints per day (pints/day), in accordance 
with the test requirements specified in Section 7, ``Capacity Test and 
Energy Consumption Test,'' of ANSI/AHAM DH-1 (incorporated by reference, 
see Sec.  430.3), except that the standard test conditions for portable 
dehumidifiers must be maintained at 65 [deg]F  2.0 
[deg]F dry-bulb temperature and 56.6 [deg]F  1.0 
[deg]F wet-bulb temperature, when recording conditions with an 
aspirating psychrometer, or 60 percent  2 percent 
relative humidity, when recording conditions with a relative humidity 
sensor. For whole-home dehumidifiers, conditions must be maintained at 
73 [deg]F  2.0 [deg]F dry-bulb temperature and 
63.6 [deg]F  1.0 [deg]F wet-bulb temperature, when 
recording conditions with an aspirating psychrometer, or 60 percent 
 2 percent relative humidity, when recording 
conditions with a relative humidity sensor. When using relative humidity 
and dry-bulb temperature sensors, for dehumidifiers with multiple 
process air intake grilles, average the measured relative humidities and 
average the measured dry-bulb temperatures to determine the overall 
intake air conditions.

                        Table 1--Relative Humidity as a Function of Dry-Bulb and Wet-Bulb Temperatures for Portable Dehumidifiers
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                              Dry-Bulb temperature ( [deg]F)
                 Wet-Bulb temperature ( [deg]F)                  ---------------------------------------------------------------------------------------
                                                                   64.5    64.6    64.7    64.8    64.9    65.0    65.1    65.2    65.3    65.4    65.5
--------------------------------------------------------------------------------------------------------------------------------------------------------
56.3............................................................   60.32   59.94   59.57   59.17   58.80   58.42   58.04   57.67   57.30   56.93   56.56
56.4............................................................   60.77   60.38   60.00   59.62   59.24   58.86   58.48   58.11   57.73   57.36   56.99
56.5............................................................   61.22   60.83   60.44   60.06   59.68   59.30   58.92   58.54   58.17   57.80   57.43
56.6............................................................   61.66   61.27   60.89   60.50   60.12   59.74   59.36   58.98   58.60   58.23   57.86
56.7............................................................   62.40   61.72   61.33   60.95   60.56   60.18   59.80   59.42   59.04   58.67   58.29
56.8............................................................   62.56   62.17   61.78   61.39   61.00   60.62   60.24   59.86   59.48   59.10   58.73
56.9............................................................   63.01   62.62   62.23   61.84   61.45   61.06   60.68   60.30   59.92   59.54   59.16
--------------------------------------------------------------------------------------------------------------------------------------------------------


                       Table 2--Relative Humidity as a Function of Dry-Bulb and Wet-Bulb Temperatures for Whole-Home Dehumidifiers
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                              Dry-Bulb temperature ( [deg]F)
                 Wet-Bulb temperature ( [deg]F)                  ---------------------------------------------------------------------------------------
                                                                   72.5    72.6    72.7    72.8    72.9    73.0    73.1    73.2    73.3    73.4    73.5
--------------------------------------------------------------------------------------------------------------------------------------------------------
63.3............................................................   60.59   60.26   59.92   59.59   59.26   58.92   58.60   58.27   57.94   57.62   57.30
63.4............................................................   60.98   60.64   60.31   59.75   59.64   59.31   58.98   58.65   58.32   58.00   57.67
63.5............................................................   61.37   61.03   60.70   60.36   60.02   59.69   59.36   59.03   58.70   58.38   58.05
63.6............................................................   61.76   61.42   61.08   60.75   60.41   60.08   59.74   59.41   59.08   58.76   58.43
63.7............................................................   62.16   61.81   61.47   61.13   60.80   60.46   60.13   59.80   59.47   59.14   58.81
63.8............................................................   62.55   62.20   61.86   61.52   61.18   60.85   60.51   60.18   59.85   59.52   59.19
63.9............................................................   62.94   62.60   62.25   61.91   61.57   61.23   60.90   60.56   60.23   59.90   59.57
--------------------------------------------------------------------------------------------------------------------------------------------------------

    4.1.2 Refrigerant-desiccant dehumidifiers. Establish the testing 
conditions set forth in section 3.1.2 of this appendix. Measure the 
energy consumption, EDM, expressed in kWh,

[[Page 705]]

in accordance with the test requirements specified in Section 7, 
``Capacity Test and Energy Consumption Test,'' of ANSI/AHAM DH-1 
(incorporated by reference, see Sec.  430.3), except that: (1) 
individual readings of the standard test conditions at the air entering 
the process air inlet duct and the reactivation air inlet must be 
maintained within 73 [deg]F  2.0 [deg]F dry-bulb 
temperature and 60 percent  5 percent relative 
humidity and the arithmetic average of the inlet test conditions over 
the test period shall be maintained within 73 [deg]F  0.5 [deg]F dry-bulb temperature and 60 percent  2 percent relative humidity; (2) the instructions for 
psychrometer placement do not apply; (3) the data recorded must include 
dry-bulb temperatures, relative humidities, static pressures, velocity 
pressures in each duct, volumetric air flow rates, and the number of 
samples in the test period; (4) the condensate collected during the test 
need not be weighed; and (5) the calculations in Section 7.2.2, ``Energy 
Factor Calculation,'' of ANSI/AHAM DH-1 need not be performed. To 
perform the calculations in Section 7.1.7, ``Calculation of Test 
Results,'' of ANSI/AHAM DH-1: (1) replace ``Condensate collected (lb)'' 
and ``mlb'', with the weight of condensate removed, W, as 
calculated in section 5.6 of this appendix; and (2) use the recorded 
relative humidities rather than the tables in section 4.1.1 of this 
appendix to determine average relative humidity.
    4.2 Off-cycle mode. Establish the test conditions specified in 
section 3.1.1 or 3.1.2 of this appendix, but use the wattmeter specified 
in section 3.2.3 of this appendix. Begin the off-cycle mode test period 
immediately following the dehumidification mode test period. Adjust the 
setpoint higher than the ambient relative humidity to ensure the product 
will not enter dehumidification mode and begin the test when the 
compressor cycles off due to the change in setpoint. The off-cycle mode 
test period shall be 2 hours in duration, during which the power 
consumption is recorded at the same intervals as recorded for 
dehumidification mode testing. Measure and record the average off-cycle 
mode power of the dehumidifier, POC, in watts.
    4.3 Inactive and off mode. Establish the testing conditions set 
forth in section 3.2 of this appendix, ensuring that the dehumidifier 
does not enter active mode during the test. For dehumidifiers that take 
some time to enter a stable state from a higher power state, as 
discussed in Section 5, Paragraph 5.1, Note 1 of IEC 62301 (incorporated 
by reference; see Sec.  430.3), allow sufficient time for the 
dehumidifier to reach the lower power state before proceeding with the 
test measurement. Follow the test procedure specified in Section 5, 
Paragraph 5.3.2 of IEC 62301 for testing in each possible mode as 
described in sections 4.3.1 and 4.3.2 of this appendix.
    4.3.1 If the dehumidifier has an inactive mode, as defined in 
section 2.10 of this appendix, but not an off mode, as defined in 
section 2.11 of this appendix, measure and record the average inactive 
mode power of the dehumidifier, PIA, in watts.
    4.3.2 If the dehumidifier has an off mode, as defined in section 
2.11 of this appendix, measure and record the average off mode power of 
the dehumidifier, POM, in watts.
    4.4 Product case volume for whole-home dehumidifiers. Measure the 
maximum case length, DL, in inches, the maximum case width, 
DW, in inches, and the maximum height, DH, in 
inches, exclusive of any duct collar attachments or other external 
components.

        5. Calculation of Derived Results From Test Measurements

    5.1 Corrected relative humidity. Calculate the average relative 
humidity, for portable and whole-home dehumidifiers, corrected for 
barometric pressure variations as:

Hc,p = Ht x [1 + 0.0083 x (29.921 - B)]
Hc,wh = Ht x [1 + 0.0072 x (29.921 - B)]

Where:

Hc,p = portable dehumidifier average relative humidity from 
          the test data in percent, corrected to the standard barometric 
          pressure of 29.921 in. mercury (Hg);
Hc,wh = whole-home dehumidifier average relative humidity 
          from the test data in percent, corrected to the standard 
          barometric pressure of 29.921 in. Hg;
Ht = average relative humidity from the test data in percent; 
          and
B = average barometric pressure during the test period in in. Hg.

    5.2 Corrected product capacity. Calculate the product capacity, for 
portable and whole-home dehumidifiers, corrected for variations in 
temperature and relative humidity as:

Cr,p = Ct + 0.0352 x Ct x (65 - 
          Tt) + 0.0169 x Ct x (60 - 
          HC,p)
Cr,wh = Ct + 0.0344 x Ct x (73 - 
          Tt) + 0.017 x Ct x (60 - 
          HC,wh)

Where:

Cr,p = portable dehumidifiers product capacity in pints/day, 
          corrected to standard rating conditions of 65 [deg]F dry-bulb 
          temperature and 60 percent relative humidity;
Cr,wh = whole-home dehumidifier product capacity in pints/
          day, corrected to standard rating conditions of 73 [deg]F dry-
          bulb temperature and 60 percent relative humidity;
Ct = product capacity determined from test data in pints/day, 
          as measured in section 4.1.1 of this appendix for portable and 
          refrigerant-only whole-home dehumidifiers or calculated in 
          section 5.6 of this appendix for refrigerant-desiccant whole-
          home dehumidifiers;

[[Page 706]]

Tt = average dry-bulb temperature during the test period in 
          [deg]F;
HC,p = portable dehumidifier corrected relative humidity in 
          percent, as determined in section 5.1 of this appendix; and
HC,wh = whole-home dehumidifier corrected relative humidity 
          in percent, as determined in section 5.1 of this appendix.

    5.3 Annual combined low-power mode energy consumption. Calculate the 
annual combined low-power mode energy consumption for dehumidifiers, 
ETLP, expressed in kWh per year:

ETLP = [(PIO x SIO) + (POC x 
          SOC)] x K

Where:

PIO = PIA, dehumidifier inactive mode power, or 
          POM, dehumidifier off mode power in watts, as 
          measured in section 4.3 of this appendix;
POC = dehumidifier off-cycle mode power in watts, as measured 
          in section 4.2 of this appendix;
SIO = 1,840.5 dehumidifier inactive mode or off mode annual 
          hours;
SOC = 1,840.5 dehumidifier off-cycle mode annual hours; and
K = 0.001 kWh/Wh conversion factor for watt-hours to kWh.

    5.4 Integrated energy factor. Calculate the integrated energy 
factor, IEF, expressed in L/kWh, rounded to two decimal places, 
according to the following:
[GRAPHIC] [TIFF OMITTED] TR31JY15.010

Where:

Cr = corrected product capacity in pints per day, as 
          determined in section 5.2 of this appendix;
t = test duration in hours;
EDM = energy consumption during the 6-hour dehumidification 
          mode test in kWh, as measured in section 4.1 of this appendix;
ETLP = annual combined low-power mode energy consumption in 
          kWh per year, as calculated in section 5.3 of this appendix;
1,095 = dehumidification mode annual hours, used to convert 
          ETLP to combined low-power mode energy consumption 
          per hour of dehumidification mode;
6 = hours per dehumidification mode test, used to convert annual 
          combined low-power mode energy consumption per hour of 
          dehumidification mode for integration with dehumidification 
          mode energy consumption;
1.04 = the density of water in pounds per pint;
0.454 = the liters of water per pound of water; and
24 = the number of hours per day.

    5.5 Absolute humidity for refrigerant-desiccant dehumidifiers. 
Calculate the absolute humidity of the air entering and leaving the 
refrigerant-desiccant dehumidifier in the process air stream, expressed 
in pounds of water per cubic foot of air, according to the following set 
of equations.
    5.5.1 Temperature in Kelvin. The air dry-bulb temperature, in 
Kelvin, is:
[GRAPHIC] [TIFF OMITTED] TR31JY15.011

Where:

TF = the measured dry-bulb temperature of the air in [deg]F.

    5.5.2 Water saturation pressure. The water saturation pressure, 
expressed in kilopascals (kPa), is:
[GRAPHIC] [TIFF OMITTED] TR31JY15.012


[[Page 707]]


Where:

TK = the calculated dry-bulb temperature of the air in K, 
          calculated in section 5.5.1 of this appendix.

    5.5.3 Vapor pressure. The water vapor pressure, expressed in 
kilopascals (kPa), is:
[GRAPHIC] [TIFF OMITTED] TR31JY15.013

Where:

RH = percent relative humidity during the rating test period; and
Pws = water vapor saturation pressure in kPa, calculated in 
          section 5.5.2 of this appendix.

    5.5.4 Mixing humidity ratio. The mixing humidity ratio, the mass of 
water per mass of dry air, is:
[GRAPHIC] [TIFF OMITTED] TR31JY15.014

Where:

Pw = water vapor pressure in kPa, calculated in section 5.5.3 
          of this appendix;
P = measured ambient barometric pressure in in. Hg;
3.386 = the conversion factor from in. Hg to kPa; and
0.62198 = the ratio of the molecular weight of water to the molecular 
          weight of dry air.

    5.5.5 Specific volume. The specific volume, expressed in feet cubed 
per pounds of dry air, is:
[GRAPHIC] [TIFF OMITTED] TR31JY15.015

Where:

TK = dry-bulb temperature of the air in K, as calculated in 
          section 5.5.1 of this appendix;
P = measured ambient barometric pressure in in. Hg;
Pw = water vapor pressure in kPa, calculated in section 5.5.3 
          of this appendix;
0.287055 = the specific gas constant for dry air in kPa times cubic 
          meter per kg per K;
3.386 = the conversion factor from in. Hg to kPa; and
16.016 = the conversion factor from cubic meters per kilogram to cubic 
          feet per pound.

    5.5.6 Absolute humidity. The absolute humidity, expressed in pounds 
of water per cubic foot of air, is:
[GRAPHIC] [TIFF OMITTED] TR31JY15.016

Where:

HR = the mixing humidity ratio, the mass of water per mass of dry air, 
          as calculated in section 5.5.4 of this appendix; and
[nu] = the specific volume in cubic feet per pound of dry air, as 
          calculated in section 5.5.5 of this appendix.


[[Page 708]]


    5.6 Product capacity for refrigerant-desiccant dehumidifiers. The 
weight of water removed during the test period, W, expressed in pounds 
is:
[GRAPHIC] [TIFF OMITTED] TR31JY15.017

Where:

n = number of samples during the test period in section 4.1.1.2 of this 
          appendix;
AHI,i = absolute humidity of the process air on the inlet 
          side of the unit in pounds of water per cubic foot of dry air, 
          as calculated for sample i in section 5.5.6 of this appendix;
XI,i = volumetric flow rate of the process air on the inlet 
          side of the unit in cubic feet per minute, measured for sample 
          i in section 4.1.1.2 of this appendix. Calculate the 
          volumetric flow rate in accordance with Section 7.3, ``Fan 
          airflow rate at test conditions,'' of ANSI/AMCA 210 
          (incorporated by reference, see Sec.  430.3);
AHO,i = absolute humidity of the process air on the outlet 
          side of the unit in pounds of water per cubic foot of dry air, 
          as calculated for sample i in section 5.5.6 of this appendix;
XO,i = volumetric flow rate of the process air on the outlet 
          side of the unit in cubic feet per minute, measured for sample 
          i in section 4.1.1.2 of this appendix. Calculate the 
          volumetric flow rate in accordance with Section 7.3, ``Fan 
          airflow rate at test conditions,'' of ANSI/AMCA 210 
          (incorporated by reference, see Sec.  430.3);
t = time interval in seconds between samples, with a maximum of 60; and
60 = conversion from minutes to seconds.

    The capacity, Ct, expressed in pints/day, is:
    [GRAPHIC] [TIFF OMITTED] TR31JY15.018
    
Where:

24 = number of hours per day;
1.04 = density of water in pounds per pint; and
T = total test period time in hours.

    Then correct the product capacity, Cr,wh, according to 
section 5.2 of this appendix.
    5.7 Product case volume for whole-home dehumidifiers. The product 
case volume, V, in cubic feet, is:
[GRAPHIC] [TIFF OMITTED] TR31JY15.019

Where:

DL = product case length in inches, measured in section 4.4 
          of this appendix;
DW = product case width in inches, measured in section 4.4 of 
          this appendix;
DH = product case height in inches, measured in section 4.4 
          of this appendix; and
1,728 = conversion from cubic inches to cubic feet.

[80 FR 45826, July 31, 2015]



   Sec. Appendix Y to Subpart B of Part 430--Uniform Test Method for 
          Measuring the Energy Consumption of Battery Chargers

    Prior to November 16, 2016, manufacturers must make any 
representations regarding the energy consumption of battery chargers 
other than uninterruptible power supplies based upon results generated 
under this appendix or the previous version of this appendix as it 
appeared in the Code of Federal Regulations on January 1, 2016. On or 
after November 16, 2016, manufacturers must make any representations 
regarding the energy

[[Page 709]]

consumption of battery chargers other than uninterruptible power 
supplies based upon results generated under this appendix. On or after 
June 12, 2017, manufacturers must make any representations regarding the 
energy efficiency of uninterruptible power supplies based upon results 
generated under this appendix.

                                1. Scope

    This appendix provides the test requirements used to measure the 
energy consumption of battery chargers operating at either DC or United 
States AC line voltage (115V at 60Hz). This appendix also provides the 
test requirements used to measure the energy efficiency of 
uninterruptible power supplies as defined in section 2 of this appendix 
that utilize the standardized National Electrical Manufacturer 
Association (NEMA) plug, 1-15P or 5-15P, as specified in ANSI/NEMA WD 6-
2016 (incorporated by reference, see Sec.  430.3) and have an AC output. 
This appendix does not provide a method for testing back-up battery 
chargers.

                             2. Definitions

    The following definitions are for the purposes of explaining the 
terminology associated with the test method for measuring battery 
charger energy consumption.\1\
---------------------------------------------------------------------------

    \1\ For clarity on any other terminology used in the test method, 
please refer to IEEE Standard 1515-2000.
---------------------------------------------------------------------------

    2.1. Active mode or charge mode is the state in which the battery 
charger system is connected to the main electricity supply, and the 
battery charger is delivering current, equalizing the cells, and 
performing other one-time or limited-time functions in order to bring 
the battery to a fully charged state.
    2.2. Active power or real power (P) means the average power consumed 
by a unit. For a two terminal device with current and voltage waveforms 
i(t) and v(t), which are periodic with period T, the real or active 
power P is:
[GRAPHIC] [TIFF OMITTED] TR01JN11.020

    2.3. Ambient temperature is the temperature of the ambient air 
immediately surrounding the unit under test.
    2.4. Apparent power (S) is the product of root-mean-square (RMS) 
voltage and RMS current in volt-amperes (VA).
    2.5. Batch charger is a battery charger that charges two or more 
identical batteries simultaneously in a series, parallel, series-
parallel, or parallel-series configuration. A batch charger does not 
have separate voltage or current regulation, nor does it have any 
separate indicators for each battery in the batch. When testing a batch 
charger, the term ``battery'' is understood to mean, collectively, all 
the batteries in the batch that are charged together. A charger can be 
both a batch charger and a multi-port charger or multi-voltage charger.
    2.6. Battery or battery pack is an assembly of one or more 
rechargeable cells and any integral protective circuitry intended to 
provide electrical energy to a consumer product, and may be in one of 
the following forms: (a) Detachable battery (a battery that is contained 
in a separate enclosure from the consumer product and is intended to be 
removed or disconnected from the consumer product for recharging); or 
(b) integral battery (a battery that is contained within the consumer 
product and is not removed from the consumer product for charging 
purposes). The word ``intended'' in this context refers to the whether a 
battery has been designed in such a way as to permit its removal or 
disconnection from its associated consumer product.
    2.7. Battery energy is the energy, in watt-hours, delivered by the 
battery under the specified discharge conditions in the test procedure.
    2.8. Battery maintenance mode or maintenance mode is the mode of 
operation when the battery charger is connected to the main electricity 
supply and the battery is fully charged, but is still connected to the 
charger.
    2.9. Battery rest period is a period of time between discharge and 
charge or between charge and discharge, during which the battery is 
resting in an open-circuit state in ambient air.
    2.10. C-Rate (C) is the rate of charge or discharge, calculated by 
dividing the charge or discharge current by the nameplate battery charge 
capacity of the battery.
    2.11. Cradle is an electrical interface between an integral battery 
product and the rest of the battery charger designed to hold the product 
between uses.
    2.12. Energy storage system is a system consisting of single or 
multiple devices designed to provide power to the UPS inverter 
circuitry.
    2.13. Equalization is a process whereby a battery is overcharged, 
beyond what would be considered ``normal'' charge return, so that cells 
can be balanced, electrolyte mixed, and plate sulfation removed.
    2.14. Instructions or manufacturer's instructions means the 
documentation packaged with a product in printed or electronic form and 
any information about the product listed on a Web site maintained by the 
manufacturer and accessible by the general public at the time of the 
test. It also includes any information on the packaging or on the 
product itself. ``Instructions'' also includes any

[[Page 710]]

service manuals or data sheets that the manufacturer offers to 
independent service technicians, whether printed or in electronic form.
    2.15. Measured charge capacity of a battery is the product of the 
discharge current in amperes and the time in decimal hours required to 
reach the specified end-of-discharge voltage.
    2.16. Manual on-off switch is a switch activated by the user to 
control power reaching the battery charger. This term does not apply to 
any mechanical, optical, or electronic switches that automatically 
disconnect mains power from the battery charger when a battery is 
removed from a cradle or charging base, or for products with non-
detachable batteries that control power to the product itself.
    2.17. Multi-port charger means a battery charger that charges two or 
more batteries (which may be identical or different) simultaneously. The 
batteries are not connected in series or in parallel but with each port 
having separate voltage and/or current regulation. If the charger has 
status indicators, each port has its own indicator(s). A charger can be 
both a batch charger and a multi-port charger if it is capable of 
charging two or more batches of batteries simultaneously and each batch 
has separate regulation and/or indicator(s).
    2.18. Multi-voltage charger is a battery charger that, by design, 
can charge a variety of batteries (or batches of batteries, if also a 
batch charger) that are of different nameplate battery voltages. A 
multi-voltage charger can also be a multi-port charger if it can charge 
two or more batteries simultaneously with independent voltages and/or 
current regulation.
    2.19. Normal mode is a mode of operation for a UPS in which:
    (1) The AC input supply is within required tolerances and supplies 
the UPS,
    (2) The energy storage system is being maintained at full charge or 
is under recharge, and
    (3) The load connected to the UPS is within the UPS's specified 
power rating.
    2.20. Off mode is the condition, applicable only to units with 
manual on-off switches, in which the battery charger:
    (1) Is connected to the main electricity supply;
    (2) Is not connected to the battery; and
    (3) All manual on-off switches are turned off.
    2.21. Nameplate battery voltage is specified by the battery 
manufacturer and typically printed on the label of the battery itself. 
If there are multiple batteries that are connected in series, the 
nameplate battery voltage of the batteries is the total voltage of the 
series configuration--that is, the nameplate voltage of each battery 
multiplied by the number of batteries connected in series. Connecting 
multiple batteries in parallel does not affect the nameplate battery 
voltage.
    2.22. Nameplate battery charge capacity is the capacity, claimed by 
the battery manufacturer on a label or in instructions, that the battery 
can store, usually given in ampere-hours (Ah) or milliampere-hours (mAh) 
and typically printed on the label of the battery itself. If there are 
multiple batteries that are connected in parallel, the nameplate battery 
charge capacity of the batteries is the total charge capacity of the 
parallel configuration, that is, the nameplate charge capacity of each 
battery multiplied by the number of batteries connected in parallel. 
Connecting multiple batteries in series does not affect the nameplate 
charge capacity.
    2.23. Nameplate battery energy capacity means the product (in watts-
hours (Wh)) of the nameplate battery voltage and the nameplate battery 
charge capacity.
    2.24. Reference test load is a load or a condition with a power 
factor of greater than 0.99 in which the AC output socket of the UPS 
delivers the active power (W) for which the UPS is rated.
    2.25. Standby mode or no-battery mode means the condition in which:
    (1) The battery charger is connected to the main electricity supply;
    (2) The battery is not connected to the charger; and
    (3) For battery chargers with manual on-off switches, all such 
switches are turned on.
    2.26. Total harmonic distortion (THD), expressed as a percent, is 
the root mean square (RMS) value of an AC signal after the fundamental 
component is removed and interharmonic components are ignored, divided 
by the RMS value of the fundamental component.
    2.27. Uninterruptible power supply or UPS means a battery charger 
consisting of a combination of convertors, switches and energy storage 
devices (such as batteries), constituting a power system for maintaining 
continuity of load power in case of input power failure.
    2.27.1. Voltage and frequency dependent UPS or VFD UPS means a UPS 
that produces an AC output where the output voltage and frequency are 
dependent on the input voltage and frequency. This UPS architecture does 
not provide corrective functions like those in voltage independent and 
voltage and frequency independent systems.
    Note to 2.27.1: VFD input dependency may be verified by performing 
the AC input failure test in section 6.2.2.7 of IEC 62040-3 Ed. 2.0 
(incorporated by reference, see Sec.  430.3) and observing that, at a 
minimum, the UPS switches from normal mode of operation to battery power 
while the input is interrupted.
    2.27.2. Voltage and frequency independent UPS or VFI UPS means a UPS 
where the device remains in normal mode producing an

[[Page 711]]

AC output voltage and frequency that is independent of input voltage and 
frequency variations and protects the load against adverse effects from 
such variations without depleting the stored energy source.
    Note to 2.27.2: VFI input dependency may be verified by performing 
the steady state input voltage tolerance test and the input frequency 
tolerance test in sections 6.4.1.1 and 6.4.1.2 of IEC 62040-3 Ed. 2.0 
(incorporated by reference, see Sec.  430.3) respectively and observing 
that, at a minimum, the UPS produces an output voltage and frequency 
within the specified output range when the input voltage is varied by 
10% of the rated input voltage and the input 
frequency is varied by 2% of the rated input 
frequency.
    2.27.3. Voltage independent UPS or VI UPS means a UPS that produces 
an AC output within a specific tolerance band that is independent of 
under-voltage or over-voltage variations in the input voltage without 
depleting the stored energy source. The output frequency of a VI UPS is 
dependent on the input frequency, similar to a voltage and frequency 
dependent system.
    Note to 2.27.3: VI input dependency may be verified by performing 
the steady state input voltage tolerance test in section 6.4.1.1 of IEC 
62040-3 Ed. 2.0 (incorporated by reference, see Sec.  430.3) and 
ensuring that the UPS remains in normal mode with the output voltage 
within the specified output range when the input voltage is varied by 
10% of the rated input voltage.
    2.28. Unit under test (UUT) in this appendix refers to the 
combination of the battery charger and battery being tested.

      3. Testing Requirements for all Battery Chargers Other Than 
                     Uninterruptible Power Supplies

                      3.1. Standard Test Conditions

                              3.1.1 General

    The values that may be measured or calculated during the conduct of 
this test procedure have been summarized for easy reference in Table 
3.1.1. of this appendix.

           Table 3.1.1--List of Measured or Calculated Values
------------------------------------------------------------------------
  Name of measured or calculated value              Reference
------------------------------------------------------------------------
1. Duration of the charge and            Section 3.3.2.
 maintenance mode test.
2. Battery Discharge Energy............  Section 3.3.8.
3. Initial time and power (W) of the     Section 3.3.6.
 input current of connected battery.
4. Active and Maintenance Mode Energy    Section 3.3.6.
 Consumption.
5. Maintenance Mode Power..............  Section 3.3.9.
6. 24 Hour Energy Consumption..........  Section 3.3.10.
7. Standby Mode Power..................  Section 3.3.11.
8. Off Mode Power......................  Section 3.3.12.
9. Unit Energy Consumption, UEC (kWh/    Section 3.3.13.
 yr).
------------------------------------------------------------------------

     3.1.2. Verifying Accuracy and Precision of Measuring Equipment

    Any power measurement equipment utilized for testing must conform to 
the uncertainty and resolution requirements outlined in section 4, 
``General conditions for measurement'', as well as annexes B, ``Notes on 
the measurement of low power modes'', and D, ``Determination of 
uncertainty of measurement'', of IEC 62301 (incorporated by reference, 
see Sec.  430.3).

                     3.1.3. Setting Up the Test Room

    All tests, battery conditioning, and battery rest periods shall be 
carried out in a room with an air speed immediately surrounding the UUT 
of <=0.5 m/s. The ambient temperature shall be maintained at 20 [deg]C 
 5 [deg]C throughout the test. There shall be no 
intentional cooling of the UUT such as by use of separately powered 
fans, air conditioners, or heat sinks. The UUT shall be conditioned, 
rested, and tested on a thermally non-conductive surface. When not 
undergoing active testing, batteries shall be stored at 20 [deg]C  5 [deg]C.

      3.1.4. Verifying the UUT's Input Voltage and Input Frequency

    (a) If the UUT is intended for operation on AC line-voltage input in 
the United States, it shall be tested at 115 V at 60 Hz. If the UUT is 
intended for operation on AC line-voltage input but cannot be operated 
at 115 V at 60 Hz, it shall not be tested.
    (b) If a charger is powered by a low-voltage DC or AC input, and the 
manufacturer packages the charger with a wall adapter, sells, or 
recommends an optional wall adapter capable of providing that low 
voltage input, then the charger shall be tested using that wall adapter 
and the input reference source shall be 115 V at 60 Hz. If the wall 
adapter cannot be operated with AC input voltage at 115 V at 60 Hz, the 
charger shall not be tested.
    (c) If the UUT is designed for operation only on DC input voltage 
and the provisions of section 3.1.4(b) of this appendix do not apply, it 
shall be tested with one of the following input voltages: 5.0 V DC for 
products drawing power from a computer USB port or the midpoint of the 
rated input voltage range for all other products. The input voltage 
shall be within 1 percent of the above specified 
voltage.

[[Page 712]]

    (d) If the input voltage is AC, the input frequency shall be within 
1 percent of the specified frequency. The THD of 
the input voltage shall be <=2 percent, up to and including the 13th 
harmonic. The crest factor of the input voltage shall be between 1.34 
and 1.49.
    (e) If the input voltage is DC, the AC ripple voltage (RMS) shall 
be:
    (1) <=0.2 V for DC voltages up to 10 V; or
    (2) <=2 percent of the DC voltage for DC voltages over 10 V.

                 3.2. Unit Under Test Setup Requirements

                          3.2.1. General Setup

    (a) The battery charger system shall be prepared and set up in 
accordance with the manufacturer's instructions, except where those 
instructions conflict with the requirements of this test procedure. If 
no instructions are given, then factory or ``default'' settings shall be 
used, or where there are no indications of such settings, the UUT shall 
be tested in the condition as it would be supplied to an end user.
    (b) If the battery charger has user controls to select from two or 
more charge rates (such as regular or fast charge) or different charge 
currents, the test shall be conducted at the fastest charge rate that is 
recommended by the manufacturer for everyday use, or, failing any 
explicit recommendation, the factory-default charge rate. If the charger 
has user controls for selecting special charge cycles that are 
recommended only for occasional use to preserve battery health, such as 
equalization charge, removing memory, or battery conditioning, these 
modes are not required to be tested. The settings of the controls shall 
be listed in the report for each test.

          3.2.2. Selection and Treatment of the Battery Charger

    The UUT, including the battery charger and its associated battery, 
shall be new products of the type and condition that would be sold to a 
customer. If the battery is lead-acid chemistry and the battery is to be 
stored for more than 24 hours between its initial acquisition and 
testing, the battery shall be charged before such storage.

            3.2.3. Selection of Batteries To Use for Testing

    (a) For chargers with integral batteries, the battery packaged with 
the charger shall be used for testing. For chargers with detachable 
batteries, the battery or batteries to be used for testing will vary 
depending on whether there are any batteries packaged with the battery 
charger.
    (1) If batteries are packaged with the charger, batteries for 
testing shall be selected from the batteries packaged with the battery 
charger, according to the procedure in section 3.2.3(b) of this 
appendix.
    (2) If no batteries are packaged with the charger, but the 
instructions specify or recommend batteries for use with the charger, 
batteries for testing shall be selected from those recommended or 
specified in the instructions, according to the procedure in section 
3.2.3(b) of this appendix.
    (3) If no batteries are packaged with the charger and the 
instructions do not specify or recommend batteries for use with the 
charger, batteries for testing shall be selected from any that are 
suitable for use with the charger, according to the procedure in section 
3.2.3(b) of this appendix.
    (b)(1) From the detachable batteries specified above, use Table 
3.2.1 of this appendix to select the batteries to be used for testing, 
depending on the type of battery charger being tested. The battery 
charger types represented by the rows in the table are mutually 
exclusive. Find the single applicable row for the UUT, and test 
according to those requirements. Select only the single battery 
configuration specified for the battery charger type in Table 3.2.1 of 
this appendix.
    (2) If the battery selection criteria specified in Table 3.2.1 of 
this appendix results in two or more batteries or configurations of 
batteries of different chemistries, but with equal voltage and capacity 
ratings, determine the maintenance mode power, as specified in section 
3.3.9 of this appendix, for each of the batteries or configurations of 
batteries, and select for testing the battery or configuration of 
batteries with the highest maintenance mode power.
    (c) A charger is considered as:
    (1) Single-capacity if all associated batteries have the same 
nameplate battery charge capacity (see definition) and, if it is a batch 
charger, all configurations of the batteries have the same nameplate 
battery charge capacity.
    (2) Multi-capacity if there are associated batteries or 
configurations of batteries that have different nameplate battery charge 
capacities.
    (d) The selected battery or batteries will be referred to as the 
``test battery'' and will be used through the remainder of this test 
procedure.

                                   Table 3.2.1--Battery Selection for Testing
----------------------------------------------------------------------------------------------------------------
                           Type of charger                                         Tests to perform
----------------------------------------------------------------------------------------------------------------
                                                                      Battery selection (from all configurations
         Multi-voltage              Multi-port       Multi-capacity          of all associated batteries)
----------------------------------------------------------------------------------------------------------------
No............................  No...............  No...............  Any associated battery.

[[Page 713]]

 
No............................  No...............  Yes..............  Highest charge capacity battery.
No............................  Yes..............  Yes or No........  Use all ports. Use the maximum number of
                                                                       identical batteries with the highest
                                                                       nameplate battery charge capacity that
                                                                       the charger can accommodate.
Yes...........................  No...............  No...............  Highest voltage battery.
                               --------------------------------------
Yes...........................  Yes to either or both                 Use all ports. Use the battery or
                                                                       configuration of batteries with the
                                                                       highest individual voltage. If multiple
                                                                       batteries meet this criteria, then use
                                                                       the battery or configuration of batteries
                                                                       with the highest total nameplate battery
                                                                       charge capacity at the highest individual
                                                                       voltage.
----------------------------------------------------------------------------------------------------------------

           3.2.4. Limiting Other Non-Battery-Charger Functions

    (a) If the battery charger or product containing the battery charger 
does not have any additional functions unrelated to battery charging, 
this subsection may be skipped.
    (b) Any optional functions controlled by the user and not associated 
with the battery charging process (e.g., the answering machine in a 
cordless telephone charging base) shall be switched off. If it is not 
possible to switch such functions off, they shall be set to their lowest 
power-consuming mode during the test.
    (c) If the battery charger takes any physically separate connectors 
or cables not required for battery charging but associated with its 
other functionality (such as phone lines, serial or USB connections, 
Ethernet, cable TV lines, etc.), these connectors or cables shall be 
left disconnected during the testing.
    (d) Any manual on-off switches specifically associated with the 
battery charging process shall be switched on for the duration of the 
charge, maintenance, and no-battery mode tests, and switched off for the 
off mode test.

                3.2.5. Accessing the Battery for the Test

    (a) The technician may need to disassemble the end-use product or 
battery charger to gain access to the battery terminals for the Battery 
Discharge Energy Test in section 3.3.8 of this appendix. If the battery 
terminals are not clearly labeled, the technician shall use a voltmeter 
to identify the positive and negative terminals. These terminals will be 
the ones that give the largest voltage difference and are able to 
deliver significant current (0.2 C or 1/hr) into a load.
    (b) All conductors used for contacting the battery must be cleaned 
and burnished prior to connecting in order to decrease voltage drops and 
achieve consistent results.
    (c) Manufacturer's instructions for disassembly shall be followed, 
except those instructions that:
    (1) Lead to any permanent alteration of the battery charger 
circuitry or function;
    (2) Could alter the energy consumption of the battery charger 
compared to that experienced by a user during typical use, e.g., due to 
changes in the airflow through the enclosure of the UUT; or
    (3) Conflict requirements of this test procedure.
    (d) Care shall be taken by the technician during disassembly to 
follow appropriate safety precautions. If the functionality of the 
device or its safety features is compromised, the product shall be 
discarded after testing.
    (e) Some products may include protective circuitry between the 
battery cells and the remainder of the device. If the manufacturer 
provides a description for accessing the connections at the output of 
the protective circuitry, these connections shall be used to discharge 
the battery and measure the discharge energy. The energy consumed by the 
protective circuitry during discharge shall not be measured or credited 
as battery energy.
    (f) If the technician, despite diligent effort and use of the 
manufacturer's instructions, encounters any of the following conditions 
noted immediately below, the Battery Discharge Energy and the Charging 
and Maintenance Mode Energy shall be reported as ``Not Applicable'':
    (1) Inability to access the battery terminals;
    (2) Access to the battery terminals destroys charger functionality; 
or
    (3) Inability to draw current from the test battery.

     3.2.6. Determining Charge Capacity for Batteries With No Rating

    (a) If there is no rating for the battery charge capacity on the 
battery or in the instructions, then the technician shall determine a 
discharge current that meets the following requirements. The battery 
shall be fully charged and then discharged at this constant-current rate 
until it reaches the end-of-discharge voltage specified in Table

[[Page 714]]

3.3.2 of this appendix. The discharge time must be not less than 4.5 
hours nor more than 5 hours. In addition, the discharge test (section 
3.3.8 of this appendix) (which may not be starting with a fully-charged 
battery) shall reach the end-of-discharge voltage within 5 hours. The 
same discharge current shall be used for both the preparations step 
(section 3.3.4 of this appendix) and the discharge test (section 3.3.8 
of this appendix). The test report shall include the discharge current 
used and the resulting discharge times for both a fully-charged battery 
and for the discharge test.
    (b) For this section, the battery is considered as ``fully charged'' 
when either: it has been charged by the UUT until an indicator on the 
UUT shows that the charge is complete; or it has been charged by a 
battery analyzer at a current not greater than the discharge current 
until the battery analyzer indicates that the battery is fully charged.
    (c) When there is no capacity rating, a suitable discharge current 
must generally be determined by trial and error. Since the conditioning 
step does not require constant-current discharges, the trials themselves 
may also be counted as part of battery conditioning.

                          3.3. Test Measurement

    The test sequence to measure the battery charger energy consumption 
is summarized in Table 3.3.1 of this appendix, and explained in detail 
in this appendix. Measurements shall be made under test conditions and 
with the equipment specified in sections 3.1 and 3.2 of this appendix.

                                           Table 3.3.1--Test Sequence
----------------------------------------------------------------------------------------------------------------
                                                                         Equipment needed
                                                 ---------------------------------------------------------------
                                                                            Battery
                                                                           analyzer                 Thermometer
       Step/Description           Data taken?        Test                     or       AC power    (for flooded
                                                    battery     Charger    constant-     meter       lead-acid
                                                                            current                   battery
                                                                             load                 chargers only)
----------------------------------------------------------------------------------------------------------------
1. Record general data on      Yes..............          X           X
 UUT; Section 3.3.1.
2. Determine test duration;    No...............
 Section 3.3.2.
3. Battery conditioning;       No...............          X           X           X
 Section 3.3.3.
4. Prepare battery for charge  No...............          X           X
 test; Section 3.3.4.
5. Battery rest period;        No...............          X   ..........  ..........  ..........              X
 Section 3.3.5.
6. Conduct Charge Mode and     Yes..............          X           X   ..........          X
 Battery Maintenance Mode
 Test; Section 3.3.6.
7. Battery Rest Period;        No...............          X   ..........  ..........  ..........              X
 Section 3.3.7.
8. Battery Discharge Energy    Yes..............          X   ..........          X
 Test; Section 3.3.8.
9. Determining the             Yes..............          X           X   ..........          X
 Maintenance Mode Power;
 Section 3.3.9.
10. Calculating the 24-Hour    No...............
 Energy Consumption; Section
 3.3.10.
11. Standby Mode Test;         Yes..............  ..........          X   ..........          X
 Section 3.3.11.
12. Off Mode Test; Section     Yes..............  ..........          X   ..........          X
 3.3.12.
----------------------------------------------------------------------------------------------------------------

                3.3.1. Recording General Data on the UUT

    The technician shall record:
    (a) The manufacturer and model of the battery charger;
    (b) The presence and status of any additional functions unrelated to 
battery charging;
    (c) The manufacturer, model, and number of batteries in the test 
battery;
    (d) The nameplate battery voltage of the test battery;
    (e) The nameplate battery charge capacity of the test battery; and
    (f) The nameplate battery charge energy of the test battery.
    (g) The settings of the controls, if battery charger has user 
controls to select from two or more charge rates.

 3.3.2. Determining the Duration of the Charge and Maintenance Mode Test

    (a) The charging and maintenance mode test, described in detail in 
section 3.3.6 of this appendix, shall be 24 hours in length or longer, 
as determined by the items below. Proceed in order until a test duration 
is determined.
    (1) If the battery charger has an indicator to show that the battery 
is fully charged, that indicator shall be used as follows: If the 
indicator shows that the battery is charged after 19 hours of charging, 
the test shall be terminated at 24 hours. Conversely, if the full-charge 
indication is not yet present after 19 hours of charging, the test shall 
continue until 5 hours after the indication is present.

[[Page 715]]

    (2) If there is no indicator, but the manufacturer's instructions 
indicate that charging this battery or this capacity of battery should 
be complete within 19 hours, the test shall be for 24 hours. If the 
instructions indicate that charging may take longer than 19 hours, the 
test shall be run for the longest estimated charge time plus 5 hours.
    (3) If there is no indicator and no time estimate in the 
instructions, but the charging current is stated on the charger or in 
the instructions, calculate the test duration as the longer of 24 hours 
or:
[GRAPHIC] [TIFF OMITTED] TR12DE16.027

    (b) If none of the above applies, the duration of the test shall be 
24 hours.

                       3.3.3. Battery Conditioning

    (a) No conditioning is to be done on lithium-ion batteries. The test 
technician shall proceed directly to battery preparation, section 3.3.4 
of this appendix, when testing chargers for these batteries.
    (b) Products with integral batteries will have to be disassembled 
per the instructions in section 3.2.5 of this appendix, and the battery 
disconnected from the charger for discharging.
    (c) Batteries of other chemistries that have not been previously 
cycled are to be conditioned by performing two charges and two 
discharges, followed by a charge, as below. No data need be recorded 
during battery conditioning.
    (1) The test battery shall be fully charged for the duration 
specified in section 3.3.2 of this appendix or longer using the UUT.
    (2) The test battery shall then be fully discharged using either:
    (i) A battery analyzer at a rate not to exceed 1 C, until its 
average cell voltage under load reaches the end-of-discharge voltage 
specified in Table 3.3.2 of this appendix for the relevant battery 
chemistry; or
    (ii) The UUT, until the UUT ceases operation due to low battery 
voltage.
    (3) The test battery shall again be fully charged as in step (c)(1) 
of this section.
    (4) The test battery shall again be fully discharged as per step 
(c)(2) of this section.
    (5) The test battery shall be again fully charged as in step (c)(1) 
of this section.
    (d) Batteries of chemistries, other than lithium-ion, that are known 
to have been through at least two previous full charge/discharge cycles 
shall only be charged once per step (c)(5), of this section.

             3.3.4. Preparing the Battery for Charge Testing

    Following any conditioning prior to beginning the battery charge 
test (section 3.3.6 of this appendix), the test battery shall be fully 
discharged for the duration specified in section 3.3.2 of this appendix, 
or longer using a battery analyzer.

                       3.3.5. Resting the Battery

    The test battery shall be rested between preparation and the battery 
charge test. The rest period shall be at least one hour and not exceed 
24 hours. For batteries with flooded cells, the electrolyte temperature 
shall be less than 30 [deg]C before charging, even if the rest period 
must be extended longer than 24 hours.

         3.3.6. Testing Charge Mode and Battery Maintenance Mode

    (a) The Charge and Battery Maintenance Mode test measures the energy 
consumed during charge mode and some time spent in the maintenance mode 
of the UUT. Functions required for battery conditioning that happen only 
with some user-selected switch or other control shall not be included in 
this measurement. (The technician shall manually turn off any battery 
conditioning cycle or setting.) Regularly occurring battery conditioning 
or maintenance functions that are not controlled by the user will, by 
default, be incorporated into this measurement.
    (b) During the measurement period, input power values to the UUT 
shall be recorded at least once every minute.
    (1) If possible, the technician shall set the data logging system to 
record the average power during the sample interval. The total energy is 
computed as the sum of power samples (in watts) multiplied by the sample 
interval (in hours).
    (2) If this setting is not possible, then the power analyzer shall 
be set to integrate or accumulate the input power over the measurement 
period and this result shall be used as the total energy.
    (c) The technician shall follow these steps:
    (1) Ensure that the user-controllable device functionality not 
associated with battery charging and any battery conditioning cycle or 
setting are turned off, as instructed in section 3.2.4 of this appendix;
    (2) Ensure that the test battery used in this test has been 
conditioned, prepared, discharged, and rested as described in sections 
3.3.3 through 3.3.5 of this appendix;
    (3) Connect the data logging equipment to the battery charger;

[[Page 716]]

    (4) Record the start time of the measurement period, and begin 
logging the input power;
    (5) Connect the test battery to the battery charger within 3 minutes 
of beginning logging. For integral battery products, connect the product 
to a cradle or wall adapter within 3 minutes of beginning logging;
    (6) After the test battery is connected, record the initial time and 
power (W) of the input current to the UUT. These measurements shall be 
taken within the first 10 minutes of active charging;
    (7) Record the input power for the duration of the ``Charging and 
Maintenance Mode Test'' period, as determined by section 3.3.2 of this 
appendix. The actual time that power is connected to the UUT shall be 
within 5 minutes of the specified period; and
    (8) Disconnect power to the UUT, terminate data logging, and record 
the final time.

                       3.3.7. Resting the Battery

    The test battery shall be rested between charging and discharging. 
The rest period shall be at least 1 hour and not more than 4 hours, with 
an exception for flooded cells. For batteries with flooded cells, the 
electrolyte temperature shall be less than 30 [deg]C before charging, 
even if the rest period must be extended beyond 4 hours.

                  3.3.8. Battery Discharge Energy Test

    (a) If multiple batteries were charged simultaneously, the discharge 
energy is the sum of the discharge energies of all the batteries.
    (1) For a multi-port charger, batteries that were charged in 
separate ports shall be discharged independently.
    (2) For a batch charger, batteries that were charged as a group may 
be discharged individually, as a group, or in sub-groups connected in 
series and/or parallel. The position of each battery with respect to the 
other batteries need not be maintained.
    (b) During discharge, the battery voltage and discharge current 
shall be sampled and recorded at least once per minute. The values 
recorded may be average or instantaneous values.
    (c) For this test, the technician shall follow these steps:
    (1) Ensure that the test battery has been charged by the UUT and 
rested according to the procedures above.
    (2) Set the battery analyzer for a constant discharge rate and the 
end-of-discharge voltage in Table 3.3.2 of this appendix for the 
relevant battery chemistry.
    (3) Connect the test battery to the analyzer and begin recording the 
voltage, current, and wattage, if available from the battery analyzer. 
When the end-of-discharge voltage is reached or the UUT circuitry 
terminates the discharge, the test battery shall be returned to an open-
circuit condition. If current continues to be drawn from the test 
battery after the end-of-discharge condition is first reached, this 
additional energy is not to be counted in the battery discharge energy.
    (d) If not available from the battery analyzer, the battery 
discharge energy (in watt-hours) is calculated by multiplying the 
voltage (in volts), current (in amperes), and sample period (in hours) 
for each sample, and then summing over all sample periods until the end-
of-discharge voltage is reached.

              3.3.9. Determining the Maintenance Mode Power

    After the measurement period is complete, the technician shall 
determine the average maintenance mode power consumption by examining 
the power-versus-time data from the charge and maintenance test and:
    (a) If the maintenance mode power is cyclic or shows periodic 
pulses, compute the average power over a time period that spans a whole 
number of cycles and includes at least the last 4 hours.
    (b) Otherwise, calculate the average power value over the last 4 
hours.

           3.3.10. Determining the 24-Hour Energy Consumption

    The accumulated energy or the average input power, integrated over 
the test period from the charge and maintenance mode test, shall be used 
to calculate 24-hour energy consumption.

   Table 3.3.2--Required Battery Discharge Rates and End-of-Discharge
                            Battery Voltages
------------------------------------------------------------------------
                                                       End-of-discharge
        Battery chemistry         Discharge rate (C)   voltage * (volts
                                                           per cell)
------------------------------------------------------------------------
Valve-Regulated Lead Acid (VRLA)                 0.2                1.75
Flooded Lead Acid...............                 0.2                1.70
Nickel Cadmium (NiCd)...........                 0.2                 1.0
Nickel Metal Hydride (NiMH).....                 0.2                 1.0
Lithium Ion (Li-Ion)............                 0.2                 2.5
Lithium Polymer.................                 0.2                 2.5
Rechargeable Alkaline...........                 0.2                 0.9
Nanophosphate Lithium Ion.......                 0.2                 2.0

[[Page 717]]

 
Silver Zinc.....................                 0.2                 1.2
------------------------------------------------------------------------
* If the presence of protective circuitry prevents the battery cells
  from being discharged to the end-of-discharge voltage specified, then
  discharge battery cells to the lowest possible voltage permitted by
  the protective circuitry.

           3.3.11. Standby Mode Energy Consumption Measurement

    The standby mode measurement depends on the configuration of the 
battery charger, as follows.
    (a) Conduct a measurement of standby power consumption while the 
battery charger is connected to the power source. Disconnect the battery 
from the charger, allow the charger to operate for at least 30 minutes, 
and record the power (i.e., watts) consumed as the time series integral 
of the power consumed over a 10-minute test period, divided by the 
period of measurement. If the battery charger has manual on-off 
switches, all must be turned on for the duration of the standby mode 
test.
    (b) Standby mode may also apply to products with integral batteries. 
If the product uses a cradle and/or adapter for power conversion and 
charging, then ``disconnecting the battery from the charger'' will 
require disconnection of the end-use product, which contains the 
batteries. The other enclosures of the battery charging system will 
remain connected to the main electricity supply, and standby mode power 
consumption will equal that of the cradle and/or adapter alone.
    (c) If the product is powered through a detachable AC power cord and 
contains integrated power conversion and charging circuitry, then only 
the cord will remain connected to mains, and standby mode power 
consumption will equal that of the AC power cord (i.e., zero watts).
    (d) Finally, if the product contains integrated power conversion and 
charging circuitry but is powered through a non-detachable AC power cord 
or plug blades, then no part of the system will remain connected to 
mains, and standby mode measurement is not applicable.

             3.3.12. Off Mode Energy Consumption Measurement

    The off mode measurement depends on the configuration of the battery 
charger, as follows.
    (a) If the battery charger has manual on-off switches, record a 
measurement of off mode energy consumption while the battery charger is 
connected to the power source. Remove the battery from the charger, 
allow the charger to operate for at least 30 minutes, and record the 
power (i.e., watts) consumed as the time series integral of the power 
consumed over a 10-minute test period, divided by the period of 
measurement, with all manual on-off switches turned off. If the battery 
charger does not have manual on-off switches, record that the off mode 
measurement is not applicable to this product.
    (b) Off mode may also apply to products with integral batteries. If 
the product uses a cradle and/or adapter for power conversion and 
charging, then ``disconnecting the battery from the charger'' will 
require disconnection of the end-use product, which contains the 
batteries. The other enclosures of the battery charging system will 
remain connected to the main electricity supply, and off mode power 
consumption will equal that of the cradle and/or adapter alone.
    (c) If the product is powered through a detachable AC power cord and 
contains integrated power conversion and charging circuitry, then only 
the cord will remain connected to mains, and off mode power consumption 
will equal that of the AC power cord (i.e., zero watts).
    (d) Finally, if the product contains integrated power conversion and 
charging circuitry but is powered through a non-detachable AC power cord 
or plug blades, then no part of the system will remain connected to 
mains, and off mode measurement is not applicable.

               3.3.13. Unit Energy Consumption Calculation

    Unit energy consumption (UEC) shall be calculated for a battery 
charger using one of the two equations (equation (i) or equation (ii)) 
listed in this section. If a battery charger is tested and its charge 
duration as determined in section 3.3.2 of this appendix minus 5 hours 
is greater than the threshold charge time listed in table 3.3.3 of this 
appendix (i.e. (tcd - 5) * n  ta&m), 
equation (ii) shall be used to calculate UEC; otherwise a battery 
charger's UEC shall be calculated using equation (i).

[[Page 718]]

[GRAPHIC] [TIFF OMITTED] TR12DE16.020

Where:

E24 = 24-hour energy as determined in section 3.3.10 of this appendix,
Ebatt = Measured battery energy as determined in section 3.3.8 of this 
          appendix,
Pm = Maintenance mode power as determined in section 3.3.9 of this 
          appendix,
Psb = Standby mode power as determined in section 3.3.11 of this 
          appendix,
Poff = Off mode power as determined in section 3.3.12 of this appendix,
tcd = Charge test duration as determined in section 3.3.2 of this 
          appendix, and
ta&m, n, tsb, and toff, are constants used depending upon a device's 
          product class and found in the following table:

                                                       Table 3.3.3--Battery Charger Usage Profiles
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                            Product class                                                    Hours per day ***        Charges  Threshold
------------------------------------------------------------------------------------------------------------------------------------    (n)      charge
                                                                                        Special          Active +                   ----------   time *
              Number                     Description       Rated battery energy    characteristic or   maintenance  Standby    Off    Number  ----------
                                                                (ebatt) **          battery voltage       (ta&m)     (tsb)   (toff)   per day    Hours
--------------------------------------------------------------------------------------------------------------------------------------------------------
1.................................  Low-Energy...........  <=5 Wh..............  Inductive Connection       20.66      0.10    0.00      0.15     137.73
                                                                                  ****.
2.................................  Low-Energy, Low-       <100 Wh.............  <4 V................        7.82      5.29    0.00      0.54      14.48
                                     Voltage.
3.................................  Low-Energy, Medium-                          4-10 V..............        6.42      0.30    0.00      0.10      64.20
                                     Voltage.
4.................................  Low-Energy, High-                            10 V.....       16.84      0.91    0.00      0.50      33.68
                                     Voltage.
5.................................  Medium-Energy, Low-    100-3000 Wh.........  <20 V...............        6.52      1.16    0.00      0.11      59.27
                                     Voltage.
6.................................  Medium-Energy, High-                         =20 V....       17.15      6.85    0.00      0.34      50.44
                                     Voltage.
7.................................  High-Energy..........  3000 Wh..  ....................        8.14      7.30    0.00      0.32      25.44
--------------------------------------------------------------------------------------------------------------------------------------------------------
* If the duration of the charge test (minus 5 hours) as determined in section 3.3.2 of appendix Y to subpart B of this part exceeds the threshold charge
  time, use equation (ii) to calculate UEC otherwise use equation (i).
** Ebatt = Rated battery energy as determined in 10 CFR part 429.39(a).
*** If the total time does not sum to 24 hours per day, the remaining time is allocated to unplugged time, which means there is 0 power consumption and
  no changes to the UEC calculation needed.
**** Inductive connection and designed for use in a wet environment (e.g. electric toothbrushes).

       4. Testing Requirements for Uninterruptible Power Supplies

                      4.1. Standard Test Conditions

                       4.1.1. Measuring Equipment

    (a) The power or energy meter must provide true root mean square (r. 
m. s) measurements of the active input and output measurements, with an 
uncertainty at full rated load of less than or equal to 0.5% at the 95% 
confidence level notwithstanding that voltage and current waveforms can 
include harmonic components. The meter must measure input and output 
values simultaneously.
    (b) All measurement equipment used to conduct the tests must be 
calibrated within the measurement equipment manufacturer specified 
calibration period by a standard traceable to International System of 
Units such that measurements meet the uncertainty requirements specified 
in section 4.1.1(a) of this appendix.

                      4.1.2. Test Room Requirements

    All portions of the test must be carried out in a room with an air 
speed immediately surrounding the UUT of <=0.5 m/s in all directions. 
Maintain the ambient temperature in the range of 20.0 [deg]C to 30.0 
[deg]C, including all inaccuracies and uncertainties introduced by the 
temperature measurement equipment, throughout the test. No intentional 
cooling of the UUT, such as by use of separately powered fans, air 
conditioners, or heat sinks, is permitted. Test the UUT on a thermally 
non-conductive surface.

                4.1.3. Input Voltage and Input Frequency

    The AC input voltage and frequency to the UPS during testing must be 
within 3 percent

[[Page 719]]

of the highest rated voltage and within 1 percent of the highest rated 
frequency of the device.

                 4.2. Unit Under Test Setup Requirements

                          4.2.1. General Setup

    Configure the UPS according to Annex J.2 of IEC 62040-3 Ed. 2.0 
(incorporated by reference, see Sec.  430.3) with the following 
additional requirements:
    (a) UPS Operating Mode Conditions. If the UPS can operate in two or 
more distinct normal modes as more than one UPS architecture, conduct 
the test in its lowest input dependency as well as in its highest input 
dependency mode where VFD represents the lowest possible input 
dependency, followed by VI and then VFI.
    (b) Energy Storage System. The UPS must not be modified or adjusted 
to disable energy storage charging features. Minimize the transfer of 
energy to and from the energy storage system by ensuring the energy 
storage system is fully charged (at the start of testing) as follows:
    (1) If the UUT has a battery charge indicator, charge the battery 
for 5 hours after the UUT has indicated that it is fully charged.
    (2) If the UUT does not have a battery charge indicator but the user 
manual shipped with the UUT specifies a time to reach full charge, 
charge the battery for 5 hours longer than the time specified.
    (3) If the UUT does not have a battery charge indicator or user 
manual instructions, charge the battery for 24 hours.
    (c) DC output port(s). All DC output port(s) of the UUT must remain 
unloaded during testing.

                       4.2.2. Additional Features

    (a) Any feature unrelated to maintaining the energy storage system 
at full charge or delivery of load power (e.g., LCD display) shall be 
switched off. If it is not possible to switch such features off, they 
shall be set to their lowest power-consuming mode during the test.
    (b) If the UPS takes any physically separate connectors or cables 
not required for maintaining the energy storage system at full charge or 
delivery of load power but associated with other features (such as 
serial or USB connections, Ethernet, etc.), these connectors or cables 
shall be left disconnected during the test.
    (c) Any manual on-off switches specifically associated with 
maintaining the energy storage system at full charge or delivery of load 
power shall be switched on for the duration of the test.

                  4.3. Test Measurement and Calculation

    Efficiency can be calculated from either average power or 
accumulated energy.

                    4.3.1. Average Power Calculations

    If efficiency calculation are to be made using average power, 
calculate the average power consumption (Pavg) by sampling 
the power at a rate of at least 1 sample per second and computing the 
arithmetic mean of all samples over the time period specified for each 
test as follows:
[GRAPHIC] [TIFF OMITTED] TR12DE16.021

Where:

Pavg = average power
Pi = power measured during individual measurement (i)
n = total number of measurements

                           4.3.2. Steady State

    Operate the UUT and the load for a sufficient length of time to 
reach steady state conditions. To determine if steady state conditions 
have been attained, perform the following steady state check, in which 
the difference between the two efficiency calculations must be less than 
1 percent:
    (a)(1) Simultaneously measure the UUT's input and output power for 
at least 5 minutes, as specified in section 4.3.1 of this appendix, and 
record the average of each over the duration as Pavg\in and Pavg\out, 
respectively. Or,
    (2) Simultaneously measure the UUT's input and output energy for at 
least 5 minutes and record the accumulation of each over the duration as 
Ein and Eout, respectively.
    (b) Calculate the UUT's efficiency, Eff1, using one of the following 
two equations:

[[Page 720]]

[GRAPHIC] [TIFF OMITTED] TR12DE16.022

Where:

Eff is the UUT efficiency
Pavg\out is the average output power in watts
Pavg\in is the average input power in watts
[GRAPHIC] [TIFF OMITTED] TR12DE16.023

Where:

Eff is the UUT efficiency
Eout is the accumulated output energy in watt-hours
Ein in the accumulated input energy in watt-hours

    (c) Wait a minimum of 10 minutes.
    (d) Repeat the steps listed in paragraphs (a) and (b) of section 
4.3.2 of this appendix to calculate another efficiency value, Eff2.
    (e) Determine if the product is at steady state using the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR12DE16.024

    If the percentage difference of Eff1 and Eff2 as described in the 
equation, is less than 1 percent, the product is at steady state.
    (f) If the percentage difference is greater than or equal to 1 
percent, the product is not at steady state. Repeat the steps listed in 
paragraphs (c) to (e) of section 4.3.2 of this appendix until the 
product is at steady state.

          4.3.3. Power Measurements and Efficiency Calculations

    Measure input and output power of the UUT according to Section J.3 
of Annex J of IEC 62040-3 Ed. 2.0 (incorporated by reference, see Sec.  
430.3), or measure the input and output energy of the UUT for efficiency 
calculations with the following exceptions:
    (a) Test the UUT at the following reference test load conditions, in 
the following order: 100 percent, 75 percent, 50 percent, and 25 percent 
of the rated output power.
    (b) Perform the test at each of the reference test loads by 
simultaneously measuring the UUT's input and output power in Watts (W), 
or input and output energy in Watt-Hours (Wh) over a 15 minute test 
period at a rate of at least 1 Hz. Calculate the efficiency for that 
reference load using one of the following two equations:
[GRAPHIC] [TIFF OMITTED] TR12DE16.025


[[Page 721]]


Where:

Effn = the efficiency at reference test load n%
Pavg\out n = the average output power at reference load n%
Pavg\in n = the average input power at reference load n%
[GRAPHIC] [TIFF OMITTED] TR12DE16.026

Where:

Effn = the efficiency at reference test load n%
Eout n = the accumulated output energy at reference load n%
Ein n = the accumulated input energy at reference load n%

                        4.3.4. UUT Classification

    Optional Test for determination of UPS architecture. Determine the 
UPS architecture by performing the tests specified in the definitions of 
VI, VFD, and VFI (sections 2.28.1 through 2.28.3 of this appendix).

                  4.3.5. Output Efficiency Calculation

    (a) Use the load weightings from Table 4.3.1 to determine the 
average load adjusted efficiency as follows:
[GRAPHIC] [TIFF OMITTED] TR12DE16.029

Where:

Effavg = the average load adjusted efficiency
tn = the portion of time spent at reference test load n% as 
          specified in Table 4.3.1
Eff[bond]n = the measured efficiency at reference test load n%

                                          Table 4.3.1--Load Weightings
----------------------------------------------------------------------------------------------------------------
                                                              Portion of time spent at reference load
    Rated output power (W)      UPS architecture ---------------------------------------------------------------
                                                        25%             50%             75%            100%
----------------------------------------------------------------------------------------------------------------
P <= 1500 W...................  VFD.............             0.2             0.2             0.3             0.3
                                VI or VFI.......             0 *             0.3             0.4             0.3
P  1500 W..........  VFD, VI, or VFI.             0 *             0.3             0.4             0.3
----------------------------------------------------------------------------------------------------------------
* Measuring efficiency at loading points with 0 time weighting is not required.

    (b) Round the calculated efficiency value to one tenth of a 
percentage point.

[76 FR 31776, June 1, 2011, as amended at 81 FR 31842, May 20, 2016; 81 
FR 42235, June 29, 2016; 81 FR 89822, Dec. 12, 2016]




   Sec. Appendix Z to Subpart B of Part 430--Uniform Test Method for 
       Measuring the Energy Consumption of External Power Supplies

    Starting on February 21, 2016, any representations made with respect 
to the energy

[[Page 722]]

use or efficiency of external power supplies must be made in accordance 
with the results of testing pursuant to this appendix. Prior to February 
21, 2016, representations made with respect to the energy use or 
efficiency of external power supplies must be made in accordance with 
this appendix or Appendix Z as it appeared at 10 CFR part 430, subpart 
B, Appendix Z as contained in the 10 CFR parts 200 to 499 edition 
revised as of January 1, 2015. Because representations must be made in 
accordance with tests conducted pursuant to this appendix as of February 
21, 2016, manufacturers may wish to begin using this test procedure as 
soon as possible.

                                1. Scope.

    This appendix covers the test requirements used to measure the 
energy consumption of direct operation external power supplies and 
indirect operation Class A external power supplies subject to the energy 
conservation standards set forth at Sec.  430.32(w)(1).
    2. Definitions: The following definitions are for the purposes of 
understanding terminology associated with the test method for measuring 
external power supply energy consumption. For clarity on any other 
terminology used in the test method, please refer to IEC Standard 60050 
or IEEE Standard 100. (Reference for guidance only, see Sec.  430.4.)
    a. Active mode means the mode of operation when the external power 
supply is connected to the main electricity supply and the output is (or 
``all outputs are'' for a multiple-voltage external power supply) 
connected to a load (or ``loads'' for a multiple-voltage external power 
supply).
    b. Active mode efficiency is the ratio, expressed as a percentage, 
of the total real output power produced by a power supply to the real 
input power required to produce it. (Reference for guidance only, see 
IEEE Standard 1515-2000, 4.3.1.1, Sec.  430.4.)
    c. Active power (P) (also real power) means the average power 
consumed by a unit. For a two terminal device with current and voltage 
waveforms i(t) and v(t) which are periodic with period T, the real or 
active power P is:
[GRAPHIC] [TIFF OMITTED] TR01JN11.022

    d. Ambient temperature means the temperature of the ambient air 
immediately surrounding the unit under test.
    e. Apparent power (S) is the product of RMS voltage and RMS current 
(VA).
    f. Average Active-Mode Efficiency means the average of the loading 
conditions (100 percent, 75 percent, 50 percent, and 25 percent of its 
nameplate output current) for which it can sustain the output current.
    g. IEC 62301 means the test standard published by the International 
Electrotechnical Commission, titled ``Household electrical appliances--
Measurement of standby power,'' Publication 62301 (Edition 2.0 2011-01) 
(incorporated by reference; see Sec.  430.3).
    h. Instantaneous power means the product of the instantaneous 
voltage and instantaneous current at a port (the terminal pair of a 
load).
    i. Manual on-off switch is a switch activated by the user to control 
power reaching the device. This term does not apply to any mechanical, 
optical, or electronic switches that automatically disconnect mains 
power from the device when a load is disconnected from the device, or 
that control power to the load itself.
    j. Minimum output current means the minimum current that must be 
drawn from an output bus for an external power supply to operate within 
its specifications.
    k. Multiple-voltage external power supply means an external power 
supply that is designed to convert line voltage AC input into more than 
one simultaneous lower-voltage output.
    l. Nameplate input frequency means the AC input frequency of the 
power supply as specified on the manufacturer's label on the power 
supply housing.
    m. Nameplate input voltage means the AC input voltage of the power 
supply as specified on the manufacturer's label on the power supply 
housing.
    n. Nameplate output current means the current output of the power 
supply as specified on the manufacturer's label on the power supply 
housing (either DC or AC) or, if absent from the housing, as provided by 
the manufacturer.
    o. Nameplate output power means the power output of the power supply 
as specified on the manufacturer's label on the power supply housing or, 
if absent from the housing, as specified in documentation provided by 
the manufacturer.
    p. Nameplate output voltage means the voltage output of the power 
supply as specified on the manufacturer's label on the power supply 
housing (either DC or AC).
    q. No-load mode means the mode of operation when an external power 
supply is connected to the main electricity supply and the output is (or 
``all outputs are'' for a multiple-voltage external power supply) not 
connected to a load (or ``loads'' for a multiple-voltage external power 
supply).
    r. Off mode is the condition, applicable only to units with manual 
on-off switches, in which the external power supply is (1) connected to 
the main electricity supply; (2) the output is not connected to any 
load; and (3) all manual on-off switches are turned off.
    s. Output bus means any of the outputs of the power supply to which 
loads can be connected and from which power can be drawn, as opposed to 
signal connections used for communication.

[[Page 723]]

    t. Single-voltage external AC-AC power supply means an external 
power supply that is designed to convert line voltage AC input into 
lower voltage AC output and is able to convert to only one AC output 
voltage at a time.
    u. Single-voltage external AC-DC power supply means an external 
power supply that is designed to convert line voltage AC input into 
lower-voltage DC output and is able to convert to only one DC output 
voltage at a time.
    v. Standby mode means the condition in which the external power 
supply is in no-load mode and, for external power supplies with manual 
on-off switches, all such switches are turned on.
    w. Switch-selectable single voltage external power supply means a 
single-voltage AC-AC or AC-DC power supply that allows users to choose 
from more than one output voltage.
    x. Total harmonic distortion, expressed as a percentage, is the RMS 
value of an AC signal after the fundamental component is removed and 
interharmonic components are ignored, divided by the RMS value of the 
fundamental component. THD of current is defined as:
[GRAPHIC] [TIFF OMITTED] TR27MR09.409

where In is the RMS value of the nth harmonic of the current signal.

    y. True power factor (PF) is the ratio of the active power (P) 
consumed in watts to the apparent power (S), drawn in volt-amperes.
[GRAPHIC] [TIFF OMITTED] TR27MR09.410

This definition of power factor includes the effect of both distortion 
and displacement.

    z. Unit under test is the external power supply being tested.
    3. Test Apparatus and General Instructions:
    (a) Single-Voltage External Power Supply.
    (i) Any power measurements recorded, as well as any power 
measurement equipment utilized for testing, shall conform to the 
uncertainty and resolution requirements outlined in Section 4, ``General 
conditions for measurements,'' as well as Annexes B, ``Notes on the 
measurement of low power modes,'' and D, ``Determination of uncertainty 
of measurement,'' of IEC 62301 (incorporated by reference; see Sec.  
430.3).
    (ii) As is specified in IEC 62301 (incorporated by reference; see 
Sec.  430.3), the tests shall be carried out in a room that has an air 
speed close to the unit under test (UUT) of <=0.5 m/s. The ambient 
temperature shall be maintained at 20  5 [deg]C 
throughout the test. There shall be no intentional cooling of the UUT by 
use of separately powered fans, air conditioners, or heat sinks. The UUT 
shall be tested on a thermally non-conductive surface. Products intended 
for outdoor use may be tested at additional temperatures, provided those 
are in addition to the conditions specified above and are noted in a 
separate section on the test report.
    (iii) If the UUT is intended for operation on AC line-voltage input 
in the United States, it shall be tested at 115 V at 60 Hz. If the UUT 
is intended for operation on AC line-voltage input but cannot be 
operated at 115 V at 60 Hz, it shall not be tested. The input voltage 
shall be within 1 percent of the above specified 
voltage.
    (iv) The input voltage source must be capable of delivering at least 
10 times the nameplate input power of the UUT as is specified in IEEE 
1515-2000 (Referenced for guidance only, see Sec.  430.4). Regardless of 
the AC source type, the THD of the supply voltage when supplying the UUT 
in the specified mode must not exceed 2%, up to and including the 13th 
harmonic (as specified in IEC 62301). The peak value of the test voltage 
must be within 1.34 and 1.49 times its RMS value (as specified in IEC 
62301 (incorporated by reference; see Sec.  430.3)).
    (v) Select all leads used in the test set-up as specified in Table 
B.2-- ``Commonly used values for wire gages and related voltage drops'' 
in IEEE 15152000.
    (b) Multiple-Voltage External Power Supply. Unless otherwise 
specified, measurements shall be made under test conditions and with 
equipment specified below.
    (i) Verifying Accuracy and Precision of Measuring Equipment
    (A) Any power measurements recorded, as well as any power 
measurement equipment utilized for testing, must conform to the 
uncertainty and resolution requirements outlined in Section 4, ``General 
conditions for measurements'', as well as Annexes B, ``Notes on the 
measurement of low power modes'', and D, ``Determination of uncertainty 
of measurement'', of IEC 62301 (incorporated by reference; see Sec.  
430.3).
    (B) [Reserved]

                      (ii) Setting Up the Test Room

    All tests shall be carried out in a room with an air speed 
immediately surrounding the UUT of <=0.5 m/s. The ambient temperature 
shall be maintained at 20 [deg]C 5 [deg]C 
throughout the test. There shall be no intentional cooling of the UUT 
such as by use of separately powered fans, air conditioners, or heat 
sinks. The UUT shall be conditioned, rested, and tested on a thermally 
non-conductive surface. A readily available material such as Styrofoam 
will be sufficient.

[[Page 724]]

       (iii) Verifying the UUT's Input Voltage and Input Frequency

    (A) If the UUT is intended for operation on AC line-voltage input in 
the United States, it shall be tested at 115 V at 60 Hz. If the UUT is 
intended for operation on AC line-voltage input but cannot be operated 
at 115 V at 60 Hz, it shall not be tested. The input voltage shall be 
within 1 percent of the above specified voltage.
    (B) If the input voltage is AC, the input frequency shall be within 
1 percent of the specified frequency. The THD of 
the input voltage shall be <=2 percent, up to and including the 13th 
harmonic. The crest factor of the input voltage shall be between 1.34 
and 1.49.
    4. Test Measurement:
    (a) Single-Voltage External Power Supply

              (i) Standby Mode and Active-Mode Measurement.

    (A) Any built-in switch in the UUT controlling power flow to the AC 
input must be in the ``on'' position for this measurement, and note the 
existence of such a switch in the final test report. Test power supplies 
packaged for consumer use to power a product with the DC output cord 
supplied by the manufacturer. There are two options for connecting 
metering equipment to the output of this type of power supply: Cut the 
cord immediately adjacent to the DC output connector, or attach leads 
and measure the efficiency from the output connector itself. If the 
power supply is attached directly to the product that it is powering, 
cut the cord immediately adjacent to the powered product and connect DC 
measurement probes at that point. Any additional metering equipment such 
as voltmeters and/or ammeters used in conjunction with resistive or 
electronic loads must be connected directly to the end of the output 
cable of the UUT. If the product has more than two output wires, 
including those that are necessary for controlling the product, the 
manufacturer must supply a connection diagram or test fixture that will 
allow the testing laboratory to put the unit under test into active-
mode. Figure 1 provides one illustration of how to set up an EPS for 
test; however, the actual test setup may vary pursuant to the 
requirements of this paragraph.
[GRAPHIC] [TIFF OMITTED] TR25AU15.001

    (B) External power supplies must be tested in their final, completed 
configuration in order to represent their measured efficiency

[[Page 725]]

on product labels or specification sheets. Although the same procedure 
may be used to test the efficiency of a bare circuit board power supply 
prior to its incorporation into a finished housing and the attachment of 
its DC output cord, the efficiency of the bare circuit board power 
supply may not be used to characterize the efficiency of the final 
product (once enclosed in a case and fitted with a DC output cord). For 
example, a power supply manufacturer or component manufacturer may wish 
to assess the efficiency of a design that it intends to provide to an 
OEM for incorporation into a finished external power supply, but these 
results may not be used to represent the efficiency of the finished 
external power supply.
    (C) All single voltage external AC-DC power supplies have a 
nameplate output current. This is the value used to determine the four 
active-mode load conditions and the no load condition required by this 
test procedure. The UUT shall be tested at the following load 
conditions:

    Table 1--Loading Conditions for a Single-Voltage Unit Under Test
------------------------------------------------------------------------
 
------------------------------------------------------------------------
                 Percentage of Nameplate Output Current
------------------------------------------------------------------------
Load Condition 1..........................  100% of Nameplate Output
                                             Current 2%.
Load Condition 2..........................  75% of Nameplate Output
                                             Current 2%.
Load Condition 3..........................  50% of Nameplate Output
                                             Current 2%.
Load Condition 4..........................  25% of Nameplate Output
                                             Current 2%.
Load Condition 5..........................  0%.
------------------------------------------------------------------------

    The 2% allowance is of nameplate output current, not of the 
calculated current value. For example, a UUT at Load Condition 3 may be 
tested in a range from 48% to 52% of rated output current. Additional 
load conditions may be selected at the technician's discretion, as 
described in IEEE 1515-2000 (Referenced for guidance only, see Sec.  
430.4), but are not required by this test procedure. For Loading 
Condition 5, place the UUT in no-load mode, disconnect any additional 
signal connections to the UUT, and measure input power.
    1. Where the external power supply lists both an instantaneous and 
continuous output current, test the external power supply at the 
continuous condition only.
    2. If an external power supply cannot sustain output at one or more 
of loading conditions 1-4 as specified in Table 1, test the external 
power supply only at the loading conditions for which it can sustain 
output. In these cases, the average active mode efficiency is the 
average of the loading conditions for which it can sustain the output.
    (D) Test switch-selectable single-voltage external power supplies 
twice--once at the highest nameplate output voltage and once at the 
lowest.
    (E) Test adaptive external power supplies twice--once at the highest 
achievable output voltage and once at the lowest.
    (F) In order to load the power supply to produce all four active-
mode load conditions, use a set of variable resistive or electronic 
loads. Although these loads may have different characteristics than the 
electronic loads power supplies are intended to power, they provide 
standardized and readily repeatable references for testing and product 
comparison. Note that resistive loads need not be measured precisely 
with an ohmmeter; simply adjust a variable resistor to the point where 
the ammeter confirms that the desired percentage of nameplate output 
current is flowing. For electronic loads, adjust the desired output 
current in constant current (CC) mode rather than adjusting the required 
output power in constant power (CP) mode.
    (G) As noted in IEC 62301 (incorporated by reference; see Sec.  
430.3), instantaneous measurements are appropriate when power readings 
are stable in a particular load condition. Operate the UUT at 100% of 
nameplate current output for at least 30 minutes immediately prior to 
conducting efficiency measurements. After this warm-up period, monitor 
AC input power for a period of 5 minutes to assess the stability of the 
UUT. If the power level does not drift by more than 5% from the maximum 
value observed, the UUT is considered stable and the measurements should 
be recorded at the end of the 5-minute period. Measure subsequent load 
conditions under the same 5-minute stability parameters. Note that only 
one warm-up period of 30 minutes is required for each UUT at the 
beginning of the test procedure. If the AC input power is not stable 
over a 5-minute period, follow the guidelines established by IEC 62301 
for measuring average power or accumulated energy over time for both AC 
input and DC output. Conduct efficiency measurements in sequence from 
Load Condition 1 to Load Condition 5 as indicated in Table 1. If testing 
of additional, optional load conditions is desired, that testing should 
be conducted in accordance with this test procedure and subsequent to 
completing the sequence described above.
    (H) Calculate efficiency by dividing the UUT's measured DC output 
power at a given load condition by the true AC input power measured at 
that load condition. Calculate average efficiency as the arithmetic mean 
of the efficiency values calculated at Test Conditions 1, 2, 3, and 4 in 
Table 1, and record this value. Average efficiency for the UUT is a 
simple arithmetic average of active-mode efficiency values, and is not 
intended to represent weighted average efficiency, which would vary 
according to the duty cycle of the product powered by the UUT.
    (I) Power consumption of the UUT at each Load Condition 1-4 is the 
difference between

[[Page 726]]

the DC output power (W) at that Load Condition and the AC input power 
(W) at that Load Condition. The power consumption of Load Condition 5 
(no load) is equal to the AC input power (W) at that Load Condition.
    (ii) Off-Mode Measurement--If the external power supply UUT 
incorporates manual on-off switches, place the UUT in off-mode, and 
measure and record its power consumption at ``Load Condition 5'' in 
Table 1. The measurement of the off-mode energy consumption must conform 
to the requirements specified in paragraph 4(a)(i) of this appendix, 
except that all manual on-off switches must be placed in the ``off'' 
position for the off-mode measurement. The UUT is considered stable if, 
over 5 minutes with samples taken at least once every second, the AC 
input power does not drift from the maximum value observed by more than 
1 percent or 50 milliwatts, whichever is greater. Measure the off-mode 
power consumption of a switch-selectable single-voltage external power 
supply twice--once at the highest nameplate output voltage and once at 
the lowest.
    (b) Multiple-Voltage External Power Supply--Power supplies must be 
tested with the output cord packaged with the unit for sale to the 
consumer, as it is considered part of the unit under test. There are two 
options for connecting metering equipment to the output of this type of 
power supply: cut the cord immediately adjacent to the output connector 
or attach leads and measure the efficiency from the output connector 
itself. If the power supply is attached directly to the product that it 
is powering, cut the cord immediately adjacent to the powered product 
and connect output measurement probes at that point. The tests should be 
conducted on the sets of output wires that constitute the output busses. 
If the product has additional wires, these should be left electrically 
disconnected unless they are necessary for controlling the product. In 
this case, the manufacturer shall supply a connection diagram or test 
fixture that will allow the testing laboratory to put the unit under 
test into active mode.
    (i) Standby-Mode and Active-Mode Measurement--The measurement of the 
multiple-voltage external power supply standby mode (also no-load-mode) 
energy consumption and active-mode efficiency shall be as follows:
    (A) Loading conditions and testing sequence. (1) If the unit under 
test has on-off switches, all switches shall be placed in the ``on'' 
position. Loading criteria for multiple-voltage external power supplies 
shall be based on nameplate output current and not on nameplate output 
power because output voltage might not remain constant.
    (2) The unit under test shall operate at 100 percent of nameplate 
current output for at least 30 minutes immediately before conducting 
efficiency measurements.
    (3) After this warm-up period, the technician shall monitor AC input 
power for a period of 5 minutes to assess the stability of the unit 
under test. If the power level does not drift by more than 1 percent 
from the maximum value observed, the unit under test can be considered 
stable and measurements can be recorded at the end of the 5-minute 
period. Measurements at subsequent loading conditions, listed in Table 
1, can then be conducted under the same 5-minute stability guidelines. 
Only one warm-up period of 30 minutes is required for each unit under 
test at the beginning of the test procedure.
    (4) If AC input power is not stable over a 5-minute period, the 
technician shall follow the guidelines established by IEC Standard 62301 
for measuring average power or accumulated energy over time for both 
input and output. (Reference for guidance only, see Sec.  430.4).
    (5) The unit under test shall be tested at the loading conditions 
listed in Table 1, derated per the proportional allocation method 
presented in the following section.

             Table 1--Loading Conditions for Unit Under Test
------------------------------------------------------------------------
 
------------------------------------------------------------------------
Loading Condition 1.......................  100% of Derated Nameplate
                                             Output Current 2%.
Loading Condition 2.......................  75% of Derated Nameplate
                                             Output Current 2%.
Loading Condition 3.......................  50% of Derated Nameplate
                                             Output Current 2%.
Loading Condition 4.......................  25% of Derated Nameplate
                                             Output Current 2%.
Loading Condition 5.......................  0%.
------------------------------------------------------------------------

    (6) Input and output power measurements shall be conducted in 
sequence from Loading Condition 1 to Loading Condition 4, as indicated 
in Table 1. For Loading Condition 5, the unit under test shall be placed 
in no-load mode, any additional signal connections to the unit under 
test shall be disconnected, and input power shall be measured.
    (B) Proportional allocation method for loading multiple-voltage 
external power supplies. For power supplies with multiple voltage 
busses, defining consistent loading criteria is difficult because each 
bus has its own nameplate output current. The sum of the power 
dissipated by each bus loaded to its nameplate output current may exceed 
the overall nameplate output power of the power supply. The following 
proportional allocation method must be used to provide consistent 
loading conditions for multiple-voltage external power supplies. For 
additional explanation, please refer to section 6.1.1 of the California 
Energy Commission's ``Proposed Test Protocol for Calculating the Energy 
Efficiency of Internal Ac-Dc Power Supplies Revision 6.2,'' November 
2007.
    (1) Consider a multiple-voltage power supply with N output busses, 
and nameplate

[[Page 727]]

output voltages V1, * * *, VN, corresponding output current ratings I1, 
* * *, IN, and a nameplate output power P. Calculate the derating factor 
D by dividing the power supply nameplate output power P by the sum of 
the nameplate output powers of the individual output busses, equal to 
the product of bus nameplate output voltage and current IiVi, as 
follows:
[GRAPHIC] [TIFF OMITTED] TR01JN11.023

    (2) If D =1, then loading every bus to its nameplate 
output current does not exceed the overall nameplate output power for 
the power supply. In this case, each output bus will simply be loaded to 
the percentages of its nameplate output current listed in Table 1. 
However, if D <1, it is an indication that loading each bus to its 
nameplate output current will exceed the overall nameplate output power 
for the power supply. In this case, and at each loading condition, each 
output bus will be loaded to the appropriate percentage of its nameplate 
output current listed in Table 1, multiplied by the derating factor D.
    (C) Minimum output current requirements. Depending on their 
application, some multiple-voltage power supplies may require a minimum 
output current for each output bus of the power supply for correct 
operation. In these cases, ensure that the load current for each output 
at Loading Condition 4 in Table 1 is greater than the minimum output 
current requirement. Thus, if the test method's calculated load current 
for a given voltage bus is smaller than the minimum output current 
requirement, the minimum output current must be used to load the bus. 
This load current shall be properly recorded in any test report.
    (D) Test loads. Active loads such as electronic loads or passive 
loads such as rheostats used for efficiency testing of the unit under 
test shall be able to maintain the required current loading set point 
for each output voltage within an accuracy of 0.5 
percent. If electronic load banks are used, their settings should be 
adjusted such that they provide a constant current load to the unit 
under test.
    (E) Efficiency calculation. Efficiency shall be calculated by 
dividing the measured active output power of the unit under test at a 
given loading condition by the active AC input power measured at that 
loading condition. Efficiency shall be calculated at each Loading 
Condition (1, 2, 3, and 4, in Table 1) and be recorded separately.
    (F) Power consumption calculation. Power consumption of the unit 
under test at Loading Conditions 1, 2, 3, and 4 is the difference 
between the active output power at that Loading Condition and the active 
AC input power at that Loading Condition. The power consumption of 
Loading Condition 5 (no-load) is equal to the AC active input power at 
that Loading Condition.
    (ii) Off Mode Measurement--If the multiple-voltage external power 
supply unit under test incorporates any on-off switches, the unit under 
test shall be placed in off mode and its power consumption in off mode 
measured and recorded. The measurement of the off mode energy 
consumption shall conform to the requirements specified in paragraph 
(4)(b)(i) of this appendix. Note that the only loading condition that 
will be measured for off mode is ``Loading Condition 5'' in paragraph 
(A), ``Loading conditions and testing sequence'', except that all manual 
on-off switches shall be placed in the off position for the measurement.

[71 FR 71366, Dec. 8, 2006, as amended at 74 FR 12066, Mar. 23, 2009; 74 
FR 13334, Mar. 27, 2009; 76 FR 31782, June 1, 2011; 80 FR 51441, Aug. 
25, 2015]



   Sec. Appendix AA to Subpart B of Part 430--Uniform Test Method for 
            Measuring the Energy Consumption of Furnace Fans

    Note: Any representation made after July 2, 2014 for energy 
consumption of furnace fans must be based upon results generated under 
this test procedure. Upon the compliance date(s) of any energy 
conservation standard(s) for furnace fans, use of the applicable 
provisions of this test procedure to demonstrate compliance with the 
energy conservation standard will also be required.

    1. Scope. This appendix covers the test requirements used to measure 
the energy consumption of fans used in weatherized and non-weatherized 
gas furnaces, oil furnaces, electric furnaces, and modular blowers.
    2. Definitions. Definitions include the definitions as specified in 
section 3 of ASHRAE 103-2007 (incorporated by reference, see Sec.  
430.3) and the following additional definitions, some of which supersede 
definitions found in ASHRAE 103-2007:
    2.1. Active mode means the condition in which the product in which 
the furnace fan is integrated is connected to a power source and 
circulating air through ductwork.
    2.2. Airflow-control settings are programmed or wired control system 
configurations that control a fan to achieve discrete, differing ranges 
of airflow--often designated for performing a specific function (e.g., 
cooling, heating, or constant circulation)--without manual adjustment 
other than interaction with a user-operable control such as a thermostat 
that meets the manufacturer specifications for installed-use. For the 
purposes of this appendix, manufacturer specifications

[[Page 728]]

for installed-use shall be found in the product literature shipped with 
the unit.
    2.3. ASHRAE 103-2007 means ANSI/ASHRAE Standard 103-2007, published 
in 2007 by ASHRAE, approved by the American National Standards Institute 
(ANSI) on March 25, 2008, and entitled ``Method of Testing for Annual 
Fuel Utilization Efficiency of Residential Central Furnaces and 
Boilers''. Only those sections of ASHRAE 103-2007 (incorporated by 
reference; see Sec.  430.3) specifically referenced in this test 
procedure are part of this test procedure. In cases where there is a 
conflict, the language of the test procedure in this appendix takes 
precedence over ASHRAE 103-2007.
    2.4. ANSI/ASHRAE Standard 41.1-1986 (RA 2006) means the test 
standard published in 1986, approved by ANSI on February 18, 1987, 
reaffirmed in 2006, and entitled ``Standard Method for Temperature 
Measurement'' (incorporated by reference; see Sec.  430.3).
    2.5. ASHRAE Standard 37-2009 means the test standard published in 
2009 by ASHRAE entitled ``Methods of Testing for Rating Unitary Air-
Conditioning and Heat Pump Equipment'' (incorporated by reference; see 
Sec.  430.3).
    2.6. Default airflow-control settings are the airflow-control 
settings specified for installed-use by the manufacturer. For the 
purposes of this appendix, manufacturer specifications for installed-use 
are those specifications provided for typical consumer installations in 
the product literature shipped with the product in which the furnace fan 
is installed. In instances where a manufacturer specifies multiple 
airflow-control settings for a given function to account for varying 
installation scenarios, the highest airflow-control setting specified 
for the given function shall be used for the procedures specified in 
this appendix.
    2.7. External static pressure (ESP) means the difference between 
static pressures measured in the outlet duct and return air opening (or 
return air duct when used for testing) of the product in which the 
furnace fan is integrated.
    2.8. Furnace fan means an electrically-powered device used in a 
consumer product for the purpose of circulating air through ductwork.
    2.9. Modular blower means a product which only uses single-phase 
electric current, and which:
    (a) Is designed to be the principal air circulation source for the 
living space of a residence;
    (b) Is not contained within the same cabinet as a furnace or central 
air conditioner; and
    (c) Is designed to be paired with HVAC products that have a heat 
input rate of less than 225,000 Btu per hour and cooling capacity less 
than 65,000 Btu per hour.
    2.10. Off mode means the condition in which the product in which the 
furnace fan is integrated either is not connected to the power source or 
is connected to the power source but not energized.
    2.11. Seasonal off switch means a switch on the product in which the 
furnace fan is integrated that, when activated, results in a measurable 
change in energy consumption between the standby and off modes.
    2.12. Standby mode means the condition in which the product in which 
the furnace fan is integrated is connected to the power source, 
energized, but the furnace fan is not circulating air.
    2.13. Thermal stack damper means a type of stack damper that opens 
only during the direct conversion of thermal energy of the stack gases.
    3. Classifications. Classifications are as specified in section 4 of 
ASHRAE 103-2007 (incorporated by reference, see Sec.  430.3).
    4. Requirements. Requirements are as specified in section 5 of 
ASHRAE 103-2007 (incorporated by reference, see Sec.  430.3). In 
addition, Fan Energy Rating (FER) of furnace fans shall be determined 
using test data and estimated national average operating hours pursuant 
to section 10.10 of this appendix.
    5. Instruments. Instruments must be as specified in section 6, not 
including section 6.2, of ASHRAE 103-2007 (incorporated by reference, 
see Sec.  430.3); and as specified in section 5.1 and 5.2 of this 
appendix.
    5.1. Temperature. Temperature measuring instruments shall meet the 
provisions specified in section 5.1 of ASHRAE 37-2009 (incorporated by 
reference, see Sec.  430.3) and shall be accurate to within 0.75 degree 
Fahrenheit (within 0.4 degrees Celsius).
    5.1.1. Outlet Air Temperature Thermocouple Grid. Outlet air 
temperature shall be measured as described in section 8.2.1.5.5 of 
ASHRAE 103-2007 (incorporated by reference, see Sec.  430.3) and 
illustrated in Figure 2 of ASHRAE 103-2007. Thermocouples shall be 
placed downstream of pressure taps used for external static pressure 
measurement.
    5.2. Humidity. Air humidity shall be measured with a relative 
humidity sensor that is accurate to within 5% relative humidity. Air 
humidity shall be measured as close as possible to the inlet of the 
product in which the furnace fan is installed.
    6. Apparatus. The apparatus used in conjunction with the furnace 
during the testing shall be as specified in section 7 of ASHRAE 103-2007 
(incorporated by reference, see Sec.  430.3) except for section 7.1, the 
second paragraph of section 7.2.2.2, section 7.2.2.5, and section 7.7, 
and as specified in sections 6.1, 6.2, 6.3,6.4, 6.5 and 6.6 of this 
appendix.
    6.1. General. The product in which the furnace fan is integrated 
shall be installed in the test room in accordance with the product 
manufacturer's written instructions that are shipped with the product 
unless required

[[Page 729]]

otherwise by a specific provision of this appendix. The apparatus 
described in this section is used in conjunction with the product in 
which the furnace fan is integrated. Each piece of the apparatus shall 
conform to material and construction specifications and the reference 
standard cited. Test rooms containing equipment shall have suitable 
facilities for providing the utilities necessary for performance of the 
test and be able to maintain conditions within the limits specified.
    6.2. Downflow furnaces. Install the internal section of vent pipe 
the same size as the flue collar for connecting the flue collar to the 
top of the unit, if not supplied by the manufacturer. Do not insulate 
the internal vent pipe during the jacket loss test (if conducted) 
described in section 8.6 of ASHRAE 103-2007 (incorporated by reference, 
see Sec.  430.3) or the steady-state test described in section 9.1 of 
ASHRAE 103-2007. Do not insulate the internal vent pipe before the cool-
down and heat-up tests described in sections 9.5 and 9.6, respectively, 
of ASHRAE 103-2007. If the vent pipe is surrounded by a metal jacket, do 
not insulate the metal jacket. Install a 5-ft test stack of the same 
cross sectional area or perimeter as the vent pipe above the top of the 
furnace. Tape or seal around the junction connecting the vent pipe and 
the 5-ft test stack. Insulate the 5-ft test stack with insulation having 
a minimum R-value of 7 and an outer layer of aluminum foil. (See Figure 
3-E of ASHRAE 103-2007.)
    6.3. Modular Blowers. A modular blower shall be equipped with the 
electric heat resistance kit that is likely to have the largest volume 
of retail sales with that particular basic model of modular blower.
    6.4. Ducts and Plenums. Ducts and plenums shall be built to the 
geometrical specifications in section 7 of ASHRAE 103-2007. An apparatus 
for measuring external static pressure shall be integrated in the plenum 
and test duct as specified in sections 6.4, excluding specifications 
regarding the minimum length of the ducting and minimum distance between 
the external static pressure taps and product inlet and outlet, and 6.5 
of ASHRAE 37-2009 (incorporated by reference, see Sec.  430.3). External 
static pressure measuring instruments shall be placed between the 
furnace openings and any restrictions or elbows in the test plenums or 
ducts. For all test configurations, external static pressure taps shall 
be placed 18 inches from the outlet.
    6.4.1. For tests conducted using a return air duct. Additional 
external static pressure taps shall be placed 12 inches from the product 
inlet. Pressure shall be directly measured as a differential pressure as 
depicted in Figure 8 of ASHRAE 37-2009 rather than determined by 
separately measuring inlet and outlet static pressure and subtracting 
the results.
    6.4.2. For tests conducted without a return air duct. External 
static pressure shall be directly measured as the differential pressure 
between the outlet duct static pressure and the ambient static pressure 
as depicted in Figure 7a of ASHRAE 37-2009.
    6.5. Air Filters. Air filters shall be removed.
    6.6. Electrical Measurement. Only electrical input power to the 
furnace fan (and electric resistance heat kit for electric furnaces and 
modular blowers) shall be measured for the purposes of this appendix. 
Electrical input power to the furnace fan and electric resistance hate 
kit shall be sub-metered separately. Electrical input power to all other 
electricity-consuming components of the product in which the furnace fan 
is integrated shall not be included in the electrical input power 
measurements used in the FER calculation. If the procedures of this 
appendix are being conducted at the same time as another test that 
requires metering of components other than the furnace fan and electric 
resistance heat kit, the electrical input power to the furnace fan and 
electric resistance heat kit shall be sub-metered separately from one 
another and separately from other electrical input power measurements.
    7. Test Conditions. The testing conditions shall be as specified in 
section 8, not including section 8.6.1.1, of ASHRAE 103-2007 
(incorporated by reference, see Sec.  430.3); and as specified in 
section 7.1 of this appendix.
    7.1. Measurement of Jacket Surface Temperature (optional). The 
jacket of the furnace or boiler shall be subdivided into 6-inch squares 
when practical, and otherwise into 36-square-inch regions comprising 4 
in. x 9 in. or 3 in. x 12 in. sections, and the surface temperature at 
the center of each square or section shall be determined with a surface 
thermocouple. The 36-square-inch areas shall be recorded in groups where 
the temperature differential of the 36-square-inch area is less than 10 
[deg]F for temperature up to 100 [deg]F above room temperature and less 
than 20 [deg]F for temperature more than 100 [deg]F above room 
temperature. For forced air central furnaces, the circulating air blower 
compartment is considered as part of the duct system and no surface 
temperature measurement of the blower compartment needs to be recorded 
for the purpose of this test. For downflow furnaces, measure all cabinet 
surface temperatures of the heat exchanger and combustion section, 
including the bottom around the outlet duct, and the burner door, using 
the 36 square-inch thermocouple grid. The cabinet surface temperatures 
around the blower section do not need to be measured (see figure 3-E of 
ASHRAE 103-2007.)
    8. Test Procedure. Testing and measurements shall be as specified in 
section 9 of ASHRAE 103-2007 (incorporated by reference, see Sec.  
430.3) except for sections 9.1.2.1, 9.3, 9.5.1.1, 9.5.1.2.1, 9.5.1.2.2, 
9.5.2.1, and section 9.7.1; and as specified in sections 8.1 through 8.6 
of this appendix.

[[Page 730]]

    8.1. Direct Measurement of Off-Cycle Losses Testing Method. 
[Reserved]
    8.2. Measurement of Electrical Standby and Off Mode Power. 
[Reserved]
    8.3. Steady-State Conditions for Gas and Oil Furnaces. Steady-state 
conditions are indicated by an external static pressure within the range 
shown in Table 1 and a temperature variation in three successive 
readings, taken 15 minutes apart, of not more than any of the following:
    (a) 3 [deg]F in the stack gas temperature for furnaces equipped with 
draft diverters;
    (b) 5 [deg]F in the stack gas temperature for furnaces equipped with 
either draft hoods, direct exhaust, or direct vent systems; and
    (c) 1 [deg]F in the flue gas temperature for condensing furnaces.
    8.4. Steady-state Conditions for Electric Furnaces and Modular 
Blowers. Steady-state conditions are indicated by an external static 
pressure within the range shown in Table 1 and a temperature variation 
of not more than 5 [deg]F in the outlet air temperature in four 
successive temperature readings taken 15 minutes apart.
    8.5. Steady-State Conditions for Cold Flow Tests. For tests during 
which the burner or electric heating elements are turned off (i.e., cold 
flow tests), steady-state conditions are indicated by an external static 
pressure within the range shown in Table 1 and a variation in the 
difference between outlet temperature and ambient temperature of not 
more than 3 [deg]F in three successive temperature readings taken 15 
minutes apart.
    8.6. Fan Energy Rating (FER) Test.
    8.6.1. Initial FER test conditions and maximum airflow-control 
setting measurements. Measure the relative humidity (W) and dry bulb 
temperature (Tdb) of the test room.
    8.6.1.1. Furnace fans for which the maximum airflow-control setting 
is not a default heating airflow-control setting. The main burner or 
electric heating elements shall be turned off. Adjust the external 
static pressure to within the range shown in Table 1 by symmetrically 
restricting the outlet of the test duct. Maintain these settings until 
steady-state conditions are attained as specified in section 8.3, 8.4, 
and 8.5 of this appendix. Measure furnace fan electrical input power 
(EMax), external static pressure (ESPMax), and 
outlet air temperature (TMax,Out).
    8.6.1.2. Furnace fans for which the maximum airflow-control setting 
is a default heating airflow-control setting. Adjust the main burner or 
electric heating element controls to the default heat setting designated 
for the maximum airflow-control setting. Burner adjustments shall be 
made as specified by section 8.4.1 of ASHRAE 103-2007 (incorporated by 
reference, see Sec.  430.3). Adjust the furnace fan controls to the 
maximum airflow-control setting. Adjust the external static to within 
the range shown in Table 1 by symmetrically restricting the outlet of 
the test duct. Maintain these settings until steady-state conditions are 
attained as specified in section 8.3, 8.4, and 8.5 of this appendix and 
the temperature rise ([Delta]TMax) is at least 18 [deg]F. 
Measure furnace fan electrical input power (EMax), fuel or 
electric resistance heat kit input energy (QIN, Max), 
external static pressure (ESPMax), steady-state efficiency 
for this setting (EffySS, Max) as specified in sections 11.2 
and 11.3 of ASHRAE 103-2007, outlet air temperature 
(TMax,Out), and temperature rise ([Delta]TMax)

    Table 1--Required Minimum External Static Pressure in the Maximum
              Airflow-Control Setting by Installation Type
------------------------------------------------------------------------
                                                           ESP (in. wc.)
                    Installation type                            *
------------------------------------------------------------------------
Units with an internal, factory-installed evaporator           0.50-0.55
 coil...................................................
Units designed to be paired with an evaporator coil, but       0.65-0.70
 without one installed..................................
Mobile home.............................................       0.30-0.35
------------------------------------------------------------------------

    Once the specified ESP has been achieved, the same outlet duct 
restrictions shall be used for the remainder of the furnace fan test.
    8.6.2. Constant circulation airflow-control setting measurements. 
The main burner or electric heating elements shall be turned off. The 
furnace fan controls shall be adjusted to the default constant 
circulation airflow-control setting. If the manufacturer does not 
specify a constant circulation airflow-control setting, the lowest 
airflow-control setting shall be used. Maintain these settings until 
steady-state conditions are attained as specified in section 8.3, 8.4, 
and 8.5 of this appendix. Measure furnace fan electrical input power 
(ECirc) and external static pressure (ESPCirc).
    8.6.3. Heating airflow-control setting measurements. For single-
stage gas and oil furnaces, the burner shall be fired at the maximum 
heat input rate. For single-stage electric furnaces, the electric 
heating elements shall be energized at the maximum heat input rate. For 
multi-stage and modulating furnaces the reduced heat input rate settings 
shall be used. Burner adjustments shall be made as specified by section 
8.4.1 of ASHRAE 103-2007 (incorporated by reference, see Sec.  430.3). 
After the burner is activated and adjusted or the electric heating 
elements are energized, the furnace fan controls shall be adjusted to 
operate the fan in the default heat airflow-control setting. In 
instances where a manufacturer specifies multiple airflow-control 
settings for a given function to account for varying installation 
scenarios, the highest airflow-control setting specified for the given 
function shall be used. High heat and reduced heat shall be considered 
different functions for multi-stage heating units. Maintain these 
settings until steady-state

[[Page 731]]

conditions are attained as specified in section 8.3, 8.4, and 8.5 of 
this appendix and the temperature rise ([Delta]THeat) is at 
least 18 [deg]F. Measure furnace fan electrical input power 
(EHeat), external static pressure (ESPHeat), 
steady-state efficiency for this setting (EffySS) as 
specified in sections 11.2 and 11.3 of ASHRAE 103-2007, outlet air 
temperature (THeat, Out) and temperature rise 
([Delta]THeat).
    9. Nomenclature. Nomenclature shall include the nomenclature 
specified in section 10 of ASHRAE 103-2007 (incorporated by reference, 
see Sec.  430.3) and the following additional variables:

CH = annual furnace fan cooling hours
CCH = annual furnace fan constant-circulation hours
ECirc = furnace fan electrical consumption at the default 
          constant-circulation airflow-control setting (or minimum 
          airflow-control setting operating point if a default constant-
          circulation airflow-control setting is not specified), in 
          watts
EHeat = furnace fan electrical consumption in the default 
          heat airflow-control setting for single-stage heating products 
          or the default low-heat setting for multi-stage heating 
          products, in watts
EMax = furnace fan electrical consumption in the maximum 
          airflow-control setting, in watts
ESPi = external static pressure, in inches water column, at 
          time of the electrical power measurement in airflow-control 
          setting i, where i can be ``Circ'' to represent constant-
          circulation (or minimum airflow) mode, ``Heat'' to represent 
          heating mode, or ``Max'' to represent cooling (or maximum 
          airflow) mode.
FER = fan energy rating, in watts/1000 cfm
HH = annual furnace fan heating operating hours
HCR = heating capacity ratio (nameplate reduced heat input capacity 
          divided by nameplate maximum input heat capacity)
kref = physical descriptor characterizing the reference 
          system
Tdb = dry bulb temperature of the test room, in [deg]F
Ti, In = inlet air temperature at time of the electrical 
          power measurement, in [deg]F, in airflow-control setting i, 
          where i can be ``Circ'' to represent constant-circulation (or 
          minimum airflow) mode, ``Heat'' to represent heating mode, or 
          ``Max'' to represent maximum airflow (typically designated for 
          cooling) mode
Ti, Out = average outlet air temperature as measured by the 
          outlet thermocouple grid at time of the electrical power 
          measurement, in [deg]F, in airflow-control setting i, where i 
          can be ``Circ'' to represent constant-circulation (or minimum 
          airflow) mode, ``Heat'' to represent heating mode, or ``Max'' 
          to represent maximum airflow (typically designated for 
          cooling) mode
[Delta]Ti = Ti, Out minus Ti, In, which 
          is the air throughput temperature rise in setting i, in [deg]F
Qi = airflow in airflow-control setting i, in cubic feet per 
          minute (CFM)
QIN,i = for electric furnaces and modular blowers, the 
          measured electrical input power to the electric resistance 
          heat kit at specified operating conditions i in kW. For gas 
          and oil furnaces, measured fuel energy input rate, in Btu/h, 
          at specified operating conditions i based on the fuel's high 
          heating value determined as required in section 8.2.1.3 or 
          8.2.2.3 of ASHRAE 103-2007, where i can be ``Max'' for the 
          maximum heat setting or ``R'' for the reduced heat setting.
W = humidity ratio in pounds water vapor per pounds dry air
vair = specific volume of dry air at specified operating 
          conditions per the equations in the psychrometric chapter in 
          2001 ASHRAE Handbook--Fundamentals in lb/ft\3\

    10. Calculation of derived results from test measurements for a 
single unit. Calculations shall be as specified in section 11 of ASHRAE 
103-2007 (incorporated by reference, see Sec.  430.3), except for 
appendices B and C; and as specified in sections 10.1 through 10.10 and 
Figure 1 of this appendix.
    10.1. Fan Energy Rating (FER)
    [GRAPHIC] [TIFF OMITTED] TR03JA14.007
    
Where:

Qmax = Qheat for products for which the maximum airflow-control setting 
          is a default heat setting, or

[[Page 732]]

[GRAPHIC] [TIFF OMITTED] TR03JA14.008

    for products for which the maximum airflow control setting is only 
designated for cooling; and
[GRAPHIC] [TIFF OMITTED] TR03JA14.009

    The estimated national average operating hours presented in Table 
IV.2 shall be used to calculate FER.

                Table IV.2--Estimated National Average Operating Hour Values for Calculating FER
----------------------------------------------------------------------------------------------------------------
                                                                    Single-stage     Multi-stage or  modulating
            Operating mode                       Variable              (hours)                (hours)
----------------------------------------------------------------------------------------------------------------
Heating...............................  HH.......................             830  830/HCR.
Cooling...............................  CH.......................             640  640.
Constant Circulation..................  CCH......................             400  400.
----------------------------------------------------------------------------------------------------------------

Where:
[GRAPHIC] [TIFF OMITTED] TR03JA14.010

[79 FR 521, Jan. 3, 2014]

Appendix BB to Subpart B of Part 430--Uniform Test Method for Measuring 
     the Input Power, Lumen Output, Lamp Efficacy, Correlated Color 
 Temperature (CCT), Color Rendering Index (CRI), Power Factor, Time to 
Failure, and Standby Mode Power of Integrated Light-Emitting Diode (LED) 
                                  Lamps

    Note: On or after March 20, 2019, any representations made with 
respect to the energy use or efficiency of integrated light-emitting 
diode lamps must be made in accordance with the results of testing 
pursuant to this appendix.
    1. Scope: This appendix specifies the test methods required to 
measure input power, lumen output, lamp efficacy, CCT, CRI, power 
factor, time to failure, and standby mode power for integrated LED 
lamps.

                             2. Definitions

    2.1. The definitions specified in section 1.3 of IES LM-79-08 except 
section 1.3(f) (incorporated by reference; see Sec.  430.3) apply.
    2.2. Initial lumen output means the measured lumen output after the 
lamp is initially energized and stabilized using the stabilization 
procedures in section 3 of this appendix.
    2.3. Interval lumen output means the measured lumen output at 
constant intervals after the initial lumen output measurement in 
accordance with section 4 of this appendix.
    2.4. Rated input voltage means the voltage(s) marked on the lamp as 
the intended operating voltage. If not marked on the lamp, assume 120 V.
    2.5. Test duration means the operating time of the LED lamp after 
the initial lumen output measurement and before, during, and including 
the final lumen output measurement, in units of hours.
    2.6. Time to failure means the time elapsed between the initial 
lumen output measurement and the point at which the lamp reaches 70 
percent lumen maintenance as measured in section 4 of this appendix.

 3. Active Mode Test Method for Determining Lumen Output, Input Power, 
                CCT, CRI, Power Factor, and Lamp Efficacy

    In cases where there is a conflict, the language of the test 
procedure in this appendix takes precedence over IES LM-79-08 
(incorporated by reference; see Sec.  430.3).

                     3.1. Test Conditions and Setup

    3.1.1. Establish the ambient conditions, power supply, electrical 
settings, and instrumentation in accordance with the specifications in 
sections 2.0, 3.0, 7.0, and 8.0 of IES


[[Page 733]]

LM-79-08 (incorporated by reference; see Sec.  430.3), respectively.
    3.1.2. Position an equal number of integrated LED lamps in the base-
up and base-down orientations throughout testing; if the position is 
restricted by the manufacturer, test units in the manufacturer-specified 
position.
    3.1.3. Operate the integrated LED lamp at the rated voltage 
throughout testing. For an integrated LED lamp with multiple rated 
voltages including 120 volts, operate the lamp at 120 volts. If an 
integrated LED lamp with multiple rated voltages is not rated for 120 
volts, operate the lamp at the highest rated input voltage. Additional 
tests may be conducted at other rated voltages.
    3.1.4. Operate the lamp at the maximum input power. If multiple 
modes occur at the same maximum input power (such as variable CCT or 
CRI), the manufacturer can select any of these modes for testing; 
however, all measurements described in sections 3 and 4 of this appendix 
must be taken at the same selected mode. The test report must indicate 
which mode was selected for testing and include detail such that another 
laboratory could operate the lamp in the same mode.
    3.2. Test Method, Measurements, and Calculations
    3.2.1. The test conditions and setup described in section 3.1 of 
this appendix apply to this section 3.2.
    3.2.2. Stabilize the integrated LED lamp prior to measurement as 
specified in section 5.0 of IES LM-79-08 (incorporated by reference; see 
Sec.  430.3). Calculate the stabilization variation as [(maximum--
minimum)/minimum] of at least three readings of the input power and 
lumen output over a period of 30 minutes, taken 15 minutes apart.
    3.2.3. Measure the input power in watts as specified in section 8.0 
of IES LM-79-08.
    3.2.4. Measure the input voltage in volts as specified in section 
8.0 of IES LM-79-08.
    3.2.5. Measure the input current in amps as specified in section 8.0 
of IES LM-79-08.
    3.2.6. Measure lumen output as specified in section 9.1 and 9.2 of 
IES LM-79-08. Do not use goniophotometers.
    3.2.7. Determine CCT according to the method specified in section 
12.0 of IES LM-79-08 with the exclusion of section 12.2 and 12.5 of IES 
LM-79-08. Do not use goniophotometers.
    3.2.8. Determine CRI according to the method specified in section 
12.0 of IES LM-79-08 with the exclusion of section 12.2 and 12.5 of IES 
LM-79-08. Do not use goniophotometers.
    3.2.9. Determine lamp efficacy by dividing measured initial lumen 
output by the measured input power.
    3.2.10. Determine power factor for AC-input lamps by dividing 
measured input power by the product of the measured input voltage and 
measured input current.

          4. Active Mode Test Method to Measure Time to Failure

    In cases where there is a conflict, the language of the test 
procedure in this appendix takes precedence over IES LM-84 (incorporated 
by reference; see Sec.  430.3) and IES TM-28 (incorporated by reference; 
see Sec.  430.3).

            4.1. Lamp Handling, Tracking, and Time Recording

    4.1.1. Handle, transport, and store the integrated LED lamp as 
described in section 7.2 of IES LM-84 (incorporated by reference; see 
Sec.  430.3).
    4.1.2. Mark and track the integrated LED lamp as specified in 
section 7.3 of IES LM-84.
    4.1.3. Measure elapsed operating time and calibrate all equipment as 
described in section 7.5 of IES LM-84.
    4.1.4. Check the integrated LED lamps regularly for failure as 
specified in section 7.8 of IES LM-84.
    4.2. Measure Initial Lumen Output. Measure the initial lumen output 
according to section 3 of this appendix.
    4.3. Test Duration. Operate the integrated LED lamp for a period of 
time (the test duration) after the initial lumen output measurement and 
before, during, and including the final lumen output measurement.
    4.3.1. There is no minimum test duration requirement for the 
integrated LED lamp. The test duration is selected by the manufacturer. 
See section 4.6 of this appendix for instruction on the maximum time to 
failure.
    4.3.2. The test duration only includes time when the integrated LED 
lamp is energized and operating.

  4.4. Operating Conditions and Setup Between Lumen Output Measurements

    4.4.1. Electrical settings must be as described in section 5.1 of 
IES LM-84 (incorporated by reference; see Sec.  430.3).
    4.4.2. LED lamps must be handled and cleaned as described in section 
4.1 of IES LM-84.
    4.4.3. Vibration around each lamp must be as described in section 
4.3 of IES LM-84.
    4.4.4. Ambient temperature conditions must be as described in 
section 4.4 of IES LM-84. Maintain the ambient temperature at 25 [deg]C 
 5 [deg]C or at a manufacturer-selected 
temperature higher than 25 [deg]C with the same 5 
[deg]C tolerance.
    4.4.5. Humidity in the testing environment must be as described in 
section 4.5 of IES LM-84.
    4.4.6. Air movement around each lamp must be as described in section 
4.6 of IES LM-84.
    4.4.7. Position a lamp in either the base-up and base-down 
orientation throughout testing. An equal number of lamps in the sample 
must be tested in the base-up and base-down

[[Page 734]]

orientations, except that, if the manufacturer restricts the position, 
test all of the units in the sample in the manufacturer-specified 
position.
    4.4.8. Operate the lamp at the rated input voltage as described in 
section 3.1.3 of this appendix for the entire test duration.
    4.4.9. Operate the lamp at the maximum input power as described in 
section 3.1.4 of this appendix for the entire test duration.
    4.4.10. Line voltage waveshape must be as described in section 5.2 
of IES LM-84.
    4.4.11. Monitor and regulate rated input voltage as described in 
section 5.4 of IES LM-84.
    4.4.12. Wiring of test racks must be as specified in section 5.5 of 
IES LM-84.
    4.4.13. Operate the integrated LED lamp continuously.
    4.5. Measure Interval Lumen Output. Measure interval lumen output 
according to section 3 of this appendix.
    4.5.1. Record interval lumen output and elapsed operating time as 
described in section 4.2 of IES TM-28 (incorporated by reference; see 
Sec.  430.3).
    4.5.1.1. For test duration values greater than or equal to 3,000 
hours and less than 6,000 hours, measure lumen maintenance of the 
integrated LED lamp at an interval in accordance with section 4.2.2 of 
IES TM-28.
    4.5.1.2. For test duration values greater than or equal to 6,000 
hours, measure lumen maintenance at an interval in accordance with 
section 4.2.1 of IES TM-28.

          4.6. Calculate Lumen Maintenance and Time to Failure

    4.6.1. Calculate the lumen maintenance of the lamp at each interval 
by dividing the interval lumen output ``xt'' by the initial 
lumen output ``x0''. Measure initial and interval lumen 
output in accordance with sections 4.2 and 4.5 of this appendix, 
respectively.
    4.6.2. For lumen maintenance values less than 0.7, including lamp 
failures that result in complete loss of light output, time to failure 
is equal to the previously recorded lumen output measurement (at a 
shorter test duration) where the lumen maintenance is greater than or 
equal to 0.7.
    4.6.3. For lumen maintenance values equal to 0.7, time to failure is 
equal to the test duration.
    4.6.4. For lumen maintenance values greater than 0.7, use the 
following method:
    4.6.4.1. For test duration values less than 3,000 hours, do not 
project time to failure. Time to failure equals the test duration.
    4.6.4.2. For test duration values greater than or equal to 3,000 
hours but less than 6,000 hours, time to failure is equal to the lesser 
of the projected time to failure calculated according to section 
4.6.4.2.1 of this appendix or the test duration multiplied by the 
limiting multiplier calculated in section 4.6.4.2.2 of this appendix.
    4.6.4.2.1. Project time to failure using the projection method 
described in section 5.1.4 of IES TM-28 (incorporated by reference; see 
Sec.  430.3). Project time to failure for each individual LED lamp. Do 
not use data obtained prior to a test duration value of 1,000 hours.
    4.6.4.2.2. Calculate the limiting multiplier from the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR01JY16.014

    4.6.4.3. For test duration values greater than 6,000 hours, time to 
failure is equal to the lesser of the projected time to failure 
calculated according to section 4.6.4.3.1 or the test duration 
multiplied by six.
    4.6.4.3.1. Project time to failure using the projection method 
described in section 5.1.4 of IES TM-28 (incorporated by reference; see 
Sec.  430.3). Project time to failure for each individual LED lamp. Data 
used for the time to failure projection method must be as specified in 
section 5.1.3 of IES TM-28.

     5. Standby Mode Test Method for Determining Standby Mode Power

    Measure standby mode power consumption for integrated LED lamps 
capable of operating in standby mode. The standby mode test method in 
this section 5 may be completed before or after the active mode test 
method for determining lumen output, input power, CCT, CRI, power 
factor, and lamp efficacy in section 3 of this appendix. The standby 
mode test method in this section 5 must be completed before the active 
mode test method for determining time to failure in section 4 of this 
appendix. In cases where there is a conflict, the language of the test 
procedure in this appendix takes precedence over IES LM-79 (incorporated 
by reference; see Sec.  430.3) and IEC 62301 (incorporated by reference; 
see Sec.  430.3).

[[Page 735]]

                     5.1. Test Conditions and Setup

    5.1.1. Establish the ambient conditions, power supply, electrical 
settings, and instrumentation in accordance with the specifications in 
sections 2.0, 3.0, 7.0, and 8.0 of IES LM-79 (incorporated by reference; 
see Sec.  430.3), respectively. Maintain the ambient temperature at 25 
[deg]C  1 [deg]C.
    5.1.2. Position a lamp in either the base-up and base-down 
orientation throughout testing. An equal number of lamps in the sample 
must be tested in the base-up and base-down orientations.
    5.1.3. Operate the integrated LED lamp at the rated voltage 
throughout testing. For an integrated LED lamp with multiple rated 
voltages, operate the integrated LED lamp at 120 volts. If an integrated 
LED lamp with multiple rated voltages is not rated for 120 volts, 
operate the integrated LED lamp at the highest rated input voltage.

            5.2. Test Method, Measurements, and Calculations

    5.2.1. The test conditions and setup described in section 3.1 of 
this appendix apply to this section.
    5.2.2. Connect the integrated LED lamp to the manufacturer-specified 
wireless control network (if applicable) and configure the integrated 
LED lamp in standby mode by sending a signal to the integrated LED lamp 
instructing it to have zero light output. Lamp must remain connected to 
the network throughout the duration of the test.
    5.2.3. Stabilize the integrated LED lamp as specified in section 5 
of IEC 62301 (incorporated by reference; see Sec.  430.3) prior to 
measurement.
    5.2.4. Measure the standby mode power in watts as specified in 
section 5 of IEC 62301.

[81 FR 43427, July 1, 2016, as amended at 83 FR 47812, Sept. 21, 2018]



   Sec. Appendix CC to Subpart B of Part 430--Uniform Test Method for 
      Measuring the Energy Consumption of Portable Air Conditioners

                                1. Scope

    This appendix covers the test requirements used to measure the 
energy performance of single-duct and dual-duct portable air 
conditioners, as defined at 10 CFR 430.2.

                             2. Definitions

    2.1 ANSI/AHAM PAC-1-2015 means the test standard published by the 
Association of Home Appliance Manufacturers, titled ``Portable Air 
Conditioners,'' ANSI/AHAM PAC-1-2015 (incorporated by reference; see 
Sec.  430.3).
    2.2 ASHRAE Standard 37-2009 means the test standard published by the 
American National Standards Institute and American Society of Heating, 
Refrigerating and Air-Conditioning Engineers and, titled ``Methods of 
Testing for Rating Electrically Driven Unitary Air-Conditioning and Heat 
Pump Equipment,'' ASHRAE Standard 37-2009 (incorporated by reference; 
see Sec.  430.3).
    2.3 Combined energy efficiency ratio is the energy efficiency of a 
portable air conditioner as measured in accordance with this test 
procedure in Btu per watt-hours (Btu/Wh) and determined in section 5.4.
    2.4 Cooling mode means a mode in which a portable air conditioner 
has activated the main cooling function according to the thermostat or 
temperature sensor signal, including activating the refrigeration 
system, or activating the fan or blower without activation of the 
refrigeration system.
    2.5 IEC 62301 means the test standard published by the International 
Electrotechnical Commission, titled ``Household electrical appliances-
Measurement of standby power,'' Publication 62301 (Edition 2.0 2011-01) 
(incorporated by reference; see Sec.  430.3).
    2.6 Inactive mode means a standby mode that facilitates the 
activation of an active mode or off-cycle mode by remote switch 
(including remote control), internal sensor, or timer, or that provides 
continuous status display.
    2.7 Off-cycle mode means a mode in which a portable air conditioner:
    (1) Has cycled off its main cooling or heating function by 
thermostat or temperature sensor signal;
    (2) May or may not operate its fan or blower; and
    (3) Will reactivate the main function according to the thermostat or 
temperature sensor signal.
    2.8 Off mode means a mode in which a portable air conditioner is 
connected to a mains power source and is not providing any active mode, 
off-cycle mode, or standby mode function, and where the mode may persist 
for an indefinite time. An indicator that only shows the user that the 
portable air conditioner is in the off position is included within the 
classification of an off mode.
    2.9 Seasonally adjusted cooling capacity means the amount of 
cooling, measured in Btu/h, provided to the indoor conditioned space, 
measured under the specified ambient conditions.
    2.10 Standby mode means any mode where a portable air conditioner is 
connected to a mains power source and offers one or more of the 
following user-oriented or protective functions which may persist for an 
indefinite time:
    (1) To facilitate the activation of other modes (including 
activation or deactivation of cooling mode) by remote switch (including 
remote control), internal sensor, or timer; or
    (2) Continuous functions, including information or status displays 
(including clocks)

[[Page 736]]

or sensor-based functions. A timer is a continuous clock function (which 
may or may not be associated with a display) that provides regular 
scheduled tasks (e.g., switching) and that operates on a continuous 
basis.

               3. Test Apparatus and General Instructions

    3.1 Active mode.
    3.1.1 Test conduct. The test apparatus and instructions for testing 
portable air conditioners in cooling mode and off-cycle mode must 
conform to the requirements specified in Section 4, ``Definitions'' and 
Section 7, ``Tests,'' of ANSI/AHAM PAC-1-2015 (incorporated by 
reference; see Sec.  430.3), except as otherwise specified in this 
appendix. Where applicable, measure duct heat transfer and infiltration 
air heat transfer according to section 4.1.1.1 and section 4.1.1.2 of 
this appendix, respectively. Note that if a product is able to operate 
as both a single-duct and dual-duct portable AC as distributed in 
commerce by the manufacturer, it must be tested and rated for both duct 
configurations.
    3.1.1.1 Duct setup. Use ducting components provided by the 
manufacturer, including, where provided by the manufacturer, ducts, 
connectors for attaching the duct(s) to the test unit, sealing, 
insulation, and window mounting fixtures. Do not apply additional 
sealing or insulation.
    3.1.1.2 Single-duct evaporator inlet test conditions. When testing 
single-duct portable air conditioners, maintain the evaporator inlet 
dry-bulb temperature within a range of 1.0 [deg]F with an average 
difference within 0.3 [deg]F.
    3.1.1.3 Condensate Removal. Set up the test unit in accordance with 
manufacturer instructions. If the unit has an auto-evaporative feature, 
keep any provided drain plug installed as shipped and do not provide 
other means of condensate removal. If the internal condensate collection 
bucket fills during the test, halt the test, remove the drain plug, 
install a gravity drain line, and start the test from the beginning. If 
no auto-evaporative feature is available, remove the drain plug and 
install a gravity drain line. If no auto-evaporative feature or gravity 
drain is available and a condensate pump is included, or if the 
manufacturer specifies the use of an included condensate pump during 
cooling mode operation, then test the portable air conditioner with the 
condensate pump enabled. For units tested with a condensate pump, apply 
the provisions in Section 7.1.2 of ANSI/AHAM PAC-1-2015 (incorporated by 
reference; see Sec.  430.3) if the pump cycles on and off.
    3.1.1.4 Unit Placement. There shall be no less than 3 feet between 
any test chamber wall surface and any surface on the portable air 
conditioner, except the surface or surfaces of the portable air 
conditioner that include a duct attachment. The distance between the 
test chamber wall and a surface with one or more duct attachments is 
prescribed by the test setup requirements in Section 7.3.7 of ANSI/AHAM 
PAC-1-2015 (incorporated by reference; see Sec.  430.3).
    3.1.1.5 Electrical supply. Maintain the input standard voltage at 
115 V 1 percent. Test at the rated frequency, 
maintained within 1 percent.
    3.1.1.6 Duct temperature measurements. Install any insulation and 
sealing provided by the manufacturer. Then adhere four equally spaced 
thermocouples per duct to the outer surface of the entire length of the 
duct. Measure the surface temperatures of each duct. Temperature 
measurements must have an error no greater than 0.5 [deg]F over the range being measured.
    3.1.2 Control settings. Set the controls to the lowest available 
temperature setpoint for cooling mode. If the portable air conditioner 
has a user-adjustable fan speed, select the maximum fan speed setting. 
If the portable air conditioner has an automatic louver oscillation 
feature, disable that feature throughout testing. If the louver 
oscillation feature is included but there is no option to disable it, 
test with the louver oscillation enabled. If the portable air 
conditioner has adjustable louvers, position the louvers parallel with 
the air flow to maximize air flow and minimize static pressure loss.
    3.1.3 Measurement resolution. Record measurements at the resolution 
of the test instrumentation.
    3.2 Standby mode and off mode.
    3.2.1 Installation requirements. For the standby mode and off mode 
testing, install the portable air conditioner in accordance with Section 
5, Paragraph 5.2 of IEC 62301 (incorporated by reference; see Sec.  
430.3), disregarding the provisions regarding batteries and the 
determination, classification, and testing of relevant modes.
    3.2.2 Electrical energy supply.
    3.2.2.1 Electrical supply. For the standby mode and off mode 
testing, maintain the input standard voltage at 115 V 1 percent. Maintain the electrical supply at the rated 
frequency 1 percent.
    3.2.2.2 Supply voltage waveform. For the standby mode and off mode 
testing, maintain the electrical supply voltage waveform indicated in 
Section 4, Paragraph 4.3.2 of IEC 62301 (incorporated by reference; see 
Sec.  430.3).
    3.2.3 Standby mode and off mode wattmeter. The wattmeter used to 
measure standby mode and off mode power consumption must meet the 
requirements specified in Section 4, Paragraph 4.4 of IEC 62301 
(incorporated by reference; see Sec.  430.3).
    3.2.4 Standby mode and off mode ambient temperature. For standby 
mode and off mode testing, maintain room ambient air temperature 
conditions as specified in Section 4, Paragraph 4.2 of IEC 62301 
(incorporated by reference; see Sec.  430.3).

[[Page 737]]

                           4. Test Measurement

    4.1 Cooling mode. Measure the indoor room cooling capacity and 
overall power input in cooling mode in accordance with Section 7.1.b and 
7.1.c of ANSI/AHAM PAC-1-2015 (incorporated by reference; see Sec.  
430.3), respectively. Determine the test duration in accordance with 
Section 8.7 of ASHRAE Standard 37-2009 (incorporated by reference; Sec.  
430.3). Apply the test conditions for single-duct and dual-duct portable 
air conditioners presented in Table 1 of this appendix instead of the 
test conditions in Table 3 of ANSI/AHAM PAC-1-2015. For single-duct 
units, measure the indoor room cooling capacity, CapacitySD, 
and overall power input in cooling mode, PSD, in accordance 
with the ambient conditions for test configuration 5, presented in Table 
1 of this appendix. For dual-duct units, measure the indoor room cooling 
capacity and overall power input in accordance with ambient conditions 
for test configuration 3, condition A (Capacity95, 
P95), and then measure the indoor room cooling capacity and 
overall power input a second time in accordance with the ambient 
conditions for test configuration 3, condition B (Capacity83, 
P83), presented in Table 1 of this appendix. Note that for 
the purposes of this cooling mode test procedure, evaporator inlet air 
is considered the ``indoor air'' of the conditioned space and condenser 
inlet air is considered the ``outdoor air'' outside of the conditioned 
space.

                   Table 1--Evaporator (Indoor) and Condenser (Outdoor) Inlet Test Conditions
----------------------------------------------------------------------------------------------------------------
                                                   Evaporator inlet air,  [deg]F  Condenser inlet air,  [deg]F (
                                                             ( [deg]C)                        [deg]C)
               Test configuration                ---------------------------------------------------------------
                                                     Dry bulb        Wet bulb        Dry bulb        Wet bulb
----------------------------------------------------------------------------------------------------------------
3 (Dual-Duct, Condition A)......................       80 (26.7)       67 (19.4)       95 (35.0)       75 (23.9)
3 (Dual-Duct, Condition B)......................       80 (26.7)       67 (19.4)       83 (28.3)     67.5 (19.7)
5 (Single-Duct).................................       80 (26.7)       67 (19.4)       80 (26.7)       67 (19.4)
----------------------------------------------------------------------------------------------------------------

    4.1.1. Duct Heat Transfer. Measure the surface temperature of the 
condenser exhaust duct and condenser inlet duct, where applicable, 
throughout the cooling mode test. Calculate the average temperature at 
each individual location, and then calculate the average surface 
temperature of each duct by averaging the four average temperature 
measurements taken on that duct. Calculate the surface area 
(Aduct_j) of each duct according to:

Aduct_j = [pi] x dj x Lj

Where:

dj = the outer diameter of duct ``j'', including any 
          manufacturer-supplied insulation.
Lj = the extended length of duct ``j'' while under test.
j represents the condenser exhaust duct and, for dual-duct units, the 
          condenser exhaust duct and the condenser inlet duct.

    Calculate the total heat transferred from the surface of the duct(s) 
to the indoor conditioned space while operating in cooling mode for the 
outdoor test conditions in Table 1 of this appendix, as follows. For 
single-duct portable air conditioners:

Qduct_SD = h x Aduct_j x (Tduct_SD_j-
          Tei)

For dual-duct portable air conditioners:

Qduct_95 = [sum]j{h x Aduct_j x 
          (Tduct_95_j-Tei){time} 
Qduct_83 = [sum]j{h x Aduct_j x 
          (Tduct_83_j-Tei){time} 

Where:

Qduct_SD = for single-duct portable air conditioners, the 
          total heat transferred from the duct to the indoor conditioned 
          space in cooling mode when tested according to the test 
          conditions in Table 1 of this appendix, in Btu/h.
Qduct_95 and Qduct_83 = for dual-duct portable air 
          conditioners, the total heat transferred from the ducts to the 
          indoor conditioned space in cooling mode, in Btu/h, when 
          tested according to the 95 [deg]F dry-bulb and 83 [deg]F dry-
          bulb outdoor test conditions in Table 1 of this appendix, 
          respectively.
h = convection coefficient, 3 Btu/h per square foot per [deg]F.
Aduct_j = surface area of duct ``j'', in square feet.
Tduct_SD_j = average surface temperature for the condenser 
          exhaust duct of single-duct portable air conditioners, as 
          measured during testing according to the test condition in 
          Table 1 of this appendix, in [deg]F.
Tduct_95_j and Tduct_83_j = average surface 
          temperature for duct ``j'' of dual-duct portable air 
          conditioners, as measured during testing according to the two 
          outdoor test conditions in Table 1 of this appendix, in 
          [deg]F.
j represents the condenser exhaust duct and, for dual-duct units, the 
          condenser exhaust duct and the condenser inlet duct.
Tei = average evaporator inlet air dry-bulb temperature, in 
          [deg]F.

    4.1.2. Infiltration Air Heat Transfer. Measure the heat contribution 
from infiltration air for single-duct portable air conditioners and 
dual-duct portable air conditioners that draw at least part of the 
condenser air from

[[Page 738]]

the conditioned space. Calculate the heat contribution from infiltration 
air for single-duct and dual-duct portable air conditioners for both 
cooling mode outdoor test conditions, as described in this section. 
Calculate the dry air mass flow rate of infiltration air according to 
the following equations:
[GRAPHIC] [TIFF OMITTED] TR20AP20.000

    For dual-duct portable air conditioners:
    [GRAPHIC] [TIFF OMITTED] TR20AP20.001
    
Where:

mSD = dry air mass flow rate of infiltration air for single-
          duct portable air conditioners, in pounds per minute (lb/m).
m95 and m83 = dry air mass flow rate of 
          infiltration air for dual-duct portable air conditioners, as 
          calculated based on testing according to the test conditions 
          in Table 1 of this appendix, in lb/m.
Vco_SD, Vco_95, and Vco_83 = average 
          volumetric flow rate of the condenser outlet air during 
          cooling mode testing for single-duct portable air 
          conditioners; and at the 95 [deg]F and 83 [deg]F dry-bulb 
          outdoor conditions for dual-duct portable air conditioners, 
          respectively, in cubic feet per minute (cfm).
Vci_95 and Vci_83 = average volumetric flow rate 
          of the condenser inlet air during cooling mode testing at the 
          95 [deg]F and 83 [deg]F dry-bulb outdoor conditions for dual-
          duct portable air conditioners, respectively, in cfm.
[rho]co_SD, [rho]co_95, and [rho]co_83 
          = average density of the condenser outlet air during cooling 
          mode testing for single-duct portable air conditioners, and at 
          the 95 [deg]F and 83 [deg]F dry-bulb outdoor conditions for 
          dual-duct portable air conditioners, respectively, in pounds 
          mass per cubic foot (lbm/ft\3\).
[rho]ci_95 and [rho]ci_83 = average density of the 
          condenser inlet air during cooling mode testing at the 95 
          [deg]F and 83 [deg]F dry-bulb outdoor conditions for dual-duct 
          portable air conditioners, respectively, in lbm/
          ft\3\.
[omega]co_SD, [omega]co_95, and 
          [omega]co_83 = average humidity ratio of condenser 
          outlet air during cooling mode testing for single-duct 
          portable air conditioners, and at the 95 [deg]F and 83 [deg]F 
          dry-bulb outdoor conditions for dual-duct portable air 
          conditioners, respectively, in pounds mass of water vapor per 
          pounds mass of dry air (lbw/lbda).
[omega]ci_95 and [omega]ci_83 = average humidity 
          ratio of condenser inlet air during cooling mode testing at 
          the 95 [deg]F and 83 [deg]F dry-bulb outdoor conditions for 
          dual-duct portable air conditioners, respectively, in 
          lbw/lbda.
    For single-duct and dual-duct portable air conditioners, calculate 
the sensible component of infiltration air heat contribution according 
to:

Qs_95 = m x 60 x [(cp_da x (Tia_95-
          Tindoor)) + (cp_wv x 
          ([omega]ia_95 x Tia_95-
          [omega]indoor x Tindoor))]
Qs_83 = m x 60 x [(cp_da x (Tia_83-
          Tindoor)) + (cp_wv x 
          ([omega]ia_83 x Tia_83-
          [omega]indoor x Tindoor))]

Where:

Qs_95 and Qs_83 = sensible heat added to the room 
          by infiltration air, calculated at the 95 [deg]F and 83 [deg]F 
          dry-bulb outdoor conditions in Table 1 of this appendix, in 
          Btu/h.
m = dry air mass flow rate of infiltration air, mSD or 
          m95 when calculating Qs_95 and 
          mSD or m83 when calculating 
          Qs_83, in lb/m.
cp_da = specific heat of dry air, 0.24 Btu/lbm- 
          [deg]F.
cp_wv = specific heat of water vapor, 0.444 Btu/
          lbm- [deg]F.
Tindoor = indoor chamber dry-bulb temperature, 80 [deg]F.

[[Page 739]]

Tia_95 and Tia_83 = infiltration air dry-bulb 
          temperatures for the two test conditions in Table 1 of this 
          appendix, 95 [deg]F and 83 [deg]F, respectively.
[omega]ia_95 and [omega]ia_83 = humidity ratios of 
          the 95 [deg]F and 83 [deg]F dry-bulb infiltration air, 0.0141 
          and 0.01086 lbw/lbda, respectively.
[omega]indoor = humidity ratio of the indoor chamber air, 
          0.0112 lbw/lbda.
60 = conversion factor from minutes to hours.

    Calculate the latent heat contribution of the infiltration air 
according to:

Ql_95 = m x 60 x Hfg x ([omega]ia_95-
          [omega]indoor)
Ql_83 = m x 60 x Hfg x ([omega]ia_83-
          [omega]indoor)

Where:

Ql_95 and Ql_83 = latent heat added to the room by 
          infiltration air, calculated at the 95 [deg]F and 83 [deg]F 
          dry-bulb outdoor conditions in Table 1 of this appendix, in 
          Btu/h.
m = mass flow rate of infiltration air, mSD or m95 
          when calculating Ql_95 and mSD or 
          m83 when calculating Ql_83, in lb/m.
Hfg = latent heat of vaporization for water vapor, 1061 Btu/
          lbm.
[omega]ia_95 and [omega]ia_83 = humidity ratios of 
          the 95 [deg]F and 83 [deg]F dry-bulb infiltration air, 0.0141 
          and 0.01086 lbw/lbda, respectively.
[omega]indoor = humidity ratio of the indoor chamber air, 
          0.0112 lbw/lbda.
60 = conversion factor from minutes to hours.

    The total heat contribution of the infiltration air is the sum of 
the sensible and latent heat:

    Qinfiltration_95 = Qs_95 + Ql_95
    Qinfiltration_83 = Qs_83 + Ql_83

Where:

Qinfiltration_95 and Qinfiltration_83 = total 
          infiltration air heat in cooling mode, calculated at the 95 
          [deg]F and 83 [deg]F dry-bulb outdoor conditions in Table 1 of 
          this appendix, in Btu/h.
Qs_95 and Qs_83 = sensible heat added to the room 
          by infiltration air, calculated at the 95 [deg]F and 83 [deg]F 
          dry-bulb outdoor conditions in Table 1 of this appendix, in 
          Btu/h.
Ql_95 and Ql_83 = latent heat added to the room by 
          infiltration air, calculated at the 95 [deg]F and 83 [deg]F 
          dry-bulb outdoor conditions in Table 1 of this appendix, in 
          Btu/h.
    4.2 Off-cycle mode. Establish the test conditions specified in 
section 3.1.1 of this appendix for off-cycle mode and use the wattmeter 
specified in section 3.2.3 of this appendix (but do not use the duct 
measurements in section 3.1.1.6). Begin the off-cycle mode test period 5 
minutes following the cooling mode test period. Adjust the setpoint 
higher than the ambient temperature to ensure the product will not enter 
cooling mode and begin the test 5 minutes after the compressor cycles 
off due to the change in setpoint. Do not change any other control 
settings between the end of the cooling mode test period and the start 
of the off-cycle mode test period. The off-cycle mode test period must 
be 2 hours in duration, during which period, record the power 
consumption at the same intervals as recorded for cooling mode testing. 
Measure and record the average off-cycle mode power of the portable air 
conditioner, Poc, in watts.
    4.3 Standby mode and off mode. Establish the testing conditions set 
forth in section 3.2 of this appendix, ensuring that the portable air 
conditioner does not enter any active modes during the test. For 
portable air conditioners that take some time to enter a stable state 
from a higher power state as discussed in Section 5, Paragraph 5.1, Note 
1 of IEC 62301, (incorporated by reference; see Sec.  430.3), allow 
sufficient time for the portable air conditioner to reach the lowest 
power state before proceeding with the test measurement. Follow the test 
procedure specified in Section 5, Paragraph 5.3.2 of IEC 62301 for 
testing in each possible mode as described in sections 4.3.1 and 4.3.2 
of this appendix.
    4.3.1 If the portable air conditioner has an inactive mode, as 
defined in section 2.6 of this appendix, but not an off mode, as defined 
in section 2.8 of this appendix, measure and record the average inactive 
mode power of the portable air conditioner, Pia, in watts.
    4.3.2 If the portable air conditioner has an off mode, as defined in 
section 2.8 of this appendix, measure and record the average off mode 
power of the portable air conditioner, Pom, in watts.

        5. Calculation of Derived Results From Test Measurements

    5.1 Adjusted Cooling Capacity. Calculate the adjusted cooling 
capacities for portable air conditioners, ACC95 and 
ACC83, expressed in Btu/h, according to the following 
equations. For single-duct portable air conditioners:

ACC95 = CapacitySD - Qduct_SD - 
          Qinfiltration_95
ACC83 = CapacitySD - Qduct_SD - 
          Qinfiltration_83

    For dual-duct portable air conditioners:
ACC95 = Capacity95 - Qduct_95 - 
          Qinfiltration_95
ACC83 = Capacity83 - Qduct_83 - 
          Qinfiltration_83

Where:

CapacitySD, Capacity95, and Capacity83 
          = cooling capacity measured in section 4.1.1 of this appendix.
Qduct_SD, Qduct_95, and Qduct_83 = duct 
          heat transfer while operating in cooling mode, calculated in 
          section 4.1.1.1 of this appendix.
Qinfiltration_95 and Qinfiltration_83 = total 
          infiltration air heat transfer in cooling mode, calculated in 
          section 4.1.1.2 of this appendix.


[[Page 740]]


    5.2 Seasonally Adjusted Cooling Capacity. Calculate the seasonally 
adjusted cooling capacity for portable air conditioners, SACC, expressed 
in Btu/h, according to:

SACC = ACC95 x 0.2 + ACC83 x 0.8

Where:

ACC95 and ACC83 = adjusted cooling capacity, in 
          Btu/h, calculated in section 5.1 of this appendix.
0.2 = weighting factor for ACC95.
0.8 = weighting factor for ACC83.
    5.3 Annual Energy Consumption. Calculate the annual energy 
consumption in each operating mode, AECm, expressed in 
kilowatt-hours per year (kWh/year). Use the following annual hours of 
operation for each mode:

------------------------------------------------------------------------
                                                                Annual
                       Operating mode                         operating
                                                                hours
------------------------------------------------------------------------
Cooling Mode, Dual-Duct 95 [deg]F \1\......................          750
Cooling Mode, Dual-Duct 83 [deg]F \1\......................          750
Cooling Mode, Single-Duct..................................          750
Off-Cycle..................................................          880
Inactive or Off............................................        1,355
------------------------------------------------------------------------
\1\ These operating mode hours are for the purposes of calculating
  annual energy consumption under different ambient conditions for dual-
  duct portable air conditioners, and are not a division of the total
  cooling mode operating hours. The total dual-duct cooling mode
  operating hours are 750 hours.

AECm = Pm x tm x k

Where:

AECm = annual energy consumption in each mode, in kWh/year.
Pm = average power in each mode, in watts.
    m represents the operating mode (``95'' and ``83'' cooling mode at 
the 95 [deg]F and 83 [deg]F dry-bulb outdoor conditions, respectively 
for dual-duct portable air conditioners, ``SD'' cooling mode for single-
duct portable air conditioners, ``oc'' off-cycle, and ``ia'' inactive or 
``om'' off mode).
t = number of annual operating time in each mode, in hours.
k = 0.001 kWh/Wh conversion factor from watt-hours to kilowatt-hours.

    Total annual energy consumption in all modes except cooling, is 
calculated according to:
[GRAPHIC] [TIFF OMITTED] TR01JN16.007

Where:

AECT = total annual energy consumption attributed to all 
          modes except cooling, in kWh/year;
AECm = total annual energy consumption in each mode, in kWh/
          year.
    m represents the operating modes included in AECT (``oc'' 
off-cycle, and ``im'' inactive or ``om'' off mode).

    5.4 Combined Energy Efficiency Ratio. Using the annual operating 
hours, as outlined in section 5.3 of this appendix, calculate the 
combined energy efficiency ratio, CEER, expressed in Btu/Wh, according 
to the following:
[GRAPHIC] [TIFF OMITTED] TR01JN16.008

[GRAPHIC] [TIFF OMITTED] TR01JN16.009

Where:

CEERSD and CEERDD = combined energy efficiency 
          ratio for single-duct and dual-duct portable air conditioners, 
          respectively, in Btu/Wh.
ACC95 and ACC83 = adjusted cooling capacity, 
          tested at the 95 [deg]F and 83 [deg]F dry-bulb outdoor 
          conditions in Table 1 of this appendix, in Btu/h, calculated 
          in section 5.1 of this appendix.

[[Page 741]]

AECSD = annual energy consumption in cooling mode for single-
          duct portable air conditioners, in kWh/year, calculated in 
          section 5.3 of this appendix.
AEC95 and AEC83 = annual energy consumption for 
          the two cooling mode test conditions in Table 1 of this 
          appendix for dual-duct portable air conditioners, in kWh/year, 
          calculated in section 5.3 of this appendix.
AECT = total annual energy consumption attributed to all 
          modes except cooling, in kWh/year, calculated in section 5.3 
          of this appendix.
t = number of cooling mode hours per year, 750.
k = 0.001 kWh/Wh conversion factor for watt-hours to kilowatt-hours.
0.2 = weighting factor for the 95 [deg]F dry-bulb outdoor condition 
          test.
0.8 = weighting factor for the 83 [deg]F dry-bulb outdoor condition 
          test.

[81 FR 35265, June 1, 2016, as amended at 81 FR 70923, Oct. 14, 2016; 85 
FR 21746, Apr. 20, 2020]



   Sec. Appendix DD to Subpart B of Part 430--Uniform Test Method for 
   Measuring the Energy Consumption and Energy Efficiency of General 
 Service Lamps That Are Not General Service Incandescent Lamps, Compact 
               Fluorescent Lamps, or Integrated LED Lamps

    Note: On or after April 19, 2017, any representations, including 
certifications of compliance (if required), made with respect to the 
energy use or efficiency of general service lamps that are not general 
service incandescent lamps, compact fluorescent lamps, or integrated LED 
lamps must be made in accordance with the results of testing pursuant to 
this appendix DD.
    1. Scope: This appendix DD specifies the test methods required to 
measure the initial lumen output, input power, lamp efficacy, power 
factor, and standby mode energy consumption of general service lamps 
that are not general service incandescent lamps, compact fluorescent 
lamps, or integrated LED lamps.
    2. Definitions:
    Measured initial input power means the input power to the lamp, 
measured after the lamp is stabilized and seasoned (if applicable), and 
expressed in watts (W).
    Measured initial lumen output means the lumen output of the lamp, 
measured after the lamp is stabilized and seasoned (if applicable), and 
expressed in lumens (lm).
    Power factor means the measured initial input power (watts) divided 
by the product of the input voltage (volts) and the input current (amps) 
measured at the same time as the initial input power.
    3. Active Mode Test Procedures
    3.1. Take measurements at full light output.
    3.2. Do not use a goniophotometer.
    3.3. For single base OLED and non-integrated LED lamps, position a 
lamp in either the base-up and base-down orientation throughout testing. 
Test an equal number of lamps in the sample in the base-up and base-down 
orientations, except that, if the manufacturer restricts the 
orientation, test all of the units in the sample in the manufacturer-
specified orientation. For double base OLED and non-integrated LED 
lamps, test all units in the horizontal orientation except that, if the 
manufacturer restricts the orientation, test all of the units in the 
sample in the manufacturer-specified orientation.
    3.4. Operate the lamp at the rated voltage throughout testing. For 
lamps with multiple rated voltages including 120 volts, operate the lamp 
at 120 volts. If a lamp is not rated for 120 volts, operate the lamp at 
the highest rated input voltage. For non-integrated LED lamps, operate 
the lamp at the manufacturer-declared input voltage and current.
    3.5. Operate the lamp at the maximum input power. If multiple modes 
occur at the same maximum input power (such as variable CCT or CRI), the 
manufacturer may select any of these modes for testing; however, all 
measurements must be taken at the same selected mode. The manufacturer 
must indicate in the test report which mode was selected for testing and 
include detail such that another laboratory could operate the lamp in 
the same mode.
    3.6. To measure initial lumen output, input power, input voltage, 
and input current use the test procedures in the table in this section.

       Table 3.1--References to Industry Standard Test Procedures
------------------------------------------------------------------------
               Lamp type                    Referenced test procedure
------------------------------------------------------------------------
General service incandescent lamps.....  Appendix R to subpart B of 10
                                          CFR part 430.
Compact fluorescent lamps..............  Appendix W to subpart B of 10
                                          CFR part 430.
Integrated LED lamps...................  Appendix BB to subpart B of 10
                                          CFR part 430.
Other incandescent lamps that are not    IES LM-45-15, sections 4-6, and
 reflector lamps.                         section 7.1.*
Other incandescent lamps that are        IES LM-20-13, sections 4-6, and
 reflector lamps.                         section 8.*
Other fluorescent lamps................  IES LM-9-09-DD, sections 4-6,
                                          and section 7.5.*
OLED lamps.............................  IES LM-79-08-DD, sections 1.3
                                          (except 1.3f), 2.0, 3.0, 5.0,
                                          7.0, 8.0, 9.1 and 9.2.*

[[Page 742]]

 
Non-integrated LED lamps...............  IES LM-79-08-DD, sections 1.3
                                          (except 1.3f), 2.0, 3.0, 5.0,
                                          7.0, 8.0, 9.1 and 9.2.*
------------------------------------------------------------------------
* Incorporated by reference, see Sec.   430.3.

    3.7. Determine initial lamp efficacy by dividing the measured 
initial lumen output (lumens) by the measured initial input power 
(watts).
    3.8. Determine power factor by dividing the measured initial input 
power (watts) by the product of the measured input voltage (volts) and 
measured input current (amps).
    4. Standby Mode Test Procedure
    4.1. Measure standby mode power only for lamps that are capable of 
standby mode operation.
    4.2. Maintain lamp orientation as specified in section 3.3 of this 
appendix.
    4.3. Connect the lamp to the manufacturer-specified wireless control 
network (if applicable) and configure the lamp in standby mode by 
sending a signal to the lamp instructing it to have zero light output. 
Lamp must remain connected to the network throughout testing.
    4.4. Operate the lamp at the rated voltage throughout testing. For 
lamps with multiple rated voltages including 120 volts, operate the lamp 
at 120 volts. If a lamp is not rated for 120 volts, operate the lamp at 
the highest rated input voltage.
    4.5. Stabilize the lamp prior to measurement as specified in section 
5 of IEC 62301-DD (incorporated by reference; see Sec.  430.3).
    4.6. Measure the standby mode power in watts as specified in section 
5 of IEC 62301-DD (incorporated by reference; see Sec.  430.3).

[81 FR 72504, Oct. 20, 2016]



            Subpart C_Energy and Water Conservation Standards



Sec.  430.31  Purpose and scope.

    This subpart contains energy conservation standards and water 
conservation standards (in the case of faucets, showerheads, water 
closets, and urinals) for classes of covered products that are required 
to be administered by the Department of Energy pursuant to the Energy 
Conservation Program for Consumer Products Other Than Automobiles under 
the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et 
seq.).

[63 FR 13317, Mar. 18, 1998, as amended at 78 FR 62993, Oct. 23, 2013]



Sec.  430.32  Energy and water conservation standards 
and their compliance dates.

    The energy and water (in the case of faucets, showerheads, water 
closets, and urinals) conservation standards for the covered product 
classes are:
    (a) Refrigerators/refrigerator-freezers/freezers. These standards do 
not apply to refrigerators and refrigerator-freezers with total 
refrigerated volume exceeding 39 cubic feet (1104 liters) or freezers 
with total refrigerated volume exceeding 30 cubic feet (850 liters). The 
energy standards as determined by the equations of the following 
table(s) shall be rounded off to the nearest kWh per year. If the 
equation calculation is halfway between the nearest two kWh per year 
values, the standard shall be rounded up to the higher of these values.
    The following standards remain in effect from July 1, 2001 until 
September 15, 2014:

------------------------------------------------------------------------
                                                     Energy standard
                 Product class                    equations for maximum
                                                   energy use (kWh/yr)
------------------------------------------------------------------------
1. Refrigerators and refrigerator-freezers with  8.82AV + 248.4
 manual defrost.                                 0.31av + 248.4
2. Refrigerator-freezers--partial automatic      8.82AV + 248.4
 defrost.                                        0.31av + 248.4
3. Refrigerator-freezers--automatic defrost      9.80AV + 276.0
 with top-mounted freezer without through-the-   0.35av + 276.0
 door ice service and all-refrigerator--
 automatic defrost.
4. Refrigerator-freezers--automatic defrost      4.91AV + 507.5
 with side-mounted freezer without through-the-  0.17av + 507.5
 door ice service.
5. Refrigerator-freezers--automatic defrost      4.60AV + 459.0
 with bottom-mounted freezer without through-    0.16av + 459.0
 the-door ice service.

[[Page 743]]

 
6. Refrigerator-freezers--automatic defrost      10.20AV + 356.0
 with top-mounted freezer with through-the-door  0.36av + 356.0
 ice service.
7. Refrigerator-freezers--automatic defrost      10.10AV + 406.0
 with side-mounted freezer with through-the-     0.36av + 406.0
 door ice service.
8. Upright freezers with manual defrost........  7.55AV + 258.3
                                                 0.27av + 258.3
9. Upright freezers with automatic defrost.....  12.43AV + 326.1
                                                 0.44av + 326.1
10. Chest freezers and all other freezers        9.88AV + 143.7
 except compact freezers.                        0.35av + 143.7
11. Compact refrigerators and refrigerator-      10.70AV + 299.0
 freezers with manual defrost.                   0.38av + 299.0
12. Compact refrigerator-freezer--partial        7.00AV + 398.0
 automatic defrost.                              0.25av + 398.0
13. Compact refrigerator-freezers--automatic     12.70AV + 355.0
 defrost with top-mounted freezer and compact    0.45av + 355.0
 all-refrigerator--automatic defrost.
14. Compact refrigerator-freezers--automatic     7.60AV + 501.0
 defrost with side-mounted freezer.              0.27av + 501.0
15. Compact refrigerator-freezers--automatic     13.10AV + 367.0
 defrost with bottom-mounted freezer.            0.46av + 367.0
16. Compact upright freezers with manual         9.78AV + 250.8
 defrost.                                        0.35av + 250.8
17. Compact upright freezers with automatic      11.40AV + 391.0
 defrost.                                        0.40av + 391.0
18. Compact chest freezers.....................  10.45AV + 152.0
                                                 0.37av + 152.0
------------------------------------------------------------------------
AV: Adjusted Volume in ft\3\; av: Adjusted Volume in liters (L).

    The following standards apply to products manufactured starting on 
September 15, 2014:

------------------------------------------------------------------------
                                  Equations for maximum energy use (kWh/
                                                   yr)
          Product class         ----------------------------------------
                                 Based on AV (ft\3\)    Based on av (L)
------------------------------------------------------------------------
1. Refrigerator-freezers and     7.99AV + 225.0.....  0.282av + 225.0
 refrigerators other than all-
 refrigerators with manual
 defrost.
1A. All-refrigerators--manual    6.79AV + 193.6.....  0.240av + 193.6
 defrost.
2. Refrigerator-freezers--       7.99AV + 225.0.....  0.282av + 225.0
 partial automatic defrost.
3. Refrigerator-freezers--       8.07AV + 233.7.....  0.285av + 233.7
 automatic defrost with top-
 mounted freezer without an
 automatic icemaker.
3-BI. Built-in refrigerator-     9.15AV + 264.9.....  0.323av + 264.9
 freezer--automatic defrost
 with top-mounted freezer
 without an automatic icemaker.
3I. Refrigerator-freezers--      8.07AV + 317.7.....  0.285av + 317.7
 automatic defrost with top-
 mounted freezer with an
 automatic icemaker without
 through-the-door ice service.
3I-BI. Built-in refrigerator-    9.15AV + 348.9.....  0.323av + 348.9
 freezers--automatic defrost
 with top-mounted freezer with
 an automatic icemaker without
 through-the-door ice service.
3A. All-refrigerators--          7.07AV + 201.6.....  0.250av + 201.6
 automatic defrost.
3A-BI. Built-in All-             8.02AV + 228.5.....  0.283av + 228.5
 refrigerators--automatic
 defrost.
4. Refrigerator-freezers--       8.51AV + 297.8.....  0.301av + 297.8
 automatic defrost with side-
 mounted freezer without an
 automatic icemaker.
4-BI. Built-In Refrigerator-     10.22AV + 357.4....  0.361av + 357.4
 freezers--automatic defrost
 with side-mounted freezer
 without an automatic icemaker.
4I. Refrigerator-freezers--      8.51AV + 381.8.....  0.301av + 381.8
 automatic defrost with side-
 mounted freezer with an
 automatic icemaker without
 through-the-door ice service.
4I-BI. Built-In Refrigerator-    10.22AV + 441.4....  0.361av + 441.4
 freezers--automatic defrost
 with side-mounted freezer with
 an automatic icemaker without
 through-the-door ice service.
5. Refrigerator-freezers--       8.85AV + 317.0.....  0.312av + 317.0
 automatic defrost with bottom-
 mounted freezer without an
 automatic icemaker.
5-BI. Built-In Refrigerator-     9.40AV + 336.9.....  0.332av + 336.9
 freezers--automatic defrost
 with bottom-mounted freezer
 without an automatic icemaker.
5I. Refrigerator-freezers--      8.85AV + 401.0.....  0.312av + 401.0
 automatic defrost with bottom-
 mounted freezer with an
 automatic icemaker without
 through-the-door ice service.
5I-BI. Built-In Refrigerator-    9.40AV + 420.9.....  0.332av + 420.9
 freezers--automatic defrost
 with bottom-mounted freezer
 with an automatic icemaker
 without through-the-door ice
 service.
5A. Refrigerator-freezer--       9.25AV + 475.4.....  0.327av + 475.4
 automatic defrost with bottom-
 mounted freezer with through-
 the-door ice service.
5A-BI. Built-in refrigerator-    9.83AV + 499.9.....  0.347av + 499.9
 freezer--automatic defrost
 with bottom-mounted freezer
 with through-the-door ice
 service.

[[Page 744]]

 
6. Refrigerator-freezers--       8.40AV + 385.4.....  0.297av + 385.4
 automatic defrost with top-
 mounted freezer with through-
 the-door ice service.
7. Refrigerator-freezers--       8.54AV + 432.8.....  0.302av + 432.8
 automatic defrost with side-
 mounted freezer with through-
 the-door ice service.
7-BI. Built-In Refrigerator-     10.25AV + 502.6....  0.362av + 502.6
 freezers--automatic defrost
 with side-mounted freezer with
 through-the-door ice service.
8. Upright freezers with manual  5.57AV + 193.7.....  0.197av + 193.7
 defrost.
9. Upright freezers with         8.62AV + 228.3.....  0.305av + 228.3
 automatic defrost without an
 automatic icemaker.
9I. Upright freezers with        8.62AV + 312.3.....  0.305av + 312.3
 automatic defrost with an
 automatic icemaker.
9-BI. Built-In Upright freezers  9.86AV + 260.9.....  0.348av + 260.9
 with automatic defrost without
 an automatic icemaker.
9I-BI. Built-in upright          9.86AV + 344.9.....  0.348av + 344.9
 freezers with automatic
 defrost with an automatic
 icemaker.
10. Chest freezers and all       7.29AV + 107.8.....  0.257av + 107.8
 other freezers except compact
 freezers.
10A. Chest freezers with         10.24AV + 148.1....  0.362av + 148.1
 automatic defrost.
11. Compact refrigerator-        9.03AV + 252.3.....  0.319av + 252.3
 freezers and refrigerators
 other than all-refrigerators
 with manual defrost.
11A.Compact all-refrigerators--  7.84AV + 219.1.....  0.277av + 219.1
 manual defrost.
12. Compact refrigerator-        5.91AV + 335.8.....  0.209av + 335.8
 freezers--partial automatic
 defrost.
13. Compact refrigerator-        11.80AV + 339.2....  0.417av + 339.2
 freezers--automatic defrost
 with top-mounted freezer.
13I. Compact refrigerator-       11.80AV + 423.2....  0.417av + 423.2
 freezers--automatic defrost
 with top-mounted freezer with
 an automatic icemaker.
13A. Compact all-refrigerators-- 9.17AV + 259.3.....  0.324av + 259.3
 automatic defrost.
14. Compact refrigerator-        6.82AV + 456.9.....  0.241av + 456.9
 freezers--automatic defrost
 with side-mounted freezer.
14I. Compact refrigerator-       6.82AV + 540.9.....  0.241av + 540.9
 freezers--automatic defrost
 with side-mounted freezer with
 an automatic icemaker.
15. Compact refrigerator-        11.80AV + 339.2....  0.417av + 339.2
 freezers--automatic defrost
 with bottom-mounted freezer.
15I. Compact refrigerator-       11.80AV + 423.2....  0.417av + 423.2
 freezers--automatic defrost
 with bottom-mounted freezer
 with an automatic icemaker.
16. Compact upright freezers     8.65AV + 225.7.....  0.306av + 225.7
 with manual defrost.
17. Compact upright freezers     10.17AV + 351.9....  0.359av + 351.9
 with automatic defrost.
18. Compact chest freezers.....  9.25AV + 136.8.....  0.327av + 136.8
------------------------------------------------------------------------
AV = Total adjusted volume, expressed in ft\3\, as determined in
  appendices A and B of subpart B of this part.
av = Total adjusted volume, expressed in Liters.

    (b) Room air conditioners.

------------------------------------------------------------------------
                                 Energy efficiency     Combined energy
                                  ratio, effective    efficiency ratio,
         Product class           from Oct. 1, 2000     effective as of
                                  to May 31, 2014        June 1, 2014
------------------------------------------------------------------------
1. Without reverse cycle, with                  9.7                 11.0
 louvered sides, and less than
 6,000 Btu/h..................
2. Without reverse cycle, with                  9.7                 11.0
 louvered sides, and 6,000 to
 7,999 Btu/h..................
3. Without reverse cycle, with                  9.8                 10.9
 louvered sides, and 8,000 to
 13,999 Btu/h.................
4. Without reverse cycle, with                  9.7                 10.7
 louvered sides, and 14,000 to
 19,999 Btu/h.................
5a. Without reverse cycle,                      8.5                  9.4
 with louvered sides, and
 20,000 to 27,999 Btu/h.......
5b. Without reverse cycle,                      8.5                  9.0
 with louvered sides, and
 28,000 Btu/h or more.........
6. Without reverse cycle,                       9.0                 10.0
 without louvered sides, and
 less than 6,000 Btu/h........
7. Without reverse cycle,                       9.0                 10.0
 without louvered sides, and
 6,000 to 7,999 Btu/h.........
8a. Without reverse cycle,                      8.5                  9.6
 without louvered sides, and
 8,000 to 10,999 Btu/h........
8b. Without reverse cycle,                      8.5                  9.5
 without louvered sides, and
 11,000 to 13,999 Btu/h.......
9. Without reverse cycle,                       8.5                  9.3
 without louvered sides, and
 14,000 to 19,999 Btu/h.......
10. Without reverse cycle,                      8.5                  9.4
 without louvered sides, and
 20,000 Btu/h or more.........
11. With reverse cycle, with                    9.0                  9.8
 louvered sides, and less than
 20,000 Btu/h.................
12. With reverse cycle,                         8.5                  9.3
 without louvered sides, and
 less than 14,000 Btu/h.......
13. With reverse cycle, with                    8.5                  9.3
 louvered sides, and 20,000
 Btu/h or more................
14. With reverse cycle,                         8.0                  8.7
 without louvered sides, and
 14,000 Btu/h or more.........
15. Casement-Only.............                  8.7                  9.5
16. Casement-Slider...........                  9.5                 10.4
------------------------------------------------------------------------

    (c) Central air conditioners and heat pumps. The energy conservation 
standards defined in terms of the heating seasonal performance factor 
are based on Region IV, the minimum standardized design heating 
requirement, and the provisions of 10 CFR 429.16.
    (1) Central air conditioners and central air conditioning heat pumps 
manufactured on or after January 1, 2015,


[[Page 745]]

and before January 1, 2023, must have Seasonal Energy Efficiency Ratio 
and Heating Seasonal Performance Factor not less than:

------------------------------------------------------------------------
                                             Seasonal         Heating
                                              energy         seasonal
              Product class                 efficiency      performance
                                           ratio (SEER)    factor (HSPF)
------------------------------------------------------------------------
(i) Split systems--air conditioners.....              13
(ii) Split systems--heat pumps..........              14             8.2
(iii) Single package units--air                       14
 conditioners...........................
(iv) Single package units--heat pumps...              14             8.0
(v) Small-duct, high-velocity systems...              12             7.2
(vi)(A) Space-constrained products--air               12
 conditioners...........................
(vi)(B) Space-constrained products--heat              12             7.4
 pumps..................................
------------------------------------------------------------------------

    (2) In addition to meeting the applicable requirements in paragraph 
(c)(1) of this section, products in product class (i) of paragraph 
(c)(1) of this section (i.e., split-systems--air conditioners) that are 
installed on or after January 1, 2015, and before January 1, 2023, in 
the States of Alabama, Arkansas, Delaware, Florida, Georgia, Hawaii, 
Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, 
South Carolina, Tennessee, Texas, or Virginia, or in the District of 
Columbia, must have a Seasonal Energy Efficiency Ratio (SEER) of 14 or 
higher. Any outdoor unit model that has a certified combination with a 
rating below 14 SEER cannot be installed in these States. The least 
efficient combination of each basic model must comply with this 
standard.
    (3)(i) In addition to meeting the applicable requirements in 
paragraph (c)(1) of this section, products in product classes (i) and 
(iii) of paragraph (c)(1) of this section (i.e., split systems--air 
conditioners and single-package units--air conditioners) that are 
installed on or after January 1, 2015, and before January 1, 2023, in 
the States of Arizona, California, Nevada, or New Mexico must have a 
Seasonal Energy Efficiency Ratio (SEER) of 14 or higher and have an 
Energy Efficiency Ratio (EER) (at a standard rating of 95 [deg]F dry 
bulb outdoor temperature) not less than the following:

------------------------------------------------------------------------
                                                              Energy
                      Product class                         efficiency
                                                            ratio (EER)
------------------------------------------------------------------------
(i) Split systems--air conditioners with rated cooling              12.2
 capacity less than 45,000 Btu/hr.......................
(ii) Split systems--air conditioners with rated cooling             11.7
 capacity equal to or greater than 45,000 Btu/hr........
(iii) Single-package units--air conditioners............            11.0
------------------------------------------------------------------------

    (ii) Any outdoor unit model that has a certified combination with a 
rating below 14 SEER or the applicable EER cannot be installed in this 
region. The least-efficient combination of each basic model must comply 
with this standard.
    (4) Each basic model of single-package central air conditioners and 
central air conditioning heat pumps and each individual combination of 
split-system central air conditioners and central air conditioning heat 
pumps manufactured on or after January 1, 2015, shall have an average 
off mode electrical power consumption not more than the following:

------------------------------------------------------------------------
                                                            Average off
                                                            mode power
                      Product class                         consumption
                                                          PW,OFF (watts)
------------------------------------------------------------------------
(i) Split-system air conditioners.......................              30
(ii) Split-system heat pumps............................              33
(iii) Single-package air conditioners...................              30
(iv) Single-package heat pumps..........................              33
(v) Small-duct, high-velocity systems...................              30
(vi) Space-constrained air conditioners.................              30
(vii) Space-constrained heat pumps......................              33
------------------------------------------------------------------------

    (5) Central air conditioners and central air conditioning heat pumps 
manufactured on or after January 1, 2023, must have a Seasonal Energy 
Efficiency Ratio 2 and a Heating Seasonal Performance Factor 2 not less 
than:

------------------------------------------------------------------------
                                             Seasonal         Heating
                                              energy         seasonal
              Product class                 efficiency      performance
                                              ratio 2        factor 2
                                              (SEER2)         (HSPF2)
------------------------------------------------------------------------
(i)(A) Split systems--air conditioners              13.4
 with a certified cooling capacity less
 than 45,000 Btu/hr.....................
(i)(B) Split systems--air conditioners              13.4
 with a certified cooling capacity equal
 to or greater than 45,000 Btu/hr.......
(ii) Split systems--heat pumps..........            14.3             7.5
(iii) Single-package units--air                     13.4
 conditioners...........................
(iv) Single-package units--heat pumps...            13.4             6.7

[[Page 746]]

 
(v) Small-duct, high-velocity systems...              12             6.1
(vi)(A) Space-constrained products--air             11.7
 conditioners...........................
(vi)(B) Space-constrained products--heat            11.9             6.3
 pumps..................................
------------------------------------------------------------------------

    (6)(i) In addition to meeting the applicable requirements in 
paragraph (c)(5) of this section, products in product classes (i) and 
(iii) of paragraph (c)(5) of this section (i.e., split systems--air 
conditioners and single-package units--air conditioners) that are 
installed on or after January 1, 2023, in the southeast or southwest 
must have a Seasonal Energy Efficiency Ratio 2 and a Energy Efficiency 
Ratio 2 not less than:

----------------------------------------------------------------------------------------------------------------
                                                                    Southeast *            Southwest **
                          Product class                          -----------------------------------------------
                                                                       SEER2           SEER2         EER2 ***
----------------------------------------------------------------------------------------------------------------
(i)(A) Split-systems--air conditioners with a certified cooling             14.3            14.3        11.7/9.8
 capacity less than 45,000 Btu/hr...............................                                        [dagger]
(i)(B) Split-systems--air conditioners with a certified cooling             13.8            13.8        11.2/9.8
 capacity equal to or greater than 45,000 Btu/hr................                                  [dagger][dagge
                                                                                                              r]
(iii) Single-package units--air conditioners....................  ..............  ..............            10.6
----------------------------------------------------------------------------------------------------------------
* ``Southeast'' includes the States of Alabama, Arkansas, Delaware, Florida, Georgia, Hawaii, Kentucky,
  Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, Puerto Rico, South Carolina, Tennessee, Texas,
  Virginia, the District of Columbia, and the U.S. Territories.
** ``Southwest'' includes the States of Arizona, California, Nevada, and New Mexico.
*** EER refers to the energy efficiency ratio at a standard rating of 95 [deg]F dry bulb outdoor temperature.
[dagger] The 11.7 EER2 standard applies to products with a certified SEER2 less than 15.2. The 9.8 EER2 standard
  applies to products with a certified SEER2 greater than or equal to 15.2.
[dagger][dagger] The 11.2 EER2 standard applies to products with a certified SEER2 less than 15.2. The 9.8 EER2
  standard applies to products with a certified SEER2 greater than or equal to 15.2.

    (ii) Any outdoor unit model that has a certified combination with a 
rating below the applicable standard level(s) for a region cannot be 
installed in that region. The least-efficient combination of each basic 
model must comply with this standard.
    (d) Water heaters. The uniform energy factor of water heaters shall 
not be less than the following:

----------------------------------------------------------------------------------------------------------------
                                   Rated storage volume
          Product class               and input rating       Draw pattern            Uniform energy factor
                                      (if applicable)
----------------------------------------------------------------------------------------------------------------
Gas-fired Storage Water Heater...  =20 gal    Very Small..........  0.3456 - (0.0020 x Vr)
                                    and <=55 gal.
                                                         Low.................  0.5982 - (0.0019 x Vr)
                                                         Medium..............  0.6483 - (0.0017 x Vr)
                                                         High................  0.6920 - (0.0013 x Vr)
                                   55 gal     Very Small..........  0.6470 - (0.0006 x Vr)
                                    and <=100 gal.
                                                         Low.................  0.7689 - (0.0005 x Vr)
                                                         Medium..............  0.7897 - (0.0004 x Vr)
                                                         High................  0.8072 - (0.0003 x Vr)
Oil-fired Storage Water Heater...  <=50 gal............  Very Small..........  0.2509 - (0.0012 x Vr)
                                                         Low.................  0.5330 - (0.0016 x Vr)
                                                         Medium..............  0.6078 - (0.0016 x Vr)
                                                         High................  0.6815 - (0.0014 x Vr)
Electric Storage Water Heaters...  =20 gal    Very Small..........  0.8808 - (0.0008 x Vr)
                                    and <=55 gal.
                                                         Low.................  0.9254 - (0.0003 x Vr)
                                                         Medium..............  0.9307 - (0.0002 x Vr)
                                                         High................  0.9349 - (0.0001 x Vr)
                                   55 gal     Very Small..........  1.9236 - (0.0011 x Vr)
                                    and <=120 gal.
                                                         Low.................  2.0440 - (0.0011 x Vr)
                                                         Medium..............  2.1171 - (0.0011 x Vr)
                                                         High................  2.2418 - (0.0011 x Vr)
Tabletop Water Heater............  =20 gal    Very Small..........  0.6323 - (0.0058 x Vr)
                                    and <=120 gal.
                                                         Low.................  0.9188 - (0.0031 x Vr)
                                                         Medium..............  0.9577 - (0.0023 x Vr)
                                                         High................  0.9884 - (0.0016 x Vr)
Instantaneous Gas-fired Water      <2 gal and 50,000 Btu/h.     Low.................  0.81
                                                         Medium..............  0.81
                                                         High................  0.81
Instantaneous Electric Water       <2 gal..............  Very Small..........  0.91
 Heater.

[[Page 747]]

 
                                                         Low.................  0.91
                                                         Medium..............  0.91
                                                         High................  0.92
Grid-Enabled Water Heater........  75 gal...  Very Small..........  1.0136 - (0.0028 x Vr)
                                                         Low.................  0.9984 - (0.0014 x Vr)
                                                         Medium..............  0.9853 - (0.0010 x Vr)
                                                         High................  0.9720 - (0.0007 x Vr)
----------------------------------------------------------------------------------------------------------------
* Vr is the Rated Storage Volume (in gallons), as determined pursuant to 10 CFR 429.17.

    (e) Furnaces and boilers--(1) Furnaces. (i) The Annual Fuel 
Utilization Efficiency (AFUE) of residential furnaces shall not be less 
than the following for non-weatherized gas furnaces manufactured before 
November 19, 2015, non-weatherized oil furnaces manufactured before May 
1, 2013, and weatherized furnaces manufactured before January 1, 2015:

------------------------------------------------------------------------
                                                          AFUE (percent)
                      Product class                             \1\
------------------------------------------------------------------------
(A) Furnaces (excluding classes noted below)............              78
(B) Mobile Home furnaces................................              75
(C) Small furnaces (other than those designed solely for
 installation in mobile homes) having an input rate of
 less than 45,000 Btu/hr................................
(1) Weatherized (outdoor)...............................              78
(2) Non-weatherized (indoor)............................              78
------------------------------------------------------------------------
\1\ Annual Fuel Utilization Efficiency, as determined in Sec.
  430.23(n)(2) of this part.

    (ii) The AFUE of residential furnaces shall not be less than the 
following starting on the compliance date indicated in the table below:

------------------------------------------------------------------------
                              AFUE (percent)
        Product class               \1\             Compliance date
------------------------------------------------------------------------
(A) Non-weatherized gas                   80  November 19, 2015.
 furnaces (not including
 mobile home furnaces).
(B) Mobile Home gas furnaces              80  November 19, 2015.
(C) Non-weatherized oil-                  83  May 1, 2013.
 fired furnaces (not
 including mobile home
 furnaces).
(D) Mobile Home oil-fired                 75  September 1, 1990.
 furnaces.
(E) Weatherized gas furnaces              81  January 1, 2015.
(F) Weatherized oil-fired                 78  January 1, 1992.
 furnaces.
(G) Electric furnaces.......              78  January 1, 1992.
------------------------------------------------------------------------
\1\ Annual Fuel Utilization Efficiency, as determined in Sec.
  430.23(n)(2) of this part.

    (iii) Furnaces manufactured on or after May 1, 2013, shall have an 
electrical standby mode power consumption (PW,SB) and 
electrical off mode power consumption (PW,OFF) not more than 
the following:

----------------------------------------------------------------------------------------------------------------
                                                                  Maximum standby mode       Maximum off mode
                                                                    electrical power         electrical power
                         Product class                             consumption, PW,SB      consumption, PW,OFF
                                                                        (watts)                  (watts)
----------------------------------------------------------------------------------------------------------------
(A) Non-weatherized oil-fired furnaces (including mobile home                        11                       11
 furnaces)....................................................
(B) Electric furnaces.........................................                       10                       10
----------------------------------------------------------------------------------------------------------------

    (2) Boilers. (i) The AFUE of residential boilers manufactured before 
September 1, 2012, shall not be less than the following:

------------------------------------------------------------------------
                                                               AFUE \1\
                        Product class                          (percent)
------------------------------------------------------------------------
(A) Boilers (excluding gas steam)...........................          80
(B) Gas steam boilers.......................................          75
------------------------------------------------------------------------
\1\ Annual Fuel Utilization Efficiency, as determined in Sec.
  430.22(n)(2) of this part.


[[Page 748]]

    (ii) Except as provided in paragraph (e)(2)(iv) of this section, the 
AFUE of residential boilers, manufactured on or after September 1, 2012, 
and before January 15, 2021, shall not be less than the following and 
must comply with the design requirements as follows:

------------------------------------------------------------------------
                                       AFUE \1\
            Product class             (percent)    Design requirements
------------------------------------------------------------------------
(A) Gas-fired hot water boiler......         82  Constant burning pilot
                                                  not permitted.
                                                 Automatic means for
                                                  adjusting water
                                                  temperature required
                                                  (except for boilers
                                                  equipped with tankless
                                                  domestic water heating
                                                  coils).
(B) Gas-fired steam boiler..........         80  Constant burning pilot
                                                  not permitted.
(C) Oil-fired hot water boiler......         84  Automatic means for
                                                  adjusting temperature
                                                  required (except for
                                                  boilers equipped with
                                                  tankless domestic
                                                  water heating coils).
(D) Oil-fired steam boiler..........         82  None.
(E) Electric hot water boiler.......       None  Automatic means for
                                                  adjusting temperature
                                                  required (except for
                                                  boilers equipped with
                                                  tankless domestic
                                                  water heating coils).
------------------------------------------------------------------------
\1\ Annual Fuel Utilization Efficiency, as determined in Sec.
  430.22(n)(2) of this part.

    (iii)(A) Except as provided in paragraph (e)(2)(v) of this section, 
the AFUE of residential boilers, manufactured on and after January 15, 
2021, shall not be less than the following and must comply with the 
design requirements as follows:

------------------------------------------------------------------------
                                    AFUE \1\
         Product class              (percent)      Design requirements
------------------------------------------------------------------------
(1) Gas-fired hot water boiler.              84  Constant-burning pilot
                                                  not permitted.
                                                  Automatic means for
                                                  adjusting water
                                                  temperature required
                                                  (except for boilers
                                                  equipped with tankless
                                                  domestic water heating
                                                  coils).
(2) Gas-fired steam boiler.....              82  Constant-burning pilot
                                                  not permitted.
(3) Oil-fired hot water boiler.              86  Automatic means for
                                                  adjusting temperature
                                                  required (except for
                                                  boilers equipped with
                                                  tankless domestic
                                                  water heating coils).
(4) Oil-fired steam boiler.....              85  None.
(5) Electric hot water boiler..            None  Automatic means for
                                                  adjusting temperature
                                                  required (except for
                                                  boilers equipped with
                                                  tankless domestic
                                                  water heating coils).
(6) Electric steam boiler......            None  None.
------------------------------------------------------------------------
\1\ Annual Fuel Utilization Efficiency, as determined in Sec.
  430.23(n)(2) of this part.

    (B) Except as provided in paragraph (e)(2)(v) of this section, the 
standby mode power consumption (PW,SB) and off mode power 
consumption (PW,OFF) of residential boilers, manufactured on 
and after January 15, 2021, shall not be more than the following:

------------------------------------------------------------------------
                                        PW,SB (watts)    PW,OFF (watts)
            Product class
------------------------------------------------------------------------
(1) Gas-fired hot water boiler......                 9                 9
(2) Gas-fired steam boiler..........                 8                 8
(3) Oil-fired hot water boiler......                11                11
(4) Oil-fired steam boiler..........                11                11
(5) Electric hot water boiler.......                 8                 8
(6) Electric steam boiler...........                 8                 8
------------------------------------------------------------------------

    (iv) Automatic means for adjusting water temperature. (A) The 
automatic means for adjusting water temperature as required under 
paragraph (e)(2)(ii) of this section must automatically adjust the 
temperature of the water supplied by the boiler to ensure that an 
incremental change in inferred heat load produces a corresponding 
incremental change in the temperature of water supplied.
    (B) For boilers that fire at a single input rate, the automatic 
means for adjusting water temperature requirement may be satisfied by 
providing an automatic means that allows the burner or heating element 
to fire only when the means has determined that the inferred heat load 
cannot be met by the residual heat of the water in the system.
    (C) When there is no inferred heat load with respect to a hot water 
boiler, the automatic means described in this paragraph shall limit the 
temperature of the water in the boiler to not more than 140 degrees 
Fahrenheit.

[[Page 749]]

    (D) A boiler for which an automatic means for adjusting water 
temperature is required shall be operable only when the automatic means 
is installed.
    (v) A boiler that is manufactured to operate without any need for 
electricity or any electric connection, electric gauges, electric pumps, 
electric wires, or electric devices is not required to meet the AFUE or 
design requirements applicable to the boiler requirements of paragraph 
(e)(2)(ii) of this section, but must meet the requirements of paragraph 
(e)(2)(i) of this section, as applicable.
    (f) Dishwashers. (1) All dishwashers manufactured on or after May 
30, 2013, shall meet the following standard--
    (i) Standard size dishwashers shall not exceed 307 kwh/year and 5.0 
gallons per cycle. Standard size dishwashers have a capacity equal to or 
greater than eight place settings plus six serving pieces as specified 
in ANSI/AHAM DW-1-2010 (incorporated by reference, see Sec.  430.3) 
using the test load specified in section 2.7 of appendix C1 in subpart B 
of this part.
    (ii) Compact size dishwashers shall not exceed 222 kwh/year and 3.5 
gallons per cycle. Compact size dishwashers have a capacity less than 
eight place settings plus six serving pieces as specified in ANSI/AHAM 
DW-1-2010 (incorporated by reference, see Sec.  430.3) using the test 
load specified in section 2.7 of appendix C1 in subpart B of this part.
    (iii) Standard size dishwashers with a ``normal cycle'', as defined 
in section 1.12 of appendix C1 in subpart B of this part, of 60 minutes 
or less are not currently subject to energy or water conservation 
standards. Standard size dishwashers have a capacity equal to or greater 
than eight place settings plus six serving pieces as specified in ANSI/
AHAM DW-1-2010 (incorporated by reference, see Sec.  430.3) using the 
test load specified in section 2.7 of appendix C1 in subpart B of this 
part.
    (2) [Reserved]
    (g) Clothes washers. (1) Clothes washers manufactured on or after 
January 1, 2007 shall have a Modified Energy Factor no less than:

------------------------------------------------------------------------
                                               Modified energy factor
              Product class                      (cu.ft./kWh/cycle)
------------------------------------------------------------------------
i. Top-loading, Compact (less than 1.6     0.65.
 ft\3\ capacity).
ii. Top-loading, Standard (1.6 ft\3\ or    1.26.
 greater capacity).
iii. Top-Loading, Semi-Automatic.........  Not Applicable.\1\
iv. Front-loading........................  1.26.
v. Suds-saving...........................  Not Applicable.\1\
------------------------------------------------------------------------
\1\ Must have an unheated rinse water option.

    (2) All top-loading or front-loading standard-size residential 
clothes washers manufactured on or after January 1, 2011, and before 
March 7, 2015, shall meet the following standard--
    (i) A Modified Energy Factor of at least 1.26; and
    (ii) A Water Factor of not more than 9.5.
    (3) Clothes washers manufactured on or after March 7, 2015, and 
before January 1, 2018, shall have an Integrated Modified Energy Factor 
no less than, and an Integrated Water Factor no greater than:

------------------------------------------------------------------------
                               Integrated modified    Integrated water
        Product class             energy factor      factor (gal/cycle/
                               (cu.ft./kWh/cycle)          cu.ft.)
------------------------------------------------------------------------
i. Top-loading, Compact                       0.86                  14.4
 (less than 1.6 ft\3\
 capacity)..................
ii. Top-loading, Standard                     1.29                   8.4
 (1.6 ft\3\ or greater
 capacity)..................
iii. Front-loading, Compact                   1.13                   8.3
 (less than 1.6 ft\3\
 capacity)..................
iv. Front-loading, Standard                   1.84                   4.7
 (1.6 ft\3\ or greater
 capacity)..................
------------------------------------------------------------------------

    (4) Clothes washers manufactured on or after January 1, 2018 shall 
have an Integrated Modified Energy Factor no less than, and an 
Integrated Water Factor no greater than:

------------------------------------------------------------------------
                               Integrated modified    Integrated water
        Product class             energy factor      factor (gal/cycle/
                               (cu.ft./kWh/cycle)          cu.ft.)
------------------------------------------------------------------------
i. Top-loading, Compact                       1.15                  12.0
 (less than 1.6 ft\3\
 capacity)..................
ii. Top-loading, Standard                     1.57                   6.5
 (1.6 ft\3\ or greater
 capacity)..................
iii. Front-loading, Compact                   1.13                   8.3
 (less than 1.6 ft\3\
 capacity)..................

[[Page 750]]

 
iv. Front-loading, Standard                   1.84                   4.7
 (1.6 ft\3\ or greater
 capacity)..................
------------------------------------------------------------------------

    (h) Clothes dryers. (1) Gas clothes dryers manufactured after 
January 1, 1988 shall not be equipped with a constant burning pilot.
    (2) Clothes dryers manufactured on or after May 14, 1994 and before 
January 1, 2015, shall have an energy factor no less than:

------------------------------------------------------------------------
                                                                Energy
                       Product class                         factor (lbs/
                                                                 kWh)
------------------------------------------------------------------------
i. Electric, Standard (4.4 ft\3\ or greater capacity)......         3.01
ii. Electric, Compact (120V) (less than 4.4 ft\3\ capacity)         3.13
iii. Electric, Compact (240V) (less than 4.4 ft\3\                  2.90
 capacity).................................................
iv. Gas....................................................         2.67
------------------------------------------------------------------------

    (3) Clothes dryers manufactured on or after January 1, 2015, shall 
have a combined energy factor no less than:

------------------------------------------------------------------------
                                                               Combined
                                                                energy
                       Product class                         factor (lbs/
                                                                 kWh)
------------------------------------------------------------------------
i. Vented Electric, Standard (4.4 ft\3\ or greater                  3.73
 capacity).................................................
ii. Vented Electric, Compact (120V) (less than 4.4 ft\3\            3.61
 capacity).................................................
iii. Vented Electric, Compact (240V) (less than 4.4 ft\3\           3.27
 capacity).................................................
iv. Vented Gas.............................................         3.30
v. Ventless Electric, Compact (240V) (less than 4.4 ft\3\           2.55
 capacity).................................................
vi. Ventless Electric, Combination Washer-Dryer............         2.08
------------------------------------------------------------------------

    (i) Direct heating equipment. (1) Vented home heating equipment 
manufactured on or after January 1, 1990 and before April 16, 2013, 
shall have an annual fuel utilization efficiency no less than:

------------------------------------------------------------------------
                                                 Annual fuel utilization
                 Product class                     efficiency, Jan. 1,
                                                      1990 (percent)
------------------------------------------------------------------------
1. Gas wall fan type up to 42,000 Btu/h........                       73
2. Gas wall fan type over 42,000 Btu/h.........                       74
3. Gas wall gravity type up to 10,000 Btu/h....                       59
4. Gas wall gravity type over 10,000 Btu/h up                         60
 to 12, 000 Btu/h..............................
5. Gas wall gravity type over 12,000 Btu/h up                         61
 to 15,000 Btu/h...............................
6. Gas wall gravity type over 15,000 Btu/h up                         62
 to 19,000 Btu/h...............................
7. Gas wall gravity type over 19,000 Btu/h and                        63
 up to 27,000 Btu/h............................
8. Gas wall gravity type over 27,000 Btu/h and                        64
 up to 46,000 Btu/h............................
9. Gas wall gravity type over 46,000 Btu/h.....                       65
10. Gas floor up to 37,000 Btu/h...............                       56
11. Gas floor over 37,000 Btu/h................                       57
12. Gas room up to 18,000 Btu/h................                       57
13. Gas room over 18,000 Btu/h up to 20,000 Btu/                      58
 h.............................................
14. Gas room over 20,000 Btu/h up to 27,000 Btu/                      63
 h.............................................
15. Gas room over 27,000 Btu/h up to 46,000 Btu/                      64
 h.............................................
16. Gas room over 46,000 Btu/h.................                       65
------------------------------------------------------------------------

    (2) Vented home heating equipment manufactured on or after April 16, 
2013, shall have an annual fuel utilization efficiency no less than:

------------------------------------------------------------------------
                                                 Annual fuel utilization
                 Product class                    efficiency, April 16,
                                                      2013 (percent)
------------------------------------------------------------------------
Gas wall fan type up to 42,000 Btu/h...........                       75
Gas wall fan type over 42,000 Btu/h............                       76
Gas wall gravity type up to 27,000 Btu/h.......                       65
Gas wall gravity type over 27,000 Btu/h up to                         66
 46,000 Btu/h..................................
Gas wall gravity type over 46,000 Btu/h........                       67
Gas floor up to 37,000 Btu/h...................                       57
Gas floor over 37,000 Btu/h....................                       58
Gas room up to 20,000 Btu/h....................                       61
Gas room over 20,000 Btu/h up to 27,000 Btu/h..                       66
Gas room over 27,000 Btu/h up to 46,000 Btu/h..                       67

[[Page 751]]

 
Gas room over 46,000 Btu/h.....................                       68
------------------------------------------------------------------------

    (j) Cooking Products (1) Gas cooking products with an electrical 
supply cord manufactured on or after January 1, 1990, shall not be 
equipped with a constant burning pilot light.
    (2) Gas cooking products without an electrical supply cord 
manufactured on or after April 9, 2012, shall not be equipped with a 
constant burning pilot light.
    (3) Microwave-only ovens and countertop convection microwave ovens 
manufactured on or after June 17, 2016 shall have an average standby 
power not more than 1.0 watt. Built-in and over-the-range convection 
microwave ovens manufactured on or after June 17, 2016 shall have an 
average standby power not more than 2.2 watts.
    (k) Pool heaters. (1) Gas-fired pool heaters manufactured on or 
after January 1, 1990 and before April 16, 2013, shall have a thermal 
efficiency not less than 78%.
    (2) Gas-fired pool heaters manufactured on or after April 16, 2013, 
shall have a thermal efficiency not less than 82%.
    (l) Television sets. [Reserved]
    (m) Fluorescent lamp ballasts--(1) Standards for fluorescent lamp 
ballasts (other than dimming ballasts). Except as provided in paragraphs 
(m)(2) and (3) of this section, each fluorescent lamp ballast 
manufactured on or after November 14, 2014,
    (i) Designed and marketed--
    (A) To operate at nominal input voltages at or between 120 and 277 
volts;
    (B) To operate with an input current frequency of 60 Hertz; and
    (C) For use in connection with fluorescent lamps (as defined in 
Sec.  430.2)
    (ii) Must have--
    (A) A power factor of:
    (1) 0.9 or greater for ballasts that are not residential ballasts; 
or
    (2) 0.5 or greater for residential ballasts; and
    (B) A ballast luminous efficiency not less than the following:

------------------------------------------------------------------------
BLE = A/(1 + B x average total lamp arc power [supcaret] -C) Where A, B,
                          and C are as follows:
-------------------------------------------------------------------------
              Description                    A          B          C
------------------------------------------------------------------------
Instant start and rapid start ballasts
 (not classified as residential
 ballasts) that are designed and
 marketed to operate:
    4-foot medium bipin lamps;.........      0.993       0.27       0.25
    2-foot U-shaped lamps; or
    8-foot slimline lamps.
Programmed start ballasts (not
 classified as residential ballasts)
 that are designed and marketed to
 operate:
    4-foot medium bipin lamps;.........      0.993       0.51       0.37
    2-foot U-shaped lamps;
    4-foot miniature bipin standard
     output lamps; or
    4-foot miniature bipin high output
     lamps.
Instant start and rapid start ballasts       0.993       0.38       0.25
 (not classified as sign ballasts) that
 are designed and marketed to operate 8-
 foot high output lamps................
Programmed start ballasts (not               0.973       0.70       0.37
 classified as sign ballasts) that are
 designed and marketed to operate 8-
 foot high output lamps................
Sign ballasts that are designed and          0.993       0.47       0.25
 marketed to operate 8-foot high output
 lamps.................................
Instant start and rapid start
 residential ballasts that are designed
 and marketed to operate:
    4-foot medium bipin lamps;.........      0.993       0.41       0.25
    2-foot U-shaped lamps; or
    8-foot slimline lamps.
Programmed start residential ballasts
 that are designed and marketed to
 operate:
    4-foot medium bipin lamps or.......      0.973       0.71       0.37
    2-foot U-shaped lamps.
------------------------------------------------------------------------

    (2) Standards for certain dimming ballasts. Except as provided in 
paragraph (m)(3) of this section, each dimming

[[Page 752]]

ballast manufactured on or after November 14, 2014; designed and 
marketed to operate one F34T12, two F34T12, two F96T12/ES, or two 
F96T12HO/ES lamps; and
    (i) Designed and marketed--
    (A) To operate at nominal input voltages at or between 120 and 277 
volts;
    (B) To operate with an input current frequency of 60 Hertz; and
    (C) For use in connection with fluorescent lamps (as defined in 
Sec.  430.2)
    (ii) Must have--
    (A) A power factor of:
    (1) 0.9 or greater for ballasts that are not residential ballasts; 
or
    (2) 0.5 or greater for residential ballasts; and
    (B) A ballast luminous efficiency not less than the following:

----------------------------------------------------------------------------------------------------------------
                                                                                 Ballast luminous efficiency
 Designed and marketed for operation    Nominal input      Total nominal   -------------------------------------
           of a maximum of                 voltage           lamp watts       Low frequency      High frequency
                                                                                 ballasts           ballasts
----------------------------------------------------------------------------------------------------------------
One F34T12 lamp.....................            120/277                 34              0.777              0.778
Two F34T12 lamps....................            120/277                 68              0.804              0.805
Two F96T12/ES lamps.................            120/277                120              0.876              0.884
Two F96T12HO/ES lamps...............            120/277                190              0.711              0.713
----------------------------------------------------------------------------------------------------------------

    (3) Exemptions. The power factor and ballast luminous efficiency 
standards described in paragraph (m)(1)(ii) and (m)(2)(ii) of this 
section do not apply to:
    (i) A dimming ballast designed and marketed to operate exclusively 
lamp types other than one F34T12, two F34T12, two F96T12/ES, or two 
F96T12HO/ES lamps;
    (ii) A low frequency ballast that is designed and marketed to 
operate T8 diameter lamps; is designed and marketed for use in 
electromagnetic-interference-sensitive-environments only; and is shipped 
by the manufacturer in packages containing 10 or fewer ballasts; or
    (iii) A programmed start ballast that operates 4-foot medium bipin 
T8 lamps and delivers on average less than 140 milliamperes to each 
lamp.
    (4) For the purposes of this paragraph (m), the definitions found in 
appendix Q of subpart B of this part apply.
    (n) General service fluorescent lamps and incandescent reflector 
lamps. (1) Except as provided in paragraphs (n)(2), (n)(3), and (n)(4) 
of this section, each of the following general service fluorescent lamps 
manufactured after the effective dates specified in the table shall meet 
or exceed the following lamp efficacy and CRI standards:

----------------------------------------------------------------------------------------------------------------
                                             Nominal                     Minimum
                Lamp type                      lamp     Minimum CRI   average lamp          Effective date
                                             wattage                  efficacy lm/W
----------------------------------------------------------------------------------------------------------------
4-foot medium bipin......................             69            75.0  Nov. 1, 1995.
                                                  35 W           45            75.0  Nov. 1, 1995.
                                                <=35 W
2-foot U-shaped..........................             69            68.0  Nov. 1, 1995.
                                                  35 W           45            64.0  Nov. 1, 1995.
                                               <= 35 W
8-foot slimline..........................             69            80.0  May 1, 1994.
                                                  65 W           45            80.0  May 1, 1994.
                                                <=65 W
8-foot high output.......................             69            80.0  May 1, 1994.
                                                 100 W           45            80.0  May 1, 1994.
                                               <=100 W
----------------------------------------------------------------------------------------------------------------

    (2) The standards described in paragraph (n)(1) of this section do 
not apply to:
    (i) Any 4-foot medium bipin lamp or 2-foot U-shaped lamp with a 
rated wattage less than 28 watts;
    (ii) Any 8-foot high output lamp not defined in ANSI C78.81 
(incorporated by reference; see Sec.  430.3) or related supplements, or 
not 0.800 nominal amperes; or
    (iii) Any 8-foot slimline lamp not defined in ANSI C78.3 
(incorporated by reference; see Sec.  430.3).

[[Page 753]]

    (3) Except as provided in paragraph (n)(4) of this section, each of 
the following general service fluorescent lamps manufactured after July 
14, 2012, shall meet or exceed the following lamp efficacy standards 
shown in the table:

------------------------------------------------------------------------
                                                         Minimum average
            Lamp type               Correlated color    lamp efficacy lm/
                                       temperature              W
------------------------------------------------------------------------
4-foot medium bipin.............  <=4,500K............                89
                                  4,500K                   88
                                   and <=7,000K.
2-foot U-shaped.................  <=4,500K............                84
                                  4,500K                   81
                                   and <=7,000K.
8-foot slimline.................  <=4,500K............                97
                                  4,500K                   93
                                   and <=7,000K.
8-foot high output..............  <=4,500K............                92
                                  4,500K                   88
                                   and <=7,000K.
4-foot miniature bipin standard   <=4,500K............                86
 output.                          4,500K                   81
                                   and <=7,000K.
4-foot miniature bipin high       <=4,500K............                76
 output.                          4,500K                   72
                                   and <=7,000K.
------------------------------------------------------------------------

    (4) Each of the following general service fluorescent lamps 
manufactured on or after January 26, 2018, shall meet or exceed the 
following lamp efficacy standards shown in the table:

------------------------------------------------------------------------
                                                         Minimum average
            Lamp type               Correlated color    lamp efficacy lm/
                                       temperature              W
------------------------------------------------------------------------
4-foot medium bipin.............  <=4,500K............              92.4
                                  4,500K                 88.7
                                   and <=7,000K.
2-foot U-shaped.................  <=4,500K............              85.0
                                  4,500K                 83.3
                                   and <=7,000K.
8-foot slimline.................  <=4,500K............              97.0
                                  4,500K                 93.0
                                   and <=7,000K.
8-foot high output..............  <=4,500K............              92.0
                                  4,500K                 88.0
                                   and <=7,000K.
4-foot miniature bipin standard   <=4,500K............              95.0
 output.                          4,500K                 89.3
                                   and <=7,000K.
4-foot miniature bipin high       <=4,500K............              82.7
 output.                          4,500K                 76.9
                                   and <=7,000K.
------------------------------------------------------------------------

    (5) Except as provided in paragraph (n)(6) of this section, each of 
the following incandescent reflector lamps manufactured after November 
1, 1995, shall meet or exceed the lamp efficacy standards shown in the 
table:

------------------------------------------------------------------------
                                                         Minimum average
                 Nominal lamp wattage                   lamp efficacy lm/
                                                                W
------------------------------------------------------------------------
40-50.................................................              10.5
51-66.................................................              11.0
67-85.................................................              12.5
86-115................................................              14.0
116-155...............................................              14.5
156-205...............................................              15.0
------------------------------------------------------------------------

    (6) Each of the following incandescent reflector lamps manufactured 
after July 14, 2012, shall meet or exceed the lamp efficacy standards 
shown in the table:

----------------------------------------------------------------------------------------------------------------
                                                                                                      Minimum
          Rated lamp wattage                  Lamp spectrum        Lamp diameter   Rated voltage   average lamp
                                                                      inches                       efficacy lm/W
----------------------------------------------------------------------------------------------------------------
40-205................................  Standard Spectrum.......  2.5  =12     6.8*P\0.27\
                                                                                             5 V     5.9*P\0.27\
                                                                                          <125 V
                                                                           <=2.5  =12     5.7*P\0.27\
                                                                                             5 V     5.0*P\0.27\
                                                                                          <125 V

[[Page 754]]

 
40-205................................  Modified Spectrum.......  2.5  =12     5.8*P\0.27\
                                                                                             5 V     5.0*P\0.27\
                                                                                          <125 V
                                                                           <=2.5  =12     4.9*P\0.27\
                                                                                             5 V     4.2*P\0.27\
                                                                                          <125 V
----------------------------------------------------------------------------------------------------------------
Note 1: P is equal to the rated lamp wattage, in watts.
Note 2: Standard Spectrum means any incandescent reflector lamp that does not meet the definition of modified
  spectrum in 430.2.

    (7)(i)(A) Subject to the exclusions in paragraph (n)(7)(ii) of this 
section, the standards specified in this section shall apply to ER 
incandescent reflector lamps, BR incandescent reflector lamps, BPAR 
incandescent reflector lamps, and similar bulb shapes on and after 
January 1, 2008.
    (B) Subject to the exclusions in paragraph (n)(7)(ii) of this 
section, the standards specified in this section shall apply to 
incandescent reflector lamps with a diameter of more than 2.25 inches, 
but not more than 2.75 inches, on and after June 15, 2008.
    (ii) The standards specified in this section shall not apply to the 
following types of incandescent reflector lamps:
    (A) Lamps rated at 50 watts or less that are ER30, BR30, BR40, or 
ER40 lamps;
    (B) Lamps rated at 65 watts that are BR30, BR40, or ER40 lamps; or
    (C) R20 incandescent reflector lamps rated 45 watts or less.
    (o) Faucets. The maximum water use allowed for any of the following 
faucets manufactured after January 1, 1994, when measured at a flowing 
water pressure of 60 pounds per square inch (414 kilopascals), shall be 
as follows:

------------------------------------------------------------------------
                                      Maximum flow rate (gpm (L/min)) or
            Faucet type                     (gal/cycle (L/cycle))
------------------------------------------------------------------------
Lavatory faucets...................  2.2 gpm (8.3 L/min) \1 2\
Lavatory replacement aerators......  2.2 gpm (8.3 L/min)
Kitchen faucets....................  2.2 gpm (8.3 L/min)
Kitchen replacement aerators.......  2.2 gpm (8.3 L/min)
Metering faucets...................  0.25 gal/cycle (0.95 L/cycle) \3 4\
------------------------------------------------------------------------
Note:
\1\ Sprayheads with independently-controlled orifices and manual
  controls.
The maximum flow rate of each orifice that manually turns on or off
  shall not exceed the maximum flow rate for a lavatory faucet.
\2\ Sprayheads with collectively controlled orifices and manual
  controls.
The maximum flow rate of a sprayhead that manually turns on or off shall
  be the product of (a) the maximum flow rate for a lavatory faucet and
  (b) the number of component lavatories (rim space of the lavatory in
  inches (millimeters) divided by 20 inches (508 millimeters)).
\3\ Sprayheads with independently controlled orifices and metered
  controls.
The maximum flow rate of each orifice that delivers a pre-set volume of
  water before gradually shutting itself off shall not exceed the
  maximum flow rate for a metering faucet.
\4\ Sprayheads with collectively-controlled orifices and metered
  controls.
The maximum flow rate of a sprayhead that delivers a pre-set volume of
  water before gradually shutting itself off shall be the product of (a)
  the maximum flow rate for a metering faucet and (b) the number of
  component lavatories (rim space of the lavatory in inches
  (millimeters) divided by 20 inches (508 millimeters)).

    (p) Showerheads. The maximum water use allowed for any showerheads 
manufactured after January 1, 1994, shall be 2.5 gallons per minute (9.5 
liters per minute) when measured at a flowing pressure of 80 pounds per 
square inch gage (552 kilopascals). When used as a component of any such 
showerhead, the flow-restricting insert shall be mechanically retained 
at the point of manufacture such that a force of 8.0 pounds force (36 
Newtons) or more is required to remove the flow-restricting insert, 
except that this requirement shall not apply to showerheads for which 
removal of the flow-restricting insert would cause water to leak 
significantly from areas other than the spray face.
    (q) Water closets. (1) The maximum water use allowed in gallons per 
flush for any of the following water closets manufactured after January 
1, 1994, shall be as follows:

------------------------------------------------------------------------
                                                           Maximum flush
                    Water closet type                        rate (gpf
                                                              (Lpf))
------------------------------------------------------------------------
Gravity tank-type toilets...............................       1.6 (6.0)
Flushometer tank toilets................................       1.6 (6.0)
Electromechanical hydraulic toilets.....................       1.6 (6.0)
Blowout toilets.........................................      3.5 (13.2)
------------------------------------------------------------------------

    (2) The maximum water use allowed for flushometer valve toilets, 
other than blowout toilets, manufactured

[[Page 755]]

after January 1, 1997, shall be 1.6 gallons per flush (6.0 liters per 
flush).
    (r) Urinals. The maximum water use allowed for any urinals 
manufactured after January 1, 1994, shall be 1.0 gallons per flush (3.8 
liters per flush). The maximum water use allowed for a trough-type 
urinal shall be the product of:
    (1) The maximum flow rate for a urinal and
    (2) The length of the trough-type urinal in inches (millimeter) 
divided by 16 inches (406 millimeters).
    (s) Ceiling fans and ceiling fan light kits. (1) All ceiling fans 
manufactured on or after January 1, 2007, shall have the following 
features:
    (i) Fan speed controls separate from any lighting controls;
    (ii) Adjustable speed controls (either more than 1 speed or variable 
speed);
    (iii) The capability of reversible fan action, except for--
    (A) Fans sold for industrial applications;
    (B) Fans sold for outdoor applications; and
    (C) Cases in which safety standards would be violated by the use of 
the reversible mode.
    (2)(i) Ceiling fans manufactured on or after January 21, 2020 shall 
meet the requirements shown in the table:

------------------------------------------------------------------------
                                              Minimum efficiency (CFM/
  Product class as defined in Appendix U                W)\1\
------------------------------------------------------------------------
Very small-diameter (VSD).................  D <= 12 in.: 21
                                            D  12 in.: 3.16 D
                                             -17.04
Standard..................................  0.65 D + 38.03
Hugger....................................  0.29 D + 34.46
High-speed small-diameter (HSSD)..........  4.16 D + 0.02
Large-diameter............................  0.91 D-30.00
------------------------------------------------------------------------
\1\ D is the ceiling fan's blade span, in inches, as determined in
  Appendix U of this part.

    (ii) The provisions in this appendix apply to ceiling fans except:
    (A) Ceiling fans where the plane of rotation of a ceiling fan's 
blades is not less than or equal to 45 degrees from horizontal, or 
cannot be adjusted based on the manufacturer's specifications to be less 
than or equal to 45 degrees from horizontal;
    (B) Centrifugal ceiling fans, as defined in Appendix U of this part;
    (C) Belt-driven ceiling fans, as defined in Appendix U of this part;
    (D) Oscillating ceiling fans, as defined in Appendix U of this part; 
and
    (E) Highly-decorative ceiling fans, as defined in Appendix U of this 
part.
    (3) Ceiling fan light kits manufactured on or after January 1, 2007, 
and prior to January 21, 2020, with medium screw base sockets must be 
packaged with medium screw base lamps to fill all sockets. These medium 
screw base lamps must--
    (i) Be compact fluorescent lamps that meet or exceed the following 
requirements or be as described in paragraph (s)(3)(ii) of this section:

------------------------------------------------------------------------
                  Factor                            Requirements
------------------------------------------------------------------------
Rated Wattage (Watts) & Configuration \1\.  Minimum Initial Lamp
                                             Efficacy (lumens per watt)
                                             \2\
Bare Lamp:
    Lamp Power <15........................  45.0
    Lamp Power =15.............  60.0
Covered Lamp (no reflector):
    Lamp Power <15........................  40.0
    15<=Lamp Power <19....................  48.0
    19<=Lamp Power <25....................  50.0
    Lamp Power =25.............  55.0
With Reflector:
    Lamp Power <20........................  33.0
    Lamp Power =20.............  40.0
Lumen Maintenance at 1,000 hours..........  = 90.0%
Lumen Maintenance at 40 Percent of          = 80.0%
 Lifetime.
Rapid Cycle Stress Test...................  Each lamp must be cycled
                                             once for every 2 hours of
                                             lifetime. At least 5 lamps
                                             must meet or exceed the
                                             minimum number of cycles.
Lifetime..................................  = 6,000 hours for
                                             the sample of lamps.
------------------------------------------------------------------------
\1\ Use rated wattage to determine the appropriate minimum efficacy
  requirements in this table.
\2\ Calculate efficacy using measured wattage, rather than rated
  wattage, and measured lumens to determine product compliance. Wattage
  and lumen values indicated on products or packaging may not be used in
  calculation.

    (ii) Be light sources other than compact fluorescent lamps that have 
lumens per watt performance at least equivalent to comparably configured 
compact fluorescent lamps meeting the energy conservation standards in 
paragraph (s)(3)(i) of this section.
    (4) Ceiling fan light kits manufactured on or after January 1, 2007, 
and prior January 21, 2020, with pin-based sockets for fluorescent lamps 
must use an electronic ballast and be packaged with lamps to fill all 
sockets. These lamp ballast platforms must meet the following 
requirements:

[[Page 756]]



------------------------------------------------------------------------
                  Factor                             Requirement
------------------------------------------------------------------------
System Efficacy Per Lamp Ballast Platform   =50 lm/w for all
 in Lumens Per Watt (lm/w).                  lamps below 30 total listed
                                             lamp watts.
                                            =60 lm/w for all
                                             lamps that are <= 24 inches
                                             and
                                            =30 total listed
                                             lamp watts.
                                            =70 lm/w for all
                                             lamps that are 
                                             24 inches and
                                            =30 total listed
                                             lamp watts.
------------------------------------------------------------------------

    (5) Ceiling fan light kits manufactured on or after January 1, 2009, 
and prior to January 21, 2020, with socket types other than those 
covered in paragraph (s)(3) or (4) of this section, including candelabra 
screw base sockets, must be packaged with lamps to fill all sockets and 
must not be capable of operating with lamps that total more than 190 
watts.
    (6) Ceiling fan light kits manufactured on or after January 21, 2020 
must be packaged with lamps to fill all sockets, and each basic model of 
lamp packaged with the basic model of CFLK and each basic model of 
integrated SSL in the CFLK basic model shall meet the requirements shown 
in the table:

------------------------------------------------------------------------
              Lumens \1\                Minimum required efficacy (lm/W)
------------------------------------------------------------------------
<120.................................  50
=120......................  (74.0-29.42 x 0.9983 \lumens\)
------------------------------------------------------------------------
\1\ Use the lumen output for each basic model of lamp packaged with the
  basic model of CFLK or each basic model of integrated SSL in the CFLK
  basic model to determine the applicable standard.

    (i) Ceiling fan light kits with medium screw base sockets 
manufactured on or after January 21, 2020 and packaged with compact 
fluorescent lamps must include lamps that also meet the following 
requirements:

------------------------------------------------------------------------
 
------------------------------------------------------------------------
Lumen Maintenance at 1,000 hours.......  =90.0%.
Lumen Maintenance at 40 Percent of       =80.0%.
 Lifetime.
Rapid Cycle Stress Test................  Each lamp must be cycled once
                                          for every 2 hours of lifetime
                                          of compact fluorescent lamp as
                                          defined in Sec.   430.2. At
                                          least 5 lamps must meet or
                                          exceed the minimum number of
                                          cycles.
Lifetime...............................  =6,000 hours for the
                                          sample of lamps.
------------------------------------------------------------------------

    (ii) Ceiling fan light kits with pin based sockets for fluorescent 
lamps, manufactured on or after January 21, 2020, must also use an 
electronic ballast.
    (t) Torchieres. A torchiere manufactured on or after January 1, 2006 
shall:
    (1) Consume not more than 190 watts of power; and
    (2) Not be capable of operating with lamps that total more than 190 
watts.
    (u) Compact fluorescent lamps. (1) Medium Base Compact Fluorescent 
Lamps. A bare or covered (no reflector) medium base compact fluorescent 
lamp manufactured on or after January 1, 2006, must meet the following 
requirements:

------------------------------------------------------------------------
                 Factor                            Requirements
------------------------------------------------------------------------
Labeled Wattage (Watts) & Configuration  Measured initial lamp efficacy
 *.                                       (lumens per watt) must be at
                                          least:
Bare Lamp:
    Labeled Wattage < 15...............  45.0.
    Labeled Wattage = 15....  60.0.
Covered Lamp (no reflector):
    Labeled Wattage < 15...............  40.0.
    15 <= Labeled Wattage < 19.........  48.0.
    19 <= Labeled Wattage < 25.........  50.0.
    Labeled Wattage = 25....  55.0.
Lumen Maintenance at 1,000 Hours.......  =90.0%.
Lumen Maintenance at 40 Percent of       =80.0%.
 Lifetime **.
Rapid Cycle Stress Test................  Each lamp must be cycled once
                                          for every 2 hours of
                                          lifetime.** At least 5 lamps
                                          must meet or exceed the
                                          minimum number of cycles.
Lifetime **............................  =6,000 hours.
------------------------------------------------------------------------
* Use labeled wattage to determine the appropriate efficacy requirements
  in this table; do not use measured wattage for this purpose.
** Lifetime refers to lifetime of a compact fluorescent lamp as defined
  in 10 CFR 430.2.


[[Page 757]]

    (2) [Reserved].
    (v) Dehumidifiers. (1) Dehumidifiers manufactured on or after 
October 1, 2012, shall have an energy factor that meets or exceeds the 
following values:

------------------------------------------------------------------------
                                                          Minimum energy
              Product capacity (pints/day)                factor (liters/
                                                               kWh)
------------------------------------------------------------------------
Up to 35.00.............................................            1.35
35.01-45.00.............................................            1.50
45.01-54.00.............................................            1.60
54.01-75.00.............................................            1.70
75.01 or more...........................................             2.5
------------------------------------------------------------------------

    (2) Dehumidifiers manufactured on or after June 13, 2019, shall have 
an integrated energy factor that meets or exceeds the following values:

------------------------------------------------------------------------
                                                            Minimum
                                                       integrated energy
  Portable dehumidifier product capacity (pints/day)    factor (liters/
                                                              kWh)
------------------------------------------------------------------------
25.00 or less........................................               1.30
25.01-50.00..........................................               1.60
50.01 or more........................................               2.80
------------------------------------------------------------------------
  Whole-home dehumidifier product case volume (cubic   .................
                        feet)
------------------------------------------------------------------------
8.0 or less..........................................               1.77
More than 8.0........................................               2.41
------------------------------------------------------------------------

    (w) External power supplies. (1)(i) Except as provided in paragraphs 
(w)(2) and (5) of this section, all class A external power supplies 
manufactured on or after July 1, 2008, shall meet the following 
standards:

------------------------------------------------------------------------
                               Active mode
-------------------------------------------------------------------------
                                           Required efficiency (decimal
            Nameplate output               equivalent of a percentage)
------------------------------------------------------------------------
Less than 1 watt.......................  0.5 times the Nameplate output.
From 1 watt to not more than 51 watts..  The sum of 0.09 times the
                                          Natural Logarithm of the
                                          Nameplate Output and 0.5.
Greater than 51 watts..................  0.85.
------------------------------------------------------------------------
                              No-load mode
------------------------------------------------------------------------
            Nameplate output                   Maximum consumption
------------------------------------------------------------------------
Not more than 250 watts................  0.5 watts.
------------------------------------------------------------------------

    (ii) Except as provided in paragraphs (w)(5), (w)(6), and (w)(7) of 
this section, all direct operation external power supplies manufactured 
on or after February 10, 2016, shall meet the following standards:

[[Page 758]]

[GRAPHIC] [TIFF OMITTED] TR10FE14.042


[[Page 759]]


[GRAPHIC] [TIFF OMITTED] TR10FE14.043

    (iii) Except as provided in paragraphs (w)(5), (w)(6), and (w)(7) of 
this section, all external power supplies manufactured on or after 
February 10, 2016, shall meet the following standards:

----------------------------------------------------------------------------------------------------------------
                                              Class A EPS                        Non-Class A EPS
----------------------------------------------------------------------------------------------------------------
Direct Operation EPS.................  Level VI: 10 CFR          Level VI: 10 CFR 430.32(w)(1)(ii).
                                        430.32(w)(1)(ii).
Indirect Operation EPS...............  Level IV: 10 CFR          No Standards.
                                        430.32(w)(1)(i).
----------------------------------------------------------------------------------------------------------------

    (2) A basic model of external power supply is not subject to the 
energy conservation standards of paragraph (w)(1)(ii) of this section if 
the external power supply--
    (i) Is manufactured during the period beginning on February 10, 
2016, and ending on February 10, 2020;
    (ii) Is marked in accordance with the External Power Supply 
International Efficiency Marking Protocol, as in effect on February 10, 
2016;
    (iii) Meets, where applicable, the standards under paragraph 
(w)(1)(i) of this section, and has been certified to the Secretary as 
meeting those standards; and
    (iv) Is made available by the manufacturer only as a service part or 
a spare part for an end-use product that--
    (A) Constitutes the primary load; and
    (B) Was manufactured before February 10, 2016.
    (3) The standards described in paragraph (w)(1) of this section 
shall not constitute an energy conservation standard for the separate 
end-use product to which the external power supply is connected.
    (4) Any external power supply subject to the standards in paragraph 
(w)(1) of this section shall be clearly and permanently marked in 
accordance with the International Efficiency Marking Protocol for 
External Power Supplies (incorporated by reference; see Sec.  430.3), 
published by the U.S. Department of Energy.
    (5) Non-application of no-load mode requirements. The no-load mode 
energy efficiency standards established in paragraph (w)(1) of this 
section shall not apply to an external power supply that--
    (i) Is an AC-to-AC external power supply;
    (ii) Has a nameplate output of 20 watts or more;
    (iii) Is certified to the Secretary as being designed to be 
connected to a security or life safety alarm or surveillance system 
component; and
    (iv) On establishment within the External Power Supply International 
Efficiency Marking Protocol, as referenced in the ``Energy Star Program

[[Page 760]]

Requirements for Single Voltage External Ac-Dc and Ac-Ac Power 
Supplies'' (incorporated by reference, see Sec.  430.3), published by 
the Environmental Protection Agency, of a distinguishing mark for 
products described in this clause, is permanently marked with the 
distinguishing mark.
    (6) An external power supply shall not be subject to the standards 
in paragraph (w)(1) of this section if it is a device that requires 
Federal Food and Drug Administration (FDA) listing and approval as a 
medical device in accordance with section 513 of the Federal Food, Drug, 
and Cosmetic Act (21 U.S.C. 360(c)).
    (7) A direct operation, AC-DC external power supply with nameplate 
output voltage less than 3 volts and nameplate output current greater 
than or equal to 1,000 milliamps that charges the battery of a product 
that is fully or primarily motor operated shall not be subject to the 
standards in paragraph (w)(1)(ii) of this section.
    (x) General service incandescent lamps, intermediate base 
incandescent lamps and candelabra base incandescent lamps. (1) The 
energy conservation standards in this paragraph apply to general service 
incandescent lamps:
    (i) Intended for a general service or general illumination 
application (whether incandescent or not);
    (ii) Has a medium screw base or any other screw base not defined in 
ANSI C81.61 (incorporated by reference; see Sec.  430.3); and
    (iii) Is capable of being operated at a voltage at least partially 
within the range of 110 to 130 volts.
    (A) General service incandescent lamps manufactured after the 
effective dates specified in the tables below, except as described in 
paragraph (x)(1)(B) of this section, shall have a color rendering index 
greater than or equal to 80 and shall have rated wattage no greater than 
and rated lifetime no less than the values shown in the table below:

                                       General Service Incandescent Lamps
----------------------------------------------------------------------------------------------------------------
                                                 Maximum rate
              Rated lumen ranges                    wattage          Minimum rate life-time       Effective date
----------------------------------------------------------------------------------------------------------------
1490-2600.....................................              72  1,000 hrs.......................        1/1/2012
1050-1489.....................................              53  1,000 hrs.......................        1/1/2013
750-1049......................................              43  1,000 hrs.......................        1/1/2014
310-749.......................................              29  1,000 hrs.......................        1/1/2014
----------------------------------------------------------------------------------------------------------------

    (B) Modified spectrum general service incandescent lamps 
manufactured after the effective dates specified shall have a color 
rendering index greater than or equal to 75 and shall have a rated 
wattage no greater than and rated lifetime no less than the values shown 
in the table below:

                              Modified Spectrum General Service Incandescent Lamps
----------------------------------------------------------------------------------------------------------------
                                                 Maximum rate
              Rated lumen ranges                    wattage          Minimum rate life-time       Effective date
----------------------------------------------------------------------------------------------------------------
1118-1950.....................................              72  1,000 hrs.......................        1/1/2012
788-1117......................................              53  1,000 hrs.......................        1/1/2013
563-787.......................................              43  1,000 hrs.......................        1/1/2014
232-562.......................................              29  1,000 hrs.......................        1/1/2014
----------------------------------------------------------------------------------------------------------------

    (2) Each candelabra base incandescent lamp shall not exceed 60 rated 
watts.
    (3) Each intermediate base incandescent lamp shall not exceed 40 
rated watts.
    (y) Residential furnace fans. Residential furnace fans incorporated 
in the products listed in Table 1 of this paragraph and manufactured on 
and after July 3, 2019, shall have a fan energy rating (FER) value that 
meets or is less than the following values:

[[Page 761]]



 Table 1--Energy Conservation Standards for Covered Residential Furnace
                                  Fans*
------------------------------------------------------------------------
        Product class                   FER ** (Watts/1000 cfm)
------------------------------------------------------------------------
Non-Weatherized, Non-          FER = 0.044 x QMax + 182
 Condensing Gas Furnace Fan
 (NWG-NC).
Non-Weatherized, Condensing    FER = 0.044 x QMax + 195
 Gas Furnace Fan (NWG-C).
Weatherized Non-Condensing     FER = 0.044 x QMax + 199
 Gas Furnace Fan (WG-NC).
Non-Weatherized, Non-          FER = 0.071 x QMax + 382
 Condensing Oil Furnace Fan
 (NWO-NC).
Non-Weatherized Electric       FER = 0.044 x QMax + 165
 Furnace/Modular Blower Fan
 (NWEF/NWMB).
Mobile Home Non-Weatherized,   FER = 0.071 x QMax + 222
 Non-Condensing Gas Furnace
 Fan (MH-NWG-NC).
Mobile Home Non-Weatherized,   FER = 0.071 x QMax + 240
 Condensing Gas Furnace Fan
 (MH-NWG-C).
Mobile Home Electric Furnace/  FER = 0.044 x QMax + 101
 Modular Blower Fan (MH-EF/
 MB).
Mobile Home Non-Weatherized    Reserved
 Oil Furnace Fan (MH-NWO).
Mobile Home Weatherized Gas    Reserved
 Furnace Fan (MH-WG) **.
------------------------------------------------------------------------
* Furnace fans incorporated into hydronic air handlers, SDHV modular
  blowers, SDHV electric furnaces, and CAC/HP indoor units are not
  subject to the standards listed in this table.
** QMax is the airflow, in cfm, at the maximum airflow-control setting
  measured using the final DOE test procedure at 10 CFR part 430,
  subpart B, appendix AA.

    (z) Battery chargers. (1) Battery chargers manufactured on or after 
June 13, 2018, must have a unit energy consumption (UEC) less than or 
equal to the prescribed ``Maximum UEC'' standard when using the 
equations for the appropriate product class and corresponding rated 
battery energy as shown in the following table:

------------------------------------------------------------------------
                               Rated        Special        Maximum UEC
 Product    Product class     battery    characteristic   (kWh/yr) (as a
  class      description      energy       or battery      function of
                            (Ebatt **)      voltage         Ebatt **)
------------------------------------------------------------------------
1........  Low-Energy.....  <=5 Wh....  Inductive        3.04
                                         Connection *.
2........  Low-Energy, Low- <100 Wh...  <4 V...........  0.1440 * Ebatt
            Voltage.                                      + 2.95
3........  Low-Energy,      ..........  4-10 V.........  For Ebatt <10
            Medium-Voltage.                               Wh,
                                                         1.42 kWh/y
                                                         Ebatt >=10 Wh,
                                                         0.0255 * Ebatt
                                                          + 1.16
4........  Low-Energy,      ..........  10 V  0.11 * Ebatt +
            High-Voltage.                                 3.18
5........  Medium-Energy,   100-3000    <20 V..........  0.0257 * Ebatt
            Low-Voltage.     Wh.                          + .815
6........  Medium-Energy,   ..........  =20   0.0778 * Ebatt
            High-Voltage.                V.               + 2.4
7........  High-Energy....  3000 Wh.                    + 4.53
------------------------------------------------------------------------
* Inductive connection and designed for use in a wet environment (e.g.
  electric toothbrushes).
** Ebatt = Rated battery energy as determined in 10 CFR part 429.39(a).

    (2) A battery charger shall not be subject to the standards in 
paragraph (z)(1) of this section if it is a device that requires Federal 
Food and Drug Administration (FDA) listing and approval as a life-
sustaining or life-supporting device in accordance with section 513 of 
the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 360(c)).
    (3) All uninterruptible power supplies (UPS) manufactured on and 
after January 10, 2022, that utilize a NEMA 1-15P or 5-15P input plug 
and have an AC output shall have an average load adjusted efficiency 
that meets or exceeds the values shown in the table in this paragraph 
(z)(3) based on the rated output power (Prated) of the UPS.

----------------------------------------------------------------------------------------------------------------
      Battery charger product class              Rated output power                  Minimum efficiency
----------------------------------------------------------------------------------------------------------------
10a (VFD UPSs)..........................  0 W < Prated <= 300 W...........  -1.20E-06 * P 2rated + 7.17E-04 *
                                                                             Prated + 0.862.
                                          300 W < Prated <= 700 W.........  -7.85E-08 * P 2rated + 1.01E-04 *
                                                                             Prated + 0.946.
                                          Prated > 700 W..................  -7.23E-09 * P 2rated + 7.52E-06 *
                                                                             Prated + 0.977.
10b (VI UPSs)...........................  0 W < Prated <= 300 W...........  -1.20E-06 * P 2rated + 7.19E-04 *
                                                                             Prated + 0.863.
                                          300 W < Prated <= 700 W.........  -7.67E-08 * P 2rated + 1.05E-04 *
                                                                             Prated + 0.947.
                                          Prated > 700 W..................  -4.62E-09 * P 2rated + 8.54E-06 *
                                                                             Prated + 0.979.
10c (VFI UPSs)..........................  0 W < Prated <= 300 W...........  -3.13E-06 * P 2rated + 1.96E-03 *
                                                                             Prated + 0.543.
                                          300 W < Prated <= 700 W.........  -2.60E-07 * P 2rated + 3.65E-04 *
                                                                             Prated + 0.764.
                                          Prated > 700 W..................  -1.70E-08 * P 2rated + 3.85E-05 *
                                                                             Prated + 0.876.
----------------------------------------------------------------------------------------------------------------


[[Page 762]]

    (aa) Miscellaneous refrigeration products. The energy standards as 
determined by the equations of the following table(s) shall be rounded 
off to the nearest kWh per year. If the equation calculation is halfway 
between the nearest two kWh per year values, the standard shall be 
rounded up to the higher of these values.
    (1) Coolers manufactured starting on October 28, 2019 shall have 
Annual Energy Use (AEU) no more than:

------------------------------------------------------------------------
             Product class                         AEU (kWh/yr)
------------------------------------------------------------------------
1. Built-in compact....................  7.88AV + 155.8
2. Built-in
3. Freestanding compact
4. Freestanding
------------------------------------------------------------------------
AV = Total adjusted volume, expressed in ft\3\, as calculated according
  to appendix A of subpart B of this part.

    (2) Combination cooler refrigeration products manufactured starting 
on October 28, 2019 shall have Annual Energy Use (AEU) no more than:

------------------------------------------------------------------------
             Product class                         AEU (kWh/yr)
------------------------------------------------------------------------
C-3A. Cooler with all-refrigerator--     4.57AV + 130.4
 automatic defrost.
C-3A-BI. Built-in cooler with all-       5.19AV + 147.8
 refrigerator--automatic defrost.
C-9. Cooler with upright freezers with   5.58AV + 147.7
 automatic defrost without an automatic
 icemaker.
C-9-BI. Built-in cooler with upright     6.38AV + 168.8
 freezer with automatic defrost without
 an automatic icemaker.
C-9I. Cooler with upright freezer with   5.58AV + 231.7
 automatic defrost with an automatic
 icemaker.
C-9I-BI. Built-in cooler with upright    6.38AV + 252.8
 freezer with automatic defrost with an
 automatic icemaker.
C-13A. Compact cooler with all-          5.93AV + 193.7
 refrigerator--automatic defrost.
C-13A-BI. Built-in compact cooler with   6.52AV + 213.1
 all-refrigerator--automatic defrost.
------------------------------------------------------------------------
AV = Total adjusted volume, expressed in ft\3\, as calculated according
  to appendix A of subpart B of this part.

    (bb) Rough service lamps and vibration service lamps. (1) Rough 
service lamps manufactured on or after January 25, 2018 must:
    (i) Have a shatter-proof coating or equivalent technology that is 
compliant with NSF/ANSI 51 (incorporated by reference; see Sec.  430.3) 
and is designed to contain the glass if the glass envelope of the lamp 
is broken and to provide effective containment over the life of the 
lamp;
    (ii) Have a rated wattage not greater than 40 watts; and
    (iii) Be sold at retail only in a package containing one lamp.
    (2) Vibration service lamps manufactured on or after January 25, 
2018 must:
    (i) Have a rated wattage no greater than 40 watts; and
    (ii) Be sold at retail only in a package containing one lamp.
    (cc) Portable air conditioners. Single-duct portable air 
conditioners and dual-duct portable air conditioners manufactured on or 
after January 10, 2025 must have a combined energy efficiency ratio 
(CEER) in Btu/Wh no less than SACC: Seasonally adjusted cooling capacity 
in Btu/h, as determined in appendix CC of subpart B of this part.
[GRAPHIC] [TIFF OMITTED] TR10JA20.020


[54 FR 6077, Feb. 7, 1989]

    Editorial Note: For Federal Register citations affecting Sec.  
430.32, see the List of CFR Sections Affected, which appears in the 
Finding Aids section of the printed volume and at www.govinfo.gov.

    Effective Date Note: At 85 FR 81375, Dec. 16, 2020, Sec.  430.32 was 
amended by revising paragraphs (g)(4) and (h)(3), effective Jan. 15, 
2021. For the convenience of the user, the revised text is set forth as 
follows:



Sec.  430.32  Energy and water conservation standards and their 
          compliance dates.

                                * * * * *

    (g) * * *
    (4)(i) Except as provided in paragraph (g)(4)(ii) of this section, 
clothes washers manufactured on or after January 1, 2018, shall have an 
Integrated Modified Energy Factor no less than, and an Integrated Water 
Factor no greater than:

[[Page 763]]



------------------------------------------------------------------------
                                            Integrated
                                             modified       Integrated
              Product class                energy factor   water factor
                                           (cu.ft./kWh/     (gal/cycle/
                                              cycle)          cu.ft.)
------------------------------------------------------------------------
(A) Top-loading, Compact (less than 1.6             1.15            12.0
 ft3 capacity)..........................
(B) Top-loading, Standard (1.6 ft3 or               1.57             6.5
 greater capacity)......................
(C) Front-loading, Compact (less than               1.13             8.3
 1.6 ft3 capacity)......................
(D) Front-loading, Standard (1.6 ft3 or             1.84             4.7
 greater capacity)......................
------------------------------------------------------------------------

    (ii) Top-loading, standard clothes washers with an average cycle 
time of less than 30 minutes and front-loading, standard clothes washers 
with an average cycle time of less than 45 minutes are not currently 
subject to energy or water conservation standards.
    (h) * * *
    (3)(i) Except as provided in paragraph (h)(3)(ii) of this section, 
clothes dryers manufactured on or after January 1, 2015, shall have a 
combined energy factor no less than:

------------------------------------------------------------------------
                                                             Combined
                      Product class                        energy factor
                                                             (lbs/kWh)
------------------------------------------------------------------------
(A) Vented Electric, Standard (4.4 ft3 or greater                   3.73
 capacity)..............................................
(B) Vented Electric, Compact (120V) (less than 4.4 ft3              3.61
 capacity)..............................................
(C) Vented Electric, Compact (240V) (less than 4.4 ft3              3.27
 capacity)..............................................
(D) Vented Gas..........................................            3.30
(E) Ventless Electric, Compact (240V) (less than 4.4 ft3            2.55
 capacity)..............................................
(F) Ventless Electric, Combination Washer-Dryer.........            2.08
------------------------------------------------------------------------

    (ii) Vented, electric standard clothes dryers and vented gas clothes 
dryers with a cycle time of less than 30 minutes are not currently 
subject to energy conservation standards.

                                * * * * *



Sec.  430.33  Preemption of State regulations.

    (a) Any State regulation providing for any energy conservation 
standard, or water conservation standard (in the case of faucets, 
showerheads, water closets, and urinals), or other requirement with 
respect to the energy efficiency, energy use, or water use (in the case 
of faucets, showerheads, water closets, or urinals) of a covered product 
that is not identical to a Federal standard in effect under this subpart 
is preempted by that standard, except as provided for in sections 
325(i)(6)(A)(vi), 327(b) and (c) of the Act.
    (b) No State regulation, or revision thereof, concerning the energy 
efficiency, energy use, or water use of the covered product shall be 
effective with respect to such covered product, unless the State 
regulation or revision in the case of any portion of any regulation that 
establishes requirements for general service incandescent lamps, 
intermediate base incandescent lamps, or candelabra base lamps, was 
enacted or adopted by the State of California or Nevada before December 
4, 2007, except that--
    (1) The regulation adopted by the California Energy Commission with 
an effective date of January 1, 2008, shall only be effective until the 
effective date of the Federal standard for the applicable lamp category 
under paragraphs (A), (B), and (C) of section 325(i)(1) of EPCA; and
    (2) The States of California and Nevada may, at any time, modify or 
adopt a State standard for general service lamps to conform with Federal 
standards with effective dates no earlier than 12 months prior to the 
Federal effective dates prescribed under paragraphs (A), (B), and (C) of 
section 325(i)(1) of EPCA, at which time any prior regulations adopted 
by the State of California or Nevada shall no longer be effective.

[63 FR 13318, Mar. 18, 1998, as amended at 74 FR 12070, Mar. 23, 2009; 
78 FR 62993, Oct. 23, 2013]



Sec.  430.34  Energy and water conservation standards amendments

    The Department of Energy may not prescribe any amended standard 
which increases the maximum allowable energy use or, in the case of 
showerheads, faucets, water closets or urinals, the maximum allowable 
water use, or which decreases the minimum required energy efficiency of 
a covered product.

[67 FR 36406, May 23, 2002]



Sec.  430.35  Petitions with respect to general service lamps.

    (a) Any person may petition the Secretary for an exemption for a 
type of general service lamp from the requirements of this subpart. The 
Secretary may grant an exemption only to the

[[Page 764]]

extent that the Secretary finds, after a hearing and opportunity for 
public comment, that it is not technically feasible to serve a 
specialized lighting application (such as a military, medical, public 
safety or certified historic lighting application) using a lamp that 
meets the requirements of this subpart. To grant an exemption for a 
product under this paragraph, the Secretary shall include, as an 
additional criterion, that the exempted product is unlikely to be used 
in a general service lighting application.
    (b) Any person may petition the Secretary to establish standards for 
lamp shapes or bases that are excluded from the definition of general 
service lamps. The petition shall include evidence that the availability 
or sales of exempted lamps have increased significantly since December 
19, 2007. The Secretary shall grant a petition if the Secretary finds 
that:
    (1) The petition presents evidence that demonstrates that commercial 
availability or sales of exempted incandescent lamp types have increased 
significantly since December 19, 2007 and are being widely used in 
general lighting applications; and
    (2) Significant energy savings could be achieved by covering 
exempted products, as determined by the Secretary based on sales data 
provided to the Secretary from manufacturers and importers.

[74 FR 12070, Mar. 23, 2009]



 Sec. Appendix A to Subpart C of Part 430--Procedures, Interpretations, 
  and Policies for Consideration of New or Revised Energy Conservation 
    Standards and Test Procedures for Consumer Products and Certain 
                     Commercial/Industrial Equipment

1. Objectives
2. Scope
3. Mandatory Application of the Process Rule
4. Setting Priorities for Rulemaking Activity
5. Coverage Determination Rulemakings
6. Process for Developing Energy Conservation Standards
7. Policies on Selection of Standards
8. Test Procedures
9. ASHRAE Equipment
10. Direct Final Rules
11. Negotiated Rulemaking Process
12. Principles for Distinguishing Between Effective and Compliance Dates
13. Principles for the Conduct of the Engineering Analysis
14. Principles for the Analysis of Impacts on Manufacturers
15. Principles for the Analysis of Impacts on Consumers
16. Consideration of Non-Regulatory Approaches
17. Cross-cutting Analytical Assumptions

                              1. Objectives

    This appendix establishes procedures, interpretations, and policies 
that DOE will follow in the consideration and promulgation of new or 
revised appliance energy conservation standards and test procedures 
under the Energy Policy and Conservation Act (EPCA). This appendix 
applies to both covered consumer products and covered commercial/
industrial equipment. The Department's objectives in establishing these 
procedures include:
    (a) Provide for early input from stakeholders. The Department seeks 
to provide opportunities for public input early in the rulemaking 
process so that the initiation and direction of rulemakings is informed 
by comment from interested parties. Under the procedures established by 
this appendix, DOE will seek early input from interested parties in 
determining whether establishing new or amending existing energy 
conservation standards will result in significant savings of energy and 
is economically justified and technologically feasible. In the context 
of test procedure rulemakings, DOE will seek early input from interested 
parties in determining whether--
    (1) Establishing a new or amending an existing test procedure will 
better measure the energy efficiency, energy use, water use (as 
specified in EPCA), or estimated annual operating cost of a covered 
product/equipment during a representative average use cycle or period of 
use (for consumer products); and
    (2) Will not be unduly burdensome to conduct.
    (b) Increase predictability of the rulemaking timetable. The 
Department seeks to make informed, strategic decisions about how to 
deploy its resources on the range of possible standards and test 
procedure development activities, and to announce these prioritization 
decisions so that all interested parties have a common expectation about 
the timing of different rulemaking activities. Further, DOE will offer 
the opportunity to provide input on the prioritization of rulemakings 
through a request for comment as DOE begins preparation of its 
Regulatory Agenda each spring.
    (c) Eliminate problematic design options early in the process. The 
Department seeks to eliminate from consideration, early in the

[[Page 765]]

process, any design options that present unacceptable problems with 
respect to manufacturability, consumer utility, or safety, so that the 
detailed analysis can focus only on viable design options. Under the 
procedures in this appendix, DOE will eliminate from consideration 
design options if it concludes that manufacture, installation or service 
of the design will be impractical, or that the design option will have a 
material adverse impact on the utility of the product, or if the design 
option will have a material adverse impact on safety or health. DOE will 
also eliminate from consideration proprietary design options that 
represent a unique pathway to achieving a given efficiency level. This 
screening will be done at the outset of a rulemaking.
    (d) Fully consider non-regulatory approaches. The Department seeks 
to understand the effects of market forces and voluntary programs on 
encouraging the purchase of energy efficient products so that the 
incremental impacts of a new or revised standard can be accurately 
assessed and the Department can make informed decisions about where 
standards and voluntary programs can be used most effectively. DOE will 
continue to support voluntary efforts by manufacturers, retailers, 
utilities, and others to increase product/equipment efficiency.
    (e) Conduct thorough analysis of impacts. In addition to 
understanding the aggregate social and private costs and benefits of 
standards, the Department seeks to understand the distribution of those 
costs and benefits among consumers, manufacturers, and others, as well 
as the uncertainty associated with these analyses of costs and benefits, 
so that any adverse impacts on subgroups and uncertainty concerning any 
adverse impacts can be fully considered in selecting a standard. 
Pursuant to this appendix, the analyses will consider the variability of 
impacts on significant groups of manufacturers and consumers in addition 
to aggregate social and private costs and benefits, report the range of 
uncertainty associated with these impacts, and take into account 
cumulative impacts of regulation on manufacturers. The Department will 
also conduct appropriate analyses to assess the impact that new or 
amended test procedures will have on manufacturers and consumers.
    (f) Use transparent and robust analytical methods. The Department 
seeks to use qualitative and quantitative analytical methods that are 
fully documented for the public and that produce results that can be 
explained and reproduced, so that the analytical underpinnings for 
policy decisions on standards are as sound and well-accepted as 
possible.
    (g) Support efforts to build consensus on standards. The Department 
seeks to encourage development of consensus proposals for new or revised 
standards because standards with such broad-based support are likely to 
balance effectively the various interests affected by such standards.

                                2. Scope

    The procedures, interpretations, and policies described in this 
appendix apply to rulemakings concerning new or revised Federal energy 
conservation standards and test procedures, and related rule documents 
(i.e., coverage determinations) for consumer products in Part A and 
commercial and industrial equipment under Part A-1 of the Energy Policy 
and Conservation Act (EPCA), as amended, except covered ASHRAE equipment 
in Part A-1 are governed separately under section 9 in this appendix.

              3. Mandatory Application of the Process Rule

    The rulemaking procedures established in this appendix are binding 
on DOE.

              4. Setting Priorities for Rulemaking Activity

    (a) In establishing its priorities for undertaking energy 
conservation standards and test procedure rulemakings, DOE will consider 
the following factors, consistent with applicable legal obligations:
    (1) Potential energy savings;
    (2) Potential social and private, including environmental or energy 
security, benefits;
    (3) Applicable deadlines for rulemakings;
    (4) Incremental DOE resources required to complete the rulemaking 
process;
    (5) Other relevant regulatory actions affecting the products/
equipment;
    (6) Stakeholder recommendations;
    (7) Evidence of energy efficiency gains in the market absent new or 
revised standards;
    (8) Status of required changes to test procedures; and
    (9) Other relevant factors.
    (b) DOE will offer the opportunity to provide input on 
prioritization of rulemakings through a request for comment as DOE 
begins preparation of its Regulatory Agenda each spring.

                  5. Coverage Determination Rulemakings

    (a) DOE has discretion to conduct proceedings to determine whether 
additional consumer products and commercial/industrial equipment should 
be covered under EPCA if certain statutory criteria are met. (42 U.S.C. 
6292 and 42 U.S.C. 6295(l) for consumer products; 42 U.S.C. 6312 for 
commercial/industrial equipment)
    (b) If DOE determines to initiate the coverage determination 
process, it will first publish a notice of proposed determination, 
providing an opportunity for public comment of not less than 60 days, in 
which DOE will explain how such products/equipment that it seeks to 
designate as ``covered'' meet the statutory criteria for coverage and 
why such coverage is ``necessary or appropriate'' to

[[Page 766]]

carry out the purposes of EPCA. In the case of commercial equipment, DOE 
will follow the same process, except that the Department must 
demonstrate that coverage of the equipment type is ``necessary'' to 
carry out the purposes of EPCA.
    (c) DOE will publish its final decision on coverage as a separate 
notice, an action that will be completed prior to the initiation of any 
test procedure or energy conservation standards rulemaking (i.e., DOE 
will not issue any Requests for Information (RFIs), Notices of Data 
Availability (NODAs), or any other mechanism to gather information for 
the purpose of initiating a rulemaking to establish a test procedure or 
energy conservation standard for the proposed covered product/equipment 
prior to finalization of the coverage determination). If DOE determines 
that coverage is warranted, DOE will proceed with its typical rulemaking 
process for both test procedures and standards. Specifically, DOE will 
finalize coverage for a product/equipment at least 180 days prior to 
publication of a proposed rule to establish a test procedure. And, DOE 
will complete the test procedure rulemaking at least 180 days prior to 
publication of a proposed energy conservation standard.
    (d) If, during the substantive rulemaking proceedings to establish 
test procedures or energy conservation standards after completing a 
coverage determination, DOE finds it necessary and appropriate to expand 
or reduce the scope of coverage, a new coverage determination process 
will be initiated and finalized prior to moving forward with the test 
procedure or standards rulemaking.

         6. Process for Developing Energy Conservation Standards

    This section describes the process to be used in developing energy 
conservation standards for covered products and equipment other than 
those covered equipment subject to ASHRAE/IES Standard 90.1.
    (a) Early Assessment. (1) As the first step in any proceeding to 
consider establishing or amending any energy conservation standard, DOE 
will publish a document in the Federal Register announcing that DOE is 
considering initiating a rulemaking proceeding. As part of that 
document, DOE will solicit submission of related comments, including 
data and information on whether DOE should proceed with the rulemaking, 
including whether any new or amended rule would be cost effective, 
economically justified, technologically feasible, or would result in a 
significant savings of energy. Based on the information received in 
response to the notice and its own analysis, DOE will determine whether 
to proceed with a rulemaking for a new or amended energy conservation 
standard or an amended test procedure. If DOE determines that a new or 
amended standard would not satisfy applicable statutory criteria, DOE 
would engage in notice and comment rulemaking to issue a determination 
that a new or amended standard is not warranted. If DOE receives 
sufficient information suggesting it could justify a new or amended 
standard or the information received is inconclusive with regard to the 
statutory criteria, DOE would undertake the preliminary stages of a 
rulemaking to issue or amend an energy conservation standard, as 
discussed further in paragraph (a)(2) of this section.
    (2) If the Department determines it is appropriate to proceed with a 
rulemaking, the preliminary stages of a rulemaking to issue or amend an 
energy conservation standard that DOE will undertake will be a Framework 
Document and Preliminary Analysis, or an Advance Notice of Proposed 
Rulemaking (ANOPR). Requests for Information (RFI) and Notices of Data 
Availability (NODA) could be issued, as appropriate, in addition to 
these preliminary-stage documents.
    (3) In those instances where the early assessment either suggested 
that a new or amended energy conservation standard might be justified or 
in which the information was inconclusive on this point, and DOE 
undertakes the preliminary stages of a rulemaking to establish or amend 
an energy conservation standard, DOE may still ultimately determine that 
such a standard is not economically justified, technologically feasible 
or would not result in a significant savings of energy. Therefore, DOE 
will examine the potential costs and benefits and energy savings 
potential of a new or amended energy conservation standard at the 
preliminary stage of the rulemaking. DOE notes that it will, consistent 
with its statutory obligations, consider both cost effectiveness and 
economic justification when issuing a determination not to amend a 
standard.
    (b) Significant Savings of Energy. (1) In evaluating the prospects 
of proposing a new or amended standard--or in determining that no new or 
amended standard is needed--DOE will first look to the projected energy 
savings that are likely to result. DOE will determine as a preliminary 
matter whether the rulemaking has the potential to result in 
``significant energy savings.'' If the rulemaking passes the significant 
energy savings threshold, DOE will then compare these projected savings 
against the technological feasibility of and likely costs necessary to 
meet the new or amended standards needed to achieve these energy 
savings.
    (2) Under its significant energy savings analysis, DOE will examine 
both the total amount of projected energy savings and the relative 
percentage decrease in energy usage that could be obtained from 
establishing or amending energy conservation standards for a given 
covered product or equipment. This examination will be based on the 
applicable product or equipment type as appropriate

[[Page 767]]

and will not be used to selectively examine classes or sub-classes of 
products and equipment solely for the purposes of projecting whether 
potential energy savings would satisfy (or not satisfy) the applicable 
thresholds detailed in this rule. Under the first step of this approach, 
the projected energy savings from a potential maximum technologically 
feasible (``max-tech'') standard will be evaluated against a threshold 
of 0.3 quads of site energy saved over a 30-year period.
    (3) If the projected max-tech energy savings does not meet or exceed 
this threshold, those max-tech savings would then be compared to the 
total energy usage of the covered product or equipment to calculate a 
potential percentage reduction in energy usage.
    (4) If this comparison does not yield a reduction in site energy use 
of at least 10 percent over a 30-year period, the analysis will end, and 
DOE will propose to determine that no significant energy savings would 
likely result from setting new or amended standards.
    (5) If either one of the thresholds described in paragraphs (b)(3) 
or (b)(4) of this section is reached, DOE will conduct analyses to 
ascertain whether a standard can be prescribed that produces the maximum 
improvement in energy efficiency that is both technologically feasible 
and economically justified and still constitutes significant energy 
savings (using the same criteria of either 0.3 quad of aggregate site 
energy savings or a 10-percent decrease in energy use, as measured in 
quads--both over a 30-year period) at the level determined to be 
economically justified.
    (6) In the case of ASHRAE equipment, DOE will examine the potential 
energy savings involved across the equipment category at issue.
    (c) Design options--(1) General. Once the Department has initiated a 
rulemaking for a specific product/equipment but before publishing a 
proposed rule to establish or amend standards, DOE will identify the 
product/equipment categories and design options to be analyzed in 
detail, as well as those design options to be eliminated from further 
consideration. During the pre-proposal stages of the rulemaking, 
interested parties may be consulted to provide information on key issues 
through a variety of rulemaking documents. The preliminary stages of a 
rulemaking to issue or amend an energy conservation standard that DOE 
will undertake will be a framework document and preliminary analysis, or 
an advance notice of proposed rulemaking (ANOPR). Requests for 
Information (RFI) and Notice of Data Availability (NODA) could also be 
issued, as appropriate.
    (2) Identification and screening of design options. During the pre-
NOPR phase of the rulemaking process, the Department will develop a list 
of design options for consideration. Initially, the candidate design 
options will encompass all those technologies considered to be 
technologically feasible. Following the development of this initial list 
of design options, DOE will review each design option based on the 
factors described in paragraph (c)(3) of this section and the policies 
stated in section 7 of this Appendix (i.e. Policies on Selection of 
Standards). The reasons for eliminating or retaining any design option 
at this stage of the process will be fully documented and published as 
part of the NOPR and as appropriate for a given rule, in the pre-NOPR 
documents. The technologically feasible design options that are not 
eliminated in this screening will be considered further in the 
Engineering Analysis described in paragraph (d) of this section.
    (3) Factors for screening of design options. The factors for 
screening design options include:
    (i) Technological feasibility. Technologies incorporated in 
commercial products or in working prototypes will be considered 
technologically feasible.
    (ii) Practicability to manufacture, install and service. If mass 
production of a technology under consideration for use in commercially-
available products (or equipment) and reliable installation and 
servicing of the technology could be achieved on the scale necessary to 
serve the relevant market at the time of the effective date of the 
standard, then that technology will be considered practicable to 
manufacture, install and service.
    (iii) Adverse Impacts on Product Utility or Product Availability.
    (iv) Adverse Impacts on Health or Safety.
    (v) Unique-Pathway Proprietary Technologies. If a design option 
utilizes proprietary technology that represents a unique pathway to 
achieving a given efficiency level, that technology will not be 
considered further.
    (d) Engineering analysis of design options and selection of 
candidate standard levels. After design options are identified and 
screened, DOE will perform the engineering analysis and the benefit/cost 
analysis and select the candidate standard levels based on these 
analyses. The results of the analyses will be published in a Technical 
Support Document (TSD) to accompany the appropriate rulemaking 
documents.
    (1) Identification of engineering analytical methods and tools. DOE 
will select the specific engineering analysis tools (or multiple tools, 
if necessary to address uncertainty) to be used in the analysis of the 
design options identified as a result of the screening analysis.
    (2) Engineering and life-cycle cost analysis of design options. DOE 
and its contractor will perform engineering and life-cycle cost analyses 
of the design options.

[[Page 768]]

    (3) Review by stakeholders. Interested parties will have the 
opportunity to review the results of the engineering and life-cycle cost 
analyses. If appropriate, a public workshop will be conducted to review 
these results. The analyses will be revised as appropriate on the basis 
of this input.
    (4) New information relating to the factors used for screening 
design options. If further information or analysis leads to a 
determination that a design option, or a combination of design options, 
has unacceptable impacts, that design option or combination of design 
options will not be included in a candidate standard level.
    (5) Selection of candidate standard levels. Based on the results of 
the engineering and life-cycle cost analysis of design options and the 
policies stated in paragraph (c) of this section, DOE will select the 
candidate standard levels for further analysis.
    (e) Pre-NOPR Stage--(1) Documentation of decisions on candidate 
standard selection.
    (i) If the early assessment and screening analysis indicates that 
continued development of a standard is appropriate, the Department will 
publish either:
    (A) A notice accompanying a framework document and, subsequently, a 
preliminary analysis or;
    (B) An ANOPR. The notice document will be published in the Federal 
Register, with accompanying documents referenced and posted in the 
appropriate docket.
    (ii) If DOE determines at any point in the pre-NOPR stage that no 
candidate standard level is likely to produce the maximum improvement in 
energy efficiency that is both technologically feasible and economically 
justified or constitute significant energy savings, that conclusion will 
be announced in the Federal Register with an opportunity for public 
comment provided to stakeholders. In such cases, the Department will 
proceed with a rulemaking that proposes not to adopt new or amended 
standards.
    (2) Public comment and hearing. The length of the public comment 
period for pre-NOPR rulemaking documents will vary depending upon the 
circumstances of the particular rulemaking, but will not be less than 75 
calendar days. For such documents, DOE will determine whether a public 
hearing is appropriate.
    (3) Revisions based on comments. Based on consideration of the 
comments received, any necessary changes to the engineering analysis or 
the candidate standard levels will be made.
    (f) Analysis of impacts and selection of proposed standard level. 
After the pre-NOPR stage, if DOE has determined preliminarily that a 
candidate standard level is likely to produce the maximum improvement in 
energy efficiency that is both technologically feasible and economically 
justified or constitute significant energy savings, economic analyses of 
the impacts of the candidate standard levels will be conducted. The 
Department will propose new or amended standards based on the results of 
the impact analysis.
    (1) Identification of issues for analysis. The Department, in 
consideration of comments received, will identify issues that will be 
examined in the impacts analysis.
    (2) Identification of analytical methods and tools. DOE will select 
the specific economic analysis tools (or multiple tools if necessary to 
address uncertainty) to be used in the analysis of the candidate 
standard levels.
    (3) Analysis of impacts. DOE will conduct the analysis of the 
impacts of candidate standard levels.
    (4) Factors to be considered in selecting a proposed standard. The 
factors to be considered in selection of a proposed standard include:
    (i) Impacts on manufacturers. The analysis of private manufacturer 
impacts will include: Estimated impacts on cash flow; assessment of 
impacts on manufacturers of specific categories of products/equipment 
and small manufacturers; assessment of impacts on manufacturers of 
multiple product-specific Federal regulatory requirements, including 
efficiency standards for other products and regulations of other 
agencies; and impacts on manufacturing capacity, plant closures, and 
loss of capital investment.
    (ii) Private Impacts on consumers. The analysis of consumer impacts 
will include: Estimated private energy savings impacts on consumers 
based on national average energy prices and energy usage; assessments of 
impacts on subgroups of consumers based on major regional differences in 
usage or energy prices and significant variations in installation costs 
or performance; sensitivity analyses using high and low discount rates 
reflecting both private transactions and social discount rates and high 
and low energy price forecasts; consideration of changes to product 
utility, changes to purchase rate of products, and other impacts of 
likely concern to all or some consumers, based to the extent practicable 
on direct input from consumers; estimated life-cycle cost with 
sensitivity analysis; consideration of the increased first cost to 
consumers and the time required for energy cost savings to pay back 
these first costs; and loss of utility.
    (iii) Impacts on competition, including industry concentration 
analysis.
    (iv) Impacts on utilities. The analysis of utility impacts will 
include estimated marginal impacts on electric and gas utility costs and 
revenues.
    (v) National energy, economic, and employment impacts. The analysis 
of national energy, economic, and employment impacts will include: 
Estimated energy savings by fuel type; estimated net present value of 
benefits to all consumers; and estimates of the direct and indirect 
impacts on employment

[[Page 769]]

by appliance manufacturers, relevant service industries, energy 
suppliers, suppliers of complementary and substitution products, and the 
economy in general.
    (vi) Impacts on the environment. The analysis of environmental 
impacts will include estimated impacts on emissions of carbon and 
relevant criteria pollutants, and impacts on pollution control costs.
    (vii) Impacts of non-regulatory approaches. The analysis of energy 
savings and consumer impacts will incorporate an assessment of the 
impacts of market forces and existing voluntary programs in promoting 
product/equipment efficiency, usage, and related characteristics in the 
absence of updated efficiency standards.
    (viii) New information relating to the factors used for screening 
design options.
    (g) Notice of Proposed Rulemaking--(1) Documentation of decisions on 
proposed standard selection. The Department will publish a NOPR in the 
Federal Register that proposes standard levels and explains the basis 
for the selection of those proposed levels, and will post on its website 
a draft TSD documenting the analysis of impacts. The draft TSD will also 
be posted in the appropriate docket on http://www.regulations.gov. As 
required by 42 U.S.C. 6295(p)(1) of EPCA, the NOPR also will describe 
the maximum improvement in energy efficiency or maximum reduction in 
energy use that is technologically feasible and, if the proposed 
standards would not achieve these levels, the reasons for proposing 
different standards.
    (2) Public comment and hearing. There will be not less than 75 days 
for public comment on the NOPR, with at least one public hearing or 
workshop. (42 U.S.C. 6295(p)(2) and 42 U.S.C. 6306).
    (3) Revisions to impact analyses and selection of final standard. 
Based on the public comments received, DOE will review the proposed 
standard and impact analyses, and make modifications as necessary. If 
major changes to the analyses are required at this stage, DOE will 
publish a Supplemental Notice of Proposed Rulemaking (SNOPR), when 
required. DOE may also publish a NODA or RFI, where appropriate.
    (h) Final Rule. The Department will publish a Final Rule in the 
Federal Register that promulgates standard levels, responds to public 
comments received on the NOPR, and explains how the selection of those 
standards meets the statutory requirement that any new or amended energy 
conservation standard produces the maximum improvement in energy 
efficiency that is both technologically feasible and economically 
justified and constitutes significant energy savings, accompanied by a 
final TSD.

                  7. Policies on Selection of Standards

    (a) Purpose. (1) Section 5 describes the process that will be used 
to consider new or revised energy efficiency standards and lists a 
number of factors and analyses that will be considered at specified 
points in the process. Department policies concerning the selection of 
new or revised standards, and decisions preliminary thereto, are 
described in this section. These policies are intended to elaborate on 
the statutory criteria provided in 42 U.S.C. 6295 of EPCA.
    (2) The procedures described in this section are intended to assist 
the Department in making the determinations required by EPCA and do not 
preclude DOE's consideration of any other information consistent with 
the relevant statutory criteria. The Department will consider pertinent 
information in determining whether a new or revised standard is 
consistent with the statutory criteria.
    (b) Screening design options. These factors will be considered as 
follows in determining whether a design option will receive any further 
consideration:
    (1) Technological feasibility. Technologies that are not 
incorporated in commercial products or in commercially-viable, existing 
prototypes will not be considered further.
    (2) Practicability to manufacture, install and service. If it is 
determined that mass production of a technology in commercial products 
and reliable installation and servicing of the technology could not be 
achieved on the scale necessary to serve the relevant market at the time 
of the compliance date of the standard, then that technology will not be 
considered further.
    (3) Impacts on product utility. If a technology is determined to 
have significant adverse impact on the utility of the product/equipment 
to subgroups of consumers, or result in the unavailability of any 
covered product type with performance characteristics (including 
reliability), features, sizes, capacities, and volumes that are 
substantially the same as products generally available in the U.S. at 
the time, it will not be considered further.
    (4) Safety of technologies. If it is determined that a technology 
will have significant adverse impacts on health or safety, it will not 
be considered further.
    (5) Unique-pathway proprietary technologies. If a technology has 
proprietary protection and represents a unique pathway to achieving a 
given efficiency level, it will not be considered further, due to the 
potential for monopolistic concerns.
    (c) Identification of candidate standard levels. Based on the 
results of the engineering and cost/benefit analyses of design options, 
DOE will identify the candidate standard levels for further analysis. 
Candidate standard levels will be selected as follows:
    (1) Costs and savings of design options. Design options that have 
payback periods that exceed the median life of the product or

[[Page 770]]

which result in life-cycle cost increases relative to the base case, 
using typical fuel costs, usage, and private discount rates, will not be 
used as the basis for candidate standard levels.
    (2) Further information on factors used for screening design 
options. If further information or analysis leads to a determination 
that a design option, or a combination of design options, has 
unacceptable impacts under the policies stated in this Appendix, that 
design option or combination of design options will not be included in a 
candidate standard level.
    (3) Selection of candidate standard levels. Candidate standard 
levels, which will be identified in the pre-NOPR documents and on which 
impact analyses will be conducted, will be based on the remaining design 
options.
    (i) The range of candidate standard levels will typically include:
    (A) The most energy-efficient combination of design options;
    (B) The combination of design options with the lowest life-cycle 
cost; and
    (C) A combination of design options with a payback period of not 
more than three years.
    (ii) Candidate standard levels that incorporate noteworthy 
technologies or fill in large gaps between efficiency levels of other 
candidate standard levels also may be selected.
    (d) Pre-NOPR Stage. New information provided in public comments on 
any pre-NOPR documents will be considered to determine whether any 
changes to the candidate standard levels are needed before proceeding to 
the analysis of impacts.
    (e)(1) Selection of proposed standard. Based on the results of the 
analysis of impacts, DOE will select a standard level to be proposed for 
public comment in the NOPR. As required under 42 U.S.C. 6295(o)(2)(A), 
any new or revised standard must be designed to achieve the maximum 
improvement in energy efficiency that is determined to be both 
technologically feasible and economically justified.
    (2) Statutory policies. The fundamental policies concerning the 
selection of standards include:
    (i) A trial standard level will not be proposed or promulgated if 
the Department determines that it is not both technologically feasible 
and economically justified. (42 U.S.C. 6295(o)(2)(A) and 42 U.S.C. 
(o)(3)(B)) For a trial standard level to be economically justified, the 
Secretary must determine that the benefits of the standard exceed its 
burdens by, to the greatest extent practicable, considering the factors 
listed in 42 U.S.C. 6295(o)(2)(B)(i). In making such a determination, 
the Secretary shall compare the benefits and burdens of the standard 
against the benefits and burdens of the baseline case (``no new 
standards'' case) and all other trial standard levels under 
consideration. This comparative analysis includes assessing the 
incremental changes in costs and benefits for each TSL's benefits and 
burdens relative to other TSLs and as part of a holistic analysis across 
all TSLs. 42 U.S.C. 6295(o)(2)(B). The Secretary will also consider, 
consistent with the statute, other economic measures such as life-cycle 
cost analysis, manufacturer impact analysis, and other relevant 
measures. A standard level is subject to a rebuttable presumption that 
it is economically justified if the payback period is three years or 
less. (42 U.S.C. 6295(o)(2)(B)(iii))
    (ii) If the Department determines that interested persons have 
established by a preponderance of the evidence that a standard level is 
likely to result in the unavailability in the United States of any 
covered product/equipment type (or class) with performance 
characteristics (including reliability), features, sizes, capacities, 
and volumes that are substantially the same as products generally 
available in the U.S. at the time of the determination, then that 
standard level will not be proposed. (42 U.S.C. 6295(o)(4))
    (iii) If the Department determines that a standard level would not 
result in significant conservation of energy, that standard level will 
not be proposed. (42 U.S.C. 6295(o)(3)(B))
    (f) Selection of a final standard. New information provided in the 
public comments on the NOPR and any analysis by the Department of 
Justice concerning impacts on competition of the proposed standard will 
be considered to determine whether issuance of a new or amended energy 
conservation standard produces the maximum improvement in energy 
efficiency that is both technologically feasible and economically 
justified and still constitutes significant energy savings or whether 
any change to the proposed standard level is needed before proceeding to 
the final rule. The same policies used to select the proposed standard 
level, as described in this section, will be used to guide the selection 
of the final standard level or a determination that no new or amended 
standard is justified.

                           8. Test Procedures

    (a) General. As with the early assessment process for energy 
conservation standards, DOE believes that early stakeholder input is 
also very important during test procedure rulemakings. DOE will follow 
an early assessment process similar to that described in the preceding 
sections discussing DOE's consideration of amended energy conservation 
standards. Consequently, DOE will publish a notice in the Federal 
Register whenever DOE is considering initiation of a rulemaking to amend 
a test procedure. In that notice, DOE will request submission of 
comments, including data and information on whether an amended test 
procedure rule would:

[[Page 771]]

    (1) More accurately measure energy efficiency, energy use, water use 
(as specified in EPCA), or estimated annual operating cost of a covered 
product during a representative average use cycle or period of use 
without being unduly burdensome to conduct; or
    (2) Reduce testing burden. DOE will review comments submitted and, 
subject to statutory obligations, determine whether it agrees with the 
submitted information. If DOE determines that an amended test procedure 
is not justified at that time, it will not pursue the rulemaking and 
will publish a notice in the Federal Register to that effect. If DOE 
receives sufficient information suggesting an amended test procedure 
could more accurately measure energy efficiency, energy use, water use 
(as specified in EPCA), or estimated annual operating cost of a covered 
product during a representative average use cycle or period of use and 
not be unduly burdensome to conduct, reduce testing burden, or the 
information received is inconclusive with regard to these points, DOE 
would undertake the preliminary stages of a rulemaking to amend the test 
procedure, as discussed further in the paragraphs that follow in this 
section.
    (b) Identifying the need to modify test procedures. DOE will 
identify any necessary modifications to established test procedures 
prior to initiating the standards development process. It will consider 
all stakeholder comments with respect to needed test procedure 
modifications. If DOE determines that it is appropriate to continue the 
test procedure rulemaking after the early assessment process, it would 
provide further opportunities for early public input through Federal 
Register documents, including NODAs and/or RFIs.
    (c) Adoption of Industry Test Methods. DOE will adopt industry test 
standards as DOE test procedures for covered products and equipment, 
unless such methodology would be unduly burdensome to conduct or would 
not produce test results that reflect the energy efficiency, energy use, 
water use (as specified in EPCA) or estimated operating costs of that 
equipment during a representative average use cycle.
    (d) Issuing final test procedure modification. Test procedure 
rulemakings establishing methodologies used to evaluate proposed energy 
conservation standards will be finalized at least 180 days prior to 
publication of a NOPR proposing new or amended energy conservation 
standards.
    (e) Effective Date of Test Procedures. If required only for the 
evaluation and issuance of updated efficiency standards, use of the 
modified test procedures typically will not be required until the 
implementation date of updated standards.

                           9. ASHRAE Equipment

    (a) EPCA provides that ASHRAE equipment are subject to unique 
statutory requirements and their own set of timelines. More 
specifically, pursuant to EPCA's statutory scheme for covered ASHRAE 
equipment, DOE is required to consider amending the existing Federal 
energy conservation standards and test procedures for certain enumerated 
types of commercial and industrial equipment (generally, commercial 
water heaters, commercial packaged boilers, commercial air-conditioning 
and heating equipment, and packaged terminal air conditioners and heat 
pumps) when ASHRAE Standard 90.1 is amended with respect to standards 
and test procedures applicable to such equipment. Not later than 180 
days after the amendment of the standard, the Secretary will publish in 
the Federal Register for public comment an analysis of the energy 
savings potential of amended energy efficiency standards. For each type 
of equipment, EPCA directs that if ASHRAE Standard 90.1 is amended, not 
later than 18 months after the date of publication of the amendment to 
ASHRAE Standard 90.1, DOE must adopt amended energy conservation 
standards at the new efficiency level in ASHRAE Standard 90.1 as the 
uniform national standard for such equipment, or amend the test 
procedure referenced in ASHRAE Standard 90.1 for the equipment at issue 
to be consistent with the applicable industry test procedure, 
respectively, unless--
    (1) DOE determines by rule, and supported by clear and convincing 
evidence, that a more-stringent standard would result in significant 
additional conservation of energy and is technologically feasible and 
economically justified; or
    (2) The test procedure would not meet the requirements for such test 
procedures specified in EPCA. In such case, DOE must adopt the more 
stringent standard not later than 30 months after the date of 
publication of the amendment to ASHRAE/IES Standard 90.1 for the 
affected equipment.
    (b) For ASHRAE equipment, DOE will adopt the revised ASHRAE levels 
or the industry test procedure, as contemplated by EPCA, except in very 
limited circumstances.
    With respect to DOE's consideration of standards more-stringent than 
the ASHRAE levels or changes to the industry test procedure, DOE will do 
so only if it can meet a very high bar to demonstrate the ``clear and 
convincing evidence'' threshold. Clear and convincing evidence would 
exist only where the specific facts and data made available to DOE 
regarding a particular ASHRAE amendment demonstrates that there is no 
substantial doubt that a standard more stringent than that contained in 
the ASHRAE Standard 90.1 amendment is permitted because it would result 
in a significant additional

[[Page 772]]

amount of energy savings, is technologically feasible and economically 
justified, or, in the case of test procedures, that the industry test 
procedure does not meet the EPCA requirements. DOE will make this 
determination only after seeking data and information from interested 
parties and the public to help inform the Agency's views. DOE will seek 
from interested stakeholders and the public data and information to 
assist in making this determination, prior to publishing a proposed rule 
to adopt more-stringent standards or a different test procedure.
    (c) DOE's review in adopting amendments based on an action by ASHRAE 
to amend Standard 90.1 is strictly limited to the specific standards or 
test procedure amendment for the specific equipment for which ASHRAE has 
made a change (i.e., determined down to the equipment class level). DOE 
believes that ASHRAE not acting to amend Standard 90.1 is tantamount to 
a decision that the existing standard remain in place. Thus, when 
undertaking a review as required by 42 U.S.C. 6313(a)(6)(C), DOE would 
need to find clear and convincing evidence, as defined in this section, 
to issue a standard more stringent than the existing standard for the 
equipment at issue.

                         10. Direct Final Rules

    (a) A direct final rule (DFR), as contemplated in 42 U.S.C. 
6295(p)(4), is a procedural mechanism separate from the negotiated 
rulemaking process outlined under the Negotiated Rulemaking Act (5 
U.S.C. 563). DOE may issue a DFR adopting energy conservation standards 
for a covered product provided that:
    (1) DOE receives a joint proposal from a group of ``interested 
persons that are fairly representative of relevant points of view,'' 
which does not include DOE as a member of the group. At a minimum, to be 
``fairly representative of relevant points of view'' the group 
submitting a joint statement must include larger concerns and small 
businesses in the regulated industry/manufacturer community, energy 
advocates, energy utilities, as appropriate, consumers, and States. 
However, it will be necessary to evaluate the meaning of ``fairly 
representative'' on a case-by-case basis, subject to the circumstances 
of a particular rulemaking, to determine whether additional parties must 
be part of a joint statement in order to be ``fairly representative of 
relevant points of view.''
    (2) This paragraph (a)(2) describes the steps DOE will follow with 
respect to a DFR.
    (i) DOE must determine whether the energy conservation standard 
recommended in the joint proposal is in accordance with the requirements 
of 42 U.S.C. 6295(o) or section 342(a)(6)(B) as applicable. Because the 
DFR provision is procedural, and not a separate grant of rulemaking 
authority, any standard issued under the DFR process must comply fully 
with the provisions of the EPCA subsection under which the rule is 
authorized. DOE will not accept or issue as a DFR a submitted joint 
proposal that does not comply with all applicable EPCA requirements.
    (ii) Upon receipt of a joint statement recommending energy 
conservation standards, DOE will publish in the Federal Register that 
statement, as submitted to DOE, in order to obtain feedback as to 
whether the joint statement was submitted by a group that is fairly 
representative of relevant points of view. If DOE determines that the 
DFR was not submitted by a group that is fairly representative of 
relevant points of view, DOE will not move forward with a DFR and will 
consider whether any further rulemaking activity is appropriate. If the 
Secretary determines that a DFR cannot be issued based on the statement, 
the Secretary shall publish a notice of the determination, together with 
an explanation of the reasons for the determination.
    (iii) Simultaneous with the issuance of a DFR, DOE must also publish 
a NOPR containing the same energy conservation standards as in the DFR. 
Following publication of the DFR, DOE must solicit public comment for a 
period of at least 110 days; then, not later than 120 days after 
issuance of the DFR, the Secretary must determine whether any adverse 
comments ``may provide a reasonable basis for withdrawing the direct 
final rule,'' based on the rulemaking record. If DOE determines that one 
or more substantive comments objecting to the DFR provides a sufficient 
reason to withdraw the DFR, DOE will do so, and will instead proceed 
with the published NOPR (unless the information provided suggests that 
withdrawal of that NOPR would likewise be appropriate). In making this 
determination, DOE may consider comments as adverse, even if the issue 
was brought up previously during DOE-initiated discussions (e.g. 
publication of a framework or RFI document), if the Department concludes 
that the comments merit further consideration.

                    11. Negotiated Rulemaking Process

    (a)(1) In those instances where negotiated rulemaking is determined 
to be appropriate, DOE will comply with the requirements of the 
Negotiated Rulemaking Act (NRA) (5 U.S.C. 561-570) and the requirements 
of the Federal Advisory Committee Act (FACA) (5 U.S.C. App. 2). To 
facilitate potential negotiated rulemakings, and to comply with the 
requirements of the NRA and the FACA, DOE established the Appliance 
Standards and Rulemaking Federal Advisory Committee (ASRAC). Working 
groups can be established as subcommittees of ASRAC, from time to time, 
and for specific products/equipment, with one member representative from

[[Page 773]]

the ASRAC committee attending and participating in the meetings of a 
specific working group. (Consistent with 5 U.S.C. 565(b), committee 
membership is limited to 25 members, unless the agency determines that 
more members are necessary for the functioning of the committee or to 
achieve balanced membership.) Ultimately, the working group reports to 
ASRAC, and ASRAC itself votes on whether to make a recommendation to DOE 
to adopt a consensus agreement developed through the negotiated 
rulemaking.
    (2) DOE will use the negotiated rulemaking process on a case-by-case 
basis and, in appropriate circumstances, in an attempt to develop a 
consensus proposal before issuing a proposed rule. When approached by 
one or more stakeholders or on its own initiative, DOE will use a 
convener to ascertain, in consultation with relevant stakeholders, 
whether the development of the subject matter of a potential rulemaking 
proceeding would be conducive to negotiated rulemaking, with the agency 
evaluating the convener's recommendation before reaching a decision on 
such matter. A neutral, independent convenor will identify issues that 
any negotiation would need to address, assess the full breadth of 
interested parties who should be included in any negotiated rulemaking 
to address those issues, and make a judgment as to whether there is the 
potential for a group of individuals negotiating in good faith to reach 
a consensus agreement given the issues presented. DOE will have a 
neutral and independent facilitator, who is not a DOE employee or 
consultant, present at all ASRAC working group meetings.
    (3) DOE will base its decision to proceed with a potential 
negotiated rulemaking on the report of the convenor. The following 
additional factors militate in favor of a negotiated rulemaking:
    (i) Stakeholders commented in favor of negotiated rulemaking in 
response to the initial rulemaking notice;
    (ii) The rulemaking analysis or underlying technologies in question 
are complex, and DOE can benefit from external expertise and/or real-
time changes to the analysis based on stakeholder feedback, information, 
and data;
    (iii) The current standards have already been amended one or more 
times;
    (iv) Stakeholders from differing points of view are willing to 
participate; and
    (v) DOE determines that the parties may be able to reach an 
agreement.
    (4) DOE will provide notice in the Federal Register of its intent to 
form an ASRAC working group (including a request for nominations to 
serve on the committee), announcement of the selection of working group 
members (including their affiliation), and announcement of public 
meetings and the subject matter to be addressed.
    (b) DOE's role in the negotiated rulemaking process is to 
participate as a member of a group attempting to develop a consensus 
proposal for energy conservation standards for a particular product/
equipment and to provide technical/analytical advice to the negotiating 
parties and legal input where needed to support the development of a 
potential consensus recommendation in the form of a term sheet.
    (c) A negotiated rulemaking may be used to develop energy 
conservation standards, test procedures, product coverage, and other 
categories of rulemaking activities.
    (d) A dedicated portion of each ASRAC working group meeting will be 
set aside to receive input and data from non-members of the ASRAC 
working group. This additional opportunity for input does nothing to 
diminish stakeholders' ability to provide comments and ask relevant 
questions during the course of the working group's ongoing deliberations 
at the public meeting.
    (e) If DOE determines to proceed with a rulemaking at the conclusion 
of negotiations, DOE will publish a proposed rule. DOE will consider the 
approved term sheet in developing such proposed rule. A negotiated 
rulemaking in which DOE participates under the ASRAC process will not 
result in the issuance of a DFR. Further, any potential term sheet upon 
which an ASRAC working group reaches consensus must comply with all of 
the provisions of EPCA under which the rule is authorized. DOE cannot 
accept recommendations or issue a NOPR based upon a negotiated 
rulemaking that does not comply with all applicable EPCA requirements, 
including those product- or equipment-specific requirements included in 
the provision that authorizes issuance of the standard.

12. Principles for Distinguishing Between Effective and Compliance Dates

    (a) Dates, generally. The effective and compliance dates for either 
DOE test procedures or DOE energy conservation standards are typically 
not identical and these terms should not be used interchangeably.
    (b) Effective date. The effective date is the date a rule is legally 
operative after being published in the Federal Register.
    (c) Compliance date. (1) For test procedures, the compliance date is 
the specific date when manufacturers are required to use the new or 
amended test procedure requirements to make representations concerning 
the energy efficiency or use of a product, including certification that 
the covered product/equipment meets an applicable energy conservation 
standard.
    (2) For energy conservation standards, the compliance date is the 
specific date upon which manufacturers are required to meet the new or 
amended standards for applicable covered products/equipment that are 
distributed in interstate commerce.

[[Page 774]]

       13. Principles for the Conduct of the Engineering Analysis

    (a) The purpose of the engineering analysis is to develop the 
relationship between efficiency and cost of the subject product/
equipment. The Department will use the most appropriate means available 
to determine the efficiency/cost relationship, including an overall 
system approach or engineering modeling to predict the reduction in 
energy use or improvement in energy efficiency that can be expected from 
individual design options as discussed in paragraphs (b) and (c) of this 
section. From this efficiency/cost relationship, measures such as 
payback, life-cycle cost, and energy savings can be developed. The 
Department will identify issues that will be examined in the engineering 
analysis and the types of specialized expertise that may be required. 
DOE will select appropriate contractors, subcontractors, and expert 
consultants, as necessary, to perform the engineering analysis and the 
impact analysis. Also, the Department will consider data, information, 
and analyses received from interested parties for use in the analysis 
wherever feasible.
    (b) The engineering analysis begins with the list of design options 
developed in consultation with the interested parties as a result of the 
screening process. The Department will establish the likely cost and 
performance improvement of each design option. Ranges and uncertainties 
of cost and performance will be established, although efforts will be 
made to minimize uncertainties by using measures such as test data or 
component or material supplier information where available. Estimated 
uncertainties will be carried forward in subsequent analyses. The use of 
quantitative models will be supplemented by qualitative assessments as 
appropriate.
    (c) The next step includes identifying, modifying, or developing any 
engineering models necessary to predict the efficiency impact of any one 
or combination of design options on the product/equipment. A base case 
configuration or starting point will be established, as well as the 
order and combination/blending of the design options to be evaluated. 
DOE will then perform the engineering analysis and develop the cost-
efficiency curve for the product/equipment. The cost efficiency curve 
and any necessary models will be available to stakeholders during the 
pre-NOPR stage of the rulemaking.

       14. Principles for the Analysis of Impacts on Manufacturers

    (a) Purpose. The purpose of the manufacturer analysis is to identify 
the likely private impacts of efficiency standards on manufacturers. The 
Department will analyze the impact of standards on manufacturers with 
substantial input from manufacturers and other interested parties. This 
section describes the principles that will be used in conducting future 
manufacturing impact analyses.
    (b) Issue identification. In the impact analysis stage (section 
5(d)), the Department will identify issues that will require greater 
consideration in the detailed manufacturer impact analysis. Possible 
issues may include identification of specific types or groups of 
manufacturers and concerns over access to technology. Specialized 
contractor expertise, empirical data requirements, and analytical tools 
required to perform the manufacturer impact analysis also would be 
identified at this stage.
    (c) Industry characterization. Prior to initiating detailed impact 
studies, the Department will seek input on the present and past industry 
structure and market characteristics. Input on the following issues will 
be sought:
    (1) Manufacturers and their current and historical relative market 
shares;
    (2) Manufacturer characteristics, such as whether manufacturers make 
a full line of models or serve a niche market;
    (3) Trends in the number of manufacturers;
    (4) Financial situation of manufacturers;
    (5) Trends in product/equipment characteristics and retail markets 
including manufacturer market shares and market concentration; and
    (6) Identification of other relevant regulatory actions and a 
description of the nature and timing of any likely impacts.
    (d) Cost impacts on manufacturers. The costs of labor, material, 
engineering, tooling, and capital are difficult to estimate, 
manufacturer-specific, and usually proprietary. The Department will seek 
input from interested parties on the treatment of cost issues. 
Manufacturers will be encouraged to offer suggestions as to possible 
sources of data and appropriate data collection methodologies. Costing 
issues to be addressed include:
    (1) Estimates of total private cost impacts, including product/
equipment-specific costs (based on cost impacts estimated for the 
engineering analysis) and front-end investment/conversion costs for the 
full range of product/equipment models.
    (2) Range of uncertainties in estimates of average cost, considering 
alternative designs and technologies which may vary cost impacts and 
changes in costs of material, labor, and other inputs which may vary 
costs.
    (3) Variable cost impacts on particular types of manufacturers, 
considering factors such as atypical sunk costs or characteristics of 
specific models which may increase or decrease costs.
    (e) Impacts on product/equipment sales, features, prices, and cost 
recovery. In order to make manufacturer cash-flow calculations, it is 
necessary to predict the number of products/equipment sold and their 
sale price.

[[Page 775]]

This requires an assessment of the likely impacts of price changes on 
the number of products/equipment sold and on typical features of models 
sold. Past analyses have relied on price and shipment data generated by 
economic models. The Department will develop additional estimates of 
prices and shipments by drawing on multiple sources of data and 
experience including: actual shipment and pricing experience; data from 
manufacturers, retailers, and other market experts; financial models, 
and sensitivity analyses. The possible impacts of candidate/trial 
standard levels on consumer choices among competing fuels will be 
explicitly considered where relevant.
    (f) Measures of impact. The manufacturer impact analysis will 
estimate the impacts of candidate/trial standard levels on the net cash 
flow of manufacturers. Computations will be performed for the industry 
as a whole and for typical and atypical manufacturers. The exact nature 
and the process by which the analysis will be conducted will be 
determined by DOE, with input from interested parties, as appropriate. 
Impacts to be analyzed include:
    (1) Industry net present value, with sensitivity analyses based on 
uncertainty of costs, sales prices, and sales volumes;
    (2) Cash flows, by year; and
    (3) Other measures of impact, such as revenue, net income, and 
return on equity, as appropriate. DOE also notes that the 
characteristics of a typical manufacturers worthy of special 
consideration will be determined in consultation with manufacturers and 
other interested parties and may include: manufacturers incurring higher 
or lower than average costs; and manufacturers experiencing greater or 
fewer adverse impacts on sales. Alternative scenarios based on other 
methods of estimating cost or sales impacts also will be performed, as 
needed.
    (g) Cumulative Impacts of Other Federal Regulatory Actions. (1) The 
Department will recognize and seek to mitigate the overlapping effects 
on manufacturers of new or revised DOE standards and other regulatory 
actions affecting the same products or equipment. DOE will analyze and 
consider the impact on manufacturers of multiple product/equipment-
specific regulatory actions. These factors will be considered in setting 
rulemaking priorities, conducting the early assessment as to whether DOE 
should proceed with a standards rulemaking, assessing manufacturer 
impacts of a particular standard, and establishing compliance dates for 
a new or revised standard that, consistent with any statutory 
requirements, are appropriately coordinated with other regulatory 
actions to mitigate any cumulative burden.
    (2) If the Department determines that a proposed standard would 
impose a significant impact on product or equipment manufacturers within 
approximately three years of the compliance date of another DOE standard 
that imposes significant impacts on the same manufacturers (or divisions 
thereof, as appropriate), the Department will, in addition to evaluating 
the impact on manufacturers of the proposed standard, assess the joint 
impacts of both standards on manufacturers.
    (3) If the Department is directed to establish or revise standards 
for products/equipment that are components of other products/equipment 
subject to standards, the Department will consider the interaction 
between such standards in setting rulemaking priorities and assessing 
manufacturer impacts of a particular standard. The Department will 
assess, as part of the engineering and impact analyses, the cost of 
components subject to efficiency standards.
    (h) Summary of quantitative and qualitative assessments. The summary 
of quantitative and qualitative assessments will contain a description 
and discussion of uncertainties. Alternative estimates of impacts, 
resulting from the different potential scenarios developed throughout 
the analysis, will be explicitly presented in the final analysis 
results.
    (1) Key modeling and analytical tools. In its assessment of the 
likely impacts of standards on manufacturers, the Department will use 
models that are clear and understandable, feature accessible 
calculations, and have clearly explained assumptions. As a starting 
point, the Department will use the Government Regulatory Impact Model 
(GRIM). The Department will also support the development of economic 
models for price and volume forecasting. Research required to update key 
economic data will be considered.
    (2) [Reserved]

         15. Principles for the Analysis of Impacts on Consumers

    (a) Early consideration of impacts on consumer utility. The 
Department will consider at the earliest stages of the development of a 
standard whether particular design options will lessen the utility of 
the covered products/equipment to the consumer. See paragraph (c) of 
section 6.
    (b) Impacts on product/equipment availability. The Department will 
determine, based on consideration of information submitted during the 
standard development process, whether a proposed standard is likely to 
result in the unavailability of any covered product/equipment type with 
performance characteristics (including reliability), features, sizes, 
capacities, and volumes that are substantially the same as products/
equipment generally available in the U.S. at the time. DOE will not 
promulgate a standard if it concludes that it would result in such 
unavailability.
    (c) Department of Justice review. As required by law, the Department 
will solicit the views

[[Page 776]]

of the Department of Justice on any lessening of competition likely to 
result from the imposition of a proposed standard and will give the 
views provided full consideration in assessing economic justification of 
a proposed standard. In addition, DOE may consult with the Department of 
Justice at earlier stages in the standards development process to seek 
its preliminary views on competitive impacts.
    (d) Variation in consumer impacts. The Department will use regional 
analysis and sensitivity analysis tools, as appropriate, to evaluate the 
potential distribution of impacts of candidate/trial standard levels 
among different subgroups of consumers. The Department will consider 
impacts on significant segments of consumers in determining standards 
levels. Where there are significant negative impacts on identifiable 
subgroups, DOE will consider the efficacy of voluntary approaches as a 
means to achieve potential energy savings.
    (e) Payback period and first cost. (1) In the assessment of consumer 
impacts of standards, the Department will consider Life-Cycle Cost, 
Payback Period, and Cost of Conserved Energy to evaluate the savings in 
operating expenses relative to increases in purchase price. The 
Department also performs sensitivity and scenario analyses when 
appropriate. The results of these analyses will be carried throughout 
the analysis and the ensuing uncertainty described.
    (2) If, in the analysis of consumer impacts, the Department 
determines that a candidate/trial standard level would result in a 
substantial increase in product/equipment first costs to consumers or 
would not pay back such additional first costs through energy cost 
savings in less than three years, Department will assess the likely 
impacts of such a standard on low-income households, product/equipment 
sales and fuel switching, as appropriate.

             16. Consideration of Non-Regulatory Approaches

    The Department recognizes that non-regulatory efforts by 
manufacturers, utilities, and other interested parties can result in 
substantial efficiency improvements. The Department intends to consider 
the likely effects of non-regulatory initiatives on product/equipment 
energy use, consumer utility and life-cycle costs, manufacturers, 
competition, utilities, and the environment, as well as the distribution 
of these impacts among different regions, consumers, manufacturers, and 
utilities. DOE will attempt to base its assessment on the actual impacts 
of such initiatives to date, but also will consider information 
presented regarding the impacts that any existing initiative might have 
in the future. Such information is likely to include a demonstration of 
the strong commitment of manufacturers, distribution channels, 
utilities, or others to such non-regulatory efficiency improvements. 
This information will be used in assessing the likely incremental 
impacts of establishing or revising standards, in assessing--where 
possible--appropriate compliance dates for new or revised standards, and 
in considering DOE support of non-regulatory initiatives.

                17. Cross-Cutting Analytical Assumptions

    In selecting values for certain cross-cutting analytical 
assumptions, DOE expects to continue relying upon the following sources 
and general principles:
    (a) Underlying economic assumptions. The appliance standards 
analyses will generally use the same economic growth and development 
assumptions that underlie the most current Annual Energy Outlook (AEO) 
published by the Energy Information Administration (EIA).
    (b) Analytic time length. The appliance standards analyses will use 
two time lengths--30 years and another time length that is specific to 
the standard being considered such as the useful lifetime of the product 
under consideration. As a sensitivity case, the analyses will also use a 
9-year regulatory time line in analyzing the effects of the standard.
    (c) Energy price and demand trends. Analyses of the likely impact of 
appliance standards on typical users will generally adopt the mid-range 
energy price and demand scenario of the EIA's most current AEO. The 
sensitivity of such estimated impacts to possible variations in future 
energy prices are likely to be examined using the EIA's high and low 
energy price scenarios.
    (d) Product/equipment-specific energy-efficiency trends, without 
updated standards. Product/equipment-specific energy-efficiency trends 
will be based on a combination of the efficiency trends forecast by the 
EIA's residential and commercial demand model of the National Energy 
Modeling System (NEMS) and product-specific assessments by DOE and its 
contractors with input from interested parties.
    (e) Price forecasting. DOE will endeavor to use robust price 
forecasting techniques in projecting future prices of products.
    (f) Private Discount rates. For residential and commercial 
consumers, ranges of three different real discount rates will be used. 
For residential consumers, the mid-range discount rate will represent 
DOE's approximation of the average financing cost (or opportunity costs 
of reduced savings) experienced by typical consumers. Sensitivity 
analyses will be performed using discount rates reflecting the costs 
more likely to be experienced by residential consumers with little or no 
savings and credit card financing and consumers with substantial 
savings. For commercial users, a mid-range discount rate reflecting 
DOE's approximation of the average

[[Page 777]]

real rate of return on commercial investment will be used, with 
sensitivity analyses being performed using values indicative of the 
range of real rates of return likely to be experienced by typical 
commercial businesses. For national net present value calculations, DOE 
would use the Administration's approximation of the average real rate of 
return on private investment in the U.S. economy. For manufacturer 
impacts, DOE typically uses a range of real discount rates which are 
representative of the real rates of return experienced by typical U.S. 
manufacturers affected by the program.
    (g) Social Discount Rates. Social discount rates as specified in OMB 
Circular A-4 will be used in assessing social effects such as costs and 
benefits.
    (h) Environmental impacts. (1) DOE calculates emission reductions of 
carbon dioxide, sulfur dioxide, nitrogen oxides, methane, nitrous 
oxides, and mercury likely to be avoided by candidate/trial standard 
levels based on an emissions analysis that includes the two components 
described in paragraphs (h)(2) and (3) of this section.
    (2) The first component estimates the effect of potential candidate/
trial standard levels on power sector and site combustion emissions of 
carbon dioxide, nitrogen oxides, sulfur dioxide, mercury, methane, and 
nitrous oxide. DOE develops the power sector emissions analysis using a 
methodology based on DOE's latest Annual Energy Outlook. For site 
combustion of natural gas or petroleum fuels, the combustion emissions 
of carbon dioxide and nitrogen oxides are estimated using emission 
intensity factors from the Environmental Protection Agency.
    (3) The second component of DOE's emissions analysis estimates the 
effect of potential candidate/trial standard levels on emissions of 
carbon dioxide, nitrogen oxides, sulfur dioxide, mercury, methane, and 
nitrous oxide due to ``upstream activities'' in the fuel production 
chain. These upstream activities include the emissions related to 
extracting, processing, and transporting fuels to the site of combustion 
as detailed in DOE's Fuel-Fuel-Cycle Statement of Policy (76 FR 51281 
(August 18, 2011)). DOE will consider the effects of the candidate/trial 
standard levels on these emissions after assessing the seven factors 
required to demonstrate economic justification under EPCA. Consistent 
with Executive Order 13783, dated March 28, 2017, when monetizing the 
value of changes in reductions in CO2 and nitrous oxides 
emissions resulting from its energy conservation standards regulations, 
including with respect to the consideration of domestic versus 
international impacts and the consideration of appropriate discount 
rates, DOE ensures, to the extent permitted by law, that any such 
estimates are consistent with the guidance contained in OMB Circular A-4 
of September 17, 2003 (Regulatory Analysis).

[85 FR 8703, Feb. 14, 2020, as amended at 85 FR 50944, Aug. 19, 2020]



    Subpart D_Petitions To Exempt State Regulation From Preemption; 
           Petitions To Withdraw Exemption of State Regulation

    Source: 54 FR 6078, Feb. 7, 1989, unless otherwise noted.



Sec.  430.40  Purpose and scope.

    (a) This subpart prescribes the procedures to be followed in 
connection with petitions requesting a rule that a State regulation 
prescribing an energy conservation standard, water conservation standard 
(in the case of faucets, showerheads, water closets, and urinals), or 
other requirement respecting energy efficiency, energy use, or water use 
(in the case of faucets, showerheads, water closets, and urinals) of a 
type (or class) of covered product not be preempted.
    (b) This subpart also prescribes the procedures to be followed in 
connection with petitions to withdraw a rule exempting a State 
regulation prescribing an energy conservation standard, water 
conservation standard (in the case of faucets, showerheads, water 
closets, and urinals), or other requirement respecting energy 
efficiency, energy use, or water use (in the case of faucets, 
showerheads, water closets, and urinals) of a type (or class) of covered 
product.

[63 FR 13318, Mar. 18, 1998]



Sec.  430.41  Prescriptions of a rule.

    (a) Criteria for exemption from preemption. Upon petition by a State 
which has prescribed an energy conservation standard, water conservation 
standard (in the case of faucets, showerheads, water closets, and 
urinals), or other requirement for a type or class of covered equipment 
for which a Federal energy conservation standard or water conservation 
standard is applicable, the Secretary shall prescribe a rule that such 
standard not be preempted if he determines that the State has 
established by a preponderance of evidence


[[Page 778]]

that such requirement is needed to meet unusual and compelling State or 
local energy interests or water interests. For the purposes of this 
section, the term ``unusual and compelling State or local energy 
interests or water interests'' means interests which are substantially 
different in nature or magnitude than those prevailing in the U.S. 
generally, and are such that when evaluated within the context of the 
State's energy plan and forecast, or water plan and forecast the costs, 
benefits, burdens, and reliability of energy savings or water savings 
resulting from the State regulation make such regulation preferable or 
necessary when measured against the costs, benefits, burdens, and 
reliability of alternative approaches to energy savings or water savings 
or production, including reliance on reasonably predictable market-
induced improvements in efficiency of all equipment subject to the State 
regulation. The Secretary may not prescribe such a rule if he finds that 
interested persons have established, by a preponderance of the evidence, 
that the State's regulation will significantly burden manufacturing, 
marketing, distribution, sale or servicing of the covered equipment on a 
national basis. In determining whether to make such a finding, the 
Secretary shall evaluate all relevant factors including: the extent to 
which the State regulation will increase manufacturing or distribution 
costs of manufacturers, distributors, and others; the extent to which 
the State regulation will disadvantage smaller manufacturers, 
distributors, or dealers or lessen competition in the sale of the 
covered product in the State; the extent to which the State regulation 
would cause a burden to manufacturers to redesign and produce the 
covered product type (or class), taking into consideration the extent to 
which the regulation would result in a reduction in the current models, 
or in the projected availability of models, that could be shipped on the 
effective date of the regulation to the State and within the U.S., or in 
the current or projected sales volume of the covered product type (or 
class) in the State and the U.S.; and the extent to which the State 
regulation is likely to contribute significantly to a proliferation of 
State appliance efficiency requirements and the cumulative impact such 
requirements would have. The Secretary may not prescribe such a rule if 
he finds that such a rule will result in the unavailability in the State 
of any covered product (or class) of performance characteristics 
(including reliability), features, sizes, capacities, and volumes that 
are substantially the same as those generally available in the State at 
the time of the Secretary's finding. The failure of some classes (or 
types) to meet this criterion shall not affect the Secretary's 
determination of whether to prescribe a rule for other classes (or 
types).
    (1) Requirements of petition for exemption from preemption. A 
petition from a State for a rule for exemption from preemption shall 
include the information listed in paragraphs (a)(1)(i) through 
(a)(1)(vi) of this section. A petition for a rule and correspondence 
relating to such petition shall be available for public review except 
for confidential or proprietary information submitted in accordance with 
the Department of Energy's Freedom of Information Regulations set forth 
in 10 CFR part 1004:
    (i) The name, address, and telephone number of the petitioner;
    (ii) A copy of the State standard for which a rule exempting such 
standard is sought;
    (iii) A copy of the State's energy plan or water plan and forecast;
    (iv) Specification of each type or class of covered product for 
which a rule exempting a standard is sought;
    (v) Other information, if any, believed to be pertinent by the 
petitioner; and
    (vi) Such other information as the Secretary may require.
    (2) [Reserved]
    (b) Criteria for exemption from preemption when energy emergency 
conditions or water emergency conditions (in the case of faucets, 
showerheads, water closets, and urinals) exist within State. Upon 
petition by a State which has prescribed an energy conservation standard 
or water conservation standard (in the case of faucets, showerheads, 
water closets, and urinals) or other requirement for a type or class of 
covered product for

[[Page 779]]

which a Federal energy conservation standard or water conservation 
standard is applicable, the Secretary may prescribe a rule, effective 
upon publication in the Federal Register, that such State regulation not 
be preempted if he determines that in addition to meeting the 
requirements of paragraph (a) of this section the State has established 
that: an energy emergency condition or water emergency condition exists 
within the State that imperils the health, safety, and welfare of its 
residents because of the inability of the State or utilities within the 
State to provide adequate quantities of gas, electric energy, or water 
to its residents at less than prohibitive costs; and cannot be 
substantially alleviated by the importation of energy or water or the 
use of interconnection agreements; and the State regulation is necessary 
to alleviate substantially such condition.
    (1) Requirements of petition for exemption from preemption when 
energy emergency conditions or water emergency conditions (in the case 
of faucets, showerheads, water closets, and urinals) exist within a 
State. A petition from a State for a rule for exemption from preemption 
when energy emergency conditions or water emergency conditions exist 
within a State shall include the information listed in paragraphs 
(a)(1)(i) through (a)(1)(vi) of this section. A petition shall also 
include the information prescribed in paragraphs (b)(1)(i) through 
(b)(1)(iv) of this section, and shall be available for public review 
except for confidential or proprietary information submitted in 
accordance with the Department of Energy's Freedom of Information 
Regulations set forth in 10 CFR part 1004:
    (i) A description of the energy emergency condition or water 
emergency condition (in the case of faucets, showerheads, water closets, 
and urinals) which exists within the State, including causes and 
impacts.
    (ii) A description of emergency response actions taken by the State 
and utilities within the State to alleviate the emergency condition;
    (iii) An analysis of why the emergency condition cannot be 
alleviated substantially by importation of energy or water or the use of 
interconnection agreements; and
    (iv) An analysis of how the State standard can alleviate 
substantially such emergency condition.
    (2) [Reserved]
    (c) Criteria for withdrawal of a rule exempting a State standard. 
Any person subject to a State standard which, by rule, has been exempted 
from Federal preemption and which prescribes an energy conservation 
standard or water conservation standard (in the case of faucets, 
showerheads, water closets, and urinals) or other requirement for a type 
or class of a covered product, when the Federal energy conservation 
standard or water conservation standard (in the case of faucets, 
showerheads, water closets, and urinals) for such product subsequently 
is amended, may petition the Secretary requesting that the exemption 
rule be withdrawn. The Secretary shall consider such petition in 
accordance with the requirements of paragraph (a) of this section, 
except that the burden shall be on the petitioner to demonstrate that 
the exemption rule received by the State should be withdrawn as a result 
of the amendment to the Federal standard. The Secretary shall withdraw 
such rule if he determines that the petitioner has shown the rule should 
be withdrawn.
    (1) Requirements of petition to withdraw a rule exempting a State 
standard. A petition for a rule to withdraw a rule exempting a State 
standard shall include the information prescribed in paragraphs 
(c)(1)(i) through (c)(1)(vii) of this section, and shall be available 
for public review, except for confidential or proprietary information 
submitted in accordance with the Department of Energy's Freedom of 
Information Regulations set forth in 10 CFR part 1004:
    (i) The name, address and telephone number of the petitioner;
    (ii) A statement of the interest of the petitioner for which a rule 
withdrawing an exemption is sought;
    (iii) A copy of the State standard for which a rule withdrawing an 
exemption is sought;
    (iv) Specification of each type or class of covered product for 
which a

[[Page 780]]

rule withdrawing an exemption is sought;
    (v) A discussion of the factors contained in paragraph (a) of this 
section;
    (vi) Such other information, if any, believed to be pertinent by the 
petitioner; and
    (vii) Such other information as the Secretary may require.
    (2) [Reserved]

[63 FR 13318, Mar. 18, 1998]



Sec.  430.42  Filing requirements.

    (a) Service. All documents required to be served under this subpart 
shall, if mailed, be served by first class mail. Service upon a person's 
duly authorized representative shall constitute service upon that 
person.
    (b) Obligation to supply information. A person or State submitting a 
petition is under a continuing obligation to provide any new or newly 
discovered information relevant to that petition. Such information 
includes, but is not limited to, information regarding any other 
petition or request for action subsequently submitted by that person or 
State.
    (c) The same or related matters. A person or State submitting a 
petition or other request for action shall state whether to the best 
knowledge of that petitioner the same or related issue, act, or 
transaction has been or presently is being considered or investigated by 
any State agency, department, or instrumentality.
    (d) Computation of time. (1) Computing any period of time prescribed 
by or allowed under this subpart, the day of the action from which the 
designated period of time begins to run is not to be included. If the 
last day of the period is Saturday, or Sunday, or Federal legal holiday, 
the period runs until the end of the next day that is neither a 
Saturday, or Sunday or Federal legal holiday.
    (2) Saturdays, Sundays, and intervening Federal legal holidays shall 
be excluded from the computation of time when the period of time allowed 
or prescribed is 7 days or less.
    (3) When a submission is required to be made within a prescribed 
time, DOE may grant an extension of time upon good cause shown.
    (4) Documents received after regular business hours are deemed to 
have been submitted on the next regular business day. Regular business 
hours for the DOE's National Office, Washington, DC, are 8:30 a.m. to 
4:30 p.m.
    (5) DOE reserves the right to refuse to accept, and not to consider, 
untimely submissions.
    (e) Filing of petitions. (1) A petition for a rule shall be 
submitted in triplicate to: The Assistant Secretary for Conservation and 
Renewable Energy, U.S. Department of Energy, Section 327 Petitions, 
Appliance Efficiency Standards, Forrestal Building, 1000 Independence 
Avenue, SW., Washington, DC 20585.
    (2) A petition may be submitted on behalf of more than one person. A 
joint petition shall indicate each person participating in the 
submission. A joint petition shall provide the information required by 
Sec.  430.41 for each person on whose behalf the petition is submitted.
    (3) All petitions shall be signed by the person(s) submitting the 
petition or by a duly authorized representative. If submitted by a duly 
authorized representative, the petition shall certify this 
authorization.
    (4) A petition for a rule to withdraw a rule exempting a State 
regulation, all supporting documents, and all future submissions shall 
be served on each State agency, department, or instrumentality whose 
regulation the petitioner seeks to supersede. The petition shall contain 
a certification of this service which states the name and mailing 
address of the served parties, and the date of service.
    (f) Acceptance for filing. (1) Within fifteen (15) days of the 
receipt of a petition, the Secretary will either accept it for filing or 
reject it, and the petitioner will be so notified in writing. The 
Secretary will serve a copy of this notification on each other party 
served by the petitioner. Only such petitions which conform to the 
requirements of this subpart and which contain sufficient information 
for the purposes of a substantive decision will be accepted for filing. 
Petitions which do not so conform will be rejected and an explanation 
provided to petitioner in writing.

[[Page 781]]

    (2) For purposes of the Act and this subpart, a petition is deemed 
to be filed on the date it is accepted for filing.
    (g) Docket. A petition accepted for filing will be assigned an 
appropriate docket designation. Petitioner shall use the docket 
designation in all subsequent submissions.



Sec.  430.43  Notice of petition.

    (a) Promptly after receipt of a petition and its acceptance for 
filing, notice of such petition shall be published in the Federal 
Register. The notice shall set forth the availability for public review 
of all data and information available, and shall solicit comments, data 
and information with respect to the determination on the petition. 
Except as may otherwise be specified, the period for public comment 
shall be 60 days after the notice appears in the Federal Register.
    (b) In addition to the material required under paragraph (a) of this 
section, each notice shall contain a summary of the State regulation at 
issue and the petitioner's reasons for the rule sought.



Sec.  430.44  Consolidation.

    DOE may consolidate any or all matters at issue in two or more 
proceedings docketed where there exist common parties, common questions 
of fact and law, and where such consolidation would expedite or simplify 
consideration of the issues. Consolidation shall not affect the right of 
any party to raise issues that could have been raised if consolidation 
had not occurred.



Sec.  430.45  Hearing.

    The Secretary may hold a public hearing, and publish notice in the 
Federal Register of the date and location of the hearing, when he 
determines that such a hearing is necessary and likely to result in a 
timely and effective resolution of the issues. A transcript shall be 
kept of any such hearing.



Sec.  430.46  Disposition of petitions.

    (a) After the submission of public comments under Sec.  430.42(a), 
the Secretary shall prescribe a final rule or deny the petition within 6 
months after the date the petition is filed.
    (b) The final rule issued by the Secretary or a determination by the 
Secretary to deny the petition shall include a written statement setting 
forth his findings and conclusions, and the reasons and basis therefor. 
A copy of the Secretary's decision shall be sent to the petitioner and 
the affected State agency. The Secretary shall publish in the Federal 
Register a notice of the final rule granting or denying the petition and 
the reasons and basis therefor.
    (c) If the Secretary finds that he cannot issue a final rule within 
the 6-month period pursuant to paragraph (a) of this section, he shall 
publish a notice in the Federal Register extending such period to a date 
certain, but no longer than one year after the date on which the 
petition was filed. Such notice shall include the reasons for the delay.



Sec.  430.47  Effective dates of final rules.

    (a) A final rule exempting a State standard from Federal preemption 
will be effective:
    (1) Upon publication in the Federal Register if the Secretary 
determines that such rule is needed to meet an ``energy emergency 
condition or water emergency condition (in the case of faucets, 
showerheads, water closets, and urinals)'' within the State.
    (2) Three years after such rule is published in the Federal 
Register; or
    (3) Five years after such rule is published in the Federal Register 
if the Secretary determines that such additional time is necessary due 
to the burdens of retooling, redesign or distribution.
    (b) A final rule withdrawing a rule exempting a State standard will 
be effective upon publication in the Federal Register.

[54 FR 6078, Feb. 7, 1989, as amended at 63 FR 13319, Mar. 18, 1998]



Sec.  430.48  Request for reconsideration.

    (a) Any petitioner whose petition for a rule has been denied may 
request reconsideration within 30 days of denial. The request shall 
contain a statement of facts and reasons supporting reconsideration and 
shall be submitted in writing to the Secretary.

[[Page 782]]

    (b) The denial of a petition will be reconsidered only where it is 
alleged and demonstrated that the denial was based on error in law or 
fact and that evidence of the error is found in the record of the 
proceedings.
    (c) If the Secretary fails to take action on the request for 
reconsideration within 30 days, the request is deemed denied, and the 
petitioner may seek such judicial review as may be appropriate and 
available.
    (d) A petitioner has not exhausted other administrative remedies 
until a request for reconsideration has been filed and acted upon or 
deemed denied.



Sec.  430.49  Finality of decision.

    (a) A decision to prescribe a rule that a State energy conservation 
standard, water conservation standard (in the case of faucets, 
showerheads, water closets, and urinals) or other requirement not be 
preempted is final on the date the rule is issued, i.e., signed by the 
Secretary. A decision to prescribe such a rule has no effect on other 
regulations of a covered product of any other State.
    (b) A decision to prescribe a rule withdrawing a rule exempting a 
State standard or other requirement is final on the date the rule is 
issued, i.e., signed by the Secretary. A decision to deny such a 
petition is final on the day a denial of a request for reconsideration 
is issued, i.e., signed by the Secretary.

[54 FR 6078, Feb. 7, 1989, as amended at 63 FR 13319, Mar. 18, 1998]



                   Subpart E_Small Business Exemptions

    Source: 54 FR 6080, Feb. 7, 1989, unless otherwise noted.



Sec.  430.50  Purpose and scope.

    (a) This subpart establishes procedures for the submission and 
disposition of applications filed by manufacturers of covered consumer 
products with annual gross revenues that do not exceed $8 million to 
exempt them temporarily from all or part of energy conservation 
standards or water conservation standards (in the case of faucets, 
showerheads, water closets, and urinals) established by this part.
    (b) The purpose of this subpart is to provide content and format 
requirements for manufacturers of covered consumer products with low 
annual gross revenues who desire to apply for temporary exemptions from 
applicable energy conservation standards or water conservation standards 
(in the case of faucets, showerheads, water closets, and urinals) .

[54 FR 6080, Feb. 7, 1989, as amended at 63 FR 13319, Mar. 18, 1998]



Sec.  430.51  Eligibility.

    Any manufacturer of a covered product with annual gross revenues 
that do not exceed $8,000,000 from all its operations (including the 
manufacture and sale of covered products) for the 12-month period 
preceding the date of application may apply for an exemption. In 
determining the annual gross revenues of any manufacturer under this 
subpart, the annual gross revenue of any other person who controls, is 
controlled, by, or is under common control with, such manufacturer shall 
be taken into account.



Sec.  430.52  Requirements for applications.

    (a) Each application filed under this subpart shall be submitted in 
triplicate to: U.S. Department of Energy, Small Business Exemptions, 
Appliance Efficiency Standards, Assistant Secretary for Conservation and 
Renewable Energy, Forrestal Building, 1000 Independence Avenue, SW., 
Washington, DC 20585.
    (b) An application shall be in writing and shall include the 
following:
    (1) Name and mailing address of applicant;
    (2) Whether the applicant controls, is controlled by, or is under 
common control with another manufacturer, and if so, the nature of that 
control relationship;
    (3) The text or substance of the standard or portion thereof for 
which the exemption is sought and the length of time desired for the 
exemption;
    (4) Information showing the annual gross revenue of the applicant 
for the preceding 12-month period from all of

[[Page 783]]

its operations (including the manufacture and sale of covered products):
    (5) Information to show that failure to grant an exemption is likely 
to result in a lessening of competition;
    (6) Such other information, if any, believed to be pertinent by the 
petitioner; and
    (7) Such other information as the Secretary may require.



Sec.  430.53  Processing of applications.

    (a) The applicant shall serve a copy of the application, all 
supporting documents and all subsequent submissions, or a copy from 
which confidential information has been deleted pursuant to 10 CFR 
1004.11, to the Secretary, which may be made available for public 
review.
    (b) Within fifteen (15) days of the receipt of an application, the 
Secretary will either accept it for filing or reject it, and the 
applicant will be so notified in writing. Only such applications which 
conform to the requirements of this subpart and which contain sufficient 
information for the purposes of a substantive decision will be accepted 
for filing. Applications which do not so conform will be rejected and an 
explanation provided to the applicant in writing.
    (c) For the purpose of this subpart, an application is deemed to be 
filed on the date it is accepted for filing.
    (d) Promptly after receipt of an application and its acceptance for 
filing, notice of such application shall be published in the Federal 
Register. The notice shall set forth the availability for public review 
of data and information available, and shall solicit comments, data and 
information with respect to the determination on the application. Except 
as may otherwise be specified, the period for public comment shall be 60 
days after the notice appears in the Federal Register.
    (e) The Secretary on his own initiative may convene a hearing if, in 
his discretion, he considers such hearing will advance his evaluation of 
the application.



Sec.  430.54  Referral to the Attorney General.

    Notice of the application for exemption under this subpart shall be 
transmitted to the Attorney General by the Secretary and shall contain 
(a) a statement of the facts and of the reasons for the exemption, and 
(b) copies of all documents submitted.



Sec.  430.55  Evaluation of application.

    The Secretary shall grant an application for exemption submitted 
under this subpart if the Secretary finds, after obtaining the written 
views of the Attorney General, that a failure to allow an exemption 
would likely result in a lessening of competition.



Sec.  430.56  Decision and order.

    (a) Upon consideration of the application and other relevant 
information received or obtained, the Secretary shall issue an order 
granting or denying the application.
    (b) The order shall include a written statement setting forth the 
relevant facts and the legal basis of the order.
    (c) The Secretary shall serve a copy of the order upon the applicant 
and upon any other person readily identifiable by the Secretary as one 
who is interested in or aggrieved by such order. The Secretary also 
shall publish in the Federal Register a notice of the grant or denial of 
the order and the reason therefor.



Sec.  430.57  Duration of temporary exemption.

    A temporary exemption terminates according to its terms but not 
later than twenty-four months after the affective date of the rule for 
which the exemption is allowed.

Subpart F [Reserved]



PART 431_ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL 
AND INDUSTRIAL EQUIPMENT--Table of Contents



                      Subpart A_General Provisions

Sec.
431.1 Purpose and scope.
431.2 Definitions.
431.3 Error correction procedure for energy conservation standards 
          rules.
431.4 Procedures, interpretations, and policies for consideration of new 
          or revised energy conservation standards and test

[[Page 784]]

          procedures for commercial/industrial equipment.

                        Subpart B_Electric Motors

431.11 Purpose and scope.
431.12 Definitions.

   Test Procedures, Materials Incorporated and Methods of Determining 
                               Efficiency

431.14 Sources for information and guidance.
431.15 Materials incorporated by reference.
431.16 Test procedures for the measurement of energy efficiency.
431.17 Determination of efficiency.
431.18 Testing laboratories.
431.19 Department of Energy recognition of accreditation bodies.
431.20 Department of Energy recognition of nationally recognized 
          certification programs.
431.21 Procedures for recognition and withdrawal of recognition of 
          accreditation bodies and certification programs.

                      Energy Conservation Standards

431.25 Energy conservation standards and effective dates.
431.26 Preemption of State regulations.

                                Labeling

431.31 Labeling requirements.
431.32 Preemption of State regulations.

                              Certification

431.35 Applicability of certification requirements.
431.36 Compliance Certification.

Appendix A to Subpart B of 10 CFR Part 431 [Reserved]
Appendix B to Subpart B of Part 431--Uniform Test Method for Measuring 
          Nominal Full Load Efficiency of Electric Motors
Appendix C to Subpart B of Part 431--Compliance Certification

 Subpart C_Commercial Refrigerators, Freezers and Refrigerator-Freezers

431.61 Purpose and scope.
431.62 Definitions concerning commercial refrigerators, freezers and 
          refrigerator-freezers.

                             Test Procedures

431.63 Materials incorporated by reference.
431.64 Uniform test method for the measurement of energy consumption of 
          commercial refrigerators, freezers, and refrigerator-freezers.

                      Energy Conservation Standards

431.66 Energy conservation standards and their effective dates.

Appendix A to Subpart C of Part 431--Uniform Test Method for the 
          Measurement of Energy Consumption of Commercial Refrigerators, 
          Freezers, and Refrigerator-Freezers
Appendix B to Subpart C of Part 431--Amended Uniform Test Method for the 
          Measurement of Energy Consumption of Commercial Refrigerators, 
          Freezers, and Refrigerator-Freezers

                 Subpart D_Commercial Warm Air Furnaces

431.71 Purpose and scope.
431.72 Definitions concerning commercial warm air furnaces.

                             Test Procedures

431.75 Materials incorporated by reference.
431.76 Uniform test method for the measurement of energy efficiency of 
          commercial warm air furnaces.

                      Energy Conservation Standards

431.77 Energy conservation standards and their effective dates.

                  Subpart E_Commercial Packaged Boilers

431.81 Purpose and scope.
431.82 Definitions concerning commercial packaged boilers.

                             Test Procedures

431.85 Materials incorporated by reference.
431.86 Uniform test method for the measurement of energy efficiency of 
          commercial packaged boilers.

                      Energy Conservation Standards

431.87 Energy and water conservation standards and their effective 
          dates.

Appendix A to Subpart E of Part 431--Uniform Test Method for the 
          Measurement of Thermal Efficiency and Combustion Efficiency of 
          Commercial Packaged Boilers

          Subpart F_Commercial Air Conditioners and Heat Pumps

431.91 Purpose and scope.
431.92 Definitions concerning commercial air conditioners and heat 
          pumps.

                             Test Procedures

431.95 Materials incorporated by reference.
431.96 Uniform test method for the measurement of energy efficiency of 
          commercial air conditioners and heat pumps.
431.97 Energy efficiency standards and their compliance dates.

Appendix A to Subpart F of Part 431--Uniform Test Method for the 
          Measurement of Energy Consumption of Air-

[[Page 785]]

          Cooled Small (=65,000 Btu/h), Large, and Very Large 
          Commercial Package Air Conditioning and Heating Equipment

Subpart G_Commercial Water Heaters, Hot Water Supply Boilers and Unfired 
                         Hot Water Storage Tanks

431.101 Purpose and scope.
431.102 Definitions concerning commercial water heaters, hot water 
          supply boilers, unfired hot water storage tanks, and 
          commercial heat pump water heaters.

                             Test Procedures

431.105 Materials incorporated by reference.
431.106 Uniform test method for the measurement of energy efficiency of 
          commercial water heating equipment.

                      Energy Conservation Standards

431.110 Energy conservation standards and their effective dates.

Appendix A to Subpart G of part 431--Uniform Test Method for the 
          Measurement of Thermal Efficiency and Standby Loss of Gas-
          Fired and Oil-Fired Storage Water Heaters and Storage-Type 
          Instantaneous Water Heaters
Appendix B to Subpart G of part 431--Uniform Test Method for the 
          Measurement of Standby Loss of Electric Storage Water Heaters 
          and Storage-Type Instantaneous Water Heaters
Appendix C to Subpart G of part 431--Uniform Test Method for the 
          Measurement of Thermal Efficiency and Standby Loss of Gas-
          Fired and Oil-Fired Instantaneous Water Heaters and Hot Water 
          Supply Boilers
Appendix D to Subpart G of part 431--Uniform Test Method for the 
          Measurement of Standby Loss of Electric Instantaneous Water 
          Heaters
Appendix E to Subpart G of part 431--Uniform Test Method for the 
          Measurement of Energy Efficiency of Commercial Heat Pump Water 
          Heaters

                Subpart H_Automatic Commercial Ice Makers

431.131 Purpose and scope.
431.132 Definitions concerning automatic commercial ice makers.

                             Test Procedures

431.133 Materials incorporated by reference.
431.134 Uniform test methods for the measurement of energy and water 
          consumption of automatic commercial ice makers.

                      Energy Conservation Standards

431.136 Energy conservation standards and their effective dates.

                  Subpart I_Commercial Clothes Washers

431.151 Purpose and scope.
431.152 Definitions concerning commercial clothes washers.

                             Test Procedures

431.154 Test procedures.

                      Energy Conservation Standards

431.156 Energy and water conservation standards and effective dates.

Subpart J [Reserved]

431.171-431.176 [Reserved]

                   Subpart K_Distribution Transformers

431.191 Purpose and scope.
431.192 Definitions.

                             Test Procedures

431.193 Test procedures for measuring energy consumption of distribution 
          transformers.

                      Energy Conservation Standards

431.196 Energy conservation standards and their effective dates.

                       Compliance and Enforcement

Appendix A to Subpart K of Part 431--Uniform Test Method for Measuring 
          the Energy Consumption of Distribution Transformers

                    Subpart L_Illuminated Exit Signs

431.201 Purpose and scope.
431.202 Definitions concerning illuminated exit signs.

                             Test Procedures

431.203 Materials incorporated by reference.
431.204 Uniform test method for the measurement of energy consumption of 
          illuminated exit signs.

                      Energy Conservation Standards

431.206 Energy conservation standards and their effective dates.

         Subpart M_Traffic Signal Modules and Pedestrian Modules

431.221 Purpose and scope.
431.222 Definitions concerning traffic signal modules and pedestrian 
          modules.

[[Page 786]]

                             Test Procedures

431.223 Materials incorporated by reference.
431.224 Uniform test method for the measurement of energy consumption 
          for traffic signal modules and pedestrian modules.
431.226 Energy conservation standards and their effective dates.

                         Subpart N_Unit Heaters

431.241 Purpose and scope.
431.242 Definitions concerning unit heaters.

                       Test Procedures [Reserved]

                      Energy Conservation Standards

431.246 Energy conservation standards and their effective dates.

               Subpart O_Commercial Prerinse Spray Valves

431.261 Purpose and scope.
431.262 Definitions.

                             Test Procedures

431.263 Materials incorporated by reference.
431.264 Uniform test method to measure flow rate and spray force of 
          commercial prerinse spray valves.

                      Energy Conservation Standards

431.266 Energy conservation standards and their effective dates.

                  Subpart P_Mercury Vapor Lamp Ballasts

431.281 Purpose and scope.
431.282 Definitions concerning mercury vapor lamp ballasts.

                       Test Procedures [Reserved]

                      Energy Conservation Standards

431.286 Energy conservation standards and their effective dates.

   Subpart Q_Refrigerated Bottled or Canned Beverage Vending Machines

431.291 Scope.
431.292 Definitions concerning refrigerated bottled or canned beverage 
          vending machines.

                             Test Procedures

431.293 Materials incorporated by reference.
431.294 Uniform test method for the measurement of energy consumption of 
          refrigerated bottled or canned beverage vending machines.

                      Energy Conservation Standards

431.296 Energy conservation standards and their effective dates.

Appendix A to Subpart Q of Part 431--Uniform Test Method for the 
          Measurement of Energy Consumption of Refrigerated Bottled or 
          Canned Beverage Vending Machines
Appendix B to Subpart Q of Part 431--Uniform Test Method for the 
          Measurement of Energy Consumption of Refrigerated Bottled or 
          Canned Beverage Vending Machines

             Subpart R_Walk-in Coolers and Walk-in Freezers

431.301 Purpose and scope.
431.302 Definitions concerning walk-in coolers and walk-in freezers.

                             Test Procedures

431.303 Materials incorporated by reference.
431.304 Uniform test method for the measurement of energy consumption of 
          walk-in coolers and walk-in freezers.
431.305 Walk-in cooler and walk-in freezer labeling requirements.

                      Energy Conservation Standards

431.306 Energy conservation standards and their effective dates.

Appendix A to Subpart R of Part 431--Uniform Test Method for the 
          Measurement of Energy Consumption of the Components of 
          Envelopes of Walk-In Coolers and Walk-In Freezers
Appendix B to Subpart R of Part 431--Uniform Test Method for the 
          Measurement of R-Value for Envelope Components of Walk-In 
          Coolers and Walk-In Freezers
Appendix C to Subpart R of Part 431--Uniform Test Method for the 
          Measurement of Net Capacity and AWEF of Walk-In Cooler and 
          Walk-In Freezer Refrigeration Systems

            Subpart S_Metal Halide Lamp Ballasts and Fixtures

431.321 Purpose and scope.
431.322 Definitions concerning metal halide lamp ballasts and fixtures.

                             Test Procedures

431.323 Materials incorporated by reference.
431.324 Uniform test method for the measurement of energy efficiency and 
          standby mode energy consumption of metal halide lamp ballasts.

                      Energy Conservation Standards

431.326 Energy conservation standards and their effective dates.

                          Subpart T_Compressors

431.341 Purpose and scope.

[[Page 787]]

431.342 Definitions concerning compressors.
431.343 Materials incorporated by reference.
431.344 Test procedure for measuring and determining energy efficiency 
          of compressors.
431.345 Energy conservation standards and effective dates.
431.346-431.346 [Reserved]

Appendix A to Subpart T of Part 431--Uniform Test Method for Certain Air 
          Compressors

                Subpart U_Enforcement for Electric Motors

431.381 Purpose and scope for electric motors.
431.382 Prohibited acts.
431.383 Enforcement process for electric motors.
431.384 [Reserved]
431.385 Cessation of distribution of a basic model of an electric motor.
431.386 Remedies.
431.387 Hearings and appeals.

Appendix A to Subpart U of Part 431--Sampling Plan for Enforcement 
          Testing of Electric Motors

                      Subpart V_General Provisions

431.401 Petitions for waiver and interim waiver.
431.402 Preemption of State regulations for commercial HVAC & WH 
          products.
431.403 Maintenance of records for electric motors.
431.404 Imported electric motors.
431.405 Exported electric motors.
431.406 Subpoena--Electric Motors.
431.407 Confidentiality--Electric Motors.
431.408 Preemption of State regulations for covered equipment other than 
          electric motors and commercial heating, ventilating, air-
          conditioning and water heating products.

    Subpart W_Petitions To Exempt State Regulation From Preemption; 
           Petitions To Withdraw Exemption of State Regulation

431.421 Purpose and scope.
431.422 Prescriptions of a rule.
431.423 Filing requirements.
431.424 Notice of petition.
431.425 Consolidation.
431.426 Hearing.
431.427 Disposition of petitions.
431.428 Effective dates of final rules.
431.429 Request for reconsideration.
431.430 Finality of decision.

                     Subpart X_Small Electric Motors

431.441 Purpose and scope.
431.442 Definitions.

                             Test Procedures

431.443 Materials incorporated by reference.
431.444 Test procedures for the measurement of energy efficiency.
431.445 Determination of small electric motor energy efficiency.

                      Energy Conservation Standards

431.446 Small electric motors energy conservation standards and their 
          effective dates.
431.447 Department of Energy recognition of nationally recognized 
          certification programs.
431.448 Procedures for recognition and withdrawal of recognition of 
          certification programs.

                             Subpart Y_Pumps

431.461 Purpose and scope.
431.462 Definitions.
431.463 Materials incorporated by reference.
431.464 Test procedure for the measurement of energy efficiency, energy 
          consumption, and other performance factors of pumps.
431.465 Pumps energy conservation standards and their compliance dates.
431.466 Pumps labeling requirements.

Appendix A to Subpart Y of Part 431--Uniform Test Method for the 
          Measurement of Energy Consumption of Pumps
Appendix B to Subpart Y of Part 431--Uniform Test Method for the 
          Measurement of Energy Efficiency of Dedicated-Purpose Pool 
          Pumps
Appendix C to Subpart Y of Part 431--Uniform Test Method for the 
          Measurement of Energy Efficiency of Dedicated-Purpose Pool 
          Pumps

    Authority: 42 U.S.C. 6291-6317; 28 U.S.C. 2461 note.

    Source: 64 FR 54141, Oct. 5, 1999, unless otherwise noted.



                      Subpart A_General Provisions



Sec.  431.1  Purpose and scope.

    This part establishes the regulations for the implementation of 
provisions relating to commercial and industrial equipment in Part B of 
Title III of the Energy Policy and Conservation Act (42 U.S.C. 6291-
6309) and in Part C of Title III of the Energy Policy and Conservation 
Act (42 U.S.C. 6311-6317), which establishes an energy conservation 
program for certain commercial and industrial equipment.

[70 FR 60414, Oct. 18, 2005]

[[Page 788]]



Sec.  431.2  Definitions.

    The following definitions apply for purposes of this part. Any words 
or terms not defined in this Section or elsewhere in this part shall be 
defined as provided in Section 340 of the Act.
    Act means the Energy Policy and Conservation Act of 1975, as 
amended, 42 U.S.C. 6291-6316.
    Alternate efficiency determination method or AEDM means a method of 
calculating the efficiency of a commercial HVAC and WH product, in terms 
of the descriptor used in or under section 342(a) of the Act to state 
the energy conservation standard for that product.
    Btu means British thermal unit, which is the quantity of heat 
required to raise the temperature of one pound of water by one degree 
Fahrenheit.
    Commercial HVAC & WH product means any small, large, or very large 
commercial package air-conditioning and heating equipment, packaged 
terminal air conditioner, packaged terminal heat pump, single package 
vertical air conditioner, single package vertical heat pump, computer 
room air conditioner, variable refrigerant flow multi-split air 
conditioner, variable refrigerant flow multi-split heat pump, commercial 
packaged boiler, hot water supply boiler, commercial warm air furnace, 
instantaneous water heater, storage water heater, or unfired hot water 
storage tank.
    Covered equipment means any electric motor, as defined in Sec.  
431.12; commercial heating, ventilating, and air conditioning, and water 
heating product (HVAC & WH product), as defined in Sec.  431.172; 
commercial refrigerator, freezer, or refrigerator-freezer, as defined in 
Sec.  431.62; automatic commercial ice maker, as defined in Sec.  
431.132; commercial clothes washer, as defined in Sec.  431.152; 
distribution transformer, as defined in Sec.  431.192; illuminated exit 
sign, as defined in Sec.  431.202; traffic signal module or pedestrian 
module, as defined in Sec.  431.222; unit heater, as defined in Sec.  
431.242; commercial prerinse spray valve, as defined in Sec.  431.262; 
mercury vapor lamp ballast, as defined in Sec.  431.282; refrigerated 
bottled or canned beverage vending machine, as defined in Sec.  431.292; 
walk-in cooler and walk-in freezer, as defined in Sec.  431.302; metal 
halide ballast and metal halide lamp fixture, as defined in Sec.  
431.322.
    DOE or the Department means the U.S. Department of Energy.
    Energy conservation standard means any standards meeting the 
definitions of that term in 42 U.S.C. 6291(6) and 42 U.S.C. 6311(18) as 
well as any other water conservation standards and design requirements 
found in this part or parts 430 or 431.
    EPCA means the Energy Policy and Conservation Act, as amended, 42 
U.S.C. 6291-6316.
    Flue loss means the sum of the sensible heat and latent heat above 
room temperature of the flue gases leaving the appliance.
    Gas means propane or natural gas as defined by the Federal Power 
Commission.
    Import means to import into the customs territory of the United 
States.
    Independent laboratory means a laboratory or test facility not 
controlled by, affiliated with, having financial ties with, or under 
common control with the manufacturer or distributor of the covered 
equipment being evaluated.
    Industrial equipment means an article of equipment, regardless of 
whether it is in fact distributed in commerce for industrial or 
commercial use, of a type which:
    (1) In operation consumes, or is designed to consume energy;
    (2) To any significant extent, is distributed in commerce for 
industrial or commercial use; and
    (3) Is not a ``covered product'' as defined in Section 321(2) of 
EPCA, 42 U.S.C. 6291(2), other than a component of a covered product 
with respect to which there is in effect a determination under Section 
341(c) of EPCA, 42 U.S.C. 6312(c).
    ISO means International Organization for Standardization.
    Manufacture means to manufacture, produce, assemble, or import.
    Manufacturer means any person who manufactures industrial equipment, 
including any manufacturer of a commercial packaged boiler.
    Manufacturer's model number means the identifier used by a 
manufacturer

[[Page 789]]

to uniquely identify the group of identical or essentially identical 
commercial equipment to which a particular unit belongs. The 
manufacturer's model number typically appears on equipment nameplates, 
in equipment catalogs and in other product advertising literature.
    Private labeler means, with respect to any product covered under 
this part, an owner of a brand or trademark on the label of a covered 
product which bears a private label. A covered product bears a private 
label if:
    (1) Such product (or its container) is labeled with the brand or 
trademark of a person other than a manufacturer of such product;
    (2) The person with whose brand or trademark such product (or 
container) is labeled has authorized or caused such product to be so 
labeled; and
    (3) The brand or trademark of a manufacturer of such product does 
not appear on such label.
    Secretary means the Secretary of Energy.
    State means a State, the District of Columbia, Puerto Rico, or any 
territory or possession of the United States.
    State regulation means a law or regulation of a State or political 
subdivision thereof.

[69 FR 61923, Oct. 21, 2004, as amended at 71 FR 71369, Dec. 8, 2006; 74 
FR 12071, Mar. 23, 2009; 75 FR 666, Jan. 5, 2010; 76 FR 12503, Mar. 7, 
2011; 77 FR 28987, May 16, 2012; 79 FR 26601, May 9, 2014]



Sec.  431.3  Error Correction procedure for energy conservation 
standards rules.

    Requests for error corrections pertaining to an energy conservation 
standard rule for commercial or industrial equipment shall follow those 
procedures and provisions detailed in 10 CFR 430.5 of this chapter.

[81 FR 57758, Aug. 24, 2016]



Sec.  431.4  Procedures, interpretations, and policies for consideration 
of new or revised energy conservation standards and test procedures 
for commercial/industrial equipment.

    The procedures, interpretations, and policies for consideration of 
new or revised energy conservation standards and test procedures set 
forth in appendix A to subpart C of part 430 of this chapter shall apply 
to the consideration of new or revised energy conservation standards and 
test procedures considered for adoption under this part.

[85 FR 8711, Feb. 14, 2020]



                        Subpart B_Electric Motors

    Source: 69 FR 61923, Oct. 21, 2004, unless otherwise noted.



Sec.  431.11  Purpose and scope.

    This subpart contains energy conservation requirements for electric 
motors. It contains test procedures that EPCA requires DOE to prescribe, 
related requirements, energy conservation standards prescribed by EPCA, 
labeling rules, and compliance procedures. It also identifies materials 
incorporated by reference in this part. This subpart does not cover 
``small electric motors,'' which are addressed in subpart X of this 
part.

[77 FR 26633, May 4, 2012]



Sec.  431.12  Definitions.

    The following definitions apply for purposes of this subpart, and of 
subparts U and V of this part. Any words or terms not defined in this 
Section or elsewhere in this part shall be defined as provided in 
Section 340 of the Act.
    Accreditation means recognition by an accreditation body that a 
laboratory is competent to test the efficiency of electric motors 
according to the scope and procedures given in Test Method B of IEEE Std 
112-2004 and CSA C390-10 (incorporated by reference, see Sec.  431.15).
    Accreditation body means an organization or entity that conducts and 
administers an accreditation system and grants accreditation.
    Accreditation system means a set of requirements to be fulfilled by 
a testing laboratory, as well as rules of procedure and management, that 
are used to accredit laboratories.
    Accredited laboratory means a testing laboratory to which 
accreditation has been granted.
    Air-over electric motor means an electric motor rated to operate in 
and be cooled by the airstream of a fan or blower that is not supplied 
with the

[[Page 790]]

motor and whose primary purpose is providing airflow to an application 
other than the motor driving it.
    Alternative efficiency determination method or AEDM means, with 
respect to an electric motor, a method of calculating the total power 
loss and average full load efficiency.
    Average full load efficiency means the arithmetic mean of the full 
load efficiencies of a population of electric motors of duplicate 
design, where the full load efficiency of each motor in the population 
is the ratio (expressed as a percentage) of the motor's useful power 
output to its total power input when the motor is operated at its full 
rated load, rated voltage, and rated frequency.
    Basic model means, with respect to an electric motor, all units of a 
given type of electric motor (or class thereof) manufactured by a single 
manufacturer, and which have the same rating, have electrical 
characteristics that are essentially identical, and do not have any 
differing physical or functional characteristics which affect energy 
consumption or efficiency. For the purpose of this definition, 
``rating'' means one of the 113 combinations of an electric motor's 
horsepower (or standard kilowatt equivalent), number of poles, and open 
or enclosed construction, with respect to which Sec.  431.25 prescribes 
nominal full load efficiency standards.
    Brake electric motor means a motor that contains a dedicated 
mechanism for speed reduction, such as a brake, either within or 
external to the motor enclosure
    Certificate of conformity means a document that is issued by a 
certification program, and that gives written assurance that an electric 
motor complies with the energy efficiency standard applicable to that 
motor, as specified in Sec.  431.25.
    Certification program means a certification system that determines 
conformity by electric motors with the energy efficiency standards 
prescribed by and pursuant to the Act.
    Certification system means a system, that has its own rules of 
procedure and management, for giving written assurance that a product, 
process, or service conforms to a specific standard or other specified 
requirements, and that is operated by an entity independent of both the 
party seeking the written assurance and the party providing the product, 
process or service.
    Component set means a combination of motor parts that require the 
addition of more than two endshields (and their associated bearings) to 
create an operable motor. These parts may consist of any combination of 
a stator frame, wound stator, rotor, shaft, or endshields. For the 
purpose of this definition, the term ``operable motor'' means an 
electric motor engineered for performing in accordance with nameplate 
ratings.
    CSA means Canadian Standards Association.
    Definite purpose motor means any motor that cannot be used in most 
general purpose applications and is designed either:
    (1) To standard ratings with standard operating characteristics or 
standard mechanical construction for use under service conditions other 
than usual, such as those specified in NEMA MG1-2009, paragraph 14.3, 
``Unusual Service Conditions,'' (incorporated by reference, see Sec.  
431.15); or
    (2) For use on a particular type of application.
    Definite purpose electric motor means any electric motor that cannot 
be used in most general purpose applications and is designed either:
    (1) To standard ratings with standard operating characteristics or 
standard mechanical construction for use under service conditions other 
than usual, such as those specified in NEMA MG1-2009, paragraph 14.3, 
``Unusual Service Conditions,'' (incorporated by reference, see Sec.  
431.15); or
    (2) For use on a particular type of application.
    Electric motor means a machine that converts electrical power into 
rotational mechanical power.
    Electric motor with encapsulated windings means an electric motor 
capable of passing the conformance test for water resistance described 
in NEMA MG 1-2009, paragraph 12.62 (incorporated by reference, see Sec.  
431.15).
    Electric motor with moisture resistant windings means an electric 
motor that is capable of passing the conformance test for moisture 
resistance generally

[[Page 791]]

described in NEMA MG 1-2009, paragraph 12.63 (incorporated by reference, 
see Sec.  431.15).
    Electric motor with sealed windings means an electric motor capable 
of passing the conformance test for water resistance described in NEMA 
MG 1-2009, paragraph 12.62 (incorporated by reference, see Sec.  
431.15).
    Enclosed motor means an electric motor so constructed as to prevent 
the free exchange of air between the inside and outside of the case but 
not sufficiently enclosed to be termed airtight.
    Fire pump electric motor means an electric motor, including any IEC-
equivalent, that meets the requirements of section 9.5 of NFPA 20 
(incorporated by reference, see Sec.  431.15).
    General purpose electric motor means any electric motor that is 
designed in standard ratings with either:
    (1) Standard operating characteristics and mechanical construction 
for use under usual service conditions, such as those specified in NEMA 
MG1-2009, paragraph 14.2, ``Usual Service Conditions,'' (incorporated by 
reference, see Sec.  431.15) and without restriction to a particular 
application or type of application; or
    (2) Standard operating characteristics or standard mechanical 
construction for use under unusual service conditions, such as those 
specified in NEMA MG1-2009, paragraph 14.3, ``Unusual Service 
Conditions,'' (incorporated by reference, see Sec.  431.15) or for a 
particular type of application, and which can be used in most general 
purpose applications.
    General purpose electric motor (subtype I) means a general purpose 
electric motor that:
    (1) Is a single-speed, induction motor;
    (2) Is rated for continuous duty (MG1) operation or for duty type S1 
(IEC);
    (3) Contains a squirrel-cage (MG1) or cage (IEC) rotor;
    (4) Has foot-mounting that may include foot-mounting with flanges or 
detachable feet;
    (5) Is built in accordance with NEMA T-frame dimensions or their IEC 
metric equivalents, including a frame size that is between two 
consecutive NEMA frame sizes or their IEC metric equivalents;
    (6) Has performance in accordance with NEMA Design A (MG1) or B 
(MG1) characteristics or equivalent designs such as IEC Design N (IEC);
    (7) Operates on polyphase alternating current 60-hertz sinusoidal 
power, and:
    (i) Is rated at 230 or 460 volts (or both) including motors rated at 
multiple voltages that include 230 or 460 volts (or both), or
    (ii) Can be operated on 230 or 460 volts (or both); and
    (8) Includes, but is not limited to, explosion-proof construction.

    Note to definition of General purpose electric motor (subtype I): 
References to ``MG1'' above refer to NEMA Standards Publication MG1-2009 
(incorporated by reference in Sec.  431.15). References to ``IEC'' above 
refer to IEC 60034-1, 60034-12, 60050-411, and 60072-1 (incorporated by 
reference in Sec.  431.15), as applicable.

    General purpose electric motor (subtype II) means any general 
purpose electric motor that incorporates design elements of a general 
purpose electric motor (subtype I) but, unlike a general purpose 
electric motor (subtype I), is configured in one or more of the 
following ways:
    (1) Is built in accordance with NEMA U-frame dimensions as described 
in NEMA MG1-1967 (incorporated by reference, see Sec.  431.15) or in 
accordance with the IEC metric equivalents, including a frame size that 
is between two consecutive NEMA frame sizes or their IEC metric 
equivalents;
    (2) Has performance in accordance with NEMA Design C characteristics 
as described in MG1 or an equivalent IEC design(s) such as IEC Design H;
    (3) Is a close-coupled pump motor;
    (4) Is a footless motor;
    (5) Is a vertical solid shaft normal thrust motor (as tested in a 
horizontal configuration) built and designed in a manner consistent with 
MG1;
    (6) Is an eight-pole motor (900 rpm); or
    (7) Is a polyphase motor with a voltage rating of not more than 600 
volts, is not rated at 230 or 460 volts (or both), and cannot be 
operated on 230 or 460 volts (or both).

    Note to definition of General purpose electric motor (subtype II): 
With the exception of the NEMA Motor Standards MG1-1967 (incorporated by 
reference in Sec.  431.15),

[[Page 792]]

references to ``MG1'' above refer to the 2009 NEMA MG1-2009 
(incorporated by reference in Sec.  431.15). References to ``IEC'' above 
refer to IEC 60034-1, 60034-12, 60050-411, and 60072-1 (incorporated by 
reference in Sec.  431.15), as applicable.

    IEC means the International Electrotechnical Commission.
    IEC Design H motor means an electric motor that
    (1) Is an induction motor designed for use with three-phase power;
    (2) Contains a cage rotor;
    (3) Is capable of direct-on-line starting
    (4) Has 4, 6, or 8 poles;
    (5) Is rated from 0.4 kW to 1600 kW at a frequency of 60 Hz; and
    (6) Conforms to sections 8.1, 8.2, and 8.3 of the IEC 60034-12 
edition 2.1 (incorporated by reference, see Sec.  431.15) requirements 
for starting torque, locked rotor apparent power, and starting.
    IEC Design N motor means an electric motor that:
    (1) Is an induction motor designed for use with three-phase power;
    (2) Contains a cage rotor;
    (3) Is capable of direct-on-line starting;
    (4) Has 2, 4, 6, or 8 poles;
    (5) Is rated from 0.4 kW to 1600 kW at a frequency of 60 Hz; and
    (6) Conforms to sections 6.1, 6.2, and 6.3 of the IEC 60034-12 
edition 2.1 (incorporated by reference, see Sec.  431.15) requirements 
for torque characteristics, locked rotor apparent power, and starting.
    IEEE means the Institute of Electrical and Electronics Engineers, 
Inc.
    Immersible electric motor means an electric motor primarily designed 
to operate continuously in free-air, but is also capable of temporarily 
withstanding complete immersion in liquid for a continuous period of no 
less than 30 minutes.
    Inverter-capable electric motor means an electric motor designed to 
be directly connected to polyphase, sinusoidal line power, but that is 
also capable of continuous operation on an inverter drive over a limited 
speed range and associated load.
    Inverter-only electric motor means an electric motor that is capable 
of rated operation solely with an inverter, and is not intended for 
operation when directly connected to polyphase, sinusoidal line power.
    Liquid-cooled electric motor means a motor that is cooled by liquid 
circulated using a designated cooling apparatus such that the liquid or 
liquid-filled conductors come into direct contact with the parts of the 
motor.
    NEMA means the National Electrical Manufacturers Association.
    NEMA Design A motor means a squirrel-cage motor that:
    (1) Is designed to withstand full-voltage starting and developing 
locked-rotor torque as shown in NEMA MG 1-2009, paragraph 12.38.1 
(incorporated by reference, see Sec.  431.15);
    (2) Has pull-up torque not less than the values shown in NEMA MG 1-
2009, paragraph 12.40.1;
    (3) Has breakdown torque not less than the values shown in NEMA MG 
1-2009, paragraph 12.39.1;
    (4) Has a locked-rotor current higher than the values shown in NEMA 
MG 1-2009, paragraph 12.35.1 for 60 hertz and NEMA MG 1-2009, paragraph 
12.35.2 for 50 hertz; and
    (5) Has a slip at rated load of less than 5 percent for motors with 
fewer than 10 poles.
    NEMA Design B motor means a squirrel-cage motor that is:
    (1) Designed to withstand full-voltage starting;
    (2) Develops locked-rotor, breakdown, and pull-up torques adequate 
for general application as specified in sections 12.38, 12.39 and 12.40 
of NEMA MG1-2009 (incorporated by reference, see Sec.  431.15);
    (3) Draws locked-rotor current not to exceed the values shown in 
section 12.35.1 for 60 hertz and 12.35.2 for 50 hertz of NEMA MG1-2009; 
and
    (4) Has a slip at rated load of less than 5 percent for motors with 
fewer than 10 poles.
    NEMA Design C motor means a squirrel-cage motor that:
    (1) Is Designed to withstand full-voltage starting and developing 
locked-rotor torque for high-torque applications up to the values shown 
in NEMA MG1-2009, paragraph 12.38.2 (incorporated by reference, see 
Sec.  431.15);
    (2) Has pull-up torque not less than the values shown in NEMA MG1-
2009, paragraph 12.40.2;

[[Page 793]]

    (3) Has breakdown torque not less than the values shown in NEMA MG1-
2009, paragraph 12.39.2;
    (4) Has a locked-rotor current not to exceed the values shown in 
NEMA MG1-2009, paragraphs 12.35.1 for 60 hertz and 12.35.2 for 50 hertz; 
and
    (5) Has a slip at rated load of less than 5 percent.
    Nominal full-load efficiency means, with respect to an electric 
motor, a representative value of efficiency selected from the ``nominal 
efficiency'' column of Table 12-10, NEMA MG1-2009, (incorporated by 
reference, see Sec.  431.15), that is not greater than the average full-
load efficiency of a population of motors of the same design.
    Open motor means an electric motor having ventilating openings which 
permit passage of external cooling air over and around the windings of 
the machine.
    Partial electric motor means an assembly of motor components 
necessitating the addition of no more than two endshields, including 
bearings, to create an electric motor capable of operation in accordance 
with the applicable nameplate ratings.
    Special purpose motor means any motor, other than a general purpose 
motor or definite purpose motor, which has special operating 
characteristics or special mechanical construction, or both, designed 
for a particular application.
    Special purpose electric motor means any electric motor, other than 
a general purpose motor or definite electric purpose motor, which has 
special operating characteristics or special mechanical construction, or 
both, designed for a particular application.
    Submersible electric motor means an electric motor that:
    (1) Is intended to operate continuously only while submerged in 
liquid;
    (2) Is capable of operation while submerged in liquid for an 
indefinite period of time; and
    (3) Has been sealed to prevent ingress of liquid from contacting the 
motor's internal parts.
    Total power loss means that portion of the energy used by an 
electric motor not converted to rotational mechanical power, expressed 
in percent.
    Totally enclosed non-ventilated (TENV) electric motor means an 
electric motor that is built in a frame-surface cooled, totally enclosed 
configuration that is designed and equipped to be cooled only by free 
convection.

[69 FR 61923, Oct. 21, 2004, as amended at 74 FR 12071, Mar. 23, 2009; 
77 FR 26633, May 4, 2012; 78 FR 75993, Dec. 13, 2013; 79 FR 31009, May 
29, 2014]

   Test Procedures, Materials Incorporated and Methods of Determining 
                               Efficiency



Sec.  431.14  Sources for information and guidance.

    (a) General. The standards listed in this paragraph are referred to 
in the DOE procedures for testing laboratories, and recognition of 
accreditation bodies and certification programs but are not incorporated 
by reference. These sources are given here for information and guidance.
    (b) NVLAP. National Voluntary Laboratory Accreditation Program, 
National Institute of Standards and Technology, 100 Bureau Drive, M/S 
2140, Gaithersburg, MD 20899-2140, 301-975-4016, or go to http://
www.nist.gov/nvlap/. Also see http://www.nist.gov/nvlap/nvlap-
handbooks.cfm.
    (1) NVLAP Handbook 150, Procedures and General Requirements, 
February 2006.
    (2) NVLAP Handbook 150-10, Efficiency of Electric Motors, February 
2007.
    (3) NIST Handbook 150-10 Checklist, Efficiency of Electric Motors 
Program, (2007-05-04).
    (4) NVLAP Lab Bulletin Number: LB-42-2009, Changes to NVLAP 
Efficiency of Electric Motors Program, March 19, 2009.
    (c) ISO/IEC. International Organization for Standardization (ISO), 
1, ch. de la Voie-Creuse, CP 56, CH- 1211 Geneva 20, Switzerland/
International Electrotechnical Commission, 3, rue de Varemb[eacute], 
P.O. Box 131, CH-1211 Geneva 20, Switzerland.
    (1) ISO/IEC Guide 25, General requirements for the competence of 
calibration and testing laboratories, 1990.
    (2) ISO Guide 27, Guidelines for corrective action to be taken by a 
certification body in the event of either

[[Page 794]]

misapplication of its mark of conformity to a product, or products which 
bear the mark of the certification body being found to subject persons 
or property to risk, 1983.
    (3) ISO/IEC Guide 28, General rules for a model third-party 
certification system for products, 2004.
    (4) ISO/IEC Guide 58, Calibration and testing laboratory 
accreditation systems--General requirements for operation and 
recognition, 1993.
    (5) ISO/IEC Guide 65, General requirements for bodies operating 
product certification systems, 1996.

[77 FR 26634, May 4, 2012]



Sec.  431.15  Materials incorporated by reference.

    (a) General. The Department of Energy incorporates by reference the 
following standards and test procedures into subpart B of part 431. The 
Director of the Federal Register has approved the material listed for 
incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR 
part 51. Any subsequent amendment to a standard by the standard-setting 
organization will not affect DOE regulations unless and until DOE amends 
its test procedures. Material is incorporated as it exists on the date 
of the approval, and a notice of any change in the material will be 
published in the Federal Register. All approved material is available 
for inspection at the U.S. Department of Energy, Office of Energy 
Efficiency and Renewable Energy, Building Technologies Program, Sixth 
Floor, 950 L'Enfant Plaza SW., Washington, DC 20024, (202) 586-2945, or 
go to http://www1.eere.energy.gov/buildings/appliance_standards/. Also, 
this material is available for inspection at the National Archives and 
Records Administration (NARA). For information on the availability of 
this material at NARA, call 202-741-6030, or go to: http://
www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html.
    (b) CSA. Canadian Standards Association, Sales Department, 5060 
Spectrum Way, Suite 100, Mississauga, Ontario, L4W 5N6, Canada, 1-800-
463-6727, or go to http://www.shopcsa.ca/onlinestore/welcome.asp.
    (1) CSA C390-10, Test methods, marking requirements, and energy 
efficiency levels for three-phase induction motors, March 2010, IBR 
approved for Sec. Sec.  431.12; 431.19; 431.20; appendix B to subpart B 
of part 431.
    (2) [Reserved]
    (c) IEC. International Electrotechnical Commission Central Office, 
3, rue de Varemb[eacute], P.O. Box 131, CH-1211 GENEVA 20, Switzerland, 
+ 41 22 919 02 11, or go to http://webstore.iec.ch.
    (1) IEC 60034-1 Edition 12.0 2010-02, (``IEC 60034-1''), Rotating 
Electrical Machines, Part 1: Rating and Performance, February 2010, IBR 
approved as follows: section 4: Duty, clause 4.2.1 and Figure 1, IBR 
approved for Sec.  431.12.
    (2) IEC 60034-12 Edition 2.1 2007-09, (``IEC 60034-12''), Rotating 
Electrical Machines, Part 12: Starting Performance of Single-Speed 
Three-Phase Cage Induction Motors, September 2007, IBR approved as 
follows: clauses 5.2, 5.4, 6, and 8, and Tables 1, 2, 3, 4, 5, 6, and 7, 
IBR approved for Sec.  431.12.
    (3) IEC 60050-411, International Electrotechnical Vocabulary Chapter 
411: Rotating machines, 1996, IBR approved as follows: sections 411-33-
07 and 411-37-26, IBR approved for Sec.  431.12.
    (4) IEC 60072-1, Dimensions and Output Series for Rotating 
Electrical Machines--Part 1: Frame numbers 56 to 400 and flange numbers 
55 to 1080, 1991, IBR approved as follows: clauses 2, 3, 4.1, 6.1, 7, 
and 10, and Tables 1, 2 and 4, IBR approved for Sec.  431.12.
    (d) IEEE. Institute of Electrical and Electronics Engineers, Inc., 
445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, 1-800-678-IEEE 
(4333), or http://www.ieee.org/web/publications/home/index.html.
    (1) IEEE Std 112-2004, Test Procedure for Polyphase Induction Motors 
and Generators, approved February 9, 2004, IBR approved as follows: 
section 6.4, Efficiency Test Method B, Input-Output with Loss 
Segregation, IBR approved for Sec. Sec.  431.12; 431.19; 431.20; 
appendix B to subpart B of part 431.
    (2) [Reserved]
    (e) NEMA. National Electrical Manufacturers Association, 1300 North 
17th Street, Suite 1752, Rosslyn, Virginia 22209, 703-841-3200, or go to 
http://www.nema.org/.

[[Page 795]]

    (1) NEMA Standards Publication MG1-2009 (``NEMA MG1-2009''), Motors 
and Generators, copyright 2009, IBR approved as follows:
    (i) Section I, General Standards Applying to All Machines, Part 1, 
Referenced Standards and Definitions, paragraphs 1.18.1, 1.18.1.1, 
1.19.1.1, 1.19.1.2, 1.19.1.3, and 1.40.1, IBR approved for Sec.  431.12;
    (ii) Section I, General Standards Applying to All Machines, Part 4, 
Dimensions, Tolerances, and Mounting, paragraphs 4.1, 4.2.1, 4.2.2, 
4.4.1, 4.4.2, 4.4.4, 4.4.5, and 4.4.6, Figures 4-1, 4-2, 4-3, 4-4, and 
4-5, and Table 4-2, IBR approved for Sec.  431.12;
    (iii) Section II, Small (Fractional) and Medium (Integral) Machines, 
Part 12, Tests and Performance--AC and DC Motors:
    (A) Paragraphs 12.35.1, 12.35.2, 12.38.1, 12.38.2, 12.39.1, 12.39.2, 
and 12.40.1, 12.40.2, and Tables 12-2, 12-3, and 12-10, IBR approved for 
Sec.  431.12;
    (B) Paragraph 12.58.1, IBR approved for Sec.  431.12 and appendix B 
to subpart B of part 431;
    (C) Paragraph 12.58.2, IBR approved for Sec.  431.31.
    (D) Paragraphs 12.62 and 12.63, IBR approved for Sec.  431.12.
    (iv) Section II, Small (Fractional) and Medium (Integral) Machines, 
Part 14, Application Data--AC and DC Small and Medium Machines, 
paragraphs 14.2 and 14.3, IBR approved for Sec.  431.12.
    (2) NEMA Standards Publication MG1-1967, (``NEMA MG1-1967''), Motors 
and Generators, January 1968, IBR approved as follows:
    (i) Part 11, Dimensions, IBR approved for Sec.  431.12;
    (ii) Part 13, Frame Assignments--A-C Integral-Horsepower Motors, IBR 
approved for Sec.  431.12.
    (f) NFPA. National Fire Protection Association, 1 Batterymarch Park, 
Quincy, MA 02169-7471, 617-770-3000, or go to http://nfpa.org/.
    (1) NFPA 20, 2010 Edition, Standard for the Installation of 
Stationary Pumps for Fire Protection, section 9.5, IBR approved for 
Sec.  431.12.
    (2) (Reserved)

[77 FR 26634, May 4, 2012, as amended at 78 FR 75994, Dec. 13, 2013]



Sec.  431.16  Test procedures for the measurement of energy efficiency.

    For purposes of 10 CFR part 431 and EPCA, the test procedures for 
measuring the energy efficiency of an electric motor shall be the test 
procedures specified in appendix B to this subpart B.



Sec.  431.17  Determination of efficiency.

    When a party determines the energy efficiency of an electric motor 
in order to comply with an obligation imposed on it by or pursuant to 
Part C of Title III of EPCA, 42 U.S.C. 6311-6316, this Section applies. 
This section does not apply to enforcement testing conducted pursuant to 
Sec.  431.192.
    (a) Provisions applicable to all electric motors--(1) General 
requirements. The average full load efficiency of each basic model of 
electric motor must be determined either by testing in accordance with 
Sec.  431.16 of this subpart, or by application of an alternative 
efficiency determination method (AEDM) that meets the requirements of 
paragraphs (a)(2) and (3) of this section, provided, however, that an 
AEDM may be used to determine the average full load efficiency of one or 
more of a manufacturer's basic models only if the average full load 
efficiency of at least five of its other basic models is determined 
through testing.
    (2) Alternative efficiency determination method. An AEDM applied to 
a basic model must be:
    (i) Derived from a mathematical model that represents the mechanical 
and electrical characteristics of that basic model, and
    (ii) Based on engineering or statistical analysis, computer 
simulation or modeling, or other analytic evaluation of performance 
data.
    (3) Substantiation of an alternative efficiency determination 
method. Before an AEDM is used, its accuracy and reliability must be 
substantiated as follows:
    (i) The AEDM must be applied to at least five basic models that have 
been tested in accordance with Sec.  431.16, and
    (ii) The predicted total power loss for each such basic model, 
calculated by applying the AEDM, must be within plus or minus ten 
percent of the mean

[[Page 796]]

total power loss determined from the testing of that basic model.
    (4) Subsequent verification of an AEDM. (i) Each manufacturer shall 
periodically select basic models representative of those to which it has 
applied an AEDM, and for each basic model selected shall either:
    (A) Subject a sample of units to testing in accordance with 
Sec. Sec.  431.16 and 431.17(b)(2) by an accredited laboratory that 
meets the requirements of Sec.  431.18;
    (B) Have a certification body recognized under Sec.  431.20 certify 
its nominal full load efficiency; or
    (C) Have an independent state-registered professional engineer, who 
is qualified to perform an evaluation of electric motor efficiency in a 
highly competent manner and who is not an employee of the manufacturer, 
review the manufacturer's representations and certify that the results 
of the AEDM accurately represent the total power loss and nominal full 
load efficiency of the basic model.
    (ii) Each manufacturer that has used an AEDM under this section 
shall have available for inspection by the Department of Energy records 
showing: the method or methods used; the mathematical model, the 
engineering or statistical analysis, computer simulation or modeling, 
and other analytic evaluation of performance data on which the AEDM is 
based; complete test data, product information, and related information 
that the manufacturer has generated or acquired pursuant to paragraphs 
(a)(3) and (a)(4)(i) of this section; and the calculations used to 
determine the average full load efficiency and total power losses of 
each basic model to which the AEDM was applied.
    (iii) If requested by the Department, the manufacturer shall conduct 
simulations to predict the performance of particular basic models of 
electric motors specified by the Department, analyses of previous 
simulations conducted by the manufacturer, sample testing of basic 
models selected by the Department, or a combination of the foregoing.
    (5) Use of a certification program or accredited laboratory. (i) A 
manufacturer may have a certification program, that DOE has classified 
as nationally recognized under Sec.  431.20, certify the nominal full 
load efficiency of a basic model of electric motor, and issue a 
certificate of conformity for the motor.
    (ii) For each basic model for which a certification program is not 
used as described in paragraph (a)(5)(i) of this section, any testing of 
the motor pursuant to paragraphs (a)(1) through (3) of this section to 
determine its energy efficiency must be carried out in accordance with 
paragraph (b) of this section, in an accredited laboratory that meets 
the requirements of Sec.  431.18. (This includes testing of the basic 
model, pursuant to paragraph (a)(3)(i) of this section, to substantiate 
an AEDM.)
    (b) Additional testing requirements applicable when a certification 
program is not used--(1) Selection of basic models for testing. (i) 
Basic models must be selected for testing in accordance with the 
following criteria:
    (A) Two of the basic models must be among the five basic models with 
the highest unit volumes of production by the manufacturer in the prior 
year, or during the prior 12 calendar month period beginning in 1997, 
\1\ whichever is later;
---------------------------------------------------------------------------

    \1\ In identifying these five basic models, any electric motor that 
does not comply with Sec.  431.25 shall be excluded from consideration.
---------------------------------------------------------------------------

    (B) The basic models should be of different horsepowers without 
duplication;
    (C) The basic models should be of different frame number series 
without duplication; and
    (D) Each basic model should be expected to have the lowest nominal 
full load efficiency among the basic models with the same rating 
(``rating'' as used here has the same meaning as it has in the 
definition of ``basic model'').
    (ii) In any instance where it is impossible for a manufacturer to 
select basic models for testing in accordance with all of these 
criteria, the criteria shall be given priority in the order in which 
they are listed. Within the limits imposed by the criteria, basic models 
shall be selected randomly.
    (2) Selection of units for testing. For each basic model selected 
for testing, \2\

[[Page 797]]

a sample of units shall be selected at random and tested. The sample 
shall be comprised of production units of the basic model, or units that 
are representative of such production units. The sample size shall be 
not fewer than five units, except that when fewer than five units of a 
basic model would be produced over a reasonable period of time 
(approximately 180 days), then each unit shall be tested. In a test of 
compliance with a represented average or nominal efficiency:
---------------------------------------------------------------------------

    \2\ Components of similar design may be substituted without 
requiring additional testing if the represented measures of energy 
consumption continue to satisfy the applicable sampling provision.
---------------------------------------------------------------------------

    (i) The average full-load efficiency of the sample X which is 
defined by
[GRAPHIC] [TIFF OMITTED] TR83AD04.001


where Xi is the measured full-load efficiency of unit i and n is the 
number of units tested, shall satisfy the condition:
[GRAPHIC] [TIFF OMITTED] TR83AD04.002


where RE is the represented nominal full-load efficiency, and
    (ii) The lowest full-load efficiency in the sample Xmin, 
which is defined by
[GRAPHIC] [TIFF OMITTED] TR83AD04.003


shall satisfy the condition
[GRAPHIC] [TIFF OMITTED] TR83AD04.004

    (3) Substantiation of an alternative efficiency determination 
method. The basic models tested under Sec.  431.17(a)(3)(i) must be 
selected for testing in accordance with paragraph (b)(1) of this 
section, and units of each such basic model must be tested in accordance 
with paragraph (b)(2) of this section by an accredited laboratory that 
meets the requirements of Sec.  431.18.



Sec.  431.18  Testing laboratories.

    (a) Testing pursuant to Sec.  431.17(a)(5)(ii) must be conducted in 
an accredited laboratory for which the accreditation body was:
    (1) The National Institute of Standards and Technology/National 
Voluntary Laboratory Accreditation Program (NIST/NVLAP); or
    (2) A laboratory accreditation body having a mutual recognition 
arrangement with NIST/NVLAP; or
    (3) An organization classified by the Department, pursuant to Sec.  
431.19, as an accreditation body.
    (b) NIST/NVLAP is under the auspices of the National Institute of 
Standards and Technology (NIST)/National Voluntary Laboratory 
Accreditation Program (NVLAP), which is part of the U.S. Department of 
Commerce. NIST/NVLAP accreditation is granted on the basis of 
conformance with criteria published in 15 CFR Part 285. The National 
Voluntary Laboratory Accreditation Program, ``Procedures and General 
Requirements,'' NIST Handbook 150-10, February 2007, and Lab Bulletin 
LB-42-2009, Efficiency of Electric Motors Program, (referenced for 
guidance only, see Sec.  431.14) present the technical requirements of 
NVLAP for the Efficiency of Electric Motors field of accreditation. This 
handbook supplements NIST Handbook 150, National Voluntary Laboratory 
Accreditation Program ``Procedures and General Requirements,'' which 
contains 15 CFR part 285 plus all general NIST/NVLAP procedures, 
criteria, and policies. Information regarding NIST/NVLAP and its 
Efficiency of Electric Motors Program (EEM) can be obtained from NIST/
NVLAP, 100 Bureau Drive, Mail Stop 2140, Gaithersburg, MD 20899-2140, 
(301) 975-4016 (telephone), or (301) 926-2884 (fax).

[69 FR 61923, Oct. 21, 2004, as amended at 77 FR 26635, May 4, 2012]



Sec.  431.19  Department of Energy recognition of accreditation bodies.

    (a) Petition. To be classified by the Department of Energy as an 
accreditation body, an organization must submit a petition to the 
Department requesting such classification, in accordance with paragraph 
(c) of this section and Sec.  431.21. The petition must demonstrate that 
the organization meets the criteria in paragraph (b) of this section.

[[Page 798]]

    (b) Evaluation criteria. To be classified as an accreditation body 
by the Department, the organization must meet the following criteria:
    (1) It must have satisfactory standards and procedures for 
conducting and administering an accreditation system and for granting 
accreditation. This must include provisions for periodic audits to 
verify that the laboratories receiving its accreditation continue to 
conform to the criteria by which they were initially accredited, and for 
withdrawal of accreditation where such conformance does not occur, 
including failure to provide accurate test results.
    (2) It must be independent of electric motor manufacturers, 
importers, distributors, private labelers or vendors. It cannot be 
affiliated with, have financial ties with, be controlled by, or be under 
common control with any such entity.
    (3) It must be qualified to perform the accrediting function in a 
highly competent manner.
    (4) It must be expert in the content and application of the test 
procedures and methodologies in IEEE Std 112-2004 Test Method B or CSA 
C390-10, (incorporated by reference, see Sec.  431.15).
    (c) Petition format. Each petition requesting classification as an 
accreditation body must contain a narrative statement as to why the 
organization meets the criteria set forth in paragraph (b) of this 
section, must be signed on behalf of the organization by an authorized 
representative, and must be accompanied by documentation that supports 
the narrative statement. The following provides additional guidance:
    (1) Standards and procedures. A copy of the organization's standards 
and procedures for operating an accreditation system and for granting 
accreditation should accompany the petition.
    (2) Independent status. The petitioning organization should identify 
and describe any relationship, direct or indirect, that it has with an 
electric motor manufacturer, importer, distributor, private labeler, 
vendor, trade association or other such entity, as well as any other 
relationship it believes might appear to create a conflict of interest 
for it in performing as an accreditation body for electric motor testing 
laboratories. It should explain why it believes such relationship(s) 
would not compromise its independence as an accreditation body.
    (3) Qualifications to do accrediting. Experience in accrediting 
should be discussed and substantiated by supporting documents. Of 
particular relevance would be documentary evidence that establishes 
experience in the application of guidelines contained in the ISO/IEC 
Guide 58, Calibration and testing laboratory accreditation systems--
General requirements for operation and recognition, as well as 
experience in overseeing compliance with the guidelines contained in the 
ISO/IEC Guide 25, General Requirements for the Competence of Calibration 
and Testing Laboratories (referenced for guidance only, see Sec.  
431.14).
    (4) Expertise in electric motor test procedures. The petition should 
set forth the organization's experience with the test procedures and 
methodologies in IEEE Std 112-2004 Test Method B and CSA C390-10, 
(incorporated by reference, see Sec.  431.15). This part of the petition 
should include items such as, but not limited to, a description of prior 
projects and qualifications of staff members. Of particular relevance 
would be documentary evidence that establishes experience in applying 
the guidelines contained in the ISO/IEC Guide 25, General Requirements 
for the Competence of Calibration and Testing Laboratories, (referenced 
for guidance only, see Sec.  431.14) to energy efficiency testing for 
electric motors.
    (d) Disposition. The Department will evaluate the petition in 
accordance with Sec.  431.21, and will determine whether the applicant 
meets the criteria in paragraph (b) of this section to be classified as 
an accrediting body.

[69 FR 61923, Oct. 21, 2004, as amended at 77 FR 26635, May 4, 2012]



Sec.  431.20  Department of Energy recognition of nationally recognized 
certification programs.

    (a) Petition. For a certification program to be classified by the 
Department of Energy as being nationally recognized in the United States 
for the purposes of Section 345(c) of EPCA (``nationally recognized''), 
the organization operating the program must submit a petition to the 
Department

[[Page 799]]

requesting such classification, in accordance with paragraph (c) of this 
Section and Sec.  431.21. The petition must demonstrate that the program 
meets the criteria in paragraph (b) of this section.
    (b) Evaluation criteria. For a certification program to be 
classified by the Department as nationally recognized, it must meet the 
following criteria:
    (1) It must have satisfactory standards and procedures for 
conducting and administering a certification system, including periodic 
follow up activities to assure that basic models of electric motor 
continue to conform to the efficiency levels for which they were 
certified, and for granting a certificate of conformity.
    (2) It must be independent of electric motor manufacturers, 
importers, distributors, private labelers or vendors. It cannot be 
affiliated with, have financial ties with, be controlled by, or be under 
common control with any such entity.
    (3) It must be qualified to operate a certification system in a 
highly competent manner.
    (4) It must be expert in the content and application of the test 
procedures and methodologies in IEEE Std 112-2004 Test Method B or CSA 
C390-10, (incorporated by reference, see Sec.  431.15). It must have 
satisfactory criteria and procedures for the selection and sampling of 
electric motors tested for energy efficiency.
    (c) Petition format. Each petition requesting classification as a 
nationally recognized certification program must contain a narrative 
statement as to why the program meets the criteria listed in paragraph 
(b) of this section, must be signed on behalf of the organization 
operating the program by an authorized representative, and must be 
accompanied by documentation that supports the narrative statement. The 
following provides additional guidance as to the specific criteria:
    (1) Standards and procedures. A copy of the standards and procedures 
for operating a certification system and for granting a certificate of 
conformity should accompany the petition.
    (2) Independent status. The petitioning organization should identify 
and describe any relationship, direct or indirect, that it or the 
certification program has with an electric motor manufacturer, importer, 
distributor, private labeler, vendor, trade association or other such 
entity, as well as any other relationship it believes might appear to 
create a conflict of interest for the certification program in operating 
a certification system for compliance by electric motors with energy 
efficiency standards. It should explain why it believes such 
relationship would not compromise its independence in operating a 
certification program.
    (3) Qualifications to operate a certification system. Experience in 
operating a certification system should be discussed and substantiated 
by supporting documents. Of particular relevance would be documentary 
evidence that establishes experience in the application of guidelines 
contained in the ISO/IEC Guide 65, General requirements for bodies 
operating product certification systems, ISO/IEC Guide 27, Guidelines 
for corrective action to be taken by a certification body in the event 
of either misapplication of its mark of conformity to a product, or 
products which bear the mark of the certification body being found to 
subject persons or property to risk, and ISO/IEC Guide 28, General rules 
for a model third-party certification system for products, as well as 
experience in overseeing compliance with the guidelines contained in the 
ISO/IEC Guide 25, General requirements for the competence of calibration 
and testing laboratories (referenced for guidance only, see Sec.  
431.14).
    (4) Expertise in electric motor test procedures. The petition should 
set forth the program's experience with the test procedures and 
methodologies in IEEE Std 112-2004 Test Method B or CSA C390-10, 
(incorporated by reference, see Sec.  431.15). This part of the petition 
should include items such as, but not limited to, a description of prior 
projects and qualifications of staff members. Of particular relevance 
would be documentary evidence that establishes experience in applying 
guidelines contained in the ISO/IEC Guide 25, General Requirements for 
the Competence of Calibration and Testing Laboratories (referenced for 
guidance only, see 431.14) to energy efficiency testing for electric 
motors.

[[Page 800]]

    (d) Disposition. The Department will evaluate the petition in 
accordance with Sec.  431.21, and will determine whether the applicant 
meets the criteria in paragraph (b) of this section for classification 
as a nationally recognized certification program.

[69 FR 61923, Oct. 21, 2004, as amended at 77 FR 26635, May 4, 2012]



Sec.  431.21  Procedures for recognition and withdrawal of recognition 
of accreditation bodies and certification programs.

    (a) Filing of petition. Any petition submitted to the Department 
pursuant to Sec. Sec.  431.19(a) or 431.20(a), shall be entitled 
``Petition for Recognition'' (``Petition'') and must be submitted, in 
triplicate to the Assistant Secretary for Energy Efficiency and 
Renewable Energy, U.S. Department of Energy, Forrestal Building, 1000 
Independence Avenue, SW., Washington, DC 20585-0121. In accordance with 
the provisions set forth in 10 CFR 1004.11, any request for confidential 
treatment of any information contained in such a Petition or in 
supporting documentation must be accompanied by a copy of the Petition 
or supporting documentation from which the information claimed to be 
confidential has been deleted.
    (b) Public notice and solicitation of comments. DOE shall publish in 
the Federal Register the Petition from which confidential information, 
as determined by DOE, has been deleted in accordance with 10 CFR 1004.11 
and shall solicit comments, data and information on whether the Petition 
should be granted. The Department shall also make available for 
inspection and copying the Petition's supporting documentation from 
which confidential information, as determined by DOE, has been deleted 
in accordance with 10 CFR 1004.11. Any person submitting written 
comments to DOE with respect to a Petition shall also send a copy of 
such comments to the petitioner.
    (c) Responsive statement by the petitioner. A petitioner may, within 
10 working days of receipt of a copy of any comments submitted in 
accordance with paragraph (b) of this section, respond to such comments 
in a written statement submitted to the Assistant Secretary for Energy 
Efficiency and Renewable Energy. A petitioner may address more than one 
set of comments in a single responsive statement.
    (d) Public announcement of interim determination and solicitation of 
comments. The Assistant Secretary for Energy Efficiency and Renewable 
Energy shall issue an interim determination on the Petition as soon as 
is practicable following receipt and review of the Petition and other 
applicable documents, including, but not limited to, comments and 
responses to comments. The petitioner shall be notified in writing of 
the interim determination. DOE shall also publish in the Federal 
Register the interim determination and shall solicit comments, data and 
information with respect to that interim determination. Written comments 
and responsive statements may be submitted as provided in paragraphs (b) 
and (c) of this section.
    (e) Public announcement of final determination. The Assistant 
Secretary for Energy Efficiency and Renewable Energy shall as soon as 
practicable, following receipt and review of comments and responsive 
statements on the interim determination, publish in the Federal Register 
a notice of final determination on the Petition.
    (f) Additional information. The Department may, at any time during 
the recognition process, request additional relevant information or 
conduct an investigation concerning the Petition. The Department's 
determination on a Petition may be based solely on the Petition and 
supporting documents, or may also be based on such additional 
information as the Department deems appropriate.
    (g) Withdrawal of recognition--(1) Withdrawal by the Department. If 
the Department believes that an accreditation body or certification 
program that has been recognized under Sec. Sec.  431.19 or 431.20, 
respectively, is failing to meet the criteria of paragraph (b) of the 
section under which it is recognized, the Department will so advise such 
entity and request that it take appropriate corrective action. The 
Department will give the entity an opportunity to respond. If after 
receiving such response, or no response, the Department believes 
satisfactory correction has not

[[Page 801]]

been made, the Department will withdraw its recognition from that 
entity.
    (2) Voluntary withdrawal. An accreditation body or certification 
program may withdraw itself from recognition by the Department by 
advising the Department in writing of such withdrawal. It must also 
advise those that use it (for an accreditation body, the testing 
laboratories, and for a certification organization, the manufacturers) 
of such withdrawal.
    (3) Notice of withdrawal of recognition. The Department will publish 
in the Federal Register a notice of any withdrawal of recognition that 
occurs pursuant to this paragraph.

                      Energy Conservation Standards



Sec.  431.25  Energy conservation standards and effective dates.

    (a) Except as provided for fire pump electric motors in paragraph 
(b) of this section, each general purpose electric motor (subtype I) 
with a power rating of 1 horsepower or greater, but not greater than 200 
horsepower, including a NEMA Design B or an equivalent IEC Design N 
motor that is a general purpose electric motor (subtype I), manufactured 
(alone or as a component of another piece of equipment) on or after 
December 19, 2010, but before June 1, 2016, shall have a nominal full-
load efficiency that is not less than the following:

    Table 1--Nominal Full-Load Efficiencies of General Purpose Electric Motors (Subtype I), Except Fire Pump
                                                 Electric Motors
----------------------------------------------------------------------------------------------------------------
                                                                  Nominal full-load efficiency
                                               -----------------------------------------------------------------
                                                 Open motors (number of poles)      Enclosed motors (number of
 Motor horsepower/Standard kilowatt equivalent ---------------------------------              poles)
                                                                                --------------------------------
                                                    6          4          2          6          4          2
----------------------------------------------------------------------------------------------------------------
1/.75.........................................       82.5       85.5       77.0       82.5       85.5       77.0
1.5/1.1.......................................       86.5       86.5       84.0       87.5       86.5       84.0
2/1.5.........................................       87.5       86.5       85.5       88.5       86.5       85.5
3/2.2.........................................       88.5       89.5       85.5       89.5       89.5       86.5
5/3.7.........................................       89.5       89.5       86.5       89.5       89.5       88.5
7.5/5.5.......................................       90.2       91.0       88.5       91.0       91.7       89.5
10/7.5........................................       91.7       91.7       89.5       91.0       91.7       90.2
15/11.........................................       91.7       93.0       90.2       91.7       92.4       91.0
20/15.........................................       92.4       93.0       91.0       91.7       93.0       91.0
25/18.5.......................................       93.0       93.6       91.7       93.0       93.6       91.7
30/22.........................................       93.6       94.1       91.7       93.0       93.6       91.7
40/30.........................................       94.1       94.1       92.4       94.1       94.1       92.4
50/37.........................................       94.1       94.5       93.0       94.1       94.5       93.0
60/45.........................................       94.5       95.0       93.6       94.5       95.0       93.6
75/55.........................................       94.5       95.0       93.6       94.5       95.4       93.6
100/75........................................       95.0       95.4       93.6       95.0       95.4       94.1
125/90........................................       95.0       95.4       94.1       95.0       95.4       95.0
150/110.......................................       95.4       95.8       94.1       95.8       95.8       95.0
200/150.......................................       95.4       95.8       95.0       95.8       96.2       95.4
----------------------------------------------------------------------------------------------------------------

    (b) Each fire pump electric motor that is a general purpose electric 
motor (subtype I) or general purpose electric motor (subtype II) 
manufactured (alone or as a component of another piece of equipment) on 
or after December 19, 2010, but before June 1, 2016, shall have a 
nominal full-load efficiency that is not less than the following:

                                          Table 2--Nominal Full-Load Efficiencies of Fire Pump Electric Motors
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                               Nominal full-load efficiency
                                                                 ---------------------------------------------------------------------------------------
          Motor horsepower/standard kilowatt equivalent                  Open motors (number of poles)             Enclosed motors (number of poles)
                                                                 ---------------------------------------------------------------------------------------
                                                                      8          6          4          2          8          6          4          2
--------------------------------------------------------------------------------------------------------------------------------------------------------
1/.75...........................................................       74.0       80.0       82.5  .........       74.0       80.0       82.5       75.5
1.5/1.1.........................................................       75.5       84.0       84.0       82.5       77.0       85.5       84.0       82.5
2/1.5...........................................................       85.5       85.5       84.0       84.0       82.5       86.5       84.0       84.0

[[Page 802]]

 
3/2.2...........................................................       86.5       86.5       86.5       84.0       84.0       87.5       87.5       85.5
5/3.7...........................................................       87.5       87.5       87.5       85.5       85.5       87.5       87.5       87.5
7.5/5.5.........................................................       88.5       88.5       88.5       87.5       85.5       89.5       89.5       88.5
10/7.5..........................................................       89.5       90.2       89.5       88.5       88.5       89.5       89.5       89.5
15/11...........................................................       89.5       90.2       91.0       89.5       88.5       90.2       91.0       90.2
20/15...........................................................       90.2       91.0       91.0       90.2       89.5       90.2       91.0       90.2
25/18.5.........................................................       90.2       91.7       91.7       91.0       89.5       91.7       92.4       91.0
30/22...........................................................       91.0       92.4       92.4       91.0       91.0       91.7       92.4       91.0
40/30...........................................................       91.0       93.0       93.0       91.7       91.0       93.0       93.0       91.7
50/37...........................................................       91.7       93.0       93.0       92.4       91.7       93.0       93.0       92.4
60/45...........................................................       92.4       93.6       93.6       93.0       91.7       93.6       93.6       93.0
75/55...........................................................       93.6       93.6       94.1       93.0       93.0       93.6       94.1       93.0
100/75..........................................................       93.6       94.1       94.1       93.0       93.0       94.1       94.5       93.6
125/90..........................................................       93.6       94.1       94.5       93.6       93.6       94.1       94.5       94.5
150/110.........................................................       93.6       94.5       95.0       93.6       93.6       95.0       95.0       94.5
200/150.........................................................       93.6       94.5       95.0       94.5       94.1       95.0       95.0       95.0
250/186.........................................................       94.5       95.4       95.4       94.5       94.5       95.0       95.0       95.4
300/224.........................................................  .........       95.4       95.4       95.0  .........       95.0       95.4       95.4
350/261.........................................................  .........       95.4       95.4       95.0  .........       95.0       95.4       95.4
400/298.........................................................  .........  .........       95.4       95.4  .........  .........       95.4       95.4
450/336.........................................................  .........  .........       95.8       95.8  .........  .........       95.4       95.4
500/373.........................................................  .........  .........       95.8       95.8  .........  .........       95.8       95.4
--------------------------------------------------------------------------------------------------------------------------------------------------------

    (c) Except as provided for fire pump electric motors in paragraph 
(b) of this section, each general purpose electric motor (subtype II) 
with a power rating of 1 horsepower or greater, but not greater than 200 
horsepower, including a NEMA Design B or an equivalent IEC Design N 
motor that is a general purpose electric motor (subtype II), 
manufactured (alone or as a component of another piece of equipment) on 
or after December 19, 2010, but before June 1, 2016, shall have a 
nominal full-load efficiency that is not less than the following:

                Table 3--Nominal Full-Load Efficiencies of General Purpose Electric Motors (Subtype II), Except Fire Pump Electric Motors
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                               Nominal full-load efficiency
                                                                 ---------------------------------------------------------------------------------------
         Motor horsepower/ Standard kilowatt equivalent                  Open motors (number of poles)             Enclosed motors (number of poles)
                                                                 ---------------------------------------------------------------------------------------
                                                                      8          6          4          2          8          6          4          2
--------------------------------------------------------------------------------------------------------------------------------------------------------
1/.75...........................................................       74.0       80.0       82.5  .........       74.0       80.0       82.5       75.5
1.5/1.1.........................................................       75.5       84.0       84.0       82.5       77.0       85.5       84.0       82.5
2/1.5...........................................................       85.5       85.5       84.0       84.0       82.5       86.5       84.0       84.0
3/2.2...........................................................       86.5       86.5       86.5       84.0       84.0       87.5       87.5       85.5
5/3.7...........................................................       87.5       87.5       87.5       85.5       85.5       87.5       87.5       87.5
7.5/5.5.........................................................       88.5       88.5       88.5       87.5       85.5       89.5       89.5       88.5
10/7.5..........................................................       89.5       90.2       89.5       88.5       88.5       89.5       89.5       89.5
15/11...........................................................       89.5       90.2       91.0       89.5       88.5       90.2       91.0       90.2
20/15...........................................................       90.2       91.0       91.0       90.2       89.5       90.2       91.0       90.2
25/18.5.........................................................       90.2       91.7       91.7       91.0       89.5       91.7       92.4       91.0
30/22...........................................................       91.0       92.4       92.4       91.0       91.0       91.7       92.4       91.0
40/30...........................................................       91.0       93.0       93.0       91.7       91.0       93.0       93.0       91.7
50/37...........................................................       91.7       93.0       93.0       92.4       91.7       93.0       93.0       92.4
60/45...........................................................       92.4       93.6       93.6       93.0       91.7       93.6       93.6       93.0
75/55...........................................................       93.6       93.6       94.1       93.0       93.0       93.6       94.1       93.0
100/75..........................................................       93.6       94.1       94.1       93.0       93.0       94.1       94.5       93.6
125/90..........................................................       93.6       94.1       94.5       93.6       93.6       94.1       94.5       94.5
150/110.........................................................       93.6       94.5       95.0       93.6       93.6       95.0       95.0       94.5
200/150.........................................................       93.6       94.5       95.0       94.5       94.1       95.0       95.0       95.0
--------------------------------------------------------------------------------------------------------------------------------------------------------


[[Page 803]]

    (d) Each NEMA Design B or an equivalent IEC Design N motor that is a 
general purpose electric motor (subtype I) or general purpose electric 
motor (subtype II), excluding fire pump electric motors, with a power 
rating of more than 200 horsepower, but not greater than 500 horsepower, 
manufactured (alone or as a component of another piece of equipment) on 
or after December 19, 2010, but before June 1, 2016 shall have a nominal 
full-load efficiency that is not less than the following:

      Table 4--Nominal Full-Load Efficiencies of NEMA Design B General Purpose Electric Motors (Subtype I and II), Except Fire Pump Electric Motors
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                               Nominal full-load efficiency
                                                                 ---------------------------------------------------------------------------------------
         Motor horsepower/ standard kilowatt equivalent                  Open motors (number of poles)             Enclosed motors (number of poles)
                                                                 ---------------------------------------------------------------------------------------
                                                                      8          6          4          2          8          6          4          2
--------------------------------------------------------------------------------------------------------------------------------------------------------
250/186.........................................................       94.5       95.4       95.4       94.5       94.5       95.0       95.0       95.4
300/224.........................................................  .........       95.4       95.4       95.0  .........       95.0       95.4       95.4
350/261.........................................................  .........       95.4       95.4       95.0  .........       95.0       95.4       95.4
400/298.........................................................  .........  .........       95.4       95.4  .........  .........       95.4       95.4
450/336.........................................................  .........  .........       95.8       95.8  .........  .........       95.4       95.4
500/373.........................................................  .........  .........       95.8       95.8  .........  .........       95.8       95.4
--------------------------------------------------------------------------------------------------------------------------------------------------------

    (e) For purposes of determining the required minimum nominal full-
load efficiency of an electric motor that has a horsepower or kilowatt 
rating between two horsepower or two kilowatt ratings listed in any 
table of energy conservation standards in paragraphs (a) through (d) of 
this section, each such motor shall be deemed to have a listed 
horsepower or kilowatt rating, determined as follows:
    (1) A horsepower at or above the midpoint between the two 
consecutive horsepowers shall be rounded up to the higher of the two 
horsepowers;
    (2) A horsepower below the midpoint between the two consecutive 
horsepowers shall be rounded down to the lower of the two horsepowers; 
or
    (3) A kilowatt rating shall be directly converted from kilowatts to 
horsepower using the formula 1 kilowatt = (\1\/0.746) 
horsepower. The conversion should be calculated to three significant 
decimal places, and the resulting horsepower shall be rounded in 
accordance with paragraph (e)(1) or (e)(2) of this section, whichever 
applies.
    (f) The standards in Table 1 through Table 4 of this section do not 
apply to definite purpose electric motors, special purpose electric 
motors, or those motors exempted by the Secretary.
    (g) The standards in Table 5 through Table 7 of this section apply 
only to electric motors, including partial electric motors, that satisfy 
the following criteria:
    (1) Are single-speed, induction motors;
    (2) Are rated for continuous duty (MG 1) operation or for duty type 
S1 (IEC);
    (3) Contain a squirrel-cage (MG 1) or cage (IEC) rotor;
    (4) Operate on polyphase alternating current 60-hertz sinusoidal 
line power;
    (5) Are rated 600 volts or less;
    (6) Have a 2-, 4-, 6-, or 8-pole configuration,
    (7) Are built in a three-digit or four-digit NEMA frame size (or IEC 
metric equivalent), including those designs between two consecutive NEMA 
frame sizes (or IEC metric equivalent), or an enclosed 56 NEMA frame 
size (or IEC metric equivalent),
    (8) Produce at least one horsepower (0.746 kW) but not greater than 
500 horsepower (373 kW), and
    (9) Meet all of the performance requirements of one of the following 
motor types: A NEMA Design A, B, or C motor or an IEC Design N or H 
motor.
    (h) Starting on June 1, 2016, each NEMA Design A motor, NEMA Design 
B motor, and IEC Design N motor that is an electric motor meeting the 
criteria in paragraph (g) of this section and with a power rating from 1 
horsepower through 500 horsepower, but excluding fire pump electric 
motors,

[[Page 804]]

manufactured (alone or as a component of another piece of equipment) 
shall have a nominal full-load efficiency of not less than the 
following:

     Table 5--Nominal Full-Load Efficiencies of NEMA Design A, NEMA Design B and IEC Design N Motors (Excluding Fire Pump Electric Motors) at 60 Hz
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                             Nominal full-load efficiency (%)
                                                                 ---------------------------------------------------------------------------------------
         Motor horsepower/ standard kilowatt equivalent                  2 Pole                4 Pole                6 Pole                8 Pole
                                                                 ---------------------------------------------------------------------------------------
                                                                   Enclosed     Open     Enclosed     Open     Enclosed     Open     Enclosed     Open
--------------------------------------------------------------------------------------------------------------------------------------------------------
1/.75...........................................................       77.0       77.0       85.5       85.5       82.5       82.5       75.5       75.5
1.5/1.1.........................................................       84.0       84.0       86.5       86.5       87.5       86.5       78.5       77.0
2/1.5...........................................................       85.5       85.5       86.5       86.5       88.5       87.5       84.0       86.5
3/2.2...........................................................       86.5       85.5       89.5       89.5       89.5       88.5       85.5       87.5
5/3.7...........................................................       88.5       86.5       89.5       89.5       89.5       89.5       86.5       88.5
7.5/5.5.........................................................       89.5       88.5       91.7       91.0       91.0       90.2       86.5       89.5
10/7.5..........................................................       90.2       89.5       91.7       91.7       91.0       91.7       89.5       90.2
15/11...........................................................       91.0       90.2       92.4       93.0       91.7       91.7       89.5       90.2
20/15...........................................................       91.0       91.0       93.0       93.0       91.7       92.4       90.2       91.0
25/18.5.........................................................       91.7       91.7       93.6       93.6       93.0       93.0       90.2       91.0
30/22...........................................................       91.7       91.7       93.6       94.1       93.0       93.6       91.7       91.7
40/30...........................................................       92.4       92.4       94.1       94.1       94.1       94.1       91.7       91.7
50/37...........................................................       93.0       93.0       94.5       94.5       94.1       94.1       92.4       92.4
60/45...........................................................       93.6       93.6       95.0       95.0       94.5       94.5       92.4       93.0
75/55...........................................................       93.6       93.6       95.4       95.0       94.5       94.5       93.6       94.1
100/75..........................................................       94.1       93.6       95.4       95.4       95.0       95.0       93.6       94.1
125/90..........................................................       95.0       94.1       95.4       95.4       95.0       95.0       94.1       94.1
150/110.........................................................       95.0       94.1       95.8       95.8       95.8       95.4       94.1       94.1
200/150.........................................................       95.4       95.0       96.2       95.8       95.8       95.4       94.5       94.1
250/186.........................................................       95.8       95.0       96.2       95.8       95.8       95.8       95.0       95.0
300/224.........................................................       95.8       95.4       96.2       95.8       95.8       95.8
350/261.........................................................       95.8       95.4       96.2       95.8       95.8       95.8
400/298.........................................................       95.8       95.8       96.2       95.8
450/336.........................................................       95.8       96.2       96.2       96.2
500/373.........................................................       95.8       96.2       96.2       96.2  .........  .........  .........  .........
--------------------------------------------------------------------------------------------------------------------------------------------------------

    (i) Starting on June 1, 2016, each NEMA Design C motor and IEC 
Design H motor that is an electric motor meeting the criteria in 
paragraph (g) of this section and with a power rating from 1 horsepower 
through 200 horsepower manufactured (alone or as a component of another 
piece of equipment) shall have a nominal full-load efficiency that is 
not less than the following:

            Table 6--Nominal Full-Load Efficiencies of NEMA Design C and IEC Design H Motors at 60 Hz
----------------------------------------------------------------------------------------------------------------
                                                          Nominal full-load efficiency (%)
                                   -----------------------------------------------------------------------------
Motor horsepower/standard kilowatt           4 Pole                    6 Pole                    8 Pole
            equivalent             -----------------------------------------------------------------------------
                                      Enclosed       Open       Enclosed       Open       Enclosed       Open
----------------------------------------------------------------------------------------------------------------
1/.75.............................         85.5         85.5         82.5         82.5         75.5         75.5
1.5/1.1...........................         86.5         86.5         87.5         86.5         78.5         77.0
2/1.5.............................         86.5         86.5         88.5         87.5         84.0         86.5
3/2.2.............................         89.5         89.5         89.5         88.5         85.5         87.5
5/3.7.............................         89.5         89.5         89.5         89.5         86.5         88.5
7.5/5.5...........................         91.7         91.0         91.0         90.2         86.5         89.5
10/7.5............................         91.7         91.7         91.0         91.7         89.5         90.2
15/11.............................         92.4         93.0         91.7         91.7         89.5         90.2
20/15.............................         93.0         93.0         91.7         92.4         90.2         91.0
25/18.5...........................         93.6         93.6         93.0         93.0         90.2         91.0
30/22.............................         93.6         94.1         93.0         93.6         91.7         91.7
40/30.............................         94.1         94.1         94.1         94.1         91.7         91.7
50/37.............................         94.5         94.5         94.1         94.1         92.4         92.4
60/45.............................         95.0         95.0         94.5         94.5         92.4         93.0
75/55.............................         95.4         95.0         94.5         94.5         93.6         94.1
100/75............................         95.4         95.4         95.0         95.0         93.6         94.1
125/90............................         95.4         95.4         95.0         95.0         94.1         94.1
150/110...........................         95.8         95.8         95.8         95.4         94.1         94.1

[[Page 805]]

 
200/150...........................         96.2         95.8         95.8         95.4         94.5         94.1
----------------------------------------------------------------------------------------------------------------

    (j) Starting on June 1, 2016, each fire pump electric motor meeting 
the criteria in paragraph (g) of this section and with a power rating of 
1 horsepower through 500 horsepower, manufactured (alone or as a 
component of another piece of equipment) shall have a nominal full-load 
efficiency that is not less than the following:

                                      Table 7--Nominal Full-Load Efficiencies of Fire Pump Electric Motors at 60 Hz
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                             Nominal full-load efficiency (%)
                                                                 ---------------------------------------------------------------------------------------
         Motor horsepower/ standard kilowatt equivalent                  2 Pole                4 Pole                6 Pole                8 Pole
                                                                 ---------------------------------------------------------------------------------------
                                                                   Enclosed     Open     Enclosed     Open     Enclosed     Open     Enclosed     Open
--------------------------------------------------------------------------------------------------------------------------------------------------------
1/.75...........................................................       75.5  .........       82.5       82.5       80.0       80.0       74.0       74.0
1.5/1.1.........................................................       82.5       82.5       84.0       84.0       85.5       84.0       77.0       75.5
2/1.5...........................................................       84.0       84.0       84.0       84.0       86.5       85.5       82.5       85.5
3/2.2...........................................................       85.5       84.0       87.5       86.5       87.5       86.5       84.0       86.5
5/3.7...........................................................       87.5       85.5       87.5       87.5       87.5       87.5       85.5       87.5
7.5/5.5.........................................................       88.5       87.5       89.5       88.5       89.5       88.5       85.5       88.5
10/7.5..........................................................       89.5       88.5       89.5       89.5       89.5       90.2       88.5       89.5
15/11...........................................................       90.2       89.5       91.0       91.0       90.2       90.2       88.5       89.5
20/15...........................................................       90.2       90.2       91.0       91.0       90.2       91.0       89.5       90.2
25/18.5.........................................................       91.0       91.0       92.4       91.7       91.7       91.7       89.5       90.2
30/22...........................................................       91.0       91.0       92.4       92.4       91.7       92.4       91.0       91.0
40/30...........................................................       91.7       91.7       93.0       93.0       93.0       93.0       91.0       91.0
50/37...........................................................       92.4       92.4       93.0       93.0       93.0       93.0       91.7       91.7
60/45...........................................................       93.0       93.0       93.6       93.6       93.6       93.6       91.7       92.4
75/55...........................................................       93.0       93.0       94.1       94.1       93.6       93.6       93.0       93.6
100/75..........................................................       93.6       93.0       94.5       94.1       94.1       94.1       93.0       93.6
125/90..........................................................       94.5       93.6       94.5       94.5       94.1       94.1       93.6       93.6
150/110.........................................................       94.5       93.6       95.0       95.0       95.0       94.5       93.6       93.6
200/150.........................................................       95.0       94.5       95.0       95.0       95.0       94.5       94.1       93.6
250/186.........................................................       95.4       94.5       95.0       95.4       95.0       95.4       94.5       94.5
300/224.........................................................       95.4       95.0       95.4       95.4       95.0       95.4
350/261.........................................................       95.4       95.0       95.4       95.4       95.0       95.4
400/298.........................................................       95.4       95.4       95.4       95.4
450/336.........................................................       95.4       95.8       95.4       95.8
500/373.........................................................       95.4       95.8       95.8       95.8  .........  .........  .........  .........
--------------------------------------------------------------------------------------------------------------------------------------------------------

    (k) For purposes of determining the required minimum nominal full-
load efficiency of an electric motor that has a horsepower or kilowatt 
rating between two horsepower or two kilowatt ratings listed in any 
table of energy conservation standards in paragraphs (h) through (l) of 
this section, each such motor shall be deemed to have a listed 
horsepower or kilowatt rating, determined as follows:
    (1) A horsepower at or above the midpoint between the two 
consecutive horsepowers shall be rounded up to the higher of the two 
horsepowers;
    (2) A horsepower below the midpoint between the two consecutive 
horsepowers shall be rounded down to the lower of the two horsepowers; 
or
    (3) A kilowatt rating shall be directly converted from kilowatts to 
horsepower using the formula 1 kilowatt = (\1\/ 0.746) 
horsepower. The conversion should be calculated to three significant 
decimal places, and the resulting horsepower shall be rounded in 
accordance with paragraph (k)(1) or (k)(2) of this section, whichever 
applies.
    (l) The standards in Table 5 through Table 7 of this section do not 
apply to

[[Page 806]]

the following electric motors exempted by the Secretary, or any 
additional electric motors that the Secretary may exempt:
    (1) Air-over electric motors;
    (2) Component sets of an electric motor;
    (3) Liquid-cooled electric motors;
    (4) Submersible electric motors; and
    (5) Inverter-only electric motors.

[79 FR 31010, May 29, 2014]



Sec.  431.26  Preemption of State regulations.

    Any State regulation providing for any energy conservation standard, 
or other requirement with respect to the energy efficiency or energy 
use, of an electric motor that is not identical to a Federal standard in 
effect under this subpart is preempted by that standard, except as 
provided for in Section 345(a) and 327(b) and (c) of the Act.

                                Labeling



Sec.  431.31  Labeling requirements.

    (a) Electric motor nameplate--(1) Required information. The 
permanent nameplate of an electric motor for which standards are 
prescribed in Sec.  431.25 must be marked clearly with the following 
information:
    (i) The motor's nominal full load efficiency (as of the date of 
manufacture), derived from the motor's average full load efficiency as 
determined pursuant to this subpart; and
    (ii) A Compliance Certification number (``CC number'') supplied by 
DOE to the manufacturer or private labeler, pursuant to Sec.  431.36(f), 
and applicable to that motor. Such CC number must be on the nameplate of 
a motor beginning 90 days after either:
    (A) The manufacturer or private labeler has received the number upon 
submitting a Compliance Certification covering that motor, or
    (B) The expiration of 21 days from DOE's receipt of a Compliance 
Certification covering that motor, if the manufacturer or private 
labeler has not been advised by DOE that the Compliance Certification 
fails to satisfy Sec.  431.36.
    (2) Display of required information. All orientation, spacing, type 
sizes, type faces, and line widths to display this required information 
shall be the same as or similar to the display of the other performance 
data on the motor's permanent nameplate. The nominal full-load 
efficiency shall be identified either by the term ``Nominal Efficiency'' 
or ``Nom. Eff.'' or by the terms specified in paragraph 12.58.2 of NEMA 
MG1-2009, (incorporated by reference, see Sec.  431.15) as for example 
``NEMA Nom. Eff. __.'' The Compliance Certification number issued 
pursuant to Sec.  431.36 shall be in the form ``CC __.''
    (3) Optional display. The permanent nameplate of an electric motor, 
a separate plate, or decalcomania, may be marked with the encircled 
lower case letters ``ee'', for example,
[GRAPHIC] [TIFF OMITTED] TR83AD04.000


or with some comparable designation or logo, if the motor meets the 
applicable standard prescribed in Sec.  431.25, as determined pursuant 
to this subpart, and is covered by a Compliance Certification that 
satisfies Sec.  431.36.
    (b) Disclosure of efficiency information in marketing materials. (1) 
The same information that must appear on an electric motor's permanent 
nameplate pursuant to paragraph (a)(1) of this section, shall be 
prominently displayed:
    (i) On each page of a catalog that lists the motor; and
    (ii) In other materials used to market the motor.
    (2) The ``ee'' logo, or other similar logo or designations, may also 
be used in catalogs and other materials to the same extent they may be 
used on labels under paragraph (a)(3) of this section.

[69 FR 61923, Oct. 21, 2004, as amended at 77 FR 26637, May 4, 2012]



Sec.  431.32  Preemption of State regulations.

    The provisions of Sec.  431.31 supersede any State regulation to the 
extent required by Section 327 of the Act. Pursuant to the Act, all 
State regulations that require the disclosure for any electric motor of 
information with respect to energy consumption, other than the 
information required to be disclosed in accordance with this part, are 
superseded.

[[Page 807]]

                              Certification



Sec.  431.35  Applicability of certification requirements.

    Section 431.36 sets forth the procedures for manufacturers to 
certify that electric motors comply with the applicable energy 
efficiency standards set forth in this subpart.



Sec.  431.36  Compliance Certification.

    (a) General. A manufacturer or private labeler shall not distribute 
in commerce any basic model of an electric motor which is subject to an 
energy efficiency standard set forth in this subpart unless it has 
submitted to the Department a Compliance Certification certifying, in 
accordance with the provisions of this section, that the basic model 
meets the requirements of the applicable standard. The representations 
in the Compliance Certification must be based upon the basic model's 
energy efficiency as determined in accordance with the applicable 
requirements of this subpart. This means, in part, that either:
    (1) The representations as to the basic model must be based on use 
of a certification organization; or
    (2) Any testing of the basic model on which the representations are 
based must be conducted at an accredited laboratory.
    (b) Required contents--(1) General representations. Each Compliance 
Certification must certify that:
    (i) The nominal full load efficiency for each basic model of 
electric motor distributed is not less than the minimum nominal full 
load efficiency required for that motor by Sec.  431.25;
    (ii) All required determinations on which the Compliance 
Certification is based were made in compliance with the applicable 
requirements prescribed in this subpart;
    (iii) All information reported in the Compliance Certification is 
true, accurate, and complete; and
    (iv) The manufacturer or private labeler is aware of the penalties 
associated with violations of the Act and the regulations thereunder, 
and of 18 U.S.C. 1001 which prohibits knowingly making false statements 
to the Federal Government.
    (2) Specific data. (i) For each rating of electric motor (as the 
term ``rating'' is defined in the definition of basic model) which a 
manufacturer or private labeler distributes, the Compliance 
Certification must report the nominal full load efficiency, determined 
pursuant to Sec. Sec.  431.16 and 431.17, of the least efficient basic 
model within that rating.
    (ii) The Compliance Certification must identify the basic models on 
which actual testing has been performed to meet the requirements of 
Sec.  431.17.
    (iii) The format for a Compliance Certification is set forth in 
appendix C of this subpart.
    (c) Optional contents. In any Compliance Certification, a 
manufacturer or private labeler may at its option request that DOE 
provide it with a unique Compliance Certification number (``CC number'') 
for any brand name, trademark or other label name under which the 
manufacturer or private labeler distributes electric motors covered by 
the Certification. Such a Compliance Certification must also identify 
all other names, if any, under which the manufacturer or private labeler 
distributes electric motors, and to which the request does not apply.
    (d) Signature and submission. A manufacturer or private labeler must 
submit the Compliance Certification either on its own behalf, signed by 
a corporate official of the company, or through a third party (for 
example, a trade association or other authorized representative) acting 
on its behalf. Where a third party is used, the Compliance Certification 
must identify the official of the manufacturer or private labeler who 
authorized the third party to make representations on the company's 
behalf, and must be signed by a corporate official of the third party. 
The Compliance Certification must be submitted to the Department 
electronically at https://www.regulations.doe.gov/ccms. Alternatively, 
the Compliance Certification may be submitted by certified mail to: 
Certification and Compliance Reports, U.S. Department of Energy, Office 
of Energy Efficiency and Renewable Energy, Building Technologies 
Program, EE-2J, Forrestal Building,

[[Page 808]]

1000 Independence Avenue, SW., Washington, DC 20585-0121.
    (e) New basic models. For electric motors, a Compliance 
Certification must be submitted for a new basic model only if the 
manufacturer or private labeler has not previously submitted to DOE a 
Compliance Certification, that meets the requirements of this section, 
for a basic model that has the same rating as the new basic model, and 
that has a lower nominal full load efficiency than the new basic model.
    (f) Response to Compliance Certification; Compliance Certification 
Number (CC number)--(1) DOE processing of Certification. Promptly upon 
receipt of a Compliance Certification, the Department will determine 
whether the document contains all of the elements required by this 
section, and may, in its discretion, determine whether all or part of 
the information provided in the document is accurate. The Department 
will then advise the submitting party in writing either that the 
Compliance Certification does not satisfy the requirements of this 
section, in which case the document will be returned, or that the 
Compliance Certification satisfies this section. The Department will 
also advise the submitting party of the basis for its determination.
    (2) Issuance of CC number(s). (i) Initial Compliance Certification. 
When DOE advises that the initial Compliance Certification submitted by 
or on behalf of a manufacturer or private labeler is acceptable, either:
    (A) DOE will provide a single unique CC number, ``CC____,'' to the 
manufacturer or private labeler, and such CC number shall be applicable 
to all electric motors distributed by the manufacturer or private 
labeler, or
    (B) When required by paragraph (f)(3) of this section, DOE will 
provide more than one CC number to the manufacturer or private labeler.
    (ii) Subsequent Compliance Certification. When DOE advises that any 
other Compliance Certification is acceptable, it will provide a unique 
CC number for any brand name, trademark or other name when required by 
paragraph (f)(3) of this section.
    (iii) When DOE declines to provide a CC number as requested by a 
manufacturer or private labeler in accordance with Sec.  431.36(c), DOE 
will advise the requester of the reasons for such refusal.
    (3) Issuance of two or more CC numbers. (i) DOE will provide a 
unique CC number for each brand name, trademark or other label name for 
which a manufacturer or private labeler requests such a number in 
accordance with Sec.  431.36(c), except as follows. DOE will not provide 
a CC number for any brand name, trademark or other label name
    (A) For which DOE has previously provided a CC number, or
    (B) That duplicates or overlaps with other names under which the 
manufacturer or private labeler sells electric motors.
    (ii) Once DOE has provided a CC number for a particular name, that 
shall be the only CC number applicable to all electric motors 
distributed by the manufacturer or private labeler under that name.
    (iii) If the Compliance Certification in which a manufacturer or 
private labeler requests a CC number is the initial Compliance 
Certification submitted by it or on its behalf, and it distributes 
electric motors not covered by the CC number(s) DOE provides in response 
to the request(s), DOE will also provide a unique CC number that shall 
be applicable to all of these other motors.

[69 FR 61923, Oct. 21, 2004, as amended at 76 FR 59006, Sept. 23, 2011; 
77 FR 26638, May 4, 2012]



           Sec. Appendix A to Subpart B of Part 431 [Reserved]



   Sec. Appendix B to Subpart B of Part 431--Uniform Test Method for 
        Measuring Nominal Full Load Efficiency of Electric Motors

    Note: After June 11, 2014, any representations made with respect to 
the energy use or efficiency of electric motors for which energy 
conservation standards are currently provided at 10 CFR 431.25 must be 
made in accordance with the results of testing pursuant to this 
appendix.
    For manufacturers conducting tests of motors for which energy 
conservation standards are provided at 10 CFR 431.25, after January 13, 
2014 and prior to June 11, 2014, manufacturers must conduct such test in 
accordance with either this appendix or appendix B as it

[[Page 809]]

appeared at 10 CFR Part 431, subpart B, appendix B, in the 10 CFR Parts 
200 to 499 edition revised as of January 1, 2013. Any representations 
made with respect to the energy use or efficiency of such electric 
motors must be in accordance with whichever version is selected. Given 
that after June 11, 2014 representations with respect to the energy use 
or efficiency of electric motors must be made in accordance with tests 
conducted pursuant to this appendix, manufacturers may wish to begin 
using this test procedure as soon as possible.
    For any other electric motor type that is not currently covered by 
the energy conservation standards at 10 CFR 431.25, manufacturers of 
this equipment will need to use Appendix B 180 days after the effective 
date of the final rule adopting energy conservation standards for these 
motors.

    1. Definitions.
    Definitions contained in Sec. Sec.  431.2 and 431.12 are applicable 
to this appendix.
    2. Test Procedures.
    Efficiency and losses shall be determined in accordance with NEMA 
MG1-2009, paragraph 12.58.1, ``Determination of Motor Efficiency and 
Losses,'' (incorporated by reference, see Sec.  431.15) and either:
    (1) CSA C390-10, (incorporated by reference, see Sec.  431.15), or
    (2) IEEE Std 112-2004 Test Method B, Input-Output With Loss 
Segregation, (incorporated by reference, see Sec.  431.15).
    3. Amendments to test procedures.
    Any revision to IEEE Std 112-2004 Test Method B, NEMA MG1-2009, or 
CSA C390-10, (incorporated by reference, see Sec.  431.15) shall not be 
effective for purposes of certification and compliance testing unless 
and until this appendix and 10 CFR Part 431 are amended to incorporate 
that revision.
    4. Procedures for the Testing of Certain Electric Motor Types.
    Prior to testing according to IEEE Std 112-2004 (Test Method B) or 
CSA C390-10 (incorporated by reference, see Sec.  431.15), each basic 
model of the electric motor types listed below must be set up in 
accordance with the instructions of this section to ensure consistent 
test results. These steps are designed to enable a motor to be attached 
to a dynamometer and run continuously for testing purposes. For the 
purposes of this appendix, a ``standard bearing'' is a 6000 series, 
either open or grease-lubricated double-shielded, single-row, deep 
groove, radial ball bearing.
    4.1 Brake Electric Motors:
    Brake electric motors shall be tested with the brake component 
powered separately from the motor such that it does not activate during 
testing. Additionally, for any 10-minute period during the test and 
while the brake is being powered such that it remains disengaged from 
the motor shaft, record the power consumed (i.e., watts). Only power 
used to drive the motor is to be included in the efficiency calculation; 
power supplied to prevent the brake from engaging is not included in 
this calculation. In lieu of powering the brake separately, the brake 
may be disengaged mechanically, if such a mechanism exists and if the 
use of this mechanism does not yield a different efficiency value than 
separately powering the brake electrically.
    4.2 Close-Coupled Pump Electric Motors and Electric Motors with 
Single or Double Shaft Extensions of Non-Standard Dimensions or Design:
    To attach the unit under test to a dynamometer, close-coupled pump 
electric motors and electric motors with single or double shaft 
extensions of non-standard dimensions or design must be tested using a 
special coupling adapter.
    4.3 Electric Motors with Non-Standard Endshields or Flanges:
    If it is not possible to connect the electric motor to a dynamometer 
with the non-standard endshield or flange in place, the testing 
laboratory shall replace the non-standard endshield or flange with an 
endshield or flange meeting NEMA or IEC specifications. The replacement 
component should be obtained from the manufacturer or, if the 
manufacturer chooses, machined by the testing laboratory after 
consulting with the manufacturer regarding the critical characteristics 
of the endshield.
    4.4 Electric Motors with Non-Standard Bases, Feet or Mounting 
Configurations
    An electric motor with a non-standard base, feet, or mounting 
configuration may be mounted on the test equipment using adaptive 
fixtures for testing as long as the mounting or use of adaptive mounting 
fixtures does not have an adverse impact on the performance of the 
electric motor, particularly on the cooling of the motor.
    4.5 Electric Motors with a Separately-powered Blower:
    For electric motors furnished with a separately-powered blower, the 
losses from the blower's motor should not be included in any efficiency 
calculation. This can be done either by powering the blower's motor by a 
source separate from the source powering the electric motor under test 
or by connecting leads such that they only measure the power of the 
motor under test.
    4.6 Immersible Electric Motors
    Immersible electric motors shall be tested with all contact seals 
removed but be otherwise unmodified.
    4.7 Partial Electric Motors:
    Partial electric motors shall be disconnected from their mated piece 
of equipment. After disconnection from the equipment, standard bearings 
and/or endshields shall be added to the motor, such that it is capable 
of operation. If an endshield is necessary, an

[[Page 810]]

endshield meeting NEMA or IEC specifications should be obtained from the 
manufacturer or, if the manufacturer chooses, machined by the testing 
laboratory after consulting with the manufacturer regarding the critical 
characteristics of the endshield.
    4.8 Vertical Electric Motors and Electric Motors with Bearings 
Incapable of Horizontal Operation:
    Vertical electric motors and electric motors with thrust bearings 
shall be tested in a horizontal or vertical configuration in accordance 
with IEEE 112 (Test Method B), depending on the testing facility's 
capabilities and construction of the motor, except if the motor is a 
vertical solid shaft normal thrust general purpose electric motor 
(subtype II), in which case it shall be tested in a horizontal 
configuration in accordance with IEEE 112 (Test Method B). Preference 
shall be given to testing a motor in its native orientation. If the unit 
under test cannot be reoriented horizontally due to its bearing 
construction, the electric motor's bearing(s) shall be removed and 
replaced with standard bearings. If the unit under test contains oil-
lubricated bearings, its bearings shall be removed and replaced with 
standard bearings. Finally, if the unit under test contains a hollow 
shaft, a solid shaft shall be inserted, bolted to the non-drive end of 
the motor and welded on the drive end. Enough clearance shall be 
maintained such that attachment to a dynamometer is possible.

[77 FR 26638, May 4, 2012, as amended at 78 FR 75994, Dec. 13, 2013]



   Sec. Appendix C to Subpart B of Part 431--Compliance Certification

    Certification of Compliance With Energy Efficiency Standards for 
 Electric Motors (Office of Management and Budget Control Number: 1910-
                    1400. Expires February 13, 2014)

    An electronic form is available at https://www.regulations.doe.gov/
ccms/.
    1. Name and Address of Company (the ``company''):

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

    2. Name(s) to be Marked on Electric Motors to Which this Compliance 
Certification Applies:

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

    3. If manufacturer or private labeler wishes to receive a unique 
Compliance Certification number for use with any particular brand name, 
trademark, or other label name, fill out the following two items:
    A. List each brand name, trademark, or other label name for which 
the company requests a Compliance Certification number:

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

    B. List other name(s), if any, under which the company sells 
electric motors (if not listed in item 2 above):

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

    Submit electronically at https://www.regulations.doe.gov/ccms.
    Submit paper form by Certified Mail to: U.S. Department of Energy, 
Office of Energy Efficiency and Renewable Energy, Building Technologies 
(EE-2J), Forrestal Building, 1000 Independence Avenue, SW., Washington, 
DC 20585-0121.
    This Compliance Certification reports on and certifies compliance 
with requirements contained in 10 CFR Part 431 (Energy Conservation 
Program for Certain Commercial and Industrial Equipment) and Part C of 
the Energy Policy and Conservation Act (Pub. L. 94-163), and amendments 
thereto. It is signed by a responsible official of the above named 
company. Attached and incorporated as part of this Compliance 
Certification is a Listing of Electric Motor Efficiencies. For each 
rating of electric motor* for which the Listing specifies the nominal 
full load efficiency of a basic model, the company distributes no less 
efficient basic model with that rating and all basic models with that 
rating comply with the applicable energy efficiency standard.
    * For this purpose, the term ``rating'' means one of the 
combinations of an electric motor's horsepower (or standard kilowatt 
equivalent), number of poles, motor type, and open or enclosed 
construction, with respect to which Sec.  431.25 of 10 CFR Part 431 
prescribes nominal full load efficiency standards.
    Person to Contact for Further Information:

 Name:__________________________________________________________________

 Address:_______________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

 Telephone Number:______________________________________________________

 Facsimile Number:______________________________________________________

    If any part of this Compliance Certification, including the 
Attachment, was prepared by a third party organization under the 
provisions of 10 CFR 431.36, the company official authorizing third 
party representations:

 Name:__________________________________________________________________


[[Page 811]]

________________________________________________________________________
 Address:_______________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

 Telephone Number:______________________________________________________

 Facsimile Number:______________________________________________________

    Third Party Organization Officially Acting as Representative:

 Third Party Organization:______________________________________________

 Responsible Person at the Organization:________________________________

________________________________________________________________________

 Address:_______________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

 Telephone Number:______________________________________________________

 Facsimile Number:______________________________________________________

    All required determinations on which this Compliance Certification 
is based were made in conformance with the applicable requirements in 10 
CFR Part 431, subpart B. All information reported in this Compliance 
Certification is true, accurate, and complete. The company is aware of 
the penalties associated with violations of the Act and the regulations 
thereunder, and is also aware of the provisions contained in 18 U.S.C. 
1001, which prohibits knowingly making false statements to the Federal 
Government.

 Signature:_____________________________________________________________

 Date:__________________________________________________________________

 Name:__________________________________________________________________

 Title:_________________________________________________________________

 Firm or Organization:__________________________________________________

    Attachment of Certification of Compliance With Energy Efficiency 
                Standards for Electric Motor Efficiencies

 Date:__________________________________________________________________

 Name of Company:_______________________________________________________

    Motor Type (i.e., general purpose electric motor (subtype I), fire 
pump electric motor, general purpose electric motor (subtype II), NEMA 
Design B general purpose electric motor)

________________________________________________________________________


----------------------------------------------------------------------------------------------------------------
                                   Least efficient basic model--(model numbers(s)) Nominal full-load efficiency
                                 -------------------------------------------------------------------------------
    Motor horsepower/standard          Open motors (number of poles)         Enclosed motors (number of poles)
       kilowatt equivalent       -------------------------------------------------------------------------------
                                      8         6         4         2         8         6         4         2
----------------------------------------------------------------------------------------------------------------
1/.75...........................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
1.5/1.1.........................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
2/1.5...........................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
3/2.2...........................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
5/3.7...........................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
Etc.............................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
Note: Place an asterisk beside each reported nominal full load efficiency that is determined by actual testing
  rather than by application of an alternative efficiency determination method. Also list below additional basic
  models that were subjected to actual testing.

    Basic Model means all units of a given type of electric motor (or 
class thereof) manufactured by a single manufacturer, and which (i) have 
the same rating, (ii) have electrical design characteristics that are 
essentially identical, and (iii) do not have any differing physical or 
functional characteristics that affect energy consumption or efficiency.

[[Page 812]]

    Rating means one of the combinations of an electric motor's 
horsepower (or standard kilowatt equivalent), number of poles, motor 
type, and open or enclosed construction, with respect to which Sec.  
431.25 of 10 CFR Part 431 prescribes nominal full load efficiency 
standards.

                              Models Actually Tested and Not Previously Identified
----------------------------------------------------------------------------------------------------------------
                                   Least efficient basic model--(model numbers(s)) Nominal full-load efficiency
                                 -------------------------------------------------------------------------------
    Motor horsepower/standard          Open motors (number of poles)         Enclosed motors (number of poles)
       kilowatt equivalent       -------------------------------------------------------------------------------
                                      8         6         4         2         8         6         4         2
----------------------------------------------------------------------------------------------------------------
___.............................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
___.............................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
___.............................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
___.............................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
___.............................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
___.............................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------
Etc.............................      ___       ___       ___       ___       ___       ___       ___       ___
                                 -------------------------------------------------------------------------------
                                      ___       ___       ___       ___       ___       ___       ___       ___
----------------------------------------------------------------------------------------------------------------


[69 FR 61923, Oct. 21, 2004, as amended at 76 FR 59006, Sept. 23, 2011]



 Subpart C_Commercial Refrigerators, Freezers and Refrigerator-Freezers

    Source: 70 FR 60414, Oct. 18, 2005, unless otherwise noted.



Sec.  431.61  Purpose and scope.

    This subpart contains energy conservation requirements for 
commercial refrigerators, freezers and refrigerator-freezers, pursuant 
to Part C of Title III of the Energy Policy and Conservation Act, as 
amended, 42 U.S.C. 6311-6317.



Sec.  431.62  Definitions concerning commercial refrigerators, 
freezers and refrigerator-freezers.

    Air-curtain angle means:
    (1) For equipment without doors and without a discharge air grille 
or discharge air honeycomb, the angle between a vertical line extended 
down from the highest point on the manufacturer's recommended load limit 
line and the load limit line itself, when the equipment is viewed in 
cross-section; and
    (2) For all other equipment without doors, the angle formed between 
a vertical line and the straight line drawn by connecting the point at 
the inside edge of the discharge air opening with the point at the 
inside edge of the return air opening, when the equipment is viewed in 
cross-section.
    Basic model means all commercial refrigeration equipment 
manufactured by one manufacturer within a single equipment class, having 
the same primary energy source, and that have essentially identical 
electrical, physical, and functional characteristics that affect energy 
consumption.

[[Page 813]]

    Chef base or griddle stand means commercial refrigeration equipment 
that is designed and marketed for the express purpose of having a 
griddle or other cooking appliance placed on top of it that is capable 
of reaching temperatures hot enough to cook food.
    Closed solid means equipment with doors, and in which more than 75 
percent of the outer surface area of all doors on a unit are not 
transparent.
    Closed transparent means equipment with doors, and in which 25 
percent or more of the outer surface area of all doors on the unit are 
transparent.
    Commercial freezer means a unit of commercial refrigeration 
equipment in which all refrigerated compartments in the unit are capable 
of operating below 32 [deg]F (2 [deg]F).
    Commercial hybrid means a unit of commercial refrigeration 
equipment:
    (1) That consists of two or more thermally separated refrigerated 
compartments that are in two or more different equipment families, and
    (2) That is sold as a single unit.
    Commercial refrigerator means a unit of commercial refrigeration 
equipment in which all refrigerated compartments in the unit are capable 
of operating at or above 32 [deg]F (2 [deg]F).
    Commercial refrigerator-freezer means a unit of commercial 
refrigeration equipment consisting of two or more refrigerated 
compartments where at least one refrigerated compartment is capable of 
operating at or above 32 [deg]F (2 [deg]F) and at 
least one refrigerated compartment is capable of operating below 32 
[deg]F (2 [deg]F).
    Commercial refrigerator, freezer, and refrigerator-freezer means 
refrigeration equipment that--
    (1) Is not a consumer product (as defined in Sec.  430.2 of part 
430);
    (2) Is not designed and marketed exclusively for medical, 
scientific, or research purposes;
    (3) Operates at a chilled, frozen, combination chilled and frozen, 
or variable temperature;
    (4) Displays or stores merchandise and other perishable materials 
horizontally, semi-vertically, or vertically;
    (5) Has transparent or solid doors, sliding or hinged doors, a 
combination of hinged, sliding, transparent, or solid doors, or no 
doors;
    (6) Is designed for pull-down temperature applications or holding 
temperature applications; and
    (7) Is connected to a self-contained condensing unit or to a remote 
condensing unit.
    Door means a movable panel that separates the interior volume of a 
unit of commercial refrigeration equipment from the ambient environment 
and is designed to facilitate access to the refrigerated space for the 
purpose of loading and unloading product. This includes hinged doors, 
sliding doors, and drawers. This does not include night curtains.
    Door angle means:
    (1) For equipment with flat doors, the angle between a vertical line 
and the line formed by the plane of the door, when the equipment is 
viewed in cross-section; and
    (2) For equipment with curved doors, the angle formed between a 
vertical line and the straight line drawn by connecting the top and 
bottom points where the display area glass joins the cabinet, when the 
equipment is viewed in cross-section.
    Holding temperature application means a use of commercial 
refrigeration equipment other than a pull-down temperature application, 
except a blast chiller or freezer.
    Horizontal Closed means equipment with hinged or sliding doors and a 
door angle greater than or equal to 45[deg].
    Horizontal Open means equipment without doors and an air-curtain 
angle greater than or equal to 80[deg] from the vertical.
    Ice-cream freezer means a commercial freezer that is designed to 
operate at or below -5 [deg]F (2 [deg]F) (-21 
[deg]C 1.1 [deg]C) and that the manufacturer 
designs, markets, or intends for the storing, displaying, or dispensing 
of ice cream.
    Integrated average temperature means the average temperature of all 
test package measurements taken during the test.
    Lighting occupancy sensor means a device which uses passive 
infrared, ultrasonic, or other motion-sensing technology to 
automatically turn off or dim lights within the equipment when no motion 
is detected in the sensor's coverage area for a certain preset period of 
time.

[[Page 814]]

    Lowest application product temperature means the lowest integrated 
average temperature at which a given basic model is capable of 
consistently operating (i.e., maintaining so as to comply with the 
steady-state stabilization requirements specified in ASHRAE 72-2005 
(incorporated by reference, see Sec.  431.63) for the purposes of 
testing under the DOE test procedure).
    Night curtain means a device which is temporarily deployed to 
decrease air exchange and heat transfer between the refrigerated case 
and the surrounding environment.
    Operating temperature means the range of integrated average 
temperatures at which a self-contained commercial refrigeration unit or 
remote-condensing commercial refrigeration unit with a thermostat is 
capable of operating or, in the case of a remote-condensing commercial 
refrigeration unit without a thermostat, the range of integrated average 
temperatures at which the unit is marketed, designed, or intended to 
operate.
    Pull-down temperature application means a commercial refrigerator 
with doors that, when fully loaded with 12 ounce beverage cans at 90 
degrees F, can cool those beverages to an average stable temperature of 
38 degrees F in 12 hours or less.
    Rating temperature means the integrated average temperature a unit 
must maintain during testing (i.e., either as listed in the table at 
Sec.  431.66(d)(1) or the lowest application product temperature).
    Remote condensing unit means a factory-made assembly of 
refrigerating components designed to compress and liquefy a specific 
refrigerant that is remotely located from the refrigerated equipment and 
consists of 1 or more refrigerant compressors, refrigerant condensers, 
condenser fans and motors, and factory supplied accessories.
    Scheduled lighting control means a device which automatically shuts 
off or dims the lighting in a display case at scheduled times throughout 
the day.
    Self-contained condensing unit means a factory-made assembly of 
refrigerating components designed to compress and liquefy a specific 
refrigerant that is an integral part of the refrigerated equipment and 
consists of 1 or more refrigerant compressors, refrigerant condensers, 
condenser fans and motors, and factory supplied accessories.
    Semivertical Open means equipment without doors and an air-curtain 
angle greater than or equal to 10[deg] and less than 80[deg] from the 
vertical.
    Service over counter means equipment that has sliding or hinged 
doors in the back intended for use by sales personnel, with glass or 
other transparent material in the front for displaying merchandise, and 
that has a height not greater than 66 inches and is intended to serve as 
a counter for transactions between sales personnel and customers. 
``Service over the counter, self-contained, medium temperature 
commercial refrigerator'', also defined in this section, is one specific 
equipment class within the service over counter equipment family.
    Service over the counter, self-contained, medium temperature 
commercial refrigerator or SOC-SC-M means a commercial refrigerator--
    (1) That operates at temperatures at or above 32 [deg]F;
    (2) With a self-contained condensing unit;
    (3) Equipped with sliding or hinged doors in the back intended for 
use by sales personnel, and with glass or other transparent material in 
the front for displaying merchandise; and
    (4) That has a height not greater than 66 inches and is intended to 
serve as a counter for transactions between sales personnel and 
customers.
    Test package means a packaged material that is used as a standard 
product temperature-measuring device.
    Transparent means greater than or equal to 45 percent light 
transmittance, as determined in accordance with the ASTM Standard E 
1084-86 (Reapproved 2009), (incorporated by reference, see Sec.  431.63) 
at normal incidence and in the intended direction of viewing.
    Vertical Closed means equipment with hinged or sliding doors and a 
door angle less than 45[deg].
    Vertical Open means equipment without doors and an air-curtain angle 
greater than or equal to 0[deg] and less than 10[deg] from the vertical.
    Wedge case means a commercial refrigerator, freezer, or 
refrigerator-

[[Page 815]]

freezer that forms the transition between two regularly shaped display 
cases.

[70 FR 60414, Oct. 18, 2005, as amended at 71 FR 71369, Dec. 8, 2006; 74 
FR 1139, Jan. 9, 2009; 76 FR 12503, Mar. 7, 2011; 77 FR 10318, Feb. 21, 
2012; 78 FR 62993, Oct. 23, 2013; 78 FR 79598, Dec. 31, 2013; 79 FR 
22307, Apr. 21, 2014; 79 FR 17816, Mar. 28, 2014]

                             Test Procedures



Sec.  431.63  Materials incorporated by reference.

    (a) General. We incorporate by reference the following standards 
into subpart C of part 431. The material listed has been approved for 
incorporation by reference by the Director of the Federal Register in 
accordance with 5 U.S.C. 552(a) and 1 CFR 51. Any subsequent amendment 
to a standard by the standard-setting organization will not affect the 
DOE regulations unless and until amended by DOE. Material is 
incorporated as it exists on the date of the approval and a notice of 
any change in the material will be published in the Federal Register. 
All approved material is available for inspection at the National 
Archives and Records Administration (NARA). For information on the 
availability of this material at NARA, call 202-741-6030 or go to http:/
/www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html. Also, this material is available for inspection at 
U.S. Department of Energy, Office of Energy Efficiency and Renewable 
Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza, 
SW., Washington, DC 20024, 202-586-2945, or go to: http://
www1.eere.energy.gov/buildings/appliance_standards/. Standards can be 
obtained from the sources listed below.
    (b) ANSI. American National Standards Institute, 25 W. 43rd Street, 
4th Floor, New York, NY 10036, 212-642-4900, or go to http://
www.ansi.org:
    (1) ANSI /AHAM HRF-1-2004, Energy, Performance and Capacity of 
Household Refrigerators, Refrigerator-Freezers and Freezers, approved 
July 7, 2004, IBR approved for Sec.  431.64 and appendices A and B to 
subpart C to part 431.
    (2) AHAM HRF-1-2008 (``HRF-1-2008''), Association of Home Appliance 
Manufacturers, Energy and Internal Volume of Refrigerating Appliances 
(2008) including Errata to Energy and Internal Volume of Refrigerating 
Appliances, Correction Sheet issued November 17, 2009, IBR approved for 
Sec.  431.64 and appendices A and B to subpart C to part 431.
    (c) AHRI. Air-Conditioning, Heating, and Refrigeration Institute, 
2111 Wilson Blvd., Suite 500, Arlington, VA 22201, (703) 524-8800, 
[email protected], or http://www.ahrinet.org/Content/
StandardsProgram_20.aspx.
    (1) ARI Standard 1200-2006, Performance Rating of Commercial 
Refrigerated Display Merchandisers and Storage Cabinets, 2006, IBR 
approved for Sec. Sec.  431.64 and 431.66, and appendices A and B to 
subpart C of part 431.
    (2) AHRI Standard 1200 (I-P)-2010 (``AHRI Standard 1200 (I-P)-
2010''), 2010 Standard for Performance Rating of Commercial Refrigerated 
Display Merchandisers and Storage Cabinets, 2010, IBR approved for 
Sec. Sec.  431.64 and 431.66, and appendices A and B to subpart C of 
part 431.
    (d) ASHRAE. The American Society of Heating, Refrigerating, and Air-
Conditioning Engineers, Inc., 1971 Tullie Circle NE., Atlanta, GA 30329, 
or http://www.ashrae.org/.
    (1) ANSI/ASHRAE Standard 72-2005, (ASHRAE 72-2005), ``Method of 
Testing Commercial Refrigerators and Freezers,'' Copyright 2005, IBR 
approved for Sec.  431.62, and appendices A and B to subpart C of part 
431.
    (2) [Reserved]
    (e) ASTM. ASTM International, 100 Barr Harbor Drive, P.O. Box C700, 
West Conshohocken, PA 19428, (877) 909-2786, or go to http://
www.astm.org/.
    (1) ASTM E 1084 (Reapproved 2009), ``Standard Test Method for Solar 
Transmittance (Terrestrial) of Sheet Materials Using Sunlight,'' 
approved April 1, 2009, IBR approved for Sec.  431.62.
    (2) [Reserved]

[74 FR 1139, Jan. 9, 2009, as amended at 77 FR 10318, Feb. 21, 2012; 78 
FR 62993, Oct. 23, 2013; 79 FR 22308, Apr. 21, 2014]

[[Page 816]]



Sec.  431.64  Uniform test method for the measurement of energy consumption 
of commercial refrigerators, freezers, and refrigerator-freezers.

    (a) Scope. This section provides the test procedures for measuring, 
pursuant to EPCA, the daily energy consumption in kilowatt hours per day 
(kWh/day) for a given product category and volume or total display area 
of commercial refrigerators, freezers, and refrigerator-freezers.
    (b) Testing and calculations. Determine the daily energy consumption 
of each covered commercial refrigerator, freezer, or refrigerator-
freezer by conducting the appropriate test procedure set forth below, in 
appendix A or B to this subpart. The daily energy consumption of 
commercial refrigeration equipment shall be calculated using raw 
measured values and the final test results shall be reported in 
increments of 0.01 kWh/day.

[70 FR 60414, Oct. 18, 2005, as amended at 77 FR 10318, Feb. 21, 2012; 
79 FR 22308, Apr. 21, 2014]

                      Energy Conservation Standards



Sec.  431.66  Energy conservation standards and their effective dates.

    (a) In this section--
    (1) The term ``AV'' means the adjusted volume (ft\3\) (defined as 
1.63 x frozen temperature compartment volume (ft\3\) + chilled 
temperature compartment volume (ft\3\)) with compartment volumes 
measured in accordance with the Association of Home Appliance 
Manufacturers Standard HRF1-1979.
    (2) The term ``V'' means the chilled or frozen compartment volume 
(ft\3\) (as defined in the Association of Home Appliance Manufacturers 
Standard HRF1-1979).
    (3) For the purpose of paragraph (d) of this section, the term 
``TDA'' means the total display area (ft\2\) of the case, as defined in 
ARI Standard 1200-2006, appendix D (incorporated by reference, see Sec.  
431.63). For the purpose of paragraph (e) of this section, the term 
``TDA'' means the total display area (ft\2\) of the case, as defined in 
AHRI Standard 1200 (I-P)-2010, appendix D (incorporated by reference, 
see Sec.  431.63).
    (b)(1) Each commercial refrigerator, freezer, and refrigerator-
freezer with a self-contained condensing unit designed for holding 
temperature applications manufactured on or after January 1, 2010 and 
before March 27, 2017 shall have a daily energy consumption (in 
kilowatt-hours per day) that does not exceed the following:

------------------------------------------------------------------------
                                                Maximum daily energy
                 Category                    consumption (kilowatt hours
                                                      per day)
------------------------------------------------------------------------
Refrigerators with solid doors............  0.10V + 2.04.
Refrigerators with transparent doors......  0.12V + 3.34.
Freezers with solid doors.................  0.40V + 1.38.
Freezers with transparent doors...........  0.75V + 4.10.
Refrigerator/freezers with solid doors....  the greater of 0.27AV-0.71
                                             or 0.70.
------------------------------------------------------------------------

    (2) Each service over the counter, self-contained, medium 
temperature commercial refrigerator (SOC-SC-M) manufactured on or after 
January 1, 2012, shall have a total daily energy consumption (in 
kilowatt hours per day) of not more than 0.6 x TDA + 1.0. As used in the 
preceding sentence, ``TDA'' means the total display area (ft\2\) of the 
case, as defined in the AHRI Standard 1200 (I-P)-2010, appendix D 
(incorporated by reference, see Sec.  431.63).
    (c) Each commercial refrigerator with a self-contained condensing 
unit designed for pull-down temperature applications and transparent 
doors manufactured on or after January 1, 2010 and before March 27, 2017 
shall have a daily energy consumption (in kilowatt-hours per day) of not 
more than 0.126V + 3.51.
    (d) Each commercial refrigerator, freezer, and refrigerator-freezer 
with a self-contained condensing unit and without doors; commercial 
refrigerator, freezer, and refrigerator-freezer with a remote condensing 
unit; and commercial ice-cream freezer manufactured on or after January 
1, 2012 and before March 27, 2017 shall have a daily energy consumption 
(in kilowatt-hours per day) that does not exceed the levels specified:
    (1) For equipment other than hybrid equipment, refrigerator-freezers 
or wedge cases:

[[Page 817]]



--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                      Rating    Operating
         Equipment category              Condensing unit        Equipment family       temp.      temp.      Equipment class      Maximum daily energy
                                          configuration                              ([deg]F)   ([deg]F)      designation *      consumption (kWh/day)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Remote Condensing Commercial         Remote (RC)...........  Vertical Open (VOP)...    38 (M)  =32=32=32=32=32=32=32=32=32=32=32=32
 Freezers.
                                                                                        0 (L)         <32  VOP.RC.L..........  2.2 x TDA + 6.85.
                                                             Semivertical Open         38 (M)  =32
                                                                                        0 (L)         <32  SVO.RC.L..........  2.2 x TDA + 6.85.
                                                             Horizontal Open (HZO).    38 (M)  =32
                                                                                        0 (L)         <32  HZO.RC.L..........  0.55 x TDA + 6.88.
                                                             Vertical Closed           38 (M)  =32
                                                                                        0 (L)         <32  VCT.RC.L..........  0.49 x TDA + 2.61.
                                                             Horizontal Closed         38 (M)  =32
                                                                                        0 (L)         <32  HCT.RC.L..........  0.34 x TDA + 0.26.
                                                             Vertical Closed Solid     38 (M)  =32
                                                                                        0 (L)         <32  VCS.RC.L..........  0.21 x V + 0.54.
                                                             Horizontal Closed         38 (M)  =32
                                                                                        0 (L)         <32  HCS.RC.L..........  0.21 x V + 0.54.
                                                             Service Over Counter      38 (M)  =32
                                                                                        0 (L)         <32  SOC.RC.L..........  0.93 x TDA + 0.22.
Self-Contained Commercial            Self-Contained (SC)...  Vertical Open (VOP)...    38 (M)  =32
 Freezers Without Doors.
                                                                                        0 (L)         <32  VOP.SC.L..........  4.25 x TDA + 11.82.
                                                             Semivertical Open         38 (M)  =32
                                                                                        0 (L)         <32  SVO.SC.L..........  4.26 x TDA + 11.51.
                                                             Horizontal Open (HZO).    38 (M)  =32
                                                                                        0 (L)         <32  HZO.SC.L..........  1.9 x TDA + 7.08.
Self-Contained Commercial            Self-Contained (SC)...  Vertical Closed           38 (M)  =32
 Freezers With Doors.
                                                                                        0 (L)         <32  VCT.SC.L..........  0.29 x V + 2.95.
                                                             Vertical Closed Solid     38 (M)  =32
                                                                                     ........         <32  VCS.SC.L..........  0.22 x V + 1.38.
                                                             Horizontal Closed         38 (M)  =32
                                                                                        0 (L)         <32  HCT.SC.L..........  0.08 x V + 1.23.
                                                             Horizontal Closed       ........  =32
                                                                                        0 (L)         <32  HCS.SC.L..........  0.06 x V + 1.12.
                                                             Service Over Counter    ........  =32
                                                                                        0 (L)         <32  SOC.SC.L..........  1.1 x TDA + 2.1.
Self-Contained Commercial            Self-Contained (SC)...  Pull-Down (PD)........    38 (M)  =32
 Doors for Pull-Down Temperature
 Applications.

[[Page 820]]

 
Commercial Ice-Cream Freezers......  Remote (RC)...........  Vertical Open (VOP)...   -15 (I)      <=-5**  VOP.RC.I..........  2.79 x TDA + 8.7.
                                                             Semivertical Open       ........  ..........  SVO.RC.I..........  2.79 x TDA + 8.7.
                                                              (SVO).
                                                             Horizontal Open (HZO).  ........  ..........  HZO.RC.I..........  0.7 x TDA + 8.74.
                                                             Vertical Closed         ........  ..........  VCT.RC.I..........  0.58 x TDA + 3.05.
                                                              Transparent (VCT).
                                                             Horizontal Closed       ........  ..........  HCT.RC.I..........  0.4 x TDA + 0.31.
                                                              Transparent (HCT).
                                                             Vertical Closed Solid   ........  ..........  VCS.RC.I..........  0.25 x V + 0.63.
                                                              (VCS).
                                                             Horizontal Closed       ........  ..........  HCS.RC.I..........  0.25 x V + 0.63.
                                                              Solid (HCS).
                                                             Service Over Counter    ........  ..........  SOC.RC.I..........  1.09 x TDA + 0.26.
                                                              (SOC).
                                     Self-Contained (SC)...  Vertical Open (VOP)...  ........  ..........  VOP.SC.I..........  5.4 x TDA + 15.02.
                                                             Semivertical Open       ........  ..........  SVO.SC.I..........  5.41 x TDA + 14.63.
                                                              (SVO).
                                                             Horizontal Open (HZO).  ........  ..........  HZO.SC.I..........  2.42 x TDA + 9.
                                                             Vertical Closed         ........  ..........  VCT.SC.I..........  0.62 x TDA + 3.29.
                                                              Transparent (VCT).
                                                             Horizontal Closed       ........  ..........  HCT.SC.I..........  0.56 x TDA + 0.43.
                                                              Transparent (HCT).
                                                             Vertical Closed Solid   ........  ..........  VCS.SC.I..........  0.34 x V + 0.88.
                                                              (VCS).
                                                             Horizontal Closed       ........  ..........  HCS.SC.I..........  0.34 x V + 0.88.
                                                              Solid (HCS).
                                                             Service Over Counter    ........  ..........  SOC.SC.I..........  1.53 x TDA + 0.36.
                                                              (SOC).
--------------------------------------------------------------------------------------------------------------------------------------------------------
* The meaning of the letters in this column is indicated in the columns to the left.
** Ice-cream freezer is defined in 10 CFR 431.62 as a commercial freezer that is designed to operate at or below -5 [deg]F *(-21 [deg]C) and that the
  manufacturer designs, markets, or intends for the storing, displaying, or dispensing of ice cream.

    (2) For commercial refrigeration equipment with two or more 
compartments (i.e., hybrid refrigerators, hybrid freezers, hybrid 
refrigerator-freezers, and non-hybrid refrigerator-freezers), the 
maximum daily energy consumption for each model shall be the sum of the 
MDEC values for all of its compartments. For each compartment, measure 
the TDA or volume of that compartment, and determine the appropriate 
equipment class based on that compartment's equipment family, condensing 
unit configuration, and designed operating temperature. The MDEC limit 
for each compartment shall be the calculated value obtained by entering 
that compartment's TDA or volume into the standard equation in paragraph 
(e)(1) of this section for that compartment's equipment class. Measure 
the CDEC or TDEC for the entire case as described in Sec.  
431.66(d)(2)(i) through (iii), except that where measurements and 
calculations reference ARI Standard 1200-2006 (incorporated by 
reference, see Sec.  431.63), AHRI Standard 1200 (I-P)-2010 
(incorporated by reference, see Sec.  431.63) shall be used.
    (3) For remote condensing and self-contained wedge cases, measure 
the CDEC or TDEC according to the AHRI Standard 1200 (I-P)-2010 test 
procedure (incorporated by reference, see Sec.  431.63). For wedge cases 
in equipment classes for which a volume metric is used, the MDEC shall 
be the amount derived from the appropriate standards equation in 
paragraph (e)(1) of this section. For wedge cases of equipment classes 
for which a TDA metric is used, the MDEC for each model shall be the 
amount derived by incorporating into the standards equation in paragraph 
(e)(1) of this section for the equipment

[[Page 821]]

class a value for the TDA that is the product of:
    (i) The vertical height of the air curtain (or glass in a 
transparent door) and
    (ii) The largest overall width of the case, when viewed from the 
front.
    (f) Exclusions. The energy conservation standards in paragraphs (b) 
through (e) of this section do not apply to salad bars, buffet tables, 
and chef bases or griddle stands.

[70 FR 60414, Oct. 18, 2005, as amended at 74 FR 1140, Jan. 9, 2009; 78 
FR 62993, Oct. 23, 2013; 79 FR 22308, Apr. 21, 2014; 79 FR 17816, Mar. 
28, 2014]



 Sec. Appendix A to Subpart C of Part 431--Uniform Test Method for the 
Measurement of Energy Consumption of Commercial Refrigerators, Freezers, 
                        and Refrigerator-Freezers

    Note: After October 20, 2014 but before March 28, 2017, any 
representations made with respect to the energy use or efficiency of 
commercial refrigeration equipment must be made in accordance with the 
results of testing pursuant to this appendix.
    Manufacturers conducting tests of commercial refrigeration equipment 
after May 21, 2014 and prior to October 20, 2014, must conduct such test 
in accordance with either this appendix or Sec.  431.64 as it appeared 
at 10 CFR part 430, subpart B, in the 10 CFR parts 200 to 499 edition 
revised as of January 1, 2014. Any representations made with respect to 
the energy use or efficiency of such commercial refrigeration equipment 
must be in accordance with whichever version is selected. Given that 
after October 20, 2014 representations with respect to the energy use or 
efficiency of commercial refrigeration equipment must be made in 
accordance with tests conducted pursuant to this appendix, manufacturers 
may wish to begin using this test procedure as soon as possible.

                            1. Test Procedure

    1.1. Determination of Daily Energy Consumption. Determine the daily 
energy consumption of each covered commercial refrigerator, freezer, 
refrigerator-freezer or ice-cream freezer by conducting the test 
procedure set forth in the Air-Conditioning and Refrigeration Institute 
(ARI) Standard 1200-2006, ``Performance Rating of Commercial 
Refrigerated Display Merchandisers and Storage Cabinets,'' section 3, 
``Definitions,'' section 4, ``Test Requirements,'' and section 7, 
``Symbols and Subscripts'' (incorporated by reference, see Sec.  
431.63). For each commercial refrigerator, freezer, or refrigerator-
freezer with a self-contained condensing unit, also use ARI Standard 
1200-2006, section 6, ``Rating Requirements for Self-contained 
Commercial Refrigerated Display Merchandisers and Storage Cabinets.'' 
For each commercial refrigerator, freezer, or refrigerator-freezer with 
a remote condensing unit, also use ARI Standard 1200-2006, section 5, 
``Rating Requirements for Remote Commercial Refrigerated Display 
Merchandisers and Storage Cabinets.''
    1.2. Methodology for Determining Applicability of Transparent Door 
Equipment Families. To determine if a door for a given model of 
commercial refrigeration equipment is transparent: (1) Calculate the 
outer door surface area including frames and mullions; (2) calculate the 
transparent surface area within the outer door surface area excluding 
frames and mullions; (3) calculate the ratio of (2) to (1) for each of 
the outer doors; and (4) the ratio for the transparent surface area of 
all outer doors must be greater than 0.25 to qualify as a transparent 
equipment family.
    1.3. Additional Specifications for Testing of Components and 
Accessories. Subject to the provisions regarding specific components and 
accessories listed below, all standard components that would be used 
during normal operation of the basic model in the field shall be 
installed and in operation during testing as recommended by the 
manufacturer and representative of their typical operation in the field 
unless such installation and operation is inconsistent with any 
requirement of the test procedure. The specific components and 
accessories listed in the subsequent sections shall be operated as 
stated during the test.
    1.3.1. Energy Management Systems. Applicable energy management 
systems may be activated during the test procedure provided they are 
permanently installed on the case, configured as sold and in such a 
manner so as to operate automatically without the intervention of the 
operator, and do not conflict with any of other requirements for a valid 
test as specified in this appendix.
    1.3.2. Lighting. Energize all lighting, except customer display 
signs/lights as described in section 1.3.3 and UV lighting as described 
in section 1.3.6 of this appendix, to the maximum illumination level for 
the duration of testing. However, if a closed solid unit of commercial 
refrigeration equipment includes an automatic lighting control system 
that can turn off internal case lighting when the door is closed, and 
the manufacturer recommends the use of this system in writing in the 
product literature delivered with the unit, then the lighting control 
should be operated in the automatic setting, even if the model has a 
manual switch that disables the automatic lighting control.
    1.3.3. Customer display signs/lights. Do not energize supplemental 
lighting that exists

[[Page 822]]

solely for the purposes of advertising or drawing attention to the case 
and is not integral to the operation of the case.
    1.3.4. Condensate pan heaters and pumps. For self-contained 
equipment only, all electric resistance condensate heaters and 
condensate pumps must be installed and operational during the test. This 
includes the stabilization period (including pull-down), steady-state, 
and performance testing periods. Prior to the start of the stabilization 
period as defined by ASHRAE 72-2005 (incorporated by reference, see 
Sec.  431.63), the condensate pan must be dry. Following the start of 
the stabilization period, allow any condensate moisture generated to 
accumulate in the pan. Do not manually add or remove water from the 
condensate pan at any time during the test.
    1.3.5. Anti-sweat door heaters. Anti-sweat door heaters must be in 
operation during the entirety of the test procedure. Models with a user-
selectable setting must have the heaters energized and set to the 
maximum usage position. Models featuring an automatic, non-user-
adjustable controller that turns on or off based on environmental 
conditions must be operating in the automatic state. If a unit is not 
shipped with a controller from the point of manufacture and is intended 
to be used with an automatic, non-user-adjustable controller, test the 
unit with a manufacturer-recommended controller that turns on or off 
based on environmental conditions.
    1.3.6. Ultraviolet lights. Do not energize ultraviolet lights during 
the test.
    1.3.7. Illuminated temperature displays and alarms. All illuminated 
temperature displays and alarms shall be energized and operated during 
the test as they would be during normal field operation.
    1.3.8. Condenser filters. Remove any nonpermanent filters that are 
provided to prevent particulates from blocking a model's condenser coil.
    1.3.9. Refrigeration system security covers. Remove any devices used 
to secure the condensing unit against unwanted removal.
    1.3.10. Night curtains and covers. Do not deploy night curtains or 
covers.
    1.3.11. Grill options. Remove any optional, non-standard grills used 
to direct airflow.
    1.3.12. Misting or humidification systems. Misting or humidification 
systems must be inactive during the test.
    1.3.13. Air purifiers. Air purifiers must be inactive during the 
test.
    1.3.14. General purpose outlets. During the test, do not connect any 
external load to any general purpose outlets contained within a unit.
    1.3.15. Crankcase heaters. Crankcase heaters must be operational 
during the test. If a control system, such as a thermostat or electronic 
controller, is used to modulate the operation of the crankcase heater, 
it must be activated during the test.
    1.3.16. Drawers. Drawers are to be treated as identical to doors 
when conducting the DOE test procedure. Commercial refrigeration 
equipment with drawers should be configured with the drawer pans that 
allow for the maximum packing of test simulators and filler packages 
without the filler packages and test simulators exceeding 90 percent of 
the refrigerated volume. Packing of test simulators and filler packages 
shall be in accordance with the requirements for commercial 
refrigerators without shelves, as specified in section 6.2.3 of ASHRAE 
72-2005 (incorporated by reference, see Sec.  431.63).

                           2. Test Conditions

    2.1. Integrated Average Temperatures. Conduct the testing required 
in section 1 and 2 of this appendix A, and determine the daily energy 
consumption at the applicable integrated average temperature as found in 
the following table.

------------------------------------------------------------------------
                                                      Integrated average
            Category               Test procedure        temperature
------------------------------------------------------------------------
(i) Refrigerator with Solid      ARI Standard......  38 [deg]F (2
                                                      [deg]F).
(ii) Refrigerator with           ARI Standard......  38 [deg]F (2
                                                      [deg]F).
(iii) Freezer with Solid         ARI Standard......  0 [deg]F (2
                                                      [deg]F).
(iv) Freezer with Transparent    ARI Standard......  0 [deg]F (2
                                                      [deg]F).
(v) Refrigerator-Freezer with    ARI Standard......  38 [deg]F (2
                                                      [deg]F) for
                                                      refrigerator
                                                      compartment. 0
                                                      [deg]F (2
                                                      [deg]F) for
                                                      freezer
                                                      compartment.
(vi) Commercial Refrigerator     ARI Standard......  38 [deg]F (2
 Condensing Unit Designed for                         [deg]F).
 Pull-Down Temperature
 Applications and Transparent
 Doors.
(vii) Ice-Cream Freezer........  ARI Standard......  -15.0 [deg]F (2
                                                      [deg]F).
(viii) Commercial Refrigerator,  ARI Standard......  (A) 0 [deg]F (2
 Freezer with a Self-Contained                        [deg]F) for low
 Condensing Unit and without                          temperature
 Doors.                                               applications.
                                                     (B) 38 [deg]F
                                                      (2 [deg]F)
                                                      for medium
                                                      temperature
                                                      applications.
(ix) Commercial Refrigerator,    ARI Standard......  (A) 0 [deg]F (2
 Freezer with a Remote                                [deg]F) for low
 Condensing Unit.                                     temperature
                                                      applications.
                                                     (B) 38 [deg]F
                                                      (2 [deg]F)
                                                      for medium
                                                      temperature
                                                      applications.
------------------------------------------------------------------------
\1\ Incorporated by reference, see Sec.   431.63.


[[Page 823]]

    2.2. Lowest Application Product Temperature. If a unit of commercial 
refrigeration equipment is not able to be operated at the integrated 
average temperature specified in the table in paragraph 2.1, test the 
unit at the lowest application product temperature (LAPT), as defined in 
Sec.  431.62. For units equipped with a thermostat, LAPT is the lowest 
thermostat setting. For remote condensing equipment without a thermostat 
or other means of controlling temperature at the case, the lowest 
application product temperature is the temperature achieved with the dew 
point temperature (as defined in AHRI Standard 1200 (I-P)-2010 
(incorporated by reference see Sec.  431.63)) set to 5 degrees colder 
than that required to maintain the manufacturer's lowest specified 
operating temperature.
    2.3. Testing at NSF Test Conditions. For commercial refrigeration 
equipment that is also tested in accordance with NSF test procedures 
(Type I and Type II), integrated average temperatures and ambient 
conditions used for NSF testing may be used in place of the DOE-
prescribed integrated average temperatures and ambient conditions 
provided they result in a more stringent test. That is, the measured 
daily energy consumption of the same unit, when tested at the rating 
temperatures and/or ambient conditions specified in the DOE test 
procedure, must be lower than or equal to the measured daily energy 
consumption of the unit when tested with the rating temperatures or 
ambient conditions used for NSF testing. The integrated average 
temperature measured during the test may be lower than the range 
specified by the DOE applicable temperature specification provided in 
paragraph 2.1 of this appendix, but may not exceed the upper value of 
the specified range. Ambient temperatures and/or humidity values may be 
higher than those specified in the DOE test procedure.

                    3. Volume and Total Display Area

    3.1. Determination of Volume. Determine the volume of a commercial 
refrigerator, freezer, refrigerator-freezer, or ice-cream freezer using 
the method set forth in the ANSI/AHAM HRF-1-2004, ``Energy, Performance 
and Capacity of Household Refrigerators, Refrigerator-Freezers and 
Freezers'' (incorporated by reference, see Sec.  431.63), section 3.21, 
``Volume,'' sections 4.1 through 4.3, ``Method for Computing Total 
Refrigerated Volume and Total Shelf Area of Household Refrigerators and 
Household Wine Chillers,'' and sections 5.1 through 5.3, ``Method for 
Computing Total Refrigerated Volume and Total Shelf Area of Household 
Freezers.''
    3.2. Determination of Total Display Area. Determine the total 
display area of a commercial refrigerator, freezer, refrigerator-
freezer, or ice-cream freezer using the method set forth in ARI Standard 
1200-2006 (incorporated by reference, see Sec.  431.63), but 
disregarding the specification that ``transparent material 
(=65% light transmittance) in Appendix D. Specifically, total 
display area shall be the sum of the projected area(s) of visible 
product, expressed in ft \2\ (i.e., portions through which product can 
be viewed from an angle normal, or perpendicular, to the transparent 
area). Determine L as the interior length of the CRE model, provided no 
more than 10 percent of that length consists of non-transparent 
material. For those cases with greater than 10 percent of non-
transparent area, L shall be determined as the projected linear 
dimension(s) of visible product plus 10 percent of non-transparent area.
    See Figures A3.1, A3.2, A3.3, A3.4, and A3.5 as examples of how to 
calculate the dimensions associated with calculation of total display 
area. In the diagrams, Dh and L represent the dimensions of 
the projected visible product.

[[Page 824]]

[GRAPHIC] [TIFF OMITTED] TR21AP14.000


[[Page 825]]


[GRAPHIC] [TIFF OMITTED] TR21AP14.001


[[Page 826]]


[GRAPHIC] [TIFF OMITTED] TR21AP14.002


[79 FR 22308, Apr. 21, 2014]



 Sec. Appendix B to Subpart C of Part 431--Amended Uniform Test Method 
 for the Measurement of Energy Consumption of Commercial Refrigerators, 
                   Freezers, and Refrigerator-Freezers

    Note: Any representations made on or after March 28, 2017, with 
respect to the energy use or efficiency of commercial refrigeration 
equipment must be made in accordance with the results of testing 
pursuant to this appendix.

                            1. Test Procedure

    1.1. Determination of Daily Energy Consumption. Determine the daily 
energy consumption of each covered commercial refrigerator, freezer, 
refrigerator-freezer or ice-cream freezer by conducting the test 
procedure set forth in the AHRI Standard 1200 (I-P)-2010, section 3, 
``Definitions,'' section 4, ``Test Requirements,'' and section 7, 
``Symbols and Subscripts'' (incorporated by reference, see Sec.  
431.63). For each commercial refrigerator, freezer, or refrigerator-
freezer with a self-contained condensing unit, also use AHRI Standard 
1200 (I-P)-2010, section 6, ``Rating Requirements for Self-contained 
Commercial Refrigerated Display Merchandisers and Storage Cabinets.'' 
For each commercial refrigerator, freezer, or refrigerator-freezer with 
a remote condensing unit, also use AHRI Standard 1200 (I-P)-2010, 
section 5, ``Rating Requirements for Remote Commercial Refrigerated 
Display Merchandisers and Storage Cabinets.''

   1.2. Methodology for Determining Applicability of Transparent Door 
                           Equipment Families

    To determine if a door for a given model of commercial refrigeration 
equipment is transparent: (1) Calculate the outer door surface area 
including frames and mullions; (2) calculate the transparent surface 
area within the outer door surface area excluding frames and mullions; 
(3) calculate the ratio of (2) to (1) for each of the outer doors; and 
(4) the ratio for the transparent surface area of all outer doors must 
be greater than 0.25 to qualify as a transparent equipment family.
    1.3. Additional Specifications for Testing of Components and 
Accessories. All standard components that would be used during normal 
operation of the basic model in the field shall be installed and used 
during testing as

[[Page 827]]

recommended by the manufacturer and representative of their typical 
operation in the field unless such installation and operation is 
inconsistent with any requirement of the test procedure. The specific 
components and accessories listed in the subsequent sections shall be 
operated as stated during the test.
    1.3.1. Energy Management Systems. Applicable energy management 
systems may be activated during the test procedure provided they are 
permanently installed on the case, configured and sold in such a manner 
so as to operate automatically without the intervention of the operator, 
and do not conflict with any of other requirements for a valid test as 
specified in this appendix.
    1.3.2. Lighting. All lighting except for customer display signs/
lights as described in section 1.3.3 and UV lighting as described in 
section 1.3.6 of this appendix shall be energized to the maximum 
illumination level for the duration of testing for commercial 
refrigeration equipment with lighting except when the unit is equipped 
with lighting occupancy sensors and controls. If the unit includes an 
automatic lighting control system, it should be enabled during test. If 
the unit is equipped with lighting occupancy sensors and controls in 
should be tested in accordance with section 1.3.2.1 of this appendix.
    1.3.2.1. Lighting Occupancy Sensors and Controls. For units with 
lighting occupancy sensors and/or scheduled lighting controls installed 
on the unit, determine the effect of the controls/sensors on daily 
energy consumption by either a physical test or a calculation method and 
using the variables that are defined as:
    CECA is the alternate compressor energy consumption (kilowatt-
hours);
    LECsc is the lighting energy consumption of internal case lights 
with lighting occupancy sensors and controls deployed (kilowatt-hours);
    Pli is the rated power of lights when they are fully on (watts);
    Pli(off) is the power of lights when they are off (watts);
    Pli(dim) is the power of lights when they are dimmed (watts);
    TDECo is the total daily energy consumption with lights fully on, as 
measured by AHRI Standard 1200 (I-P)-2010 (kilowatt-hours);
    tdim is the time period during which the lights are dimmed due to 
the use of lighting occupancy sensors or scheduled lighting controls 
(hours);
    tdim,controls is the time case lighting is dimmed due to the use of 
lighting controls (hours);
    tdim,sensors is the time case lighting is dimmed due to the use of 
lighting occupancy sensors (hours);
    tl is the time period when lights would be on without lighting 
occupancy sensors and/or scheduled lighting controls (24 hours);
    toff is the time period during which the lights are off due to the 
use of lighting occupancy sensors and/or scheduled lighting controls 
(hours);
    toff,controls is the time case lighting is off due to the use of 
scheduled lighting controls (hours);
    toff,sensors is the time case lighting is off due to the use of 
lighting occupancy sensors (hours); and
    tsc is the time period when lighting is fully on with lighting 
occupancy sensors and scheduled lighting controls enabled (hours).
    1.3.2.1.i. For both a physical test and a calculation method, 
determine the estimated time off or dimmed, toff or 
tdim, as the sum of contributions from lighting occupancy 
sensors and scheduled lighting controls that dim or turn off lighting, 
respectively, as shown in the following equation:
[GRAPHIC] [TIFF OMITTED] TR21AP14.003

[GRAPHIC] [TIFF OMITTED] TR21AP14.004

    The sum of tsc, toff, and tdim 
should equal 24 hours and the total time period during which the lights 
are off or dimmed shall not exceed 10.8 hours. For cases with scheduled 
lighting controls, the time the case lighting is off and/or dimmed due 
to scheduled lighting controls (toff,controls and/or 
tdim,controls, as applicable) shall not exceed 8 hours. For 
cases with lighting occupancy sensors installed, the time the case 
lighting is off and/or dimmed due to lighting occupancy sensors 
(toff,sensors and/or tdim,sensors, as applicable) 
shall not exceed 10.8 hours. For cases with lighting occupancy sensors 
and scheduled lighting controls installed, the time the case lighting is 
off and/or dimmed due to lighting occupancy sensors 
(toff,sensors and/or tdim,sensors, as applicable) 
shall not exceed 2.8 hours and the time the case lighting is off and/or 
dimmed due to scheduled lighting controls (toff,controls and/
or tdim,controls, as applicable) shall not exceed 8 hours.
    1.3.2.1.ii. If using a physical test to determine the daily energy 
consumption, turn off the lights for a time period equivalent to 
toff and dim the lights for a time period equal to 
tdim. If night curtains are also being tested on the case, 
the period of lights off and/or

[[Page 828]]

dimmed shall begin at the same time that the night curtain is being 
deployed and shall continue consecutively, in that order, for the 
appropriate number of hours.
    1.3.2.1.iii. If using a calculation method to determine the daily 
energy consumption--
[GRAPHIC] [TIFF OMITTED] TR21AP14.005

    Where EER represents the energy efficiency ratio from Table 1 in 
AHRI Standard 1200 (I-P)-2010 (incorporated by reference, see Sec.  
431.63) for remote condensing equipment or the values shown in the 
following table for self-contained equipment:

EER for Self-Contained Commercial Refrigerated Display Merchandisers and
                            Storage Cabinets
------------------------------------------------------------------------
                Operating temperature class                   EER Btu/W
------------------------------------------------------------------------
Medium.....................................................           11
Low........................................................            7
Ice Cream..................................................            5
------------------------------------------------------------------------

    1.3.2.1.iii.C. For remote condensing units, calculate the revised 
compressor energy consumption (CECR) by adding the 
CECA to the compressor energy consumption (CEC) measured in 
AHRI Standard 1200 (I-P)-2010 (incorporated by reference, see Sec.  
431.63). The CDEC for the entire case is the sum of the CECR 
and LECsc (as calculated above) and the fan energy 
consumption (FEC), anti-condensate energy consumption (AEC), defrost 
energy consumption (DEC), and condensate evaporator pan energy 
consumption (PEC) (as measured in AHRI Standard 1200 (I-P)-2010).
    1.3.2.1.iii.D. For self-contained units, the TDEC for the entire 
case is the sum of total daily energy consumption as measured by the 
AHRI Standard 1200 (I-P)-2010 (incorporated by reference, see Sec.  
431.63) test with the lights fully on (TDECo) and 
CECA, less the decrease in lighting energy use due to 
lighting occupancy sensors and scheduled lighting controls, as shown in 
following equation.
[GRAPHIC] [TIFF OMITTED] TR21AP14.006

    1.3.3. Customer display signs/lights. Do not energize supplemental 
lighting that exists solely for the purposes of advertising or drawing 
attention to the case and is not integral to the operation of the case.
    1.3.4. Condensate pan heaters and pumps. For self-contained 
equipment only, all electric resistance condensate heaters and 
condensate pumps must be installed and in operation during the test. 
This includes the stabilization period (including pull-down), steady-
state, and performance testing periods. Prior to the start of the 
stabilization period as defined by ASHRAE 72-2005 (incorporated by 
reference, see Sec.  431.63), the condensate pan must be dry. Following 
the start of the stabilization period, allow any condensate moisture 
generated to accumulate in the pan. Do not manually add or remove water 
to or from the condensate pan at any time during the test.
    1.3.5. Anti-sweat door heaters. Anti-sweat door heaters must be 
operational during the entirety of the test procedure. Models with a 
user-selectable setting must have the heaters energized and set to the 
maximum usage

[[Page 829]]

position. Models featuring an automatic, non-user-adjustable controller 
that turns on or off based on environmental conditions must be operating 
in the automatic state. If a unit is not shipped with a controller from 
the point of manufacture and is intended to be used with an automatic, 
non-user-adjustable controller, test the unit with a manufacturer-
recommended controller that turns on or off based on environmental 
conditions.
    1.3.6. Ultraviolet lights. Do not energize ultraviolet lights during 
the test.
    1.3.7. Illuminated temperature displays and alarms. All illuminated 
temperature displays and alarms shall be energized and operated during 
the test as they would be during normal field operation.
    1.3.8. Condenser filters. Remove any nonpermanent filters that are 
provided to prevent particulates from blocking a model's condenser coil.
    1.3.9. Refrigeration system security covers. Remove any devices used 
to secure the condensing unit against unwanted removal.
    1.3.10. Night curtains and covers. For display cases sold with night 
curtains installed, the night curtain shall be employed for 6 hours; 
beginning 3 hours after the start of the first defrost period. Upon the 
completion of the 6-hour period, the night curtain shall be raised until 
the completion of the 24-hour test period.
    1.3.11. Grill options. Remove any optional non-standard grills used 
to direct airflow.
    1.3.12. Misting or humidification systems. Misting or humidification 
systems must be inactive during the test.
    1.3.13. Air purifiers. Air purifiers must be inactive during the 
test.
    1.3.14. General purpose outlets. During the test, do not connect any 
external load to any general purpose outlets contained within a unit.
    1.3.15. Crankcase heaters. Crankcase heaters must be operational 
during the test. If a control system, such as a thermostat or electronic 
controller, is used to modulate the operation of the crankcase heater, 
it must be utilized during the test.
    1.3.16. Drawers. Drawers are to be treated as identical to doors 
when conducting the DOE test procedure. Commercial refrigeration 
equipment with drawers should be configured with the drawer pans that 
allow for the maximum packing of test simulators and filler packages 
without the filler packages and test simulators exceeding 90 percent of 
the refrigerated volume. Packing of test simulators and filler packages 
shall be in accordance with the requirements for commercial 
refrigerators without shelves, as specified in section 6.2.3 of ASHRAE 
72-2005 (incorporated by reference, see Sec.  431.63).

                           2. Test Conditions

    2.1. Integrated Average Temperatures. Conduct the testing required 
in section 1 of this appendix B, and determine the daily energy 
consumption at the applicable integrated average temperature in the 
following table.

------------------------------------------------------------------------
                                                      Integrated average
            Category               Test procedure        temperature
------------------------------------------------------------------------
(i) Refrigerator with Solid      AHRI Standard 1200  38 [deg]F (2
                                                      [deg]F).
(ii) Refrigerator with           AHRI Standard 1200  38 [deg]F (2
                                                      [deg]F).
(iii) Freezer with Solid         AHRI Standard 1200  0 [deg]F (2
                                                      [deg]F).
(iv) Freezer with Transparent    AHRI Standard 1200  0 [deg]F (2
                                                      [deg]F).
(v) Refrigerator-Freezer with    AHRI Standard 1200  38 [deg]F (2
                                                      [deg]F) for
                                                      refrigerator
                                                      compartment.
                                                     0 [deg]F (2
                                                      [deg]F) for
                                                      freezer
                                                      compartment.
(vi) Commercial Refrigerator     AHRI Standard 1200  38 [deg]F (2
 Condensing Unit Designed for                         [deg]F).
 Pull-Down Temperature
 Applications and Transparent
 Doors.
(vii) Ice-Cream Freezer........  AHRI Standard 1200  -15.0 [deg]F (2
                                                      [deg]F).
(viii) Commercial Refrigerator,  AHRI Standard 1200  (A) 0 [deg]F (2
 Freezer with a Self-Contained                        [deg]F) for low
 Condensing Unit and without                          temperature
 Doors.                                               applications.
                                                     (B) 38.0 [deg]F
                                                      (2 [deg]F)
                                                      for medium
                                                      temperature
                                                      applications.
(ix) Commercial Refrigerator,    AHRI Standard 1200  (A) 0 [deg]F (2
 Freezer with a Remote                                [deg]F) for low
 Condensing Unit.                                     temperature
                                                      applications.
                                                     (B) 38.0 [deg]F
                                                      (2 [deg]F)
                                                      for medium
                                                      temperature
                                                      applications.
------------------------------------------------------------------------
\1\ Incorporated by reference, see Sec.   431.63.

    2.2. Lowest Application Product Temperature. If a unit of commercial 
refrigeration equipment is not able to be operated at the integrated 
average temperature specified in the table in paragraph 2.1 of this 
appendix, test the unit at the lowest application product temperature 
(LAPT), as defined in Sec.  431.62. For units equipped with a 
thermostat, LAPT is the lowest thermostat setting. For remote condensing 
equipment without a thermostat or other means of controlling temperature 
at the case, the lowest application product temperature is the 
temperature achieved with the dew point temperature (as defined in AHRI 
Standard 1200 (I-P)-2010 (incorporated by reference, see Sec.  431.63)) 
set to 5

[[Page 830]]

degrees colder than that required to maintain the manufacturer's lowest 
specified application temperature.
    2.3. Testing at NSF Test Conditions. For commercial refrigeration 
equipment that is also tested in accordance with NSF test procedures 
(Type I and Type II), integrated average temperatures and ambient 
conditions used for NSF testing may be used in place of the DOE-
prescribed integrated average temperatures and ambient conditions 
provided they result in a more stringent test. That is, the measured 
daily energy consumption of the same unit, when tested at the rating 
temperatures and/or ambient conditions specified in the DOE test 
procedure, must be lower than or equal to the measured daily energy 
consumption of the unit when tested with the rating temperatures or 
ambient conditions used for NSF testing. The integrated average 
temperature measured during the test may be lower than the range 
specified by the DOE applicable temperature specification provided in 
paragraph 2.1 of this appendix, but may not exceed the upper value of 
the specified range. Ambient temperatures and/or humidity values may be 
higher than those specified in the DOE test procedure.

                    3. Volume and Total Display Area

    3.1. Determination of Volume. Determine the volume of a commercial 
refrigerator, freezer, refrigerator-freezer, or ice-cream freezer using 
the method set forth in the HRF-1-2008 (incorporated by reference, see 
Sec.  431.63), section 3.30, ``Volume,'' and sections 4.1 through 4.3, 
``Method for Computing Refrigerated Volume of Refrigerators, 
Refrigerator-Freezers, Wine Chillers and Freezers.''
    3.2. Determination of Total Display Area. Determine the total 
display area of a commercial refrigerator, freezer, refrigerator-
freezer, or ice-cream freezer using the method set forth in ARI Standard 
1200-2006 (incorporated by reference, see Sec.  431.63), but 
disregarding the specification that ``transparent material 
(=65% light transmittance) in Appendix D. Specifically, total 
display area shall be the sum of the projected area(s) of visible 
product, expressed in ft\2\ (i.e., portions through which product can be 
viewed from an angle normal, or perpendicular, to the transparent area). 
Determine L as the interior length of the CRE model, provided no more 
than 5 inches of that length consists of non-transparent material. For 
those cases with greater than 5 inches of non-transparent area, L shall 
be determined as the projected linear dimension(s) of visible product 
plus 5 inches of non-transparent area.
    See Figures A3.1, A3.2, and A3.3 as examples of how to calculate the 
dimensions associated with calculation of total display area. In the 
diagrams, Dh and L represent the dimensions of the projected 
visible product.
[GRAPHIC] [TIFF OMITTED] TR21AP14.007


[[Page 831]]


[GRAPHIC] [TIFF OMITTED] TR21AP14.008


[[Page 832]]


[GRAPHIC] [TIFF OMITTED] TR21AP14.009


[79 FR 22308, Apr. 21, 2014]

[[Page 833]]



                 Subpart D_Commercial Warm Air Furnaces

    Source: 69 FR 61939, Oct. 21, 2004, unless otherwise noted.



Sec.  431.71  Purpose and scope.

    This subpart contains energy conservation requirements for 
commercial warm air furnaces, pursuant to Part C of Title III of the 
Energy Policy and Conservation Act, as amended, 42 U.S.C. 6311-6317.

[69 FR 61939, Oct. 21, 2004, as amended at 70 FR 60415, Oct. 18, 2005]



Sec.  431.72  Definitions concerning commercial warm air furnaces.

    The following definitions apply for purposes of this subpart D, and 
of subparts J through M of this part. Any words or terms not defined in 
this Section or elsewhere in this part shall be defined as provided in 
Section 340 of the Act.
    Basic model means all commercial warm air furnaces manufactured by 
one manufacturer within a single equipment class, that have the same 
nominal input rating and the same primary energy source (e.g. gas or 
oil) and that do not have any differing physical or functional 
characteristics that affect energy efficiency.
    Commercial warm air furnace means a warm air furnace that is 
industrial equipment, and that has a capacity (rated maximum input) of 
225,000 Btu per hour or more.
    Thermal efficiency for a commercial warm air furnace equals 100 
percent minus percent flue loss determined using test procedures 
prescribed under Sec.  431.76.
    Warm air furnace means a self-contained oil-fired or gas-fired 
furnace designed to supply heated air through ducts to spaces that 
require it and includes combination warm air furnace/electric air 
conditioning units but does not include unit heaters and duct furnaces.

[69 FR 61939, Oct. 21, 2004, as amended at 76 FR 12503, Mar. 7, 2011; 78 
FR 79598, Dec. 31, 2013]

                             Test Procedures



Sec.  431.75  Materials incorporated by reference.

    (a) General. DOE incorporates by reference the following test 
procedures into subpart D of part 431. The materials listed have been 
approved for incorporation by reference by the Director of the Federal 
Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any 
subsequent amendment to the listed materials by the standard-setting 
organization will not affect the DOE regulations unless and until such 
regulations are amended by DOE. Materials are incorporated as they exist 
on the date of the approval, and a notice of any changes in the 
materials will be published in the Federal Register. All approved 
materials are available for inspection at the National Archives and 
Records Administration (NARA). For information on the availability of 
this material at NARA, call (202) 741-6030 or go to: http://
www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html. Also, these materials are available for inspection 
at U.S. Department of Energy, Office of Energy Efficiency and Renewable 
Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza 
SW., Washington, DC 20024, (202) 586-2945, or go to: http://
www1.eere.energy.gov/buildings/appliance_standards/. The referenced test 
procedure standards are listed below by relevant standard-setting 
organization, along with information on how to obtain copies from those 
sources.
    (b) ANSI. American National Standards Institute. 25 W. 43rd Street, 
4th Floor, New York, NY 10036. (212) 642-4900 or go to http://
www.ansi.org.
    (1) ANSI Z21.47-2012, (``ANSI Z21.47'') ``Standard for Gas-fired 
Central Furnaces,'' approved March 27, 2012, IBR approved for Sec.  
431.76.
    (2) [Reserved]
    (c) ASHRAE. American Society of Heating, Refrigerating and Air-
Conditioning Engineers Inc., 1791 Tullie Circle NE., Atlanta, Georgia 
30329, (404) 636-8400, or go to: http://www.ashrae.org.
    (1) ANSI/ASHRAE Standard 103-2007, (``ASHRAE 103''), ``Method of 
Testing for Annual Fuel Utilization Efficiency

[[Page 834]]

of Residential Central Furnaces and Boilers,'' sections 7.2.2.4, 7.8, 
9.2, and 11.3.7, approved June 27, 2007, IBR approved for Sec.  431.76.
    (2) [Reserved]
    (d) HI. Hydronics Institute Division of AHRI, 35 Russo Place, P.O. 
Box 218, Berkeley Heights, NJ 07922, (703) 600-0350, or go to: http://
www.ahrinet.org/hydronics + institute + section.aspx.
    (1) HI BTS-2000, sections 8.2.2, 11.1.4, 11.1.5, and 11.1.6.2, 
``Method to Determine Efficiency of Commercial Space Heating Boilers,'' 
published January 2001, IBR approved for Sec.  431.76.
    (2) [Reserved]
    (e) UL. Underwriters Laboratories, Inc., 333 Pfingsten Road, 
Northbrook, IL 60062, (847) 272-8800, or go to: http://www.ul.com.
    (1) UL 727 (UL 727-1994), ``Standard for Safety Oil-Fired Central 
Furnaces,'' published on August 1, 1994, IBR approved for Sec.  431.76.
    (2) UL 727 (UL 727-2006), ``Standard for Safety Oil-Fired Central 
Furnaces,'' approved April 7, 2006, IBR approved for Sec.  431.76.
    (3) [Reserved]

[77 FR 28987, May 16, 2012, as amended at 80 FR 42663, July 17, 2015]



Sec.  431.76  Uniform test method for the measurement of energy efficiency 
of commercial warm air furnaces.

    (a) Scope. This section covers the test requirements used to measure 
the energy efficiency of commercial warm air furnaces with a rated 
maximum input of 225,000 Btu per hour or more. On and after July 11, 
2016, any representations made with respect to the energy use or 
efficiency of commercial warm air furnaces must be made in accordance 
with the results of testing pursuant to this section. At that time, you 
must use the relevant procedures in ANSI Z21.47 or UL 727-2006 
(incorporated by reference, see Sec.  431.75). On and after August 17, 
2015 and prior to July 11, 2016, manufacturers must test commercial warm 
air furnaces in accordance with this amended section or the section as 
it appeared at 10 CFR part 430, subpart B in the 10 CFR parts 200 to 499 
edition revised January 1, 2014. DOE notes that, because testing under 
this section is required as of July 11, 2016, manufacturers may wish to 
begin using this amended test procedure immediately. Any representations 
made with respect to the energy use or efficiency of such commercial 
warm air furnaces must be made in accordance with whichever version is 
selected.
    (b) Testing. Where this section prescribes use of ANSI Z21.47 or UL 
727-2006 (incorporated by reference, see Sec.  431.75), perform only the 
procedures pertinent to the measurement of the steady-state efficiency, 
as specified in paragraph (c) of this section.
    (c) Test set-up. (1) Test set-up for gas-fired commercial warm air 
furnaces. The test set-up, including flue requirement, instrumentation, 
test conditions, and measurements for determining thermal efficiency is 
as specified in sections 1.1 (Scope), 2.1 (General), 2.2 (Basic Test 
Arrangements), 2.3 (Test Ducts and Plenums), 2.4 (Test Gases), 2.5 (Test 
Pressures and Burner Adjustments), 2.6 (Static Pressure and Air Flow 
Adjustments), 2.39 (Thermal Efficiency), and 4.2.1 (Basic Test 
Arrangements for Direct Vent Central Furnaces) of ANSI Z21.47 
(incorporated by reference, see Sec.  431.75). The thermal efficiency 
test must be conducted only at the normal inlet test pressure, as 
specified in section 2.5.1 of ANSI Z21.47, and at the maximum hourly Btu 
input rating specified by the manufacturer for the product being tested.
    (2) Test setup for oil-fired commercial warm air furnaces. The test 
setup, including flue requirement, instrumentation, test conditions, and 
measurement for measuring thermal efficiency is as specified in sections 
1 (Scope), 2 (Units of Measurement), 3 (Glossary), 37 (General), 38 and 
39 (Test Installation), 40 (Instrumentation, except 40.4 and 40.6.2 
through 40.6.7, which are not required for the thermal efficiency test), 
41 (Initial Test Conditions), 42 (Combustion Test--Burner and Furnace), 
43.2 (Operation Tests), 44 (Limit Control Cutout Test), 45 (Continuity 
of Operation Test), and 46 (Air Flow, Downflow or Horizontal Furnace 
Test), of UL 727-2006 (incorporated by reference, see Sec.  431.75). You 
must conduct a fuel oil analysis for heating value, hydrogen content, 
carbon content, pounds per gallon, and American Petroleum Institute 
(API) gravity as specified in section 8.2.2 of HI BTS-2000 (incorporated

[[Page 835]]

by reference, see Sec.  431.75). The steady-state combustion conditions, 
specified in Section 42.1 of UL 727-2006, are attained when variations 
of not more than 5 [deg]F in the measured flue gas temperature occur for 
three consecutive readings taken 15 minutes apart.
    (d) Additional test measurements--(1) Measurement of flue 
CO2 (carbon dioxide) for oil-fired commercial warm air 
furnaces. In addition to the flue temperature measurement specified in 
section 40.6.8 of UL 727-2006 (incorporated by reference, see Sec.  
431.75), you must locate one or two sampling tubes within six inches 
downstream from the flue temperature probe (as indicated on Figure 40.3 
of UL 727-2006). If you use an open end tube, it must project into the 
flue one-third of the chimney connector diameter. If you use other 
methods of sampling CO2, you must place the sampling tube so 
as to obtain an average sample. There must be no air leak between the 
temperature probe and the sampling tube location. You must collect the 
flue gas sample at the same time the flue gas temperature is recorded. 
The CO2 concentration of the flue gas must be as specified by 
the manufacturer for the product being tested, with a tolerance of 
0.1 percent. You must determine the flue 
CO2 using an instrument with a reading error no greater than 
0.1 percent.
    (2) Procedure for the measurement of condensate for a gas-fired 
condensing commercial warm air furnace. The test procedure for the 
measurement of the condensate from the flue gas under steady-state 
operation must be conducted as specified in sections 7.2.2.4, 7.8, and 
9.2 of ASHRAE 103 (incorporated by reference, see Sec.  431.75) under 
the maximum rated input conditions. You must conduct this condensate 
measurement for an additional 30 minutes of steady-state operation after 
completion of the steady-state thermal efficiency test specified in 
paragraph (c) of this section.
    (e) Calculation of thermal efficiency --(1) Gas-fired commercial 
warm air furnaces. You must use the calculation procedure specified in 
section 2.39, Thermal Efficiency, of ANSI Z21.47 (incorporated by 
reference, see Sec.  431.75).
    (2) Oil-fired commercial warm air furnaces. You must calculate the 
percent flue loss (in percent of heat input rate) by following the 
procedure specified in sections 11.1.4, 11.1.5, and 11.1.6.2 of the HI 
BTS-2000 (incorporated by reference, see Sec.  431.75). The thermal 
efficiency must be calculated as: Thermal Efficiency (percent) = 100 
percent - flue loss (in percent).
    (f) Procedure for the calculation of the additional heat gain and 
heat loss, and adjustment to the thermal efficiency, for a condensing 
commercial warm air furnace. (1) You must calculate the latent heat gain 
from the condensation of the water vapor in the flue gas, and calculate 
heat loss due to the flue condensate down the drain, as specified in 
sections 11.3.7.1 and 11.3.7.2 of ASHRAE 103 (incorporated by reference, 
see Sec.  431.75), with the exception that in the equation for the heat 
loss due to hot condensate flowing down the drain in section 11.3.7.2, 
the assumed indoor temperature of 70 [deg]F and the temperature term 
TOA must be replaced by the measured room temperature as 
specified in section 2.2.8 of ANSI Z21.47 (incorporated by reference, 
see Sec.  431.75).
    (2) Adjustment to the thermal efficiency for condensing furnaces. 
You must adjust the thermal efficiency as calculated in paragraph (e)(1) 
of this section by adding the latent gain, expressed in percent, from 
the condensation of the water vapor in the flue gas, and subtracting the 
heat loss (due to the flue condensate down the drain), also expressed in 
percent, both as calculated in paragraph (f)(1) of this section, to 
obtain the thermal efficiency of a condensing furnace.

[80 FR 42663, July 17, 2015]

                      Energy Conservation Standards



Sec.  431.77  Energy conservation standards and their effective dates.

    (a) Gas-fired commercial warm air furnaces. Each gas-fired 
commercial warm air furnace must meet the following energy efficiency 
standard levels:
    (1) For gas-fired commercial warm air furnaces manufactured starting 
on January 1, 1994, until January 1, 2023, the TE at the maximum rated 
capacity (rated maximum input) must be not less than 80 percent; and
    (2) For gas-fired commercial warm air furnaces manufactured starting 
on

[[Page 836]]

January 1, 2023, the TE at the maximum rated capacity (rated maximum 
input) must be not less than 81 percent.
    (b) Oil-fired commercial warm air furnaces. Each oil-fired 
commercial warm air furnace must meet the following energy efficiency 
standard levels:
    (1) For oil-fired commercial warm air furnaces manufactured starting 
on January 1, 1994, until January 1, 2023, the TE at the maximum rated 
capacity (rated maximum input) must be not less than 81 percent; and
    (2) For oil-fired commercial warm air furnaces manufactured starting 
on January 1, 2023, the TE at the maximum rated capacity (rated maximum 
input) must be not less than 82 percent.

[81 FR 2528, Jan. 15, 2016]



                  Subpart E_Commercial Packaged Boilers

    Source: 69 FR 61960, Oct. 21, 2004, unless otherwise noted.



Sec.  431.81  Purpose and scope.

    This subpart contains energy conservation requirements for certain 
commercial packaged boilers, pursuant to Part C of Title III of the 
Energy Policy and Conservation Act. (42 U.S.C. 6311-6317)

[69 FR 61960, Oct. 21, 2004, as amended at 70 FR 60415, Oct. 18, 2005]



Sec.  431.82  Definitions concerning commercial packaged boilers.

    The following definitions apply for purposes of this subpart E, and 
of subparts A and J through M of this part. Any words or terms not 
defined in this section or elsewhere in this part shall be defined as 
provided in 42 U.S.C. 6311.
    Basic model means all commercial packaged boilers manufactured by 
one manufacturer within a single equipment class having the same primary 
energy source (e.g., gas or oil) and that have essentially identical 
electrical, physical and functional characteristics that affect energy 
efficiency.
    Btu/h or Btu/hr means British thermal units per hour.
    Combustion efficiency for a commercial packaged boiler is a 
measurement of how much of the fuel input energy is converted to useful 
heat in combustion and is calculated as 100-percent minus percent losses 
due to dry flue gas, incomplete combustion, and moisture formed by 
combustion of hydrogen, as determined with the test procedures 
prescribed under Sec.  431.86 of this chapter.
    Commercial packaged boiler means a packaged boiler that meets all of 
the following criteria:
    (1) Has rated input of 300,000 Btu/h or greater;
    (2) Is, to any significant extent, distributed in commerce for space 
conditioning and/or service water heating in buildings but does not meet 
the definition of ``hot water supply boiler'' in this part;
    (3) Does not meet the definition of ``field-constructed'' in this 
section; and
    (4) Is designed to:
    (i) Operate at a steam pressure at or below 15 psig;
    (ii) Operate at or below a water pressure of 160 psig and water 
temperature of 250 [deg]F; or
    (iii) Operate at the conditions specified in both paragraphs (4)(i) 
and (ii) of this definition.
    Condensing boiler means a commercial packaged boiler that condenses 
part of the water vapor in the flue gases, and that includes a means of 
collecting and draining this condensate from its heat exchanger section.
    Field-constructed means custom-designed equipment that requires 
welding of structural components in the field during installation. For 
the purposes of this definition, welding does not include attachment 
using mechanical fasteners or brazing; any jackets, shrouds, venting, 
burner, or burner mounting hardware are not structural components.
    Flue condensate means liquid formed by the condensation of moisture 
in the flue gases.
    Fuel input rate for a commercial packaged boiler means the measured 
rate at which the commercial packaged boiler uses energy and is 
determined using test procedures prescribed under Sec.  431.86 of this 
chapter.
    Manufacturer of a commercial packaged boiler means any person who 
manufactures, produces, assembles or imports such a boiler, including 
any person who:

[[Page 837]]

    (1) Manufactures, produces, assembles or imports a commercial 
packaged boiler in its entirety;
    (2) Manufactures, produces, assembles or imports a commercial 
packaged boiler in part, and specifies or approves the boiler's 
components, including burners or other components produced by others, as 
for example by specifying such components in a catalogue by make and 
model number or parts number; or
    (3) Is any vendor or installer who sells a commercial packaged 
boiler that consists of a combination of components that is not 
specified or approved by a person described in paragraph (1) or (2) of 
this definition.
    Packaged boiler means a boiler that is shipped complete with heating 
equipment, mechanical draft equipment, and automatic controls and is 
usually shipped in one or more sections. If the boiler is shipped in 
more than one section, the sections may be produced by more than one 
manufacturer, and may be originated or shipped at different times and 
from more than one location.
    Rated input means the maximum rate at which the commercial packaged 
boiler has been rated to use energy as indicated by the nameplate and in 
the manual shipped with the commercial packaged boiler.
    Thermal efficiency for a commercial packaged boiler is determined 
using test procedures prescribed under Sec.  431.86 and is the ratio of 
the heat absorbed by the water or the water and steam to the higher 
heating value in the fuel burned.

[69 FR 61960, Oct. 21, 2004, as amended at 74 FR 36354, July 22, 2009; 
76 FR 12503, Mar. 7, 2011; 78 FR 79598, Dec. 31, 2013; 81 FR 89304, Dec. 
9, 2016]

                             Test Procedures



Sec.  431.85  Materials incorporated by reference.

    (a) General. We incorporate by reference the following standards 
into subpart E of part 431. The material listed has been approved for 
incorporation by reference by the Director of the Federal Register in 
accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any subsequent 
amendment to a standard by the standard-setting organization will not 
affect the DOE regulations unless and until amended by DOE. Material is 
incorporated as it exists on the date of the approval and a notice of 
any change in the material will be published in the Federal Register. 
All approved material is available for inspection at the National 
Archives and Records Administration (NARA). For information on the 
availability of this material at NARA, call 202-741-6030 or go to http:/
/www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html. Also, this material is available for inspection at 
U.S. Department of Energy, Office of Energy Efficiency and Renewable 
Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza, 
SW., Washington, DC 20024, 202-586-2945, or go to: http://
www1.eere.energy.gov/buildings/appliance_standards/. Standards can be 
obtained from the sources listed below.
    (b) AHRI. Air-Conditioning, Heating, and Refrigeration Institute, 
2111 Wilson Blvd., Suite 500, Arlington, VA 22201, (703) 524-8800, or go 
to: http://www.ahrinet.org.
    (1) AHRI Standard 1500-2015, (``ANSI/AHRI Standard 1500-2015''), 
``2015 Standard for Performance Rating of Commercial Space Heating 
Boilers,'' ANSI approved November 28, 2014, IBR approved for appendix A 
to subpart E as follows:
    (i) Section 3--Definitions (excluding introductory text to section 
3, introductory text to 3.2, 3.2.4, 3.2.7, 3.6, 3.12, 3.13, 3.20, 3.23, 
3.24, 3.26, 3.27, and 3.31);
    (ii) Section 5--Rating Requirements, 5.3 Standard Rating Conditions: 
(excluding introductory text to section 5.3, 5.3.5, 5.3.8, and 5.3.9);
    (iii) Appendix C--Methods of Testing for Rating Commercial Space 
Heating Boilers--Normative, excluding C2.1, C2.7.2.2.2, C3.1.3, C3.5-
C3.7, C4.1.1.1.2, C4.1.1.2.3, C4.1.2.1.5, C4.1.2.2.2, C4.1.2.2.3, C4.2, 
C5, C7.1, C7.2.12, C7.2.20;
    (iv) Appendix D. Properties of Saturated Steam--Normative.
    (v) Appendix E. Correction Factors for Heating Values of Fuel 
Gases--Normative.
    (2) [Reserved].

[74 FR 36354, July 22, 2009, as amended at 81 FR 89305, Dec. 9, 2016]

[[Page 838]]



Sec.  431.86  Uniform test method for the measurement of energy efficiency 
of commercial packaged boilers.

    (a) Scope. This section provides test procedures, pursuant to the 
Energy Policy and Conservation Act (EPCA), as amended, which must be 
followed for measuring the combustion efficiency and/or thermal 
efficiency of a gas- or oil-fired commercial packaged boiler.
    (b) Testing and Calculations. Determine the thermal efficiency or 
combustion efficiency of commercial packaged boilers by conducting the 
appropriate test procedure(s) indicated in Table 1 of this section.

                   Table 1--Test Requirements for Commercial Packaged Boiler Equipment Classes
----------------------------------------------------------------------------------------------------------------
                                                                                                Test procedure
                                                                                               (corresponding to
                                                        Certified rated        Standards           standards
       Equipment category             Subcategory         input Btu/h      efficiency metric   efficiency metric
                                                                            (Sec.   431.87)    required by Sec.
                                                                                                    431.87)
----------------------------------------------------------------------------------------------------------------
Hot Water.......................  Gas-fired.........  =300,00  Thermal Efficiency  Appendix A,
                                                       0 and <=2,500,000.                      Section 2.
Hot Water.......................  Gas-fired.........  2,500,0  Combustion          Appendix A,
                                                       00.                 Efficiency.         Section 3.
Hot Water.......................  Oil-fired.........  =300,00  Thermal Efficiency  Appendix A,
                                                       0 and <=2,500,000.                      Section 2.
Hot Water.......................  Oil-fired.........  2,500,0  Combustion          Appendix A,
                                                       00.                 Efficiency.         Section 3.
Steam...........................  Gas-fired (all*)..  =300,00  Thermal Efficiency  Appendix A,
                                                       0 and <=2,500,000.                      Section 2.
Steam...........................  Gas-fired (all*)..  2,500,0  Thermal Efficiency  Appendix A,
                                                       00 and                                  Section 2.
                                                       <=5,000,000.
                                                      5,000,0  Thermal Efficiency  Appendix A,
                                                       00.                                     Section 2.
                                                                                              OR
                                                                                              Appendix A,
                                                                                               Section 3 with
                                                                                               Section 2.4.3.2.
Steam...........................  Oil-fired.........  =300,00  Thermal Efficiency  Appendix A,
                                                       0 and <=2,500,000.                      Section 2.
Steam...........................  Oil-fired.........  2,500,0  Thermal Efficiency  Appendix A,
                                                       00 and                                  Section 2.
                                                       <=5,000,000.
                                                      5,000,0  Thermal Efficiency  Appendix A,
                                                       00.                                     Section 2.
                                                                                              OR
                                                                                              Appendix A,
                                                                                               Section 3. with
                                                                                               Section 2.4.3.2.
----------------------------------------------------------------------------------------------------------------
* Equipment classes for commercial packaged boilers as of July 22, 2009 (74 FR 36355) distinguish between gas-
  fired natural draft and all other gas-fired (except natural draft).

    (c) Field Tests. The field test provisions of appendix A may be used 
only to test a unit of commercial packaged boiler with rated input 
greater than 5,000,000 Btu/h.

[81 FR 89305, Dec. 9, 2016]

                       Energy Efficiency Standards



Sec.  431.87  Energy and water conservation standards 
and their effective dates.

    (a) Each commercial packaged boiler listed in Table 1 to Sec.  
431.87 and manufactured on or after March 2, 2012 and prior to January 
10, 2023, must meet the applicable energy conservation standard levels 
as follows:

               Table 1 to Sec.   431.87--Commercial Packaged Boiler Energy Conservations Standards
----------------------------------------------------------------------------------------------------------------
                                                                                          Efficiency level--
             Equipment                     Subcategory        Size category (input)    effective date: March 2,
                                                                                                2012 *
----------------------------------------------------------------------------------------------------------------
Hot Water Commercial Packaged        Gas-fired.............  =300,000     80.0% ET.
 Boilers.                                                     Btu/h and <=2,500,000
                                                              Btu/h.
Hot Water Commercial Packaged        Gas-fired.............  2,500,000    82.0% EC.
 Boilers.                                                     Btu/h.
Hot Water Commercial Packaged        Oil-fired.............  =300,000     82.0% ET.
 Boilers.                                                     Btu/h and <=2,500,000
                                                              Btu/h.
Hot Water Commercial Packaged        Oil-fired.............  2,500,000    84.0% EC.
 Boilers.                                                     Btu/h.
Steam Commercial Packaged Boilers..  Gas-fired--all, except  =300,000     79.0% ET.
                                      natural draft.          Btu/h and <=2,500,000
                                                              Btu/h.
Steam Commercial Packaged Boilers..  Gas-fired--all, except  2,500,000    79.0% ET.
                                      natural draft.          Btu/h.

[[Page 839]]

 
Steam Commercial Packaged Boilers..  Gas-fired--natural      =300,000     77.0% ET.
                                      draft.                  Btu/h and <=2,500,000
                                                              Btu/h.
Steam Commercial Packaged Boilers..  Gas-fired--natural      2,500,000    77.0% ET.
                                      draft.                  Btu/h.
Steam Commercial Packaged Boilers..  Oil-fired.............  =300,000     81.0% ET.
                                                              Btu/h and <=2,500,000
                                                              Btu/h.
Steam Commercial Packaged Boilers..  Oil-fired.............  2,500,000    81.0% ET.
                                                              Btu/h.
----------------------------------------------------------------------------------------------------------------
* Where ET means ``thermal efficiency'' and EC means ``combustion efficiency'' as defined in 10 CFR 431.82.

    (b) Each commercial packaged boiler listed in Table 2 to Sec.  
431.87 and manufactured on or after January 10, 2023, must meet the 
applicable energy conservation standard levels as follows:

               Table 2 to Sec.   431.87--Commercial Packaged Boiler Energy Conservations Standards
----------------------------------------------------------------------------------------------------------------
                Equipment                    Size category (rated input)        Energy conservation standard
----------------------------------------------------------------------------------------------------------------
Small Gas-Fired Hot Water Commercial      =300,000 Btu/h and     84.0% ET.
 Packaged Boilers.                         <=2,500,000 Btu/h.
Large Gas-Fired Hot Water Commercial      2,500,000 Btu/h and    85.0% EC.
 Packaged Boilers.                         <=10,000,000 Btu/h.
Very Large Gas-Fired Hot Water            10,000,000 Btu/h.....  82.0% EC.
 Commercial Packaged Boilers.
Small Oil-Fired Hot Water Commercial      =300,000 Btu/h and     87.0% ET.
 Packaged Boilers.                         <=2,500,000 Btu/h.
Large Oil-Fired Hot Water Commercial      2,500,000 Btu/h and    88.0% EC.
 Packaged Boilers.                         <=10,000,000 Btu/h.
Very Large Oil-Fired Hot Water            10,000,000 Btu/h.....  84.0% EC.
 Commercial Packaged Boilers.
Small Gas-Fired Steam Commercial          =300,000 Btu/h and     81.0% ET.
 Packaged Boilers.                         <=2,500,000 Btu/h.
Large Gas-Fired Steam Commercial          2,500,000 Btu/h and    82.0% ET.
 Packaged Boilers.                         <=10,000,000 Btu/h.
Very Large Gas-Fired Steam Commercial     10,000,000 Btu/h.....  79.0% ET.
 Packaged Boilers **.
Small Oil-Fired Steam Commercial          =300,000 Btu/h and     84.0% ET.
 Packaged Boilers.                         <=2,500,000 Btu/h.
Large Oil-Fired Steam Commercial          2,500,000 Btu/h and    85.0% ET.
 Packaged Boilers.                         <=10,000,000 Btu/h.
Very Large Oil-Fired Steam Commercial     10,000,000 Btu/h.....  81.0% ET.
 Packaged Boilers.
----------------------------------------------------------------------------------------------------------------
* Where ET means ``thermal efficiency'' and EC means ``combustion efficiency'' as defined in 10 CFR 431.82.
** Prior to March 2, 2022, for natural draft very large gas-fired steam commercial packaged boilers, a minimum
  thermal efficiency level of 77 percent is permitted and meets Federal commercial packaged boiler energy
  conservation standards.


[85 FR 1681, Jan. 10, 2020]



 Sec. Appendix A to Subpart E of Part 431--Uniform Test Method for the 
     Measurement of Thermal Efficiency and Combustion Efficiency of 
                       Commercial Packaged Boilers

    Note: Prior to December 4, 2017, manufacturers must make any 
representations with respect to the energy use or efficiency of 
commercial packaged boilers in accordance with the results of testing 
pursuant to this Appendix or the test procedures as they appeared in 10 
CFR 431.86 revised as of January 1, 2016. On and after December 4, 2017, 
manufacturers must make any representations with respect to energy use 
or efficiency in accordance with the results of testing pursuant to this 
appendix.

    1. Definitions.
    For purposes of this appendix, the Department of Energy incorporates 
by reference

[[Page 840]]

the definitions established in section 3 of the American National 
Standards Institute (ANSI) and Air-Conditioning, Heating, and 
Refrigeration Institute (AHRI) Standard 1500, ``2015 Standard for 
Performance Rating of Commercial Space Heating Boilers,'' beginning with 
3.1 and ending with 3.35 (incorporated by reference, see Sec.  431.85; 
hereafter ``ANSI/AHRI Standard 1500-2015''), excluding the introductory 
text to section 3, the introductory text to section 3.2, ``Boiler''; 
3.2.4, ``Heating Boiler''; 3.2.7, ``Packaged Boiler''; 3.6, ``Combustion 
Efficiency''; 3.12, ``Efficiency, Combustion''; 3.13, ``Efficiency, 
Thermal''; 3.20, ``Gross Output''; 3.23, ``Input Rating''; 3.24, ``Net 
Rating''; 3.26, ``Published Rating''; 3.26.1, ``Standard Rating''; 3.27, 
``Rating Conditions''; 3.27.1, ``Standard Rating Conditions''; and 3.31, 
``Thermal Efficiency.'' In cases where there is a conflict, the language 
of the test procedure in this appendix takes precedence over ANSI/AHRI 
Standard 1500-2015.
    1.1. In all incorporated sections of ANSI/AHRI Standard 1500-2015, 
references to the manufacturer's ``specifications,'' 
``recommendations,'' ``directions,'' or ``requests'' mean the 
manufacturer's instructions in the installation and operation manual 
shipped with the commercial packaged boiler being tested or in 
supplemental instructions provided by the manufacturer pursuant to Sec.  
429.60(b)(4) of this chapter. For parameters or considerations not 
specified in this appendix, refer to the manual shipped with the 
commercial packaged boiler. Should the manual shipped with the 
commercial packaged boiler not provide the necessary information, refer 
to the supplemental instructions for the basic model pursuant to Sec.  
429.60(b)(4) of this chapter. The supplemental instructions provided 
pursuant to Sec.  429.60(b)(4) of this chapter do not replace or alter 
any requirements in this appendix nor do they override the manual 
shipped with the commercial packaged boiler. In cases where these 
supplemental instructions conflict with any instructions or provisions 
provided in the manual shipped with the commercial packaged boiler, use 
the manual shipped with the commercial packaged boiler.
    1.2. Unless otherwise noted, in all incorporated sections of ANSI/
AHRI Standard 1500-2015, the term ``boiler'' means a commercial packaged 
boiler as defined in Sec.  431.82.
    1.3. Unless otherwise noted, in all incorporated sections of ANSI/
AHRI Standard 1500-2015, the term ``input rating'' means ``rated input'' 
as defined in Sec.  431.82.
    2. Thermal Efficiency Test.
    2.1. Test Setup.
    2.1.1. Instrumentation. Use instrumentation meeting the minimum 
requirements found in Table C1 of Appendix C of ANSI/AHRI Standard 1500-
2015 (incorporated by reference, see Sec.  431.85).
    2.1.2. Data collection and sampling. Record all test data in 
accordance with Table 2.1 and Table 2.2. Do not use Section C5 and Table 
C4 of Appendix C of ANSI/AHRI Standard 1500-2015.

              Table 2.1--Data To Be Recorded Before Testing
------------------------------------------------------------------------
               Item recorded                   Additional instruction
------------------------------------------------------------------------
Date of Test..............................  None.
Manufacturer..............................  None.
Commercial Packaged Boiler Model Number...  None.
Burner Model Number & Manufacturer........  None.
Nozzle description and oil pressure.......  None.
Oil Analysis--H, C, API Gravity, lb/gal     None.
 and Btu/lb.
Gas Manifold Pressure.....................  Record at start and end of
                                             test.
Gas line pressure at meter................  Measurement may be made
                                             manually.
Gas temperature...........................  Measurement may be made
                                             manually.
Barometric Pressure (Steam and Natural Gas  Measurement may be made
 Only).                                      manually.
Gas Heating Value, Btu/ft \3\*............  Record at start and end of
                                             test.
------------------------------------------------------------------------
* Multiplied by correction factors, as applicable, in accordance with
  Appendix E of ANSI/AHRI Standard 1500-2015.


[[Page 841]]

[GRAPHIC] [TIFF OMITTED] TR09DE16.023

    2.1.3. Instrument Calibration. Instruments must be calibrated at 
least once per year and a calibration record, containing at least the 
date of calibration and the method of calibration, must be kept as part 
of the data underlying each basic model certification, pursuant to Sec.  
429.71 of this chapter.

[[Page 842]]

    2.1.4. Test Setup and Apparatus. Set up the commercial packaged 
boiler for thermal efficiency testing according to the provisions of 
Section C2 (except section C2.1) of Appendix C of ANSI/AHRI Standard 
1500-2015 (incorporated by reference, see Sec.  431.85).
    2.1.4.1. For tests of oil-fired commercial packaged boilers, 
determine the weight of fuel consumed using one of the methods specified 
in the following sections 2.1.4.1.1. or 2.1.4.1.2. of this appendix:
    2.1.4.1.1. If using a scale, determine the weight of fuel consumed 
as the difference between the weight of the oil vessel before and after 
each measurement period, as specified in sections 2.1.4.1.3.1. or 
2.1.4.1.3.2. of this appendix, determined using a scale meeting the 
accuracy requirements of Table C1 of Appendix C of ANSI/AHRI Standard 
1500-2015.
    2.1.4.1.2. If using a flow meter, first determine the volume of fuel 
consumed as the total volume over the applicable measurement period as 
specified in 2.1.4.1.3.1. or 2.1.4.1.3.2. of this appendix and as 
measured by a flow meter meeting the accuracy requirements of Table C1 
of Appendix C of ANSI/AHRI Standard 1500-2015 upstream of the oil inlet 
port of the commercial packaged boiler. Then determine the weight of 
fuel consumed by multiplying the total volume of fuel over the 
applicable measurement period by the density of oil as determined 
pursuant to C3.2.1.1.3. of Appendix C of ANSI/AHRI Standard 1500-2015.
    2.1.4.1.3. The applicable measurement period for the purposes of 
determining fuel input rate must be as specified in section 2.1.4.1.3.1. 
of this appendix for the ``Warm-Up Period'' or section 2.1.4.1.3.2. of 
this appendix for the ``Test Period.''
    2.1.4.1.3.1. For the purposes of confirming steady-state operation 
during the ``Warm-Up Period,'' the measurement period must be 15 minutes 
and tT in Equation C2 in Section C7.2.3.1 of Appendix C of 
ANSI/AHRI Standard 1500-2015 must be 0.25 hours to determine fuel input 
rate.
    2.1.4.1.3.2. For the purposes of determining thermal efficiency 
during the ``Test Period,'' the measurement period and tT are 
as specified in sections 2.3.4 and 2.3.5 of this appendix.
    2.1.4.2 For tests of gas-fired commercial packaged boilers, install 
a volumetric gas meter meeting the accuracy requirements of Table C1 of 
Appendix C of ANSI/AHRI Standard 1500-2015 upstream of the gas inlet 
port of the commercial packaged boiler. Record the accumulated gas 
volume consumed for each applicable measurement period. Use Equation 
C7.2.3.2. of Appendix C of ANSI/AHRI Standard 1500-2015 to calculate 
fuel input rate.
    2.1.4.2.1. The applicable measurement period for the purposes of 
determining fuel input rate must be as specified in section 2.1.4.2.1.1. 
of this appendix for the ``Warm-Up Period'' and 2.1.4.2.1.2. of this 
appendix for the ``Test Period.''
    2.1.4.2.1.1. For the purposes of confirming steady-state operation 
during the ``Warm-Up Period,'' the measurement period must be 15 minutes 
and tT in Equation C2 in Section C7.2.3.1 of Appendix C of 
ANSI/AHRI Standard 1500-2015 must be 0.25 hours to determine fuel input 
rate.
    2.1.4.2.1.2. For the purposes of determining thermal efficiency 
during the ``Test Period,'' the measurement period and tT are 
as specified in sections 2.3.4 and 2.3.5 of this appendix.
    2.1.4.3 In addition to the provisions of Section C2.2.1.2 of ANSI/
AHRI Standard 1500-2015, vent gases may alternatively be discharged 
vertically into a straight stack section without elbows. R-7 minimum 
insulation must extend 6 stack diameters above the flue collar, the 
thermocouple grid must be located at a vertical distance of 3 stack 
diameters above the flue collar, and the sampling tubes for flue gases 
must be installed within 1 stack diameter beyond the thermocouple grid. 
If dilution air is introduced into the flue gases before the plane of 
the thermocouple and flue gas sampling points, utilize an alternate 
plane of thermocouple grid and flue gas sampling point located 
downstream from the heat exchanger and upstream from the point of 
dilution air introduction.
    2.1.5. Additional Requirements for Outdoor Commercial Packaged 
Boilers. If the manufacturer provides more than one outdoor venting 
arrangement, the outdoor commercial packaged boiler (as defined in 
Section 3.2.6 of ANSI/AHRI Standard 1500-2015; incorporated by 
reference, see Sec.  431.85) must be tested with the shortest total 
venting arrangement as measured by adding the straight lengths of 
venting supplied with the equipment. If the manufacturer does not 
provide an outdoor venting arrangement, install the outdoor commercial 
packaged boiler venting consistent with the procedure specified in 
Section C2.2 of Appendix C of ANSI/AHRI Standard 1500-2015.
    2.1.6. Additional Requirements for Steam Tests. In addition to the 
provisions of Section C2 of Appendix C of ANSI/AHRI Standard 1500-2015 
(incorporated by reference, see Sec.  431.85), the following 
requirements apply for steam tests.
    2.1.6.1. Insulate all steam piping from the commercial packaged 
boiler to the steam separator, and extend insulation at least one foot 
(1 ft.) beyond the steam separator, using insulation meeting the 
requirements specified in Table 2.3 of this appendix.

[[Page 843]]

[GRAPHIC] [TIFF OMITTED] TR09DE16.024

    2.1.6.2. A temperature sensing device must be installed in the 
insulated steam piping prior to the water separator if the commercial 
packaged boiler produces superheated steam.
    2.1.6.3. Water entrained in the steam and water condensing within 
the steam piping must be collected and used to calculate the quality of 
steam during the ``Test Period.'' Steam condensate must be collected and 
measured using either a cumulative (totalizing) flow rate or by 
measuring the mass of the steam condensate. Instrumentation used to 
determine the amount of steam condensate must meet the requirements 
identified in Table C1 in Appendix C of ANSI/AHRI Standard 1500-2015.
    2.1.7. Additional Requirements for Water Tests. In addition to the 
provisions of section C2 of Appendix C of ANSI/AHRI Standard 1500-2015 
(incorporated by reference, see Sec.  431.85), the following 
requirements apply for water tests.
    2.1.7.1. Insulate all water piping between the commercial packaged 
boiler and the location of the temperature measuring equipment, 
including one foot (1 ft.) beyond the sensor, using insulation meeting 
the requirements specified in Table 2.3 of this appendix.
    2.1.7.2. Install a temperature measuring device at Point B of Figure 
C9 of ANSI/AHRI Standard 1500-2015 (incorporated by reference, see Sec.  
431.85). Water entering the commercial packaged boiler must first enter 
the run of a tee and exit from the top outlet of the tee. The remaining 
connection of the tee must be plugged. Measure the inlet water 
temperature at Point B in the run of a second tee located 12  2 pipe diameters downstream from the first tee and no 
more than the greater of 12 inches or 6 pipe diameters from the inlet of 
the commercial packaged boiler. The temperature measuring device shall 
extend into the water flow at the point of exit from the side outlet of 
the second tee. All inlet piping between the temperature measuring 
device and the inlet of the commercial packaged boilers must be wrapped 
with R-7 insulation.
    2.1.7.3. Do not use Section C2.7.2.2.2 or its subsections of ANSI/
AHRI Standard 1500-2015 for water meter calibration.
    2.1.8. Flue Gas Sampling. In section C2.5.2 of Appendix C of ANSI/
AHRI Standard 1500-2015, replace the last sentence with the following: 
When taking flue gas samples from a rectangular plane, collect samples 
at \1/4\, \1/2\, and \3/4\ the distance from one side of the rectangular 
plane in the longer dimension and along the centerline midway between 
the edges of the plane in the shorter dimension and use the average of 
the three samples. The tolerance in each dimension for each measurement 
location is  1 inch.
    2.2. Test Conditions.
    2.2.1. General. Use the test conditions from Section 5 and Section 
C3 of Appendix C of ANSI/AHRI Standard 1500-2015 (incorporated by 
reference, see Sec.  431.85) for thermal efficiency testing but do not 
use the following sections:

(1) 5.3 Introductory text
(2) 5.3.5 (and subsections; see sections 2.2.3. and 2.2.4. of this 
appendix)
(3) 5.3.8 (see section 2.2.5. of this appendix)
(4) 5.3.9 (see section 2.2.6. of this appendix)
(5) C3.1.3 (and subsections)
(6) C3.5 (including Table C2; see section 2.2.7. of this appendix)
(7) C3.6 (see section 2.2.5. of this appendix)
(8) C3.7 (see section 2.2.6. of this appendix)

    2.2.2. Burners for Oil-Fired Commercial Packaged Boilers. In 
addition to section C3.3 of Appendix C of ANSI/AHRI Standard 1500-2015, 
the following applies: For oil-fired commercial packaged boilers, test 
the unit with the particular make and model of burner as certified (or 
to be certified) by the manufacturer. If multiple burners are specified 
in the certification report for that basic model, then use any of the 
listed burners for testing.
    2.2.3. Water Temperatures. Maintain the outlet temperature measured 
at Point C in Figure C9 of Appendix C of ANSI/AHRI Standard 1500-2015 at 
180 [deg]F  2 [deg]F and maintain the inlet 
temperature measured at Point B at 80 [deg]F  5 
[deg]F during the ``Warm-up

[[Page 844]]

Period'' and ``Test Period'' as indicated by 1-minute interval data 
pursuant to Table 2.2 of this appendix. Each reading must meet these 
temperature requirements. Use the inlet temperature and flow rate 
measured at Point B in Figure C9 of Appendix C of ANSI/AHRI Standard 
1500-2015 for calculation of thermal efficiency.
    2.2.4 Exceptions to Water Temperature Requirements. For commercial 
packaged boilers that require a higher flow rate than that resulting 
from the water temperature requirements of sections 2.2.3 of this 
appendix to prevent boiling, use a recirculating loop and maintain the 
inlet temperature at Point B of Figure C9 of Appendix C of ANSI/AHRI 
Standard 1500-2015 at 140 [deg]F  5 [deg]F during 
the ``Warm-up Period'' and ``Test Period'' as indicated by 1-minute 
interval data pursuant to Table 2.2 of this appendix. Each reading must 
meet these temperature requirements. Use the inlet temperature and flow 
rate measured at Point A in Figure C9 of Appendix C of ANSI/AHRI 
Standard 1500-2015 for calculation of thermal efficiency.
    2.2.5 Air Temperature. For tests of non-condensing boilers, maintain 
ambient room temperature between 65 [deg]F and 100 [deg]F at all times 
during the ``Warm-up Period'' and ``Test Period'' (as described in 
Section C4 of Appendix C of ANSI/AHRI Standard 1500-2015) as indicated 
by 1-minute interval data pursuant to Table 2.2 of this appendix. For 
tests of condensing boilers, maintain ambient room temperature between 
65 [deg]F and 85 [deg]F at all times during the ``Warm-up Period'' and 
``Test Period'' (as described in Section C4 of Appendix C of ANSI/AHRI 
Standard 1500-2015) as indicated by 1-minute interval data pursuant to 
Table 2.2 of this appendix. The ambient room temperature may not differ 
by more than  5 [deg]F from the average ambient 
room temperature during the entire ``Test Period'' at any reading. 
Measure the room ambient temperature within 6 feet of the front of the 
unit at mid height. The test air temperature, measured at the air inlet 
of the commercial packaged boiler, must be within  
5 [deg]F of the room ambient temperature when recorded at the 1-minute 
interval defined by Table 2.2 of this appendix.
    2.2.6. Ambient Humidity. For condensing boilers, maintain ambient 
room relative humidity below 80-percent at all times during both the 
``Warm-up Period'' and ``Test Period'' (as described in Section C4 of 
Appendix C of ANSI/AHRI Standard 1500-2015) pursuant to Table 2.2 of 
this appendix. Measure the ambient humidity in the same location as 
ambient air temperature in section 2.2.5 of this appendix.
    2.2.7. Flue Gas Temperature. The flue gas temperature during the 
test must not vary from the flue gas temperature measured at the start 
of the Test Period (as defined in Section C4 of ANSI/AHRI Standard 1500-
2015) when recorded at the interval defined in Table 2.2 of this 
appendix by more than the limits prescribed in Table 2.4 of this 
appendix.

                       Table 2.4--Flue Gas Temperature Variation Limits During Test Period
----------------------------------------------------------------------------------------------------------------
            Fuel type                    Non-condensing                           Condensing
----------------------------------------------------------------------------------------------------------------
Gas..............................   2   Greater of  3 percent and
                                    percent.                    5 [deg]F
Light Oil........................   2
                                    percent.
Heavy Oil........................  Greater of  3 percent and
                                     5
                                    [deg]F.
----------------------------------------------------------------------------------------------------------------

    2.3. Test Method.
    2.3.1. General. Conduct the thermal efficiency test as prescribed in 
Section C4 ``Test Procedure'' of Appendix C of ANSI/AHRI Standard 1500-
2015 (incorporated by reference, see Sec.  431.85) excluding sections:

(1) C4.1.1.1.2 (see section 2.3.1.1 of this appendix)
(2) C4.1.1.2.3 (see 2.3.4 of this appendix)
(3) C4.1.2.1.5 (see section 2.3.2. of this appendix)
(4) C4.1.2.2.2
(5) C4.1.2.2.3 (see 2.3.5 of this appendix)
(6) C4.2
(7) C4.2.1
(8) C4.2.2

    2.3.1.1. Adjust oil or non-atmospheric gas to produce the required 
firebox pressure and CO2 or O2 concentration in 
the flue gas, as described in Section 5.3.1 of ANSI/AHRI Standard 1500-
2015. Conduct steam tests with steam pressure at the pressure specified 
in the manufacturer literature shipped with the commercial packaged 
boiler or in the manufacturer's supplemental testing instructions 
pursuant to Sec.  429.60(b)(4) of this chapter, but not exceeding 15 
psig. If no pressure is specified in the manufacturer literature shipped 
with the commercial packaged boiler or in the manufacturer's 
supplemental testing instructions (pursuant to Sec.  429.60(b)(4) of 
this chapter), or if a range of operating pressures is specified, 
conduct testing at a steam pressure equal to atmospheric pressure. If 
necessary to maintain steam quality as required by Section 5.3.7 of 
ANSI/AHRI Standard 1500-2015, increase steam pressure in 1 psig 
increments by throttling with a valve beyond the separator until the 
test is completed and the steam quality requirements have been 
satisfied, but do not increase the steam pressure to greater than 15 
psig.

[[Page 845]]

    2.3.2. Water Test Steady-State. Ensure that a steady-state is 
reached by confirming that three consecutive readings have been recorded 
at 15-minute intervals pursuant to Table 2.2 of this appendix that 
indicate that the measured fuel input rate is within  2-percent of the rated input. Water temperatures must 
meet the conditions specified in sections 2.2.3 and 2.2.4 of this 
appendix as applicable.
    2.3.3. Condensate Collection for Condensing Commercial Packaged 
Boilers. Collect condensate in a covered vessel so as to prevent 
evaporation.
    2.3.4. Steam Test Duration. Replace Section C4.1.1.2.3 of ANSI/AHRI 
Standard 1500-2015 with the following: The test period is one hour in 
duration if the steam condensate is measured or two hours if feedwater 
is measured. The test period must end with a 15-minute reading (steam 
condensate or feedwater and separator weight reading) pursuant to Table 
2.2 of this appendix. When feedwater is measured, the water line at the 
end of the test must be within 0.25 inches of the starting level.
    2.3.5. Water Test Duration. Replace Section C4.1.2.2.3 of ANSI/AHRI 
Standard 1500-2015 with the following: The test period is one hour for 
condensing commercial packaged boilers and 30 minutes for non-condensing 
commercial packaged boilers, and ends with a 15-minute interval reading 
pursuant to Table 2.2 of this appendix.
    2.4. Calculations.
    2.4.1. General. To determine the thermal efficiency of commercial 
packaged boilers, use the variables in section C6 of Appendix C of ANSI/
AHRI Standard 1500-2015 and calculation procedure for the thermal 
efficiency test specified in section C7.2 of Appendix C of ANSI/AHRI 
Standard 1500-2015, excluding sections C7.2.12 and C7.2.20.
    2.4.2. Use of Steam Properties Table. If the average measured 
temperature of the steam is higher than the value in Table D1 in 
Appendix D of ANSI/AHRI Standard 1500-2015 that corresponds to the 
average measured steam pressure, then use Table 2.5 of this appendix to 
determine the latent heat of superheated steam in (Btu/lb). Use linear 
interpolation for determining the latent heat of steam in Btu/lb if the 
measured steam pressure is between two values listed in Table D1 in 
Appendix D of ANSI/AHRI Standard 1500-2015 or in Table 2.5 of this 
appendix.

[[Page 846]]

[GRAPHIC] [TIFF OMITTED] TR09DE16.025


[[Page 847]]


[GRAPHIC] [TIFF OMITTED] TR09DE16.026

    2.4.3. Alternative Thermal Efficiency Calculation for Large Steam 
Commercial Packaged Boilers. To determine the thermal efficiency of 
commercial packaged boilers with a fuel input rate greater than 
5,000,000 Btu/h according to the steam test pursuant to Section C4.1.1 
of ANSI/AHRI Standard 1500-2015, either:
    2.4.3.1. Calculate the thermal efficiency of commercial packaged 
boiler models in steam mode in accordance with the provisions of section 
2.4.1 of this appendix, or
    2.4.3.2. Measure and calculate combustion efficiency 
Effyss in steam mode according to Section 3. Combustion 
Efficiency Test of this appendix and convert to thermal efficiency using 
the following equation:

EffyT = Effyss - 2.0

where EffyT is the thermal efficiency and EFFYss 
is the combustion efficiency as defined in C6 of ANSI/AHRI Standard 
1500-2015. The combustion efficiency Effyss is as calculated 
in Section C7.2.14 of ANSI/AHRI Standard 1500-2015.
    2.4.4. Rounding. Round the final thermal efficiency value to nearest 
one tenth of one percent.
    3. Combustion Efficiency Test.
    3.1. Test Setup.
    3.1.1. Instrumentation. Use instrumentation meeting the minimum 
requirements found in

[[Page 848]]

Table C1 of ANSI/AHRI Standard 1500-2015 (incorporated by reference, see 
Sec.  431.85).
    3.1.2. Data collection and sampling. Record all test data in 
accordance with Table 3.1 and Table 3.2 of this appendix. Do not use 
Section C5 and Table C4 of Appendix C in ANSI/AHRI Standard 1500-2015.

              Table 3.1--Data To Be Recorded Before Testing
------------------------------------------------------------------------
               Item recorded                   Additional instruction
------------------------------------------------------------------------
Date of Test..............................  None.
Manufacturer..............................  None.
Commercial Packaged Boiler Model Number...  None.
Burner Model Number & Manufacturer........  None.
Nozzle description and oil pressure.......  None.
Oil Analysis--H, C, API Gravity, lb/gal     None.
 and Btu/lb.
Gas Manifold Pressure.....................  Record at start and end of
                                             test.
Gas line pressure at meter................  Measurement may be made
                                             manually.
Gas temperature...........................  Measurement may be made
                                             manually.
Barometric Pressure (Steam and Natural Gas  Measurement may be made
 Only).                                      manually.
Gas Heating Value, Btu/ft \3\ *...........  Record at start and end of
                                             test.
------------------------------------------------------------------------
* Multiplied by correction factors, as applicable, in accordance with
  Appendix E of ANSI/AHRI Standard 1500-2015.


[[Page 849]]

[GRAPHIC] [TIFF OMITTED] TR09DE16.027

    3.1.3. Instrument Calibration. Instruments must be calibrated at 
least once per year and a calibration record, containing at least the 
date of calibration and the method of calibration, must be kept as part 
of the data underlying each basic model certification, pursuant to Sec.  
429.71 of this chapter.

[[Page 850]]

    3.1.4. Test Setup and Apparatus. Set up the commercial packaged 
boiler for combustion efficiency testing according to the provisions of 
Section C2 (except section C2.1) of Appendix C of ANSI/AHRI Standard 
1500-2015.
    3.1.4.1. For tests of oil-fired commercial packaged boilers, 
determine the weight of fuel consumed using one of the methods specified 
in sections 3.1.4.1.1. or 3.1.4.1.2. of this appendix:
    3.1.4.1.1. If using a scale, determine the weight of fuel consumed 
as the difference between the weight of the oil vessel before and after 
each measurement period, as specified in sections 3.1.4.1.3.1. or 
3.1.4.1.3.2. of this appendix, determined using a scale meeting the 
accuracy requirements of Table C1 of ANSI/AHRI Standard 1500-2015.
    3.1.4.1.2. If using a flow meter, first determine the volume of fuel 
consumed as the total volume over the applicable measurement period, as 
specified in sections 3.1.4.1.3.1. or 3.1.4.1.3.2. of this appendix, and 
as measured by a flow meter meeting the accuracy requirements of Table 
C1 of ANSI/AHRI Standard 1500-2015 upstream of the oil inlet port of the 
commercial packaged boiler. Then determine the weight of fuel consumed 
by multiplying the total volume of fuel over the applicable measurement 
period by the density of oil, in pounds per gallon, as determined 
pursuant to Section C3.2.1.1.3. of ANSI/AHRI Standard 1500-2015.
    3.1.4.1.3. The applicable measurement period for the purposes of 
determining fuel input rate must be as specified in section 3.1.4.1.3.1. 
of this appendix for the ``Warm-Up Period'' or 3.1.4.1.3.2. of this 
appendix for the ``Test Period.''
    3.1.4.1.3.1. For the purposes of confirming steady-state operation 
during the ``Warm-Up Period,'' the measurement period must be 15 minutes 
and tT in Equation C2 in Section C7.2.3.1 of ANSI/AHRI 
Standard 1500-2015 must be 0.25 hours to determine fuel input rate.
    3.1.4.1.3.2. For the purposes of determining combustion efficiency 
during the ``Test Period,'' the measurement period and tT are 
0.5 hours pursuant to section 3.3.1.1. of this appendix.
    3.1.4.2 For tests of gas-fired commercial packaged boilers, install 
a volumetric gas meter meeting the accuracy requirements of Table C1 of 
ANSI/AHRI Standard 1500-2015 upstream of the gas inlet port of the 
commercial packaged boiler. Record the accumulated gas volume consumed 
for each applicable measurement period. Use Equation C7.2.3.2. of ANSI/
AHRI Standard 1500-2015 to calculate fuel input rate.
    3.1.4.2.1. The applicable measurement period for the purposes of 
determining fuel input rate must be as specified in section 3.1.4.2.1.1. 
of this appendix for the ``Warm-Up Period'' and 3.1.4.2.1.2. of this 
appendix for the ``Test Period.''
    3.1.4.2.1.1. For the purposes of confirming steady-state operation 
during the ``Warm-Up Period,'' the measurement period must be 15 minutes 
and tT in Equation C2 in Section C7.2.3.1 of ANSI/AHRI 
Standard 1500-2015 must be 0.25 hour to determine fuel input rate.
    3.1.4.2.1.2. For the purposes of determining combustion efficiency 
during the ``Test Period,'' the measurement period and tT are 
0.5 hour pursuant to section 3.3.1.1. of this appendix.
    3.1.4.3. In addition to the provisions of Section C2.2.1.2 of ANSI/
AHRI Standard 1500-2015, vent gases may alternatively be discharged 
vertically into a straight stack section without elbows. R-7 minimum 
insulation must extend 6 stack diameters above the flue collar, the 
thermocouple grid must be located at a vertical distance of 3 stack 
diameters above the flue collar, and the sampling tubes for flue gases 
must be installed within 1 stack diameter beyond the thermocouple grid. 
If dilution air is introduced into the flue gases before the plane of 
the thermocouple and flue gas sampling points, utilize an alternate 
plane of thermocouple grid and flue gas sampling point located 
downstream from the heat exchanger and upstream from the point of 
dilution air introduction.
    3.1.5. Additional Requirements for Outdoor Commercial Packaged 
Boilers. If the manufacturer provides more than one outdoor venting 
arrangement, the outdoor commercial packaged boiler (as defined in 
section 3.2.6 of ANSI/AHRI Standard 1500-2015 (incorporated by 
reference, see Sec.  431.85) must be tested with the shortest total 
venting arrangement as measured by adding the straight lengths of 
venting supplied with the equipment. If the manufacturer does not 
provide an outdoor venting arrangement, install the outdoor commercial 
packaged boiler venting consistent with the procedure specified in 
Section C2.2 of Appendix C of ANSI/AHRI Standard 1500-2015.
    3.1.6. Additional Requirements for Field Tests.
    3.1.6.1 Field tests are exempt from the requirements of Section C2.2 
of Appendix C of ANSI/AHRI Standard 1500-2015. Measure the flue gas 
temperature according to Section C2.5.1 of Appendix C of ANSI/AHRI 
Standard 1500-2015 and the thermocouple grids identified in Figure C12 
of ANSI/AHRI Standard 1500-2015, with the following modification: the 
thermocouple grid may be staggered vertically by up to 1.5 inches to 
allow the use of instrumented rods to be inserted through holes drilled 
in the venting.
    3.1.6.2. Field tests are exempt from the requirements of Section 
C2.6.3 of Appendix C of ANSI/AHRI Standard 1500-2015.
    3.1.7. Additional Requirements for Water Tests. In addition to the 
provisions of Section C2 of Appendix C of ANSI/AHRI Standard 1500-2015 
(incorporated by reference, see

[[Page 851]]

Sec.  431.85) the following requirements apply for water tests:
    3.1.7.1. Insulate all water piping between the commercial packaged 
boiler and the location of the temperature measuring equipment, 
including one foot (1 ft.) beyond the sensor, using insulation meeting 
the requirements specified in Table 2.3 of this appendix.
    3.1.7.2. Install a temperature measuring device at Point B of Figure 
C9 of ANSI/AHRI Standard 1500-2015. Water entering the commercial 
packaged boiler must first enter the run of a tee and exit from the top 
outlet of the tee. The remaining connection of the tee must be plugged. 
Measure the inlet water temperature at Point B in the run of a second 
tee located 12  2 pipe diameters downstream from 
the first tee and no more than the greater of 12 inches or 6 pipe 
diameters from the inlet of the commercial packaged boiler. The 
temperature measuring device shall extend into the water flow at the 
point of exit from the side outlet of the second tee. All inlet piping 
between the temperature measuring device and the inlet of the commercial 
packaged boilers must be wrapped with R-7 insulation. Field tests must 
also measure the inlet water temperature at Point B in Figure C9, 
however they are not required to use the temperature measurement piping 
described in this section 3.1.7. of this appendix.
    3.1.7.3. Do not use Section C2.7.2.2.2 or its subsections of ANSI/
AHRI Standard 1500-2015 for water meter calibration.
    3.1.8. Flue Gas Sampling. In section C2.5.2 of Appendix C of ANSI/
AHRI Standard 1500-2015, replace the last sentence with the following: 
When taking flue gas samples from a rectangular plane, collect samples 
at \1/4\, \1/2\, and \3/4\ the distance from one side of the rectangular 
plane in the longer dimension and along the centerline midway between 
the edges of the plane in the shorter dimension and use the average of 
the three samples. The tolerance in each dimension for each measurement 
location is  1 inch.
    3.2. Test Conditions.
    3.2.1. General. Use the test conditions from Sections 5 and C3 of 
Appendix C of ANSI/AHRI Standard 1500-2015 (incorporated by reference; 
see Sec.  431.85) for combustion efficiency testing but do not use the 
following sections:

(1) 5.3 Introductory text
(2) 5.3.5 (and subsections; see sections 3.2.3, 3.2.3.1, and 3.2.3.2 of 
this appendix)
(3) 5.3.7 (excluded for field tests only)
(4) 5.3.8 (see section 3.2.4 of this appendix)
(5) 5.3.9 (see section 3.2.5 of this appendix)
(6) C3.1.3 (and subsections)
(7) C3.5 (including Table C2; see section 3.2.6 of this appendix)
(8) C3.6 (see section 3.2.4 of this appendix)
(9) C3.7 (see section 3.2.5 of this appendix)

    3.2.2. Burners for Oil-Fired Commercial Packaged Boilers. In 
addition to Section C3.3 of Appendix C of ANSI/AHRI Standard 1500-2015, 
the following applies: for oil-fired commercial packaged boilers, test 
the unit with the particular make and model of burner as certified (or 
to be certified) by the manufacturer. If multiple burners are specified 
in the certification report for that basic model, then use any of the 
listed burners for testing.
    3.2.3. Water Temperatures. Maintain the outlet temperature measured 
at Point C in Figure C9 at 180 [deg]F  2 [deg]F 
and maintain the inlet temperature measured at Point B at 80 [deg]F 
 5 [deg]F during the ``Warm-up Period'' and ``Test 
Period'' as indicated by 1-minute interval data pursuant to Table 3.2 of 
this appendix. Each reading must meet these temperature requirements. 
Field tests are exempt from this requirement and instead must comply 
with the requirements of section 3.2.3.1 of this appendix.
    3.2.3.1. For field tests, the inlet temperature measured at Point A 
and Point B in Figure C9 and the outlet temperature measured and Point C 
in Figure C9 of ANSI/AHRI Standard 1500-2015 must be recorded in the 
data underlying that model's certification pursuant to Sec.  429.71 of 
this chapter, and the difference between the inlet (measured at Point B) 
and outlet temperature (measured at Point C) must not be less than 20 
[deg]F at any point during the ``Warm-up Period'' and ``Test Period,'' 
after stabilization has been achieved, as indicated by 1-minute interval 
data pursuant to Table 3.2 of this appendix.
    3.2.3.2 For commercial packaged boilers that require a higher flow 
rate than that resulting from the water temperature requirements of 
sections 3.2.3 of this appendix to prevent boiling, use a recirculating 
loop and maintain the inlet temperature at Point B of Figure C9 of ANSI/
AHRI Standard 1500-2015 at 140 [deg]F  5 [deg]F 
during the ``Warm-up Period'' and ``Test Period'' as indicated by 1-
minute interval data pursuant to Table 3.2 of this appendix. Each 
reading must meet these temperature requirements.
    3.2.4. Air Temperature. For tests of non-condensing boilers (except 
during field tests), maintain ambient room temperature between 65 [deg]F 
and 100 [deg]F at all times during the ``Warm-up Period'' and ``Test 
Period'' (as described in Section C4 of Appendix C of ANSI/AHRI Standard 
1500-2015) as indicated by 1-minute interval data pursuant to Table 3.2 
of this appendix. For tests of condensing boilers (except during field 
tests), maintain ambient room temperature between 65 [deg]F and 85 
[deg]F at all times during the ``Warm-up Period'' and ``Test Period'' 
(as described in Section C4 of Appendix C of ANSI/AHRI Standard 1500-
2015) as indicated by 1-minute interval data pursuant to Table 3.2 of 
this appendix. The ambient room temperature may not differ by more than 
 5 [deg]F from the average ambient room 
temperature during the entire ``Test

[[Page 852]]

Period'' at any 1-minute interval reading. Measure the room ambient 
temperature within 6 feet of the front of the unit at mid height. The 
test air temperature, measured at the air inlet of the commercial 
packaged boiler, must be within  5 [deg]F of the 
room ambient temperature when recorded at the 1-minute interval defined 
by Table 3.2 of this appendix. For field tests, record the ambient room 
temperature at 1-minute intervals in accordance with Table 3.2 of this 
appendix.
    3.2.5. Ambient Humidity. For condensing boilers (except during field 
tests), maintain ambient room relative humidity below 80-percent 
relative humidity at all times during both the ``Warm-up Period'' and 
``Test Period'' (as described in Section C4 of Appendix C of ANSI/AHRI 
Standard 1500-2015) pursuant to Table 3.2 of this appendix. Measure the 
ambient humidity in the same location as ambient air temperature. For 
field tests of condensing boilers, record the ambient room relative 
humidity in accordance with Table 3.2 of this appendix.
    3.2.6. Flue Gas Temperature. The flue gas temperature during the 
test must not vary from the flue gas temperature measured at the start 
of the Test Period (as defined in Section C4 of ANSI/AHRI Standard 1500-
2015) when recorded at the interval defined in Table 3.2 by more than 
the limits prescribed in Table 3.3 of this appendix. For field tests, 
flue gas temperature does not need to be within the limits in Table 3.3 
of this appendix but must be recorded at the interval specified in Table 
3.2 of this appendix.

                       Table 3.3--Flue Gas Temperature Variation Limits During Test Period
----------------------------------------------------------------------------------------------------------------
            Fuel type                    Non-condensing                           Condensing
----------------------------------------------------------------------------------------------------------------
Gas..............................   2   Greater of  3 percent and
                                    percent.                    5 [deg]F.
Light Oil........................   2
                                    percent.
Heavy Oil........................  Greater of  3 percent and
                                     5
                                    [deg]F.
----------------------------------------------------------------------------------------------------------------

    3.3. Test Method.
    3.3.1. General. Conduct the combustion efficiency test using the 
test method prescribed in Section C4 ``Test Procedure'' of Appendix C of 
ANSI/AHRI Standard 1500-2015 excluding sections:

(1) C4.1.1.1.2 (see section 3.3.1.2 of this appendix)
(2) C4.1.1.2.3
(3) C4.1.2.1.5 (see section 3.3.2 of this appendix)
(4) C4.1.2.2.2
(5) C4.1.2.2.3
(6) C4.2
(7) C4.2.1
(8) C4.2.2

    3.3.1.1. The duration of the ``Test Period'' for combustion 
efficiency outlined in sections C4.1.1.2 of Appendix C of ANSI/AHRI 
Standard 1500-2015 (incorporated by reference, see Sec.  431.85) and 
C4.1.2.2 of Appendix C of ANSI/AHRI Standard 1500-2015 is 30 minutes. 
For condensing commercial packaged boilers, condensate must be collected 
for the 30 minute Test Period.
    3.3.1.2. Adjust oil or non-atmospheric gas to produce the required 
firebox pressure and CO2 or O2 concentration in 
the flue gas, as described in section 5.3.1 of ANSI/AHRI Standard 1500-
2015. Conduct steam tests with steam pressure at the pressure specified 
in the manufacturer literature shipped with the commercial packaged 
boiler or in the manufacturer's supplemental testing instructions 
pursuant to Sec.  429.60(b)(4) of this chapter, but not exceeding 15 
psig. If no pressure is specified in the manufacturer literature shipped 
with the commercial packaged boiler or in the manufacturer's 
supplemental testing instructions (pursuant to Sec.  429.60(b)(4)) of 
this chapter, or if a range of operating pressures is specified, conduct 
testing at a steam pressure equal to atmospheric pressure. If necessary 
to maintain steam quality as required by section 5.3.7 of ANSI/AHRI 
Standard 1500-2015, increase steam pressure in 1 psig increments by 
throttling with a valve beyond the separator until the test is completed 
and the steam quality requirements have been satisfied, but do not 
increase the steam pressure to greater than 15 psig.
    3.3.2. Water Test Steady-State. Ensure that a steady-state is 
reached by confirming that three consecutive readings have been recorded 
at 15-minute intervals that indicate that the measured fuel input rate 
is within  2-percent of the rated input. Water 
temperatures must meet the conditions specified in sections 3.2.3, 
3.2.3.1, and 3.2.3.2 of this appendix as applicable.
    3.3.3. Procedure for the Measurement of Condensate for a Condensing 
Commercial Packaged Boiler. Collect flue condensate using a covered 
vessel so as to prevent evaporation. Measure the condensate from the 
flue gas during the ``Test Period.'' Flue condensate mass must be 
measured within 5 minutes after the end of the ``Test Period'' (defined 
in C4.1.1.2 and C4.1.2.2 of ANSI/AHRI Standard 1500-2015) to prevent 
evaporation loss from the sample. Determine the mass of flue condensate 
for the ``Test Period'' by subtracting the tare container weight from 
the total weight of the container and flue condensate measured at the 
end of the ''Warm-up Period.''
    3.4. Calculations.

[[Page 853]]

    3.4.1. General. To determine the combustion efficiency of commercial 
packaged boilers, use the variables in Section C6 and calculation 
procedure for the combustion efficiency test specified in Section C7.3 
of Appendix C (including the specified subsections of C7.2) of ANSI/AHRI 
Standard 1500-2015 (incorporated by reference, see Sec.  431.85).
    3.4.2. Rounding. Round the final combustion efficiency value to 
nearest one tenth of a percent.

[81 FR 89306, Dec. 9, 2016]



          Subpart F_Commercial Air Conditioners and Heat Pumps

    Source: 69 FR 61969, Oct. 21, 2004, unless otherwise noted.



Sec.  431.91  Purpose and scope.

    This subpart specifies test procedures and energy conservation 
standards for certain commercial air conditioners and heat pumps, 
pursuant to Part C of Title III of the Energy Policy and Conservation 
Act, as amended, 42 U.S.C. 6311-6317.

[69 FR 61969, Oct. 21, 2004, as amended at 70 FR 60415, Oct. 18, 2005]



Sec.  431.92  Definitions concerning commercial air conditioners 
and heat pumps.

    The following definitions apply for purposes of this subpart F, and 
of subparts J through M of this part. Any words or terms not defined in 
this section or elsewhere in this part shall be defined as provided in 
42 U.S.C. 6311.
    Basic model includes:
    (1) Packaged terminal air conditioner (PTAC) or packaged terminal 
heat pump (PTHP) means all units manufactured by one manufacturer within 
a single equipment class, having the same primary energy source (e.g., 
electric or gas), and which have the same or comparable compressors, 
same or comparable heat exchangers, and same or comparable air moving 
systems that have a cooling capacity within 300 Btu/h of one another.
    (2) Small, large, and very large air-cooled or water-cooled 
commercial package air conditioning and heating equipment means all 
units manufactured by one manufacturer within a single equipment class, 
having the same or comparably performing compressor(s), heat exchangers, 
and air moving system(s) that have a common ``nominal'' cooling 
capacity.
    (3) Single package vertical units means all units manufactured by 
one manufacturer within a single equipment class, having the same 
primary energy source (e.g., electric or gas), and which have the same 
or comparably performing compressor(s), heat exchangers, and air moving 
system(s) that have a rated cooling capacity within 1500 Btu/h of one 
another.
    (4) Computer room air conditioners means all units manufactured by 
one manufacturer within a single equipment class, having the same 
primary energy source (e.g., electric or gas), and which have the same 
or comparably performing compressor(s), heat exchangers, and air moving 
system(s) that have a common ``nominal'' cooling capacity.
    (5) Variable refrigerant flow systems means all units manufactured 
by one manufacturer within a single equipment class, having the same 
primary energy source (e.g., electric or gas), and which have the same 
or comparably performing compressor(s) that have a common ``nominal'' 
cooling capacity and the same heat rejection medium (e.g., air or water) 
(includes VRF water source heat pumps).
    (6) Small, large, and very large water source heat pump means all 
units manufactured by one manufacturer within a single equipment class, 
having the same primary energy source (e.g., electric or gas), and which 
have the same or comparable compressors, same or comparable heat 
exchangers, and same or comparable ``nominal'' capacity.
    Coefficient of Performance, or COP means the ratio of the produced 
cooling effect of an air conditioner or heat pump (or its produced 
heating effect, depending on the mode of operation) to its net work 
input, when both the cooling (or heating) effect and the net work input 
are expressed in identical units of measurement.
    Commercial package air-conditioning and heating equipment means air-
cooled, water-cooled, evaporatively-cooled, or water source (not 
including ground water source) electrically operated, unitary central 
air conditioners and

[[Page 854]]

central air-conditioning heat pumps for commercial application.
    Computer Room Air Conditioner means a basic model of commercial 
package air-conditioning and heating equipment (packaged or split) that 
is: Used in computer rooms, data processing rooms, or other information 
technology cooling applications; rated for sensible coefficient of 
performance (SCOP) and tested in accordance with 10 CFR 431.96, and is 
not a covered consumer product under 42 U.S.C. 6291(1)-(2) and 6292. A 
computer room air conditioner may be provided with, or have as available 
options, an integrated humidifier, temperature, and/or humidity control 
of the supplied air, and reheating function.
    Double-duct air conditioner or heat pump means air-cooled commercial 
package air conditioning and heating equipment that--
    (1) Is either a horizontal single package or split-system unit; or a 
vertical unit that consists of two components that may be shipped or 
installed either connected or split;
    (2) Is intended for indoor installation with ducting of outdoor air 
from the building exterior to and from the unit, as evidenced by the 
unit and/or all of its components being non-weatherized, including the 
absence of any marking (or listing) indicating compliance with UL 1995, 
``Heating and Cooling Equipment,'' or any other equivalent requirements 
for outdoor use;
    (3)(i) If it is a horizontal unit, a complete unit has a maximum 
height of 35 inches; (ii) If it is a vertical unit, a complete unit has 
a maximum depth of 35 inches; and
    (4) Has a rated cooling capacity greater than or equal to 65,000 
Btu/h and up to 300,000 Btu/h.
    Energy Efficiency Ratio, or EER means the ratio of the produced 
cooling effect of an air conditioner or heat pump to its net work input, 
expressed in Btu/watt-hour.
    Heat Recovery (in the context of variable refrigerant flow multi-
split air conditioners or variable refrigerant flow multi-split heat 
pumps) means that the air conditioner or heat pump is also capable of 
providing simultaneous heating and cooling operation, where recovered 
energy from the indoor units operating in one mode can be transferred to 
one or more other indoor units operating in the other mode. A variable 
refrigerant flow multi-split heat recovery heat pump is a variable 
refrigerant flow multi-split heat pump with the addition of heat 
recovery capability.
    Heating seasonal performance factor, or HSPF means the total heating 
output of a central air-conditioning heat pump during its normal annual 
usage period for heating, expressed in Btu's and divided by the total 
electric power input, expressed in watt-hours, during the same period.
    Integrated energy efficiency ratio, or IEER, means a weighted 
average calculation of mechanical cooling EERs determined for four load 
levels and corresponding rating conditions, as measured in appendix A of 
this subpart, expressed in Btu/watt-hour.
    Large commercial package air-conditioning and heating equipment 
means commercial package air-conditioning and heating equipment that is 
rated--
    (1) At or above 135,000 Btu per hour; and
    (2) Below 240,000 Btu per hour (cooling capacity).
    Non-standard size means a packaged terminal air conditioner or 
packaged terminal heat pump with existing wall sleeve dimensions having 
an external wall opening of less than 16 inches high or less than 42 
inches wide, and a cross-sectional area less than 670 square inches.
    Packaged terminal air conditioner means a wall sleeve and a separate 
un-encased combination of heating and cooling assemblies specified by 
the builder and intended for mounting through the wall, and that is 
industrial equipment. It includes a prime source of refrigeration, 
separable outdoor louvers, forced ventilation, and heating availability 
by builder's choice of hot water, steam, or electricity.
    Packaged terminal heat pump means a packaged terminal air 
conditioner that utilizes reverse cycle refrigeration as its prime heat 
source, that has a supplementary heat source available, with the choice 
of hot water, steam, or electric resistant heat, and that is industrial 
equipment.

[[Page 855]]

    Seasonal energy efficiency ratio or SEER means the total cooling 
output of a central air conditioner or central air-conditioning heat 
pump, expressed in Btu's, during its normal annual usage period for 
cooling and divided by the total electric power input, expressed in 
watt-hours, during the same period.
    Sensible Coefficient of Performance, or SCOP means the net sensible 
cooling capacity in watts divided by the total power input in watts 
(excluding reheaters and humidifiers).
    Single package unit means any central air conditioner or central 
air-conditioning heat pump in which all the major assemblies are 
enclosed in one cabinet.
    Single package vertical air conditioner means air-cooled commercial 
package air conditioning and heating equipment that--
    (1) Is factory-assembled as a single package that--
    (i) Has major components that are arranged vertically;
    (ii) Is an encased combination of cooling and optional heating 
components; and
    (iii) Is intended for exterior mounting on, adjacent interior to, or 
through an outside wall;
    (2) Is powered by a single-or 3-phase current;
    (3) May contain 1 or more separate indoor grilles, outdoor louvers, 
various ventilation options, indoor free air discharges, ductwork, well 
plenum, or sleeves; and
    (4) Has heating components that may include electrical resistance, 
steam, hot water, or gas, but may not include reverse cycle 
refrigeration as a heating means.
    Single package vertical heat pump means a single package vertical 
air conditioner that--
    (1) Uses reverse cycle refrigeration as its primary heat source; and
    (2) May include secondary supplemental heating by means of 
electrical resistance, steam, hot water, or gas.
    Small commercial package air-conditioning and heating equipment 
means commercial package air-conditioning and heating equipment that is 
rated below 135,000 Btu per hour (cooling capacity).
    Split system means any central air conditioner or central air 
conditioning heat pump in which one or more of the major assemblies are 
separate from the others.
    Standard size means a packaged terminal air conditioner or packaged 
terminal heat pump with wall sleeve dimensions having an external wall 
opening of greater than or equal to 16 inches high or greater than or 
equal to 42 inches wide, and a cross-sectional area greater than or 
equal to 670 square inches.
    Variable Refrigerant Flow Multi-Split Air Conditioner means a unit 
of commercial package air-conditioning and heating equipment that is 
configured as a split system air conditioner incorporating a single 
refrigerant circuit, with one or more outdoor units, at least one 
variable-speed compressor or an alternate compressor combination for 
varying the capacity of the system by three or more steps, and multiple 
indoor fan coil units, each of which is individually metered and 
individually controlled by an integral control device and common 
communications network and which can operate independently in response 
to multiple indoor thermostats. Variable refrigerant flow implies three 
or more steps of capacity control on common, inter-connecting piping.
    Variable Refrigerant Flow Multi-Split Heat Pump means a unit of 
commercial package air-conditioning and heating equipment that is 
configured as a split system heat pump that uses reverse cycle 
refrigeration as its primary heating source and which may include 
secondary supplemental heating by means of electrical resistance, steam, 
hot water, or gas. The equipment incorporates a single refrigerant 
circuit, with one or more outdoor units, at least one variable-speed 
compressor or an alternate compressor combination for varying the 
capacity of the system by three or more steps, and multiple indoor fan 
coil units, each of which is individually metered and individually 
controlled by a control device and common communications network and 
which can operate independently in response to multiple indoor 
thermostats. Variable refrigerant flow implies three

[[Page 856]]

or more steps of capacity control on common, inter-connecting piping.
    Very large commercial package air-conditioning and heating equipment 
means commercial package air-conditioning and heating equipment that is 
rated--
    (1) At or above 240,000 Btu per hour; and
    (2) Below 760,000 Btu per hour (cooling capacity).
    Water-source heat pump means a single-phase or three-phase reverse-
cycle heat pump that uses a circulating water loop as the heat source 
for heating and as the heat sink for cooling. The main components are a 
compressor, refrigerant-to-water heat exchanger, refrigerant-to-air heat 
exchanger, refrigerant expansion devices, refrigerant reversing valve, 
and indoor fan. Such equipment includes, but is not limited to, water-
to-air water-loop heat pumps.

[69 FR 61969, Oct. 21, 2004, as amended at 70 FR 60415, Oct. 18, 2005; 
73 FR 58828, Oct. 7, 2008; 74 FR 12073, Mar. 23, 2009; 76 FR 12503, Mar. 
7, 2011; 77 FR 28988, May 16, 2012; 78 FR 79598, Dec. 31, 2013; 80 FR 
42664, July 17, 2015; 80 FR 79669, Dec. 23, 2015; 81 FR 2529, Jan. 15, 
2016]

                             Test Procedures



Sec.  431.95  Materials incorporated by reference.

    (a) General. DOE incorporates by reference the following test 
procedures into subpart F of part 431. The materials listed have been 
approved for incorporation by reference by the Director of the Federal 
Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any 
subsequent amendment to the listed materials by the standard-setting 
organization will not affect the DOE regulations unless and until such 
regulations are amended by DOE. Materials are incorporated as they exist 
on the date of the approval, and a notice of any changes in the 
materials will be published in the Federal Register. All approved 
materials are available for inspection at the National Archives and 
Records Administration (NARA). For information on the availability of 
this material at NARA, call (202) 741-6030, or go to: http://
www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html. Also, this material is available for inspection at 
U.S. Department of Energy, Office of Energy Efficiency and Renewable 
Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza 
SW., Washington, DC 20024, (202) 586-2945, or go to: http://
www1.eere.energy.gov/buildings/appliance_standards/. The referenced test 
procedure standards are listed below by relevant standard-setting 
organization, along with information on how to obtain copies from those 
sources.
    (b) AHRI. Air-Conditioning, Heating, and Refrigeration Institute, 
2111 Wilson Blvd., Suite 500, Arlington, VA 22201, (703) 524-8800, or go 
to: http://www.ahrinet.org.
    (1) ARI Standard 210/240-2003, ``2003 Standard for Unitary Air-
Conditioning & Air-Source Heat Pump Equipment,'' published in 2003 (AHRI 
210/240-2003), IBR approved for Sec.  431.96.
    (2) ANSI/AHRI Standard 210/240-2008, ``2008 Standard for Performance 
Rating of Unitary Air-Conditioning & Air-Source Heat Pump Equipment,'' 
approved by ANSI on October 27, 2011 and updated by addendum 1 in June 
2011 and addendum 2 in March 2012 (AHRI 210/240-2008), IBR approved for 
Sec.  431.96.
    (3) AHRI Standard 310/380-2014, (``AHRI 310/380-2014''), ``Standard 
for Packaged Terminal Air-Conditioners and Heat Pumps,'' February 2014, 
IBR approved for Sec.  431.96.
    (4) ANSI/AHRI Standard 340/360-2007, ``2007 Standard for Performance 
Rating of Commercial and Industrial Unitary Air-Conditioning and Heat 
Pump Equipment,'' approved by ANSI on October 27, 2011 and updated by 
addendum 1 in December 2010 and addendum 2 in June 2011 (AHRI 340/360-
2007), IBR approved for Sec.  431.96 and appendix A of this subpart.
    (5) ANSI/AHRI Standard 390-2003, ``2003 Standard for Performance 
Rating of Single Package Vertical Air-Conditioners and Heat Pumps,'' 
dated 2003, (AHRI 390-2003), IBR approved for Sec.  431.96.
    (6) ANSI/AHRI Standard 1230-2010, ``2010 Standard for Performance 
Rating of Variable Refrigerant Flow (VRF) Multi-Split Air-Conditioning 
and Heat Pump Equipment,'' approved August 2, 2010 and updated by 
addendum 1 in March 2011 (AHRI 1230-2010), IBR approved for Sec.  
431.96.

[[Page 857]]

    (7) [Reserved]
    (c) ASHRAE. American Society of Heating, Refrigerating and Air-
Conditioning Engineers, 1791 Tullie Circle, NE., Atlanta, Georgia 30329, 
(404) 636-8400, or go to: http://www.ashrae.org.
    (1) ANSI/ASHRAE Standard 16-1983 (RA 2014), (``ANSI/ASHRAE 16''), 
``Method of Testing for Rating Room Air Conditioners and Packaged 
Terminal Air Conditioners,'' ASHRAE reaffirmed July 3, 2014, IBR 
approved for Sec.  431.96.
    (2) ANSI/ASHRAE Standard 37-2009, (``ANSI/ASHRAE 37''), ``Methods of 
Testing for Rating Electrically Driven Unitary Air-Conditioning and Heat 
Pump Equipment,'' ASHRAE approved June 24, 2009, IBR approved for Sec.  
431.96 and appendix A of this subpart.
    (3) ANSI/ASHRAE Standard 58-1986 (RA 2014), (``ANSI/ASHRAE 58''), 
``Method of Testing for Rating Room Air-Conditioner and Packaged 
Terminal Air-Conditioner Heating Capacity,'' ASHRAE reaffirmed July 3, 
2014, IBR approved for Sec.  431.96.
    (4) ASHRAE Standard 127-2007, ``Method of Testing for Rating 
Computer and Data Processing Room Unitary Air Conditioners,'' approved 
on June 28, 2007, (ASHRAE 127-2007), IBR approved for Sec.  431.96.
    (d) ISO. International Organization for Standardization, 1, ch. De 
la Voie-Creuse, Case Postale 56, CH-1211 Geneva 20, Switzerland, + 41 22 
749 01 11 or go to: http://www.iso.ch/.
    (1) ISO Standard 13256-1, ``Water-source heat pumps--Testing and 
rating for performance--Part 1: Water-to-air and brine-to-air heat 
pumps,'' approved 1998, IBR approved for Sec.  431.96.
    (2) [Reserved]

[77 FR 28989, May 16, 2012, as amended at 80 FR 37148, June 30, 2015; 80 
FR 79669, Dec. 23, 2015]



Sec.  431.96  Uniform test method for the measurement of energy efficiency 
of commercial air conditioners and heat pumps.

    (a) Scope. This section contains test procedures for measuring, 
pursuant to EPCA, the energy efficiency of any small, large, or very 
large commercial package air-conditioning and heating equipment, 
packaged terminal air conditioners and packaged terminal heat pumps, 
computer room air conditioners, variable refrigerant flow systems, and 
single package vertical air conditioners and single package vertical 
heat pumps.
    (b) Testing and calculations. (1) Determine the energy efficiency of 
each type of covered equipment by conducting the test procedure(s) 
listed in Table 1 of this section along with any additional testing 
provisions set forth in paragraphs (c) through (g) of this section and 
appendix A to this subpart, that apply to the energy efficiency 
descriptor for that equipment, category, and cooling capacity. The 
omitted sections of the test procedures listed in Table 1 of this 
section must not be used.
    (2) After June 24, 2016, any representations made with respect to 
the energy use or efficiency of packaged terminal air conditioners and 
heat pumps (PTACs and PTHPs) must be made in accordance with the results 
of testing pursuant to this section. Manufacturers conducting tests of 
PTACs and PTHPs after July 30, 2015 and prior to June 24, 2016, must 
conduct such test in accordance with either table 1 to this section or 
Sec.  431.96 as it appeared at 10 CFR part 431, subpart F, in the 10 CFR 
parts 200 to 499 edition revised as of January 1, 2014. Any 
representations made with respect to the energy use or efficiency of 
such packaged terminal air conditioners and heat pumps must be in 
accordance with whichever version is selected.

[[Page 858]]



                                Table 1 to Sec.   431.96--Test Procedures for Commercial Air Conditioners and Heat Pumps
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                      Additional test
                                                                                                                  Use tests,        procedure provisions
           Equipment type                   Category            Cooling capacity       Energy efficiency       conditions, and      as indicated in the
                                                                                          descriptor          procedures \1\ in     listed paragraphs of
                                                                                                                                        this section
--------------------------------------------------------------------------------------------------------------------------------------------------------
Small Commercial Package Air-        Air-Cooled, 3-Phase,    <65,000 Btu/h........  SEER and HSPF.........  AHRI 210/240-2008      Paragraphs (c) and
 Conditioning and Heating Equipment.  AC and HP.                                                             (omit section 6.5).    (e).
                                     Air-Cooled AC and HP..  =65,000     EER, IEER, and COP....  Appendix A to this     None.
                                                              Btu/h and <135,000                             subpart.
                                                              Btu/h.
                                     Water-Cooled and        <65,000 Btu/h........  EER...................  AHRI 210/240-2008      Paragraphs (c) and
                                      Evaporatively-Cooled                                                   (omit section 6.5).    (e).
                                      AC.
                                                             =65,000     EER...................  AHRI 340/360-2007      Paragraphs (c) and
                                                              Btu/h and <135,000                             (omit section 6.3).    (e).
                                                              Btu/h.
                                     Water-Source HP.......  <135,000 Btu/h.......  EER and COP...........  ISO Standard 13256-1   Paragraph (e).
                                                                                                             (1998).
Large Commercial Package Air-        Air-Cooled AC and HP..  =135,000    EER, IEER and COP.....  Appendix A to this     None.
 Conditioning and Heating Equipment.                          Btu/h and <240,000                             subpart.
                                                              Btu/h.
                                     Water-Cooled and        =135,000    EER...................  AHRI 340/360-2007      Paragraphs (c) and
                                      Evaporatively-Cooled    Btu/h and <240,000                             (omit section 6.3).    (e).
                                      AC.                     Btu/h.
Very Large Commercial Package Air-   Air-Cooled AC and HP..  =240,000    EER, IEER and COP.....  Appendix A to this     None.
 Conditioning and Heating Equipment.                          Btu/h and <760,000                             subpart.
                                                              Btu/h.
                                     Water-Cooled and        =240,000    EER...................  AHRI 340/360-2007      Paragraphs (c) and
                                      Evaporatively-Cooled    Btu/h and <760,000                             (omit section 6.3).    (e).
                                      AC.                     Btu/h.
Packaged Terminal Air Conditioners   AC and HP.............  <760,000 Btu/h.......  EER and COP...........  Paragraph (g) of this  Paragraphs (c), (e),
 and Heat Pumps.                                                                                             section.               and (g).
Computer Room Air Conditioners.....  AC....................  <65,000 Btu/h........  SCOP..................  ASHRAE 127-2007 (omit  Paragraphs (c) and
                                                                                                             section 5.11).         (e).
                                                             =65,000     SCOP..................  ASHRAE 127-2007 (omit  Paragraphs (c) and
                                                              Btu/h and <760,000                             section 5.11).         (e).
                                                              Btu/h.
Variable Refrigerant Flow Multi-     AC....................  <65,000 Btu/h (3-      SEER..................  AHRI 1230-2010 (omit   Paragraphs (c), (d),
 split Systems.                                               phase).                                        sections 5.1.2 and     (e), and (f).
                                                                                                             6.6).
                                                             =65,000     EER...................  AHRI 1230-2010 (omit   Paragraphs (c), (d),
                                                              Btu/h and <760,000                             sections 5.1.2 and     (e), and (f).
                                                              Btu/h.                                         6.6).
Variable Refrigerant Flow Multi-     HP....................  <65,000 Btu/h (3-      SEER and HSPF.........  AHRI 1230-2010 (omit   Paragraphs (c), (d),
 split Systems, Air-cooled.                                   phase).                                        sections 5.1.2 and     (e), and (f).
                                                                                                             6.6).
                                                             =65,000     EER and COP...........  AHRI 1230-2010 (omit   Paragraphs (c), (d),
                                                              Btu/h and <760,000                             sections 5.1.2 and     (e), and (f).
                                                              Btu/h.                                         6.6).
Variable Refrigerant Flow Multi-     HP....................  <760,000 Btu/h.......  EER and COP...........  AHRI 1230-2010 (omit   Paragraphs (c), (d),
 split Systems, Water-source.                                                                                sections 5.1.2 and     (e), and (f).
                                                                                                             6.6).
Single Package Vertical Air          AC and HP.............  <760,000 Btu/h.......  EER and COP...........  AHRI 390-2003 (omit    Paragraphs (c) and
 Conditioners and Single Package                                                                             section 6.4).          (e).
 Vertical Heat Pumps.
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ Incorporated by reference; see Sec.   431.95.

    (c) Optional break-in period for tests conducted using AHRI 210/240-
2008, AHRI 390-2003, AHRI 1230-2010, and ASHRAE 127-2007. Manufacturers 
may optionally specify a ``break-in'' period, not to exceed 20 hours, to 
operate the equipment under test prior to conducting the test method 
specified by AHRI 210/240-2008,

[[Page 859]]

AHRI 390-2003, AHRI 1230-2010, or ASHRAE 127-2007 (incorporated by 
reference; see Sec.  431.95). A manufacturer who elects to use an 
optional compressor break-in period in its certification testing should 
record this information (including the duration) in the test data 
underlying the certified ratings that is required to be maintained under 
10 CFR 429.71.
    (d) Refrigerant line length corrections for tests conducted using 
AHRI 1230-2010. For test setups where it is physically impossible for 
the laboratory to use the required line length listed in Table 3 of the 
AHRI 1230-2010 (incorporated by reference, see Sec.  431.95), then the 
actual refrigerant line length used by the laboratory may exceed the 
required length and the following correction factors are applied:

------------------------------------------------------------------------
                                                              Cooling
  Piping length beyond minimum, X   Piping length beyond     capacity
               (ft)                    minimum, Y (m)      correction %
------------------------------------------------------------------------
0X <=20................  0Y <=6.1.               1
20X <=40...............  6.1Y                    2
                                     <=12.2.
40X <=60...............  12.2Y                   3
                                     <=18.3.
60X <=80...............  18.3Y                   4
                                     <=24.4.
80X <=100..............  24.4Y                   5
                                     <=30.5.
100 X <=120............  30.5Y                   6
                                     <=36.6.
------------------------------------------------------------------------

    (e) Additional provisions for equipment set-up. The only additional 
specifications that may be used in setting up the basic model for test 
are those set forth in the installation and operation manual shipped 
with the unit. Each unit should be set up for test in accordance with 
the manufacturer installation and operation manuals. Paragraphs (e)(1) 
through (3) of this section provide specifications for addressing key 
information typically found in the installation and operation manuals.
    (1) If a manufacturer specifies a range of superheat, sub-cooling, 
and/or refrigerant pressure in its installation and operation manual for 
a given basic model, any value(s) within that range may be used to 
determine refrigerant charge or mass of refrigerant, unless the 
manufacturer clearly specifies a rating value in its installation and 
operation manual, in which case the specified rating value shall be 
used.
    (2) The air flow rate used for testing must be that set forth in the 
installation and operation manuals being shipped to the commercial 
customer with the basic model and clearly identified as that used to 
generate the DOE performance ratings. If a rated air flow value for 
testing is not clearly identified, a value of 400 standard cubic feet 
per minute (scfm) per ton shall be used.
    (3) For VRF systems, the test set-up and the fixed compressor speeds 
(i.e., the maximum, minimum, and any intermediate speeds used for 
testing) should be recorded and maintained as part of the test data 
underlying the certified ratings that is required to be maintained under 
10 CFR 429.71.
    (f) Manufacturer involvement in assessment or enforcement testing 
for variable refrigerant flow systems. A manufacturer's representative 
will be allowed to witness assessment and/or enforcement testing for VRF 
systems. The manufacturer's representative will be allowed to inspect 
and discuss set-up only with a DOE representative and adjust only the 
modulating components during testing in the presence of a DOE 
representative that are necessary to achieve steady-state operation. 
Only previously documented specifications for set-up as specified under 
paragraphs (d) and (e) of this section will be used.
    (g) Test Procedures for Packaged Terminal Air Conditioners and 
Packaged Terminal Heat Pumps--(1) Cooling mode testing. The test method 
for testing packaged terminal air conditioners and packaged terminal 
heat pumps in cooling mode shall consist of application of the methods 
and conditions in AHRI 310/380-2014 sections 3, 4.1, 4.2, 4.3, and 4.4 
(incorporated by reference; see Sec.  431.95), and in ANSI/ASHRAE 16 
(incorporated by reference; see Sec.  431.95) or ANSI/ASHRAE 37 
(incorporated by reference; see Sec.  431.95), except that instruments 
used for measuring electricity input shall be accurate to within 0.5 percent of the quantity measured. Where definitions 
provided in AHRI 310/380-2014, ANSI/ASHRAE 16, and/or ANSI/ASHRAE 37 
conflict with the definitions provided in 10 CFR 431.92, the 10 CFR 
431.92 definitions shall be used. Where AHRI 310/380-2014 makes 
reference to ANSI/ASHRAE 16, it is interpreted as reference to ANSI/
ASHRAE 16-1983 (RA 2014).
    (2) Heating mode testing. The test method for testing packaged 
terminal heat pumps in heating mode shall consist of application of the 
methods and

[[Page 860]]

conditions in AHRI 310/380-2014 sections 3, 4.1, 4.2 (except the section 
4.2.1.2(b) reference to ANSI/ASHRAE 37), 4.3, and 4.4 (incorporated by 
reference; see Sec.  431.95), and in ANSI/ASHRAE 58 (incorporated by 
reference; see Sec.  431.95). Where definitions provided in AHRI 310/
380-2014 or ANSI/ASHRAE 58 conflict with the definitions provided in 10 
CFR 431.92, the 10 CFR 431.92 definitions shall be used. Where AHRI 310/
380-2014 makes reference to ANSI/ASHRAE 58, it is interpreted as 
reference to ANSI/ASHRAE 58-1986 (RA 2014).
    (3) Wall sleeves. For packaged terminal air conditioners and 
packaged terminal heat pumps, the unit must be installed in a wall 
sleeve with a 14 inch depth if available. If a 14 inch deep wall sleeve 
is not available, use the available wall sleeve option closest to 14 
inches in depth. The area(s) between the wall sleeve and the insulated 
partition between the indoor and outdoor rooms must be sealed to 
eliminate all air leakage through this area.
    (4) Optional pre-filling of the condensate drain pan. For packaged 
terminal air conditioners and packaged terminal heat pumps, test 
facilities may add water to the condensate drain pan of the equipment 
under test (until the water drains out due to overflow devices or until 
the pan is full) prior to conducting the test method specified by AHRI 
310/380-2014 (incorporated by reference, see Sec.  431.95). No specific 
level of water mineral content or water temperature is required for the 
water added to the condensate drain pan.
    (5) Filter selection. For packaged terminal air conditioners and 
packaged terminal heat pumps, the indoor filter used during testing 
shall be the standard or default filter option shipped with the model. 
If a particular model is shipped without a filter, the unit must be 
tested with a MERV-1 filter sized appropriately for the filter slot.

[77 FR 28989, May 16, 2012; 80 FR 11857, Mar. 5, 2015, as amended at 80 
FR 37148, June 30, 2015; 80 FR 79669, Dec. 23, 2015]

                       Energy Efficiency Standards



Sec.  431.97  Energy efficiency standards and their compliance dates.

    (a) All basic models of commercial package air-conditioning and 
heating equipment must be tested for performance using the applicable 
DOE test procedure in Sec.  431.96, be compliant with the applicable 
standards set forth in paragraphs (b) through (f) of this section, and 
be certified to the Department under 10 CFR part 429.
    (b) Each commercial air conditioner or heat pump (not including 
single package vertical air conditioners and single package vertical 
heat pumps, packaged terminal air conditioners and packaged terminal 
heat pumps, computer room air conditioners, and variable refrigerant 
flow systems) manufactured starting on the compliance date listed in the 
corresponding table must meet the applicable minimum energy efficiency 
standard level(s) set forth in Tables 1 through 6 of this section.

    Table 1 to Sec.   431.97--Minimum Cooling Efficiency Standards for Air Conditioning and Heating Equipment
    [Not including single package vertical air conditioners and single package vertical heat pumps, packaged
terminal air conditioners and packaged terminal heat pumps, computer room air conditioners, variable refrigerant
flow multi-split air conditioners and heat pumps, and double-duct air-cooled commercial package air conditioning
                                             and heating equipment]
----------------------------------------------------------------------------------------------------------------
                                                                                                Compliance date:
                                                                                  Efficiency       Equipment
        Equipment type         Cooling capacity   Subcategory    Heating type        level        manufactured
                                                                                               starting on . . .
----------------------------------------------------------------------------------------------------------------
Small Commercial Package Air   <65,000 Btu/h...  AC            All.............  SEER = 13...  June 16, 2008.
 Conditioning and Heating
 Equipment (Air-Cooled, 3-
 Phase, Split-System).
                                                 HP            All.............  SEER = 13...  June 16, 2008.\1\
Small Commercial Package Air   <65,000 Btu/h...  AC            All.............  SEER = 13...  June 16, 2008.\1\
 Conditioning and Heating
 Equipment (Air-Cooled, 3-
 Phase, Single-Package).
                                                 HP            All.............  SEER = 13...  June 16, 2008.\1\
Small Commercial Package Air   =65,0  AC            No Heating or     EER = 11.2..  January 1,
 Conditioning and Heating       00 Btu/h and                    Electric                        2010.\2\
 Equipment (Air-Cooled).        <135,000 Btu/h.                 Resistance
                                                                Heating.

[[Page 861]]

 
                                                               All Other Types   EER = 11.0..  January 1,
                                                                of Heating.                     2010.\2\
                                                 HP            No Heating or     EER = 11.0..  January 1,
                                                                Electric                        2010.\2\
                                                                Resistance
                                                                Heating.
                                                               All Other Types   EER = 10.8..  January 1,
                                                                of Heating.                     2010.\2\
Large Commercial Package Air   =135,  AC            No Heating or     EER = 11.0..  January 1,
 Conditioning and Heating       000 Btu/h and                   Electric                        2010.\2\
 Equipment (Air-Cooled).        <240,000 Btu/h.                 Resistance
                                                                Heating.
                                                               All Other Types   EER = 10.8..  January 1,
                                                                of Heating.                     2010.\2\
                                                 HP            No Heating or     EER = 10.6..  January 1,
                                                                Electric                        2010.\2\
                                                                Resistance
                                                                Heating.
                                                               All Other Types   EER = 10.4..  January 1,
                                                                of Heating.                     2010.\2\
Very Large Commercial Package  =240,  AC            No Heating or     EER = 10.0..  January 1,
 Air Conditioning and Heating   000 Btu/h and                   Electric                        2010.\2\
 Equipment (Air-Cooled).        <760,000 Btu/h.                 Resistance
                                                                Heating.
                                                               All Other Types   EER = 9.8...  January 1,
                                                                of Heating.                     2010.\2\
                                                 HP            No Heating or     EER = 9.5...  January 1,
                                                                Electric                        2010.\2\
                                                                Resistance
                                                                Heating.
                                                               All Other Types   EER = 9.3...  January 1,
                                                                of Heating.                     2010.\2\
Small Commercial Package Air   <65,000 Btu/h...  AC            All.............  EER = 12.1..  October 29, 2003.
 Conditioning and Heating
 Equipment (Water-Cooled).
                               =65,0  AC            No Heating or     EER = 12.1..  June 1, 2013.
                                00 Btu/h and                    Electric
                                <135,000 Btu/h.                 Resistance
                                                                Heating.
                                                               All Other Types   EER = 11.9..  June 1, 2013.
                                                                of Heating.
Large Commercial Package Air-  =135,  AC            No Heating or     EER = 12.5..  June 1, 2014.
 Conditioning and Heating       000 Btu/h and                   Electric
 Equipment (Water-Cooled).      <240,000 Btu/h.                 Resistance
                                                                Heating.
                                                               All Other Types   EER = 12.3..  June 1, 2014.
                                                                of Heating.
Very Large Commercial Package  =240,  AC            No Heating or     EER = 12.4..  June 1, 2014.
 Air-Conditioning and Heating   000 Btu/h and                   Electric
 Equipment (Water-Cooled).      <760,000 Btu/h.                 Resistance
                                                                Heating.
                                                               All Other Types   EER = 12.2..  June 1, 2014.
                                                                of Heating.
Small Commercial Package Air-  <65,000 Btu/h...  AC            All.............  EER = 12.1..  October 29, 2003.
 Conditioning and Heating
 Equipment (Evaporatively-
 Cooled).
                               =65,0  AC            No Heating or     EER = 12.1..  June 1, 2013.
                                00 Btu/h and                    Electric
                                <135,000 Btu/h.                 Resistance
                                                                Heating.
                                                               All Other Types   EER = 11.9..  June 1, 2013.
                                                                of Heating.
Large Commercial Package Air-  =135,  AC            No Heating or     EER = 12.0..  June 1, 2014.
 Conditioning and Heating       000 Btu/h and                   Electric
 Equipment (Evaporatively-      <240,000 Btu/h.                 Resistance
 Cooled).                                                       Heating.
                                                               All Other Types   EER = 11.8..  June 1, 2014.
                                                                of Heating.
Very Large Commercial Package  =240,  AC            No Heating or     EER = 11.9..  June 1, 2014.
 Air Conditioning and Heating   000 Btu/h and                   Electric
 Equipment (Evaporatively-      <760,000 Btu/h.                 Resistance
 Cooled).                                                       Heating.
                                                               All Other Types   EER = 11.7..  June 1, 2014.
                                                                of Heating.

[[Page 862]]

 
Small Commercial Package Air-  <17,000 Btu/h...  HP            All.............  EER = 11.2..  October 29,
 Conditioning and Heating                                                                       2003.\3\
 Equipment (Water-Source:
 Water-to-Air, Water-Loop).
                               =17,0  HP            All.............  EER = 12.0..  October 29,
                                00 Btu/h and                                                    2003.\3\
                                <65,000 Btu/h.
                               =65,0  HP            All.............  EER = 12.0..  October 29,
                                00 Btu/h and                                                    2003.\3\
                                <135,000 Btu/h.
----------------------------------------------------------------------------------------------------------------
\1\ And manufactured before January 1, 2017. See Table 3 of this section for updated efficiency standards.
\2\ And manufactured before January 1, 2018. See Table 3 of this section for updated efficiency standards.
\3\ And manufactured before October 9, 2015. See Table 3 of this section for updated efficiency standards.


 Table 2 to Sec.   431.97--Minimum Heating Efficiency Standards for Air Conditioning and Heating Equipment [Heat
                                                     Pumps]
    [Not including single package vertical air conditioners and single package vertical heat pumps, packaged
terminal air conditioners and packaged terminal heat pumps, computer room air conditioners, variable refrigerant
flow multi-split air conditioners and heat pumps, and double-duct air-cooled commercial package air conditioning
                                             and heating equipment]
----------------------------------------------------------------------------------------------------------------
                                                                                    Compliance date: Equipment
          Equipment type               Cooling capacity      Efficiency level     manufactured starting on . . .
----------------------------------------------------------------------------------------------------------------
Small Commercial Package Air        <65,000 Btu/h........  HSPF = 7.7..........  June 16, 2008.\1\
 Conditioning and Heating
 Equipment (Air-Cooled, 3-Phase,
 Split-System).
Small Commercial Pacakage Air-      <65,000 Btu/h........  HSPF = 7.7..........  June 16, 2008.\1\
 Conditioning and Heating
 Equipment (Air-Cooled, 3-Phase,
 Single-Package).
Small Commercial Package Air        =65,000     COP = 3.3...........  January 1, 2010.\2\
 Conditioning and Heating            Btu/h and <135,000
 Equipment (Air-Cooled).             Btu/h.
Large Commercial Packaged Air       =135,000    COP = 3.2...........  January 1, 2010.\2\
 Conditioning and Heating            Btu/h and <240,000
 Equipment (Air-Cooled).             Btu/h.
Very Large Commercial Packaged Air  =240,000    COP = 3.2...........  January 1, 2010.\2\
 Conditioning and Heating            Btu/h and <760,000
 Equipment (Air-Cooled).             Btu/h.
Small Commercial Packaged Air       <135,000 Btu/h.......  COP = 4.2...........  October 29, 2003.\3\
 Conditioning and Heating
 Equipment (Water-Source: Water-to-
 Air, Water-Loop).
----------------------------------------------------------------------------------------------------------------
\1\ And manufactured before January 1, 2017. See Table 4 of this section for updated heating efficiency
  standards.
\2\ And manufactured before January 1, 2018. See Table 4 of this section for updated heating efficiency
  standards.
\3\ And manufactured before October 9, 2015. See Table 4 of this section for updated heating efficiency
  standards.


 Table 3 to Sec.   431.97--Updates to the Minimum Cooling Efficiency Standards for Air Conditioning and Heating
                                                    Equipment
    [Not including single package vertical air conditioners and single package vertical heat pumps, packaged
terminal air conditioners and packaged terminal heat pumps, computer room air conditioners, variable refrigerant
flow multi-split air conditioners and heat pumps, and double-duct air-cooled commercial package air conditioning
                                             and heating equipment]
----------------------------------------------------------------------------------------------------------------
                                                                                                Compliance date:
                                                                                  Efficiency       Equipment
        Equipment type         Cooling capacity   Subcategory    Heating type        level        manufactured
                                                                                               starting on . . .
----------------------------------------------------------------------------------------------------------------
Small Commercial Packaged Air  =65,0  AC..........  Electric          IEER = 12.9.  January 1,
 Conditioning and Heating       00 Btu/h and                    Resistance       IEER = 14.8.   2018.\1\
 Equipment (Air-Cooled).        <135,000 Btu/h.                 Heating or No                  January 1, 2023.
                                                                Heating.
                                                               All Other Types   IEER = 12.7.  January 1,
                                                                of Heating.      IEER = 14.6.   2018.\1\
                                                                                               January 1, 2023.
                                                 HP..........  Electric          IEER = 12.2.  January 1,
                                                                Resistance       IEER = 14.1.   2018.\1\
                                                                Heating or No                  January 1, 2023.
                                                                Heating.
                                                               All Other Types   IEER = 12.0.  January 1,
                                                                of Heating.      IEER = 13.9.   2018.\1\
                                                                                               January 1, 2023.

[[Page 863]]

 
Large Commercial Packaged Air  =135,  AC..........  Electric          IEER = 12.4.  January 1,
 Conditioning and Heating       000 Btu/h and                   Resistance       IEER = 14.2.   2018.\1\
 Equipment (Air-Cooled).        <240,000 Btu/h.                 Heating or No                  January 1, 2023.
                                                                Heating.
                                                 ............  All Other Types   IEER = 12.2.  January 1,
                                                                of Heating.      IEER = 14.0.   2018.\1\
                                                                                               January 1, 2023.
                                                 HP..........  Electric          IEER = 11.6.  January 1,
                                                                Resistance       IEER = 13.5.   2018.\1\
                                                                Heating or No                  January 1, 2023.
                                                                Heating.
                                                               All Other Types   IEER = 11.4.  January 1,
                                                                of Heating.      IEER = 13.3.   2018.\1\
                                                                                               January 1, 2023.
Very Large Commercial          =240,  AC..........  Electric          IEER = 11.6.  January 1,
 Packaged Air Conditioning      000 Btu/h and                   Resistance       IEER = 13.2.   2018.\1\
 and Heating Equipment (Air-    <760,000 Btu/h.                 Heating or No                  January 1, 2023.
 Cooled).                                                       Heating.
                                                               All Other Types   IEER = 11.4.  January 1,
                                                                of Heating.      IEER = 13.0.   2018.\1\
                                                                                               January 1, 2023.
                                                 HP..........  Electric          IEER = 10.6.  January 1,
                                                                Resistance       IEER = 12.5.   2018.\1\
                                                                Heating or No                  January 1, 2023.
                                                                Heating.
                                                               All Other Types   IEER = 10.4.  January 1,
                                                                of Heating.      IEER = 12.3.   2018.\1\
                                                                                               January 1, 2023.
Small Commercial Package Air-  <65,000 Btu/h...  AC..........  All.............  SEER = 13.0.  June 16, 2008.
 Conditioning and Heating
 Equipment (Air-Cooled, 3-
 Phase, Split-System).
                                                 HP..........  All.............  SEER = 14.0.  January 1, 2017.
Small Commercial Package Air-  <65,000Btu/h....  AC..........  All.............  SEER = 14.0.  January 1, 2017.
 Conditioning and Heating
 Equipment (Air-Cooled, 3-
 Phase, Single-Package).
                                                 HP..........  All.............  SEER = 14.0.  January 1, 2017.
Small Commercial Packaged Air- <17,000 Btu/h...  HP..........  All.............  EER = 12.2..  October 9, 2015.
 Conditioning and Heating
 Equipment (Water Source:
 Water-to-Air, Water-Loop).
                               =17,0  HP..........  All.............  EER = 13.0..  October 9, 2015.
                                00 Btu/h and
                                <65,000 Btu/h.
                               =65,0  HP..........  All.............  EER = 13.0..  October 9, 2015.
                                00 Btu/h and
                                <135,000Btu/h.
----------------------------------------------------------------------------------------------------------------
\1\ And manufactured before January 1, 2023.


  Table 4 to Sec.   431.97--Updates to the Minimum Heating Efficiency Standards for Air-Cooled Air Conditioning
                                       and Heating Equipment [Heat Pumps]
    [Not including single package vertical air conditioners and single package vertical heat pumps, packaged
terminal air conditioners and packaged terminal heat pumps, computer room air conditioners, variable refrigerant
flow multi-split air conditioners and heat pumps, and double-duct air-cooled commercial package air conditioning
                                             and heating equipment]
----------------------------------------------------------------------------------------------------------------
                                                                                    Compliance date: Equipment
          Equipment type               Cooling capacity    Efficiency level.\1\   manufactured starting on . . .
----------------------------------------------------------------------------------------------------------------
Small Commercial Package Air        <65,000 Btu/h........  HSPF = 8.2..........  January 1, 2017.
 Conditioning and Heating
 Equipment (Air-Cooled, 3-Phase,
 Split-Sytem).
Small Commercial Package Air        <65,000 Btu/h........  HSPF = 8.0..........  January 1, 2017.
 Conditioning and Heating
 Equipment (Air-Cooled, 3-Phase,
 Single Package).
Small Commercial Package Air        <135,000 Btu/h.......  COP = 4.3...........  October 9, 2015.
 Conditioning and Heating
 Equipment (Water-Source: Water-to-
 Air, Water-Loop).
Small Commercial Packaged Air       =65,000     COP = 3.3...........  January 1, 2018.\2\
 Conditioning and Heating            Btu/h and             COP = 3.4...........  January 1, 2023.
 Equipment (Air-Cooled).            <135,000 Btu/h.......
Large Commercial Packaged Air       =135,000    COP = 3.2...........  January 1, 2018.\2\
 Conditioning and Heating            Btu/h and             COP = 3.3...........  January 1, 2023.
 Equipment (Air-Cooled).            <240,000 Btu/h.......

[[Page 864]]

 
Very Large Commercial Packaged Air  =240,000    COP = 3.2...........  January 1, 2018.
 Conditioning and Heating            Btu/h and
 Equipment (Air-Cooled).            <760,000 Btu/h.......
----------------------------------------------------------------------------------------------------------------
\1\ For units tested using the relevant AHRI Standards, all COP values must be rated at 47 [deg]F outdoor dry-
  bulb temperature for air-cooled equipment.
\2\ And manufactured before January 1, 2023.


   Table 5 to Sec.   431.97--Minimum Cooling Efficiency Standards for Double-Duct Air-Conditioning and Heating
                                                    Equipment
----------------------------------------------------------------------------------------------------------------
                                                                                                Compliance date:
                                                                                  Efficiency       Equipment
        Equipment type         Cooling capacity   Subcategory    Heating type        level        manufactured
                                                                                               starting on . . .
----------------------------------------------------------------------------------------------------------------
Small Double-Duct Commercial   =65,0  AC..........  Electric          EER = 11.2..  January 1, 2010.
 Packaged Air Conditioning      00 Btu/h and                    Resistance
 and Heating Equipment (Air-    <135,000 Btu/h.                 Heating or No
 Cooled).                                                       Heating.
                                                               All Other Types   EER = 11.0..  January 1, 2010.
                                                                of Heating
                                                 HP..........  Electric          EER = 11.0..  January 1, 2010.
                                                                Resistance
                                                                Heating or No
                                                                Heating.
                                                               All Other Types   EER = 10.8..  January 1, 2010.
                                                                of Heating.
Large Commercial Double-Duct   =135,  AC..........  Electric          EER = 11.0..  January 1, 2010.
 Packaged Air Conditioning      000 Btu/h and                   Resistance
 and Heating Equipment (Air-    <240,000 Btu/h.                 Heating or No
 Cooled).                                                       Heating.
                                                               All Other Types   EER = 10.8..  January 1, 2010.
                                                                of Heating.
                                                 HP..........  Electric          EER = 10.6..  January 1, 2010.
                                                                Resistance
                                                                Heating or No
                                                                Heating.
                                                               All Other Types   EER = 10.4..  January 1, 2010.
                                                                of Heating.
Very Large Double-Duct         =240,  AC..........  Electric          EER = 10.0..  January 1, 2010.
 Commercial Packaged Air        000 Btu/h and                   Resistance
 Conditioning and Heating       <300,000 Btu/h.                 Heating or No
 Equipment (Air-Cooled).                                        Heating.
                                                               All Other Types   EER = 9.8...  January 1, 2010.
                                                                of Heating.
                                                 HP..........  Electric          EER = 9.5...  January 1, 2010.
                                                                Resistance
                                                                Heating or No
                                                                Heating.
                                                               All Other Types   EER = 9.3...  January 1, 2010.
                                                                of Heating.
----------------------------------------------------------------------------------------------------------------


 Table 6 to Sec.   431.97--Minimum Heating Efficiency Standards for Double-Duct Air-Cooled Air Conditioning and
                                                Heating Equipment
                                                  [Heat pumps]
----------------------------------------------------------------------------------------------------------------
                                                                                               Compliance date:
                                                                               Efficiency         Equipment
         Equipment type             Cooling capacity       Heating type        level \1\         manufactured
                                                                                              starting on . . .
----------------------------------------------------------------------------------------------------------------
Small Commercial Packaged Air     =65,000   Electric Resistance  COP = 3.3......  January 1, 2010.
 Conditioning and Heating          Btu/h and <135,000   Heating or No
 Equipment (Air-Cooled, Double-    Btu/h.               Heating.
 Duct).
                                                       All Other Types of   COP = 3.3......  January 1, 2010.
                                                        Heating.
Large Commercial Packaged Air-    =135,000  Electric Resistance  COP = 3.2......  January 1, 2010.
 Conditioning and Heating          Btu/h and <240,000   Heating or No
 Equipment (Air-Cooled, Double-    Btu/h.               Heating.
 Duct).
                                                       All Other Types of   COP = 3.2......  January 1, 2010.
                                                        Heating.

[[Page 865]]

 
Very Large Commercial Packaged    =240,000  Electric Resistance  COP = 3.2......  January 1, 2010.
 Air Conditioning and Heating      Btu/h and <300,000   Heating or No
 Equipment (Air-Cooled, Double-    Btu/h.               Heating.
 Duct).
                                                       All Other Types of   COP = 3.2......  January 1, 2010.
                                                        Heating.
----------------------------------------------------------------------------------------------------------------
\1\ For units tested using the relevant AHRI Standards, all COP values must be rated at 47 [deg]F outdoor dry-
  bulb temperature for air-cooled equipment.

    (c) Each non-standard size packaged terminal air conditioner (PTAC) 
and packaged terminal heat pump (PTHP) manufactured on or after October 
7, 2010 must meet the applicable minimum energy efficiency standard 
level(s) set forth in Table 7 of this section. Each standard size PTAC 
manufactured on or after October 8, 2012, and before January 1, 2017 
must meet the applicable minimum energy efficiency standard level(s) set 
forth in Table 7 of this section. Each standard size PTHP manufactured 
on or after October 8, 2012 must meet the applicable minimum energy 
efficiency standard level(s) set forth in Table 7 of this section. Each 
standard size PTAC manufactured on or after January 1, 2017 must meet 
the applicable minimum energy efficiency standard level(s) set forth in 
Table 8 of this section.

                    Table 7 to Sec.   431.97--Minimum Efficiency Standards for PTAC and PTHP
----------------------------------------------------------------------------------------------------------------
                                                                                       Compliance date: products
  Equipment type         Category          Cooling capacity       Efficiency level    manufactured on  and after
                                                                                                 . . .
----------------------------------------------------------------------------------------------------------------
PTAC.............  Standard Size......  <7,000 Btu/h.........  EER = 11.7...........  October 8, 2012.\2\
                                        =7,000 Btu/ EER = 13.8-(0.3 x Cap  October 8, 2012.\2\
                                         h and <=15,000 Btu/h.  \1\).
                                        15,000 Btu/ EER = 9.3............  October 8, 2012.\2\
                                         h.
                   Non-Standard Size..  <7,000 Btu/h.........  EER = 9.4............  October 7, 2010.
                                        =7,000 Btu/ EER = 10.9-(0.213 x    October 7, 2010.
                                         h and <=15,000 Btu/h.  Cap \1\).
                                        15,000 Btu/ EER = 7.7............  October 7, 2010.
                                         h.
PTHP.............  Standard Size......  <7,000 Btu/h.........  EER = 11.9...........  October 8, 2012.
                                                               COP = 3.3............
                                        =7,000 Btu/ EER = 14.0-(0.3 x Cap  October 8, 2012.
                                         h and <=15,000 Btu/h.  \1\).
                                                               COP = 3.7-(0.052 x
                                                                Cap \1\).
                                        15,000 Btu/ EER = 9.5............  October 8, 2012.
                                         h.                    COP = 2.9............
                   Non-Standard Size..  <7,000 Btu/h.........  EER = 9.3............  October 7, 2010.
                                                               COP = 2.7............
                                        =7,000 Btu/ EER = 10.8-(0.213 x    October 7, 2010.
                                         h and <=15,000 Btu/h.  Cap \1\).
                                                               COP = 2.9-(0.026 x
                                                                Cap \1\).
                                        15,000 Btu/ EER = 7.6............  October 7, 2010.
                                         h.                    COP = 2.5............
----------------------------------------------------------------------------------------------------------------
\1\ ``Cap'' means cooling capacity in thousand Btu/h at 95 [deg]F outdoor dry-bulb temperature.
\2\ And manufactured before January 1, 2017. See Table 8 of this section for updated efficiency standards that
  apply to this category of equipment manufactured on and after January 1, 2017.


                     Table 8 to Sec.   431.97--Updated Minimum Efficiency Standards for PTAC
----------------------------------------------------------------------------------------------------------------
                                                                                       Compliance date: products
  Equipment type         Category          Cooling capacity       Efficiency level    manufactured on  and after
                                                                                                 . . .
----------------------------------------------------------------------------------------------------------------
PTAC.............  Standard Size......  <7,000 Btu/h.........  EER = 11.9...........  January 1, 2017.
                                        =7,000 Btu/ EER = 14.0-(0.3 x Cap  January 1, 2017.
                                         h and <=15,000 Btu/h.  \1\).
                                        15,000 Btu/ EER = 9.5............  January 1, 2017.
                                         h.
----------------------------------------------------------------------------------------------------------------
\1\ ``Cap'' means cooling capacity in thousand Btu/h at 95 [deg]F outdoor dry-bulb temperature.


[[Page 866]]

    (d)(1) Each single package vertical air conditioner and single 
package vertical heat pump manufactured on or after January 1, 2010, but 
before October 9, 2015 (for models =65,000 Btu/h and <135,000 
Btu/h) or October 9, 2016 (for models =135,000 Btu/h and 
<240,000 Btu/h), must meet the applicable minimum energy conservation 
standard level(s) set forth in this section.

 Table 9 to Sec.   431.97--Minimum Efficiency Standards for Single Package Vertical Air Conditioners and Single
                                           Package Vertical Heat Pumps
----------------------------------------------------------------------------------------------------------------
                                                                                                Compliance date:
                                                                                                    products
         Equipment type           Cooling capacity       Sub-category       Efficiency level    manufactured on
                                                                                                and after . . .
----------------------------------------------------------------------------------------------------------------
Single package vertical air      <65,000 Btu/h.....  AC.................  EER = 9.0..........  January 1, 2010
 conditioners and single                             HP.................  EER = 9.0..........  January 1, 2010
 package vertical heat pumps,                                             COP = 3.0..........
 single-phase and three-phase.
Single package vertical air      =65,000  AC.................  EER = 8.9..........  January 1, 2010
 conditioners and single          Btu/h and          HP.................  EER = 8.9..........  January 1, 2010
 package vertical heat pumps.     <135,000 Btu/h.                         COP = 3.0..........
Single package vertical air      =135,00  AC.................  EER = 8.6..........  January 1, 2010
 conditioners and single          0 Btu/h and        HP.................  EER = 8.6..........  January 1, 2010
 package vertical heat pumps.     <240,000 Btu/h.                         COP = 2.9..........
----------------------------------------------------------------------------------------------------------------

    (2) Each single package vertical air conditioner and single package 
vertical heat pump manufactured on and after October 9, 2015 (for models 
=65,000 Btu/h and <135,000 Btu/h) or October 9, 2016 (for 
models =135,000 Btu/h and <240,000 Btu/h), but before 
September 23, 2019 must meet the applicable minimum energy conservation 
standard level(s) set forth in this section.

 Table 10 to Sec.   431.97--Minimum Efficiency Standards for Single Package Vertical Air Conditioners and Single
                                           Package Vertical Heat Pumps
----------------------------------------------------------------------------------------------------------------
                                                                                                Compliance date:
                                                                                                    Products
         Equipment type           Cooling capacity       Sub-category       Efficiency level    manufactured on
                                                                                                and after . . .
----------------------------------------------------------------------------------------------------------------
Single package vertical air      <65,000 Btu/h.....  AC.................  EER = 9.0..........  January 1, 2010
 conditioners and single                             HP.................  EER = 9.0..........  January 1, 2010
 package vertical heat pumps,                                             COP = 3.0..........
 single-phase and three-phase.
Single package vertical air      =65,000  AC.................  EER = 10.0.........  October 9, 2015
 conditioners and single          Btu/h and          HP.................  EER = 10.0.........  October 9, 2015
 package vertical heat pumps.     <135,000 Btu/h.                         COP = 3.0..........
Single package vertical air      =135,00  AC.................  EER = 10.0.........  October 9, 2016
 conditioners and single          0 Btu/h and        HP.................  EER = 10.0.........  October 9, 2016
 package vertical heat pumps.     <240,000 Btu/h.                         COP = 3.0..........
----------------------------------------------------------------------------------------------------------------

    (3) Each single package vertical air conditioner and single package 
vertical heat pump manufactured on and after September 23, 2019 must 
meet the applicable minimum energy conservation standard level(s) set 
forth in this section.

Table 11 to Sec.   431.97--Updated Minimum Efficiency Standards for Single Package Vertical Air Conditioners and
                                       Single Package Vertical Heat Pumps
----------------------------------------------------------------------------------------------------------------
                                                                                                Compliance date:
                                                                                                    products
         Equipment type           Cooling capacity       Sub-category       Efficiency level    manufactured on
                                                                                                and after . . .
----------------------------------------------------------------------------------------------------------------
Single package vertical air      <65,000 Btu/h.....  AC.................  EER = 11.0.........  September 23,
 conditioners and single                             HP.................  EER = 11.0.........   2019.
 package vertical heat pumps,                                             COP = 3.3..........  September 23,
 single-phase and three-phase.                                                                  2019.
Single package vertical air      =65,000  AC.................  EER = 10.0.........  October 9, 2015.
 conditioners and single          Btu/h and          HP.................  EER = 10.0.........  October 9, 2015.
 package vertical heat pumps.     <135,000 Btu/h.                         COP = 3.0..........

[[Page 867]]

 
Single package vertical air      =135,00  AC.................  EER = 10.0.........  October 9, 2016.
 conditioners and single          0 Btu/h and        HP.................  EER = 10.0.........  October 9, 2016.
 package vertical heat pumps.     <240,000 Btu/h.                         COP = 3.0..........
----------------------------------------------------------------------------------------------------------------

    (e) Each computer room air conditioner with a net sensible cooling 
capacity less than 65,000 Btu/h manufactured on or after October 29, 
2012, and each computer room air conditioner with a net sensible cooling 
capacity greater than or equal to 65,000 Btu/h manufactured on or after 
October 29, 2013, must meet the applicable minimum energy efficiency 
standard level(s) set forth in this section.

           Table 12 to Sec.   431.97--Minimum Efficiency Standards for Computer Room Air Conditioners
----------------------------------------------------------------------------------------------------------------
                                                         Minimum SCOP efficiency       Compliance date: Products
        Equipment type             Net sensible   ------------------------------------ manufactured on and after
                                 cooling capacity    Downflow unit      Upflow unit              . . .
----------------------------------------------------------------------------------------------------------------
Computer Room Air               <65,000 Btu/h....              2.20              2.09  October 29, 2012.
 Conditioners, Air-Cooled.      =65,00              2.10              1.99  October 29, 2013.
                                 0 Btu/h and
                                 <240,000 Btu/h.
                                =240,0              1.90              1.79  October 29, 2013.
                                 00 Btu/h and
                                 <760,000 Btu/h.
Computer Room Air               <65,000 Btu/h....              2.60              2.49  October 29, 2012.
 Conditioners, Water-Cooled.    =65,00              2.50              2.39  October 29, 2013.
                                 0 Btu/h and
                                 <240,000 Btu/h.
                                =240,0              2.40              2.29  October 29, 2013.
                                 00 Btu/h and
                                 <760,000 Btu/h.
Computer Room Air               <65,000 Btu/h....              2.55              2.44  October 29, 2012.
 Conditioners, Water-Cooled     =65,00              2.45              2.34  October 29, 2013.
 with a Fluid Economizer.        0 Btu/h and                   2.35              2.24  October 29, 2013.
                                 <240,000 Btu/h.
                                =240,0
                                 00 Btu/h and
                                 <760,000 Btu/h.
Computer Room Air               <65,000 Btu/h....              2.50              2.39  October 29, 2012.
 Conditioners, Glycol-Cooled.   =65,00              2.15              2.04  October 29, 2013.
                                 0 Btu/h and
                                 <240,000 Btu/h.
                                =240,0              2.10              1.99  October 29, 2013.
                                 00 Btu/h and
                                 <760,000 Btu/h.
Computer Room Air Conditioner,  <65,000 Btu/h....              2.45              2.34  October 29, 2012.
 Glycol-Cooled with a Fluid     =65,00              2.10              1.99  October 29, 2013.
 Economizer.                     0 Btu/h and                   2.05              1.94  October 29, 2013.
                                 <240,000 Btu/h.
                                =240,0
                                 00 Btu/h and
                                 <760,000 Btu/h.
----------------------------------------------------------------------------------------------------------------

    (f) Each variable refrigerant flow air conditioner or heat pump 
manufactured on or after the compliance date listed in this table must 
meet the applicable minimum energy efficiency standard level(s) set 
forth in this section.

      Table 13 to Sec.   431.97--Minimum Efficiency Standards for Variable Refrigerant Flow Multi-Split Air
                                           Conditioners and Heat Pumps
----------------------------------------------------------------------------------------------------------------
                                                                                            Compliance date:
        Equipment type           Cooling capacity   Heating type\1\   Efficiency level  Products manufactured on
                                                                                             and after . . .
----------------------------------------------------------------------------------------------------------------
VRF Multi-Split Air             <65,000 Btu/h....  All.............  13.0 SEER........  June 16, 2008.
 Conditioners (Air-Cooled).     =65,00  No Heating or     11.2 EER.........  January 1, 2010.
                                 0 Btu/h and        Electric
                                 <135,000 Btu/h.    Resistance
                                                    Heating.
                                                   All Other Types   11.0 EER.........  January 1, 2010.
                                                    of Heating.

[[Page 868]]

 
                                =135,0  No Heating or     11.0 EER.........  January 1, 2010.
                                 00 Btu/h and       Electric
                                 <240,000 Btu/h.    Resistance
                                                    Heating.
                                                   All Other Types   10.8 EER.........  January 1, 2010.
                                                    of Heating.
                                =240,0  No Heating or     10.0 EER.........  January 1, 2010.
                                 00 Btu/h and       Electric
                                 <760,000 Btu/h.    Resistance
                                                    Heating.
                                                   All Other Types   9.8 EER..........  January 1, 2010.
                                                    of Heating.
VRF Multi-Split Heat Pumps....  <65,000 Btu/h....  All.............  13.0 SEER........  June 16, 2008.
(Air-Cooled)..................                                       7.7 HSPF.........
                                =65,00  No Heating or     11.0 EER.........  January 1, 2010.
                                 0 Btu/h and        Electric         3.3 COP..........
                                 <135,000 Btu/h.    Resistance
                                                    Heating.
                                                   All Other Types   10.8 EER.........  January 1, 2010.
                                                    of Heating.      3.3 COP..........
                                =135,0  No Heating or     10.6 EER.........  January 1, 2010.
                                 00 Btu/h and       Electric         3.2 COP..........
                                 <240,000 Btu/h.    Resistance
                                                    Heating.
                                                   All Other Types   10.4 EER.........  January 1, 2010.
                                                    of Heating.      3.2 COP..........
                                =240,0  No Heating or     9.5 EER..........  January 1, 2010.
                                 00 Btu/h and       Electric         3.2 COP..........
                                 <760,000 Btu/h.    Resistance
                                                    Heating.
                                                   All Other Types   9.3 EER..........  January 1, 2010.
                                                    of Heating.      3.2 COP..........
VRF Multi-Split Heat Pumps....  <17,000 Btu/h....  Without heat      12.0 EER.........  October 29, 2012.
(Water-Source)* * *...........                      recovery.        4.2 COP..........  October 29, 2003.
                                                   With heat         11.8 EER.........  October 29, 2012.
                                                    recovery.        4.2 COP..........  October 29, 2003.
                                =17,00  All.............  12.0 EER.........  October 29, 2003.
                                 0 Btu/h and                         4.2 COP..........
                                 <65,000 Btu/h.
                                =65,00  All.............  12.0 EER.........  October 29, 2003.
                                 0 Btu/h and                         4.2 COP..........
                                 <135,000 Btu/h.
                                =135,0  Without heat      10.0 EER.........  October 29, 2013.
                                 00 Btu/h and       recovery.        3.9 COP..........
                                 <760,000 Btu/h.
                                                   With heat         9.8 EER..........  October 29, 2013
                                                    recovery.        3.9 COP..........
----------------------------------------------------------------------------------------------------------------
\1\ VRF Multi-Split Heat Pumps (Air-Cooled) with heat recovery fall under the category of ``All Other Types of
  Heating'' unless they also have electric resistance heating, in which case it falls under the category for
  ``No Heating or Electric Resistance Heating.''


[77 FR 28991, May 16, 2012, as amended at 77 FR 76830, Dec. 31, 2012; 80 
FR 42664, July 17, 2015; 80 FR 43212, July 21, 2015; 80 FR 56895, Sept. 
21, 2015; 80 FR 57500, Sept. 23, 2015; 81 FR 2529, Jan. 15, 2016; 81 FR 
53907, Aug. 15, 2016]



 Sec. Appendix A to Subpart F of Part 431--Uniform Test Method for the 
         Measurement of Energy Consumption of Air-Cooled Small 
(=65,000 Btu/h), Large, and Very Large Commercial Package Air 
                   Conditioning and Heating Equipment

    Note: Prior to December 19, 2016, representations with respect to 
the energy use or efficiency of air-cooled small, large, and very large 
commercial package air conditioning and heating equipment, including 
compliance certifications, must be based on testing conducted in 
accordance with either Table 1 to Sec.  431.96 as it now appears or 
Table 1 to Sec.  431.96 as it appeared in subpart F of this part, in the 
10 CFR parts 200 through 499 edition revised as of January 1, 2015. 
After December 19, 2016, representations with respect to energy use or 
efficiency of air-cooled small, large, and very large commercial package 
air conditioning and heating equipment, including compliance 
certifications, must be based on testing conducted in accordance with 
Table 1 to Sec.  431.96 as it now appears.
    (1) Cooling mode test method. The test method for cooling mode 
consists of the methods and conditions in AHRI 340/360-2007 sections 3, 
4, and 6 (omitting section 6.3) (incorporated by reference; see Sec.  
431.95), and in

[[Page 869]]

ANSI/ASHRAE 37-2009 (incorporated by reference; see Sec.  431.95). In 
case of a conflict between AHRI 340/360-2007 or ANSI/ASHRAE 37-2009 and 
the CFR, the CFR provisions control.
    (2) Heating mode test method. The test method for heating mode 
consists of the methods and conditions in AHRI 340/360-2007 sections 3, 
4, and 6 (omitting section 6.3) (incorporated by reference; see Sec.  
431.95), and in ANSI/ASHRAE 37-2009 (incorporated by reference; see 
Sec.  431.95). In case of a conflict between AHRI 340/360-2007 or ANSI/
ASHRAE 37-2009 and the CFR, the CFR provisions control.
    (3) Minimum external static pressure. Use the certified cooling 
capacity for the basic model to choose the minimum external static 
pressure found in table 5 of section 6 of AHRI 340/360-2007 
(incorporated by reference; see Sec.  431.95) for testing.
    (4) Optional break-in period. Manufacturers may optionally specify a 
``break-in'' period, not to exceed 20 hours, to operate the equipment 
under test prior to conducting the test method in appendix A of this 
part. A manufacturer who elects to use an optional compressor break-in 
period in its certification testing must record this information 
(including the duration) as part of the information in the supplemental 
testing instructions under 10 CFR 429.43.
    (5) Additional provisions for equipment set-up. The only additional 
specifications that may be used in setting up a unit for test are those 
set forth in the installation and operation manual shipped with the 
unit. Each unit should be set up for test in accordance with the 
manufacturer installation and operation manuals. Paragraphs (5)(i) 
through (ii) of this section provide specifications for addressing key 
information typically found in the installation and operation manuals.
    (i) If a manufacturer specifies a range of superheat, sub-cooling, 
and/or refrigerant pressure in its installation and operation manual for 
a given basic model, any value(s) within that range may be used to 
determine refrigerant charge or mass of refrigerant, unless the 
manufacturer clearly specifies a rating value in its installation and 
operation manual, in which case the specified rating value shall be 
used.
    (ii) The airflow rate used for testing must be that set forth in the 
installation and operation manuals being shipped to the customer with 
the basic model and clearly identified as that used to generate the DOE 
performance ratings. If a certified airflow value for testing is not 
clearly identified, a value of 400 standard cubic feet per minute (scfm) 
per ton shall be used.
    (6) Indoor airflow testing and adjustment. (i) When testing full-
capacity cooling operation at the required external static pressure 
condition, the full-load indoor airflow rate must be within  3 percent of the certified-rated airflow at full-
capacity cooling operation. If the indoor airflow rate at the required 
minimum external pressure is outside the  3-
percent tolerance, the unit and/or test setup must be adjusted such that 
both the airflow and ESP are within the required tolerances. This 
process may include, but is not limited to, adjusting any adjustable 
motor sheaves, adjusting variable drive settings, or adjusting the code 
tester fan.
    (ii) When testing other than full-capacity cooling operation using 
the full-load indoor airflow rate (e.g., full-load heating), the full-
load indoor airflow rate must be within  3 percent 
of the certified-rated full-load cooling airflow (without regard to the 
resulting external static pressure), unless the unit is designed to 
operate at a different airflow for cooling and heating mode. If 
necessary, a test facility setup may be made in order to maintain 
airflow within the required tolerance; however, no adjustments to the 
unit under test may be made.
    (7) Condenser head pressure controls. Condenser head pressure 
controls, if typically shipped with units of the basic model by the 
manufacturer or available as an option to the basic model, must be 
active during testing.
    (8) Standard CFM. In the referenced sections of AHRI 340/360-2007 
(incorporated by reference; see Sec.  431.95), all instances of CFM 
refer to standard CFM (SCFM). Likewise, all references to airflow or air 
quantity refer to standard airflow and standard air quantity.
    (9) Capacity rating at part-load. When testing to determine EER for 
the part-load rating points (i.e. 75-percent load, 50-percent load, and 
25-percent load), if the measured capacity expressed as a percent of 
full-load capacity for a given part-load test is within three percent 
above or below the target part-load percentage, the EER calculated for 
the test may be used without any interpolation to determine IEER.
    (10) Condenser air inlet temperature for part-load testing. When 
testing to determine EER for the part-load rating points (i.e. 75-
percent load, 50-percent load, and 25-percent load), the condenser air 
inlet temperature shall be calculated (using the equation in Table 6 of 
AHRI 340/360-2007; incorporated by reference; see Sec.  431.95) for the 
target percent load rather than for the percent load measured in the 
test. Table 1 of this appendix shows the condenser air inlet temperature 
corresponding with each target percent load, as calculated using the 
equation in Table 6 of AHRI 340/360-2007.

[[Page 870]]



   Table 1 to Appendix A to Subpart F of Part 431--Condenser Air Inlet
                    Temperatures for Part-Load Tests
------------------------------------------------------------------------
                                                          Condenser air
                                                              inlet
                Target percent load (%)                   temperature (
                                                             [deg]F)
------------------------------------------------------------------------
25.....................................................             65
50.....................................................             68
75.....................................................             81.5
------------------------------------------------------------------------


[80 FR 79670, Dec. 23, 2015]



Subpart G_Commercial Water Heaters, Hot Water Supply Boilers and Unfired 
                         Hot Water Storage Tanks

    Source: 69 FR 61983, Oct. 21, 2004, unless otherwise noted.



Sec.  431.101  Purpose and scope.

    This subpart contains energy conservation requirements for certain 
commercial water heaters, hot water supply boilers and unfired hot water 
storage tanks, pursuant to Part C of Title III of the Energy Policy and 
Conservation Act, as amended, 42 U.S.C. 6311-6317.

[69 FR 61983, Oct. 21, 2004, as amended at 70 FR 60415, Oct. 18, 2005]



Sec.  431.102  Definitions concerning commercial water heaters, 
hot water supply boilers, unfired hot water storage tanks, 
and commercial heat pump water heaters.

    The following definitions apply for purposes of this subpart G, and 
of subparts J through M of this part. Any words or terms not defined in 
this section or elsewhere in this part shall be defined as provided in 
section 340 of the Act, 42 U.S.C. 6311.
    Air-source commercial heat pump water heater means a commercial heat 
pump water heater that utilizes indoor or outdoor air as the heat 
source.
    Basic model means all water heaters, hot water supply boilers, or 
unfired hot water storage tanks manufactured by one manufacturer within 
a single equipment class, having the same primary energy source (e.g., 
gas or oil) and that have essentially identical electrical, physical and 
functional characteristics that affect energy efficiency.
    Coefficient of performance (COPh) means the dimensionless 
ratio of the rate of useful heat transfer gained by the water (expressed 
in Btu/h), to the rate of electric power consumed during operation 
(expressed in Btu/h).
    Commercial heat pump water heater (CHPWH) means a water heater 
(including all ancillary equipment such as fans, blowers, pumps, storage 
tanks, piping, and controls, as applicable) that uses a refrigeration 
cycle, such as vapor compression, to transfer heat from a low-
temperature source to a higher-temperature sink for the purpose of 
heating potable water, and has a rated electric power input greater than 
12 kW. Such equipment includes, but is not limited to, air-source heat 
pump water heaters, water-source heat pump water heaters, and direct 
geo-exchange heat pump water heaters.
    Direct geo-exchange commercial heat pump water heater means a 
commercial heat pump water heater that utilizes the earth as a heat 
source and allows for direct exchange of heat between the earth and the 
refrigerant in the evaporator coils.
    Flow-activated instantaneous water heater means an instantaneous 
water heater or hot water supply boiler that activates the burner or 
heating element only if heated water is drawn from the unit.
    Fuel input rate means the maximum measured rate at which gas-fired 
or oil-fired commercial water heating equipment uses energy as 
determined using test procedures prescribed under Sec.  431.106 of this 
part.
    Ground-source closed-loop commercial heat pump water heater means a 
commercial heat pump water heater that utilizes a fluid circulated 
through a closed piping loop as a medium to transfer heat from the 
ground to the refrigerant in the evaporator. The piping loop may be 
buried inside the ground in horizontal trenches or vertical bores, or 
submerged in a surface water body.
    Ground water-source commercial heat pump water heater means a 
commercial heat pump water heater that utilizes ground water as the heat 
source.
    Hot water supply boiler means a packaged boiler (defined in Sec.  
431.82 of this

[[Page 871]]

part) that is industrial equipment and that:
    (1) Has a rated input from 300,000 Btu/h to 12,500,000 Btu/h and of 
at least 4,000 Btu/h per gallon of stored water;
    (2) Is suitable for heating potable water; and
    (3) Meets either or both of the following conditions:
    (i) It has the temperature and pressure controls necessary for 
heating potable water for purposes other than space heating; or
    (ii) The manufacturer's product literature, product markings, 
product marketing, or product installation and operation instructions 
indicate that the boiler's intended uses include heating potable water 
for purposes other than space heating.
    Indoor water-source commercial heat pump water heater means a 
commercial heat pump water heater that utilizes indoor water as the heat 
source.
    Instantaneous water heater means a water heater that uses gas, oil, 
or electricity, including:
    (1) Gas-fired instantaneous water heaters with a rated input both 
greater than 200,000 Btu/h and not less than 4,000 Btu/h per gallon of 
stored water;
    (2) Oil-fired instantaneous water heaters with a rated input both 
greater than 210,000 Btu/h and not less than 4,000 Btu/h per gallon of 
stored water; and
    (3) Electric instantaneous water heaters with a rated input both 
greater than 12 kW and not less than 4,000 Btu/h per gallon of stored 
water.
    Rated input means the maximum rate at which commercial water heating 
equipment is rated to use energy as specified on the nameplate.
    R-value means the thermal resistance of insulating material as 
determined using ASTM C177-13 or C518-15 (incorporated by reference; see 
Sec.  431.105) and expressed in ( [deg]F[middot]ft\2\[middot]h/Btu).
    Residential-duty commercial water heater means any gas-fired 
storage, oil-fired storage, or electric instantaneous commercial water 
heater that meets the following conditions:
    (1) For models requiring electricity, uses single-phase external 
power supply;
    (2) Is not designed to provide outlet hot water at temperatures 
greater than 180 [deg]F; and
    (3) Does not meet any of the following criteria:

------------------------------------------------------------------------
                                        Indicator of non-residential
        Water heater type                       application
------------------------------------------------------------------------
Gas-fired Storage................  Rated input 105 kBtu/h;
                                    Rated storage volume 120
                                    gallons.
Oil-fired Storage................  Rated input 140 kBtu/h;
                                    Rated storage volume 120
                                    gallons.
Electric Instantaneous...........  Rated input 58.6 kW; Rated
                                    storage volume 2 gallons.
------------------------------------------------------------------------

    Standby loss means:
    (1) For electric commercial water heating equipment (not including 
commercial heat pump water heaters), the average hourly energy required 
to maintain the stored water temperature expressed as a percent per hour 
(%/h) of the heat content of the stored water above room temperature and 
determined in accordance with appendix B or D to subpart G of part 431 
(as applicable), denoted by the term ``S''; or
    (2) For gas-fired and oil-fired commercial water heating equipment, 
the average hourly energy required to maintain the stored water 
temperature expressed in British thermal units per hour (Btu/h) based on 
a 70 [deg]F temperature differential between stored water and ambient 
room temperature and determined in accordance with appendix A or C to 
subpart G of part 431 (as applicable), denoted by the term ``SL.''
    Storage-type instantaneous water heater means an instantaneous water 
heater that includes a storage tank with a storage volume greater than 
or equal to 10 gallons.
    Storage water heater means a water heater that uses gas, oil, or 
electricity to heat and store water within the appliance at a 
thermostatically-controlled temperature for delivery on demand, 
including:
    (1) Gas-fired storage water heaters with a rated input both greater 
than 75,000 Btu/h and less than 4,000 Btu/h per gallon of stored water;
    (2) Oil-fired storage water heaters with a rated input both greater 
than 105,000 Btu/h and less than 4,000 Btu/h per gallon of stored water; 
and
    (3) Electric storage water heaters with a rated input both greater 
than 12

[[Page 872]]

kW and less than 4,000 Btu/h per gallon of stored water.
    Tank surface area means, for the purpose of determining portions of 
a tank requiring insulation, those areas of a storage tank, including 
hand holes and manholes, in its uninsulated or pre-insulated state, that 
do not have pipe penetrations or tank supports attached.
    Thermal efficiency for an instantaneous water heater, a storage 
water heater or a hot water supply boiler means the ratio of the heat 
transferred to the water flowing through the water heater to the amount 
of energy consumed by the water heater as measured during the thermal 
efficiency test procedure prescribed in this subpart.
    Unfired hot water storage tank means a tank used to store water that 
is heated externally, and that is industrial equipment.

[69 FR 61983, Oct. 21, 2004, as amended at 76 FR 12503, Mar. 7, 2011; 78 
FR 79599, Dec. 31, 2013; 79 FR 40586, July 11, 2014; 81 FR 79321, Nov. 
10, 2016]

                             Test Procedures



Sec.  431.105  Materials incorporated by reference.

    (a) General. DOE incorporates by reference the following test 
procedures into subpart G of part 431. The materials listed have been 
approved for incorporation by reference by the Director of the Federal 
Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any 
subsequent amendment to the listed materials by the standard-setting 
organization will not affect the DOE regulations unless and until such 
regulations are amended by DOE. Materials are incorporated as they exist 
on the date of the approval, and a notice of any change in the materials 
will be published in the Federal Register. All approved materials are 
available for inspection at the National Archives and Records 
Administration (NARA). For information on the availability of this 
material at NARA, call (202) 741-6030, or go to: http://
www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html. Also, this material is available for inspection at 
U.S. Department of Energy, Office of Energy Efficiency and Renewable 
Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza, 
SW., Washington, DC 20024, (202) 586-2945, or go to: http://
www1.eere.energy.gov/buildings/appliance_standards The referenced test 
procedure standards are listed below by relevant standard-setting 
organization, along with information on how to obtain copies from those 
sources.
    (b) ASHRAE. American Society of Heating, Refrigerating and Air-
Conditioning Engineers, 1791 Tullie Circle NE. Atlanta, GA 30329, (800) 
527-4723, or go to https://www.ashrae.org.
    (1) ANSI/ASHRAE Standard 118.1-2012, ``Method of Testing for Rating 
Commercial Gas, Electric, and Oil Service Water-Heating Equipment,'' 
approved by ASHRAE on October 26, 2012, IBR approved for appendix E to 
this subpart, as follows:
    (i) Section 3--Definitions and Symbols;
    (ii) Section 4--Classifications by Mode of Operation (sections 4.4, 
and 4.5 only);
    (iii) Section 6--Instruments (except sections 6.3, 6.4 and 6.6);
    (iv) Section 7--Apparatus (except section 7.4, Figures 1 through 4, 
section 7.7.5, Table 2, and section 7.7.7.4);
    (v) Section 8--Methods of Testing:
    (A) Section 8.2--Energy Supply, Section 8.2.1--Electrical Supply;
    (B) Section 8.7--Water Temperature Control;
    (vi) Section 9--Test Procedures: 9.1--Input Rating, Heating 
Capacity, Thermal Efficiency, Coefficient of Performance (COP), and 
Recovery Rating; 9.1.1--Full Input Rating;
    (vii) Section 10--Calculation of Results: Section 10.3--Heat-Pump 
Water Heater Water-Heating Capacity, Coefficient of Performance (COP), 
and Recovery Rating; Section 10.3.1--Type IV and Type V Full-Capacity 
Test Method.
    (2) [Reserved]
    (c) ASTM. ASTM International, 100 Barr Harbor Drive, P.O. Box C700, 
West Conshohocken, PA 19428-2959, (610) 832-9585, or go to http://
www.astm.org.
    (1) ASTM C177-13, ``Standard Test Method for Steady-State Heat Flux 
Measurements and Thermal Transmission Properties by Means of the

[[Page 873]]

Guarded-Hot-Plate Apparatus,'' approved September 15, 2013, IBR approved 
for Sec.  431.102.
    (2) ASTM C518-15, ``Standard Test Method for Steady-State Thermal 
Transmission Properties by Means of the Heat Flow Meter Apparatus,'' 
approved September 1, 2015, IBR approved for Sec.  431.102t.
    (3) ASTM D2156-09 (Reapproved 2013), ``Standard Test Method for 
Smoke Density in Flue Gases from Burning Distillate Fuels,'' approved 
October 1, 2013, IBR approved for appendices A and C to this subpart.
    (d) CSA Group, 5060 Spectrum Way, Suite 100, Mississauga, Ontario, 
Canada L4W 5N6, 800-463-6727, or go to http://www.csagroup.org/.
    (1) ANSI Z21.10.3-2015 * CSA 4.3-2015 (``ANSI Z21.10.3-2015''), 
``Gas-fired water heaters, volume III, storage water heaters with input 
ratings above 75,000 Btu per hour, circulating and instantaneous,'' 
approved by ANSI on October 5, 2015, IBR approved for appendices A, B, 
and C to this subpart, as follows:
    (i) Annex E (normative) Efficiency test procedures--E.1--Method of 
test for measuring thermal efficiency, paragraph c--Vent requirements; 
and
    (ii) Annex E (normative) Efficiency test procedures--E.1--Method of 
test for measuring thermal efficiency, paragraph f--Installation of 
temperature sensing means.
    (2) [Reserved]

[77 FR 28996, May 16, 2012, as amended at 81 FR 79322, Nov. 10, 2016]



Sec.  431.106  Uniform test method for the measurement of energy efficiency 
of commercial water heating equipment.

    (a) Scope. This section contains test procedures for measuring, 
pursuant to EPCA, the energy efficiency of commercial water heating 
equipment.
    (b) Testing and calculations. Determine the energy efficiency of 
commercial water heating equipment by conducting the applicable test 
procedure(s):
    (1) Residential-duty commercial water heaters. Test in accordance 
with appendix E to subpart B of part 430 of this chapter.
    (2) Commercial water heating equipment other than residential-duty 
commercial water heaters. Test in accordance with the appropriate test 
procedures in appendices to subpart G of this part.
    (i) Gas-fired and oil-fired storage water heaters and storage-type 
instantaneous water heaters. Test according to appendix A to subpart G 
of this part.
    (ii) Electric storage water heaters and storage-type instantaneous 
water heaters. Test according to appendix B to subpart G of this part.
    (iii) Gas-fired and oil-fired instantaneous water heaters and hot 
water supply boilers (other than storage-type instantaneous water 
heaters). Test according to appendix C to subpart G of this part.
    (iv) Electric instantaneous water heaters (other than storage-type 
instantaneous water heaters). Test according to appendix D to subpart G 
of this part.
    (v) Commercial heat pump water heaters. Test according to appendix E 
to subpart G of this part.

[81 FR 79322, Nov. 10, 2016]

                      Energy Conservation Standards



Sec.  431.110  Energy conservation standards and their effective dates.

    (a) Each commercial storage water heater, instantaneous water 
heater, unfired hot water storage tank and hot water supply boiler 
(excluding residential-duty commercial water heaters) must meet the 
applicable energy conservation standard level(s) as specified in the 
table in this paragraph. Any packaged boiler that provides service water 
that meets the definition of ``commercial packaged boiler'' in subpart E 
of this part, but does not meet the definition of ``hot water supply 
boiler'' in subpart G, must meet the requirements that apply to it under 
subpart E.

[[Page 874]]



----------------------------------------------------------------------------------------------------------------
                                                                        Energy conservation standard \a\
                                                              --------------------------------------------------
                                                                                      Minimum
                                                                                      thermal
                                                                                    efficiency        Minimum
                                                                Maximum standby     (equipment        thermal
       Equipment category                    Size                   loss \c\       manufactured     efficiency
                                                                   (equipment      on and after     (equipment
                                                                manufactured on     October 29,    manufactured
                                                               and after October     2003 and      on and after
                                                                 29, 2003) \b\    before October    October 9,
                                                                                   9, 2015) \b\    2015) \b\ (%)
                                                                                        (%)
----------------------------------------------------------------------------------------------------------------
Electric storage water heaters.  All.........................  0.30 + 27/Vm (%/              N/A             N/A
                                                                hr).
Gas-fired storage water heaters  <=155,000 Btu/hr............  Q/800 + 110(Vr)\1/             80              80
                                                                2\ (Btu/hr).
                                 155,000 Btu/hr...  Q/800 + 110(Vr)\1/             80              80
                                                                2\ (Btu/hr).
Oil-fired storage water heaters  <=155,000 Btu/hr............  Q/800 + 110(Vr)\1/             78              80
                                                                2\ (Btu/hr).
                                 155,000 Btu/hr...  Q/800 + 110(Vr)\1/             78              80
                                                                2\ (Btu/hr).
Gas-fired instantaneous water    <10 gal.....................  N/A..............              80              80
 heaters and hot water supply    =10 gal..........  Q/800 + 110(Vr)\1/             80              80
 boilers.                                                       2\ (Btu/hr).
Oil-fired instantaneous water    <10 gal.....................  N/A..............              80              80
 heaters and hot water supply    =10 gal..........  Q/800 + 110(Vr)\1/             78              78
 boilers.                                                       2\ (Btu/hr).
----------------------------------------------------------------------------------------------------------------
                      Equipment category
                                                                      Size          Minimum thermal insulation
----------------------------------------------------------------------------------------------------------------
                Unfired hot water storage tank                 All..............              R-12.5
----------------------------------------------------------------------------------------------------------------
\a\ Vm is the measured storage volume (in gallons), and Vr is the rated volume (in gallons). Q is the nameplate
  input rate in Btu/hr.
\b\ For hot water supply boilers with a capacity of less than 10 gallons: (1) The standards are mandatory for
  products manufactured on and after October 21, 2005, and (2) products manufactured prior to that date, and on
  or after October 23, 2003, must meet either the standards listed in this table or the applicable standards in
  subpart E of this part for a ``commercial packaged boiler.''
\c\ Water heaters and hot water supply boilers having more than 140 gallons of storage capacity need not meet
  the standby loss requirement if: (1) The tank surface area is thermally insulated to R-12.5 or more; (2) a
  standing pilot light is not used; and (3) for gas or oil-fired storage water heaters, they have a fire damper
  or fan-assisted combustion.

    (b) Each residential-duty commercial water heater must meet the 
applicable energy conservation standard level(s) as follows:

----------------------------------------------------------------------------------------------------------------
          Product class            Specifications \a\      Draw pattern           Uniform energy factor \b\
----------------------------------------------------------------------------------------------------------------
Gas-fired Storage...............  75 kBtu/  Very Small.........  0.2674 - (0.0009 x Vr)
                                   hr and <=105 kBtu/  Low................  0.5362 - (0.0012 x Vr)
                                   hr and <=120 gal.
                                                       Medium.............  0.6002 - (0.0011 x Vr)
                                                       High...............  0.6597 - (0.0009 x Vr)
Oil-fired Storage...............  105 kBtu/ Very Small.........  0.2932 - (0.0015 x Vr)
                                   hr and <=140 kBtu/  Low................  0.5596 - (0.0018 x Vr)
                                   hr and <=120 gal.
                                                       Medium.............  0.6194 - (0.0016 x Vr)
                                                       High...............  0.6740 - (0.0013 x Vr)
Electric Instantaneous..........  12 kW     Very Small.........  0.80
                                   and <=58.6 kW and
                                   <=2 gal.
                                                       Low................  0.80
                                                       Medium.............  0.80
                                                       High...............  0.80
----------------------------------------------------------------------------------------------------------------
\a\ Additionally, to be classified as a residential-duty commercial water heater, a commercial water heater must
  meet the following conditions: (1) if the water heater requires electricity, it must use a single-phase
  external power supply; and (2) the water heater must not be designed to heat water to temperatures greater
  than 180 [deg]F.
\b\ Vr is the rated storage volume (in gallons), as determined pursuant to 10 CFR 429.44.


[81 FR 96238, Dec. 29, 2016]

[[Page 875]]



 Sec. Appendix A to Subpart G of Part 431--Uniform Test Method for the 
Measurement of Thermal Efficiency and Standby Loss of Gas-Fired and Oil-
Fired Storage Water Heaters and Storage-Type Instantaneous Water Heaters

    Note: Prior to November 6, 2017, manufacturers must make any 
representations with respect to the energy use or efficiency of the 
subject commercial water heating equipment in accordance with the 
results of testing pursuant to this appendix or the procedures in 10 CFR 
431.106 that were in place on January 1, 2016. On and after November 6, 
2017, manufacturers must make any representations with respect to energy 
use or efficiency of gas-fired and oil-fired storage water heaters and 
storage-type instantaneous water heaters in accordance with the results 
of testing pursuant to this appendix to demonstrate compliance with the 
energy conservation standards at 10 CFR 431.110.

                               1. General

    Determine the thermal efficiency and standby loss (as applicable) in 
accordance with the following sections of this appendix. Certain 
sections reference sections of Annex E.1 of ANSI Z21.10.3-2015 
(incorporated by reference; see Sec.  431.105). Where the instructions 
contained in the sections below conflict with instructions in Annex E.1 
of ANSI Z21.10.3-2015, the instructions contained in this appendix 
control.

                             2. Test Set-Up

    2.1. Placement of Water Heater. A water heater for installation on 
combustible floors must be placed on a \3/4\-inch plywood platform 
supported by three 2 x 4-inch runners. If the water heater is for 
installation on noncombustible floors, suitable noncombustible material 
must be placed on the platform. When the use of the platform for a large 
water heater is not practical, the water heater may be placed on any 
suitable flooring. A wall-mounted water heater must be mounted on a 
simulated wall section.
    2.2. Installation of Temperature Sensors. Inlet and outlet water 
piping must be turned vertically downward from the connections on the 
water heater so as to form heat traps. Temperature sensors for measuring 
supply and outlet water temperatures must be installed upstream from the 
inlet heat trap piping and downstream from the outlet heat trap piping, 
respectively, in accordance with Figure 2.1, 2.2, or 2.3 (as applicable 
based on the location of inlet and outlet piping connections) of this 
section.
    The water heater must meet the requirements shown in Figure 2.1, 
2.2, or 2.3 (as applicable) at all times during the conduct of the 
thermal efficiency and standby loss tests. Any factory-supplied heat 
traps must be installed per the installation instructions while ensuring 
the requirements in Figure 2.1, 2.2, or 2.3 are met. All dimensions 
specified in Figure 2.1, 2.2, and 2.3 and in this section are measured 
from the outer surface of the pipes and water heater outer casing (as 
applicable).

[[Page 876]]

[GRAPHIC] [TIFF OMITTED] TR10NO16.012


[[Page 877]]


[GRAPHIC] [TIFF OMITTED] TR10NO16.013

    2.3 Installation of Temperature Sensors for Measurement of Mean Tank 
Temperature. Install temperature sensors inside the tank for measurement 
of mean tank temperature according to the instructions in paragraph f of 
Annex E.1 of ANSI Z21.10.3-2015 (incorporated by reference; see Sec.  
431.105). Calculate the mean tank temperature as the average of the six 
installed temperature sensors.
    2.4. Piping Insulation. Insulate all water piping external to the 
water heater jacket, including heat traps and piping that are installed 
by the manufacturer or shipped with the unit, for at least 4 ft of 
piping length from the connection at the appliance, with material having 
an R-value not less than 4 [deg]F[middot]ft\2\[middot]h/Btu. Ensure that 
the insulation does not contact any appliance surface except at the 
location where the pipe connections penetrate the appliance jacket or 
enclosure.
    2.5. Temperature and Pressure Relief Valve Insulation. If the 
manufacturer has not provided a temperature and pressure relief valve, 
one shall be installed and insulated as specified in section 2.4 of this 
appendix.
    2.6. Vent Requirements. Follow the requirements for venting 
arrangements specified in paragraph c of Annex E.1 of ANSI Z21.10.3-2015 
(incorporated by reference; see Sec.  431.105).
    2.7. Energy Consumption. Install equipment that determines, within 
 1 percent:
    2.7.1. The quantity and rate of fuel consumed.
    2.7.2. The quantity of electricity consumed by factory-supplied 
water heater components.

                           3. Test Conditions

    3.1. Water Supply
    3.1.1. Water Supply Pressure. The pressure of the water supply must 
be maintained between 40 psi and the maximum pressure specified by the 
manufacturer of the unit being tested. The accuracy of the pressure-
measuring devices must be within  1.0 pounds per 
square inch (psi).
    3.1.2. Water Supply Temperature. During the steady-state 
verification period and the thermal efficiency test, the temperature of 
the supply water must be maintained at 70 [deg]F  
2 [deg]F.
    3.1.3. Isolate the water heater using a shutoff valve in the supply 
line with an expansion tank installed in the supply line downstream of 
the shutoff valve. There must be no shutoff means between the expansion 
tank and the appliance inlet.
    3.2. Gas Pressure for Gas-Fired Equipment. The supply gas pressure 
must be within the range specified by the manufacturer on the nameplate 
of the unit being tested. The difference between the outlet pressure of 
the gas appliance pressure regulator and the value specified by the 
manufacturer on the nameplate of the unit being tested must not exceed 
the greater of:  10 percent of the nameplate value 
or  0.2 inches water column (in. w.c.). Obtain the 
higher heating value of the gas burned.
    3.3. Ambient Room Temperature. During the soak-in period (as 
applicable), the steady-state verification period, the thermal 
efficiency test, and the standby loss test, maintain the ambient room 
temperature at 75 [deg]F  10 [deg]F at all times. 
Measure the ambient room temperature at 1-minute intervals during these 
periods, except for the soak-in period. Measure the ambient room 
temperature

[[Page 878]]

once before beginning the soak-in period, and ensure no actions are 
taken during the soak-in period that would cause the ambient room 
temperature to deviate from the allowable range. Measure the ambient 
room temperature at the vertical mid-point of the water heater and 
approximately 2 feet from the water heater jacket. Shield the sensor 
against radiation. Calculate the average ambient room temperature 
separately for the thermal efficiency test and standby loss test. During 
the thermal efficiency and standby loss tests, the ambient room 
temperature must not vary by more than  5.0 [deg]F 
at any reading from the average ambient room temperature.
    3.4. Test Air Temperature. During the steady-state verification 
period, the thermal efficiency test, and the standby loss test, the test 
air temperature must not vary by more than  5 
[deg]F from the ambient room temperature at any reading. Measure the 
test air temperature at 1-minute intervals during these periods and at a 
location within two feet of the air inlet of the water heater or the 
combustion air intake vent, as applicable. Shield the sensor against 
radiation. For units with multiple air inlets, measure the test air 
temperature at each air inlet, and maintain the specified tolerance on 
deviation from the ambient room temperature at each air inlet. For units 
without a dedicated air inlet, measure the test air temperature within 
two feet of any location on the water heater where combustion air is 
drawn.
    3.5. Maximum Air Draft. During the steady-state verification period, 
the thermal efficiency test, and the standby loss test, the water heater 
must be located in an area protected from drafts of more than 50 ft/min. 
Prior to beginning the steady-state verification period and the standby 
loss test, measure the air draft within three feet of the jacket or 
enclosure of the water heater to ensure this condition is met. Ensure 
that no other changes that would increase the air draft are made to the 
test set-up or conditions during the conduct of the tests.
    3.6. Setting the Tank Thermostat. Before starting the steady-state 
verification period (as applicable) or before the soak-in period (as 
applicable), the thermostat setting must first be obtained by starting 
with the water in the system at 70 [deg]F  2 
[deg]F. Set the thermostat to ensure:
    3.6.1. With the supply water temperature set as per section 3.1.2 of 
this appendix (i.e., 70 [deg]F  2 [deg]F), the 
water flow rate can be varied so that the outlet water temperature is 
constant at 70 [deg]F  2 [deg]F above the supply 
water temperature while the burner is firing at full firing rate; and
    3.6.2. After the water supply is turned off and the thermostat 
reduces the fuel supply to a minimum, the maximum water temperature 
measured by the topmost tank temperature sensor (i.e., the highest of 
the 6 temperature sensors used for calculating mean tank temperature, as 
required by section 2.3 of this appendix) is 140 [deg]F  5 [deg]F.
    3.7. Additional Requirements for Oil-Fired Equipment.
    3.7.1. Venting Requirements. Connect a vertical length of flue pipe 
to the flue gas outlet of sufficient height so as to meet the minimum 
draft specified by the manufacturer.
    3.7.2. Oil Supply. Adjust the burner rate so that the following 
conditions are met:
    3.7.2.1. The CO2 reading is within the range specified by 
the manufacturer;
    3.7.2.2. The fuel pump pressure is within  10 
percent of manufacturer's specifications;
    3.7.2.3. If either the fuel pump pressure or range for 
CO2 reading are not specified by the manufacturer on the 
nameplate of the unit, in literature shipped with the unit, or in 
supplemental test report instructions included with a certification 
report, then a default value of 100 psig is to be used for fuel pump 
pressure, and a default range of 9-12 percent is to be used for 
CO2 reading; and
    3.7.2.4. Smoke in the flue does not exceed No. 1 smoke as measured 
by the procedure in ASTM D2156-09 (Reapproved 2013) (incorporated by 
reference, see Sec.  431.105). To determine the smoke spot number, 
connect the smoke measuring device to an open-ended tube. This tube must 
project into the flue \1/4\ to \1/2\ of the pipe diameter.
    3.7.2.5. If no settings on the water heater have been changed and 
the water heater has not been turned off since the end of a previously 
run thermal efficiency or standby loss test, measurement of the 
CO2 reading and conduct of the smoke spot test are not 
required prior to beginning a test. Otherwise, measure the 
CO2 reading and determine the smoke spot number, with the 
burner firing, before the beginning of the steady-state verification 
period prior to the thermal efficiency test, and prior to beginning the 
standby loss test.
    3.8. Data Collection Intervals. Follow the data recording intervals 
specified in the following sections.
    3.8.1. Soak-In Period. For units that require a soak-in period, 
measure the ambient room temperature, in [deg]F, prior to beginning the 
soak-in period.
    3.8.2. Steady-State Verification Period and Thermal Efficiency Test. 
For the steady-state verification period and the thermal efficiency 
test, follow the data recording intervals specified in Table 3.1 of this 
appendix.

[[Page 879]]



  Table 3.1--Data To Be Recorded Before and During the Steady-State Verification Period and Thermal Efficiency
                                                      Test
----------------------------------------------------------------------------------------------------------------
                                         Before steady-state
            Item recorded                verification period       Every 1 minute \a\        Every 10 minutes
----------------------------------------------------------------------------------------------------------------
Gas supply pressure, in w.c.........  X.......................
Gas outlet pressure, in w.c.........  X.......................
Barometric pressure, in Hg..........  X.......................
Fuel higher heating value, Btu/ft\3\  X.......................
 (gas) or Btu/lb (oil).
Oil pump pressure, psig (oil only)..  X.......................
CO2 reading, % (oil only)...........   X \b\..................
Oil smoke spot reading (oil only)...   X \b\..................
Air draft, ft/min...................  X.......................
Time, minutes/seconds...............  ........................  X......................
Fuel weight or volume, lb (oil) or    ........................  .......................  X \c\
 ft\3\ (gas).
Supply water temperature (TSWT),      ........................  X......................
 [deg]F.
Outlet water temperature (TOWT),      ........................  X......................
 [deg]F.
Ambient room temperature, [deg]F....  ........................  X......................
Test air temperature, [deg]F........  ........................  X......................
Water flow rate, (gpm)..............  ........................  X......................
----------------------------------------------------------------------------------------------------------------
Notes:
\a\ These measurements are to be recorded at the start of the steady-state verification period and the end of
  the thermal efficiency test, as well as every minute during both periods.
\b\ The smoke spot test and CO2 reading are not required prior to beginning the steady-state verification period
  if no settings on the water heater have been changed and the water heater has not been turned off since the
  end of a previously-run efficiency test (i.e., thermal efficiency or standby loss).
\c\ Fuel and electricity consumption over the course of the entire thermal efficiency test must be measured and
  used in calculation of thermal efficiency.

    3.8.3. Standby Loss Test. For the standby loss test, follow the data 
recording intervals specified in Table 3.2 of this appendix. 
Additionally, the fuel and electricity consumption over the course of 
the entire test must be measured and used in calculation of standby 
loss.

 Table 3.2--Data To Be Recorded Before and During the Standby Loss Test
------------------------------------------------------------------------
         Item recorded               Before test      Every 1 minute \a\
------------------------------------------------------------------------
Gas supply pressure, in w.c....  X..................
Gas outlet pressure, in w.c....  X..................
Barometric pressure, in Hg.....  X..................
Fuel higher heating value, Btu/  X..................
 ft \3\ (gas) or Btu/lb (oil).
Oil pump pressure, psig (oil     X..................
 only).
CO2 reading, % (oil only)......  X \b\..............
Oil smoke spot reading (oil      X \b\..............
 only).
Air draft, ft/min..............  X..................
Time, minutes/seconds..........  ...................  X
Mean tank temperature, [deg]F..  ...................  X \c\
Ambient room temperature,        ...................  X
 [deg]F.
Test air temperature, [deg]F...  ...................  X
------------------------------------------------------------------------
Notes:
\a\ These measurements are to be recorded at the start and end of the
  test, as well as every minute during the test.
\b\ The smoke spot test and CO2 reading are not required prior to
  beginning the standby loss test if no settings on the water heater
  have been changed and the water heater has not been turned off since
  the end of a previously-run efficiency test (i.e., thermal efficiency
  or standby loss).
\c\ Mean tank temperature is calculated as the average of the 6 tank
  temperature sensors, installed per section 2.3 of this appendix.

    4. Determination of Storage Volume. Determine the storage volume by 
subtracting the tare weight, measured while the system is dry and empty, 
from the weight of the system when filled with water and dividing the 
resulting net weight of water by the density of water at the measured 
water temperature. The volume of the water contained in the water heater 
must be computed in gallons.
    5. Thermal Efficiency Test. Before beginning the steady-state 
verification period, record the applicable parameters as specified in 
section 3.8.2 of this appendix. Begin drawing water from the unit by 
opening the main supply, and adjust the water flow rate to achieve an 
outlet water temperature of 70 [deg]F  2 [deg]F 
above supply water temperature. The thermal efficiency test shall be 
deemed complete when there is a continuous, one-hour-long period where 
the steady-state conditions specified in section 5.1 of this appendix 
have been met, as confirmed by consecutive readings of the relevant 
parameters recorded at 1-minute intervals (except for fuel input rate, 
which is determined at 10-minute intervals, as specified in section 5.4 
of this appendix). During the one-hour-long period, the water heater 
must fire continuously at its full firing rate (i.e., no modulations or 
cut-outs) and no settings can be changed on the unit being tested at any 
time. The first 30

[[Page 880]]

minutes of the one-hour-period where the steady-state conditions in 
section 5.1 of this appendix are met is the steady-state verification 
period. The final 30 minutes of the one-hour-period where the steady-
state conditions in section 5.1 of this appendix are met is the thermal 
efficiency test. The last reading of the steady-state verification 
period must be the first reading of the thermal efficiency test (i.e., 
the thermal efficiency test starts immediately once the steady-state 
verification period ends).
    5.1. Steady-State Conditions. The following conditions must be met 
at consecutive readings taken at 1-minute intervals (except for fuel 
input rate, for which measurements are taken at 10-minute intervals) to 
verify the water heater has achieved steady-state operation during the 
steady-state verification period and thermal efficiency test.
    5.1.1. The water flow rate must be maintained within  0.25 gallons per minute (gpm) of the initial reading at 
the start of the steady-state verification period;
    5.1.2. Outlet water temperature must be maintained at 70 [deg]F 
 2 [deg]F above supply water temperature;
    5.1.3. Fuel input rate must be maintained within  2 percent of the rated input certified by the 
manufacturer;
    5.1.4. The supply water temperature must be maintained within  0.50 [deg]F of the initial reading at the start of the 
steady-state verification period; and
    5.1.5. The rise between the supply and outlet water temperatures 
must be maintained within  0.50 [deg]F of its 
initial value taken at the start of the steady-state verification period 
for units with rated input less than 500,000 Btu/h, and maintained 
within  1.00 [deg]F of its initial value for units 
with rated input greater than or equal to 500,000 Btu/h.
    5.2. Water Flow Measurement. Measure the total weight of water 
heated during the 30-minute thermal efficiency test with either a scale 
or a water flow meter. With either method, the error of measurement of 
weight of water heated must not exceed 1 percent of the weight of the 
total draw.
    5.3. Determination of Fuel Input Rate. During the steady-state 
verification period and the thermal efficiency test, record the fuel 
consumed at 10-minute intervals. Calculate the fuel input rate over each 
10-minute period using the equations in section 5.4 of this appendix. 
The measured fuel input rates for these 10-minute periods must not vary 
by more than  2 percent between any two readings. 
Determine the overall fuel input rate using the fuel consumption for the 
entire duration of the thermal efficiency test.
    5.4. Fuel Input Rate Calculation. To calculate the fuel input rate, 
use the following equation:
[GRAPHIC] [TIFF OMITTED] TR10NO16.014

Where,

Q = Fuel input rate, expressed in Btu/h
Qs = Total fuel flow as metered, expressed in ft\3\ for gas-
          fired equipment and lb for oil-fired equipment
Cs = Correction applied to the heating value of a gas H, when 
          it is metered at temperature and/or pressure conditions other 
          than the standard conditions for which the value of H is 
          based. Cs=1 for oil-fired equipment.
H = Higher heating value of fuel, expressed in Btu/ft\3\ for gas-fired 
          equipment and Btu/lb for oil-fired equipment.
t = Duration of measurement of fuel consumption

    5.5. Thermal Efficiency Calculation. Thermal efficiency must be 
calculated using data from the 30-minute thermal efficiency test. 
Calculate thermal efficiency, Et, using the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR10NO16.015

Where,
K = 1.004 Btu/lb[middot] [deg]F, the nominal specific heat of water at 
          105 [deg]F
W = Total weight of water heated, expressed in lb
[thetas]1 = Average supply water temperature, expressed in 
          [deg]F
[thetas]2 = Average outlet water temperature, expressed in 
          [deg]F

[[Page 881]]

Q = Total fuel flow as metered, expressed in ft\3\ for gas-fired 
          equipment and lb for oil-fired equipment.
Cs = Correction applied to the heating value of a gas H, when 
          it is metered at temperature and/or pressure conditions other 
          than the standard conditions for which the value of H is 
          based. Cs=1 for oil-fired equipment
H. = Higher heating value of the fuel, expressed in Btu/ft\3\ for gas-
          fired equipment and Btu/lb for oil-fired equipment.
Ec = Electrical consumption of the water heater and, when 
          used, the test set-up recirculating pump, expressed in Btu

                          6. Standby Loss Test

    6.1. If no settings on the water heater have changed and the water 
heater has not been turned off since a previously run thermal efficiency 
or standby loss test, skip to section 6.3 of this appendix. Otherwise, 
conduct the soak-in period according to section 6.2 of this appendix.
    6.2. Soak-In Period. Conduct a soak-in period, in which the water 
heater must sit without any draws taking place for at least 12 hours. 
Begin the soak-in period after setting the tank thermostat as specified 
in section 3.6 of this appendix, and maintain these thermostat settings 
throughout the soak-in period.
    6.3. Begin the standby loss test at the first cut-out following the 
end of the soak-in period (if applicable); or at a cut-out following the 
previous thermal efficiency or standby loss test (if applicable). Allow 
the water heater to remain in standby mode. Do not change any settings 
on the water heater at any point until measurements for the standby loss 
test are finished. Begin recording the applicable parameters specified 
in section 3.8.3 of this appendix.
    6.4. At the second cut-out, record the time and ambient room 
temperature, and begin measuring the fuel and electricity consumption. 
Record the initial mean tank temperature and initial ambient room 
temperature. For the remainder of the test, continue recording the 
applicable parameters specified in section 3.8.3 of this appendix.
    6.5. Stop the test after the first cut-out that occurs after 24 
hours, or at 48 hours, whichever comes first.
    6.6. Immediately after conclusion of the standby loss test, record 
the total fuel flow and electrical energy consumption, the final ambient 
room temperature, the duration of the standby loss test, and if the test 
ends at 48 hours without a cut-out, the final mean tank temperature, or 
if the test ends after a cut-out, the maximum mean tank temperature that 
occurs after the cut-out. Calculate the average of the recorded values 
of the mean tank temperature and of the ambient room temperature taken 
at each measurement interval, including the initial and final values.
    6.7. Standby Loss Calculation. To calculate the standby loss, follow 
the steps below:
    6.7.1. The standby loss expressed as a percentage (per hour) of the 
heat content of the stored water above room temperature must be 
calculated using the following equation:
[GRAPHIC] [TIFF OMITTED] TR10NO16.016

Where,
[Delta]T3 = Average value of the mean tank temperature minus 
          the average value of the ambient room temperature, expressed 
          in [deg]F
[Delta]T4 = Final mean tank temperature measured at the end 
          of the test minus the initial mean tank temperature measured 
          at the start of the test , expressed in [deg]F
k = 8.25 Btu/gallon[middot] [deg]F, the nominal specific heat of water
Va = Volume of water contained in the water heater in gallons 
          measured in accordance with section 4 of this appendix
Et = Thermal efficiency of the water heater determined in 
          accordance with this appendix, expressed in %
Ec = Electrical energy consumed by the water heater during 
          the duration of the test in Btu
t = Total duration of the test in hours
Cs = Correction applied to the heating value of a gas H, when 
          it is metered at temperature and/or pressure conditions other 
          than the standard conditions for which the value of H is 
          based. Cs=1 for oil-fired equipment.
Qs = Total fuel flow as metered, expressed in ft\3\ (gas) or 
          lb (oil)
H = Higher heating value of fuel, expressed in Btu/ft\3\ (gas) or Btu/lb 
          (oil)
S = Standby loss, the average hourly energy required to maintain the 
          stored water temperature expressed as a percentage of the heat 
          content of the stored water above room temperature


[[Page 882]]


    6.7.2. The standby loss expressed in Btu per hour must be calculated 
as follows:
    SL (Btu per hour) = S (% per hour) x 8.25 (Btu/gal- [deg]F) x 
Measured Volume (gal) x 70 ( [deg]F).
    Where, SL refers to the standby loss of the water heater, defined as 
the amount of energy required to maintain the stored water temperature 
expressed in Btu per hour

[81 FR 79323, Nov. 10, 2016]



 Sec. Appendix B to Subpart G of Part 431--Uniform Test Method for the 
   Measurement of Standby Loss of Electric Storage Water Heaters and 
                Storage-Type Instantaneous Water Heaters

    Note: Prior to November 6, 2017, manufacturers must make any 
representations with respect to the energy use or efficiency of the 
subject commercial water heating equipment in accordance with the 
results of testing pursuant to this appendix or the procedures in 10 CFR 
431.106 that were in place on January 1, 2016. On and after November 6, 
2017, manufacturers must make any representations with respect to energy 
use or efficiency of electric storage water heaters and storage-type 
instantaneous water heaters in accordance with the results of testing 
pursuant to this appendix to demonstrate compliance with the energy 
conservation standards at 10 CFR 431.110.

                               1. General

    Determine the standby loss in accordance with the following sections 
of this appendix. Certain sections reference sections of Annex E.1 of 
ANSI Z21.10.3-2015 (incorporated by reference; see Sec.  431.105). Where 
the instructions contained in the sections below conflict with 
instructions in Annex E.1 of ANSI Z21.10.3-2015, the instructions 
contained in this appendix control.

                             2. Test Set-Up

    2.1. Placement of Water Heater. A water heater for installation on 
combustible floors must be placed on a \3/4\-inch plywood platform 
supported by three 2 x 4-inch runners. If the water heater is for 
installation on noncombustible floors, suitable noncombustible material 
must be placed on the platform. When the use of the platform for a large 
water heater is not practical, the water heater may be placed on any 
suitable flooring. A wall-mounted water heater must be mounted on a 
simulated wall section.
    2.2. Installation of Temperature Sensors. Inlet and outlet piping 
must be turned vertically downward from the connections on a tank-type 
water heater so as to form heat traps. Temperature sensors for measuring 
supply water temperature must be installed upstream of the inlet heat 
trap piping, in accordance with Figure 2.1, 2.2, or 2.3 (as applicable) 
of this appendix.
    The water heater must meet the requirements shown in either Figure 
2.1, 2.2, or 2.3 (as applicable) at all times during the conduct of the 
standby loss test. Any factory-supplied heat traps must be installed per 
the installation instructions while ensuring the requirements in Figure 
2.1, 2.2, or 2.3 are met. All dimensions specified in Figure 2.1, 2.2, 
and 2.3 are measured from the outer surface of the pipes and water 
heater outer casing (as applicable).

[[Page 883]]

[GRAPHIC] [TIFF OMITTED] TR10NO16.017


[[Page 884]]


[GRAPHIC] [TIFF OMITTED] TR10NO16.018

    2.3. Installation of Temperature Sensors for Measurement of Mean 
Tank Temperature. Install temperature sensors inside the tank for 
measurement of mean tank temperature according to the instructions in 
paragraph f of Annex E.1 of ANSI Z21.10.3-2015 (incorporated by 
reference; see Sec.  431.105 rt). Calculate the mean tank temperature as 
the average of the six installed temperature sensors.
    2.4. Piping Insulation. Insulate all water piping external to the 
water heater jacket, including heat traps and piping that is installed 
by the manufacturer or shipped with the unit, for at least 4 ft of 
piping length from the connection at the appliance, with material having 
an R-value not less than 4 [deg]F[middot]ft\2\[middot]h/Btu. Ensure that 
the insulation does not contact any appliance surface except at the 
location where the pipe connections penetrate the appliance jacket or 
enclosure.
    2.5. Temperature and Pressure Relief Valve Insulation. If the 
manufacturer or has not provided a temperature and pressure relief 
valve, one shall be installed and insulated as specified in section 2.4 
of this appendix.
    2.6. Energy Consumption. Install equipment that determines, within 
 1 percent, the quantity of electricity consumed 
by factory-supplied water heater components.

                           3. Test Conditions

                            3.1. Water Supply

    3.1.1. Water Supply Pressure. The pressure of the water supply must 
be maintained between 40 psi and the maximum pressure specified by the 
manufacturer of the unit being tested. The accuracy of the pressure-
measuring devices must be within  1.0 pounds per 
square inch (psi).
    3.1.2. Water Supply Temperature. When filling the tank with water 
prior to the soak-in period, maintain the supply water temperature at 70 
[deg]F  2 [deg]F.
    3.1.3. Isolate the water heater using a shutoff valve in the supply 
line with an expansion tank installed in the supply line downstream of 
the shutoff valve. There must be no shutoff means between the expansion 
tank and the appliance inlet.
    3.2. Electrical Supply. Maintain the electrical supply voltage to 
within  5 percent of the voltage specified on the 
water heater nameplate. If a voltage range is specified on the 
nameplate, maintain the voltage to within  5 
percent of the center of the voltage range specified on the nameplate.
    3.3. Ambient Room Temperature. During the soak-in period and the 
standby loss test, maintain the ambient room temperature at 75 [deg]F 
 10 [deg]F at all times. Measure the ambient room 
temperature at 1-minute intervals during these periods, except for the 
soak-in period. Measure the ambient room temperature once before 
beginning the soak-in period, and ensure no actions are taken during the 
soak-in period that would cause the ambient room temperature to deviate 
from the allowable range. Measure the ambient room temperature at the 
vertical mid-point of the water heater and approximately 2 feet from the 
water heater jacket. Shield the sensor against radiation. Calculate the 
average ambient room temperature for the standby loss test. During the 
standby loss test, the ambient room temperature must not vary by

[[Page 885]]

more than  5.0 [deg]F at any reading from the 
average ambient room temperature.
    3.4. Maximum Air Draft. During the standby loss test, the water 
heater must be located in an area protected from drafts of more than 50 
ft/min. Prior to beginning the standby loss test, measure the air draft 
within three feet of the jacket of the water heater to ensure this 
condition is met. Ensure that no other changes that would increase the 
air draft are made to the test set-up or conditions during the conduct 
of the test.
    3.5. Setting the Tank Thermostat(s). Before starting the required 
soak-in period, the thermostat setting(s) must first be obtained as 
explained in the following sections. The thermostat setting(s) must be 
obtained by starting with the tank full of water at 70 [deg]F  2 [deg]F. After the tank is completely filled with 
water at 70 [deg]F  2 [deg]F, turn off the water 
flow, and set the thermostat(s) as follows.
    3.5.1. For water heaters with a single thermostat, the thermostat 
setting must be set so that the maximum mean tank temperature after cut-
out is 140 [deg]F  5 [deg]F.
    3.5.2. For water heaters with multiple adjustable thermostats, set 
only the topmost and bottommost thermostats, and turn off any other 
thermostats for the duration of the standby loss test. Set the topmost 
thermostat first to yield a maximum mean water temperature after cut-out 
of 140 [deg]F  5 [deg]F, as calculated using only 
the temperature readings measured at locations in the tank higher than 
the heating element corresponding to the topmost thermostat (the 
lowermost heating element corresponding to the topmost thermostat if the 
thermostat controls more than one element). While setting the topmost 
thermostat, all lower thermostats must be turned off so that no elements 
below that (those) corresponding to the topmost thermostat are in 
operation. After setting the topmost thermostat, set the bottommost 
thermostat to yield a maximum mean water temperature after cut-out of 
140 [deg]F  5 [deg]F. When setting the bottommost 
thermostat, calculate the mean tank temperature using all the 
temperature sensors installed in the tank as per section 2.3 of this 
appendix.
    3.6. Data Collection Intervals. Follow the data recording intervals 
specified in the following sections.
    3.6.1. Soak-In Period. Measure the ambient room temperature, in 
[deg]F, every minute during the soak-in period.
    3.6.2. Standby Loss Test. Follow the data recording intervals 
specified in Table 3.1 of this appendix. Additionally, the electricity 
consumption over the course of the entire test must be measured and used 
in calculation of standby loss.

 Table 3.1--Data To Be Recorded Before and During the Standby Loss Test
------------------------------------------------------------------------
         Item recorded               Before test      Every 1 minute \a\
------------------------------------------------------------------------
Air draft, ft/min..............  X..................
Time, minutes/seconds..........  ...................  X
Mean tank temperature, [deg]F..  ...................  X \b\
Ambient room temperature,        ...................  X
 [deg]F.
------------------------------------------------------------------------
Notes:
\a\ These measurements are to be recorded at the start and end of the
  test, as well as every minute during the test.
\b\ Mean tank temperature is calculated as the average of the 6 tank
  temperature sensors, installed per section 2.3 of this appendix.

    4. Determination of Storage Volume. Determine the storage volume by 
subtracting the tare weight, measured while the system is dry and empty, 
from the weight of the system when filled with water and dividing the 
resulting net weight of water by the density of water at the measured 
water temperature. The volume of water contained in the water heater 
must be computed in gallons.

                          5. Standby Loss Test

    5.1. If no settings on the water heater have changed and the water 
heater has not been turned off since a previously run standby loss test, 
skip to section 5.3 of this appendix. Otherwise, conduct the soak-in 
period according to section 5.2 of this appendix.
    5.2. Soak-In Period. Conduct a soak-in period, in which the water 
heater must sit without any draws taking place for at least 12 hours. 
Begin the soak-in period after setting the tank thermostat(s) as 
specified in section 3.5 of this appendix, and maintain these settings 
throughout the soak-in period.
    5.3. Begin the standby loss test at the first cut-out following the 
end of the soak-in period (if applicable), or at a cut-out following the 
previous standby loss test (if applicable). Allow the water heater to 
remain in standby mode. At this point, do not change any settings on the 
water heater until measurements for the standby loss test are finished. 
Begin recording applicable parameters as specified in section 3.6.2 of 
this appendix.
    5.4. At the second cut-out, record the time and ambient room 
temperature, and begin measuring the electric consumption. Record the 
initial mean tank temperature and initial ambient room temperature. For 
the remainder of the test, continue recording the applicable parameters 
specified in section 3.6.2 of this appendix.
    5.5. Stop the test after the first cut-out that occurs after 24 
hours, or at 48 hours, whichever comes first.
    5.6. Immediately after conclusion of the standby loss test, record 
the total electrical energy consumption, the final ambient room 
temperature, the duration of the standby

[[Page 886]]

loss test, and if the test ends at 48 hours without a cut-out, the final 
mean tank temperature, or if the test ends after a cut-out, the maximum 
mean tank temperature that occurs after the cut-out. Calculate the 
average of the recorded values of the mean tank temperature and of the 
ambient air temperatures taken at each measurement interval, including 
the initial and final values.
    5.7. Standby Loss Calculation. To calculate the standby loss, follow 
the steps below:
    5.7.1 The standby loss expressed as a percentage (per hour) of the 
heat content of the stored water above room temperature must be 
calculated using the following equation:
[GRAPHIC] [TIFF OMITTED] TR10NO16.019

Where,
[Delta]T3 = Average value of the mean tank temperature minus 
          the average value of the ambient room temperature, expressed 
          in [deg]F
[Delta]T4 = Final mean tank temperature measured at the end 
          of the test minus the initial mean tank temperature measured 
          at the start of the test, expressed in [deg]F
k = 8.25 Btu/gallon[middot] [deg]F, the nominal specific heat of water
Va = Volume of water contained in the water heater in gallons 
          measured in accordance with section 4 of this appendix
Et = Thermal efficiency = 98 percent for electric water 
          heaters with immersed heating elements
Ec = Electrical energy consumed by the water heater during 
          the duration of the test in Btu
t = Total duration of the test in hours
S = Standby loss, the average hourly energy required to maintain the 
          stored water temperature expressed as a percentage of the heat 
          content of the stored water above room temperature

[81 FR 79328, Nov. 10, 2016]



 Sec. Appendix C to Subpart G of Part 431--Uniform Test Method for the 
Measurement of Thermal Efficiency and Standby Loss of Gas-Fired and Oil-
 Fired Instantaneous Water Heaters and Hot Water Supply Boilers (Other 
             Than Storage-Type Instantaneous Water Heaters)

    Note: Prior to November 6, 2017, manufacturers must make any 
representations with respect to the energy use or efficiency of the 
subject commercial water heating equipment in accordance with the 
results of testing pursuant to this appendix or the procedures in 10 CFR 
431.106 that were in place on January 1, 2016. On and after November 6, 
2017, manufacturers must make any representations with respect to energy 
use or efficiency of gas-fired and oil-fired instantaneous water heaters 
and hot water supply boilers (other than storage-type instantaneous 
water heaters) in accordance with the results of testing pursuant to 
this appendix to demonstrate compliance with the energy conservation 
standards at 10 CFR 431.110.

                               1. General

    Determine the thermal efficiency and standby loss (as applicable) in 
accordance with the following sections of this appendix. Certain 
sections reference sections of Annex E.1 of ANSI Z21.10.3-2015 
(incorporated by reference; see Sec.  431.105). Where the instructions 
contained in the sections below conflict with instructions in Annex E.1 
of ANSI Z21.10.3-2015, the instructions contained in this appendix 
control.

                             2. Test Set-Up

    2.1. Placement of Water Heater. A water heater for installation on 
combustible floors must be placed on a \3/4\-inch plywood platform 
supported by three 2 x 4-inch runners. If the water heater is for 
installation on noncombustible floors, suitable noncombustible material 
must be placed on the platform. When the use of the platform for a large 
water heater is not practical, the water heater may be placed on any 
suitable flooring. A wall-mounted water heater must be mounted on a 
simulated wall section.
    2.2. Test Configuration. If the instantaneous water heater or hot 
water supply boiler is not required to be tested using a recirculating 
loop, then set up the unit in accordance with Figures 2.1, 2.2, or 2.3 
of this appendix (as applicable). If the unit is required to be tested 
using a recirculating loop, then set up the unit as per Figure 2.4 of 
this appendix.

[[Page 887]]

[GRAPHIC] [TIFF OMITTED] TR10NO16.020


[[Page 888]]


[GRAPHIC] [TIFF OMITTED] TR10NO16.021

    2.2.1. If the instantaneous water heater or hot water supply boiler 
does not have any external piping, install an outlet water valve within 
10 inches of piping length of the water heater jacket or enclosure. If 
the instantaneous water heater or hot water supply boiler includes 
external piping assembled at the manufacturer's premises prior to 
shipment,

[[Page 889]]

install water valves in the outlet piping within 5 inches of the end of 
the piping supplied with the unit.
    2.2.2. If the water heater is not able to achieve an outlet water 
temperature of 70 [deg]F  2 [deg]F 
(TOWT) above the supply water temperature at full firing 
rate, a recirculating loop with pump as shown in Figure 2.4 of this 
appendix must be used.
    2.2.2.1. If a recirculating loop with a pump is used, then ensure 
that the inlet water temperature labeled as TIWT in Figure 
2.4 of this appendix, is greater than or equal to 70 [deg]F and less 
than or equal to 120 [deg]F at all times during the thermal efficiency 
test and steady-state verification period (as applicable).

                2.3. Installation of Temperature Sensors

    2.3.1. Without Recirculating Loop.
    2.3.1.1. Vertical Connections. Use Figure 2.1 (for top connections) 
and 2.2 (for bottom connections) of this appendix.
    2.3.1.2. Horizontal Connections. Use Figure 2.3 of this appendix.
    2.3.2. With Recirculating Loop. Set up the recirculating loop as 
shown in Figure 2.4 of this appendix.
    2.3.3. For water heaters with multiple outlet water connections 
leaving the water heater jacket that are required to be operated to 
achieve the rated input, temperature sensors must be installed for each 
outlet water connection leaving the water heater jacket or enclosure 
that is used during testing, in accordance with the provisions in 
sections 2.3.1 and 2.3.2 of this appendix (as applicable).
    2.4. Piping Insulation. Insulate all water piping external to the 
water heater jacket or enclosure, including piping that is installed by 
the manufacturer or shipped with the unit, for at least 4 ft of piping 
length from the connection at the appliance with material having an R-
value not less than 4 [deg]F[middot]ft\2\[middot]h/Btu. Ensure that the 
insulation does not contact any appliance surface except at the location 
where the pipe connections penetrate the appliance jacket or enclosure.
    2.5. Temperature and Pressure Relief Valve Insulation. If the 
manufacturer has not provided a temperature and pressure relief valve, 
one shall be installed and insulated as specified in section 2.4 of this 
appendix. The temperature and pressure relief valve must be installed in 
the outlet water piping, between the unit being tested and the outlet 
water valve.
    2.6. Vent Requirements. Follow the requirements for venting 
arrangements specified in paragraph c of Annex E.1 of ANSI Z21.10.3-2015 
(incorporated by reference; see Sec.  431.105).
    2.7. Energy Consumption. Install equipment that determines, within 
 1 percent:
    2.7.1. The quantity and rate of fuel consumed.
    2.7.2. The quantity of electricity consumed by factory-supplied 
water heater components, and of the test loop recirculating pump, if 
used.

                           3. Test Conditions

                            3.1. Water Supply

    3.1.1. Water Supply Pressure. The pressure of the water supply must 
be maintained between 40 psi and the maximum pressure specified by the 
manufacturer of the unit being tested. The accuracy of the pressure-
measuring devices must be within  1.0 psi.
    3.1.2. Water Supply Temperature. During the thermal efficiency test 
and steady-state verification period (as applicable), the temperature of 
the supply water (TSWT) must be maintained at 70 [deg]F 
 2 [deg]F.
    3.2. Gas Pressure for Gas-Fired Equipment. The supply gas pressure 
must be within the range specified by the manufacturer on the nameplate 
of the unit being tested. The difference between the outlet pressure of 
the gas appliance pressure regulator and the value specified by the 
manufacturer on the nameplate of the unit being tested must not exceed 
the greater of:  10 percent of the nameplate value 
or  0.2 inches water column (in. w.c.). Obtain the 
higher heating value of the gas burned.
    3.3. Ambient Room Temperature. Maintain the ambient room temperature 
at 75 [deg]F  10 [deg]F at all times during the 
steady-state verification period, the thermal efficiency test, and the 
standby loss test (as applicable). Measure the ambient room temperature 
at 1-minute intervals during these periods. Measure the ambient room 
temperature at the vertical mid-point of the water heater and 
approximately 2 feet from the water heater jacket or enclosure. Shield 
the sensor against radiation. Calculate the average ambient room 
temperature separately for the thermal efficiency test and the standby 
loss test. During the thermal efficiency and standby loss tests, the 
ambient room temperature must not vary by more than  5.0 [deg]F at any reading from the average ambient room 
temperature.
    3.4. Test Air Temperature. During the steady-state verification 
period, the thermal efficiency test, and the standby loss test (as 
applicable), the test air temperature must not vary by more than  5 [deg]F from the ambient room temperature at any 
reading. Measure the test air temperature at 1-minute intervals during 
these periods and at a location within two feet of the air inlet of the 
water heater or the combustion air intake vent, as applicable. Shield 
the sensor against radiation. For units with multiple air inlets, 
measure the test air temperature at each air inlet, and maintain the 
specified tolerance on deviation from the ambient room temperature at 
each air inlet. For units without a dedicated air inlet, measure the 
test air

[[Page 890]]

temperature within two feet of any location on the water heater where 
combustion air is drawn.
    3.5. Maximum Air Draft. During the steady-state verification period, 
the thermal efficiency test, and the standby loss test (as applicable), 
the water heater must be located in an area protected from drafts of 
more than 50 ft/min. Prior to beginning the steady-state verification 
period and the standby loss test, measure the air draft within three 
feet of the jacket or enclosure of the water heater to ensure this 
condition is met. Ensure that no other changes that would increase the 
air draft are made to the test set-up or conditions during the conduct 
of the tests.

                          3.6. Primary Control

    3.6.1. Thermostatically-Activated Water Heaters With an Internal 
Thermostat. Before starting the thermal efficiency test and the standby 
loss test (unless the thermostat is already set before the thermal 
efficiency test), the thermostat setting must be obtained. Set the 
thermostat to ensure:
    3.6.1.1. With supply water temperature set as per section 3.1.2 of 
this appendix (i.e., 70 [deg]F  2 [deg]F) the 
water flow rate can be varied so that the outlet water temperature is 
constant at 70 [deg]F  2 [deg]F above the supply 
water temperature, while the burner is firing at full firing rate; and
    3.6.1.2. After the water supply is turned off and the thermostat 
reduces the fuel supply to a minimum, the maximum heat exchanger outlet 
water temperature (TOHX) is 140 [deg]F  
5 [deg]F.
    3.6.1.3. If the water heater includes a built-in safety mechanism 
that prevents it from achieving a heat exchanger outlet water 
temperature of 140 [deg]F  5 [deg]F, adjust the 
thermostat to its maximum setting.
    3.6.2. Flow-Activated Instantaneous Water Heaters and 
Thermostatically-Activated Instantaneous Water Heaters With an External 
Thermostat. Energize the primary control such that it is always calling 
for heating and the burner is firing at the full firing rate. Maintain 
the supply water temperature as per section 3.1.2 of this appendix 
(i.e., 70 [deg]F  2 [deg]F). Set the control so 
that the outlet water temperature (TOWT) is 140 [deg]F  5 [deg]F. If the water heater includes a built-in 
safety mechanism that prevents it from achieving a heat exchanger outlet 
water temperature of 140 [deg]F  5 [deg]F, adjust 
the control to its maximum setting.

            3.7. Units With Multiple Outlet Water Connections

    3.7.1. For each connection leaving the water heater that is required 
for the unit to achieve the rated input, the outlet water temperature 
must not differ from that of any other outlet water connection by more 
than 2 [deg]F during the steady-state verification period and thermal 
efficiency test.
    3.7.2. Determine the outlet water temperature representative for the 
entire unit at every required measurement interval by calculating the 
average of the outlet water temperatures measured at each connection 
leaving the water heater jacket or enclosure that is used during 
testing. Use the outlet water temperature representative for the entire 
unit in all calculations for the thermal efficiency and standby loss 
tests, as applicable.
    3.8. Additional Requirements for Oil-Fired Equipment.
    3.8.1. Venting Requirements. Connect a vertical length of flue pipe 
to the flue gas outlet of sufficient height so as to meet the minimum 
draft specified by the manufacturer.
    3.8.2. Oil Supply. Adjust the burner rate so that the following 
conditions are met:
    3.8.2.1. The CO2 reading is within the range specified by 
the manufacturer;
    3.8.2.2. The fuel pump pressure is within  10 
percent of manufacturer's specifications;
    3.8.2.3. If either the fuel pump pressure or range for 
CO2 reading are not specified by the manufacturer on the 
nameplate of the unit, in literature shipped with the unit, or in 
supplemental test report instructions included with a certification 
report, then a default value of 100 psig is to be used for fuel pump 
pressure, and a default range of 9-12 percent is to be used for 
CO2 reading; and
    3.8.2.4. Smoke in the flue does not exceed No. 1 smoke as measured 
by the procedure in ASTM D2156-09 (Reapproved 2013) (incorporated by 
reference, see Sec.  431.105). To determine the smoke spot number, the 
smoke measuring device shall be connected to an open-ended tube. This 
tube must project into the flue \1/4\ to \1/2\ of the pipe diameter.
    3.8.2.5. If no settings on the water heater have been changed and 
the water heater has not been turned off since the end of a previously 
run thermal efficiency (or standby loss test for thermostatically-
activated instantaneous water heaters with an internal thermostat), 
measurement of the CO2 reading and conduct of the smoke spot 
test are not required prior to beginning a test. Otherwise, measure the 
CO2 reading and determine the smoke spot number, with the 
burner firing, before beginning measurements for the steady-state 
verification period (prior to beginning the thermal efficiency test or 
standby loss test, as applicable). However, measurement of the 
CO2 reading and conduct of the smoke spot test are not 
required for the standby loss test for thermostatically-activated 
instantaneous water heaters with an external thermostat and flow-
activated instantaneous water heaters.
    3.9. Data Collection Intervals. Follow the data recording intervals 
specified in the following sections.

[[Page 891]]

    3.9.1. Steady-State Verification Period and Thermal Efficiency Test. 
For the steady-state verification period and the thermal efficiency 
test, follow the data recording intervals specified in Table 3.1 of this 
appendix. These data recording intervals must also be followed if 
conducting a steady-state verification period prior to conducting the 
standby loss test.

  Table 3.1--Data To Be Recorded Before and During the Steady-State Verification Period and Thermal Efficiency
                                                      Test
----------------------------------------------------------------------------------------------------------------
                                         Before steady-state
            Item recorded                verification period       Every 1 minute \a\        Every 10 minutes
----------------------------------------------------------------------------------------------------------------
Gas supply pressure, in w.c.........  X.......................
Gas outlet pressure, in w.c.........  X.......................
Barometric pressure, in Hg..........  X.......................
Fuel higher heating value, Btu/ft     X.......................
 \3\ (gas) or Btu/lb (oil).
Oil pump pressure, psig (oil only)..  X.......................
CO2 reading, % (oil only)...........  X \b\...................
Oil smoke spot reading (oil only)...  X \b\...................
Air draft, ft/min...................  X.......................
Time, minutes/seconds...............  ........................  X......................
Fuel weight or volume, lb (oil) or    ........................  .......................  X\c\
 ft \3\ (gas).
Supply water temperature (TSWT),      ........................  X......................
 [deg]F.
Inlet water temperature (TIWT),       ........................  X \d\..................
 [deg]F.
Outlet water temperature (TOWT),      ........................  X......................
 [deg]F.
Ambient room temperature, [deg]F....  ........................  X......................
Test air temperature, [deg]F........  ........................  X......................
Water flow rate, gpm................  ........................  X......................
----------------------------------------------------------------------------------------------------------------
Notes:
\a\ These measurements are to be recorded at the start and end of both the steady-state verification period and
  the thermal efficiency test, as well as every minute during both periods.
\b\ The smoke spot test and CO2 reading are not required prior to beginning the steady-state verification period
  if no settings on the water heater have been changed and the water heater has not been turned off since the
  end of a previously-run efficiency test (i.e., thermal efficiency or standby loss).
\c\ Fuel and electricity consumption over the course of the entire thermal efficiency test must be measured and
  used in calculation of thermal efficiency.
\d\ Only measured when a recirculating loop is used.

    3.9.2. Standby Loss Test. For the standby loss test, follow the data 
recording intervals specified in Table 3.2 of this appendix. (Follow the 
data recording intervals specified in Table 3.1 of this appendix of the 
steady-state verification period, if conducted prior to the standby loss 
test.) Additionally, the fuel and electricity consumption over the 
course of the entire test must be measured and used in calculation of 
standby loss.

 Table 3.2--Data To Be Recorded Before and During the Standby Loss Test
------------------------------------------------------------------------
         Item recorded              Before test     Every 1 minute \a\
-----------------------------------------------------------------------
Gas supply pressure, in w.c...  X.................
Gas outlet pressure, in w.c...  X.................
Barometric pressure, in Hg....  X.................
Fuel higher heating value, Btu/ X.................
 ft \3\ (gas) or Btu/lb (oil).
Oil pump pressure, psig (oil    X.................
 only).
Air draft, ft/min.............  X.................
Time, minutes/seconds.........  ..................  X.................
Heat exchanger outlet water     ..................  X.................
 temperature (TOHX), [deg]F.
Ambient room temperature,       ..................  X.................
 [deg]F.
Test air temperature, [deg]F..  ..................  X.................
Water flow rate, gpm..........  X \b\.............
Inlet water temperature         X \b\.............
 (TIWT), [deg]F.
------------------------------------------------------------------------
Notes:
\a\ These measurements are to be recorded at the start and end of the
  test, as well as every minute during the test.
\b\ The water flow rate and supply water temperature and inlet water
  temperature (if a recirculating loop is used) must be measured during
  the steady-state verification period at 1-minute intervals. After the
  steady-state verification period ends, flow rate, supply water
  temperature, and inlet water temperature (if measured) are not
  required to be measured during the standby loss test, as there is no
  flow occurring during the standby loss test.

    4. Determination of Storage Volume. Determine the storage volume by 
subtracting the tare weight, measured while the system is dry and empty, 
from the weight of the system when filled with water and dividing the 
resulting net weight of water by the density

[[Page 892]]

of water at the measured water temperature. The volume of water 
contained in the water heater must be computed in gallons.

                           5. Fuel Input Rate

    5.1. Determination of Fuel Input Rate. During the steady-state 
verification period and thermal efficiency test, as applicable, record 
the fuel consumption at 10-minute intervals. Calculate the fuel input 
rate for each 10-minute period using the equations in section 5.2 of 
this appendix. The measured fuel input rates for these 10-minute periods 
must not vary by more than  2 percent between any 
two readings. Determine the overall fuel input rate using the fuel 
consumption for the entire duration of the thermal efficiency test.
    5.2. Fuel Input Rate Calculation. To calculate the fuel input rate, 
use the following equation:
[GRAPHIC] [TIFF OMITTED] TR10NO16.022

Where:

Q = Fuel input rate, expressed in Btu/h
Qs = Total fuel flow as metered, expressed in ft\3\ for gas-
          fired equipment and lb for oil-fired equipment
Cs = Correction applied to the heating value of a gas H, when 
          it is metered at temperature and/or pressure conditions other 
          than the standard conditions for which the value of H is 
          based. Cs=1 for oil-fired equipment.
H = Higher heating value of the fuel, expressed as Btu/ft\3\ for gas-
          fired equipment and Btu/lb for oil-fired equipment.
t = Duration of measurement of fuel consumption

    6. Thermal Efficiency Test. Before beginning the steady-state 
verification period, record the applicable parameters as specified in 
section 3.9.1 of this appendix. Begin drawing water from the unit by 
opening the main supply and outlet water valve, and adjust the water 
flow rate to achieve an outlet water temperature of 70 [deg]F  2 [deg]F above supply water temperature. The thermal 
efficiency test shall be deemed complete when there is a continuous, 
one-hour-long period where the steady-state conditions specified in 
section 6.1 of this appendix have been met, as confirmed by consecutive 
readings of the relevant parameters at 1-minute intervals (except for 
fuel input rate, which is determined at 10-minute intervals, as 
specified in section 5.1 of this appendix). During the one-hour-long 
period, the water heater must fire continuously at its full firing rate 
(i.e., no modulation or cut-outs) and no settings can be changed on the 
unit being tested at any time. The first 30 minutes of the one-hour-
period where the steady-state conditions in section 6.1 of this appendix 
are met is the steady-state verification period. The final 30 minutes of 
the one-hour-period where the steady-state conditions in section 6.1 of 
this appendix are met is the thermal efficiency test. The last reading 
of the steady-state verification period must be the first reading of the 
thermal efficiency test (i.e., the thermal efficiency test starts 
immediately once the steady-state verification period ends).
    6.1. Steady-State Conditions. The following conditions must be met 
at consecutive readings taken at 1-minute intervals (except for fuel 
input rate, for which measurements are taken at 10-minute intervals) to 
verify the water heater has achieved steady-state operation during the 
steady-state verification period and the thermal efficiency test.
    6.1.1. The water flow rate must be maintained within  0.25 gallons per minute (gpm) of the initial reading at 
the start of the steady-state verification period.
    6.1.2. Outlet water temperature must be maintained at 70 [deg]F 
 2 [deg]F above supply water temperature.
    6.1.3. Fuel input rate must be maintained within  2 percent of the rated input certified by the 
manufacturer.
    6.1.4. The supply water temperature (TSWT) (or inlet 
water temperature (TIWT) if a recirculating loop is used) 
must be maintained within  0.50 [deg]F of the 
initial reading at the start of the steady-state verification period.
    6.1.5. The rise between supply (or inlet if a recirculating loop is 
used) and outlet water temperatures must be maintained within  0.50 [deg]F of its initial value taken at the start of 
the steady-state verification period for units with rated input less 
than 500,000 Btu/h, and maintained within  1.00 
[deg]F of its initial value for units with rated input greater than or 
equal to 500,000 Btu/h.
    6.2. Water Flow Measurement. Measure the total weight of water 
heated during the 30-minute thermal efficiency test with either a scale 
or a water flow meter. With either method, the error of measurement of 
weight of water heated must not exceed 1 percent of the weight of the 
total draw.
    6.3. Thermal Efficiency Calculation. Thermal efficiency must be 
calculated using data from the 30-minute thermal efficiency test.

[[Page 893]]

Calculate thermal efficiency, Et, using the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR10NO16.023

Where:

K = 1.004 Btu/lb[middot] [deg]F, the nominal specific heat of water at 
          105 [deg]F
W = Total weight of water heated, lb
[theta]1 = Average supply water temperature, expressed in 
          [deg]F
[theta]2 = Average outlet water temperature, expressed in 
          [deg]F
Q = Total fuel flow as metered, expressed in ft\3\ (gas) or lb (oil)
Cs = Correction applied to the heating value of a gas H, when 
          it is metered at temperature and/or pressure conditions other 
          than the standard conditions for which the value of H is 
          based. Cs=1 for oil-fired equipment.
H = Higher heating value of the fuel, expressed in Btu/ft\3\ (gas) or 
          Btu/lb (oil)
Ec = Electrical consumption of the water heater and, when 
          used, the test set-up recirculating pump, expressed in Btu

    7. Standby Loss Test. If the standby loss test is conducted 
immediately after a thermal efficiency test and no settings or 
conditions have been changed since the completion of the thermal 
efficiency test, then skip to section 7.2 or 7.3 of this appendix (as 
applicable). Otherwise, perform the steady-state verification in section 
7.1 of this appendix. For thermostatically-activated instantaneous water 
heaters with an internal thermostat, use section 7.2 of this appendix to 
conduct the standby loss test, and for flow-activated and/or 
thermostatically-activated instantaneous water heaters with an external 
thermostat use section 7.3 of this appendix to conduct the standby loss 
test.
    7.1. Steady-State Verification Period. For water heaters where the 
standby loss test is not conducted immediately following the thermal 
efficiency test, the steady-state verification period must be conducted 
before starting the standby loss test. Set the primary control in 
accordance with section 3.6 of this appendix, such that the primary 
control is always calling for heat and the water heater is firing 
continuously at the full firing rate (i.e., no modulation or cut-outs). 
Begin drawing water from the unit by opening the main supply and the 
outlet water valve, and adjust the water flow rate to achieve an outlet 
water temperature of 70 [deg]F  2 [deg]F above 
supply water temperature. The steady-state verification period is 
complete when there is a continuous 30-minute period where the steady-
state conditions specified in section 7.1.1 of this appendix are met, as 
confirmed by consecutive readings of the relevant parameters recorded at 
1-minute intervals (except for fuel input rate, which is determined at 
10-minute intervals, as specified in section 5.1 of this appendix).
    7.1.1. Steady-State Conditions. The following conditions must be met 
at consecutive readings taken at 1-minute intervals (except for fuel 
input rate, for which measurements are taken at 10-minute intervals) to 
verify the water heater has achieved steady-state operation during the 
steady-state verification period prior to conducting the standby loss 
test.
    7.1.1.1. The water flow rate must be maintained within  0.25 gallons per minute (gpm) of the initial reading at 
the start of the steady-state verification period;
    7.1.1.2. Fuel input rate must be maintained within  2 percent of the rated input certified by the 
manufacturer;
    7.1.1.3. The supply water temperature (TSWT) (or inlet 
water temperature (TIWT) if a recirculating loop is used) 
must be maintained within  0.50 [deg]F of the 
initial reading at the start of the steady-state verification period; 
and
    7.1.1.4. The rise between the supply (or inlet if a recirculating 
loop is used) and outlet water temperatures must be maintained within 
 0.50 [deg]F of its initial value taken at the 
start of the steady-state verification period for units with rated input 
less than 500,000 Btu/h, and maintained within  
1.00 [deg]F of its initial value for units with rated input greater than 
or equal to 500,000 Btu/h.
    7.2. Thermostatically-Activated Instantaneous Water Heaters with an 
Internal Thermostat. For water heaters that will experience cut-in based 
on a temperature-activated control that is internal to the water heater, 
use the following steps to conduct the standby loss test.
    7.2.1. Immediately after the thermal efficiency test or the steady-
state verification period (as applicable), turn off the outlet water 
valve(s) (installed as per the provisions in section 2.2 of this 
appendix), and the water pump (if applicable) simultaneously and ensure 
that there is no flow of water through the water heater.
    7.2.2. After the first cut-out following the end of the thermal 
efficiency test or steady-state verification period (as applicable),

[[Page 894]]

allow the water heater to remain in standby mode. Do not change any 
settings on the water heater at any point until measurements for the 
standby loss test are finished. Begin recording the applicable 
parameters specified in section 3.9.2 of this appendix.
    7.2.3. At the second cut-out, record the time and ambient room 
temperature, and begin measuring the fuel and electricity consumption. 
Record the initial heat exchanger outlet water temperature 
(TOHX) and initial ambient room temperature. For the 
remainder of the test, continue recording the applicable parameters 
specified in section 3.9.2 of this appendix.
    7.2.4. Stop the test after the first cut-out that occurs after 24 
hours, or at 48 hours, whichever comes first.
    7.2.5. Immediately after conclusion of the standby loss test, record 
the total fuel flow and electrical energy consumption, the final ambient 
room temperature, the duration of the standby loss test, and if the test 
ends at 48 hours without a cut-out, the final heat exchanger outlet 
temperature, or if the test ends after a cut-out, the maximum heat 
exchanger outlet temperature that occurs after the cut-out. Calculate 
the average of the recorded values of the heat exchanger outlet water 
temperature and the ambient room temperature taken at each measurement 
interval, including the initial and final values.
    7.2.6. Standby Loss Calculation. To calculate the standby loss, 
follow the steps below:
    7.2.6.1. The standby loss expressed as a percentage (per hour) of 
the heat content of the stored water above room temperature must be 
calculated using the following equation:
[GRAPHIC] [TIFF OMITTED] TR10NO16.024

Where:

[Delta]T3 = Average value of the heat exchanger outlet water 
          temperature (TOHX) minus the average value of the 
          ambient room temperature, expressed in [deg]F
[Delta]T4 = Final heat exchanger outlet water temperature 
          (TOHX) measured at the end of the test minus the 
          initial heat exchanger outlet water temperature 
          (TOHX) measured at the start of the test, expressed 
          in [deg]F
K = 8.25 Btu/gallon[middot] [deg]F, the nominal specific heat of water
Va = Volume of water contained in the water heater in gallons 
          measured in accordance with section 4 of this appendix
Et = Thermal efficiency of the water heater determined in 
          accordance with section 6 of this appendix, expressed in %
Ec = Electrical energy consumed by the water heater during 
          the duration of the test in Btu
T = Total duration of the test in hours
Cs = Correction applied to the heating value of a gas H, when 
          it is metered at temperature and/or pressure conditions other 
          than the standard conditions for which the value of H is 
          based. Cs=1 for oil-fired equipment.
Qs = Total fuel flow as metered, expressed in ft\3\ (gas) or 
          lb (oil)
H = Higher heating value of gas or oil, expressed in Btu/ft\3\ (gas) or 
          Btu/lb (oil)
S = Standby loss, the average hourly energy required to maintain the 
          stored water temperature expressed as a percentage of the 
          initial heat content of the stored water above room 
          temperature

    7.2.6.2. The standby loss expressed in Btu per hour must be 
calculated as follows:
    SL (Btu per hour) = S (% per hour) x 8.25 (Btu/gal- [deg]F) x 
Measured Volume (gal) x 70 ( [deg]F).
    Where, SL refers to the standby loss of the water heater, defined as 
the amount of energy required to maintain the stored water temperature 
expressed in Btu per hour.
    7.3. Flow-Activated and Thermostatically-Activated Instantaneous 
Water Heaters with an External Thermostat. For water heaters that are 
either flow-activated or thermostatically-activated with an external 
thermostat, use the following steps to conduct the standby loss test.
    7.3.1. Immediately after the thermal efficiency test or the steady-
state verification period (as applicable), de-energize the primary 
control to end the call for heating. If the main burners do not cut out, 
then turn off the fuel supply.
    7.3.1.1. If the unit does not have an integral pump purge 
functionality, then turn off the outlet water valve and water pump at 
this time.
    7.3.1.2. If the unit has an integral pump purge functionality, allow 
the pump purge operation to continue. After the pump purge operation is 
complete, immediately turn off the outlet water valve and water pump and 
continue recording the required parameters for the remainder of the 
test.

[[Page 895]]

                          7.3.2. Recording Data

    7.3.2.1. For units with pump purge functionality, record the initial 
heat exchanger outlet water temperature (TOHX), and ambient 
room temperature when the main burner(s) cut-out or the fuel supply is 
turned off. After the pump purge operation is complete, record the time 
as t = 0 and the initial electricity meter reading. Continue to monitor 
and record the heat exchanger outlet water temperature (TOHX) 
and time elapsed from the start of the test, and the electricity 
consumption as per the requirements in section 3.9.2 of this appendix.
    7.3.2.2. For units not equipped with pump purge functionality, begin 
recording the measurements as per the requirements of section 3.9.2 of 
this appendix when the main burner(s) cut-out or the fuel supply is 
turned off. Specifically, record the time as t = 0, and record the 
initial heat exchanger outlet water temperature (TOHX), 
ambient room temperature, and electricity meter readings. Continue to 
monitor and record the heat exchanger outlet water temperature 
(TOHX) and the time elapsed from the start of the test as per 
the requirements in section 3.9.2 of this appendix.
    7.3.3. Stopping Criteria. Stop the test when one of the following 
occurs:
    7.3.3.1. The heat exchanger outlet water temperature 
(TOHX) decreases by 35 [deg]F from its value recorded 
immediately after the main burner(s) has cut-out, and the pump purge 
operation (if applicable) is complete; or
    7.3.3.2. 24 hours have elapsed from the start of the test.
    7.3.4. At the end of the test, record the final heat exchanger 
outlet water temperature (TOHX), fuel consumed, electricity 
consumed from time t=0, and the time elapsed from the start of the test.

                     7.3.5. Standby Loss Calculation

    7.3.5.1. Once the test is complete, use the following equation to 
calculate the standby loss as a percentage (per hour) of the heat 
content of the stored water above room temperature:

[GRAPHIC] [TIFF OMITTED] TR10NO16.025

Where,
[Delta]T1 = Heat exchanger outlet water temperature 
          (TOHX) measured after the pump purge operation is 
          complete (if the unit is integrated with pump purge 
          functionality); or after the main burner(s) cut-out (if the 
          unit is not equipped with pump purge functionality) minus heat 
          exchanger outlet water temperature (TOHX) measured 
          at the end of the test, expressed in [deg]F
[Delta]T2 = Heat exchanger outlet water temperature 
          (TOHX) minus the ambient temperature, both measured 
          after the main burner(s) cut-out, at the start of the test, 
          expressed in [deg]F
K = 8.25 Btu/gallon[middot] [deg]F, the nominal specific heat of water
Va = Volume of water contained in the water heater in gallons 
          measured in accordance with section 4 of this appendix
Et = Thermal efficiency of the water heater determined in 
          accordance with section 6 of this appendix, expressed in %
Ec = Electrical energy consumed by the water heater during 
          the duration of the test in Btu
t = Total duration of the test in hours
S = Standby loss, the average hourly energy required to maintain the 
          stored water temperature expressed as a percentage of the 
          initial heat content of the stored water above room 
          temperature

    7.3.5.2. The standby loss expressed in terms of Btu per hour must be 
calculated as follows:
    SL (Btu per hour) = S (% per hour) x 8.25 (Btu/gal- [deg]F) x 
Measured Volume (gal) x 70 ( [deg]F)
    Where, SL refers to the standby loss of the water heater, defined as 
the amount of energy required to maintain the stored water temperature 
expressed in Btu per hour.

[81 FR 79332, Nov. 10, 2016]



 Sec. Appendix D to Subpart G of Part 431--Uniform Test Method for the 
  Measurement of Standby Loss of Electric Instantaneous Water Heaters 
          (Other Than Storage-Type Instantaneous Water Heaters)

    Note: Prior to November 6, 2017, manufacturers must make any 
representations with respect to the energy use or efficiency of the 
subject commercial water heating equipment in accordance with the 
results of testing pursuant to this appendix or the procedures in 10 CFR 
431.106 that were in place on January

[[Page 896]]

1, 2016. On and after November 6, 2017, manufacturers must make any 
representations with respect to energy use or efficiency of electric 
instantaneous water heaters (other than storage-type instantaneous water 
heaters) in accordance with the results of testing pursuant to this 
appendix to demonstrate compliance with the energy conservation 
standards at 10 CFR 431.110.

                               1. General

    Determine the standby loss (as applicable) in accordance with the 
following sections of this appendix.

                             2. Test Set-Up

    2.1. Placement of Water Heater. A water heater for installation on 
combustible floors must be placed on a \3/4\-inch plywood platform 
supported by three 2 x 4-inch runners. If the water heater is for 
installation on noncombustible floors, suitable noncombustible material 
must be placed on the platform. When the use of the platform for a large 
water heater is not practical, the water heater may be placed on any 
suitable flooring. A wall-mounted water heater must be mounted on a 
simulated wall section.
    2.2. Test Configuration. If the instantaneous water heater is not 
required to be tested using a recirculating loop, then set up the unit 
in accordance with Figure 2.1, 2.2, or 2.3 of this appendix (as 
applicable). If the unit is required to be tested using a recirculating 
loop, then set up the unit as per Figure 2.4 of this appendix.

[[Page 897]]

[GRAPHIC] [TIFF OMITTED] TR10NO16.026


[[Page 898]]


[GRAPHIC] [TIFF OMITTED] TR10NO16.027

    2.2.1. If the instantaneous water heater does not have any external 
piping, install an outlet water valve within 10 inches of the piping 
length of the water heater jacket or enclosure. If the instantaneous 
water heater includes external piping assembled at the manufacturer's 
premises prior to shipment, install water valves in the outlet piping 
within 5 inches of the end of the piping supplied with the unit.

[[Page 899]]

    2.2.2. If the water heater is not able to achieve an outlet water 
temperature of 70 [deg]F  2 [deg]F above the 
supply water temperature at a constant maximum electricity input rate, a 
recirculating loop with pump as shown in Figure 2.4 of this appendix 
must be used.
    2.2.2.1. If a recirculating loop with a pump is used, then ensure 
that the inlet water temperature (labeled as TIWT in Figure 
2.4 of this appendix) is greater than or equal to 70 [deg]F and less 
than or equal to 120 [deg]F at all times during the steady-state 
verification period.

                2.3. Installation of Temperature Sensors

                    2.3.1. Without Recirculating Loop

    2.3.1.1. Vertical Connections. Use Figure 2.1 (for top connections) 
and 2.2 (for bottom connections) of this appendix.
    2.3.1.2. Horizontal Connections. Use Figure 2.3 of this appendix.
    2.3.2. With Recirculating Loop. Set up the recirculating loop as 
shown in Figure 2.4 of this appendix.
    2.3.3. For water heaters with multiple outlet water connections 
leaving the water heater jacket that are required to be operated to 
achieve the rated input, temperature sensors must be installed for each 
outlet water connection leaving the water heater jacket or enclosure 
that is used during testing, in accordance with sections 2.3.1 and 2.3.2 
of this appendix.
    2.4. Piping Insulation. Insulate all the water piping external to 
the water heater jacket or enclosure, including piping that is installed 
by the manufacturer or shipped with the unit, for at least 4 ft of 
piping length from the connection at the appliance with material having 
an R-value not less than 4 [deg]F[middot]f \t2\[middot]h/Btu. Ensure 
that the insulation does not contact any appliance surface except at the 
location where the pipe connections penetrate the appliance jacket or 
enclosure.
    2.5. Temperature and Pressure Relief Valve Insulation. If the 
manufacturer has not provided a temperature and pressure relief valve, 
one shall be installed and insulated as specified in section 2.4 of this 
appendix. The temperature and pressure relief valve must be installed in 
the outlet water piping between the unit being tested and the outlet 
water valve.
    2.6. Energy Consumption. Install equipment that determines, within 
 1 percent, the quantity of electricity consumed 
by factory-supplied water heater components, and of the test loop 
recirculating pump, if used.

                           3. Test Conditions

                            3.1. Water Supply

    3.1.1. Water Supply Pressure. The pressure of the water supply must 
be maintained between 40 psi and the maximum pressure specified by the 
manufacturer of the unit being tested. The accuracy of the pressure-
measuring devices must be  1.0 psi.
    3.1.2. Water Supply Temperature. During the steady-state 
verification period, the temperature of the supply water 
(TSWT) must be maintained at 70 [deg]F  
2 [deg]F.
    .2. Electrical Supply. Maintain the electrical supply voltage to 
within  5 percent of the voltage specified on the 
water heater nameplate. If a voltage range is specified on the 
nameplate, maintain the voltage to within  5 
percent of the center of the voltage range specified on the nameplate.
    3.3. Ambient Room Temperature. Maintain the ambient room temperature 
at 75 [deg]F  10 [deg]F at all times during the 
steady-state verification period and the standby loss test. Measure the 
ambient room temperature at 1-minute intervals during these periods. 
Measure the ambient room temperature at the vertical mid-point of the 
water heater and approximately 2 feet from the water heater jacket or 
enclosure. Shield the sensor against radiation. Calculate the average 
ambient room temperature for the standby loss test. During the standby 
loss test, the ambient room temperature must not vary more than  5.0 [deg]F at any reading from the average ambient room 
temperature.
    3.4. Maximum Air Draft. During the steady-state verification period 
and the standby loss test, the water heater must be located in an area 
protected from drafts of more than 50 ft/min. Prior to beginning steady-
state verification before the standby loss test, measure the air draft 
within three feet of the jacket or enclosure of the water heater to 
ensure this condition is met. Ensure that no other changes that would 
increase the air draft are made to the test set-up or conditions during 
the conduct of the test.

                          3.5. Primary Control

    3.5.1. Thermostatically-Activated Water Heaters with an Internal 
Thermostat. Before starting the steady-state verification prior to the 
standby loss test, the thermostat setting must be obtained. Set the 
thermostat to ensure:
    3.5.1.1. With supply water temperature as per section 3.1.2 of this 
appendix (i.e., 70 [deg]F  2 [deg]F) the water 
flow rate can be varied so that the outlet water temperature is constant 
at 70 [deg]F  2 [deg]F above the supply water 
temperature, while the heating element is operating at the rated input.
    3.5.1.2. After the water supply is turned off and the thermostat 
reduces the electricity supply to the heating element to a minimum, the 
maximum heat exchanger outlet water temperature (TOHX) is 140 
[deg]F  5 [deg]F.
    3.5.1.3. If the water heater includes a built-in safety mechanism 
that prevents it from achieving a heat exchanger outlet water 
temperature of 140 [deg]F  5 [deg]F, adjust the 
thermostat to its maximum setting.

[[Page 900]]

    3.5.2. Flow-Activated Instantaneous Water Heaters and 
Thermostatically-Activated Instantaneous Water Heaters with an External 
Thermostat. Before starting the steady-state verification prior to the 
standby loss test energize the primary control such that it is always 
calling for heating and the heating element is operating at the rated 
input. Maintain the supply water temperature as per section 3.1.2 of 
this appendix (i.e., 70 [deg]F  2 [deg]F). Set the 
control so that the outlet water temperature (TOWT) is 140 
[deg]F  5 [deg]F. If the water heater includes a 
built-in safety mechanism that prevents it from achieving a heat 
exchanger outlet water temperature of 140 [deg]F  
5 [deg]F, adjust the control to its maximum setting.

          3.6. For Units With Multiple Outlet Water Connections

    3.6.1. For each connection leaving the water heater that is required 
for the unit to achieve the rated input, the outlet water temperature 
must not differ from that of any other outlet water connection by more 
than 2 [deg]F during the steady-state verification period prior to the 
standby loss test.
    3.6.2. Determine the outlet water temperature representative for the 
entire unit at every required measurement interval by calculating the 
average of the outlet water temperatures measured at each connection 
leaving the water heater jacket or enclosure that is used during 
testing. Use the outlet water temperature representative for the entire 
unit in all calculations for the standby loss test.
    3.7. Data Collection Intervals. During the standby loss test, follow 
the data recording intervals specified in Table 3.1 of this appendix. 
Also, the electricity consumption over the course of the entire test 
must be measured and used in calculation of standby loss.
    3.7.1. Steady-State Verification Period. Follow the data recording 
intervals specified in Table 3.1 of this appendix.

              Table 3.1--Data to be Recorded Before and During the Steady-State Verification Period
----------------------------------------------------------------------------------------------------------------
                                         Before steady-state
            Item recorded                verification period       Every 1 minute \a\        Every 10 minutes
----------------------------------------------------------------------------------------------------------------
Air draft, ft/min...................  X.......................
Time, minutes/seconds...............  ........................  X......................
Electricity Consumed, Btu...........  ........................  .......................  X
Supply water temperature (TSWT),      ........................  X......................
 [deg]F.
Inlet water temperature (TIWT),       ........................  X \b\..................
 [deg]F.
Outlet water temperature (TOWT),      ........................  X......................
 [deg]F.
Ambient room temperature, [deg]F....  ........................  X......................
Water flow rate, (gpm)..............  ........................  X......................
----------------------------------------------------------------------------------------------------------------
Notes:
\a\ These measurements are to be recorded at the start and end, as well as every minute of the steady-state
  verification period.
\b\ Only measured when a recirculating loop is used.

    3.7.2. Standby Loss Test. Follow the data recording intervals 
specified in Table 3.2 of this appendix. Additionally, the electricity 
consumption over the course of the entire test must be measured and used 
in calculation of standby loss.

 Table 3.2--Data to be Recorded Before and During the Standby Loss Test
------------------------------------------------------------------------
         Item recorded               Before test      Every 1 minute \a\
------------------------------------------------------------------------
Air draft, ft/min..............  X..................
Time, minutes/seconds..........  ...................  X
Heat exchanger outlet water      ...................  X
 temperature, [deg]F (TOHX).
Ambient room temperature,        ...................  X
 [deg]F.
------------------------------------------------------------------------
Note:
\a\ These measurements are to be recorded at the start and end of the
  test, as well as every minute during the test.

    4. Determination of Storage Volume. Determine the storage volume by 
subtracting the tare weight--measured while the system is dry and 
empty--from the weight of the system when filled with water and dividing 
the resulting net weight of water by the density of water at the 
measured water temperature. The volume of water contained in the water 
heater must be computed in gallons.
    5. Standby Loss Test. Perform the steady-state verification period 
in accordance with section 5.1 of this appendix. For thermostatically-
activated instantaneous water heaters with an internal thermostat, use 
section 5.2 of this appendix to conduct the standby loss test, and for 
flow-activated and/or thermostatically-activated instantaneous water 
heaters with an external thermostat (including remote thermostatically 
activated and/or flow-activated instantaneous water heaters), use 
section 5.3 of this appendix to conduct the standby loss test.
    Set the primary control in accordance with section 3.5 of this 
appendix, such that the

[[Page 901]]

primary control is always calling for heat and the water heater is 
operating at its full rated input. Begin drawing water from the unit by 
opening the main supply and the outlet water valve, and adjust the water 
flow rate to achieve an outlet water temperature of 70 [deg]F  2 [deg]F above supply water temperature. At this time, 
begin recording the parameters specified in section 3.7.1 of this 
appendix. The steady-state verification period is complete when there is 
a continuous 30-minute period where the steady-state conditions 
specified in section 5.1 of this appendix are met, as confirmed by 
consecutive readings of the relevant parameters recorded at 1-minute 
intervals (except for electric power input rate, which is determined at 
10-minute intervals, as specified in section 3.7.1 of this appendix).
    5.1. Steady-State Conditions. The following conditions must be met 
at consecutive readings taken at 1-minute intervals (except for 
electricity input rate, for which measurements are taken at 10-minute 
intervals) to verify the water heater has achieved steady-state 
operation prior to conducting the standby loss test.
    5.1.1. The water flow rate must be maintained within  0.25 gallons per minute (gpm) of the initial reading at 
the start of the steady-state verification period;
    5.1.2. Electric power input rate must be maintained within 2 percent 
of the rated input certified by the manufacturer.
    5.1.3. The supply water temperature (or inlet water temperature if a 
recirculating loop is used) must be maintained within  0.50 [deg]F of the initial reading at the start of the 
steady-state verification period; and
    5.1.4. The rise between the supply (or inlet if a recirculating loop 
is used) and outlet water temperatures is maintained within  0.50 [deg]F of its initial value taken at the start of 
the steady-state verification period for units with rated input less 
than 500,000 Btu/h, and maintained within  1.00 
[deg]F of its initial value for units with rated input greater than or 
equal to 500,000 Btu/h.
    5.2. Thermostatically-Activated Instantaneous Water Heaters with an 
Internal Thermostat. For water heaters that will experience cut-in based 
on a temperature-activated control that is internal to the water heater, 
use the following steps to conduct the standby loss test.
    5.2.1. Immediately after the steady-state verification period, turn 
off the outlet water valve(s) (installed as per the provisions in 
section 2.2 of this appendix), and the water pump (if applicable) 
simultaneously and ensure that there is no flow of water through the 
water heater.
    5.2.2. After the first cut-out following the steady-state 
verification period, allow the water heater to remain in standby mode. 
Do not change any settings on the water heater at any point until 
measurements for the standby loss test are finished. Begin recording the 
applicable parameters specified in section 3.7.2 of this appendix.
    5.2.3. At the second cut-out, record the time and ambient room 
temperature, and begin measuring the electricity consumption. Record the 
initial heat exchanger outlet water temperature (TOHX) and 
initial ambient room temperature. For the remainder of the test, 
continue recording the applicable parameters specified in section 3.7.2 
of this appendix.
    5.2.4. Stop the test after the first cut-out that occurs after 24 
hours, or at 48 hours, whichever comes first.
    5.2.5. Immediately after conclusion of the standby loss test, record 
the total electrical energy consumption, the final ambient room 
temperature, the duration of the standby loss test, and if the test ends 
at 48 hours without a cut-out, the final heat exchanger outlet 
temperature, or if the test ends after a cut-out, the maximum heat 
exchanger outlet temperature that occurs after the cut-out. Calculate 
the average of the recorded values of the heat exchanger outlet water 
temperature and of the ambient air temperatures taken at each 
measurement interval, including the initial and final values.
    5.2.6. Standby Loss Calculation. Calculate the standby loss, 
expressed as a percentage (per hour) of the heat content of the stored 
water above room temperature, using the following equation:
[GRAPHIC] [TIFF OMITTED] TR10NO16.028

Where,

[Delta]T3 = Average value of the heat exchanger outlet water 
          temperature (TOHX) minus the average value of the 
          ambient room temperature, expressed in [deg]F
[Delta]T4 = Final heat exchanger outlet water temperature 
          (TOHX) measured at the end of the test minus the 
          initial heat exchanger outlet water temperature 
          (TOHX)

[[Page 902]]

          measured at the start of the test, expressed in [deg]F
k = 8.25 Btu/gallon[middot] [deg]F, the nominal specific heat of water
Va = Volume of water contained in the water heater in gallons 
          measured in accordance with section 4 of this appendix
Et = Thermal efficiency = 98 percent for electric water 
          heaters with immersed heating elements
Ec = Electrical energy consumed by the water heater during 
          the duration of the test in Btu
t = Total duration of the test in hours
S = Standby loss, the average hourly energy required to maintain the 
          stored water temperature expressed as a percentage of the 
          initial heat content of the stored water above room 
          temperature

    5.3. Flow-Activated and Thermostatically-Activated Instantaneous 
Water Heaters with an External Thermostat. For water heaters that are 
either flow-activated or thermostatically-activated with an external 
thermostat, use the following steps to conduct the standby loss test:
    5.3.1. Immediately after the steady-state verification period, de-
energize the primary control to end the call for heating. If the heating 
elements do not cut out, then turn off the electricity supply to the 
heating elements. After the heating elements have cut-out, or the 
electricity supply to the heating elements is turned off, begin 
recording the measurements as per the requirements in section 3.7.2 of 
this appendix.
    5.3.1.1. If the unit does not have an integral pump purge 
functionality, then turn off the outlet water valve and water pump 
immediately after the main burners cut-out.
    5.3.1.2. If the unit has an integral pump purge functionality, allow 
the pump purge operation to continue. After the pump purge operation is 
complete, immediately turn off the outlet water valve and water pump and 
continue recording the required parameters for the remainder of the 
test.

                          5.3.2. Recording Data

    5.3.2.1. For units with pump purge functionality, record the initial 
heat exchanger outlet water temperature (TOHX), and ambient 
room temperature when the main heating element(s) cut-out or the 
electricity supply to the heating element(s) is turned off. After the 
pump purge operation is complete, record the time as t = 0 and the 
initial electricity meter reading. Continue to monitor and record the 
heat exchanger outlet water temperature (TOHX) and time 
elapsed from the start of the test as per the requirements in section 
3.7.2 of this appendix.
    5.3.2.2. For units not equipped with pump purge functionality, begin 
recording the measurements as per the requirements of section 3.7.2 of 
this appendix when the main heating element(s) cut-out or the 
electricity supply to the heating element(s) is turned off. 
Specifically, record the time as t = 0, and record the initial heat 
exchanger outlet water temperature (TOHX), ambient room 
temperature, and electricity meter readings. Continue to monitor and 
record the heat exchanger outlet water temperature (TOHX) and 
the time elapsed from the start of the test as per the requirements in 
section 3.7.2 of this appendix.
    5.3.3. Stopping Criteria. Stop the test when one of the following 
occurs:
    5.3.3.1. The heat exchanger outlet water temperature 
(TOHX) decreases by 35 [deg]F from its value recorded after 
the main heating element(s) have cut-out, and the pump purge operation 
(if applicable) is complete; or
    5.3.3.2. 24 hours have elapsed from the start of the test.
    5.3.4. At the end of the test, record the final heat exchanger 
outlet water temperature (TOHX), electricity consumed from 
time t = 0, and the time elapsed from the start of the test.
    5.3.5. Standby Loss Calculation. Calculate the standby loss, 
expressed as a percentage (per hour) of the heat content of the stored 
water above room temperature, using the following equation:
[GRAPHIC] [TIFF OMITTED] TR10NO16.029

Where,

[Delta]T1 = Heat exchanger outlet water temperature 
          (TOHX) measured after the pump purge operation is 
          complete (if the unit is integrated with pump purge 
          functionality); or after the main heating element(s) cut-out 
          (if the unit is not equipped with pump purge functionality) 
          minus heat exchanger outlet water temperature 
          (TOHX) measured at the end of the test, expressed 
          in [deg]F

[[Page 903]]

[Delta]T2 = Heat exchanger outlet water temperature 
          (TOHX) minus the ambient room temperature, both 
          measured after the main heating element(s) cut-out at the 
          start of the test, expressed in [deg]F
k = 8.25 Btu/gallon[middot] [deg]F, the nominal specific heat of water
Va = Volume of water contained in the water heater in gallons 
          measured in accordance with section 4 of this appendix
Et = Thermal efficiency = 98 percent for electric water 
          heaters with immersed heating elements
Ec = Electrical energy consumed by the water heater during 
          the duration of the test in Btu
t = Total duration of the test in hours
S = Standby loss, the average hourly energy required to maintain the 
          stored water temperature expressed as a percentage of the 
          initial heat content of the stored water above room 
          temperature

[81 FR 79340, Nov. 10, 2016]



 Sec. Appendix E to Subpart G of Part 431--Uniform Test Method for the 
 Measurement of Energy Efficiency of Commercial Heat Pump Water Heaters

    Note: On and after November 6, 2017, manufacturers must make any 
representations with respect to energy use or efficiency of commercial 
heat pump water heaters in accordance with the results of testing 
pursuant to this appendix.
    1. General. Determine the COPh for commercial heat pump 
water heaters (CHPWHs) using the test procedure set forth below. Certain 
sections below reference ANSI/ASHRAE 118.1-2012 (incorporated by 
reference; see Sec.  431.105). Where the instructions contained below 
differ from those contained in ANSI/ASHRAE 118.1-2012, the sections in 
this appendix control.
    2. Definitions and Symbols. The definitions and symbols are as 
listed in section 3 of ANSI/ASHRAE 118.1-2012.
    3. Instrumentation. The instruments required for the test are as 
described in section 6 of ANSI/ASHRAE 118.1-2012 (except sections 6.3, 
6.4, and 6.6).
    4. Test Set-Up. Follow the provisions described in this section to 
install the CHPWH for testing. Use the test set-up and installation 
instructions set forth for Type IV and Type V equipment (as applicable), 
defined in sections 4.4 and 4.5 of ANSI/ASHRAE 118.1-2012 and in 
accordance with the sections below:
    4.1. Test set-up and installation instructions.
    4.1.1. For air-source CHPWHs, set up the unit for testing as per 
section 7.1 and Figure 5a of ANSI/ASHRAE 118.1-2012 for CHPWHs without 
an integral storage tank, and as per Figure 6 in section 7.7.1 of ANSI/
ASHRAE 118.1-2012 for CHPWHs with an integral storage tank.
    4.1.2. For direct geo-exchange CHPWHs, set up the unit for testing 
as per section 7.1 and Figure 5b of ASNI/ASHRAE 118.1-2012 for CHPWHs 
without an integral storage tank, and as per Figure 7 in section 7.7.2 
of ANSI/ASHRAE 118.1-2012 for CHPWHs with an integral storage tank.
    4.1.3. For indoor water-source, ground-source closed-loop, and 
ground water-source CHPWHs, set up the unit for testing as per section 
7.1 and Figure 5c of ANSI/ASHRAE 118.1-2012 for CHPWHs without an 
integral storage tank, and as per Figure 8 in section 7.7.3 of ANSI/
ASHRAE 118.1-2012 for CHPWHs with an integral storage tank.
    4.2. Use the water piping instructions described in section 7.2 of 
ANSI/ASHRAE 118.1-2012 and the special instructions described in section 
7.7.6 of ANSI/ASHRAE 118.1-2012. Insulate all the pipes used for 
connections with material having a thermal resistance of not less than 4 
h[middot] [deg]F[middot]ft\2\/Btu for a total piping length of not less 
than 4 feet from the water heater connection ports.
    4.3. Install the thermocouples, including the room thermocouples, as 
per the instructions in sections 7.3.1, 7.3.2, and 7.3.3 (as applicable) 
of ANSI/ASHRAE 118.1-2012.
    4.4. Section 7.6 of ANSI/ASHRAE 118.1-2012 must be used if the 
manufacturer neither submits nor specifies a water pump applicable for 
the unit for laboratory testing.
    4.5. Install the temperature sensors at the locations specified in 
Figure 5a, 5b, 5c, 6, 7, or 8 of ANSI/ASHRAE 118.1-2012, as applicable 
as per section 4.1 of this appendix. The sensor shall be installed in 
such a manner that the sensing portion of the device is positioned 
within the water flow and as close as possible to the center line of the 
pipe. Follow the instructions provided in sections 7.7.7.1 and 7.7.7.2 
of ANSI/ASHRAE 118.1-2012 to install the temperature and flow-sensing 
instruments.
    4.6. Use the following evaporator side rating conditions as 
applicable for each category of CHPWHs. These conditions are also 
mentioned in Table 5.1 of this appendix:
    4.6.1. For air-source CHPWHs, maintain the evaporator air entering 
dry-bulb temperature at 80.6 [deg]F  1 [deg]F and 
wet-bulb temperature at 71.2 [deg]F  1 [deg]F 
throughout the conduct of the test.
    4.6.2. For direct geo-exchange CHPWHs, maintain the evaporator 
refrigerant temperature at 32 [deg]F  1 [deg]F.
    4.6.3. For indoor water-source CHPWHs, maintain the evaporator 
entering water temperature at 68 [deg]F  1 [deg]F.
    4.6.4. For ground water-source CHPWHs, maintain the evaporator 
entering water temperature at50 [deg]F  1 [deg]F.

[[Page 904]]

    4.6.5. For ground-source closed-loop CHPWHs, maintain the evaporator 
entering water temperature at 32 [deg]F  1 [deg]F.
    4.6.5.1. For ground-source closed-loop CHPWHs, the evaporator water 
must be mixed with 15-percent methanol by-weight to allow the solution 
to achieve the rating conditions required in section 4.6.5.
    4.7. The CHPWH being tested must be installed as per the 
instructions specified in sections 4.1 to 4.6 (as applicable) of this 
appendix. For all other installation requirements, use section 7.7.4 of 
ANSI/ASHRAE 118.1-2012 to resolve any issues related to installation 
(other than what is specified in this test procedure) of the equipment 
for testing. Do not make any alterations to the equipment except as 
specified in this appendix for installation, testing, and the attachment 
of required test apparatus and instruments.
    4.8. Use Table 3 of ANSI/ASHRAE 118.1-2012 for measurement 
tolerances of various parameters.
    4.9. If the CHPWH is equipped with a thermostat that is used to 
control the throttling valve of the equipment, then use the provisions 
in section 7.7.7.3 of ANSI/ASHRAE 118.1-2012 to set up the thermostat.
    4.10. For CHPWHs equipped with an integral storage tank, 
supplemental heat inputs such as electric resistance elements must be 
disabled as per section 7.7.8 of ANSI/ASHRAE 118.1-2012.
    4.11. Install instruments to measure the electricity supply to the 
equipment as specified in section 7.5 of ANSI/ASHRAE 118.1-2012.

                            5. Test Procedure

    Test all CHPWHs that are not equipped with an integral storage tank 
as per the provisions described in ANSI/ASHRAE 118.1-2012 for ``Type 
IV'' equipment as defined in section 4.4 of ANSI/ASHRAE 118.1-2012. Test 
all CHPWHs that are equipped with an integral storage tank as per the 
provisions described in ANSI/ASHRAE 118.1-2012 for ``Type V'' equipment 
as defined in section 4.5 of ANSI/ASHRAE 118.1-2012. Tests for all 
CHPWHs must follow the steps described below.
    5.1. Supply the CHPWH unit with electricity at the voltage specified 
by the manufacturer. Follow the provisions in section 8.2.1 of ANSI/
ASHRAE 118.1-2012 to maintain the electricity supply at the required 
level.
    5.1.1. For models with multiple voltages specified by the 
manufacturer, use the minimum voltage specified by the manufacturer to 
conduct the test. Maintain the voltage as per the limits specified in 
section 8.2.1 of ANSI/ASHRAE 118.1-2012. The test may be repeated at 
other voltages at the manufacturer's discretion.
    5.2. Set the condenser supply water temperature and outlet water 
temperature per the following provisions and as set forth in Table 5.1 
of this section:

       Table 5.1--Evaporator and Condenser Side Rating Conditions
------------------------------------------------------------------------
                                 Evaporator side   Condenser side rating
       Category of CHPWH        rating conditions        conditions
------------------------------------------------------------------------
Air-source commercial heat      Evaporator         Entering water
 pump water heater.              entering air       temperature: 70
                                 conditions:.       [deg]F  1
                                 [deg]F    flow rate (if
                                 1 [deg]F.          needed) to achieve
                                Wet bulb: 71.2      the outlet water
                                 [deg]F    specified in section
                                 1 [deg]F.          8.7.2 of ANSI/ASHRAE
                                                    118.1-2012.
                                                   If the required
                                                    outlet water
                                                    temperature as
                                                    specified in section
                                                    8.7.2 of ANSI/ASHRAE
                                                    118.1-2012 is not
                                                    met even after
                                                    varying the flow
                                                    rate, then change
                                                    the condenser
                                                    entering water
                                                    temperature to 110
                                                    [deg]F  1
                                                    [deg]F. Vary flow
                                                    rate to achieve the
                                                    conditions in
                                                    section 8.7.2 of
                                                    ANSI/ASHRAE 118.1-
                                                    2012.
Direct geo-exchange commercial  Evaporator         Entering water
 heat pump water heater.         refrigerant        temperature: 110
                                 temperature: 32    [deg]F  1
                                 minus   [deg]F.
                                 1 [deg]F.
Indoor water-source commercial  Evaporator         Entering water
 heat pump water heater.         entering water     temperature: 110
                                 temperature: 68    [deg]F  1
                                 minus   [deg]F.
                                 1 [deg]F.
Ground water-source commercial  Evaporator         Entering water
 heat pump water heater.         entering water     temperature: 110
                                 temperature: 50    [deg]F  1
                                 minus   [deg]F.
                                 1 [deg]F.
Ground-source closed-loop       Evaporator         Entering water
 commercial heat pump water      entering water     temperature: 110
 heater.                         temperature: 32    [deg]F  1
                                 minus   [deg]F.
                                 1 [deg]F.
------------------------------------------------------------------------

    5.2.1. For air-source CHPWHs:
    5.2.1.1. Set the supply water temperature to 70 [deg]F  1 [deg]F. The water pressure must not exceed the 
maximum working pressure rating for the equipment under test.
    5.2.1.2. Use the provisions in section 8.7.1 of ANSI/ASHRAE 118.1-
2012 to set the tank thermostat for CHPWHs equipped with an integral 
storage tank.
    5.2.1.3. Initiate operation at the rated pump flow rate and measure 
the outlet water temperature. If the outlet water temperature is 
maintained at 120 [deg]F  5 [deg]F with no 
variation in excess of 2 [deg]F over a three-minute

[[Page 905]]

period, as required by section 8.7.2 of ANSI/ASHRAE 118.1-2012, skip to 
section 5.3 of this appendix.
    5.2.1.4. If the outlet water temperature condition as specified in 
section 8.7.2 of ANSI/ASHRAE 118.1-2012 is not achieved, adjust the 
water flow rate over the range of the pump's capacity. If, after varying 
the water flow rate, the outlet water temperature is maintained at 120 
[deg]F  5 [deg]F with no variation in excess of 2 
[deg]F over a three-minute period, as required by section 8.7.2 of ANSI/
ASHRAE 118.1-2012, skip to section 5.3 of this appendix.
    5.2.1.5. If, after adjusting the water flow rate within the range 
that is achievable by the pump, the outlet water temperature condition 
as specified in section 8.7.2 of ANSI/ASHRAE 118.1-2012 is still not 
achieved, then change the supply water temperature to 110 [deg]F  1 [deg]F and repeat the instructions from sections 
5.2.1.2 and 5.2.1.4 of this appendix.
    5.2.1. 6. If the outlet water temperature condition cannot be met, 
then a test procedure waiver is necessary to specify an alternative set 
of test conditions.
    5.2.2. For direct geo-exchange, indoor water-source, ground-source 
closed-loop, and ground water-source CHPWHs use the following steps:
    5.2.2.1. Set the condenser supply water temperature to 110 [deg]F 
 1 [deg]F. The water pressure must not exceed the 
maximum working pressure rating for the equipment under test.
    5.2.2.2. Use the provisions in section 8.7.1 of ANSI/ASHRAE 118.1-
2012 to set the tank thermostat for CHPWHs equipped with an integral 
storage tank.
    5.2.2.3. Follow the steps specified in section 8.7.2 of ANSI/ASHRAE 
118.1-2012 to obtain an outlet water temperature of 120 [deg]F  5 [deg]F with no variation in excess of 2 [deg]F over a 
three-minute period.
    5.3. Conduct the test as per section 9.1.1, ``Full Input Rating,'' 
of ANSI/ASHRAE 118.1-2012. The flow rate, ``FR,'' referred to in section 
9.1.1 of ANSI/ASHRAE 118.1-2012 is the flow rate of water through the 
CHPWH expressed in gallons per minute obtained after following the steps 
in section 5.2 of this appendix. Use the evaporator side rating 
conditions specified in section 4.6 of this appendix to conduct the test 
as per section 9.1.1 of ANSI/ASHRAE 118.1-2012.
    5.4. Calculate the COPh of the CHPWH according to section 
10.3.1 of the ANSI/ASHRAE 118.1-2012 for the ``Full Capacity Test 
Method.'' For all calculations, time differences must be expressed in 
minutes.

[81 FR 79346, Nov. 10, 2016]



                Subpart H_Automatic Commercial Ice Makers

    Source: 70 FR 60415, Oct. 18, 2005, unless otherwise noted.



Sec.  431.131  Purpose and scope.

    This subpart contains energy conservation requirements for 
commercial ice makers, pursuant to Part C of Title III of the Energy 
Policy and Conservation Act, as amended, 42 U.S.C. 6311-6317.



Sec.  431.132  Definitions concerning automatic commercial ice makers.

    Automatic commercial ice maker means a factory-made assembly (not 
necessarily shipped in 1 package) that--
    (1) Consists of a condensing unit and ice-making section operating 
as an integrated unit, with means for making and harvesting ice; and
    (2) May include means for storing ice, dispensing ice, or storing 
and dispensing ice.
    Basic model means all units of a given type of covered product (or 
class thereof) manufactured by one manufacturer, having the same primary 
energy source, and which have essentially identical electrical, 
physical, and functional (or hydraulic) characteristics that affect 
energy consumption, energy efficiency, water consumption, or water 
efficiency.
    Batch type ice maker means an ice maker having alternate freezing 
and harvesting periods. This includes automatic commercial ice makers 
that produce cube type ice and other batch technologies. Referred to as 
cubes type ice maker in AHRI 810 (incorporated by reference, see Sec.  
431.133).
    Continuous type ice maker means an ice maker that continually 
freezes and harvests ice at the same time.
    Cube type ice means ice that is fairly uniform, hard, solid, usually 
clear, and generally weighs less than two ounces (60 grams) per piece, 
as distinguished from flake, crushed, or fragmented ice. Note that this 
conflicts and takes precedence over the definition established in AHRI 
810 (incorporated by reference, see Sec.  431.133), which indicates that 
``cube'' does not reference a specific size or shape.

[[Page 906]]

    Energy use means the total energy consumed, stated in kilowatt hours 
per one-hundred pounds (kWh/100 lb) of ice stated in multiples of 0.1. 
For remote condensing (but not remote compressor) automatic commercial 
ice makers and remote condensing and remote compressor automatic 
commercial ice makers, total energy consumed shall include the energy 
use of the ice-making mechanism, the compressor, and the remote 
condenser or condensing unit.
    Harvest rate means the amount of ice (at 32 degrees F) in pounds 
produced per 24 hours.
    Ice hardness factor means the latent heat capacity of harvested ice, 
in British thermal units per pound of ice (Btu/lb), divided by 144 Btu/
lb, expressed as a percent.
    Ice-making head means automatic commercial ice makers that do not 
contain integral storage bins, but are generally designed to accommodate 
a variety of bin capacities. Storage bins entail additional energy use 
not included in the reported energy consumption figures for these units.
    Maximum condenser water use means the maximum amount of water used 
by the condensing unit (if water-cooled), stated in gallons per 100 
pounds (gal/100 lb) of ice, in multiples of 1.
    Remote compressor means a type of automatic commercial ice maker in 
which the ice-making mechanism and compressor are in separate sections.
    Remote condensing means a type of automatic commercial ice maker in 
which the ice-making mechanism and condenser or condensing unit are in 
separate sections.
    Self-contained means a type of automatic commercial ice maker in 
which the ice-making mechanism and storage compartment are in an 
integral cabinet.

[70 FR 60415, Oct. 18, 2005, as amended at 71 FR 71371, Dec. 8, 2006; 76 
FR 12503, Mar. 7, 2011; 77 FR 1613, Jan. 11, 2012]

                             Test Procedures



Sec.  431.133  Materials incorporated by reference.

    (a) General. We incorporate by reference the following standards 
into Subpart H of Part 431. The material listed has been approved for 
incorporation by reference by the Director of the Federal Register in 
accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any subsequent 
amendment to a standard by the standard-setting organization will not 
affect the DOE regulations unless and until amended by DOE. Material is 
incorporated as it exists on the date of the approval and a notice of 
any change in the material will be published in the Federal Register. 
All approved material is available for inspection at the U.S. Department 
of Energy, Office of Energy Efficiency and Renewable Energy, Building 
Technologies Program, 6th Floor, 950 L'Enfant Plaza SW., Washington, DC 
20024, (202) 586-2945, or go to: http://www1.eere.energy.gov/buildings/
appliance_standards/. Also, this material is available for inspection at 
National Archives and Records Administration (NARA). For information on 
the availability of this material at NARA, call (202) 741-6030 or go to 
http://www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html. Standards can be obtained from the sources listed 
below.
    (b) AHRI. Air-Conditioning, Heating, and Refrigeration Institute, 
2111 Wilson Blvd., Suite 500, Arlington, VA 22201, (703) 524-8800, 
[email protected], or http://www.ahrinet.org.
    (1) AHRI Standard 810-2007 with Addendum 1, (``AHRI 810''), 
Performance Rating of Automatic Commercial Ice-Makers, March 2011; IBR 
approved for Sec. Sec.  431.132 and 431.134.
    (2) [Reserved]
    (c) ASHRAE. American Society of Heating, Refrigerating and Air-
Conditioning Engineers, Inc., 1791 Tullie Circle NE., Atlanta, GA 30329, 
(404) 636-8400, [email protected], or http://www.ashrae.org.
    (1) ANSI/ASHRAE Standard 29-2009, (``ANSI/ASHRAE 29''), Method of 
Testing Automatic Ice Makers, (including Errata Sheets issued April 8, 
2010 and April 21, 2010), approved January 28, 2009; IBR approved for 
Sec.  431.134.
    (2) [Reserved]

[77 FR 1613, Jan. 11, 2012]

[[Page 907]]



Sec.  431.134  Uniform test methods for the measurement of energy 
and water consumption of automatic commercial ice makers.

    (a) Scope. This section provides the test procedures for measuring, 
pursuant to EPCA, the energy use in kilowatt hours per 100 pounds of ice 
(kWh/100 lb ice) and the condenser water use in gallons per 100 pounds 
of ice (gal/100 lb ice) of automatic commercial ice makers with 
capacities between 50 and 4,000 pounds of ice per 24 hours.
    (b) Testing and Calculations. Measure the energy use and the 
condenser water use of each covered product by conducting the test 
procedures set forth in AHRI 810, section 3, ``Definitions,'' section 4, 
``Test Requirements,'' and section 5, ``Rating Requirements'' 
(incorporated by reference, see Sec.  431.133). Where AHRI 810 
references ``ASHRAE Standard 29,'' ANSI/ASHRAE Standard 29-2009 
(incorporated by reference, see Sec.  431.133) shall be used. All 
references to cube type ice makers in AHRI 810 apply to all batch type 
automatic commercial ice makers.
    (1) For batch type automatic commercial ice makers, the energy use 
and condenser water use will be reported as measured in this paragraph 
(b), including the energy and water consumption, as applicable, of the 
ice-making mechanism, the compressor, and the condenser or condensing 
unit.
    (2)(i) For continuous type automatic commercial ice makers, 
determine the energy use and condenser water use by multiplying the 
energy consumption or condenser water use as measured in this paragraph 
(b) by the ice hardness adjustment factor, determined using the 
following equation:
[GRAPHIC] [TIFF OMITTED] TR11JA12.048

    (ii) Determine the ice hardness factor by following the procedure 
specified in the ``Procedure for Determining Ice Quality'' in section 
A.3 of normative annex A of ANSI/ASHRAE 29 (incorporated by reference, 
see Sec.  431.133), except that the test shall be conducted at an 
ambient air temperature of 70 [deg]F 1 [deg]F, 
with an initial water temperature of 90 [deg]F 1 
[deg]F, and weights shall be accurate to within 2 
percent of the quantity measured. The ice hardness factor is equivalent 
to the corrected net cooling effect per pound of ice, line 19 in ANSI/
ASHRAE 29 Table A1, where the calorimeter constant used in line 18 shall 
be that determined in section A2 using seasoned, block ice.

[77 FR 1613, Jan. 11, 2012]

                      Energy Conservation Standards



Sec.  431.136  Energy conservation standards and their effective dates.

    (a) All basic models of commercial ice makers must be tested for 
performance using the applicable DOE test procedure in Sec.  431.134, be 
compliant with the applicable standards set forth in paragraphs (b) 
through (d) of this section, and be certified to the Department of 
Energy under 10 CFR part 429 of this chapter.
    (b) Each cube type automatic commercial ice maker with capacities 
between 50 and 2,500 pounds per 24-hour period manufactured on or after 
January 1, 2010 and before January 28, 2018, shall meet the following 
standard levels:

----------------------------------------------------------------------------------------------------------------
                                                                                              Maximum condenser
          Equipment type             Type of    Harvest rate lb ice/   Maximum energy use    water use \1\ gal/
                                     cooling          24 hours           kWh/100 lb ice          100 lb ice
----------------------------------------------------------------------------------------------------------------
Ice-Making Head..................  Water......                  <500  7.8-0.0055H \2\.....  200-0.022H.
Ice-Making Head..................  Water......   =500 and  5.58-0.0011H........  200-0.022H.
                                                              <1,436
Ice-Making Head..................  Water......     =1,436  4.0.................  200-0.022H.
Ice-Making Head..................  Air........                  <450  10.26-0.0086H.......  Not Applicable.
Ice-Making Head..................  Air........       =450  6.89-0.0011H........  Not Applicable.
Remote Condensing (but not remote  Air........                <1,000  8.85-0.0038H........  Not Applicable.
 compressor).

[[Page 908]]

 
Remote Condensing (but not remote  Air........     =1,000  5.1.................  Not Applicable.
 compressor).
Remote Condensing and Remote       Air........                  <934  8.85-0.0038H........  Not Applicable.
 Compressor.
Remote Condensing (but not remote  Air........       =934  5.3.................  Not Applicable.
 compressor).
Self-Contained...................  Water......                  <200  11.40-0.019H........  191-0.0315H.
Self-Contained...................  Water......       =200  7.6.................  191-0.0315H.
Self-Contained...................  Air........                  <175  18.0-0.0469H........  Not Applicable.
Self-Contained...................  Air........       =175  9.8.................  Not Applicable.
----------------------------------------------------------------------------------------------------------------
\1\ Water use is for the condenser only and does not include potable water used to make ice.
\2\ H = harvest rate in pounds per 24 hours, indicating the water or energy use for a given harvest rate.
Source: 42 U.S.C. 6313(d).

    (c) Each batch type automatic commercial ice maker with capacities 
between 50 and 4,000 pounds per 24-hour period manufactured on or after 
January 28, 2018, shall meet the following standard levels:

----------------------------------------------------------------------------------------------------------------
                                                                       Maximum energy use     Maximum condenser
          Equipment type             Type of    Harvest rate lb ice/     kilowatt-hours     water use gal/100 lb
                                     cooling          24 hours        (kWh)/100 lb ice \1\         ice \2\
----------------------------------------------------------------------------------------------------------------
Ice-Making Head..................  Water......                 < 300  6.88-0.0055H........  200-0.022H.
Ice-Making Head..................  Water......   =300 and  5.80-0.00191H.......  200-0.022H.
                                                                <850
Ice-Making Head..................  Water......   =850 and  4.42-0.00028H.......  200-0.022H.
                                                              <1,500
Ice-Making Head..................  Water......     =1,500  4.0.................  200-0.022H.
                                                          and <2,500
Ice-Making Head..................  Water......     =2,500  4.0.................  145.
                                                          and <4,000
Ice-Making Head..................  Air........                 < 300  10-0.01233H.........  NA.
Ice-Making Head..................  Air........  = 300 and  7.05-0.0025H........  NA.
                                                               < 800
Ice-Making Head..................  Air........  = 800 and  5.55-0.00063H.......  NA.
                                                             < 1,500
Ice-Making Head..................  Air........     = 1500  4.61................  NA.
                                                         and < 4,000
Remote Condensing (but not remote  Air........                 < 988  7.97-0.00342H.......  NA.
 compressor).
Remote Condensing (but not remote  Air........  = 988 and  4.59................  NA.
 compressor).                                                < 4,000
Remote Condensing and Remote       Air........                 < 930  7.97-0.00342H.......  NA.
 Compressor.
Remote Condensing and Remote       Air........  = 930 and  4.79................  NA.
 Compressor.                                                 < 4,000
Self-Contained...................  Water......                 < 200  9.5-0.019H..........  191-0.0315H.
Self-Contained...................  Water......  = 200 and  5.7.................  191-0.0315H.
                                                             < 2,500
Self-Contained...................  Water......    = 2,500  5.7.................  112.
                                                         and < 4,000
Self-Contained...................  Air........                 < 110  14.79-0.0469H.......  NA.
Self-Contained...................  Air........  = 110 and  12.42-0.02533H......  NA.
                                                               < 200
Self-Contained...................  Air........  = 200 and  7.35................  NA.
                                                             < 4,000
----------------------------------------------------------------------------------------------------------------
\1\ H = harvest rate in pounds per 24 hours, indicating the water or energy use for a given harvest rate.
  Source: 42 U.S.C. 6313(d).
\2\ Water use is for the condenser only and does not include potable water used to make ice.

    (d) Each continuous type automatic commercial ice maker with 
capacities between 50 and 4,000 pounds per 24-hour period manufactured 
on or after January 28, 2018, shall meet the following standard levels:

----------------------------------------------------------------------------------------------------------------
                                                                                              Maximum condenser
          Equipment type             Type of    Harvest rate lb ice/   Maximum energy use   water use gal/100 lb
                                     cooling          24 hours         kWh/100 lb ice \1\          ice \2\
----------------------------------------------------------------------------------------------------------------
Ice-Making Head..................  Water......                  <801  6.48-0.00267H.......  180-0.0198H.
Ice-Making Head..................  Water......   =801 and  4.34................  180-0.0198H.
                                                              <2,500
Ice-Making Head..................  Water......     =2,500  4.34................  130.5.
                                                          and <4,000
Ice-Making Head..................  Air........                  <310  9.19-0.00629H.......  NA.
Ice-Making Head..................  Air........   =310 and  8.23-0.0032H........  NA.
                                                                <820
Ice-Making Head..................  Air........   =820 and  5.61................  NA.
                                                              <4,000
Remote Condensing (but not remote  Air........                  <800  9.7-0.0058H.........  NA.
 compressor).
Remote Condensing (but not remote  Air........   =800 and  5.06................  NA.
 compressor).                                                 <4,000
Remote Condensing and Remote       Air........                  <800  9.9-0.0058H.........  NA.
 Compressor.
                                                 =800 and  5.26................  NA.
                                                              <4,000
Self-Contained...................  Water......                  <900  7.6-0.00302H........  153-0.0252H.
Self-Contained...................  Water......   =900 and  4.88................  153-0.0252H.
                                                              <2,500
Self-Contained...................  Water......     =2,500  4.88................  90.
                                                          and <4,000
Self-Contained...................  Air........                  <200  14.22-0.03H.........  NA.
Self-Contained...................  Air........   =200 and  9.47-0.00624H.......  NA.
                                                                <700

[[Page 909]]

 
Self-Contained...................  Air........   =700 and  5.1.................  NA.
                                                              <4,000
----------------------------------------------------------------------------------------------------------------
\1\ H = harvest rate in pounds per 24 hours, indicating the water or energy use for a given harvest rate.
  Source: 42 U.S.C. 6313(d).
\2\ Water use is for the condenser only and does not include potable water used to make ice.


[80 FR 4754, Jan. 28, 2015]



                  Subpart I_Commercial Clothes Washers

    Source: 70 FR 60416, Oct. 18, 2005, unless otherwise noted.



Sec.  431.151  Purpose and scope.

    This subpart contains energy conservation requirements for 
commercial clothes washers, pursuant to Part C of Title III of the 
Energy Policy and Conservation Act, as amended, 42 U.S.C. 6311-6317.



Sec.  431.152  Definitions concerning commercial clothes washers.

    Basic model means all units of a given type of covered product (or 
class thereof) manufactured by one manufacturer, having the same primary 
energy source, and which have essentially identical electrical, 
physical, and functional (or hydraulic) characteristics that affect 
energy consumption, energy efficiency, water consumption, or water 
efficiency.
    Commercial clothes washer means a soft-mounted front-loading or 
soft-mounted top-loading clothes washer that--
    (1) Has a clothes container compartment that--
    (i) For horizontal-axis clothes washers, is not more than 3.5 cubic 
feet; and
    (ii) For vertical-axis clothes washers, is not more than 4.0 cubic 
feet; and
    (2) Is designed for use in--
    (i) Applications in which the occupants of more than one household 
will be using the clothes washer, such as multi-family housing common 
areas and coin laundries; or
    (ii) Other commercial applications.
    IWF means integrated water factor, in gallons per cubic feet per 
cycle (gal/cu ft/cycle), as determined in section 4.2.13 of Appendix J2 
to subpart B of 10 CFR part 430.
    MEF means modified energy factor, in cubic feet per kilowatt hour 
per cycle (cu ft/kWh/cycle), as determined in section 4.4 of Appendix J1 
to subpart B of part 430.
    MEFJ2 means modified energy factor, in cu ft/kWh/cycle, as 
determined in section 4.5 of Appendix J2 to subpart B of part 430.
    WF means water factor, in gal/cu ft/cycle, as determined in section 
4.2.3 of Appendix J1 to subpart B of part 430.

[70 FR 60416, Oct. 18, 2005, as amended at 76 FR 12504, Mar. 7, 2011; 79 
FR 71630, Dec. 3, 2014]

                             Test Procedures



Sec.  431.154  Test procedures.

    The test procedures for clothes washers in appendix J1 to subpart B 
of part 430 of this chapter must be used to test commercial clothes 
washers to determine compliance with the energy conservation standards 
at Sec.  431.156(a). The test procedures for clothes washers in appendix 
J2 to subpart B of part 430 of this chapter must be used to determine 
compliance with the energy conservation standards at Sec.  431.156(b).

[81 FR 20529, Apr. 8, 2016]

                      Energy Conservation Standards



Sec.  431.156  Energy and water conservation standards and effective dates.

    (a) Each commercial clothes washer manufactured on or after January 
8, 2013, and before January 1, 2018, shall have a modified energy factor 
no less than and a water factor no greater than:

------------------------------------------------------------------------
                                     Modified energy      Water factor
          Equipment class           factor (MEF), cu.    (WF), gal./cu.
                                      ft./kWh/cycle        ft./cycle
------------------------------------------------------------------------
Top-Loading.......................               1.60                8.5
Front-Loading.....................               2.00                5.5
------------------------------------------------------------------------


[[Page 910]]

    (b) Each commercial clothes washer manufactured on or after January 
1, 2018 shall have a modified energy factor no less than and an 
integrated water factor no greater than:

------------------------------------------------------------------------
                                                        Integrated Water
                                     Modified energy     factor (IWF),
          Equipment class            factor (MEFJ2),     gal./cu. ft./
                                    cu. ft./kWh/cycle        cycle
------------------------------------------------------------------------
Top-Loading.......................               1.35                8.8
Front-Loading.....................               2.00                4.1
------------------------------------------------------------------------


[76 FR 69123, Nov. 8, 2011, as amended at 79 FR 74541, Dec. 15, 2014; 81 
FR 20529, Apr. 8, 2016]

Subpart J [Reserved]



Sec. Sec.  431.171-431.176  [Reserved]



                   Subpart K_Distribution Transformers

    Source: 70 FR 60416, Oct. 18, 2005, unless otherwise noted.



Sec.  431.191  Purpose and scope.

    This subpart contains energy conservation requirements for 
distribution transformers, pursuant to Parts B and C of Title III of the 
Energy Policy and Conservation Act, as amended, 42 U.S.C. 6291-6317.

[71 FR 24995, Apr. 27, 2006]



Sec.  431.192  Definitions.

    The following definitions apply for purposes of this subpart:
    Autotransformer means a transformer that:
    (1) Has one physical winding that consists of a series winding part 
and a common winding part;
    (2) Has no isolation between its primary and secondary circuits; and
    (3) During step-down operation, has a primary voltage that is equal 
to the total of the series and common winding voltages, and a secondary 
voltage that is equal to the common winding voltage.
    Basic model means a group of models of distribution transformers 
manufactured by a single manufacturer, that have the same insulation 
type (i.e., liquid-immersed or dry-type), have the same number of phases 
(i.e., single or three), have the same standard kVA rating, and do not 
have any differentiating electrical, physical or functional features 
that affect energy consumption. Differences in voltage and differences 
in basic impulse insulation level (BIL) rating are examples of 
differentiating electrical features that affect energy consumption.
    Distribution transformer means a transformer that--
    (1) Has an input voltage of 34.5 kV or less;
    (2) Has an output voltage of 600 V or less;
    (3) Is rated for operation at a frequency of 60 Hz; and
    (4) Has a capacity of 10 kVA to 2500 kVA for liquid-immersed units 
and 15 kVA to 2500 kVA for dry-type units; but
    (5) The term ``distribution transformer'' does not include a 
transformer that is an--
    (i) Autotransformer;
    (ii) Drive (isolation) transformer;
    (iii) Grounding transformer;
    (iv) Machine-tool (control) transformer;
    (v) Nonventilated transformer;
    (vi) Rectifier transformer;
    (vii) Regulating transformer;
    (viii) Sealed transformer;
    (ix) Special-impedance transformer;
    (x) Testing transformer;
    (xi) Transformer with tap range of 20 percent or more;
    (xii) Uninterruptible power supply transformer; or
    (xiii) Welding transformer.
    Drive (isolation) transformer means a transformer that:
    (1) Isolates an electric motor from the line;
    (2) Accommodates the added loads of drive-created harmonics; and
    (3) Is designed to withstand the additional mechanical stresses 
resulting from an alternating current adjustable frequency motor drive 
or a direct current motor drive.
    Efficiency means the ratio of the useful power output to the total 
power input.
    Excitation current or no-load current means the current that flows 
in any winding used to excite the transformer when all other windings 
are open-circuited.
    Grounding transformer means a three-phase transformer intended 
primarily

[[Page 911]]

to provide a neutral point for system-grounding purposes, either by 
means of:
    (1) A grounded wye primary winding and a delta secondary winding; or
    (2) A transformer with its primary winding in a zig-zag winding 
arrangement, and with no secondary winding.
    Liquid-immersed distribution transformer means a distribution 
transformer in which the core and coil assembly is immersed in an 
insulating liquid.
    Load loss means, for a distribution transformer, those losses 
incident to a specified load carried by the transformer, including 
losses in the windings as well as stray losses in the conducting parts 
of the transformer.
    Low-voltage dry-type distribution transformer means a distribution 
transformer that--
    (1) Has an input voltage of 600 volts or less;
    (2) Is air-cooled; and
    (3) Does not use oil as a coolant.
    Machine-tool (control) transformer means a transformer that is 
equipped with a fuse or other over-current protection device, and is 
generally used for the operation of a solenoid, contactor, relay, 
portable tool, or localized lighting.
    Medium-voltage dry-type distribution transformer means a 
distribution transformer in which the core and coil assembly is immersed 
in a gaseous or dry-compound insulating medium, and which has a rated 
primary voltage between 601 V and 34.5 kV.
    Mining distribution transformer means a medium-voltage dry-type 
distribution transformer that is built only for installation in an 
underground mine or surface mine, inside equipment for use in an 
underground mine or surface mine, on-board equipment for use in an 
underground mine or surface mine, or for equipment used for digging, 
drilling, or tunneling underground or above ground, and that has a 
nameplate which identifies the transformer as being for this use only.
    No-load loss means those losses that are incident to the excitation 
of the transformer.
    Nonventilated transformer means a transformer constructed so as to 
prevent external air circulation through the coils of the transformer 
while operating at zero gauge pressure.
    Phase angle means the angle between two phasors, where the two 
phasors represent progressions of periodic waves of either:
    (1) Two voltages;
    (2) Two currents; or
    (3) A voltage and a current of an alternating current circuit.
    Phase angle correction means the adjustment (correction) of 
measurement data to negate the effects of phase angle error.
    Phase angle error means incorrect displacement of the phase angle, 
introduced by the components of the test equipment.
    Rectifier transformer means a transformer that operates at the 
fundamental frequency of an alternating-current system and that is 
designed to have one or more output windings connected to a rectifier.
    Reference temperature means 20 [deg]C for no-load loss, 55 [deg]C 
for load loss of liquid-immersed distribution transformers at 50 percent 
load, and 75 [deg]C for load loss of both low-voltage and medium-voltage 
dry-type distribution transformers, at 35 percent load and 50 percent 
load, respectively. It is the temperature at which the transformer 
losses must be determined, and to which such losses must be corrected if 
testing is done at a different point. (These temperatures are specified 
in the test method in appendix A to this part.)
    Regulating transformer means a transformer that varies the voltage, 
the phase angle, or both voltage and phase angle, of an output circuit 
and compensates for fluctuation of load and input voltage, phase angle 
or both voltage and phase angle.
    Sealed transformer means a transformer designed to remain 
hermetically sealed under specified conditions of temperature and 
pressure.
    Special-impedance transformer means any transformer built to operate 
at an impedance outside of the normal impedance range for that 
transformer's kVA rating. The normal impedance range for each kVA rating 
for liquid-immersed and dry-type transformers is shown in Tables 1 and 
2, respectively.

[[Page 912]]



                        Table 1--Normal Impedance Ranges for Liquid-Immersed Transformers
----------------------------------------------------------------------------------------------------------------
                            Single-phase transformers                                Three-phase transformers
----------------------------------------------------------------------------------------------------------------
                               kVA                                 Impedance (%)        kVA        Impedance (%)
----------------------------------------------------------------------------------------------------------------
10..............................................................         1.0-4.5              15         1.0-4.5
15..............................................................         1.0-4.5              30         1.0-4.5
25..............................................................         1.0-4.5              45         1.0-4.5
37.5............................................................         1.0-4.5              75         1.0-5.0
50..............................................................         1.5-4.5           112.5         1.2-6.0
75..............................................................         1.5-4.5             150         1.2-6.0
100.............................................................         1.5-4.5             225         1.2-6.0
167.............................................................         1.5-4.5             300         1.2-6.0
250.............................................................         1.5-6.0             500         1.5-7.0
333.............................................................         1.5-6.0             750         5.0-7.5
500.............................................................         1.5-7.0            1000         5.0-7.5
667.............................................................         5.0-7.5            1500         5.0-7.5
833.............................................................         5.0-7.5            2000         5.0-7.5
                                                                                            2500         5.0-7.5
----------------------------------------------------------------------------------------------------------------


                           Table 2--Normal Impedance Ranges for Dry-Type Transformers
----------------------------------------------------------------------------------------------------------------
                            Single-phase transformers                                Three-phase transformers
----------------------------------------------------------------------------------------------------------------
                               kVA                                 Impedance (%)        kVA        Impedance (%)
----------------------------------------------------------------------------------------------------------------
15..............................................................         1.5-6.0              15         1.5-6.0
25..............................................................         1.5-6.0              30         1.5-6.0
37.5............................................................         1.5-6.0              45         1.5-6.0
50..............................................................         1.5-6.0              75         1.5-6.0
75..............................................................         2.0-7.0           112.5         1.5-6.0
100.............................................................         2.0-7.0             150         1.5-6.0
167.............................................................         2.5-8.0             225         3.0-7.0
250.............................................................         3.5-8.0             300         3.0-7.0
333.............................................................         3.5-8.0             500         4.5-8.0
500.............................................................         3.5-8.0             750         5.0-8.0
667.............................................................         5.0-8.0            1000         5.0-8.0
833.............................................................         5.0-8.0            1500         5.0-8.0
                                                                                            2000         5.0-8.0
                                                                                            2500         5.0-8.0
----------------------------------------------------------------------------------------------------------------

    Temperature correction means the mathematical correction(s) of 
measurement data, obtained when a transformer is tested at a temperature 
that is different from the reference temperature, to the value(s) that 
would have been obtained if the transformer had been tested at the 
reference temperature.
    Test current means the current of the electrical power supplied to 
the transformer under test.
    Test frequency means the frequency of the electrical power supplied 
to the transformer under test.
    Test voltage means the voltage of the electrical power supplied to 
the transformer under test.
    Testing transformer means a transformer used in a circuit to produce 
a specific voltage or current for the purpose of testing electrical 
equipment.
    Total loss means the sum of the no-load loss and the load loss for a 
transformer.
    Transformer means a device consisting of 2 or more coils of 
insulated wire that transfers alternating current by electromagnetic 
induction from 1 coil to another to change the original voltage or 
current value.
    Transformer with tap range of 20 percent or more means a transformer 
with multiple voltage taps, the highest of which equals at least 20 
percent more than the lowest, computed based on the sum of the 
deviations of the voltages of these taps from the transformer's nominal 
voltage.
    Uninterruptible power supply transformer means a transformer that is 
used within an uninterruptible power system, which in turn supplies 
power to loads that are sensitive to power failure, power sags, over 
voltage, switching transients, line noise, and other power quality 
factors.
    Waveform correction means the adjustment(s) (mathematical 
correction(s)) of measurement data obtained with a test voltage that is 
non-sinusoidal, to a value(s) that would have been obtained with a 
sinusoidal voltage.
    Welding transformer means a transformer designed for use in arc 
welding equipment or resistance welding equipment.

[70 FR 60416, Oct. 18, 2005, as amended at 71 FR 24995, Apr. 27, 2006; 
71 FR 60662, Oct. 16, 2006; 72 FR 58239, Oct. 12, 2007; 78 FR 23433, 
Apr. 18, 2013]

                             Test Procedures



Sec.  431.193  Test procedures for measuring energy consumption 
of distribution transformers.

    The test procedures for measuring the energy efficiency of 
distribution transformers for purposes of EPCA are specified in appendix 
A to this subpart.

[71 FR 24997, Apr. 27, 2006]

                      Energy Conservation Standards



Sec.  431.196  Energy conservation standards and their effective dates.

    (a) Low-Voltage Dry-Type Distribution Transformers. (1) The 
efficiency of a low-voltage, dry-type distribution transformer 
manufactured on or after

[[Page 913]]

January 1, 2007, but before January 1, 2016, shall be no less than that 
required for the applicable kVA rating in the table below. Low-voltage 
dry-type distribution transformers with kVA ratings not appearing in the 
table shall have their minimum efficiency level determined by linear 
interpolation of the kVA and efficiency values immediately above and 
below that kVA rating.

----------------------------------------------------------------------------------------------------------------
                         Single-phase                                              Three-phase
----------------------------------------------------------------------------------------------------------------
                     kVA                              %                        kVA                       %
----------------------------------------------------------------------------------------------------------------
15...........................................            97.7   15..............................            97.0
25...........................................            98.0   30..............................            97.5
37.5.........................................            98.2   45..............................            97.7
50...........................................            98.3   75..............................            98.0
75...........................................            98.5   112.5...........................            98.2
100..........................................            98.6   150.............................            98.3
167..........................................            98.7   225.............................            98.5
250..........................................            98.8   300.............................            98.6
333..........................................            98.9   500.............................            98.7
                                                                750.............................            98.8
                                                                1000............................            98.9
----------------------------------------------------------------------------------------------------------------
Note: All efficiency values are at 35 percent of nameplate-rated load, determined according to the DOE Test
  Method for Measuring the Energy Consumption of Distribution Transformers under Appendix A to Subpart K of 10
  CFR part 431.

    (2) The efficiency of a low-voltage dry-type distribution 
transformer manufactured on or after January 1, 2016, shall be no less 
than that required for their kVA rating in the table below. Low-voltage 
dry-type distribution transformers with kVA ratings not appearing in the 
table shall have their minimum efficiency level determined by linear 
interpolation of the kVA and efficiency values immediately above and 
below that kVA rating.

----------------------------------------------------------------------------------------------------------------
                         Single-phase                                              Three-phase
----------------------------------------------------------------------------------------------------------------
                     kVA                        Efficiency (%)                 kVA                Efficiency (%)
----------------------------------------------------------------------------------------------------------------
15...........................................           97.70   15..............................           97.89
25...........................................           98.00   30..............................           98.23
37.5.........................................           98.20   45..............................           98.40
50...........................................           98.30   75..............................           98.60
75...........................................           98.50   112.5...........................           98.74
100..........................................           98.60   150.............................           98.83
167..........................................           98.70   225.............................           98.94
250..........................................           98.80   300.............................           99.02
333..........................................           98.90   500.............................           99.14
                                                                750.............................           99.23
                                                                1000............................           99.28
----------------------------------------------------------------------------------------------------------------
Note: All efficiency values are at 35 percent of nameplate-rated load, determined according to the DOE Test
  Method for Measuring the Energy Consumption of Distribution Transformers under Appendix A to Subpart K of 10
  CFR part 431.

    (b) Liquid-Immersed Distribution Transformers. (1) The efficiency of 
a liquid-immersed distribution transformer manufactured on or after 
January 1, 2010, but before January 1, 2016, shall be no less than that 
required for their kVA rating in the table below. Liquid-immersed 
distribution transformers with kVA ratings not appearing in the table 
shall have their minimum efficiency level determined by linear 
interpolation of the kVA and efficiency values immediately above and 
below that kVA rating.

----------------------------------------------------------------------------------------------------------------
                         Single-phase                                              Three-phase
----------------------------------------------------------------------------------------------------------------
                     kVA                        Efficiency (%)                 kVA                Efficiency (%)
----------------------------------------------------------------------------------------------------------------
10...........................................           98.62   15..............................           98.36
15...........................................           98.76   30..............................           98.62
25...........................................           98.91   45..............................           98.76
37.5.........................................           99.01   75..............................           98.91
50...........................................           99.08   112.5...........................           99.01
75...........................................           99.17   150.............................           99.08
100..........................................           99.23   225.............................           99.17
167..........................................           99.25   300.............................           99.23
250..........................................           99.32   500.............................           99.25
333..........................................           99.36   750.............................           99.32
500..........................................           99.42   1000............................           99.36
667..........................................           99.46   1500............................           99.42
833..........................................           99.49   2000............................           99.46
                                                                2500............................           99.49
----------------------------------------------------------------------------------------------------------------
Note: All efficiency values are at 50 percent of nameplate-rated load, determined according to the DOE Test--
  Procedure, Appendix A to Subpart K of 10 CFR part 431.

    (2) The efficiency of a liquid-immersed distribution transformer 
manufactured on or after January 1, 2016, shall be no less than that 
required for their kVA rating in the table below. Liquid-immersed 
distribution transformers with kVA ratings not appearing in the table 
shall have their minimum efficiency level determined by linear 
interpolation of the kVA and efficiency values immediately above and 
below that kVA rating.

----------------------------------------------------------------------------------------------------------------
                         Single-phase                                              Three-phase
----------------------------------------------------------------------------------------------------------------
                     kVA                        Efficiency (%)                 kVA                Efficiency (%)
----------------------------------------------------------------------------------------------------------------
10...........................................           98.70   15..............................           98.65
15...........................................           98.82   30..............................           98.83
25...........................................           98.95   45..............................           98.92
37.5.........................................           99.05   75..............................           99.03
50...........................................           99.11   112.5...........................           99.11
75...........................................           99.19   150.............................           99.16
100..........................................           99.25   225.............................           99.23
167..........................................           99.33   300.............................           99.27
250..........................................           99.39   500.............................           99.35
333..........................................           99.43   750.............................           99.40
500..........................................           99.49   1000............................           99.43
667..........................................           99.52   1500............................           99.48
833..........................................           99.55   2000............................           99.51
                                                                2500............................           99.53
----------------------------------------------------------------------------------------------------------------
Note: All efficiency values are at 50 percent of nameplate-rated load, determined according to the DOE Test
  Method for Measuring the Energy Consumption of Distribution Transformers under Appendix A to Subpart K of 10
  CFR part 431.


[[Page 914]]

    (c) Medium-Voltage Dry-Type Distribution Transformers. (1) The 
efficiency of a medium-voltage dry-type distribution transformer 
manufactured on or after January 1, 2010, but before January 1, 2016, 
shall be no less than that required for their kVA and BIL rating in the 
table below. Medium-voltage dry-type distribution transformers with kVA 
ratings not appearing in the table shall have their minimum efficiency 
level determined by linear interpolation of the kVA and efficiency 
values immediately above and below that kVA rating.

--------------------------------------------------------------------------------------------------------------------------------------------------------
                                   Single-phase                                                                  Three-phase
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                         BIL*                                                                   BIL
                                  -------------------------------------------------                      -----------------------------------------------
                                      20-45 kV        46-95 kV      =96                           20-45 kV        46-95 kV     =96
               kVA                --------------------------------        kV                 kVA         --------------------------------       kV
                                                                  -----------------                                                      ---------------
                                   Efficiency (%)  Efficiency (%)   Efficiency (%)                        Efficiency (%)  Efficiency (%)  Efficiency (%)
--------------------------------------------------------------------------------------------------------------------------------------------------------
15...............................           98.10           97.86  ...............  15..................           97.50           97.18
25...............................           98.33           98.12  ...............  30..................           97.90           97.63
37.5.............................           98.49           98.30  ...............  45..................           98.10           97.86
50...............................           98.60           98.42  ...............  75..................           98.33           98.12
75...............................           98.73           98.57           98.53   112.5...............           98.49           98.30
100..............................           98.82           98.67           98.63   150.................           98.60           98.42
167..............................           98.96           98.83           98.80   225.................           98.73           98.57           98.53
250..............................           99.07           98.95           98.91   300.................           98.82           98.67           98.63
333..............................           99.14           99.03           98.99   500.................           98.96           98.83           98.80
500..............................           99.22           99.12           99.09   750.................           99.07           98.95           98.91
667..............................           99.27           99.18           99.15   1000................           99.14           99.03           98.99
833..............................           99.31           99.23           99.20   1500................           99.22           99.12           99.09
                                   ..............  ..............  ...............  2000................           99.27           99.18           99.15
                                   ..............  ..............  ...............  2500................           99.31           99.23           99.20
--------------------------------------------------------------------------------------------------------------------------------------------------------
* BIL means basic impulse insulation level.
Note: All efficiency values are at 50 percent of nameplate rated load, determined according to the DOE Test Method for Measuring the Energy Consumption
  of Distribution Transformers under Appendix A to Subpart K of 10 CFR part 431.

    (2) The efficiency of a medium- voltage dry-type distribution 
transformer manufactured on or after January 1, 2016, shall be no less 
than that required for their kVA and BIL rating in the table below. 
Medium-voltage dry-type distribution transformers with kVA ratings not 
appearing in the table shall have their minimum efficiency level 
determined by linear interpolation of the kVA and efficiency values 
immediately above and below that kVA rating.

--------------------------------------------------------------------------------------------------------------------------------------------------------
                                   Single-phase                                                                  Three-phase
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                         BIL*                                                                   BIL
                                  -------------------------------------------------                      -----------------------------------------------
                                      20-45 kV        46-95 kV      =96                           20-45 kV        46-95 kV     =96
               kVA                --------------------------------        kV                 kVA         --------------------------------       kV
                                                                  -----------------                                                      ---------------
                                   Efficiency (%)  Efficiency (%)   Efficiency (%)                        Efficiency (%)  Efficiency (%)  Efficiency (%)
--------------------------------------------------------------------------------------------------------------------------------------------------------
15...............................           98.10           97.86  ...............  15..................           97.50           97.18
25...............................           98.33           98.12  ...............  30..................           97.90           97.63
37.5.............................           98.49           98.30  ...............  45..................           98.10           97.86
50...............................           98.60           98.42  ...............  75..................           98.33           98.13
75...............................           98.73           98.57           98.53   112.5...............           98.52           98.36
100..............................           98.82           98.67           98.63   150.................           98.65           98.51
167..............................           98.96           98.83           98.80   225.................           98.82           98.69           98.57
250..............................           99.07           98.95           98.91   300.................           98.93           98.81           98.69
333..............................           99.14           99.03           98.99   500.................           99.09           98.99           98.89
500..............................           99.22           99.12           99.09   750.................           99.21           99.12           99.02
667..............................           99.27           99.18           99.15   1000................           99.28           99.20           99.11
833..............................           99.31           99.23           99.20   1500................           99.37           99.30           99.21
                                                                                    2000................           99.43           99.36           99.28
                                                                                    2500................           99.47           99.41           99.33
--------------------------------------------------------------------------------------------------------------------------------------------------------
* BIL means basic impulse insulation level.
Note: All efficiency values are at 50 percent of nameplate rated load, determined according to the DOE Test Method for Measuring the Energy Consumption
  of Distribution Transformers under Appendix A to Subpart K of 10 CFR part 431.


[[Page 915]]

    (d) Mining Distribution Transformers. [Reserved]

[78 FR 23433, Apr. 18, 2013]

                       Compliance and Enforcement

    Source: 71 FR 24997, Apr. 27, 2006, unless otherwise noted.



   Sec. Appendix A to Subpart K of Part 431--Uniform Test Method for 
      Measuring the Energy Consumption of Distribution Transformers

                            1.0 Definitions.

    The definitions contained in Sec. Sec.  431.2 and 431.192 are 
applicable to this appendix A.

                       2.0 Accuracy Requirements.

    (a) Equipment and methods for loss measurement shall be sufficiently 
accurate that measurement error will be limited to the values shown in 
Table 2.1.

 Table 2.1--Test System Accuracy Requirements for Each Measured Quantity
------------------------------------------------------------------------
             Measured quantity                  Test system accuracy
------------------------------------------------------------------------
Power Losses..............................  3.0%
Voltage...................................  0.5%
Current...................................  0.5%
Resistance................................  0.5%
Temperature...............................  1.0
                                             [deg]C
------------------------------------------------------------------------

    (b) Only instrument transformers meeting the 0.3 metering accuracy 
class, or better, may be used under this test method.

                       3.0 Resistance Measurements

    3.1 General Considerations
    (a) Measure or establish the winding temperature at the time of the 
winding resistance measurement.
    (b) Measure the direct current resistance (Rdc) of 
transformer windings by one of the methods outlined in section 3.3. The 
methods of section 3.5 must be used to correct load losses to the 
applicable reference temperature from the temperature at which they are 
measured. Observe precautions while taking measurements, such as those 
in section 3.4, in order to maintain measurement uncertainty limits 
specified in Table 2.1.
    3.2 Temperature Determination of Windings and Pre-conditions for 
Resistance Measurement.
    Make temperature measurements in protected areas where the air 
temperature is stable and there are no drafts. Determine the winding 
temperature (Tdc) for liquid-immersed and dry-type 
distribution transformers by the methods described in sections 3.2.1 and 
3.2.2, respectively.
    3.2.1 Liquid-Immersed Distribution Transformers.

                             3.2.1.1 Methods

    Record the winding temperature (Tdc) of liquid-immersed 
transformers as the average of either of the following:
    (a) The measurements from two temperature sensing devices (for 
example, thermocouples) applied to the outside of the transformer tank 
and thermally insulated from the surrounding environment, with one 
located at the level of the oil and the other located near the tank 
bottom or at the lower radiator header if applicable; or
    (b) The measurements from two temperature sensing devices immersed 
in the transformer liquid, with one located directly above the winding 
and other located directly below the winding.

                           3.2.1.2 Conditions

    Make this determination under either of the following conditions:
    (a) The windings have been under insulating liquid with no 
excitation and no current in the windings for four hours before the dc 
resistance is measured; or
    (b) The temperature of the insulating liquid has stabilized, and the 
difference between the top and bottom temperature does not exceed 5 
[deg]C.
    3.2.2 Dry-Type Distribution Transformers.
    Record the winding temperature (Tdc) of dry-type 
transformers as either of the following:
    (a) For ventilated dry-type units, use the average of readings of 
four or more thermometers, thermocouples, or other suitable temperature 
sensors inserted within the coils. Place the sensing points of the 
measuring devices as close as possible to the winding conductors. For 
sealed units, such as epoxy-coated or epoxy-encapsulated units, use the 
average of four or more temperature sensors located on the enclosure 
and/or cover, as close to different parts of the winding assemblies as 
possible; or
    (b) For both ventilated and sealed units, use the ambient 
temperature of the test area, under the following conditions:
    (1) All internal temperatures measured by the internal temperature 
sensors must not differ from the test area ambient temperature by more 
than 2 [deg]C.
    (2) Enclosure surface temperatures for sealed units must not differ 
from the test area ambient temperature by more than 2 [deg]C.
    (3) Test area ambient temperature should not have changed by more 
than 3 [deg]C for 3 hours before the test.
    (4) Neither voltage nor current has been applied to the unit under 
test for 24 hours. In addition, increase this initial 24 hour period by 
any added amount of time necessary for the temperature of the 
transformer windings

[[Page 916]]

to stabilize at the level of the ambient temperature. However, this 
additional amount of time need not exceed 24 hours.
    3.3 Resistance Measurement Methods.
    Make resistance measurements using either the resistance bridge 
method, the voltmeter-ammeter method or a resistance meter. In each 
instance when this Uniform Test Method is used to test more than one 
unit of a basic model to determine the efficiency of that basic model, 
the resistance of the units being tested may be determined from making 
resistance measurements on only one of the units.
    3.3.1 Resistance Bridge Methods.
    If the resistance bridge method is selected, use either the 
Wheatstone or Kelvin bridge circuit (or the equivalent of either).

                        3.3.1.1 Wheatstone Bridge

    (a) This bridge is best suited for measuring resistances larger than 
ten ohms. A schematic diagram of a Wheatstone bridge with a 
representative transformer under test is shown in Figure 3.1.
[GRAPHIC] [TIFF OMITTED] TR27AP06.002

Where:

Rdc is the resistance of the transformer winding being 
          measured,
Rs is a standard resistor having the resistance 
          Rs,
Ra, Rb are two precision resistors with resistance 
          values Ra and Rb , respectively; at 
          least one resistor must have a provision for resistance 
          adjustment,
Rt is a resistor for reducing the time constant of the 
          circuit,
D is a null detector, which may be either a micro ammeter or 
          microvoltmeter or equivalent instrument for observing that no 
          signal is present when the bridge is balanced, and
Vdc is a source of dc voltage for supplying the power to the 
          Wheatstone Bridge.

    (b) In the measurement process, turn on the source (Vdc), 
and adjust the resistance ratio (Ra/Rb) to produce 
zero signal at the detector (D). Determine the winding resistance by 
using equation 3-1 as follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.003

                          3.3.1.2 Kelvin Bridge

    (a) This bridge separates the resistance of the connecting 
conductors to the transformer winding being measured from the resistance 
of the winding, and therefore is best suited for measuring resistances 
of ten ohms and smaller. A schematic diagram of a Kelvin bridge with a 
representative transformer under test is shown in Figure 3.2.

[[Page 917]]

[GRAPHIC] [TIFF OMITTED] TR27AP06.004

    (b) The Kelvin Bridge has seven of the same type of components as in 
the Wheatstone Bridge. It has two more resistors than the Wheatstone 
bridge, Ra1 and Rb1. At least one of these 
resistors must have adjustable resistance. In the measurement process, 
the source is turned on, two resistance ratios (Ra/
Rb) and (Ra1/Rb1) are adjusted to be 
equal, and then the two ratios are adjusted together to balance the 
bridge producing zero signal at the detector. Determine the winding 
resistance by using equation 3-2 as follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.005

as with the Wheatstone bridge, with an additional condition that:
[GRAPHIC] [TIFF OMITTED] TR27AP06.006

    (c) The Kelvin bridge provides two sets of leads, current-carrying 
and voltage-sensing, to the transformer terminals and the standard 
resistor, thus eliminating voltage drops from the measurement in the 
current-carrying leads as represented by Rd.
    3.3.2 Voltmeter-Ammeter Method.
    (a) Employ the voltmeter-ammeter method only if the rated current of 
the winding is greater than one ampere and the test current is limited 
to 15 percent of the winding current. Connect the transformer winding 
under test to the circuit shown in Figure 3.3.

[[Page 918]]

[GRAPHIC] [TIFF OMITTED] TR27AP06.007

Where:

A is an ammeter or a voltmeter-shunt combination for measuring the 
          current (Imdc) in the transformer winding,
V is a voltmeter with sensitivity in the millivolt range for measuring 
          the voltage (Vmdc) applied to the transformer 
          winding,
Rdc is the resistance of the transformer winding being 
          measured,
Rt is a resistor for reducing the time constant of the 
          circuit, and
Vdc is a source of dc voltage for supplying power to the 
          measuring circuit.

    (b) To perform the measurement, turn on the source to produce 
current no larger than 15 percent of the rated current for the winding. 
Wait until the current and voltage readings have stabilized and then 
take simultaneous readings of voltage and current. Determine the winding 
resistance Rdc by using equation 3-4 as follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.008

Where:

Vmdc is the voltage measured by the voltmeter V, and
Imdc is the current measured by the ammeter A.

    (c) As shown in Figure 3.3, separate current and voltage leads must 
be brought to the transformer terminals. (This eliminates the errors due 
to lead and contact resistance.)
    3.3.3 Resistance Meters.
    Resistance meters may be based on voltmeter-ammeter, or resistance 
bridge, or some other operating principle. Any meter used to measure a 
transformer's winding resistance must have specifications for resistance 
range, current range, and ability to measure highly inductive resistors 
that cover the characteristics of the transformer being tested. Also the 
meter's specifications for accuracy must meet the applicable criteria of 
Table 2.1 in section 2.0.
    3.4 Precautions in Measuring Winding Resistance.
    3.4.1 Required actions.
    The following guidelines must be observed when making resistance 
measurements:
    (a) Use separate current and voltage leads when measuring small (<10 
ohms) resistance.
    (b) Use null detectors in bridge circuits, and measuring instruments 
in voltmeter-ammeter circuits, that have sensitivity and resolution 
sufficient to enable observation of at least 0.1 percent change in the 
measured resistance.
    (c) Maintain the dc test current at or below 15 percent of the rated 
winding current.
    (d) Inclusion of a stabilizing resistor Rt (see section 
3.4.2) will require higher source voltage.
    (e) Disconnect the null detector (if a bridge circuit is used) and 
voltmeter from the circuit before the current is switched off, and 
switch off current by a suitable insulated switch.
    3.4.2 Guideline for Time Constant.
    (a) The following guideline is suggested for the tester as a means 
to facilitate the measurement of resistance in accordance with the 
accuracy requirements of section 2.0:
    (b) The accurate reading of resistance Rdc may be 
facilitated by shortening the time constant. This is done by introducing 
a resistor Rt in series with the winding under test in both 
the bridge and voltmeter-ammeter circuits as shown in Figures 3.1 to 
3.3. The relationship for the time constant is:
[GRAPHIC] [TIFF OMITTED] TR27AP06.009


[[Page 919]]


Where:

Tc is the time constant in seconds,
Ltc is the total magnetizing and leakage inductance of the 
          winding under test, in henries, and
Rtc is the total resistance in ohms, consisting of 
          Rt in series with the winding resistance 
          Rdc and the resistance Rs of the 
          standard resistor in the bridge circuit.

    (c) Because Rtc is in the denominator of the expression 
for the time constant, increasing the resistance Rtc will 
decrease the time constant. If the time constant in a given test circuit 
is too long for the resistance readings to be stable, then a higher 
resistance can be substituted for the existing Rtc, and 
successive replacements can be made until adequate stability is reached.
    3.5 Conversion of Resistance Measurements.
    (a) Resistance measurements must be corrected, from the temperature 
at which the winding resistance measurements were made, to the reference 
temperature. As specified in these test procedures, the reference 
temperature for liquid-immersed transformers loaded at 50 percent of the 
rated load is 55 [deg]C. For medium-voltage, dry-type transformers 
loaded at 50 percent of the rated load, and for low-voltage, dry-type 
transformers loaded at 35 percent of the rated load, the reference 
temperature is 75 [deg]C.
    (b) Correct the measured resistance to the resistance at the 
reference temperature using equation 3-6 as follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.010

Where:

Rts is the resistance at the reference temperature, 
          Ts,
Rdc is the measured resistance at temperature, 
          Tdc,
Ts is the reference temperature in [deg]C,
Tdc is the temperature at which resistance was measured in 
          [deg]C, and
Tk is 234.5 [deg]C for copper or 225 [deg]C for aluminum.

                          4.0 Loss Measurement

    4.1 General Considerations.
    The efficiency of a transformer is computed from the total 
transformer losses, which are determined from the measured value of the 
no-load loss and load loss power components. Each of these two power 
loss components is measured separately using test sets that are 
identical, except that shorting straps are added for the load-loss test. 
The measured quantities will need correction for instrumentation losses 
and may need corrections for known phase angle errors in measuring 
equipment and for the waveform distortion in the test voltage. Any power 
loss not measured at the applicable reference temperature must be 
adjusted to that reference temperature. The measured load loss must also 
be adjusted to a specified output loading level if not measured at the 
specified output loading level. Test distribution transformers designed 
for harmonic currents using a sinusoidal waveform (k = 1).
    4.2 Measurement of Power Losses.
    4.2.1 No-Load Loss.
    Measure the no-load loss and apply corrections as described in 
section 4.4, using the appropriate test set as described in section 4.3.
    4.2.2 Load Loss.
    Measure the load loss and apply corrections as described in section 
4.5, using the appropriate test set as described in section 4.3.
    4.3 Test Sets.
    (a) The same test set may be used for both the no-load loss and load 
loss measurements provided the range of the test set encompasses the 
test requirements of both tests. Calibrate the test set to national 
standards to meet the tolerances in Table 2.1 in section 2.0. In 
addition, the wattmeter, current measuring system and voltage measuring 
system must be calibrated separately if the overall test set calibration 
is outside the tolerance as specified in section 2.0 or the individual 
phase angle error exceeds the values specified in section 4.5.3.
    (b) A test set based on the wattmeter-voltmeter-ammeter principle 
may be used to measure the power loss and the applied voltage and 
current of a transformer where the transformer's test current and 
voltage are within the measurement capability of the measuring 
instruments. Current and voltage transformers, known collectively as 
instrument transformers, or other scaling devices such as resistive or 
capacitive dividers for voltage, may be used in the above circumstance, 
and must be used together with instruments to measure current, voltage, 
or power where the current or voltage of the transformer under test 
exceeds the measurement capability of such instruments. Thus, a test set 
may include a combination of measuring instruments and instrument 
transformers (or other scaling devices), so long as the current or 
voltage of the transformer under test does not exceed the measurement 
capability of any of the instruments.
    4.3.1 Single-Phase Test Sets.
    Use these for testing single-phase distribution transformers.
    4.3.1.1 Without Instrument Transformers.
    (a) A single-phase test set without an instrument transformer is 
shown in Figure 4.1.

[[Page 920]]

[GRAPHIC] [TIFF OMITTED] TR27AP06.011

Where:

W is a wattmeter used to measure Pnm and Plm, the 
          no-load and load loss power, respectively,
Vrms is a true root-mean-square (rms) voltmeter used to 
          measure Vr(nm) and Vlm, the rms test 
          voltages in no-load and load loss measurements, respectively,
Vav is an average sensing voltmeter, calibrated to indicate 
          rms voltage for sinusoidal waveforms and used to measure 
          Va(nm), the average voltage in no-load loss 
          measurements,
A is an rms ammeter used to measure test current, especially 
          Ilm, the load loss current, and
(SC) is a conductor for providing a short-circuit across the output 
          windings for the load loss measurements.

    (b) Either the primary or the secondary winding can be connected to 
the test set. However, more compatible voltage and current levels for 
the measuring instruments are available if for no-load loss measurements 
the secondary (low voltage) winding is connected to the test set, and 
for load loss measurements the primary winding is connected to the test 
set. Use the average-sensing voltmeter, Vav, only in no-load 
loss measurements.
    4.3.1.2 With Instrument Transformers.
    A single-phase test set with instrument transformers is shown in 
Figure 4.2. This circuit has the same four measuring instruments as that 
in Figure 4.1. The current and voltage transformers, designated as (CT) 
and (VT), respectively, are added.
[GRAPHIC] [TIFF OMITTED] TR27AP06.012

    4.3.2 Three-Phase Test Sets.
    Use these for testing three-phase distribution transformers. Use in 
a four-wire, three-wattmeter test circuit.
    4.3.2.1 Without Instrument Transformers.
    (a) A three-phase test set without instrument transformers is shown 
in Figure 4.3. This test set is essentially the same circuit

[[Page 921]]

shown in Figure 4.1 repeated three times, and the instruments are 
individual devices as shown. As an alternative, the entire 
instrumentation system of a three-phase test set without transformers 
may consist of a multi-function analyzer.
[GRAPHIC] [TIFF OMITTED] TR27AP06.013

    (b) Either group of windings, the primary or the secondary, can be 
connected in wye or delta configuration. If both groups of windings are 
connected in the wye configuration for the no-load test, the neutral of 
the winding connected to the test set must be connected to the neutral 
of the source to provide a return path for the neutral current.
    (c) In the no-load loss measurement, the voltage on the winding must 
be measured. Therefore a provision must be made to switch the voltmeters 
for line-to-neutral measurements for wye-connected windings and for 
line-to-line measurements for delta-connected windings.
    4.3.2.2 With Instrument Transformers.
    A three-phase test set with instrument transformers is shown in 
Figure 4.4. This test set is essentially the same circuit shown in 
Figure 4.2 repeated three times. Provision must be made to switch the 
voltmeters for line-to-neutral and line-to-line measurements as in 
section 4.3.2.1. The voltage sensors (``coils'') of the wattmeters must 
always be connected in the line-to-neutral configuration.

[[Page 922]]

[GRAPHIC] [TIFF OMITTED] TR27AP06.014

    4.3.2.3 Test Set Neutrals.
    If the power source in the test circuit is wye-connected, ground the 
neutral. If the power source in the test circuit is delta-connected, use 
a grounding transformer to obtain neutral and ground for the test.
    4.4 No-Load Losses: Measurement and Calculations.
    4.4.1 General Considerations.
    Measurement corrections are permitted but not required for 
instrumentation losses and for losses from auxiliary devices. 
Measurement corrections are required:
    (a) When the waveform of the applied voltage is non-sinusoidal; and
    (b) When the core temperature or liquid temperature is outside the 
20 [deg]C 10 [deg]C range.
    4.4.2 No-Load Loss Test.
    (a) The purpose of the no-load loss test is to measure no-load 
losses at a specified excitation voltage and a specified frequency. The 
no-load loss determination must be based on a sine-wave voltage 
corrected to the reference temperature. Connect either of the 
transformer windings, primary or secondary, to the appropriate test set 
of Figures 4.1 to 4.4, giving consideration to section 4.4.2(a)(2). 
Leave the unconnected winding(s) open circuited. Apply the rated voltage 
at rated frequency, as measured by the average-sensing voltmeter, to the 
transformer. Take the readings of the wattmeter(s) and the average-
sensing and true rms voltmeters. Observe the following precautions:
    (1) Voltmeter connections. When correcting to a sine-wave basis 
using the average-voltmeter method, the voltmeter connections must be 
such that the waveform applied to the voltmeters is the same as the 
waveform across the energized windings.
    (2) Energized windings. Energize either the high voltage or the low 
voltage winding of the transformer under test.
    (3) Voltage and frequency. The no-load loss test must be conducted 
with rated voltage impressed across the transformer terminals using a 
voltage source at a frequency equal to the rated frequency of the 
transformer under test.
    (b) Adjust the voltage to the specified value as indicated by the 
average-sensing voltmeter. Record the values of rms voltage, rms 
current, electrical power, and average voltage as close to 
simultaneously as possible. For a three-phase transformer, take all of 
the readings on one phase before proceeding to the next, and record the 
average of the three rms voltmeter readings as the rms voltage value.
    Note: When the tester uses a power supply that is not synchronized 
with an electric utility grid, such as a dc/ac motor-generator

[[Page 923]]

set, check the frequency and maintain it within 0.5 percent of the rated frequency of the transformer 
under test. A power source that is directly connected to, or 
synchronized with, an electric utility grid need not be monitored for 
frequency.
    4.4.3 Corrections.
    4.4.3.1 Correction for Instrumentation Losses.
    Measured losses attributable to the voltmeters and wattmeter voltage 
circuit, and to voltage transformers if they are used, may be deducted 
from the total no-load losses measured during testing.
    4.4.3.2 Correction for Non-Sinusoidal Applied Voltage.
    (a) The measured value of no-load loss must be corrected to a 
sinusoidal voltage, except when waveform distortion in the test voltage 
causes the magnitude of the correction to be less than 1 percent. In 
such a case, no correction is required.
    (b) To make a correction where the distortion requires a correction 
of 5 percent or less, use equation 4-1. If the distortion requires a 
correction to be greater than 5 percent, improve the test voltage and 
re-test. Repeat until the distortion requires a correction of 5 percent 
or less.
    (c) Determine the no-load losses of the transformer corrected for 
sine-wave basis from the measured value by using equation 4-1 as 
follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.015

Where:

Pncl is the no-load loss corrected to a sine-wave basis at 
          the temperature (Tnm) at which no-load loss is 
          measured,
Pnm is the measured no-load loss at temperature 
          Tnm,
P1 is the per unit hysteresis loss,
P2 is the per unit eddy-current loss,
P1 + P2 = 1,
[GRAPHIC] [TIFF OMITTED] TR27AP06.016

Vr(nm) is the test voltage measured by rms voltmeter, and
Va(nm) is the test voltage measured by average-voltage 
          voltmeter.
    (d) The two loss components (P1 and P2) are 
assumed equal in value, each assigned a value of 0.5 per unit, unless 
the actual measurement-based values of hysteresis and eddy-current 
losses are available (in per unit form), in which case the actual 
measurements apply.
    4.4.3.3 Correction of No-Load Loss to Reference Temperature.
    After correcting the measured no-load loss for waveform distortion, 
correct the loss to the reference temperature of 20 [deg]C. If the no-
load loss measurements were made between 10 [deg]C and 30 [deg]C, this 
correction is not required. If the correction to reference temperature 
is applied, then the core temperature of the transformer during no-load 
loss measurement (Tnm) must be determined within 10 [deg]C of the true average core temperature. Correct 
the no-load loss to the reference temperature by using equation 4-2 as 
follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.017

Where:

Pnc is the no-load losses corrected for waveform distortion 
          and then to the reference temperature of 20 [deg]C,
Pnc1 is the no-load losses, corrected for waveform 
          distortion, at temperature Tnm,
Tnm is the core temperature during the measurement of no-load 
          losses, and
Tnr is the reference temperature, 20 [deg]C.

    4.5 Load Losses: Measurement and Calculations.
    4.5.1 General Considerations.
    (a) The load losses of a transformer are those losses incident to a 
specified load carried by the transformer. Load losses consist of ohmic 
loss in the windings due to the load current and stray losses due to the 
eddy currents induced by the leakage flux in the windings, core clamps, 
magnetic shields, tank walls, and other conducting parts. The ohmic loss 
of a transformer varies directly with temperature, whereas the stray 
losses vary inversely with temperature.
    (b) For a transformer with a tap changer, conduct the test at the 
rated current and rated-voltage tap position. For a transformer that has 
a configuration of windings which allows for more than one nominal rated 
voltage, determine its load losses either in the winding configuration 
in which the highest losses occur or in each winding configuration in 
which the transformer can operate.
    4.5.2 Tests for Measuring Load Losses.
    (a) Connect the transformer with either the high-voltage or low-
voltage windings to the appropriate test set. Then short-circuit the 
winding that was not connected to the test set. Apply a voltage at the 
rated frequency (of the transformer under test) to the connected 
windings to produce the rated current in the transformer. Take the 
readings of the wattmeter(s), the ammeters(s), and rms voltmeter(s).
    (b) Regardless of the test set selected, the following preparatory 
requirements must be satisfied for accurate test results:
    (1) Determine the temperature of the windings using the applicable 
method in section 3.2.1 or section 3.2.2.
    (2) The conductors used to short-circuit the windings must have a 
cross-sectional

[[Page 924]]

area equal to, or greater than, the corresponding transformer leads, or, 
if the tester uses a different method to short-circuit the windings, the 
losses in the short-circuiting conductor assembly must be less than 10 
percent of the transformer's load losses.
    (3) When the tester uses a power supply that is not synchronized 
with an electric utility grid, such as a dc/ac motor-generator set, 
follow the provisions of the ``Note'' in section 4.4.2.
    4.5.3 Corrections.
    4.5.3.1 Correction for Losses from Instrumentation and Auxiliary 
Devices.
    4.5.3.1.1 Instrumentation Losses.
    Measured losses attributable to the voltmeters, wattmeter voltage 
circuit and short-circuiting conductor (SC), and to the voltage 
transformers if they are used, may be deducted from the total load 
losses measured during testing.
    4.5.3.1.2 Losses from Auxiliary Devices.
    Measured losses attributable to auxiliary devices (e.g., circuit 
breakers, fuses, switches) installed in the transformer, if any, that 
are not part of the winding and core assembly, may be excluded from load 
losses measured during testing. To exclude these losses, either (1) 
measure transformer losses without the auxiliary devices by removing or 
by-passing them, or (2) measure transformer losses with the auxiliary 
devices connected, determine the losses associated with the auxiliary 
devices, and deduct these losses from the load losses measured during 
testing.
    4.5.3.2 Correction for Phase Angle Errors.
    (a) Corrections for phase angle errors are not required if the 
instrumentation is calibrated over the entire range of power factors and 
phase angle errors. Otherwise, determine whether to correct for phase 
angle errors from the magnitude of the normalized per unit correction, 
[beta]n, obtained by using equation 4-3 as follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.018

    (b) The correction must be applied if [beta]n is outside 
the limits of 0.01. If [beta]n is 
within the limits of 0.01, the correction is 
permitted but not required.
    (c) If the correction for phase angle errors is to be applied, first 
examine the total system phase angle ([beta]w - 
[beta]v + [beta]c). Where the total system phase 
angle is equal to or less than 12 milliradians 
(41 minutes), use either equation 4-4 or 4-5 to 
correct the measured load loss power for phase angle errors, and where 
the total system phase angle exceeds 12 
milliradians (41 minutes) use equation 4-5, as 
follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.019

[GRAPHIC] [TIFF OMITTED] TR27AP06.020

    (d) The symbols in this section (4.5.3.2) have the following 
meanings:

Plc1 is the corrected wattmeter reading for phase angle 
          errors,
Plm is the actual wattmeter reading,
Vlm is the measured voltage at the transformer winding,
Ilm is the measured rms current in the transformer winding,
[GRAPHIC] [TIFF OMITTED] TR27AP06.021

is the measured phase angle between Vlm and Ilm,

[beta]w is the phase angle error (in radians) of the 
          wattmeter; the error is positive if the phase angle between 
          the voltage and current phasors as sensed by the wattmeter is 
          smaller than the true phase angle, thus effectively increasing 
          the measured power,
[beta]v is the phase angle error (in radians) of the voltage 
          transformer; the error is positive if the secondary voltage 
          leads the primary voltage, and
[beta]c is the phase angle error (in radians) of the current 
          transformer; the error is positive if the secondary current 
          leads the primary current.

    (e) The instrumentation phase angle errors used in the correction 
equations must be specific for the test conditions involved.
    4.5.3.3 Temperature Correction of Load Loss.
    (a) When the measurement of load loss is made at a temperature 
Tlm that is different from the reference temperature, use the 
procedure summarized in the equations 4-6 to 4-10 to correct the 
measured load loss to the reference temperature. The symbols used in 
these equations are defined at the end of this section.
    (b) Calculate the ohmic loss (Pe) by using equation 4-6 
as follows:


[[Page 925]]

[GRAPHIC] [TIFF OMITTED] TR27AP06.022

    (c) Obtain the stray loss by subtracting the calculated ohmic loss 
from the measured load loss, by using equation 4-7 as follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.023

    (d) Correct the ohmic and stray losses to the reference temperature 
for the load loss by using equations 4-8 and 4-9, respectively, as 
follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.024

[GRAPHIC] [TIFF OMITTED] TR27AP06.025

    (e) Add the ohmic and stray losses, corrected to the reference 
temperature, to give the load loss, Plc2, at the reference 
temperature, by using equation 4-10 as follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.026

    (f) The symbols in this section (4.5.3.3) have the following 
meanings:

Ilm(p) is the primary current in amperes,
Ilm(s) is the secondary current in amperes,
Pe is the ohmic loss in the transformer in watts at the 
          temperature Tlm,
Pe(p) is the ohmic loss in watts in the primary winding at 
          the temperature Tlm,

[[Page 926]]

Pe(s) is the ohmic loss in watts in the secondary winding at 
          the temperature Tlm,
Per is the ohmic loss in watts corrected to the reference 
          temperature,
Plc1 is the measured load loss in watts, corrected for phase 
          angle error, at the temperature Tlm,
Plc2 is the load loss at the reference temperature,
Ps is the stray loss in watts at the temperature 
          Tlm,
Psr is the stray loss in watts corrected to the reference 
          temperature,
Rdc(p) is the measured dc primary winding resistance in ohms,
Rdc(s) is the measured dc secondary winding resistance in 
          ohms,
Tk is the critical temperature in degrees Celsius for the 
          material of the transformer windings. Where copper is used in 
          both primary and secondary windings, Tk is 234.5 
          [deg]C; where aluminum is used in both primary and secondary 
          windings, Tk is 225 [deg]C; where both copper and 
          aluminum are used in the same transformer, the value of 229 
          [deg]C is used for Tk,
Tk(p) is the critical temperature in degrees Celsius for the 
          material of the primary winding: 234.5 [deg]C if copper and 
          225 [deg]C if aluminum,
Tk(s) is the critical temperature in degrees Celsius for the 
          material of the secondary winding: 234.5 [deg]C if copper and 
          225 [deg]C if aluminum,
Tlm is the temperature in degrees Celsius at which the load 
          loss is measured,
Tlr is the reference temperature for the load loss in degrees 
          Celsius,
Tdc is the temperature in degrees Celsius at which the 
          resistance values are measured, and

N1/N2 is the ratio of the number of turns in the 
          primary winding (N1) to the number of turns in the 
          secondary winding (N2); for a primary winding with 
          taps, N1 is the number of turns used when the 
          voltage applied to the primary winding is the rated primary 
          voltage.

         5.0 Determining the Efficiency Value of the Transformer

    This section presents the equations to use in determining the 
efficiency value of the transformer at the required reference conditions 
and at the specified loading level. The details of measurements are 
described in sections 3.0 and 4.0. For a transformer that has a 
configuration of windings which allows for more than one nominal rated 
voltage, determine its efficiency either at the voltage at which the 
highest losses occur or at each voltage at which the transformer is 
rated to operate.
    5.1 Output Loading Level Adjustment.
    If the output loading level for energy efficiency is different from 
the level at which the load loss power measurements were made, then 
adjust the corrected load loss power, Plc2, by using equation 
5-1 as follows:
[GRAPHIC] [TIFF OMITTED] TR16OC06.011

Where:

Plc is the adjusted load loss power to the specified energy 
          efficiency load level,
Plc2 is as calculated in section 4.5.3.3,
Por is the rated transformer apparent power (name plate),
Pos is the specified energy efficiency load level, where 
          Pos = PorL, and
L is the per unit load level, e.g., if the load level is 50 percent then 
          ``L'' will be 0.5.
    5.2 Total Loss Power Calculation.

    Calculate the corrected total loss power by using equation 5-2 as 
follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.029

Where:

Pts is the corrected total loss power adjusted for the 
          transformer output loading specified by the standard,
Pnc is as calculated in section 4.4.3.3, and
Plc is as calculated in section 5.1.

    5.3 Energy Efficiency Calculation.
    Calculate efficiency ([eta]) in percent at specified energy 
efficiency load level, Pos, by using equation 5-3 as follows:
[GRAPHIC] [TIFF OMITTED] TR27AP06.030

Where:

Pos is as described and calculated in section 5.1, and
Pts is as described and calculated in section 5.2.
    5.4 Significant Figures in Power Loss and Efficiency Data.
    In measured and calculated data, retain enough significant figures 
to provide at least 1 percent resolution in power loss data and 0.01 
percent resolution in efficiency data.

            6.0 Test Equipment Calibration and Certification

    Maintain and calibrate test equipment and measuring instruments, 
maintain calibration records, and perform other test and measurement 
quality assurance procedures according to the following sections. The 
calibration of the test set must confirm the accuracy of the test set to 
that specified in section 2.0, Table 2.1.
    6.1 Test Equipment.
    The party performing the tests shall control, calibrate and maintain 
measuring and test equipment, whether or not it owns the

[[Page 927]]

equipment, has the equipment on loan, or the equipment is provided by 
another party. Equipment shall be used in a manner which assures that 
measurement uncertainty is known and is consistent with the required 
measurement capability.
    6.2 Calibration and Certification.
    The party performing the tests must:
    (a) Identify the measurements to be made, the accuracy required 
(section 2.0) and select the appropriate measurement and test equipment;
    (b) At prescribed intervals, or prior to use, identify, check and 
calibrate, if needed, all measuring and test equipment systems or 
devices that affect test accuracy, against certified equipment having a 
known valid relationship to nationally recognized standards; where no 
such standards exist, the basis used for calibration must be documented;
    (c) Establish, document and maintain calibration procedures, 
including details of equipment type, identification number, location, 
frequency of checks, check method, acceptance criteria and action to be 
taken when results are unsatisfactory;
    (d) Ensure that the measuring and test equipment is capable of the 
accuracy and precision necessary, taking into account the voltage, 
current and power factor of the transformer under test;
    (e) Identify measuring and test equipment with a suitable indicator 
or approved identification record to show the calibration status;
    (f) Maintain calibration records for measuring and test equipment;
    (g) Assess and document the validity of previous test results when 
measuring and test equipment is found to be out of calibration;
    (h) Ensure that the environmental conditions are suitable for the 
calibrations, measurements and tests being carried out;
    (i) Ensure that the handling, preservation and storage of measuring 
and test equipment is such that the accuracy and fitness for use is 
maintained; and
    (j) Safeguard measuring and test facilities, including both test 
hardware and test software, from adjustments which would invalidate the 
calibration setting.

[71 FR 24999, Apr. 27, 2006; 71 FR 60662, Oct. 16, 2006]

    Effective Date Note: At 71 FR 24999, Apr. 27, 2006, appendix A to 
subpart K of part 431 was added. Section 6.2(f) contains information 
collection requirements and will not become effective until approval has 
been given by the Office of Management and Budget.



                    Subpart L_Illuminated Exit Signs

    Source: 70 FR 60417, Oct. 18, 2005, unless otherwise noted.



Sec.  431.201  Purpose and scope.

    This subpart contains energy conservation requirements for 
illuminated exit signs, pursuant to Part B of Title III of the Energy 
Policy and Conservation Act, as amended, 42 U.S.C. 6291-6309.



Sec.  431.202  Definitions concerning illuminated exit signs.

    Basic model means all units of a given type of covered product (or 
class thereof) manufactured by one manufacturer, having the same primary 
energy source, and which have essentially identical electrical, 
physical, and functional (or hydraulic) characteristics that affect 
energy consumption, energy efficiency, water consumption, or water 
efficiency.
    Face means an illuminated side of an illuminated exit sign.
    Illuminated exit sign means a sign that--
    (1) Is designed to be permanently fixed in place to identify an 
exit; and
    (2) Consists of an electrically powered integral light source that--
    (i) Illuminates the legend ``EXIT'' and any directional indicators; 
and
    (ii) Provides contrast between the legend, any directional 
indicators, and the background.
    Input power demand means the amount of power required to 
continuously illuminate an exit sign model, measured in watts (W). For 
exit sign models with rechargeable batteries, input power demand shall 
be measured with batteries at full charge.

[70 FR 60417, Oct. 18, 2005, as amended at 71 FR 71372, Dec. 8, 2006; 76 
FR 12504, Mar. 7, 2011]

                             Test Procedures



Sec.  431.203  Materials incorporated by reference.

    (a) General. The Department incorporates by reference the following 
test procedures into subpart L of part 431. The Director of the Federal 
Register has approved the material listed in paragraph (b) of this 
section for incorporation by reference in accordance with 5 U.S.C. 
552(a) and 1 CFR part 51. Any subsequent amendment to this material by 
the standard-setting organization will not affect the DOE test

[[Page 928]]

procedures unless and until DOE amends its test procedures. The 
Department incorporates the material as it exists on the date of the 
approval by the Federal Register and a notice of any change in the 
material will be published in the Federal Register.
    (b) Test procedure incorporated by reference. Environmental 
Protection Agency ``ENERGY STAR Program Requirements for Exit Signs,'' 
Version 2.0 issued January 1, 1999.
    (c) Availability of reference--(1) Inspection of test procedure. The 
test procedure incorporated by reference are available for inspection 
at:
    (i) National Archives and Records Administration (NARA). For 
information on the availability of this material at NARA, call (202) 
741-6030, or go to: http://www.archives.gov/federal_register/ 
code_of_federal_regulations/ ibr_locations.html.
    (ii) U.S. Department of Energy, Forrestal Building, Room 1J-018 
(Resource Room of the Building Technologies Program), 1000 Independence 
Avenue, SW., Washington, DC 20585-0121, (202) 586-9127, between 9 a.m. 
and 4 p.m., Monday through Friday, except Federal holidays.
    (2) Obtaining copies of the standard. Copies of the Environmental 
Protection Agency ``ENERGY STAR Program Requirements for Exit Signs,'' 
Version 2.0, may be obtained from the Environmental Protection Agency, 
Ariel Rios Building, 1200 Pennsylvania Avenue, NW., Washington, DC 
20460, (202) 272-0167 or athttp://www.epa.gov.

[71 FR 71373, Dec. 8, 2006]



Sec.  431.204  Uniform test method for the measurement of energy consumption 
of illuminated exit signs.

    (a) Scope. This section provides the test procedure for measuring, 
pursuant to EPCA, the input power demand of illuminated exit signs. For 
purposes of this part 431 and EPCA, the test procedure for measuring the 
input power demand of illuminated exit signs shall be the test procedure 
specified in Sec.  431.203(b).
    (b) Testing and Calculations. Determine the energy efficiency of 
each covered product by conducting the test procedure, set forth in the 
Environmental Protection Agency's ``ENERGY STAR Program Requirements for 
Exit Signs,'' Version 2.0, section 4 (Test Criteria), ``Conditions for 
testing'' and ``Input power measurement.'' (Incorporated by reference, 
see Sec.  431.203)

[71 FR 71373, Dec. 8, 2006]

                      Energy Conservation Standards



Sec.  431.206  Energy conservation standards and their effective dates.

    An illuminated exit sign manufactured on or after January 1, 2006, 
shall have an input power demand of 5 watts or less per face.



         Subpart M_Traffic Signal Modules and Pedestrian Modules

    Source: 70 FR 60417, Oct. 18, 2005, unless otherwise noted.



Sec.  431.221  Purpose and scope.

    This subpart contains energy conservation requirements for traffic 
signal modules and pedestrian modules, pursuant to Part B of Title III 
of the Energy Policy and Conservation Act, as amended, 42 U.S.C. 6291-
6309.



Sec.  431.222  Definitions concerning traffic signal modules 
and pedestrian modules.

    Basic model means all units of a given type of covered product (or 
class thereof) manufactured by one manufacturer, having the same primary 
energy source, and which have essentially identical electrical, 
physical, and functional (or hydraulic) characteristics that affect 
energy consumption, energy efficiency, water consumption, or water 
efficiency.
    Maximum wattage means the power consumed by the module after being 
operated for 60 minutes while mounted in a temperature testing chamber 
so that the lensed portion of the module is outside the chamber, all 
portions of the module behind the lens are within the chamber at a 
temperature of 74 [deg]C and the air temperature in front of the lens is 
maintained at a minimum of 49 [deg]C.

[[Page 929]]

    Nominal wattage means the power consumed by the module when it is 
operated within a chamber at a temperature of 25 [deg]C after the signal 
has been operated for 60 minutes.
    Pedestrian module means a light signal used to convey movement 
information to pedestrians.
    Traffic signal module means a standard 8-inch (200 mm) or 12-inch 
(300 mm) traffic signal indication that--
    (1) Consists of a light source, a lens, and all other parts 
necessary for operation; and
    (2) Communicates movement messages to drivers through red, amber, 
and green colors.

[70 FR 60417, Oct. 18, 2005, as amended at 71 FR 71373, Dec. 8, 2006; 76 
FR 12504, Mar. 7, 2011]

                             Test Procedures



Sec.  431.223  Materials incorporated by reference.

    (a) General. The Department incorporates by reference the following 
test procedures into subpart M of part 431. The Director of the Federal 
Register has approved the material listed in paragraph (b) of this 
section for incorporation by reference in accordance with 5 U.S.C. 
552(a) and 1 CFR part 51. Any subsequent amendment to this material by 
the standard-setting organization will not affect the DOE test 
procedures unless and until DOE amends its test procedures. The 
Department incorporates the material as it exists on the date of the 
approval by the Federal Register and a notice of any change in the 
material will be published in the Federal Register.
    (b) List of test procedures incorporated by reference. (1) 
Environmental Protection Agency, ``ENERGY STAR Program Requirements for 
Traffic Signals,'' Version 1.1 issued February 4, 2003.
    (2) Institute of Transportation Engineers (ITE), ``Vehicle Traffic 
Control Signal Heads: Light Emitting Diode (LED) Circular Signal 
Supplement,'' June 27, 2005.
    (c) Availability of references--(1) Inspection of test procedures. 
The test procedures incorporated by reference are available for 
inspection at:
    (i) National Archives and Records Administration (NARA). For 
information on the availability of this material at NARA, call (202) 
741-6030, or go to: http://www.archives.gov/federal_register/ 
code_of_federal_regulations/ ibr_locations.html.
    (ii) U.S. Department of Energy, Forrestal Building, Room 1J-018 
(Resource Room of the Building Technologies Program), 1000 Independence 
Avenue, SW., Washington, DC 20585-0121, (202) 586-9127, between 9 a.m. 
and 4 p.m., Monday through Friday, except Federal holidays.
    (2) Obtaining copies of standards. Standards incorporated by 
reference may be obtained from the following sources:
    (i) Copies of the Environmental Protection Agency ``ENERGY STAR 
Program Requirements for Traffic Signals,'' Version 1.1, may be obtained 
from the Environmental Protection Agency, Ariel Rios Building, 1200 
Pennsylvania Avenue, NW., Washington, DC 20460, (202) 272-0167 or at 
http://www.epa.gov.
    (ii) Institute of Transportation Engineers, 1099 14th Street, NW., 
Suite 300 West, Washington, DC 20005-3438, (202) 289-0222, or 
[email protected].

[71 FR 71373, Dec. 8, 2006]



Sec.  431.224  Uniform test method for the measurement of energy consumption 
for traffic signal modules and pedestrian modules.

    (a) Scope. This section provides the test procedures for measuring, 
pursuant to EPCA, the maximum wattage and nominal wattage of traffic 
signal modules and pedestrian modules. For purposes of 10 CFR part 431 
and EPCA, the test procedures for measuring the maximum wattage and 
nominal wattage of traffic signal modules and pedestrian modules shall 
be the test procedures specified in Sec.  431.223(b).
    (b) Testing and Calculations. Determine the nominal wattage and 
maximum wattage of each covered traffic signal module or pedestrian 
module by conducting the test procedure set forth in Environmental 
Protection Agency, ``ENERGY STAR Program Requirements for Traffic 
Signals,'' Version 1.1, section 1, ``Definitions,'' and section 4,

[[Page 930]]

``Test Criteria.'' (Incorporated by reference, see Sec.  431.223) Use a 
wattmeter having an accuracy of 1% to measure the 
nominal wattage and maximum wattage of a red and green traffic signal 
module, and a pedestrian module when conducting the photometric and 
colormetric tests as specified by the testing procedures in VTCSH 2005.

[71 FR 71373, Dec. 8, 2006]

                      Energy Conservation Standards



Sec.  431.226  Energy conservation standards and their effective dates.

    Any traffic signal module or pedestrian module manufactured on or 
after January 1, 2006, shall meet both of the following requirements:
    (a) Have a nominal wattage and maximum wattage no greater than:

------------------------------------------------------------------------
                                              Maximum         Nominal
                                          wattage (at 74  wattage (at 25
                                              [deg]C)         [deg]C)
------------------------------------------------------------------------
Traffic Signal Module Type:
    12 Red Ball..............              17              11
    8 Red Ball...............              13               8
    12 Red Arrow.............              12               9
    12 Green Ball............              15              15
    8 Green Ball.............              12              12
    12 Green Arrow...........              11              11
Pedestrian Module Type:
    Combination Walking Man/Hand........              16              13
    Walking Man.........................              12               9
    Orange Hand.........................              16              13
------------------------------------------------------------------------

    (b) Be installed with compatible, electrically connected signal 
control interface devices and conflict monitoring systems.

[70 FR 60417, Oct. 18, 2005, as amended at 71 FR 71374, Dec. 8, 2006]



                         Subpart N_Unit Heaters

    Source: 70 FR 60418, Oct. 18, 2005, unless otherwise noted.



Sec.  431.241  Purpose and scope.

    This subpart contains energy conservation requirements for unit 
heaters, pursuant to Part B of Title III of the Energy Policy and 
Conservation Act, as amended, 42 U.S.C. 6291-6309.



Sec.  431.242  Definitions concerning unit heaters.

    Automatic flue damper means a device installed in the flue outlet or 
in the inlet of or upstream of the draft control device of an 
individual, automatically operated, fossil fuel-fired appliance that is 
designed to automatically open the flue outlet during appliance 
operation and to automatically close the flue outlet when the appliance 
is in a standby condition.
    Automatic vent damper means a device intended for installation in 
the venting system of an individual, automatically operated, fossil 
fuel-fired appliance either in the outlet or downstream of the appliance 
draft control device, which is designed to automatically open the 
venting system when the appliance is in operation and to automatically 
close off the venting system when the appliance is in a standby or 
shutdown condition.
    Basic model means all units of a given type of covered product (or 
class thereof) manufactured by one manufacturer, having the same primary 
energy source, and which have essentially identical electrical, 
physical, and functional (or hydraulic) characteristics that affect 
energy consumption, energy efficiency, water consumption, or water 
efficiency.
    Intermittent ignition device means an ignition device in which the 
ignition source is automatically shut off when the appliance is in an 
off or standby condition.
    Power venting means a venting system that uses a separate fan, 
either integral to the appliance or attached to the vent pipe, to convey 
products of combustion and excess or dilution air through the vent pipe.
    Unit heater means a self-contained fan-type heater designed to be 
installed within the heated space; however, the term does not include a 
warm air furnace.
    Warm air furnace means commercial warm air furnace as defined in 
Sec.  431.72.

[70 FR 60418, Oct. 18, 2005, as amended at 71 FR 71374, Dec. 8, 2006; 76 
FR 12504, Mar. 7, 2011]

[[Page 931]]

                       Test Procedures [Reserved]

                      Energy Conservation Standards



Sec.  431.246  Energy conservation standards and their effective dates.

    A unit heater manufactured on or after August 8, 2008, shall:
    (a) Be equipped with an intermittent ignition device; and
    (b) Have power venting or an automatic flue damper. An automatic 
vent damper is an acceptable alternative to an automatic flue damper for 
those unit heaters where combustion air is drawn from the conditioned 
space.

[70 FR 60418, Oct. 18, 2005, as amended at 71 FR 71374, Dec. 8, 2006]



               Subpart O_Commercial Prerinse Spray Valves

    Source: 70 FR 60418, Oct. 18, 2005, unless otherwise noted.



Sec.  431.261  Purpose and scope.

    This subpart contains energy conservation requirements for 
commercial prerinse spray valves, pursuant to section 135 of the Energy 
Policy Act of 2005, Pub. L. 109-58.



Sec.  431.262  Definitions.

    As used in this subpart:
    Basic model means all spray settings of a given class manufactured 
by one manufacturer, which have essentially identical physical and 
functional (or hydraulic) characteristics that affect water consumption 
or water efficiency.
    Commercial prerinse spray valve means a handheld device that has a 
release-to-close valve and is suitable for removing food residue from 
food service items before cleaning them in commercial dishwashing or 
ware washing equipment.
    Spray force means the amount of force exerted onto the spray disc, 
measured in ounce-force (ozf).

[80 FR 81453, Dec. 30, 2015]

                             Test Procedures



Sec.  431.263  Materials incorporated by reference.

    (a) DOE incorporates by reference the following standard into part 
431. The material listed has been approved for incorporation by 
reference by the Director of the Federal Register in accordance with 5 
U.S.C. 552(a) and 1 CFR part 51. Any subsequent amendment to a standard 
by the standard-setting organization will not affect the DOE regulations 
unless and until amended by DOE. Material is incorporated as it exists 
on the date of the approval and a notice of any change in the material 
will be published in the Federal Register. All approved material is 
available for inspection at the National Archives and Records 
Administration (NARA). For information on the availability of this 
material at NARA, call (202) 741-6030, or go to: http://
www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html. Also, this material is available for inspection at 
U.S. Department of Energy, Office of Energy Efficiency and Renewable 
Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza 
SW., Washington, DC 20024, (202) 586-2945, or go to: http://
www1.eere.energy.gov/buildings/appliance_standards. This standard can be 
obtained from the source below.
    (b) ASTM. American Society for Testing and Materials International, 
100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, 
(610) 832-9585, or got to http://www.astm.org.
    (1) ASTM Standard F2324-13, (``ASTM F2324-13''), Standard Test 
Method for Prerinse Spray Valves, approved June 1, 2013; IBR approved 
for Sec.  431.264.
    (2) [Reserved]

[78 FR 62987, Oct. 23, 2013, as amended at 80 FR 81453, Dec. 30, 2015]



Sec.  431.264  Uniform test method to measure flow rate and spray force 
of commercial prerinse spray valves.

    (a) Scope. This section provides the test procedure to measure the 
flow rate and spray force of a commercial prerinse spray valve.
    (b) Testing and calculations for a unit with a single spray 
setting--(1) Flow rate. (i) Test each unit in accordance with the 
requirements of sections 6.1 through 6.9 (Apparatus) (except 6.4 and 
6.7), 9.1 through 9.4 (Preparation of Apparatus), and 10.1 through 
10.2.5 (Procedure) of ASTM F2324-13, (incorporated by reference, see 
Sec.  431.263). Precatory

[[Page 932]]

language in the ASTM F2324-13 is to be treated as mandatory for the 
purpose of testing. In section 9.1 of ASTM F2324-13, the second instance 
of ``prerinse spray valve'' refers to the spring-style deck-mounted 
prerinse unit defined in section 6.8. In lieu of using manufacturer 
installation instructions or packaging, always connect the commercial 
prerinse spray valve to the flex tubing for testing. Normalize the 
weight of the water to calculate flow rate using Equation 1, where 
Wwater is the weight normalized to a 1 minute time period, 
W1 is the weight of the water in the carboy at the conclusion 
of the flow rate test, and t1 is the total recorded time of 
the flow rate test.
[GRAPHIC] [TIFF OMITTED] TR30DE15.004

    (ii) Perform calculations in accordance with section 11.3.1 
(Calculation and Report). Record the water temperature ( [deg]F) and 
dynamic water pressure (psi) once at the start for each run of the test. 
Record the time (min), the normalized weight of water in the carboy (lb) 
and the resulting flow rate (gpm) once at the end of each run of the 
test. Record flow rate measurements of time (min) and weight (lb) at the 
resolutions of the test instrumentation. Perform three runs on each 
unit, as specified in section 10.2.5 of ASTM F2324-13, but disregard any 
references to Annex A1. Then, for each unit, calculate the mean of the 
three flow rate values determined from each run. Round the final value 
for flow rate to two decimal places and record that value.
    (2) Spray force. Test each unit in accordance with the test 
requirements specified in sections 6.2 and 6.4 through 6.9 (Apparatus), 
9.1 through 9.5.3.2 (Preparation of Apparatus), and 10.3.1 through 
10.3.8 (Procedure) of ASTM F2324-13. In section 9.1 of ASTM F2324-13, 
the second instance of ``prerinse spray valve'' refers to the spring-
style deck-mounted prerinse unit defined in section 6.8. In lieu of 
using manufacturer installation instructions or packaging, always 
connect the commercial prerinse spray valve to the flex tubing for 
testing. Record the water temperature ( [deg]F) and dynamic water 
pressure (psi) once at the start for each run of the test. In order to 
calculate the mean spray force value for the unit under test, there are 
two measurements per run and there are three runs per test. For each run 
of the test, record a minimum of two spray force measurements and 
calculate the mean of the measurements over the 15-second time period of 
stabilized flow during spray force testing. Record the time (min) once 
at the end of each run of the test. Record spray force measurements at 
the resolution of the test instrumentation. Conduct three runs on each 
unit, as specified in section 10.3.8 of ASTM F2324-13, but disregard any 
references to Annex A1. Ensure the unit has been stabilized separately 
during each run. Then for each unit, calculate and record the mean of 
the spray force values determined from each run. Round the final value 
for spray force to one decimal place.
    (c) Testing and calculations for a unit with multiple spray 
settings. If a unit has multiple user-selectable spray settings, or 
includes multiple spray faces that can be installed, for each possible 
spray setting or spray face:
    (1) Measure both the flow rate and spray force according to 
paragraphs (b)(1) and (2) of this section (including calculating the 
mean flow rate and mean spray force) for each spray setting; and
    (2) Record the mean flow rate for each spray setting, rounded to two 
decimal places. Record the mean spray force for each spray setting, 
rounded to one decimal place.

[80 FR 81453, Dec. 30, 2015]

[[Page 933]]

                      Energy Conservation Standards



Sec.  431.266  Energy conservation standards and their effective dates.

    (a) Commercial prerinse spray valves manufactured on or after 
January 1, 2006 and before January 28, 2019, shall have a flow rate of 
not more than 1.6 gallons per minute. For the purposes of this standard, 
a commercial prerinse spray valve is a handheld device designed and 
marketed for use with commercial dishwashing and ware washing equipment 
that sprays water on dishes, flatware, and other food service items for 
the purpose of removing food residue before cleaning the items.
    (b) Commercial prerinse spray valves manufactured on or after 
January 28, 2019 shall have a flow rate that does not exceed the 
following:

------------------------------------------------------------------------
                                                             Flow rate
     Product class (spray force in ounce-force, ozf)       (gallons per
                                                           minute, gpm)
------------------------------------------------------------------------
Product Class 1 (<=5.0 ozf).............................            1.00
Product Class 2 (5.0 ozf and <=8.0 ozf)......            1.20
Product Class 3 (8.0 ozf)....................            1.28
------------------------------------------------------------------------

    (1) For the purposes of this standard, the definition of commercial 
prerinse spray valve in Sec.  431.262 applies.
    (2) [Reserved]

[81 FR 4801, Jan. 27, 2016]



                  Subpart P_Mercury Vapor Lamp Ballasts

    Source: 70 FR 60418, Oct. 18, 2005, unless otherwise noted.



Sec.  431.281  Purpose and scope.

    This subpart contains energy conservation requirements for mercury 
vapor lamp ballasts, pursuant to section 135 of the Energy Policy Act of 
2005, Pub. L. 109-58.



Sec.  431.282  Definitions concerning mercury vapor lamp ballasts.

    Ballast means a device used with an electric discharge lamp to 
obtain necessary circuit conditions (voltage, current, and waveform) for 
starting and operating.
    High intensity discharge lamp means an electric-discharge lamp in 
which--
    (1) The light-producing arc is stabilized by the arc tube wall 
temperature; and
    (2) The arc tube wall loading is in excess of 3 Watts/cm\2\, 
including such lamps that are mercury vapor, metal halide, and high-
pressure sodium lamps.
    Mercury vapor lamp means a high intensity discharge lamp, including 
clear, phosphor-coated, and self-ballasted screw base lamps, in which 
the major portion of the light is produced by radiation from mercury 
typically operating at a partial vapor pressure in excess of 100,000 Pa 
(approximately 1 atm).
    Mercury vapor lamp ballast means a device that is designed and 
marketed to start and operate mercury vapor lamps intended for general 
illumination by providing the necessary voltage and current.
    Specialty application mercury vapor lamp ballast means a mercury 
vapor lamp ballast that--
    (1) Is designed and marketed for operation of mercury vapor lamps 
used in quality inspection, industrial processing, or scientific use, 
including fluorescent microscopy and ultraviolet curing; and
    (2) In the case of a specialty application mercury vapor lamp 
ballast, the label of which--
    (i) Provides that the specialty application mercury vapor lamp 
ballast is `For specialty applications only, not for general 
illumination'; and
    (ii) Specifies the specific applications for which the ballast is 
designed.

[74 FR 12074, Mar. 23, 2009]

                       Test Procedures [Reserved]

                      Energy Conservation Standards



Sec.  431.286  Energy conservation standards and their effective dates.

    Mercury vapor lamp ballasts, other than specialty application 
mercury vapor lamp ballasts, shall not be manufactured or imported after 
January 1, 2008.

[74 FR 12074, Mar. 23, 2009]

[[Page 934]]



   Subpart Q_Refrigerated Bottled or Canned Beverage Vending Machines

    Source: 71 FR 71375, Dec. 8, 2006, unless otherwise noted.



Sec.  431.291  Scope.

    This subpart specifies test procedures and energy conservation 
standards for certain commercial refrigerated bottled or canned beverage 
vending machines, pursuant to part A of Title III of the Energy Policy 
and Conservation Act, as amended, 42 U.S.C. 6291-6309. The regulatory 
provisions of Sec. Sec.  430.33 and 430.34 and subparts D and E of part 
430 of this chapter are applicable to refrigerated bottled or canned 
beverage vending machines.
[80 FR 45792, July 31, 2015]



Sec.  431.292  Definitions concerning refrigerated bottled 
or canned beverage vending machines.

    Basic model means all units of a given type of covered product (or 
class thereof) manufactured by one manufacturer, having the same primary 
energy source, and which have essentially identical electrical, 
physical, and functional (or hydraulic) characteristics that affect 
energy consumption, energy efficiency, water consumption, or water 
efficiency.
    Bottled or canned beverage means a beverage in a sealed container.
    Class A means a refrigerated bottled or canned beverage vending 
machine that is not a combination vending machine and in which 25 
percent or more of the surface area on the front side of the beverage 
vending machine is transparent.
    Class B means a refrigerated bottled or canned beverage vending 
machine that is not considered to be Class A and is not a combination 
vending machine.
    Combination A means a combination vending machine where 25 percent 
or more of the surface area on the front side of the beverage vending 
machine is transparent.
    Combination B means a combination vending machine that is not 
considered to be Combination A.
    Combination vending machine means a bottled or canned beverage 
vending machine containing two or more compartments separated by a solid 
partition, that may or may not share a product delivery chute, in which 
at least one compartment is designed to be refrigerated, as demonstrated 
by the presence of temperature controls, and at least one compartment is 
not.
    Refrigerated bottled or canned beverage vending machine means a 
commercial refrigerator (as defined at Sec.  431.62) that cools bottled 
or canned beverages and dispenses the bottled or canned beverages on 
payment.
    Transparent means greater than or equal to 45 percent light 
transmittance, as determined in accordance with ASTM E 1084-86 
(Reapproved 2009), (incorporated by reference, see Sec.  431.293) at 
normal incidence and in the intended direction of viewing.
    V means the refrigerated volume (ft\3\) of the refrigerated bottled 
or canned beverage vending machine, as measured by Appendix C of ANSI/
ASHRAE 32.1 (incorporated by reference, see Sec.  431.293).

[71 FR 71375, Dec. 8, 2006, as amended at 74 FR 44967, Aug. 31, 2009; 76 
FR 12504, Mar. 7, 2011; 80 FR 45792, July 31, 2015; 81 FR 1112, Jan. 8, 
2016]

                             Test Procedures



Sec.  431.293  Materials incorporated by reference.

    (a) General. DOE incorporates by reference the following standards 
into subpart Q of part 431. The material listed has been approved for 
incorporation by reference by the Director of the Federal Register in 
accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any subsequent 
amendment to a standard by the standard-setting organization will not 
affect the DOE regulations unless and until amended by DOE. Material is 
incorporated as it exists on the date of the approval and a notice of 
any change in the material will be published in the Federal Register. 
All approved material is available for inspection at the National 
Archives and Records Administration (NARA). For information on the 
availability of this material at NARA, call (202) 741-6030 or visit 
http://www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html. This material is also available for inspection at


[[Page 935]]

U.S. Department of Energy, Office of Energy Efficiency and Renewable 
Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza, 
SW., Washington, DC 20024, 202-586-2945, or visit http://
www1.eere.energy.gov/buildings/appliance_standards. Standards can be 
obtained from the sources listed below.
    (b) ASHRAE. American Society of Heating, Refrigerating and Air-
Conditioning Engineers, 1791 Tullie Circle, NE. Atlanta, GA 30329, 404-
636-8400, or www.ashrae.org.
    (1) ANSI/ASHRAE Standard 32.1-2010, (``ANSI/ASHRAE 32.1''), 
``Methods of Testing for Rating Vending Machines for Sealed Beverages,'' 
approved July 23, 2010, IBR approved for Sec.  431.292 and appendices A 
and B to subpart Q of this part.
    (2) [Reserved]
    (c) ASTM. ASTM International, 100 Barr Harbor Drive, P.O. Box C700, 
West Conshohocken, PA 19428-2959, (877) 909-2786, or go to www.astm.org.
    (1) ASTM E 1084-86 (Reapproved 2009), ``Standard Test Method for 
Solar Transmittance (Terrestrial) of Sheet Materials Using Sunlight,'' 
approved April 1, 2009, IBR approved for Sec.  431.292.
    (2) [Reserved]

[74 FR 44967, Aug. 31, 2009, as amended at 80 FR 45792, July 31, 2015; 
81 FR 1113, Jan. 8, 2016]



Sec.  431.294  Uniform test method for the measurement of energy consumption 
of refrigerated bottled or canned beverage vending machines.

    (a) Scope. This section provides test procedures for measuring, 
pursuant to EPCA, the energy consumption of refrigerated bottled or 
canned beverage vending machines.
    (b) Testing and Calculations. Determine the daily energy consumption 
of each covered refrigerated bottled or canned beverage vending machine 
by conducting the appropriate test procedure set forth in appendix A or 
B to this subpart.

[71 FR 71375, Dec. 8, 2006, as amended at 80 FR 45793, July 31, 2015]

                      Energy Conservation Standards



Sec.  431.296  Energy conservation standards and their effective dates.

    (a) Each refrigerated bottled or canned beverage vending machine 
manufactured on or after August 31, 2012 and before January 8, 2019, 
shall have a daily energy consumption (in kilowatt hours per day), when 
measured in accordance with the DOE test procedure at Sec.  431.294, 
that does not exceed the following:

------------------------------------------------------------------------
                                        Maximum daily energy consumption
           Equipment class                  (kilowatt hours per day)
------------------------------------------------------------------------
Class A..............................  0.055 x V [dagger] + 2.56.
Class B..............................  0.073 x V [dagger] + 3.16.
Combination Vending Machines.........  [Reserved].
------------------------------------------------------------------------
[dagger] ``V'' is the representative value of refrigerated volume
  (ft\3\) of the BVM model, as calculated pursuant to 10 CFR
  429.52(a)(3).

    (b) Each refrigerated bottled or canned beverage vending machine 
manufactured on or after January 8, 2019, shall have a daily energy 
consumption (in kilowatt hours per day), when measured in accordance 
with the DOE test procedure at Sec.  431.294, that does not exceed the 
following:

------------------------------------------------------------------------
                                        Maximum daily energy consumption
           Equipment class                  (kilowatt hours per day)
------------------------------------------------------------------------
Class A..............................  0.052 x V [dagger] + 2.43.
Class B..............................  0.052 x V [dagger] + 2.20.
Combination A........................  0.086 x V [dagger] + 2.66.
Combination B........................  0.111 x V [dagger] + 2.04.
------------------------------------------------------------------------
[dagger] ``V'' is the representative value of refrigerated volume
  (ft\3\) of the BVM model, as calculated pursuant to 10 CFR
  429.52(a)(3).


[81 FR 1113, Jan. 8, 2016]



 Sec. Appendix A to Subpart Q of Part 431--Uniform Test Method for the 
  Measurement of Energy Consumption of Refrigerated Bottled or Canned 
                        Beverage Vending Machines

    Note: Prior to January 27, 2016, manufacturers must make any 
representations with respect to the energy use or efficiency of 
refrigerated bottled or canned beverage vending machines in accordance 
with the results of testing pursuant to this Appendix A or the 
procedures in 10 CFR 431.294 as it appeared in the edition of 10 CFR 
parts 200 to 499 revised as of January 1, 2015. Any representations made 
with respect to the energy use or efficiency of such refrigerated 
beverage vending

[[Page 936]]

machines must be in accordance with whichever version is selected. On or 
after January 27, 2016, manufacturers must make any representations with 
respect to energy use or efficiency in accordance with the results of 
testing pursuant to this Appendix A to demonstrate compliance with the 
energy conservation standards at 10 CFR 431.296, for which compliance 
was required as of August 31, 2012.
    1. General. Section 3, ``Definitions''; section 4, ``Instruments''; 
section 5, ``Vendible Capacity''; section 6, ``Test Conditions''; 
section 7.1, ``Test Procedures--General Requirements''; and section 7.2, 
``Energy Consumption Test'' of ANSI/ASHRAE 32.1 (incorporated by 
reference; see Sec.  431.293) apply to this appendix except as noted 
throughout this appendix. In cases where there is a conflict, the 
language of the test procedure in this appendix takes precedence over 
ANSI/ASHRAE 32.1.
    1.1. Instruments. In addition to the instrument accuracy 
requirements in section 4, ``Instruments,'' of ANSI/ASHRAE 32.1 
(incorporated by reference, see Sec.  431.293), humidity shall be 
measured with a calibrated instrument accurate to 2 percent RH at the specified ambient relative humidity 
condition specified in section 2.1.2 of this appendix.
    1.2. Definitions. In addition to the definitions specified in 
section 3, ``Definitions,'' of ANSI/ASHRAE 32.1 (incorporated by 
reference, see Sec.  431.293), the following definition is also 
applicable to this appendix.
    External accessory standby mode means the mode of operation in which 
any external, integral customer display signs, lighting, or digital 
screens:
    (1) Are connected to mains power;
    (2) Do not produce the intended illumination, display, or 
interaction functionality; and
    (3) Can be switched into another mode automatically with only a 
remote user-generated or an internal signal.
    Instantaneous average next-to-vend beverage temperature means the 
spatial average of all standard test packages in the next-to-vend 
beverages positions at a given time.
    Integrated average temperature means the average temperature of all 
standard test package measurements in the next-to-vend beverage 
positions taken over the duration of the test, expressed in degrees 
Fahrenheit ( [deg]F).
    Lowest application product temperature means the lowest integrated 
average temperature a given basic model is capable of maintaining so as 
to comply with the temperature stabilization requirements specified in 
section 7.2.2.2 of ANSI/ASHRAE 32.1 (incorporated by reference, see 
Sec.  431.293).
    2. Test Procedure.
    2.1. Test Conditions. The test conditions specified in section 6, 
``Test Conditions,'' of ANSI/ASHRAE 32.1 (incorporated by reference, see 
Sec.  431.293) apply to this appendix except that in section 6.1, 
``Voltage and Frequency,'' of ANSI/ASHRAE 32.1, the voltage and 
frequency tolerances specified in section 6.1.a of ANSI/ASHRAE 32.1 also 
apply equivalently to section 6.1.b of ANSI/ASHRAE 32.1 for equipment 
with dual nameplate voltages.
    2.1.1. Average Beverage Temperature. The integrated average 
temperature measured during the test must be within 1 [deg]F of the value specified in Table A.1 of this 
appendix or the lowest application product temperature for models tested 
in accordance with paragraph 2.1.3 of this appendix. The measurement of 
integrated average temperature must begin after temperature 
stabilization has been achieved and continue for the following 24 
consecutive hours. All references to ``Table 1'' in ANSI/ASHRAE 32.1 
(incorporated by reference, see Sec.  431.293) shall instead be 
interpreted as references to Table A.1 of this appendix and all 
references to ``average beverage temperature'' in ANSI/ASHRAE 32.1 shall 
instead be interpreted as references to the integrated average 
temperature as defined in section 1.2 of this appendix of this subpart, 
except as noted in section 2.1.1.1 of this appendix.
    2.1.1.1. Temperature Stabilization. Temperature stabilization shall 
be determined in accordance with section 7.2.2.2 of ANSI/ASHRAE 32.1 
(incorporated by reference Sec.  431.293), except that the reference to 
``average beverage temperature'' shall instead refer to the 
``instantaneous average next-to-vend beverage temperature,'' as defined 
in section 1.2 of this appendix, and the reference to ``Table 1'' shall 
instead refer to Table A.1 of this appendix. That is, temperature 
stabilization is considered to be achieved 24 hours after the 
instantaneous average next-to-vend beverage temperature reaches the 
specified value (see Table A.1) and energy consumption for two 
successive 6 hour periods are within 2 percent of each other.
    2.1.2. Ambient Test Conditions. The refrigerated bottled or canned 
beverage vending machine must be tested at the test conditions and 
tolerances specified in the following Table A.1 of this appendix. The 
specified ambient temperature and humidity conditions shall be 
maintained within the ranges specified for each recorded measurement. 
All references to ``Table 1'' in ANSI/ASHRAE 32.1 (incorporated by 
reference, see Sec.  431.293) shall instead be interpreted as references 
to Table A.1 of this appendix. In contrast to the requirements of 
section 6.1 and Table 1 of ANSI/ASHRAE 32.1, conduct testing only one 
time at the conditions referenced in Table A.1 of this appendix. Testing 
at alternate ambient conditions is not required or permitted.

[[Page 937]]



               Table A.1--Ambient Temperature and Relative Humidity Specified Value and Tolerance
----------------------------------------------------------------------------------------------------------------
                                                                                      Acceptable range (based on
     Test and pretest condition               Value                 Tolerance            value and tolerance)
----------------------------------------------------------------------------------------------------------------
Instantaneous Average Next-to-Vend   36 [deg]F.............  1 [deg]F.
Integrated Average Temperature.....  36 [deg]F.............  1 [deg]F.            throughout test).
Ambient Temperature................  75 [deg]F.............  2 [deg]F.
Relative Humidity..................  45 percent RH.........  5 percent RH.
----------------------------------------------------------------------------------------------------------------

    2.1.3. Lowest Application Product Temperature. If a refrigerated 
bottled or canned beverage vending machine is not capable of maintaining 
an integrated average temperature of 36 [deg]F (1 
[deg]F) during the 24 hour test period, the unit must be tested at the 
lowest application product temperature, as defined in section 1.2 of 
this appendix. For refrigerated bottled or canned beverage vending 
machines equipped with a thermostat, the lowest application product 
temperature is the integrated average temperature achieved at the lowest 
thermostat setting.
    2.2. Equipment Installation and Test Set Up. Except as provided in 
this appendix, the test procedure for energy consumption of refrigerated 
bottled or canned beverage vending machines shall be conducted in 
accordance with the methods specified in sections 7.1 through 7.2.2.3 
under ``Test Procedures'' of ANSI/ASHRAE 32.1 (incorporated by 
reference, see Sec.  431.293).
    2.2.1. Equipment Loading. Configure refrigerated bottled or canned 
beverage vending machines to hold the maximum number of standard 
products in the refrigerated compartment(s) and place standard test 
packages as specified in section 2.2.1.1 or 2.2.1.2 of this appendix.
    2.2.1.1. Placement of Standard Test Packages for Equipment with 
Products Arranged Horizontally. For refrigerated bottled or canned 
beverage vending machines with products arranged horizontally (e.g., on 
shelves or in product spirals), place standard test packages in the 
refrigerated compartment(s) in the following locations, as shown in 
Figure A.1:
    (a) For odd-number shelves, when counting starting from the bottom 
shelf, standard test packages shall be placed at:
    (1) The left-most next-to-vend product location,
    (2) The right-most next-to-vend product location, and
    (3) For equipment with greater than or equal to five next-to-vend 
product locations on each shelf, either:
    (A) The next-to-vend product location in the center of the shelf 
(i.e., equidistant from the left-most and right-most next-to-vend 
product locations) if there are an odd number of next-to-vend products 
on the shelf or
    (B) The next-to-vend product location immediately to the right and 
the left of the center position if there are an even number of next-to-
vend products on the shelf.
    (b) For even-numbered shelves, when counting from the bottom shelf, 
standard test packages shall be places at either:
    (1) For equipment with less than or equal to six next-to-vend 
product locations on each shelf, the next-to-vend product location(s):
    (A) One location towards the center from the left-most next-to-vend 
product location; and
    (B) One location towards to the center from the right-most next-to-
vend product location, or
    (2) For equipment with greater than six next-to-vend product 
locations on each shelf, the next-to-vend product locations
    (A) Two locations towards the center from the left-most next-to-vend 
product location; and
    (B) Two locations towards to the center from the right-most next-to-
vend product location.

[[Page 938]]

[GRAPHIC] [TIFF OMITTED] TR31JY15.023

    2.2.1.2. Placement of Standard Test Packages for Equipment with 
Products Arranged Vertically. For refrigerated bottled or canned 
beverage vending machines with products arranged vertically (e.g., in 
stacks), place standard test packages in the refrigerated compartment(s) 
in each next-to-vend product location.
    2.2.1.3. Loading of Combination Vending Machines. For combination 
vending machines, the non-refrigerated compartment(s) must not be loaded 
with any standard products, test packages, or other vendible 
merchandise.
    2.2.1.4. Standard Products. The standard product shall be standard 
12-ounce aluminum beverage cans filled with a liquid with a density of 
1.0 grams per milliliter (g/mL)  0.1 g/mL at 36 
[deg]F. For product storage racks that are not capable of vending 12-
ounce cans, but are capable of vending 20-ounce bottles, the standard 
product shall be 20-ounce plastic bottles filled with a liquid with a 
density of 1.0 g/mL  0.1 g/mL at 36 [deg]F. For 
product storage racks that are not capable of vending 12-ounce cans or 
20-ounce bottles, the standard product shall be the packaging and 
contents specified by the manufacturer in product literature as the 
standard product (i.e., the specific merchandise the refrigerated 
bottled or canned beverage vending machine is designed to vend).
    2.2.1.5. Standard Test Packages. A standard test package is a 
standard product, as specified in 2.2.1.4 of this appendix, altered to 
include a temperature-measuring instrument at its center of mass.
    2.2.2. Sensor Placement. The integrated average temperature of next-
to-vend beverages shall be measured in standard test packages in the 
next-to-vend product locations specified in section 2.2.1.1 of this 
appendix. Do not run the thermocouple wire and other measurement 
apparatus through the dispensing door; the thermocouple wire and other 
measurement apparatus must be configured and sealed so as to minimize 
air flow between the interior refrigerated volume and the ambient room 
air. If a manufacturer chooses to employ a method other than routing 
thermocouple and sensor wires through the door gasket and ensuring the 
gasket is compressed around the wire to ensure a good seal, then it must 
maintain a record of the method used in the data underlying that basic 
model's certification pursuant to 10 CFR 429.71.
    2.2.3. Accessories. (a) All standard components that would be used 
during normal operation of the model in the field and are necessary to 
provide sufficient functionality for

[[Page 939]]

cooling and vending products in field installations (i.e., product 
inventory, temperature management, product merchandising (including, 
e.g., lighting or signage), product selection, and product transport and 
delivery) shall be in place during testing and shall be set to the 
maximum energy-consuming setting if manually adjustable, except that the 
specific components and accessories listed in the subsequent sections 
shall be operated as stated. Components not necessary for the inventory, 
temperature management, product merchandising (e.g., lighting or 
signage), product selection, and or product transport and delivery shall 
be de-energized. If systems not required for the primary functionality 
of the machine as stated in this section cannot be de-energized without 
preventing the operation of the machine, then they shall be placed in 
the lowest energy consuming state.
    (b) Instead of testing pursuant to section 7.2.2.4 of ANSI/ASHRAE 
32.1 (incorporated by reference, see Sec.  431.293), provide, if 
necessary, any physical stimuli or other input to the machine needed to 
prevent automatic activation of energy management systems that can be 
adjusted by the machine operator during the test period. Automatic 
energy management systems that cannot be adjusted by the machine 
operator may be enabled, as specified by section 7.2.1 of ANSI/ASHRAE 
32.1.
    2.2.3.1. Payment Mechanisms. Refrigerated bottled or canned beverage 
vending machines shall be tested with no payment mechanism in place, the 
payment mechanism in place but de-energized, or the payment mechanism in 
place but set to the lowest energy consuming state, if it cannot be de-
energized. A default payment mechanism energy consumption value of 0.20 
kWh/day shall be added to the primary rated energy consumption per day, 
as required in section 2.3 of this appendix.
    2.2.3.2. Internal Lighting. All lighting that is contained within or 
is part of the internal physical boundary of the refrigerated bottled or 
canned beverage vending machine, as established by the top, bottom, and 
side panels of the equipment, shall be placed in its maximum energy 
consuming state.
    2.2.3.3. External Customer Display Signs, Lights, and Digital 
Screens. All external customer display signs, lights, and digital 
screens that are independent from the refrigeration or vending 
performance of the refrigerated bottled or canned beverage vending 
machine must be disconnected, disabled, or otherwise de-energized for 
the duration of testing. Customer display signs, lighting, and digital 
screens that are integrated into the beverage vending machine cabinet or 
controls such that they cannot be de-energized without disabling the 
refrigeration or vending functions of the refrigerated bottled or canned 
beverage vending machine or modifying the circuitry must be placed in 
external accessory standby mode, if available, or their lowest energy-
consuming state. Digital displays that also serve a vending or money 
processing function must be placed in the lowest energy-consuming state 
that still allows the money processing feature to function.
    2.2.3.4. Anti-sweat and Other Electric Resistance Heaters. Anti-
sweat and other electric resistance heaters must be operational during 
the entirety of the test procedure. Units with a user-selectable setting 
must have the heaters energized and set to the most energy-consumptive 
position. Units featuring an automatic, non-user-adjustable controller 
that turns on or off based on environmental conditions must be operating 
in the automatic state. Units that are not shipped with a controller 
from the point of manufacture, but are intended to be used with a 
controller, must be equipped with an appropriate controller when tested.
    2.2.3.5. Condensate Pan Heaters and Pumps. All electric resistance 
condensate heaters and condensate pumps must be installed and 
operational during the test. Prior to the start of the test, including 
the 24 hour period used to determine temperature stabilization, as 
described in ANSI/ASHRAE 32.1 section 7.2.2.2 (incorporated by 
reference, see Sec.  431.293), the condensate pan must be dry. For the 
duration of the test, including the 24 hour time period necessary for 
temperature stabilization, allow any condensate moisture generated to 
accumulate in the pan. Do not manually add or remove water from the 
condensate pan at any time during the test.
    2.2.3.6. Illuminated Temperature Displays. All illuminated 
temperature displays must be energized and operated during the test the 
same way they would be energized and operated during normal field 
operation, as recommended in manufacturer product literature, including 
manuals.
    2.2.3.7. Condenser Filters. Remove any nonpermanent filters provided 
to prevent particulates from blocking a model's condenser coil.
    2.2.3.8. Security Covers. Remove any devices used to secure the 
model from theft or tampering.
    2.2.3.9. General Purpose Outlets. During the test, do not connect 
any external load to any general purpose outlets available on a unit.
    2.2.3.10. Crankcase Heaters and Other Electric Resistance Heaters 
for Cold Weather. Crankcase heaters and other electric resistance 
heaters for cold weather must be operational during the test. If a 
control system, such as a thermostat or electronic controller, is used 
to modulate the operation of the heater, it must be activated during the 
test and operated in accordance with the manufacturer's instructions.
    2.2.4. Sampling and Recording of Data. Record the data listed in 
section 7.2.2.3 of

[[Page 940]]

ANSI/ASHRAE 32.1 (incorporated by reference, see Sec.  431.293) at least 
every 1 minute. For the purpose of this subsection, ``average beverage 
temperature,'' listed in section 7.2.2.3 of ANSI/ASHRAE 32.1, means 
``instantaneous average next-to-vend beverage temperature.''
    2.3. Determination of Daily Energy Consumption. Determine the daily 
energy consumption of each tested refrigerated bottled or canned 
beverage vending machine as the sum of:
    (a) The default payment mechanism energy consumption value from 
section 2.2.3.1 of this appendix and
    (b) The primary rated energy consumption per day (ED), in kWh, and 
determined in accordance with the calculation procedure in section 
7.2.3.1, ``Calculation of Daily Energy Consumption,'' of ANSI/ASHRAE 
32.1 (incorporated by reference, see Sec.  431.293).
    2.3.1. Calculations and Rounding. In all cases, the primary rated 
energy consumption per day (ED) must be calculated with raw measured 
values and rounded to units of 0.01 kWh/day.
    3. Determination of Refrigerated Volume, Vendible Capacity, and 
Surface Area.
    3.1. Refrigerated Volume. Determine the ``refrigerated volume'' of 
refrigerated bottled or canned beverage vending machines in accordance 
with appendix C, ``Measurement of Volume,'' of ANSI/ASHRAE 32.1 
(incorporated by reference, see Sec.  431.293). For combination vending 
machines, the ``refrigerated volume'' does not include any non-
refrigerated compartments.
    3.2. Vendible Capacity. Determine the ``vendible capacity'' of 
refrigerated bottled or canned beverage vending machines in accordance 
with the first paragraph of section 5, ``Vending Machine Capacity,'' of 
ANSI/ASHRAE 32.1, (incorporated by reference, see Sec.  431.293). For 
combination vending machines, the ``vendible capacity'' includes only 
the capacity of any portion of the refrigerated bottled or canned 
beverage vending machine that is refrigerated and does not include the 
capacity of the non-refrigerated compartment(s).

[80 FR 45793, July 31, 2015]



 Sec. Appendix B to Subpart Q of Part 431--Uniform Test Method for the 
  Measurement of Energy Consumption of Refrigerated Bottled or Canned 
                        Beverage Vending Machines

    Note: After January 27, 2016, manufacturers must make any 
representations with respect to energy use or efficiency in accordance 
with the results of testing pursuant to appendix A of this subpart to 
demonstrate compliance with the energy conservation standards at 10 CFR 
431.296, for which compliance was required as of August 31, 2012. 
Alternatively, manufacturers may make representations based on testing 
in accordance with this appendix prior to the compliance date of any 
amended energy conservation standards, provided that such 
representations demonstrate compliance with such amended energy 
conservation standards. Any representations made on or after the 
compliance date of any amended energy conservation standards, must be 
made in accordance with the results of testing pursuant to this 
appendix. Any representations made with respect to the energy use or 
efficiency of such refrigerated beverage vending machines must be in 
accordance with whichever version is selected.
    1. General. Section 3, ``Definitions''; section 4, ``Instruments''; 
section 5, ``Vendible Capacity''; section 6, ``Test Conditions''; 
section 7.1, ``Test Procedures--General Requirements''; and section 7.2, 
``Energy Consumption Test'' of ANSI/ASHRAE 32.1 (incorporated by 
reference; see Sec.  431.293) apply to this appendix except as noted 
throughout this appendix. In cases where there is a conflict, the 
language of the test procedure in this appendix takes precedence over 
ANSI/ASHRAE 32.1.
    1.1. Instruments. In addition to the instrument accuracy 
requirements in section 3, ``Instruments,'' of ANSI/ASHRAE 32.1 
(incorporated by reference, see Sec.  431.293), humidity shall be 
measured with a calibrated instrument accurate to 2 percent RH at the specified ambient relative humidity 
condition specified in section 2.1.3 of this appendix.
    1.2. Definitions. In addition to the definitions specified in 
section 3, ``Definitions,'' of ANSI/ASHRAE 32.1 (incorporated by 
reference, see Sec.  431.293) the following definitions are also 
applicable to this appendix.
    Accessory low power mode means a state in which a beverage vending 
machine's lighting and/or other energy-using systems are in low power 
mode, but that is not a refrigeration low power mode. Functions that may 
constitute an accessory low power mode may include, for example, dimming 
or turning off lights, but does not include adjustment of the 
refrigeration system to elevate the temperature of the refrigerated 
compartment(s).
    External accessory standby mode means the mode of operation in which 
any external, integral customer display signs, lighting, or digital 
screens are connected to mains power; do not produce the intended 
illumination, display, or interaction functionality; and can be switched 
into another mode automatically with only a remote user-generated or an 
internal signal.
    Instantaneous average next-to-vend beverage temperature means the 
spatial average of all standard test packages in the next-to-vend 
beverages positions at a given time.
    Integrated average temperature means the average temperature of all 
standard test

[[Page 941]]

package measurements in the next-to-vend beverage positions taken over 
the duration of the test, expressed in degrees Fahrenheit ( [deg]F).
    Low power mode means a state in which a beverage vending machine's 
lighting, refrigeration, and/or other energy-using systems are 
automatically adjusted (without user intervention) such that they 
consume less energy than they consume in an active vending environment.
    Lowest application product temperature means the lowest integrated 
average temperature a given basic model is capable of maintaining so as 
to comply with the temperature stabilization requirements specified in 
section 7.2.2.2 of ANSI/ASHRAE 32.1 (incorporated by reference, see 
Sec.  431.293).
    Refrigeration low power mode means a state in which a beverage 
vending machine's refrigeration system is in low power mode because of 
elevation of the temperature of the refrigerated compartment(s). To 
qualify as low power mode, the unit must satisfy the requirements 
described in section 2.3.2.1 of this appendix.
    2. Test Procedure.
    2.1. Test Conditions. The test conditions specified in section 6, 
``Test Conditions'' of ANSI/ASHRAE 32.1 (incorporated by reference, see 
Sec.  431.293) apply to this appendix except that in section 6.1, 
``Voltage and Frequency,'' of ANSI/ASHRAE 32.1, the voltage and 
frequency tolerances specified in section 6.1.a of ANSI/ASHRAE 32.1 also 
apply equivalently to section 6.1.b of ANSI/ASHRAE 32.1 for equipment 
with dual nameplate voltages.
    2.1.1. Average Beverage Temperature. The integrated average 
temperature measured during the test must be within 1 [deg]F of the value specified in Table B.1 of this 
appendix or the lowest application product temperature for models tested 
in accordance with paragraph 2.1.3 of this appendix. The measurement of 
integrated average temperature must begin after temperature 
stabilization has been achieve and continue for the following 24 
consecutive hours. All references to ``Table 1'' in ANSI/ASHRAE 32.1 
(incorporated by reference, see Sec.  431.293) shall instead be 
interpreted as references to Table B.1 of this appendix and all 
references to ``average beverage temperature'' in ANSI/ASHRAE 32.1 shall 
instead be interpreted as references to the integrated average 
temperature as defined in section 1.2 of this appendix, except as noted 
in section 2.1.1.1 of this appendix.
    2.1.1.1. Temperature Stabilization. Temperature stabilization shall 
be determined in accordance with section 7.2.2.2 of ANSI/ASHRAE 32.1 
(incorporated by reference Sec.  431.293), except that the reference to 
``average beverage temperature'' shall instead refer to the 
``instantaneous average next-to-vend beverage temperature,'' as defined 
in section 1.2 of this appendix, and the reference to ``Table 1'' shall 
instead refer to Table A.1 of this appendix. That is, temperature 
stabilization is considered to be achieved 24 hours after the 
instantaneous average next-to-vend beverage temperature reaches the 
specified value (see Table A.1) and energy consumption for two 
successive 6 hour periods are within 2 percent of each other.
    2.1.2. Ambient Test Conditions. The refrigerated bottled or canned 
beverage vending machine must be tested at the test conditions and 
tolerances specified in the following Table B.1 of this appendix. The 
specified ambient temperature and humidity conditions shall be 
maintained within the ranges specified for each recorded measurement. 
All references to ``Table 1'' in ANSI/ASHRAE 32.1 (incorporated by 
reference, see Sec.  431.293) shall instead be interpreted as references 
to Table B.1 of this appendix. In contrast to the requirements of 
section 6.1 and Table 1 of ANSI/ASHRAE 32.1, conduct testing only one 
time at the conditions referenced in Table B.1 of this appendix. Testing 
at alternate ambient conditions is not required or permitted.

               Table B.1--Ambient Temperature and Relative Humidity Specified Value and Tolerance
----------------------------------------------------------------------------------------------------------------
                                                                                      Acceptable range (based on
     Test and pretest condition               Value                 Tolerance            value and tolerance)
----------------------------------------------------------------------------------------------------------------
Instantaneous Average Next-to-Vend   36 [deg]F.............  1 [deg]F.
Integrated Average Temperature.....  36 [deg]F.............  1 [deg]F.            throughout test).
Ambient Temperature................  75 [deg]F.............  2 [deg]F.
Relative Humidity..................  45 percent RH.........  5 percent RH.
----------------------------------------------------------------------------------------------------------------

    2.1.3. Lowest Application Product Temperature. If a refrigerated 
bottled or canned beverage vending machine is not capable of maintaining 
an integrated average temperature of 36 [deg]F (1 
[deg]F) during the 24 hour test period, the unit must be tested at the 
lowest application product temperature, as defined in section 1.2 of 
this appendix. For refrigerated bottled or canned beverage vending 
machines equipped with a thermostat, the lowest application product 
temperature is the integrated average temperature achieved at the lowest 
thermostat setting.

[[Page 942]]

    2.2. Equipment Installation and Test Set Up. Except as provided in 
this section 2.2 of appendix, the test procedure for energy consumption 
of refrigerated bottled or canned beverage vending machines shall be 
conducted in accordance with the methods specified in sections 7.1 
through 7.2.2.3 under ``Test Procedures'' of ANSI/ASHRAE 32.1 
(incorporated by reference, see Sec.  431.293).
    2.2.1. Equipment Loading. Configure refrigerated bottled or canned 
beverage vending machines to hold the maximum number of standard 
products, and place standard test packages in the refrigerated 
compartment(s) as specified in section 2.2.1.1 or 2.2.1.2 of this 
appendix.
    2.2.1.1. Placement of Standard Test Packages for Equipment with 
Products Arranged Horizontally. For refrigerated bottled or canned 
beverage vending machines with products arranged horizontally (e.g., on 
shelves or in product spirals), place standard test packages in the 
refrigerated compartment(s) in the following locations, as shown in 
Figure B.1:
    (a) For odd-number shelves, when counting starting from the bottom 
shelf, standard test packages shall be placed at:
    (1) The left-most next-to-vend product location;
    (2) The right-most next-to-vend product location; and
    (3) For equipment with greater than or equal to five product 
locations on each shelf, either:
    (i) The next-to-vend product location in the center of the shelf 
(i.e., equidistant from the left-most and right-most next-to-vend 
product locations) if there are an odd number of next-to-vend products 
on the shelf or,
    (ii) The next-to-vend product location immediately to the right and 
the left of the center position if there are an even number of next-to-
vend products on the shelf.
    (b) For even-numbered shelves, when counting from the bottom shelf, 
standard test packages shall be places at either:
    (1) For equipment with less than or equal to six next-to-vend 
product locations on each shelf, the next-to-vend product location(s);
    (i) One position towards the center from the left-most next-to-vend 
product location; and
    (ii) One location towards to the center from the right-most next-to-
vend product location; or
    (2) For equipment with greater than six next-to-vend product 
locations on each shelf, the next-to-vend product locations:
    (i) Two selections towards the center from the left-most next-to-
vend product location; and
    (ii) Two locations towards to the center from the right-most next-
to-vend product location.

[[Page 943]]

[GRAPHIC] [TIFF OMITTED] TR31JY15.024

    2.2.1.2. Placement of Standard Test Packages for Equipment with 
Products Arranged Vertically. For refrigerated bottled or canned 
beverage vending machines with products arranged vertically (e.g., in 
stacks), place standard test packages in the refrigerated compartment(s) 
in each next-to-vend product location.
    2.2.1.3. Loading of Combination Vending Machines. For combination 
vending machines, the non-refrigerated compartment(s) must not be loaded 
with any standard products, test packages, or other vendible 
merchandise.
    2.2.1.4. Standard Products. The standard product shall be standard 
12-ounce aluminum beverage cans filled with a liquid with a density of 
1.0 grams per milliliter (g/mL) 0.1 g/mL at 36 
[deg]F. For product storage racks that are not capable of vending 12-
ounce cans, but are capable of vending 20-ounce bottles, the standard 
product shall be 20-ounce plastic bottles filled with a liquid with a 
density of 1.0 g/mL 0.1 g/mL at 36 [deg]F. For 
product storage racks that are not capable of vending 12-ounce cans or 
20-ounce bottles, the standard product shall be the packaging and 
contents specified by the manufacturer in product literature as the 
standard product (i.e., the specific merchandise the refrigerated 
bottled or canned beverage vending machine is designed to vend).
    2.2.1.5. Standard Test Packages. A standard test package is a 
standard product, as specified in 2.2.1.4 of this appendix, altered to 
include a temperature-measuring instrument at its center of mass.
    2.2.2. Sensor Placement. The integrated average temperature of next-
to-vend beverages shall be measured in standard test packages in the 
next-to-vend product locations specified in section 2.2.1.1 of this 
appendix. Do not run the thermocouple wire and other measurement 
apparatus through the dispensing door; the thermocouple wire and other 
measurement apparatus must be configured and sealed so as to minimize 
air flow between the interior refrigerated volume and the ambient room 
air. If a manufacturer chooses to employ a method other than routing 
thermocouple and sensor wires through the door gasket and ensuring the 
gasket is compressed around the wire to ensure a good seal, then it must 
maintain a record of the method used in the data underlying that basic 
model's certification pursuant to 10 CFR 429.71.
    2.2.3. Vending Mode Test Period. The vending mode test period begins 
after temperature stabilization has been achieved, as described in ANSI/
ASHRAE 32.1 section 7.2.2.2 (incorporated by reference, see Sec.  
431.293) and continues for 18 hours for equipment with an accessory low 
power mode or for 24 hours for

[[Page 944]]

equipment without an accessory low power mode. For the vending mode test 
period, equipment that has energy-saving features that cannot be 
disabled shall have those features set to the most energy-consuming 
settings, except for as specified in section 2.2.4 of this appendix. In 
addition, all energy management systems shall be disabled. Instead of 
testing pursuant to sections 7.1.1(d) and 7.2.2.4 of ANSI/ASHRAE 32.1, 
provide, if necessary, any physical stimuli or other input to the 
machine needed to prevent automatic activation of low power modes during 
the vending mode test period.
    2.2.4. Accessory Low Power Mode Test Period. For equipment with an 
accessory low power mode, the accessory low power mode may be engaged 
for 6 hours, beginning 18 hours after the temperature stabilization 
requirements established in section 7.2.2.2 of ANSI/ASHRAE 32.1 
(incorporated by reference, see Sec.  431.293) have been achieved, and 
continuing until the end of the 24-hour test period. During the 
accessory low power mode test, operate the refrigerated bottled or 
canned beverage vending machine with the lowest energy-consuming 
lighting and control settings that constitute an accessory low power 
mode. The specification and tolerances for integrated average 
temperature in Table B.1 of this appendix still apply, and any 
refrigeration low power mode must not be engaged. Instead of testing 
pursuant to sections 7.1.1(d) and 7.2.2.4 of ANSI/ASHRAE 32.1, provide, 
if necessary, any physical stimuli or other input to the machine needed 
to prevent automatic activation of refrigeration low power modes during 
the accessory low power mode test period.
    2.2.5. Accessories. Unless specified otherwise in this appendix, all 
standard components that would be used during normal operation of the 
basic model in the field and are necessary to provide sufficient 
functionality for cooling and vending products in field installations 
(i.e., product inventory, temperature management, product 
merchandising(including, e.g., lighting or signage), product selection, 
and product transport and delivery) shall be in place during testing and 
shall be set to the maximum energy-consuming setting if manually 
adjustable. Components not necessary for the inventory, temperature 
management, product merchandising (e.g., lighting or signage), product 
selection, or product transport and delivery shall be de-energized. If 
systems not required for the primary functionality of the machine as 
stated in this section cannot be de-energized without preventing the 
operation of the machine, then they shall be placed in the lowest energy 
consuming state Components with controls that are permanently 
operational and cannot be adjusted by the machine operator shall be 
operated in their normal setting and consistent with the requirements of 
2.2.3 and 2.2.4 of this appendix. The specific components and 
accessories listed in the subsequent sections shall be operated as 
stated during the test, except when controlled as part of a low power 
mode during the low power mode test period.
    2.2.5.1 Payment Mechanisms. Refrigerated bottled or canned beverage 
vending machines shall be tested with no payment mechanism in place, the 
payment mechanism in-place but de-energized, or the payment mechanism in 
place but set to the lowest energy consuming state, if it cannot be de-
energized. A default payment mechanism energy consumption value of 0.20 
kWh/day shall be added to the primary rated energy consumption per day, 
as noted in section 2.3 of this appendix.
    2.2.5.2. Internal Lighting. All lighting that is contained within or 
is part of the internal physical boundary of the refrigerated bottled or 
canned beverage vending machine, as established by the top, bottom, and 
side panels of the equipment, shall be placed in its maximum energy 
consuming state.
    2.2.5.3. External Customer Display Signs, Lights, and Digital 
Screens. All external customer display signs, lights, and digital 
screens that are independent from the refrigeration or vending 
performance of the refrigerated bottled or canned beverage vending 
machine must be disconnected, disabled, or otherwise de-energized for 
the duration of testing. Customer display signs, lighting, and digital 
screens that are integrated into the beverage vending machine cabinet or 
controls such that they cannot be de-energized without disabling the 
refrigeration or vending functions of the refrigerated bottled or canned 
beverage vending machine or modifying the circuitry must be placed in 
external accessory standby mode, if available, or their lowest energy-
consuming state. Digital displays that also serve a vending or money 
processing function must be placed in the lowest energy-consuming state 
that still allows the money processing feature to function.
    2.2.5.4. Anti-sweat or Other Electric Resistance Heaters. Anti-sweat 
or other electric resistance heaters must be operational during the 
entirety of the test procedure. Units with a user-selectable setting 
must have the heaters energized and set to the most energy-consumptive 
position. Units featuring an automatic, non-user-adjustable controller 
that turns on or off based on environmental conditions must be operating 
in the automatic state. Units that are not shipped with a controller 
from the point of manufacture, but are intended to be used with a 
controller, must be equipped with an appropriate controller when tested.
    2.2.5.5. Condensate Pan Heaters and Pumps. All electric resistance 
condensate heaters and condensate pumps must be installed and 
operational during the test. Prior to the start of the test, including 
the 24 hour period

[[Page 945]]

used to determine temperature stabilization prior to the start of the 
test period, as described in ANSI/ASHRAE 32.1 section 7.2.2.2 
(incorporated by reference, see Sec.  431.293), the condensate pan must 
be dry. For the duration of the test, including the 24 hour time period 
necessary for temperature stabilization, allow any condensate moisture 
generated to accumulate in the pan. Do not manually add or remove water 
from the condensate pan at any time during the test. Any automatic 
controls that initiate the operation of the condensate pan heater or 
pump based on water level or ambient conditions must be enabled and 
operated in the automatic setting.
    2.2.5.6. Illuminated Temperature Displays. All illuminated 
temperature displays must be energized and operated during the test the 
same way they would be energized and operated during normal field 
operation, as recommended in manufacturer product literature, including 
manuals.
    2.2.5.7. Condenser Filters. Remove any nonpermanent filters provided 
to prevent particulates from blocking a model's condenser coil.
    2.2.5.8. Security Covers. Remove any devices used to secure the 
model from theft or tampering.
    2.2.5.9. General Purpose Outlets. During the test, do not connect 
any external load to any general purpose outlets available on a unit.
    2.2.5.10. Crankcase Heaters and Other Electric Resistance Heaters 
for Cold Weather. Crankcase heaters and other electric resistance 
heaters for cold weather must be operational during the test. If a 
control system, such as a thermostat or electronic controller, is used 
to modulate the operation of the heater, it must be activated during the 
test and operated in accordance with the manufacturer's instructions.
    2.2.6. Sampling and Recording of Data. Record the data listed in 
section 7.2.2.3 of ANSI/ASHRAE 32.1 (incorporated by reference, see 
Sec.  431.293), at least every 1 minute. For the purpose of this 
section, ``average beverage temperature,'' listed in section 7.2.2.3 of 
ANSI/ASHRAE 32.1, means ``instantaneous average next-to-vend beverage 
temperature.''
    2.3. Determination of Daily Energy Consumption. In section 7.2.3.1 
of ANSI/ASHRAE 32.1 (incorporated by reference, see Sec.  431.293), the 
primary rated energy consumption per day (ED) shall be the energy 
measured during the vending mode test period and accessory low power 
mode test period, as specified in sections 2.2.3 and 2.2.4 of this 
appendix, as applicable.
    2.3.1. Energy Consumption of Payment Mechanisms. Calculate the sum 
of:
    (a) The default payment mechanism energy consumption value from 
section 2.2.5.1 and
    (b) The primary rated energy consumption per day (ED), in kWh, and 
determined in accordance with the calculation procedure in section 
7.2.3.1, ``Calculation of Daily Energy Consumption,'' of ANSI/ASHRAE 
32.1 (incorporated by reference, see Sec.  431.293).
    2.3.2. Refrigeration Low Power Mode. For refrigerated bottled or 
canned beverage vending machines with a refrigeration low power mode, 
multiply the value determined in section 2.3.1 of this appendix by 0.97 
to determine the daily energy consumption of the unit tested. For 
refrigerated bottled or canned beverage vending machines without a 
refrigeration low power mode, the value determined in section 2.3.1 is 
the daily energy consumption of the unit tested.
    2.3.2.1. Refrigeration Low Power Mode Validation Test Method. This 
test method is not required for the certification of refrigerated 
bottled or canned beverage vending machines. To verify the existence of 
a refrigeration low power mode, initiate the refrigeration low power 
mode in accordance with manufacturer instructions contained in product 
literature and manuals, after completion of the 6-hour low power mode 
test period. Continue recording all the data specified in section 2.2.6 
of this appendix until existence of a refrigeration low power mode has 
been confirmed or denied. The refrigerated bottled or canned beverage 
vending machine shall be deemed to have a refrigeration low power mode 
if either:
    (a) The following three requirements have been satisfied:
    (1) The instantaneous average next-to-vend beverage temperature must 
reach at least 4 [deg]F above the integrated average temperature or 
lowest application product temperature, as applicable, within 6 hours.
    (2) The instantaneous average next-to-vend beverage temperature must 
be maintained at least 4 [deg]F above the integrated average temperature 
or lowest application product temperature, as applicable, for at least 1 
hour.
    (3) After the instantaneous average next-to-vend beverage 
temperature is maintained at or above 4 [deg]F above the integrated 
average temperature or lowest application product temperature, as 
applicable, for at least 1 hour, the refrigerated beverage vending 
machine must return to the specified integrated average temperature or 
lowest application product temperature, as applicable, automatically 
without direct physical intervention.
    (b) Or, the compressor does not cycle on for the entire 6 hour 
period, in which case the instantaneous average beverage temperature 
does not have to reach 4 [deg]F above the integrated average temperature 
or lowest application product temperature, as applicable, but, the 
equipment must still automatically

[[Page 946]]

return to the integrated average temperature or lowest application 
product temperature, as applicable, after the 6 hour period without 
direct physical intervention.
    2.3.3. Calculations and Rounding. In all cases, the primary rated 
energy consumption per day (ED) must be calculated with raw 
measured values and the final result rounded to units of 0.01 kWh/day.
    3. Determination of Refrigeration Volume, Vendible Capacity, and 
Surface Area.
    3.1. Refrigerated Volume. Determine the ``refrigerated volume'' of 
refrigerated bottled or canned beverage vending machines in accordance 
with Appendix C, ``Measurement of Volume,'' of ANSI/ASHRAE 32.1 
(incorporated by reference, see Sec.  431.293). For combination vending 
machines, the ``refrigerated volume'' does not include any non-
refrigerated compartment(s).
    3.2. Vendible Capacity. Determine the ``vendible capacity'' of 
refrigerated bottled or canned beverage vending machines in accordance 
with the first paragraph of section 5, ``Vending Machine Capacity,'' of 
ANSI/ASHRAE 32.1 (incorporated by reference, see Sec.  431.293). For 
combination vending machines, the ``vendible capacity'' includes only 
the capacity of any portion of the refrigerated bottled or canned 
beverage vending machine that is refrigerated and does not include the 
capacity of the non-refrigerated compartment(s).
    3.3. Determination of Surface Area. Note: This section is not 
required for the certification of refrigerated bottled or canned 
beverage vending machines. Determine the surface area of each beverage 
vending machine as the length multiplied by the height of outermost 
surface of the beverage vending machine cabinet, measured from edge to 
edge excluding any legs or other protrusions that extend beyond the 
dimensions of the primary cabinet. Determine the transparent and non-
transparent areas on each side of a beverage vending machine as the 
total surface area of material that is transparent or is not 
transparent, respectively.

[80 FR 45793, July 31, 2015]



             Subpart R_Walk-in Coolers and Walk-in Freezers

    Source: 74 FR 12074, Mar. 23, 2009, unless otherwise noted.



Sec.  431.301  Purpose and scope.

    This subpart contains energy conservation requirements for walk-in 
coolers and walk-in freezers, pursuant to Part C of Title III of the 
Energy Policy and Conservation Act, as amended, 42 U.S.C. 6311-6317.



Sec.  431.302  Definitions concerning walk-in coolers and walk-in freezers.

    Adaptive defrost means a factory-installed defrost control system 
that reduces defrost frequency by initiating defrosts or adjusting the 
number of defrosts per day in response to operating conditions (e.g., 
moisture levels in the refrigerated space, measurements that represent 
coil frost load) rather than initiating defrost strictly based on 
compressor run time or clock time.
    Basic model means all components of a given type of walk-in cooler 
or walk-in freezer (or class thereof) manufactured by one manufacturer, 
having the same primary energy source, and which have essentially 
identical electrical, physical, and functional (or hydraulic) 
characteristics that affect energy consumption, energy efficiency, water 
consumption, or water efficiency; and
    (1) With respect to panels, which do not have any differing features 
or characteristics that affect U-factor.
    (2) [Reserved]
    Dedicated condensing unit means a positive displacement condensing 
unit that is part of a refrigeration system (as defined in this section) 
and is an assembly that
    (1) Includes 1 or more compressors, a condenser, and one 
refrigeration circuit; and
    (2) Is designed to serve one refrigerated load.
    Dedicated condensing refrigeration system means one of the 
following:
    (1) A dedicated condensing unit;
    (2) A single-package dedicated system; or
    (3) A matched refrigeration system.
    Display door means a door that:
    (1) Is designed for product display; or
    (2) Has 75 percent or more of its surface area composed of glass or 
another transparent material.
    Display panel means a panel that is entirely or partially comprised 
of glass, a transparent material, or both and is used for display 
purposes.
    Door means an assembly installed in an opening on an interior or 
exterior wall that is used to allow access or close off the opening and 
that is movable in a sliding, pivoting, hinged, or revolving manner of 
movement. For walk-in coolers and walk-in freezers, a

[[Page 947]]

door includes the door panel, glass, framing materials, door plug, 
mullion, and any other elements that form the door or part of its 
connection to the wall.
    Envelope means--
    (1) The portion of a walk-in cooler or walk-in freezer that isolates 
the interior, refrigerated environment from the ambient, external 
environment; and
    (2) All energy-consuming components of the walk-in cooler or walk-in 
freezer that are not part of its refrigeration system.
    Freight door means a door that is not a display door and is equal to 
or larger than 4 feet wide and 8 feet tall.
    Indoor dedicated condensing refrigeration system means a dedicated 
condensing refrigeration system designated by the manufacturer for 
indoor use or for which there is no designation regarding the use 
location.
    K-factor means the thermal conductivity of a material.
    Manufacturer of a walk-in cooler or walk-in freezer means any person 
who:
    (1) Manufactures a component of a walk-in cooler or walk-in freezer 
that affects energy consumption, including, but not limited to, 
refrigeration, doors, lights, windows, or walls; or
    (2) Manufactures or assembles the complete walk-in cooler or walk-in 
freezer.
    Matched condensing unit means a dedicated condensing unit that is 
distributed in commerce with one or more unit cooler(s) specified by the 
condensing unit manufacturer.
    Matched refrigeration system (also called ``matched-pair'') means a 
refrigeration system including the matched condensing unit and the one 
or more unit coolers with which it is distributed in commerce.
    Outdoor dedicated condensing refrigeration system means a dedicated 
condensing refrigeration system designated by the manufacturer for 
outdoor use.
    Panel means a construction component that is not a door and is used 
to construct the envelope of the walk-in, i.e., elements that separate 
the interior refrigerated environment of the walk-in from the exterior.
    Passage door means a door that is not a freight or display door.
    Refrigerated means held at a temperature at or below 55 degrees 
Fahrenheit using a refrigeration system.
    Refrigerated storage space means a space held at refrigerated (as 
defined in this section) temperatures.
    Refrigeration system means the mechanism (including all controls and 
other components integral to the system's operation) used to create the 
refrigerated environment in the interior of a walk-in cooler or walk-in 
freezer, consisting of:
    (1) A dedicated condensing refrigeration system (as defined in this 
section); or
    (2) A unit cooler.
    Single-packaged dedicated system means a refrigeration system (as 
defined in this section) that is a single-package assembly that includes 
one or more compressors, a condenser, a means for forced circulation of 
refrigerated air, and elements by which heat is transferred from air to 
refrigerant, without any element external to the system imposing 
resistance to flow of the refrigerated air.
    U-factor means the heat transmission in a unit time through a unit 
area of a specimen or product and its boundary air films, induced by a 
unit temperature difference between the environments on each side.
    Unit cooler means an assembly, including means for forced air 
circulation and elements by which heat is transferred from air to 
refrigerant, thus cooling the air, without any element external to the 
cooler imposing air resistance.
    Walk-in cooler and walk-in freezer mean an enclosed storage space 
refrigerated to temperatures, respectively, above, and at or below 32 
degrees Fahrenheit that can be walked into, and has a total chilled 
storage area of less than 3,000 square feet; however the terms do not 
include products designed and marketed exclusively for medical, 
scientific, or research purposes.
    Walk-in process cooling refrigeration system means a refrigeration 
system that is capable of rapidly cooling food or other substances from 
one temperature to another. The basic model of such a system must 
satisfy one of the following three conditions:

[[Page 948]]

    (1) Be distributed in commerce with an insulated enclosure 
consisting of panels and door(s) such that the assembled product has a 
refrigerating capacity of at least 100 Btu/h per cubic foot of enclosed 
internal volume;
    (2) Be a unit cooler having an evaporator coil that is at least 
four-and-one-half (4.5) feet in height and whose height is at least one-
and-one-half (1.5) times the width. The height of the evaporator coil is 
measured perpendicular to the tubes and is also the fin height, while 
its width is the finned length parallel to the tubes, as illustrated in 
Figure 1; or
    (3) Be a dedicated condensing unit that is distributed in commerce 
exclusively with a unit cooler meeting description (2) or with an 
evaporator that is not a unit cooler, i.e., an evaporator that is not 
distributed or installed as part of a package including one or more 
fans.
[GRAPHIC] [TIFF OMITTED] TR28DE16.006


[74 FR 12074, Mar. 23, 2009, as amended at 76 FR 12504, Mar. 7, 2011; 76 
FR 21604, Apr. 15, 2011; 76 FR 33631, June 9, 2011; 79 FR 32123, June 3, 
2014; 81 FR 95801, Dec. 28, 2016]

                             Test Procedures



Sec.  431.303  Materials incorporated by reference.

    (a) General. Certain material is incorporated by reference into this 
part with the approval of the Director of the Federal Register under 5 
U.S.C. 552(a) and 1 CFR part 51. Any amendment to a standard by the 
standard-setting organization will not affect the DOE regulations unless 
and until amended by DOE. Material is incorporated as it exists on the 
date of the approval. To enforce any edition other than that specified 
in this section, the U.S. Department of Energy must publish a document 
in the Federal Register and the material must be available to the 
public. All approved material is available

[[Page 949]]

for inspection at U.S. Department of Energy, Office of Energy Efficiency 
and Renewable Energy, Building Technologies Program, 6th Floor, 950 
L'Enfant Plaza SW., Washington, DC 20024, 202-586-2945, between 9 a.m. 
and 4 p.m., Monday through Friday, except Federal holidays, or go to: 
http://www1.eere.energy.gov/buildings/appliance_standards/ ], and is 
available from the sources listed below. It is also available for 
inspection at the National Archives and Records Administration (NARA). 
For information on the availability of this material at NARA, call 202-
741-6030 or go to http://www.archives.gov/federal_register/ 
code_of_federal_regulations/ ibr_locations.html.
    (b) AHRI. Air-Conditioning, Heating, and Refrigeration Institute, 
2111 Wilson Boulevard, Suite 500, Arlington, VA 22201, (703) 600-0366, 
or http://www.ahrinet.org.
    (1) ANSI/AHRI Standard 420-2008 (``AHRI 420-2008''), ``Performance 
Rating of Forced-Circulation Free-Delivery Unit Coolers for 
Refrigeration,'' Copyright 2008, IBR approved for appendix C to subpart 
R of part 431.
    (2) AHRI Standard 1250P (I-P)-2009 (``AHRI 1250-2009''), ``Standard 
for Performance Rating of Walk-in Coolers and Freezers, (including 
Errata sheet dated December 2015), copyright 2009, except Table 15 and 
Table 16. IBR approved for appendix C to subpart R of part 431.
    (c) ASHRAE. The American Society of Heating, Refrigerating, and Air-
Conditioning Engineers, Inc., 1971 Tullie Circle NE., Atlanta, GA 30329, 
or www.ashrae.org/.
    (1) ANSI/ASHRAE Standard 23.1-2010, (``ASHRAE 23.1-2010''), 
``Methods of Testing for Rating the Performance of Positive Displacement 
Refrigerant Compressors and Condensing Units that Operate at Subcritical 
Temperatures of the Refrigerant,'' ANSI approved January 28, 2010, IBR 
approved for appendix C to subpart R of part 431.
    (2) [Reserved]
    (d) ASTM. American Society for Testing and Materials, 100 Barr 
Harbor Drive, West Conshohocken, PA 19428-2959, (610) 832-9500, or 
http://www.astm.org.
    (1) IBR approved for appendix B to subpart R of part 431.
    (2) [Reserved]
    (e) NFRC. National Fenestration Rating Council, 6305 Ivy Lane, Ste. 
140, Greenbelt, MD 20770, (301) 589-1776, or http://www.nfrc.org/.
    (1) NFRC 100-2010[E0A1], (``NFRC 100''), Procedure for Determining 
Fenestration Product U-factors, approved June 2010, IBR approved for 
appendix A to subpart R of part 431.
    (2) [Reserved]

[74 FR 12074, Mar. 23, 2009, as amended at 76 FR 21605, Apr. 15, 2011; 
76 FR 33631, June 9, 2011; 79 FR 27412, May 13, 2014; 81 FR 95802, Dec. 
28, 2016]



Sec.  431.304  Uniform test method for the measurement of energy consumption 
of walk-in coolers and walk-in freezers.

    (a) Scope. This section provides test procedures for measuring, 
pursuant to EPCA, the energy consumption of walk-in coolers and walk-in 
freezers.
    (b) Determine the energy efficiency and/or energy consumption of the 
specified walk-in cooler and walk-in freezer components by conducting 
the appropriate test procedure as follows:
    (1) Determine the U-factor, conduction load, and energy use of walk-
in cooler and walk-in freezer display panels by conducting the test 
procedure set forth in appendix A to this subpart.
    (2) Determine the energy use of walk-in cooler and walk-in freezer 
display doors and non-display doors by conducting the test procedure set 
forth in appendix A to this subpart.
    (3) Determine the R-value of walk-in cooler and walk-in freezer non-
display panels and non-display doors by conducting the test procedure 
set forth in appendix B to this subpart.
    (4) Determine the AWEF and net capacity of walk-in cooler and walk-
in freezer refrigeration systems by conducting the test procedure set 
forth in appendix C to this subpart.

[74 FR 12074, Mar. 23, 2009, as amended at 76 FR 21605, Apr. 15, 2011; 
76 FR 33631, June 9, 2011; 76 FR 65365, Oct. 21, 2011; 79 FR 27412, May 
13, 2014; 79 FR 32123, June 3, 2014; 81 FR 95802, Dec. 28, 2016]

[[Page 950]]



Sec.  431.305  Walk-in cooler and walk-in freezer labeling requirements.

    (a) Panel nameplate--(1) Required information. The permanent 
nameplate of a walk-in cooler or walk-in freezer panel for which 
standards are prescribed in Sec.  431.306 must be marked clearly with 
the following information:
    (i) The panel brand or manufacturer; and
    (ii) One of the following statements, as appropriate:
    (A) ``This panel is designed and certified for use in walk-in cooler 
applications.''
    (B) ``This panel is designed and certified for use in walk-in 
freezer applications.''
    (C) ``This panel is designed and certified for use in walk-in cooler 
and walk-in freezer applications.''
    (2) Display of required information. All orientation, spacing, type 
sizes, typefaces, and line widths to display this required information 
must be the same as or similar to the display of the other performance 
data included on the panel's permanent nameplate. The permanent 
nameplate must be visible unless the panel is assembled into a completed 
walk-in.
    (b) Door nameplate--(1) Required information. The permanent 
nameplate of a walk-in cooler or walk-in freezer door for which 
standards are prescribed in Sec.  431.306 must be marked clearly with 
the following information:
    (i) The door brand or manufacturer; and
    (ii) One of the following statements, as appropriate:
    (A) ``This door is designed and certified for use in walk-in cooler 
applications.''
    (B) ``This door is designed and certified for use in walk-in freezer 
applications.''
    (C) ``This door is designed and certified for use in walk-in cooler 
and walk-in freezer applications.''
    (2) Display of required information. All orientation, spacing, type 
sizes, typefaces, and line widths to display this required information 
must be the same as or similar to the display of the other performance 
data included on the door's permanent nameplate. The permanent nameplate 
must be visible unless the door is assembled into a completed walk-in.
    (c) Refrigeration system nameplate--(1) Required information. The 
permanent nameplate of a walk-in cooler or walk-in freezer refrigeration 
system for which standards are prescribed in Sec.  431.306 must be 
marked clearly with the following information:
    (i) The refrigeration system brand or manufacturer;
    (ii) The refrigeration system model number;
    (iii) The date of manufacture of the refrigeration system (if the 
date of manufacture is embedded in the unit's serial number, then the 
manufacturer of the refrigeration system must retain any relevant 
records to discern the date from the serial number);
    (iv) If the refrigeration system is a dedicated condensing 
refrigeration system, and is not designated for outdoor use, the 
statement, ``Indoor use only'' (for a matched pair this must appear on 
the condensing unit); and
    (v) One of the following statements, as appropriate:
    (A) ``This refrigeration system is designed and certified for use in 
walk-in cooler applications.''
    (B) ``This refrigeration system is designed and certified for use in 
walk-in freezer applications.''
    (C) ``This refrigeration system is designed and certified for use in 
walk-in cooler and walk-in freezer applications.''
    (2) Process cooling refrigeration systems. The permanent nameplate 
of a process cooling refrigeration system (as defined in Sec.  431.302) 
must be marked clearly with the statement, ``This refrigeration system 
is designed for use exclusively in walk-in cooler and walk-in freezer 
process cooling refrigeration applications.''
    (3) Display of required information. All orientation, spacing, type 
sizes, typefaces, and line widths to display this required information 
must be the same as or similar to the display of the other performance 
data included on the refrigeration system's permanent nameplate. The 
model number must be in one of the following forms: ``Model ___'' or 
``Model number ___'' or ``Model No. ___.'' The permanent nameplate must 
be visible unless the

[[Page 951]]

refrigeration system is assembled into a completed walk-in.
    (d) A manufacturer may not mark the nameplate of a component with 
the required information if the manufacturer has not submitted a 
certification of compliance for the relevant model.
    (e) Disclosure of efficiency information in marketing materials. 
Each catalog that lists the component and all materials used to market 
the component must include:
    (1) For panels--The R-value in the form ``R-value__.''
    (2) For doors--The energy consumption in the form ``EC__kWh/day.''
    (3) For those refrigeration system for which standards are 
prescribed--The AWEF in the form ``AWEF __.''
    (4) The information that must appear on a walk-in cooler or walk-in 
freezer component's permanent nameplate pursuant to paragraphs (a)-(c) 
of this section must also be prominently displayed in each catalog that 
lists the component and all materials used to market the component.

[81 FR 95802, Dec. 28, 2016]

                      Energy Conservation Standards



Sec.  431.306  Energy conservation standards and their effective dates.

    (a) Each walk-in cooler or walk-in freezer manufactured on or after 
January 1, 2009, shall--
    (1) Have automatic door closers that firmly close all walk-in doors 
that have been closed to within 1 inch of full closure, except that this 
paragraph shall not apply to doors wider than 3 feet 9 inches or taller 
than 7 feet;
    (2) Have strip doors, spring hinged doors, or other method of 
minimizing infiltration when doors are open;
    (3) Contain wall, ceiling, and door insulation of at least R-25 for 
coolers and R-32 for freezers, except that this paragraph shall not 
apply to:
    (i) Glazed portions of doors not to structural members and
    (ii) A walk-in cooler or walk-in freezer component if the component 
manufacturer has demonstrated to the satisfaction of the Secretary in a 
manner consistent with applicable requirements that the component 
reduces energy consumption at least as much as if such insulation 
requirements of subparagraph (a)(3) were to apply.
    (4) Contain floor insulation of at least R-28 for freezers;
    (5) For evaporator fan motors of under 1 horsepower and less than 
460 volts, use--
    (i) Electronically commutated motors (brushless direct current 
motors); or
    (ii) 3-phase motors;
    (6) For condenser fan motors of under 1 horsepower, use--
    (i) Electronically commutated motors (brushless direct current 
motors);
    (ii) Permanent split capacitor-type motors; or
    (iii) 3-phase motors; and
    (7) For all interior lights, use light sources with an efficacy of 
40 lumens per watt or more, including ballast losses (if any), except 
that light sources with an efficacy of 40 lumens per watt or less, 
including ballast losses (if any), may be used in conjunction with a 
timer or device that turns off the lights within 15 minutes of when the 
walk-in cooler or walk-in freezer is not occupied by people.
    (b) Each walk-in cooler or walk-in freezer with transparent reach-in 
doors manufactured on or after January 1, 2009, shall also meet the 
following specifications:
    (1) Transparent reach-in doors for walk-in freezers and windows in 
walk-in freezer doors shall be of triple-pane glass with either heat-
reflective treated glass or gas fill.
    (2) Transparent reach-in doors for walk-in coolers and windows in 
walk-in cooler doors shall be--
    (i) Double-pane glass with heat-reflective treated glass and gas 
fill; or
    (ii) Triple-pane glass with either heat-reflective treated glass or 
gas fill.
    (3) If the walk-in cooler or walk-in freezer has an antisweat heater 
without antisweat heat controls, the walk-in cooler and walk-in freezer 
shall have a total door rail, glass, and frame heater power draw of not 
more than 7.1 watts per square foot of door opening (for freezers) and 
3.0 watts per square foot of door opening (for coolers).
    (4) If the walk-in cooler or walk-in freezer has an antisweat heater 
with antisweat heat controls, and the total door rail, glass, and frame 
heater

[[Page 952]]

power draw is more than 7.1 watts per square foot of door opening (for 
freezers) and 3.0 watts per square foot of door opening (for coolers), 
the antisweat heat controls shall reduce the energy use of the antisweat 
heater in a quantity corresponding to the relative humidity in the air 
outside the door or to the condensation on the inner glass pane.
    (c) Walk-in cooler and freezer display doors. All walk-in cooler and 
walk-in freezer display doors manufactured starting June 5, 2017, must 
satisfy the following standards:

------------------------------------------------------------------------
                                                   Equations for maximum
       Class descriptor               Class          energy consumption
                                                        (kWh/day) *
------------------------------------------------------------------------
Display Door, Medium            DD.M.............  0.04 x Add + 0.41.
 Temperature.
Display Door, Low Temperature.  DD.L.............  0.15 x Add + 0.29.
------------------------------------------------------------------------
*Add represents the surface area of the display door.

    (d) Walk-in cooler and freezer non-display doors. All walk-in cooler 
and walk-in freezer non-display doors manufactured starting on June 5, 
2017, must satisfy the following standards:

------------------------------------------------------------------------
                                                   Equations for maximum
       Class descriptor               Class          energy consumption
                                                        (kWh/day) *
------------------------------------------------------------------------
Passage door, Medium            PD.M.............  0.05 x And + 1.7.
 Temperature.
Passage Door, Low Temperature.  PD.L.............  0.14 x And + 4.8.
Freight Door, Medium            FD.M.............  0.04 x And + 1.9.
 Temperature.
Freight Door, Low Temperature.  FD.L.............  0.12 x And + 5.6.
------------------------------------------------------------------------
*And represents the surface area of the non-display door.

    (e) Walk-in cooler refrigeration systems. All walk-in cooler and 
walk-in freezer refrigeration systems manufactured starting on the dates 
listed in the table, except for walk-in process cooling refrigeration 
systems (as defined in Sec.  431.302), must satisfy the following 
standards:

------------------------------------------------------------------------
                                                             Compliance
                                                                date:
                                      Minimum AWEF (Btu/W-    equipment
          Equipment class                     h)*           manufactured
                                                             starting on
                                                                . . .
------------------------------------------------------------------------
Dedicated Condensing System--        5.61.................       June 5,
 Medium, Indoor.                                                   2017.
Dedicated Condensing System--        7.60.................
 Medium, Outdoor.
Dedicated Condensing System--Low,
 Indoor with a Net Capacity (qnet)
 of:
    < 6,500 Btu/h..................  9.091 x 10 -5 x qnet       July 10,
                                      + 1.81.                      2020.
    = 6,500 Btu/h.......  2.40.................
Dedicated Condensing System--Low,
 Outdoor with a Net Capacity (qnet)
 of:
    < 6,500 Btu/h..................  6.522 x 10-5 x qnet +
                                      2.73.
    = 6,500 Btu/h.......  3.15.................
Unit Cooler--Medium................  9.00.................
Unit Cooler--Low with a Net
 Capacity (qnet) of:
    < 15,500 Btu/h.................  1.575 x 10 -5 x qnet
                                      + 3.91.
    = 15,500 Btu/h......  4.15.................
------------------------------------------------------------------------
* Where qnet is net capacity as determined in accordance with Sec.
  431.304 and certified in accordance with 10 CFR part 429.


[74 FR 12074, Mar. 23, 2009, as amended at 78 FR 62993, Oct. 23, 2013; 
79 FR 32123, June 3, 2014; 80 FR 69838, Nov. 12, 2015; 82 FR 31885, July 
10, 2017]



 Sec. Appendix A to Subpart R of Part 431--Uniform Test Method for the 
  Measurement of Energy Consumption of the Components of Envelopes of 
                  Walk-In Coolers and Walk-In Freezers

                                1.0 Scope

    This appendix covers the test requirements used to measure the 
energy consumption of the components that make up the envelope of a 
walk-in cooler or walk-in freezer.

                             2.0 Definitions

    The definitions contained in Sec.  431.302 are applicable to this 
appendix.

                       3.0 Additional Definitions

    3.1 Automatic door opener/closer means a device or control system 
that ``automatically''

[[Page 953]]

opens and closes doors without direct user contact, such as a motion 
sensor that senses when a forklift is approaching the entrance to a door 
and opens it, and then closes the door after the forklift has passed.
    3.2-3.3 [Reserved]
    3.4 Surface area means the area of the surface of the walk-in 
component that would be external to the walk-in cooler or walk-in 
freezer as appropriate.
    3.5 Rated power means the electricity consuming device's power as 
specified on the device's nameplate. If the device does not have a 
nameplate or such nameplate does not list the device's power, then the 
rated power must be read from the device's product data sheet.
    3.6 Rating conditions means, unless explicitly stated otherwise, all 
conditions shown in Table A.1 of this section.
    3.7 Percent time off (PTO) means the percent of time that an 
electrical device is assumed to be off.

                    Table A.1--Temperature Conditions
------------------------------------------------------------------------
 
------------------------------------------------------------------------
        Internal Temperatures (cooled space within the envelope)
------------------------------------------------------------------------
Cooler Dry Bulb Temperature...............  35 [deg]F
Freezer Dry Bulb Temperature..............  -10 [deg]F
------------------------------------------------------------------------
         External Temperatures (space external to the envelope)
------------------------------------------------------------------------
Freezer and Cooler Dry Bulb Temperatures..  75 [deg]F.
------------------------------------------------------------------------

                      4.0 Calculation Instructions

    4.1 Display Panels
    (a) Calculate the U-factor of the display panel in accordance with 
section 5.3 of this appendix, Btu/h-ft\2\- [deg]F.
    (b) Calculate the display panel surface area, as defined in section 
3.4 of this appendix, Adp, ft\2\, with standard geometric 
formulas or engineering software.
    (c) Calculate the temperature differential, [Delta]Tdp, 
[deg]F, for the display panel, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.003

Where:
TDB,ext,dp = dry-bulb air external temperature, [deg]F, as 
          prescribed in Table A.1; and
TDB,int,dp = dry-bulb air temperature internal to the cooler 
          or freezer, [deg]F, as prescribed in Table A.1.

    (d) Calculate the conduction load through the display panel, 
Qcond-dp, Btu/h, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.004

Where:
Adp = surface area of the walk-in display panel, ft\2\;
[Delta]Tdp = temperature differential between refrigerated 
          and adjacent zones, [deg]F; and
Udp = thermal transmittance, U-factor, of the display panel 
          in accordance with section 5.3 of this appendix, Btu/h-ft\2\- 
          [deg]F.

    (e) Select Energy Efficiency Ratio (EER), as follows:
    (1) For coolers, use EER = 12.4 Btu/W-h
    (2) For freezers, use EER = 6.3 Btu/W-h
    (f) Calculate the total daily energy consumption, Edp, 
kWh/day, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.005

Where:
Qcond, dp = the conduction load through the display panel, 
          Btu/h; and EER = EER of walk-in (cooler or freezer), Btu/W-h.
    4.2 [Reserved]
    4.3 [Reserved]

                            4.4 Display Doors

                 4.4.1 Conduction Through Display Doors

    (a) Calculate the U-factor of the door in accordance with section 
5.3 of this appendix, Btu/h-ft\2\- [deg]F

[[Page 954]]

    (b) Calculate the surface area, as defined in section 3.4 of this 
appendix, of the display door, Add, ft\2\, with standard 
geometric formulas or engineering software.
    (c) Calculate the temperature differential, [Delta]Tdd, 
[deg]F, for the display door as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.020

Where:

TDB,ext, dd = dry-bulb air temperature external to the 
          display door, [deg]F, as prescribed in Table A.1; and
TDB,int, dd = dry-bulb air temperature internal to the 
          display door, [deg]F, as prescribed in Table A.1.

    (d) Calculate the conduction load through the display doors, 
Qcond-dd, Btu/h, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.021

Where:

[Delta]Tdd = temperature differential between refrigerated 
          and adjacent zones, [deg]F;
Add = surface area walk-in display doors, ft\2\; and
Udd = thermal transmittance, U-factor of the door, in 
          accordance with section 5.3 of this appendix, Btu/h-ft\2\- 
          [deg]F.

 4.4.2 Direct Energy Consumption of Electrical Component(s) of Display 
                                  Doors

    Electrical components associated with display doors could include, 
but are not limited to: heater wire (for anti-sweat or anti-freeze 
application); lights (including display door lighting systems); control 
system units; and sensors.
    (a) Select the required value for percent time off (PTO) for each 
type of electricity consuming device, PTOt (%)
    (1) For lights without timers, control system or other demand-based 
control, PTO = 25 percent. For lighting with timers, control system or 
other demand-based control, PTO = 50 percent.
    (2) For anti-sweat heaters on coolers (if included): Without timers, 
control system or other demand-based control, PTO = 0 percent. With 
timers, control system or other demand-based control, PTO = 75 percent. 
For anti-sweat heaters on freezers (if included): Without timers, 
control system or other auto-shut-off systems, PTO = 0 percent. With 
timers, control system or other demand-based control, PTO = 50 percent.
    (3) For all other electricity consuming devices: Without timers, 
control system, or other auto-shut-off systems, PTO = 0 percent. If it 
can be demonstrated that the device is controlled by a preinstalled 
timer, control system or other auto-shut-off system, PTO = 25 percent.
    (b) Calculate the power usage for each type of electricity consuming 
device, Pdd-comp,u,t, kWh/day, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.022

Where:

u = the index for each of type of electricity-consuming device located 
          on either (1) the interior facing side of the display door or 
          within the inside portion of the display door, (2) the 
          exterior facing side of the display door, or (3) any 
          combination of (1) and (2). For purposes of this calculation, 
          the interior index is represented by u = int and the exterior 
          index is represented by u = ext. If the electrical component 
          is both on the interior and exterior side of the display door 
          then u = int. For anti-sweat heaters sited anywhere in the 
          display door, 75 percent of the total power is be attributed 
          to u = int and 25 percent of the total power is attributed to 
          u = ext;
t = index for each type of electricity consuming device with identical 
          rated power;
Prated,u,t = rated power of each component, of type t, kW;

[[Page 955]]

PTOu,t = percent time off, for device of type t, %; and
nu,t = number of devices at the rated power of type t, 
          unitless.

    (c) Calculate the total electrical energy consumption for interior 
and exterior power, Pdd-tot, int (kWh/day) and 
Pdd-tot, ext (kWh/day), respectively, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.023

Where:

t = index for each type of electricity consuming device with identical 
          rated power;
Pdd-comp,int, t = the energy usage for an electricity 
          consuming device sited on the interior facing side of or in 
          the display door, of type t, kWh/day; and
Pdd-comp,ext, t = the energy usage for an electricity 
          consuming device sited on the external facing side of the 
          display door, of type t, kWh/day.

    (d) Calculate the total electrical energy consumption, 
Pdd-tot, (kWh/day), as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.024

Where:

Pdd-tot,int = the total interior electrical energy usage for 
          the display door, kWh/day; and

Pdd-tot,ext = the total exterior electrical energy usage for 
          the display door, kWh/day.

 4.4.3 Total Indirect Electricity Consumption Due to Electrical Devices

    (a) Select Energy Efficiency Ratio (EER), as follows:
    (1) For coolers, use EER = 12.4 Btu/Wh
    (2) For freezers, use EER = 6.3 Btu/Wh
    (b) Calculate the additional refrigeration energy consumption due to 
thermal output from electrical components sited inside the display door, 
Cdd-load, kWh/day, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.025

Where:

EER = EER of walk-in cooler or walk-in freezer, Btu/W-h; and
Pdd-tot,int = The total internal electrical energy 
          consumption due for the display door, kWh/day.

               4.4.4 Total Display Door Energy Consumption

    (a) Select Energy Efficiency Ratio (EER), as follows:
    (1) For coolers, use EER = 12.4 Btu/W-h
    (2) For freezers, use EER = 6.3 Btu/W-h
    (b) Calculate the total daily energy consumption due to conduction 
thermal load, Edd,thermal, kWh/day, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.026


[[Page 956]]


Where:

Qcond,dd = the conduction load through the display door, Btu/
          h; and
EER = EER of walk-in (cooler or freezer), Btu/W-h.

    (c) Calculate the total energy, Edd,tot, kWh/day,
    [GRAPHIC] [TIFF OMITTED] TR09JN11.027
    
Where:

Edd,thermal = the total daily energy consumption due to 
          thermal load for the display door, kWh/day;
Pdd-tot = the total electrical load, kWh/day; and
Cdd-load = additional refrigeration load due to thermal 
          output from electrical components contained within the display 
          door, kWh/day.

                          4.5 Non-Display Doors

               4.5.1 Conduction Through Non-Display Doors

    (a) Calculate the surface area, as defined in section 3.4 of this 
appendix, of the non-display door, And, ft\2\, with standard 
geometric formulas or with engineering software.
    (b) Calculate the temperature differential of the non-display door, 
[Delta]Tnd, [deg]F, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.028


Where:

TDB,ext, nd = dry-bulb air external temperature, [deg]F, as 
          prescribed by Table A.1; and
TDB,int, nd = dry-bulb air internal temperature, [deg]F, as 
          prescribed by Table A.1. If the component spans both cooler 
          and freezer spaces, the freezer temperature must be used.

    (c) Calculate the conduction load through the non-display door: 
Qcond-nd, Btu/h,
[GRAPHIC] [TIFF OMITTED] TR09JN11.029


Where:

[Delta]Tnd = temperature differential across the non-display 
          door, [deg]F;
Und = thermal transmittance, U-factor of the door, in 
          accordance with section 5.3 of this appendix, Btu/h-ft\2\- 
          [deg]F; and
And = area of non-display door, ft\2\.

4.5.2 Direct Energy Consumption of Electrical Components of Non-Display 
                                  Doors

    Electrical components associated with a walk-in non-display door 
comprise any components that are on the non-display door and that 
directly consume electrical energy. This includes, but is not limited 
to, heater wire (for anti-sweat or anti-freeze application), control 
system units, and sensors.
    (a) Select the required value for percent time off for each type of 
electricity consuming device, PTOt (%)
    (1) For lighting without timers, control system or other demand-
based control, PTO = 25 percent. For lighting with timers, control 
system or other demand-based control, PTO = 50 percent.
    (2) For anti-sweat heaters on coolers (if included): Without timers, 
control system or other demand-based control, PTO = 0 percent. With 
timers, control system or other demand-based control, PTO = 75 percent. 
For anti-sweat heaters on freezers (if included): Without timers, 
control system or other auto-shut-off systems, PTO = 0 percent. With 
timers, control system or other demand-based control, PTO = 50 percent.
    (3) For all other electricity consuming devices: Without timers, 
control system, or other auto-shut-off systems, PTO = 0 percent. If it 
can be demonstrated that the device is controlled by a preinstalled 
timer, control system or other auto-shut-off system, PTO = 25 percent.
    (b) Calculate the power usage for each type of electricity consuming 
device, Pnd-comp,u,t, kWh/day, as follows:

[[Page 957]]

[GRAPHIC] [TIFF OMITTED] TR09JN11.030


Where:

u = the index for each of type of electricity-consuming device located 
          on either (1) the interior facing side of the display door or 
          within the inside portion of the display door, (2) the 
          exterior facing side of the display door, or (3) any 
          combination of (1) and (2). For purposes of this calculation, 
          the interior index is represented by u = int and the exterior 
          index is represented by u = ext. If the electrical component 
          is both on the interior and exterior side of the display door 
          then u = int. For anti-sweat heaters sited anywhere in the 
          display door, 75 percent of the total power is be attributed 
          to u = int and 25 percent of the total power is attributed to 
          u = ext;
t = index for each type of electricity consuming device with identical 
          rated power;
Prated,u,t = rated power of each component, of type t, kW;
PTOu,t = percent time off, for device of type t, %; and
nu,t = number of devices at the rated power of type t, 
          unitless.

    (c) Calculate the total electrical energy consumption for interior 
and exterior power, Pnd-tot, int (kWh/day) and 
Pnd-tot, ext (kWh/day), respectively, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.031


Where:

t = index for each type of electricity consuming device with identical 
          rated power;
Pnd-comp,int, t = the energy usage for an electricity 
          consuming device sited on the internal facing side or internal 
          to the non-display door, of type t, kWh/day; and
Pnd-comp,ext, t = the energy usage for an electricity 
          consuming device sited on the external facing side of the non-
          display door, of type t, kWh/day. For anti-sweat heaters,

    (d) Calculate the total electrical energy consumption, 
Pnd-tot, kWh/day, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.032

Where:

Pnd-tot,int = the total interior electrical energy usage for 
          the non-display door, of type t, kWh/day; and
Pnd-tot,ext = the total exterior electrical energy usage for 
          the non-display door, of type t, kWh/day.

 4.5.3 Total Indirect Electricity Consumption Due to Electrical Devices

    (a) Select Energy Efficiency Ratio (EER), as follows:
    (1) For coolers, use EER = 12.4 Btu/Wh
    (2) For freezers, use EER = 6.3 Btu/Wh
    (b) Calculate the additional refrigeration energy consumption due to 
thermal output from electrical components associated with the non-
display door, Cnd-load, kWh/day, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.033



[[Page 958]]


Where:

EER = EER of walk-in cooler or freezer, Btu/W-h; and
Pnd-tot,int = the total interior electrical energy 
          consumption for the non-display door, kWh/day.

             4.5.4 Total Non-Display Door Energy Consumption

    (a) Select Energy Efficiency Ratio (EER), as follows:
    (1) For coolers, use EER = 12.4 Btu/W-h
    (2) For freezers, use EER = 6.3 Btu/W-h
    (b) Calculate the total daily energy consumption due to thermal 
load, End, thermal, kWh/day, as follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.034


Where:

Qcond-nd = the conduction load through the non-display door, 
          Btu/hr; and
EER = EER of walk-in (cooler or freezer), Btu/W-h.

    (c) Calculate the total energy, End,tot, kWh/day, as 
follows:
[GRAPHIC] [TIFF OMITTED] TR09JN11.035


Where:
End, thermal = the total daily energy consumption due to 
          thermal load for the non-display door, kWh/day;
Pnd-tot = the total electrical energy consumption, kWh/day; 
          and
Cnd-load = additional refrigeration load due to thermal 
          output from electrical components contained on the inside face 
          of the non-display door, kWh/day.

                    5.0 Test Methods and Measurements

    5.1-5.2 [Reserved]

                5.3 U-factor of Doors and Display Panels

    (a) Follow the procedure in NFRC 100, (incorporated by reference; 
see Sec.  431.303), exactly, with these exceptions:
    (1) The average surface heat transfer coefficient on the cold-side 
of the apparatus shall be 30 Watts per square-meter-Kelvin (W/m\2\*K) 
5%. The average surface heat transfer coefficient 
on the warm-side of the apparatus shall be 7.7 Watts per square-meter-
Kelvin (W/m\2\*K) 5%.
    (2) Cold-side conditions:
    (i) Air temperature of 35 [deg]F (1.7 [deg]C) for cooler doors and -
10 [deg]F (-23.3 [deg]C) for freezer doors
    (ii) Mean inside radiant temperature must be the same as shown in 
section 5.3(a)(2)(i), above.
    (3) Warm-side conditions
    (i) Air temperature of 75 [deg]F (23.9 [deg]C)
    (ii) Mean outside radiant temperature must be the same as section 
5.3(a)(3)(i), above.
    (4) Direct solar irradiance = 0 W/m\2\ (Btu/h-ft\2\).
    (b) Required Test Measurements
    (i) Display Doors and Display Panels
    1. Thermal Transmittance: Udd
    (ii) Non-Display Door
    1. Thermal Transmittance: Und

[76 FR 21606, Apr. 15, 2011, as amended at 76 FR 31796, June 2, 2011; 76 
FR 33632, June 9, 2011; 79 FR 27414, May 13, 2014; 81 FR 95803, Dec. 28, 
2016]



 Sec. Appendix B to Subpart R of Part 431--Uniform Test Method for the 
 Measurement of R-Value for Envelope Components of Walk-In Coolers and 
                            Walk-In Freezers

                                1.0 Scope

    This appendix covers the test requirements used to measure the R-
value of non-display panels and non-display doors of a walk-in cooler or 
walk-in freezer.

                             2.0 Definitions

    The definitions contained in Sec.  431.302 apply to this appendix.

                       3.0 Additional Definitions

    3.1 Edge region means a region of the panel that is wide enough to 
encompass any framing members. If the panel contains framing members 
(e.g., a wood frame) then the width of the edge region must be as wide 
as any framing member plus an additional 2 in.  
0.25 in.

[[Page 959]]

            4.0 Test Methods, Measurements, and Calculations

    4.1 The R value shall be the 1/K factor multiplied by the thickness 
of the panel.
    4.2 The K factor shall be based on ASTM C518 (incorporated by 
reference; see Sec.  431.303).
    4.3 For calculating the R value for freezers, the K factor of the 
foam at 20  1 degrees Fahrenheit (average foam 
temperature) shall be used. Test results from a test sample 1 0.1-inches in thickness may be used to determine the R 
value of panels with various foam thickness as long as the foam is of 
the same final chemical form.
    4.4 For calculating the R value for coolers, the K factor of the 
foam at 55  1 degrees Fahrenheit (average foam 
temperature) shall be used. Test results from a test sample 1  0.1-inches in thickness may be used to determine the R 
value of panels with various foam thickness as long as the foam is of 
the same final chemical form.
    4.5 Foam shall be tested after it is produced in its final chemical 
form. For foam produced inside of a panel (``foam-in-place''), ``final 
chemical form'' means the foam is cured as intended and ready for use as 
a finished panel. For foam produced as board stock (typically 
polystyrene), ``final chemical form'' means after extrusion and ready 
for assembly into a panel or after assembly into a panel. Foam from 
foam-in-place panels must not include any structural members or non-foam 
materials. Foam produced as board stock may be tested prior to its 
incorporation into a final panel. A test sample 1  
0.1-inches in thickness must be taken from the center of a panel and any 
protective skins or facers must be removed. A high-speed band-saw and a 
meat slicer are two types of recommended cutting tools. Hot wire cutters 
or other heated tools must not be used for cutting foam test samples. 
The two surfaces of the test sample that will contact the hot plate 
assemblies (as defined in ASTM C518 (incorporated by reference, see 
Sec.  431.303)) must both maintain 0.03 inches 
flatness tolerance and also maintain parallelism with respect to one 
another within 0.03 inches. Testing must be 
completed within 24 hours of samples being cut for testing.
    4.6 Internal non-foam member and/or edge regions shall not be 
considered when testing in accordance with ASTM C518 (incorporated by 
reference, see Sec.  431.303).
    4.7 For panels consisting of two or more layers of dissimilar 
insulating materials (excluding facers or protective skins), test each 
material as described in sections 4.1 through 4.6 of this appendix. For 
a panel with N layers of insulating material, the overall R-Value shall 
be calculated as follows:
[GRAPHIC] [TIFF OMITTED] TR28DE16.007


Where:

ki is the k factor of the ith material as measured by ASTM 
          C518, (incorporated by reference, see Sec.  431.303);
ti is the thickness of the ith material that appears in the 
          panel; and
N is the total number of material layers that appears in the panel.

[81 FR 95803, Dec. 28, 2016]



 Sec. Appendix C to Subpart R of Part 431--Uniform Test Method for the 
   Measurement of Net Capacity and AWEF of Walk-In Cooler and Walk-In 
                      Freezer Refrigeration Systems

                                1.0 Scope

    This appendix covers the test requirements used to determine the net 
capacity and the AWEF of the refrigeration system of a walk-in cooler or 
walk-in freezer.

                             2.0 Definitions

    The definitions contained in Sec.  431.302 and AHRI 1250-2009 
(incorporated by reference; see Sec.  431.303) apply to this appendix. 
When definitions in standards incorporated by reference are in conflict 
or when they conflict with this section, the hierarchy of precedence 
shall be in the following order: Sec.  431.302, AHRI 1250-2009, and then 
either AHRI 420-2008 (incorporated by reference; see Sec.  431.303) for 
unit coolers or ASHRAE 23.1-2010 (incorporated by reference; see Sec.  
431.303) for dedicated condensing units.

            3.0 Test Methods, Measurements, and Calculations

    Determine the Annual Walk-in Energy Factor (AWEF) and net capacity 
of walk-in cooler and walk-in freezer refrigeration systems by 
conducting the test procedure set forth in AHRI 1250-2009 (incorporated 
by reference; see Sec.  431.303), with the modifications

[[Page 960]]

to that test procedure provided in this section. When standards that are 
incorporated by reference are in conflict or when they conflict with 
this section, the hierarchy of precedence shall be in the following 
order: Sec.  431.302, AHRI 1250-2009, and then either AHRI 420-2008 
(incorporated by reference; see Sec.  431.303) or ASHRAE 23.1-2010 
(incorporated by reference; see Sec.  431.303).
    3.1. General modifications: Test Conditions and Tolerances.
    When conducting testing in accordance with AHRI 1250-2009 
(incorporated by reference; see Sec.  431.303), the following 
modifications must be made.
    3.1.1. In Table 1, Instrumentation Accuracy, refrigerant temperature 
measurements shall have a tolerance of 0.5 F for 
unit cooler in/out, 1.0 F for all other 
temperature measurements.
    3.1.2. In Table 2, Test Operating and Test Condition Tolerances for 
Steady-State Test, electrical power frequency shall have a Test 
Condition Tolerance of 1 percent.
    3.1.3. In Table 2, the Test Operating Tolerances and Test Condition 
Tolerances for Air Leaving Temperatures shall be deleted.
    3.1.4. In Tables 2 through 14, the Test Condition Outdoor Wet Bulb 
Temperature requirement and its associated tolerance apply only to units 
with evaporative cooling.
    3.1.5. Tables 15 and 16 shall be modified to read as follows:

                                                           Table 15--Refrigerator Unit Cooler
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                        Unit cooler  Unit cooler                Liquid      Liquid
                                            air          air       Saturated     inlet       inlet
           Test  description              entering     entering     suction   saturation  subcooling     Compressor capacity         Test objective
                                         dry-bulb,     relative      temp,       temp,       temp,
                                           [deg]F    humidity, %    [deg]F      [deg]F      [deg]F
--------------------------------------------------------------------------------------------------------------------------------------------------------
Off Cycle Fan Power...................           35          <50          --          --          --  Compressor Off..........  Measure fan input power
                                                                                                                                 during compressor off
                                                                                                                                 cycle.
Refrigeration Capacity Suction A......           35          <50          25         105           9  Compressor On...........  Determine Net
                                                                                                                                 Refrigeration Capacity
                                                                                                                                 of Unit Cooler.
Refrigeration Capacity Suction B......           35          <50          20         105           9  Compressor On...........  Determine Net
                                                                                                                                 Refrigeration Capacity
                                                                                                                                 of Unit Cooler.
--------------------------------------------------------------------------------------------------------------------------------------------------------
Note: Superheat to be set according to equipment specification in equipment or installation manual. If no superheat specification is given, a default
  superheat value of 6.5 [deg]F shall be used. The superheat setting used in the test shall be reported as part of the standard rating.


                                                              Table 16--Freezer Unit Cooler
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                        Unit cooler  Unit cooler                Liquid      Liquid
                                            air          air       Saturated     inlet       inlet
           Test  description              entering     entering     suction   saturation  subcooling     Compressor capacity         Test objective
                                         dry-bulb,     relative      temp,       temp,       temp,
                                           [deg]F    humidity, %    [deg]F      [deg]F      [deg]F
--------------------------------------------------------------------------------------------------------------------------------------------------------
Off Cycle Fan Power...................          -10          <50          --          --          --  Compressor Off..........  Measure fan input power
                                                                                                                                 during compressor off
                                                                                                                                 cycle.
Refrigeration Capacity Suction A......          -10          <50         -20         105           9  Compressor On...........  Determine Net
                                                                                                                                 Refrigeration Capacity
                                                                                                                                 of Unit Cooler.
Refrigeration Capacity Suction B......          -10          <50         -26         105           9  Compressor On...........  Determine Net
                                                                                                                                 Refrigeration Capacity
                                                                                                                                 of Unit Cooler.
Defrost...............................          -10      Various          --          --          --  Compressor Off..........  Test according to
                                                                                                                                 Appendix C Section C11.
--------------------------------------------------------------------------------------------------------------------------------------------------------
Note: Superheat to be set according to equipment specification in equipment or installation manual. If no superheat specification is given, a default
  superheat value of 6.5 [deg]F shall be used. The superheat setting used in the test shall be reported as part of the standard rating.

             3.2. General Modifications: Methods of Testing

    When conducting testing in accordance with appendix C of AHRI 1250-
2009 (incorporated by reference; see Sec.  431.303), the following 
modifications must be made.
    3.2.1. In appendix C, section C3.1.6, any refrigerant temperature 
measurements upstream and downstream of the unit cooler may use sheathed 
sensors immersed in the flowing refrigerant instead of thermometer 
wells.
    3.2.2. It is not necessary to perform composition analysis of 
refrigerant (appendix C, section C3.3.6) or refrigerant oil 
concentration testing (appendix C, section C3.4.6).
    3.2.3. In appendix C, section C3.4.5, for verification of sub-
cooling downstream of mass flow meters, only the sight glass and a

[[Page 961]]

temperature sensor located on the tube surface under the insulation are 
required.
    3.2.4. In appendix C, section C3.5, regarding unit cooler fan power 
measurements, for a given motor winding configuration, the total power 
input shall be measured at the highest nameplate voltage. For three-
phase power, voltage imbalances shall be no more than 2 percent from 
phase to phase.
    3.2.5. In the test setup (appendix C, section C8.3), the liquid line 
and suction line shall be constructed of pipes of the manufacturer-
specified size. The pipe lines shall be insulated with a minimum total 
thermal resistance equivalent to \1/2\-inch thick insulation having a 
flat-surface R-Value of 3.7 ft\2\- [deg]F-hr/Btu per inch or greater. 
Flow meters need not be insulated but must not be in contact with the 
floor. The lengths of the connected liquid line and suction line shall 
be 25 feet  3 inches, not including the requisite 
flow meters, each. Of this length, no more than 15 feet shall be in the 
conditioned space. Where there are multiple branches of piping, the 
maximum length of piping applies to each branch individually as opposed 
to the total length of the piping.
    3.3. Matched systems, single-package dedicated systems, and unit 
coolers tested alone: Use the test method in AHRI 1250-2009 
(incorporated by reference; see Sec.  431.303), appendix C as the method 
of test for matched refrigeration systems, single-package dedicated 
systems, or unit coolers tested alone, with the following modifications:
    3.3.1. For unit coolers tested alone, use test procedures described 
in AHRI 1250-2009 (incorporated by reference; see Sec.  431.303) for 
testing unit coolers for use in mix-match system ratings, except that 
for the test conditions in Tables 15 and 16, use the Suction A 
saturation condition test points only. Also for unit coolers tested 
alone, use the calculations in section 7.9 to determine AWEF and net 
capacity described in AHRI 1250-2009 for unit coolers matched to 
parallel rack systems.
    3.3.2. In appendix C, section C.13, the version of AHRI Standard 420 
used for test methods, requirements, and procedures shall be AHRI 420-
2008 (incorporated by reference; see Sec.  431.303).
    3.3.3. Use appendix C, section C10 of AHRI 1250-2009 for off-cycle 
evaporator fan testing, with the exception that evaporator fan controls 
using periodic stir cycles shall be adjusted so that the greater of a 
50% duty cycle (rather than a 25% duty cycle) or the manufacturer 
default is used for measuring off-cycle fan energy. For adjustable-speed 
controls, the greater of 50% fan speed (rather than 25% fan speed) or 
the manufacturer's default fan speed shall be used for measuring off-
cycle fan energy. Also, a two-speed or multi-speed fan control may be 
used as the qualifying evaporator fan control. For such a control, a fan 
speed no less than 50% of the speed used in the maximum capacity tests 
shall be used for measuring off-cycle fan energy.
    3.3.4. Use appendix C, section C11 of AHRI 1250-2009 (incorporated 
by reference, see Sec.  431.303) for defrost testing. The Frost Load 
Condition Defrost Test (C11.1.1) is optional.
    3.3.4.1. If the frost load condition defrost test is performed:
    3.3.4.1.1 Operate the unit cooler at the dry coil conditions as 
specified in appendix C, section C11.1 to obtain dry coil defrost 
energy, DFd, in W-h.
    3.3.4.1.2 Operate the unit cooler at the frost load conditions as 
specified in appendix C, sections C11.1 and C11.1.1 to obtain frosted 
coil defrost energy, DFf, in W-h.
    3.3.4.1.3 The number of defrosts per day, NDF, shall be 
calculated from the time interval between successive defrosts from the 
start of one defrost to the start of the next defrost at the frost load 
conditions.
    3.3.4.1.4 Use appendix C, equations C13 and C14 in section C11.3 to 
calculate, respectively, the daily average defrost energy, DF, in W-h 
and the daily contribution of the load attributed to defrost 
QDF in Btu.
    3.3.4.1.5 The defrost adequacy requirements in appendix C, section 
C11.3 shall apply.
    3.3.4.2 If the frost load test is not performed:
    3.3.4.2.1 Operate the unit cooler at the dry coil conditions as 
specified in appendix C, section C11.1 to obtain dry coil defrost 
energy, DFd, in W-h.
    3.3.4.2.2 The frost load defrost energy, DFf, in W-h 
shall be equal to 1.05 multiplied by the dry coil energy consumption, 
DFd, measured using the dry coil condition test in appendix 
C, section C11.1.
    3.3.4.2.3 The number of defrosts per day NDF used in 
subsequent calculations shall be 4.
    3.3.4.2.4 Use appendix C, equation C13 in section C11.3 to calculate 
the daily average defrost energy, DF, in W-h.
    3.3.4.2.5 The daily contribution of the load attributed to defrost 
QDF in Btu shall be calculated as follows:
[GRAPHIC] [TIFF OMITTED] TR28DE16.008



[[Page 962]]


Where:

DFd = the defrost energy, in W-h, measured at the dry coil 
          condition

    3.3.5. If a unit has adaptive defrost, use appendix C, section C11.2 
of AHRI 1250-2009 as follows:
    3.3.5.1. When testing to certify to the energy conservation 
standards in Sec.  431.306, do not perform the optional test for 
adaptive or demand defrost in appendix C, section C11.2.
    3.3.5.2. When determining the represented value of the calculated 
benefit for the inclusion of adaptive defrost, conduct the optional test 
for adaptive or demand defrost in appendix C, section C11.2 to establish 
the maximum time interval allowed between dry coil defrosts. If this 
time is greater than 24 hours, set its value to 24 hours. Then, 
calculate NDF (the number of defrosts per day) by averaging 
the time in hours between successive defrosts for the dry coil condition 
with the time in hours between successive defrosts for the frosted coil 
condition, and dividing 24 by this average time. (The time between 
successive defrosts for the frosted coil condition is found as specified 
in section 3.3.4 of this appendix C of AHRI 1250-2009: That is, if the 
optional frosted coil test was performed, the time between successive 
defrosts for the frosted coil condition is found by performing the 
frosted coil test as specified in section 3.3.4.1 of this appendix; and 
if the optional frosted coil test was not performed, the time between 
successive defrosts for the frosted coil condition shall be set to 4 as 
specified in section 3.3.4.2. of this appendix) Use this new value of 
NDF in subsequent calculations.
    3.3.6. For matched refrigeration systems and single-package 
dedicated systems, calculate the AWEF using the calculations in AHRI 
1250-2009 (incorporated by reference; see Sec.  431.303), section 7.4, 
7.5, 7.6, or 7.7, as applicable.
    3.3.7. For unit coolers tested alone, calculate the AWEF and net 
capacity using the calculations in AHRI 1250-2009, (incorporated by 
reference; see Sec.  431.303), section 7.9. If the unit cooler has 
variable-speed evaporator fans that vary fan speed in response to load, 
then:
    3.3.7.1. When testing to certify compliance with the energy 
conservation standards in Sec.  431.306, fans shall operate at full 
speed during on-cycle operation. Do not conduct the calculations in AHRI 
1250-2009, section 7.9.3. Instead, use AHRI 1250-2009, section 7.9.2 to 
determine the system's AWEF.
    3.3.7.2. When calculating the benefit for the inclusion of variable-
speed evaporator fans that modulate fan speed in response to load for 
the purposes of making representations of efficiency, use AHRI 1250-
2009, section 7.9.3 to determine the system AWEF.

3.4. Dedicated condensing units that are not matched for testing and are 
                  not single-package dedicated systems

    3.4.1. Refer to appendix C, section C.12 of AHRI 1250-2009 
(incorporated by reference; see Sec.  431.303), for the method of test 
for dedicated condensing units. The version of ASHRAE Standard 23 used 
for test methods, requirements, and procedures shall be ANSI/ASHRAE 
Standard 23.1-2010 (incorporated by reference; see Sec.  431.303). When 
applying this test method, use the applicable test method modifications 
listed in sections 3.1 and 3.2 of this appendix. For the test conditions 
in AHRI 1250-2009, Tables 11, 12, 13, and 14, use the Suction A 
condition test points only.
    3.4.2. Calculate the AWEF and net capacity for dedicated condensing 
units using the calculations in AHRI 1250-2009 (incorporated by 
reference; see Sec.  431.303) section 7.8. Use the following 
modifications to the calculations in lieu of unit cooler test data:
    3.4.2.1. For calculating enthalpy leaving the unit cooler to 
calculate gross capacity, (a) The saturated refrigerant temperature (dew 
point) at the unit cooler coil exit, Tevap, shall be 25 
[deg]F for medium-temperature systems (coolers) and -20 [deg]F for low-
temperature systems (freezers), and (b) the refrigerant temperature at 
the unit cooler exit shall be 35 [deg]F for medium-temperature systems 
(coolers) and -14 [deg]F for low-temperature systems (freezers). For 
calculating gross capacity, the measured enthalpy at the condensing unit 
exit shall be used as the enthalpy entering the unit cooler.
    3.4.2.2. The on-cycle evaporator fan power in watts, 
EFcomp,on, shall be calculated as follows:
    For medium-temperature systems (coolers), EFcomp,on = 
0.013 x qmix,cd
    For low-temperature systems (freezers), EFcomp,on = 0.016 
x qmix,cd

Where:

qmix,cd is the gross cooling capacity of the system in Btu/h, 
          found by a single test at the Capacity A, Suction A condition 
          for outdoor units and the Suction A condition for indoor 
          units.

    3.4.2.3. The off-cycle evaporator fan power in watts, 
EFcomp,off, shall be calculated as follows:

    EFcomp,off = 0.2 x EFcomp,on

Where:

EFcomp,on is the on-cycle evaporator fan power in watts.

    3.4.2.4. The daily defrost energy use in watt-hours, DF, shall be 
calculated as follows:
    For medium-temperature systems (coolers), DF = 0
    For low-temperature systems (freezers), DF = 8.5 x 10-3 x 
qmix,cd\1.27\ x NDF


[[Page 963]]


Where:

qmix,cd is the gross cooling capacity of the system in Btu/h, 
          found by a single test at the Capacity A, Suction A condition 
          for outdoor units and the Suction A condition for indoor 
          units, and
NDF is the number of defrosts per day, equal to 4.

    3.4.2.5. The daily defrost heat load contribution in Btu, 
QDF, shall be calculated as follows:
    For medium-temperature systems (coolers), QDF = 0
    For low-temperature systems (freezers), QDF = 0.95 x DF x 
3.412

Where:

DF is the daily defrost energy use in watt-hours.

                3.5 Hot Gas Defrost Refrigeration Systems

    For all hot gas defrost refrigeration systems, remove the hot gas 
defrost mechanical components and disconnect all such components from 
electrical power.
    3.5.1 Hot Gas Defrost Dedicated Condensing Units Tested Alone: Test 
these units as described in section 3.4 of this appendix for electric 
defrost dedicated condensing units that are not matched for testing and 
are not single-package dedicated systems.
    3.5.2 Hot Gas Defrost Matched Systems, Single-package Dedicated 
Systems, and Unit Coolers Tested Alone: Test these units as described in 
section 3.3 of this appendix for electric defrost matched systems, 
single-package dedicated systems, and unit coolers tested alone, but do 
not conduct defrost tests as described in sections 3.3.4 and 3.3.5 of 
this appendix. Calculate daily defrost energy use as described in 
section 3.4.2.4 of this appendix. Calculate daily defrost heat 
contribution as described in section 3.4.2.5 of this appendix.

[81 FR 95803, Dec. 28, 2016]



            Subpart S_Metal Halide Lamp Ballasts and Fixtures

    Source: 74 FR 12075, Mar. 23, 2009, unless otherwise noted.



Sec.  431.321  Purpose and scope.

    This subpart contains energy conservation requirements for metal 
halide lamp ballasts and fixtures, pursuant to Part A of Title III of 
the Energy Policy and Conservation Act, as amended, 42 U.S.C. 6291-6309.

[75 FR 10966, Mar. 9, 2010]



Sec.  431.322  Definitions concerning metal halide lamp ballasts and fixtures.

    AC control signal means an alternating current (AC) signal that is 
supplied to the ballast using additional wiring for the purpose of 
controlling the ballast and putting the ballast in standby mode.
    Active mode means the condition in which an energy-using product:
    (1) Is connected to a main power source;
    (2) Has been activated; and
    (3) Provides one or more main functions.
    Ballast means a device used with an electric discharge lamp to 
obtain necessary circuit conditions (voltage, current, and waveform) for 
starting and operating.
    Ballast efficiency means, in the case of a high intensity discharge 
fixture, the efficiency of a lamp and ballast combination, expressed as 
a percentage, and calculated in accordance with the following formula: 
Efficiency = Pout/Pin where:
    (1) Pout equals the measured operating lamp wattage;
    (2) Pin equals the measured operating input wattage;
    (3) The lamp, and the capacitor when the capacitor is provided, 
shall constitute a nominal system in accordance with the ANSI C78.43, 
(incorporated by reference; see Sec.  431.323);
    (4) For ballasts with a frequency of 60 Hz, Pin and 
Pout shall be measured after lamps have been stabilized 
according to section 4.4 of ANSI C82.6 (incorporated by reference; see 
Sec.  431.323) using a wattmeter with accuracy specified in section 4.5 
of ANSI C82.6; and
    (5) For ballasts with a frequency greater than 60 Hz, Pin 
and Pout shall have a basic accuracy of 0.5 percent at the higher of either 3 times the output 
operating frequency of the ballast or 2.4 kHz.
    Basic model means all units of a given type of covered product (or 
class thereof) manufactured by one manufacturer, having the same primary 
energy source, and which have essentially identical electrical, 
physical, and functional (or hydraulic) characteristics that affect 
energy consumption, energy efficiency, water consumption, or

[[Page 964]]

water efficiency, and are rated to operate a given lamp type and 
wattage.
    DC control signal means a direct current (DC) signal that is 
supplied to the ballast using additional wiring for the purpose of 
controlling the ballast and putting the ballast in standby mode.
    Electronic ballast means a device that uses semiconductors as the 
primary means to control lamp starting and operation.
    General lighting application means lighting that provides an 
interior or exterior area with overall illumination.
    High-frequency electronic metal halide ballast means an electronic 
ballast that operates a lamp at an output frequency of 1000 Hz or 
greater.
    Metal halide ballast means a ballast used to start and operate metal 
halide lamps.
    Metal halide lamp means a high intensity discharge lamp in which the 
major portion of the light is produced by radiation of metal halides and 
their products of dissociation, possibly in combination with metallic 
vapors.
    Metal halide lamp fixture means a light fixture for general lighting 
application designed to be operated with a metal halide lamp and a 
ballast for a metal halide lamp.
    Nonpulse-start electronic ballast means an electronic ballast with a 
starting method other than pulse-start.
    Off mode means the condition in which an energy-using product:
    (1) Is connected to a main power source; and
    (2) Is not providing any standby or active mode function.
    PLC control signal means a power line carrier (PLC) signal that is 
supplied to the ballast using the input ballast wiring for the purpose 
of controlling the ballast and putting the ballast in standby mode.
    Probe-start metal halide ballast means a ballast that starts a 
probe-start metal halide lamp that contains a third starting electrode 
(probe) in the arc tube, and does not generally contain an igniter but 
instead starts lamps with high ballast open circuit voltage.
    Pulse-start metal halide ballast means an electronic or 
electromagnetic ballast that starts a pulse-start metal halide lamp with 
high voltage pulses, where lamps shall be started by the ballast first 
providing a high voltage pulse for ionization of the gas to produce a 
glow discharge and then power to sustain the discharge through the glow-
to-arc transition.
    Standby mode means the condition in which an energy-using product:
    (1) Is connected to a main power source; and
    (2) Offers one or more of the following user-oriented or protective 
functions:
    (i) To facilitate the activation or deactivation of other functions 
(including active mode) by remote switch (including remote control), 
internal sensor, or timer;
    (ii) Continuous functions, including information or status displays 
(including clocks) or sensor-based functions.
    Wireless control signal means a wireless signal that is radiated to 
and received by the ballast for the purpose of controlling the ballast 
and putting the ballast in standby mode.

[74 FR 12075, Mar. 23, 2009, as amended at 75 FR 10966, Mar. 9, 2010; 74 
FR 12074, Mar. 23, 2009; 79 FR 7843, Feb. 10, 2014]

                             Test Procedures



Sec.  431.323  Materials incorporated by reference.

    (a) General. We incorporate by reference the following standards 
into subpart S of part 431. The material listed has been approved for 
incorporation by reference by the Director of the Federal Register in 
accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any subsequent 
amendment to a standard by the standard-setting organization will not 
affect the DOE regulations unless and until amended by DOE. Material is 
incorporated as it exists on the date of the approval and a notice of 
any change in the material will be published in the Federal Register. 
All approved material is available for inspection at the National 
Archives and Records Administration (NARA). For information on the 
availability of this material at NARA, call 202-741-6030 or go to http:/
/www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html. Also, this material

[[Page 965]]

is available for inspection at U.S. Department of Energy, Office of 
Energy Efficiency and Renewable Energy, Building Technologies Program, 
6th Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024, 202-586-2945, 
between 9 a.m. and 4 p.m., Monday through Friday, except Federal 
holidays, or go to: http://www1.eere.energy.gov/buildings/
appliance_standards/. Standards can be obtained from the sources listed 
below.
    (b) ANSI. American National Standards Institute, 25 W. 43rd Street, 
4th Floor, New York, NY 10036, 212-642-4900, or go to http://
www.ansi.org.
    (1) ANSI C78.43-2004, Revision and consolidation of ANSI C78.1372-
1997, .1374-1997, .1375-1997, .1376-1997, .1377-1997, .1378-1997, .1379-
1997, .1382-1997, .1384-1997, and .1650-2003 (``ANSI C78.43''), American 
National Standard for electric lamps: Single-Ended Metal Halide Lamps, 
approved May 5, 2004, IBR approved for Sec.  431.322;
    (2) ANSI C82.6-2005, Proposed Revision of ANSI C82.6-1985 (``ANSI 
C82.6''), American National Standard for Lamp Ballasts--Ballasts for 
High-Intensity Discharge Lamps--Methods of Measurement, approved 
February 14, 2005, IBR approved for Sec.  431.322; and Sec.  431.324.
    (c) NFPA. National Fire Protection Association, 11 Tracy Drive, 
Avon, MA 02322, 1-800-344-3555, or go to http://www.nfpa.org;
    (1) NFPA 70-2002 (``NFPA 70''), National Electrical Code 2002 
Edition, IBR approved for Sec.  431.326;
    (2) [Reserved]
    (e) UL. Underwriters Laboratories, Inc., COMM 2000, 1414 Brook 
Drive, Downers Grove, IL 60515, 1-888-853-3503, or go to http://
www.ul.com.
    (1) UL 1029 (ANSI/UL 1029-2007) (``UL 1029''), Standard for Safety 
High-Intensity-Discharge Lamp Ballasts, 5th edition, May 25, 1994, which 
consists of pages dated May 25, 1994, September 28, 1995, August 3, 
1998, February 7, 2001 and December 11, 2007, IBR approved for Sec.  
431.326.
    (2) [Reserved]

[74 FR 12075, Mar. 23, 2009, as amended at 75 FR 10966, Mar. 9, 2010]



Sec.  431.324  Uniform test method for the measurement of energy efficiency 
and standby mode energy consumption of metal halide lamp ballasts.

    (a) Scope. This section provides test procedures for measuring, 
pursuant to EPCA, the energy efficiency of metal halide ballasts.
    (b) Testing and Calculations Active Mode. (1)(i) Test Conditions. 
The power supply, ballast test conditions, lamp position, lamp 
stabilization, and test instrumentation shall all conform to the 
requirements specified in section 4.0, ``General Conditions for 
Electrical Performance Tests,'' of ANSI C82.6 (incorporated by 
reference; see Sec.  431.323). Ambient temperatures for the testing 
period shall be maintained at 25 [deg]C 5 [deg]C. 
Airflow in the room for the testing period shall be <=0.5 meters/second. 
The ballast shall be operated until equilibrium. Lamps used in the test 
shall conform to the general requirements in section 4.4.1 of ANSI C82.6 
and be seasoned for a minimum of 100 hour prior to use in ballast tests. 
Basic lamp stabilization shall conform to the general requirements in 
section 4.4.2 of ANSI C82.6, and stabilization shall be reached when the 
lamp's electrical characteristics vary by no more than 3-percent in 
three consecutive 10- to 15-minute intervals measured after the minimum 
burning time of 30 minutes. After the stabilization process has begun, 
the lamp shall not be moved or repositioned until after the testing is 
complete. In order to avoid heating up the test ballast during lamp 
stabilization, which could cause resistance changes and result in 
unrepeatable data, it is necessary to warm up the lamp on a standby 
ballast. This standby ballast should be a commercial ballast of a type 
similar to the test ballast in order to be able to switch a stabilized 
lamp to the test ballast without extinguishing the lamp. Fast-acting or 
make-before-break switches are recommended to prevent the lamps from 
extinguishing during switchover.
    (ii) Alternative Stabilization Method. In cases where switching 
without extinguishing the lamp is impossible or for low-frequency 
electronic ballasts, the following alternative stabilization

[[Page 966]]

method shall be used. The lamp characteristics are determined using a 
reference ballast and recorded for future comparison. The same lamp is 
to be driven by the ballast under test until the ballast reaches 
operational stability. Operational stability is defined by three 
consecutive measurements, 5 minutes apart, of the lamp power where the 
three readings are within 2.5 percent. The electrical measurements are 
to be taken within 5 minutes after conclusion of the stabilization 
period.
    (iii) Input Voltage for Tests. For ballasts designed to operate 
lamps rated less than 150 W that have 120 V as an available input 
voltage, testing shall be performed at 120 V. For ballasts designed to 
operate lamps rated less than 150 W that do not have 120 V as an 
available voltage, testing shall be performed at the highest available 
input voltage. For ballasts designed to operate lamps rated greater than 
or equal to 150 W that have 277 V as an available input voltage, testing 
shall be conducted at 277 V. For ballasts designed to operate lamps 
rated greater than or equal to 150 W that do not have 277 V as an 
available input voltage, testing shall be conducted at the highest 
available input voltage.
    (2) Test Measurement. The ballast input power and lamp output power 
during operating conditions shall be measured in accordance with the 
methods specified in section 6.0, ``Ballast Measurements (Multiple-
Supply Type Ballasts)'' of the ANSI C82.6 (incorporated by reference; 
see Sec.  431.323).
    (3) Efficiency Calculation. The measured lamp output power shall be 
divided by the measured ballast input power to determine the percent 
efficiency of the ballast under test to three significant figures.
    (i) A fractional number at or above the midpoint between two 
consecutive decimal places shall be rounded up to the higher of the two 
decimal places; or
    (ii) A fractional number below the midpoint between two consecutive 
decimal places shall be rounded down to the lower of the two decimal 
places.
    (c) Testing and Calculations-Standby Mode. The measurement of 
standby mode need not be performed to determine compliance with energy 
conservation standards for metal halide lamp fixtures at this time. The 
above statement will be removed as part of the rulemaking to amend the 
energy conservation standards for metal halide lamp fixtures to account 
for standby mode energy consumption, and the following shall apply on 
the compliance date for such requirements. However, all representations 
related to standby mode energy consumption of these products made after 
September 7, 2010, must be based upon results generated under this test 
procedure.
    (1) Test Conditions. (i) The power supply and ballast test 
conditions with the exception of input voltage shall all conform to the 
requirements specified in section 4.0, ``General Conditions for 
Electrical Performance Tests,'' of the ANSI C82.6 (incorporated by 
reference; see Sec.  431.323). Ambient temperatures for the testing 
period shall be maintained at 25 [deg]C 5 [deg]C. 
Send a signal to the ballast instructing it to have zero light output 
using the appropriate ballast communication protocol or system for the 
ballast being tested.
    (ii) Input Voltage for Tests. For ballasts designed to operate lamps 
rated less than 150 W that have 120 V as an available input voltage, 
ballasts are to be tested at 120 V. For ballasts designed to operate 
lamps rated less than 150 W that do not have 120 V as an available 
voltage, ballasts are to be tested at the highest available input 
voltage. For ballasts designed to operate lamps rated greater than or 
equal to 150 W that have 277 V as an available input voltage, ballasts 
are to be tested at 277 V. For ballasts designed to operate lamps rated 
greater than or equal to 150 W that do not have 277 V as an available 
input voltage, ballasts are to be tested at the highest available input 
voltage.
    (2) Measurement of Main Input Power. Measure the input power (watts) 
to the ballast in accordance with the methods specified in section 6.0, 
``Ballast Measurements (Multiple-Supply Type Ballasts)'' of the ANSI 
C82.6 (incorporated by reference; see Sec.  431.323).
    (3) Measurement of Control Signal Power. The power from the control 
signal path is measured using all applicable methods described below:
    (i) DC Control Signal. Measure the DC control signal voltage, using 
a

[[Page 967]]

voltmeter (V), and current, using an ammeter (A) connected to the 
ballast in accordance with the circuit shown in Figure 1. The DC control 
signal power is calculated by multiplying the DC control signal voltage 
by the DC control signal current.
[GRAPHIC] [TIFF OMITTED] TR09MR10.005

    (ii) AC Control Signal. Measure the AC control signal power (watts), 
using a wattmeter capable of indicating true RMS power in watts (W), 
connected to the ballast in accordance with the circuit shown in Figure 
2.
[GRAPHIC] [TIFF OMITTED] TR09MR10.006

    (iii) Power Line Carrier (PLC) Control Signal. Measure the PLC 
control signal power (watts), using a wattmeter capable of indicating 
true RMS power in watts (W) connected to the ballast in accordance with 
the circuit shown in Figure 3. The wattmeter must have a frequency 
response that is at least 10 times higher than the PLC being measured to 
measure the PLC signal correctly. The wattmeter must also be high-pass 
filtered to filter out power at 60 Hz.

[[Page 968]]

[GRAPHIC] [TIFF OMITTED] TR09MR10.007


[74 FR 12075, Mar. 23, 2009, as amended at 75 FR 10966, Mar. 9, 2010; 79 
FR 7843, Feb. 10, 2014]

                      Energy Conservation Standards



Sec.  431.326  Energy conservation standards and their effective dates.

    (a) Except as provided in paragraph (b) of this section, each metal 
halide lamp fixture manufactured on or after January 1, 2009, and 
designed to be operated with lamps rated greater than or equal to 150 
watts but less than or equal to 500 watts shall contain--
    (1) A pulse-start metal halide ballast with a minimum ballast 
efficiency of 88 percent;
    (2) A magnetic probe-start ballast with a minimum ballast efficiency 
of 94 percent; or
    (3) A nonpulse-start electronic ballast with either a minimum 
ballast efficiency of 92 percent for wattages greater than 250 watts; or 
a minimum ballast efficiency of 90 percent for wattages less than or 
equal to 250 watts.
    (b) The standards described in paragraph (a) of this section do not 
apply to--
    (1) Metal halide lamp fixtures with regulated lag ballasts;
    (2) Metal halide lamp fixtures that use electronic ballasts that 
operate at 480 volts; or
    (3) Metal halide lamp fixtures that;
    (i) Are rated only for 150 watt lamps;
    (ii) Are rated for use in wet locations; as specified by the 
National Fire Protection Association in NFPA 70 (incorporated by 
reference; see Sec.  431.323); and
    (iii) Contain a ballast that is rated to operate at ambient air 
temperatures above 50 [deg]C, as specified in UL 1029, (incorporated by 
reference; see Sec.  431.323).
    (c) Except when the requirements of paragraph (a) of this section 
are more stringent (i.e., require a larger minimum efficiency value) or 
as provided by paragraph (e) of this section, each metal halide lamp 
fixture manufactured on or after February 10, 2017, must contain a metal 
halide ballast with an efficiency not less than the value determined 
from the appropriate equation in the following table:

----------------------------------------------------------------------------------------------------------------
 Designed to be operated with lamps of              Tested input                       Minimum standard
    the following rated lamp wattage           voltage[Dagger][Dagger]            equation[Dagger][Dagger] %
----------------------------------------------------------------------------------------------------------------
=50 W and <=100 W...........  Tested at 480 V...................  (1/(1 + 1.24 x P[supcaret](-
                                                                              0.351))) - 0.020[dagger][dagger]
=50 W and <=100 W...........  All others........................  1/(1 + 1.24 x P[supcaret](-0.351))
100 W and <150[dagger] W....  Tested at 480 V...................  (1/(1 + 1.24 x P[supcaret](-
                                                                              0.351))) - 0.020
100 W and <150[dagger] W....  All others........................  1/(1 + 1.24 x P[supcaret](-0.351))
=150 [Dagger] W and <=250 W.  Tested at 480 V...................  0.880
=150 [Dagger] W and <=250 W.  All others........................  For =150 W and <=200 W:
                                                                              0.880
                                                                             For 200 W and <=250 W: 1/
                                                                              (1 + 0.876 x P[supcaret](-0.351))
250 W and <=500 W...........  Tested at 480 V...................  For 250 and <265 W:
                                                                              0.880
                                                                             For =265 W and <=500 W:
                                                                              (1/(1 + 0.876 x P[supcaret](-
                                                                              0.351)) - 0.010
250 W and <=500 W...........  All others........................  1/(1 + 0.876 x P[supcaret](-0.351))
500 W and <=1000 W..........  Tested at 480 V...................  For 500 W and <=750 W:
                                                                              0.900
                                                                             For 750 W and <=1000 W:
                                                                              0.000104 x P + 0.822
                                                                             For 500 W and <=1000 W:
                                                                              may not utilize a probe-start
                                                                              ballast
500 W and <=1000 W..........  All others........................  For 500 W and <=750 W:
                                                                              0.910
                                                                             For 750 W and <=1000 W:
                                                                              0.000104 x P + 0.832

[[Page 969]]

 
                                                                             For 500 W and <=1000 W:
                                                                              may not utilize a probe-start
                                                                              ballast
----------------------------------------------------------------------------------------------------------------
[dagger] Includes 150 W fixtures specified in paragraph (b)(3) of this section, that are fixtures rated only for
  150 W lamps; rated for use in wet locations, as specified by the NFPA 70 (incorporated by reference, see Sec.
   431.323), section 410.4(A); and containing a ballast that is rated to operate at ambient air temperatures
  above 50 [deg]C, as specified by UL 1029 (incorporated by reference, see Sec.   431.323).
[Dagger] Excludes 150 W fixtures specified in paragraph (b)(3) of this section, that are fixtures rated only for
  150 W lamps; rated for use in wet locations, as specified by the NFPA 70, section 410.4(A); and containing a
  ballast that is rated to operate at ambient air temperatures above 50 [deg]C, as specified by UL 1029.
[dagger][dagger] P is defined as the rated wattage of the lamp the fixture is designed to operate.
[Dagger][Dagger] Tested input voltage is specified in 10 CFR 431.324.

    (d) Except as provided in paragraph (e) of this section, metal 
halide lamp fixtures manufactured on or after February 10, 2017, that 
operate lamps with rated wattage 500 W to <=1000 W must not 
contain a probe-start metal halide ballast.
    (e) The standards described in paragraphs (c) and (d) of this 
section do not apply to--
    (1) Metal halide lamp fixtures with regulated-lag ballasts;
    (2) Metal halide lamp fixtures that use electronic ballasts that 
operate at 480 volts; and
    (3) Metal halide lamp fixtures that use high-frequency electronic 
ballasts.

[74 FR 12075, Mar. 23, 2009, as amended at 79 FR 7844, Feb. 10, 2014]



                          Subpart T_Compressors

    Source: 81 FR 79998, Nov. 15, 2016, unless otherwise noted.



Sec.  431.341  Purpose and scope.

    This subpart contains and energy conservation requirements for 
compressors, pursuant to Part A-1 of Title III of the Energy Policy and 
Conservation Act, as amended, 42 U.S.C. 6311-6317.



Sec.  431.342  Definitions concerning compressors.

    The following definitions are applicable to this subpart, including 
appendix A. In cases where there is a conflict, the language of the 
definitions adopted in this section take precedence over any 
descriptions or definitions found in any other source, including in ISO 
Standard 1217:2009(E), ``Displacement compressors--Acceptance tests,'' 
as amended through Amendment 1:2016(E), ``Calculation of isentropic 
efficiency and relationship with specific energy'' (incorporated by 
reference, see Sec.  431.343). In cases where definitions reference 
design intent, DOE will consider all relevant information, including 
marketing materials, labels and certifications, and equipment design, to 
determine design intent.
    Actual volume flow rate means the volume flow rate of air, 
compressed and delivered at the standard discharge point, referred to 
conditions of total temperature, total pressure and composition 
prevailing at the standard inlet point, and as determined in accordance 
with the test procedures prescribed in Sec.  431.344.
    Air compressor means a compressor designed to compress air that has 
an inlet open to the atmosphere or other source of air, and is made up 
of a compression element (bare compressor), driver(s), mechanical 
equipment to drive the compressor element, and any ancillary equipment.
    Air-cooled compressor means a compressor that utilizes air to cool 
both the compressed air and, if present, any auxiliary substance used to 
facilitate compression, and that is not a liquid-cooled compressor.
    Ancillary equipment means any equipment distributed in commerce with 
an air compressor but that is not a bare compressor, driver, or 
mechanical equipment. Ancillary equipment is considered to be part of a 
given air compressor, regardless of whether the ancillary equipment is 
physically attached to the bare compressor, driver, or mechanical 
equipment at the time when the air compressor is distributed in 
commerce.
    Auxiliary substance means any substance deliberately introduced into 
a compression process to aid in compression of a gas by any of the 
following:

[[Page 970]]

Lubricating, sealing mechanical clearances, or absorbing heat.
    Bare compressor means the compression element and auxiliary devices 
(e.g., inlet and outlet valves, seals, lubrication system, and gas flow 
paths) required for performing the gas compression process, but does not 
include any of the following:
    (1) The driver;
    (2) Speed-adjusting gear(s);
    (3) Gas processing apparatuses and piping; and
    (4) Compressor equipment packaging and mounting facilities and 
enclosures.
    Basic model means all units of a class of compressors manufactured 
by one manufacturer, having the same primary energy source, the same 
compressor motor nominal horsepower, and essentially identical 
electrical, physical, and functional (or pneumatic) characteristics that 
affect energy consumption and energy efficiency.
    Brushless electric motor means a machine that converts electrical 
power into rotational mechanical power without use of sliding electrical 
contacts.
    Compressor means a machine or apparatus that converts different 
types of energy into the potential energy of gas pressure for 
displacement and compression of gaseous media to any higher pressure 
values above atmospheric pressure and has a pressure ratio at full-load 
operating pressure greater than 1.3.
    Compressor motor nominal horsepower means the motor horsepower of 
the electric motor, as determined in accordance with the applicable 
procedures in subparts B and X of this part, with which the rated air 
compressor is distributed in commerce.
    Driver means the machine providing mechanical input to drive a bare 
compressor directly or through the use of mechanical equipment.
    Fixed-speed compressor means an air compressor that is not capable 
of adjusting the speed of the driver continuously over the driver 
operating speed range in response to incremental changes in the required 
compressor flow rate.
    Full-load actual volume flow rate means the actual volume flow rate 
of the compressor at the full-load operating pressure.
    Liquid-cooled compressor means a compressor that utilizes liquid 
coolant provided by an external system to cool both the compressed air 
and, if present, any auxiliary substance used to facilitate compression.
    Lubricant-free compressor means a compressor that does not introduce 
any auxiliary substance into the compression chamber at any time during 
operation.
    Lubricated compressor means a compressor that introduces an 
auxiliary substance into the compression chamber during compression.
    Maximum full-flow operating pressure means the maximum discharge 
pressure at which the compressor is capable of operating, as determined 
in accordance with the test procedure prescribed in Sec.  431.344.
    Mechanical equipment means any component of an air compressor that 
transfers energy from the driver to the bare compressor.
    Package isentropic efficiency means the ratio of power required for 
an ideal isentropic compression process to the actual packaged 
compressor power input used at a given load point, as determined in 
accordance with the test procedures prescribed in Sec.  431.344.
    Package specific power means the compressor power input at a given 
load point, divided by the actual volume flow rate at the same load 
point, as determined in accordance with the test procedures prescribed 
in Sec.  431.344.
    Positive displacement compressor means a compressor in which the 
admission and diminution of successive volumes of the gaseous medium are 
performed periodically by forced expansion and diminution of a closed 
space(s) in a working chamber(s) by means of displacement of a moving 
member(s) or by displacement and forced discharge of the gaseous medium 
into the high-pressure area.
    Pressure ratio at full-load operating pressure means the ratio of 
discharge pressure to inlet pressure, determined at full-load operating 
pressure in accordance with the test procedures prescribed in Sec.  
431.344.
    Reciprocating compressor means a positive displacement compressor in 
which gas admission and diminution of its successive volumes are 
performed

[[Page 971]]

cyclically by straight-line alternating movements of a moving member(s) 
in a compression chamber(s).
    Rotary compressor means a positive displacement compressor in which 
gas admission and diminution of its successive volumes or its forced 
discharge are performed cyclically by rotation of one or several rotors 
in a compressor casing.
    Rotor means a compression element that rotates continually in a 
single direction about a single shaft or axis.
    Variable-speed compressor means an air compressor that is capable of 
adjusting the speed of the driver continuously over the driver operating 
speed range in response to incremental changes in the required 
compressor actual volume flow rate.
    Water-injected lubricated compressor means a lubricated compressor 
that uses injected water as an auxiliary substance.

[82 FR 1101, Jan. 4, 2017, as amended at 85 FR 1591, Jan. 10, 2020]



Sec.  431.343  Materials incorporated by reference.

    (a) General. DOE incorporates by reference the following standards 
into part 431. The material listed has been approved for incorporation 
by reference by the Director of the Federal Register in accordance with 
6 U.S.C. 522(a) and 1 CFR part 51. Any subsequent amendment to a 
standard by the standard-setting organization will not affect the DOE 
test procedures unless and until amended by DOE. Material is 
incorporated as it exists on the date of the approval and a notice of 
any change in the material will be published in the Federal Register. 
All approved material is available from the sources below. It is 
available for inspection at U.S. Department of Energy, Office of Energy 
Efficiency and Renewable Energy, Building Technologies Program, Sixth 
Floor, 950 L'Enfant Plaza SW., Washington, DC 20024, (202) 586-6636, or 
go to http://www1.eere.energy.gov/buildings/appliance_standards/. Also, 
this material is available for inspection at the National Archives and 
Records Administration (NARA). For information on the availability of 
this material at NARA, call 202-741-6030, or go to: http://
www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html.
    (b) ISO. International Organization for Standardization, Chemin de 
Blandonnet 8, CP 401, 1214 Vernier, Geneva, Switzerland +41 22 749 01 
11, www.iso.org.
    (1) ISO Standard 1217:2009(E), (``ISO 1217:2009(E)''), 
``Displacement compressors--Acceptance tests,'' July 1, 2009, IBR 
approved for appendix A to this subpart:
    (i) Section 2. Normative references;
    (ii) Section 3. Terms and definitions;
    (iii) Section 4. Symbols;
    (iv) Section 5. Measuring equipment, methods and accuracy (excluding 
5.1, 5.5, 5.7, and 5.8);
    (v) Section 6. Test procedures, introductory text to Section 6.2, 
Test arrangements, and paragraphs 6.2(g) and 6.2(h) including Table 1--
Maximum deviations from specified values and fluctuations from average 
readings;
    (vi) Annex C (normative), Simplified acceptance test for 
electrically driven packaged displacement compressors (excluding C.1.2, 
C.2.1, C.3, C.4.2.2, C.4.3.1, and C.4.5).
    (2) ISO 1217:2009/Amd.1:2016(E), Displacement compressors--
Acceptance tests (Fourth edition); Amendment 1: ``Calculation of 
isentropic efficiency and relationship with specific energy,'' April 15, 
2016, IBR approved for appendix A to this subpart:
    (i) Section 3.5.1: isentropic power;
    (ii) Section 3.6.1: isentropic efficiency;
    (iii) Annex H (informative), Isentropic efficiency and its relation 
to specific energy requirement, sections H.2, Symbols and subscripts, 
and H.3, Derivation of isentropic power.

[82 FR 1102, Jan. 4, 2017]



Sec.  431.344  Test procedure for measuring and determining energy efficiency 
of compressors.

    (a) Scope. This section is a test procedure that is applicable to a 
compressor that meets the following criteria:
    (1) Is an air compressor;
    (2) Is a rotary compressor;
    (3) Is not a liquid ring compressor;
    (4) Is driven by a brushless electric motor;
    (5) Is a lubricated compressor;

[[Page 972]]

    (6) Has a full-load operating pressure greater than or equal to 75 
pounds per square inch gauge (psig) and less than or equal to 200 psig;
    (7) Is not designed and tested to the requirements of the American 
Petroleum Institute Standard 619, ``Rotary-Type Positive-Displacement 
Compressors for Petroleum, Petrochemical, and Natural Gas Industries;''
    (8) Has full-load actual volume flow rate greater than or equal to 
35 cubic feet per minute (cfm), or is distributed in commerce with a 
compressor motor nominal horsepower greater than or equal to 10 
horsepower (hp); and
    (9) Has a full-load actual volume flow rate less than or equal to 
1,250 cfm, or is distributed in commerce with a compressor motor nominal 
horsepower less than or equal to 200 hp.
    (b) Testing and calculations. Determine the applicable full-load 
package isentropic efficiency ([eta]isen,FL), part-load 
package isentropic efficiency ([eta]isen,PL), package 
specific power, maximum full-flow operating pressure, full-load 
operating pressure, full-load actual volume flow rate, and pressure 
ratio at full-load operating pressure using the test procedure set forth 
in appendix A of this subpart.

[82 FR 1102, Jan. 4, 2017]



Sec.  431.345  Energy conservation standards and effective dates.

    (a) Each compressor that is manufactured starting on January 10, 
2025 and that:
    (1) Is an air compressor,
    (2) Is a rotary compressor,
    (3) Is not a liquid ring compressor,
    (4) Is driven by a brushless electric motor,
    (5) Is a lubricated compressor,
    (6) Has a full-load operating pressure greater than or equal to 75 
pounds per square inch gauge (psig) and less than or equal to 200 psig,
    (7) Is not designed and tested to the requirements of The American 
Petroleum Institute standard 619, ``Rotary-Type Positive-Displacement 
Compressors for Petroleum, Petrochemical, and Natural Gas Industries,''
    (8) Has full-load actual volume flow rate greater than or equal to 
35 cubic feet per minute (cfm), or is distributed in commerce with a 
compressor motor nominal horsepower greater than or equal to 10 
horsepower (hp),
    (9) Has a full-load actual volume flow rate less than or equal to 
1,250 cfm, or is distributed in commerce with a compressor motor nominal 
horsepower less than or equal to 200 hp,
    (10) Is driven by a three-phase electric motor,
    (11) Is manufactured alone or as a component of another piece of 
equipment; and
    (12) Is in one of the equipment classes listed in the Table 1, must 
have a full-load package isentropic efficiency or part-load package 
isentropic efficiency that is not less than the appropriate ``Minimum 
Package Isentropic Efficiency'' value listed in Table 1 of this section.

                         Table 1--Energy Conservation Standards for Certain Compressors
----------------------------------------------------------------------------------------------------------------
                                                                   [eta]Regr (package isentropic   d (percentage
            Equipment class                  Minimum package        efficiency reference curve)        loss
                                          isentropic efficiency                                     reduction)
----------------------------------------------------------------------------------------------------------------
Rotary, lubricated, air-cooled, fixed-  [eta]Regr + (1 -           -0.00928 * ln\2\(.4719 * V1)              -15
 speed compressor.                       [eta]Regr) * (d/100).      + 0.13911 * ln(.4719 * V1) +
                                                                    0.27110.
Rotary, lubricated, air-cooled,         [eta]Regr + (1 -           -0.01549 * ln\2\(.4719 * V1)              -10
 variable-speed compressor.              [eta]Regr) * (d/100).      + 0.21573 * ln(.4719 * V1) +
                                                                    0.00905.
Rotary, lubricated, liquid-cooled,      .02349 + [eta]Regr + (1 -  -0.00928 * ln\2\(.4719 * V1)              -15
 fixed-speed compressor.                 [eta]Regr) * (d/100).      + 0.13911 * ln(.4719 * V1) +
                                                                    0.27110.
Rotary, lubricated, liquid-cooled,      .02349 + [eta]Regr + (1 -  -0.01549 * ln\2\(.4719 * V1)              -15
 variable-speed compressor.              [eta]Regr) * (d/100).      + 0.21573 * ln(.4719 * V1) +
                                                                    0.00905.
----------------------------------------------------------------------------------------------------------------

    (b) Instructions for the use of Table 1 of this section:
    (1) To determine the standard level a compressor must meet, the 
correct

[[Page 973]]

equipment class must be identified. The descriptions are in the first 
column (``Equipment Class''); definitions for these descriptions are 
found in Sec.  431.342.
    (2) The second column (``Minimum Package Isentropic Efficiency'') 
contains the applicable energy conservation standard level, provided in 
terms of package isentropic efficiency.
    (3) For ``Fixed-speed compressor'' equipment classes, the relevant 
Package Isentropic Efficiency is Full-load Package Isentropic 
Efficiency. For ``Variable-speed compressor'' equipment classes, the 
relevant Package Isentropic Efficiency is Part-load Package Isentropic 
Efficiency. Both Full- and Part-load Package Isentropic Efficiency are 
determined in accordance with the test procedure in Sec.  431.344.
    (4) The second column (``Minimum Package Isentropic Efficiency'') 
references the third column (``[eta]Regr''), also a function 
of full-load actual volume flow rate, and the fourth column (``d''). The 
equations are provided separately to maintain consistency with the 
language of the preamble and analysis.
    (5) The second and third columns contain the term V1, 
which denotes compressor full-load actual volume flow rate, given in 
terms of cubic feet per minute (``cfm'') and determined in accordance 
with the test procedure in Sec.  431.344.

[85 FR 1591, Jan. 10, 2020]



Sec. Sec.  431.346-431.346  [Reserved]



   Sec. Appendix A to Subpart T of Part 431--Uniform Test Method for 
                         Certain Air Compressors

    Note: Starting on July 3, 2017, any representations made with 
respect to the energy use or efficiency of compressors subject to 
testing pursuant to 10 CFR 431.344 must be made in accordance with the 
results of testing pursuant to this appendix.

      I. Measurements, Test Conditions, and Equipment Configuration

                        A. Measurement Equipment

    A.1. For the purposes of measuring air compressor performance, the 
equipment necessary to measure volume flow rate, inlet and discharge 
pressure, temperature, condensate, and packaged compressor power input 
must comply with the equipment and accuracy requirements specified in 
ISO 1217:2009(E) sections 5.2, 5.3, 5.4, 5.6, 5.9, and Annex C, sections 
C.2.3 and C.2.4 (incorporated by reference, see Sec.  431.343).
    A.2. Electrical measurement equipment must be capable of measuring 
true root mean square (RMS) current, true RMS voltage, and real power up 
to the 40th harmonic of fundamental supply source frequency.
    A.3. Any instruments used to measure a particular parameter 
specified in paragraph (A.1.) must have a combined accuracy of 2.0 percent of the measured value at the fundamental 
supply source frequency, where combined accuracy is the square root of 
the sum of the squares of individual instrument accuracies.
    A.4. Any instruments used to directly measure the density of air 
must have an accuracy of 1.0 percent of the 
measured value.
    A.5. Any pressure measurement equipment used in a calculation of 
another variable (e.g., actual volume flow rate) must also meet all 
accuracy and measurement requirements of section 5.2 of ISO 1217:2009(E) 
(incorporated by reference, see Sec.  431.343).
    A.6. Any temperature measurement equipment used in a calculation of 
another variable (e.g., actual volume flow rate) must also meet all 
accuracy and measurement requirements of section 5.3 of ISO 1217:2009(E) 
(incorporated by reference, see Sec.  431.343).
    A.7. Where ISO 1217:2009(E) refers to ``corrected volume flow 
rate,'' the term is deemed synonymous with the term ``actual volume flow 
rate,'' as defined in section 3.4.1 of ISO 1217:2009(E) (incorporated by 
reference, see Sec.  431.343).

         B. Test Conditions and Configuration of Unit Under Test

    B.1. For both fixed-speed and variable-speed compressors, conduct 
testing in accordance with the test conditions, unit configuration, and 
specifications of ISO 1217:2009(E), Section 6.2 paragraphs (g) and (h) 
and Annex C, sections C.1.1, C.2.2, C.2.3, C.2.4, C.4.1, C.4.2.1, 
C.4.2.3, and C.4.3.2 (incorporated by reference, see Sec.  431.343).
    B.2. The power supply must:
    (1) Maintain the voltage greater than or equal to 95 percent and 
less than or equal to 110 percent of the rated value of the motor,
    (2) Maintain the frequency within 5 percent of 
the rated value of the motor,
    (3) Maintain the voltage unbalance of the power supply within 3 percent of the rated values of the motor, and
    (4) Maintain total harmonic distortion below 12 percent throughout 
the test.
    B.3. Ambient Conditions. The ambient air temperature must be greater 
than or equal to 68 [deg]F and less than or equal to 90 [deg]F for the 
duration of testing. There are no ambient condition requirements for 
inlet pressure or relative humidity.

[[Page 974]]

    B.4. All equipment indicated in Table 1 of this appendix must be 
present and installed for all tests specified in this appendix. If the 
compressor is distributed in commerce without an item from Table 1 of 
this appendix, the manufacturer must provide an appropriate item to be 
installed for the test. Additional ancillary equipment may be installed 
for the test, if distributed in commerce with the compressor, but this 
additional ancillary equipment is not required. If any of the equipment 
listed in Table 2 of this appendix is distributed in commerce with units 
of the compressor basic model, it must be present and installed for all 
tests specified in this appendix.

                                     Table 1--Equipment Required During Test
----------------------------------------------------------------------------------------------------------------
                                                                                   Variable-speed rotary air
                Equipment                 Fixed-speed rotary air compressors              compressors
----------------------------------------------------------------------------------------------------------------
Driver..................................  Yes...............................  Yes.
Bare compressors........................  Yes...............................  Yes.
Inlet filter............................  Yes...............................  Yes.
Inlet valve.............................  Yes...............................  Yes.
Minimum pressure check valve/backflow     Yes...............................  Yes.
 check valve.
Lubricant separator.....................  Yes...............................  Yes.
Air piping..............................  Yes...............................  Yes.
Lubricant piping........................  Yes...............................  Yes.
Lubricant filter........................  Yes...............................  Yes.
Lubricant cooler........................  Yes...............................  Yes.
Thermostatic valve......................  Yes...............................  Yes.
Electrical switchgear or frequency        Yes...............................  Not applicable.\1\
 converter for the driver.
Device to control the speed of the        Not applicable \2\................  Yes.
 driver (e.g., variable speed drive).
Compressed air cooler(s)................  Yes...............................  Yes.
Pressure switch, pressure transducer, or  Yes...............................  Yes.
 similar pressure control device.
Moisture separator and drain............  Yes...............................  Yes.
----------------------------------------------------------------------------------------------------------------
\1\ This category is not applicable to variable-speed rotary air compressors.
\2\ This category is not applicable to fixed-speed rotary air compressors.


            Table 2--Equipment Required During Test, if Distributed in Commerce With the Basic Model
----------------------------------------------------------------------------------------------------------------
                                                                                   Variable-speed rotary air
                Equipment                 Fixed-speed rotary air compressors              compressors
----------------------------------------------------------------------------------------------------------------
Cooling fan(s) and motors...............  Yes...............................  Yes.
Mechanical equipment....................  Yes...............................  Yes.
Lubricant pump..........................  Yes...............................  Yes.
Interstage cooler.......................  Yes...............................  Yes.
Electronic or electrical controls and     Yes...............................  Yes.
 user interface.
All protective and safety devices.......  Yes...............................  Yes.
----------------------------------------------------------------------------------------------------------------

    B.5. The inlet of the compressor under test must be open to the 
atmosphere and take in ambient air for all tests specified in this 
appendix.
    B.6. The compressor under test must be set up according to all 
manufacturer instructions for normal operation (e.g., verify lubricant 
level, connect all loose electrical connections, close off bottom of 
unit to floor, cover forklift holes).
    B.7. The piping connected to the discharge orifice of the compressor 
must be of a diameter at least equal to that of the compressor discharge 
orifice to which it is connected. The piping must be straight with a 
length of at least 6 inches.
    B.8. Transducers used to record compressor discharge pressure must 
be located on the discharge piping between 2 inches and 6 inches, 
inclusive, from the discharge orifice of the compressor. The pressure 
tap for transducers must be located at the highest point of the pipe's 
cross section.

  II. Determination of Package Isentropic Efficiency, Package Specific 
        Power, and Pressure Ratio at Full-Load Operating Pressure

                     A. Data Collection and Analysis

    A.1. Stabilization. Record data at each load point under steady-
state conditions. Steady-state conditions are achieved when a set of two 
consecutive readings taken at least 10 seconds apart and no more than 60 
seconds apart are within the maximum permissible fluctuation from the 
average (of the two consecutive readings), as specified in Table 1 of 
ISO 1217:2009(E) (incorporated by reference, see Sec.  431.343) for--

[[Page 975]]

    (1) Discharge pressure;
    (2) Temperature at the nozzle or orifice plate, measured per section 
5.3 of ISO 1217:2009(E) (incorporated by reference, see Sec.  431.343); 
and
    (3) Differential pressure over the nozzle or orifice plate, measured 
per section 5.2 of ISO 1217:2009(E) (incorporated by reference, see 
Sec.  431.343).
    A.2. Data Sampling and Frequency. At each load point, record a 
minimum set of 16 unique readings, collected over a minimum time of 15 
minutes. Each consecutive reading must be no more than 60 seconds apart, 
and not less than 10 seconds apart. All readings at each load point must 
be within the maximum permissible fluctuation from average specified in 
Table 1 of ISO 1217:2009(E) (incorporated by reference, see Sec.  
431.343) for--
    (1) Discharge pressure;
    (2) Temperature at the nozzle or orifice plate, measured per section 
5.3 of ISO 1217:2009(E) (incorporated by reference, see Sec.  431.343); 
and
    (3) Differential pressure over the nozzle or orifice plate, measured 
per section 5.2 of ISO 1217:2009(E) (incorporated by reference, see 
Sec.  431.343).
    If one or more readings do not meet the requirements, then all 
previous readings must be disregarded and a new set of at least 16 new 
unique readings must be collected over a minimum time of 15 minutes. 
Average the readings to determine the value of each parameter to be used 
in subsequent calculations.
    A.3. Calculations and Rounding. Perform all calculations using raw 
measured values. Round the final result for package isentropic 
efficiency to the thousandth (i.e., 0.001), for package specific power 
in kilowatts per 100 cubic feet per minute to the nearest hundredth 
(i.e., 0.01), for pressure ratio at full-load operating pressure to the 
nearest tenth (i.e., 0.1), for full-load actual volume flow rate in 
cubic feet per minute to the nearest tenth (i.e., 0.1), and for full-
load operating pressure in pounds per square inch gauge (psig) to the 
nearest integer (i.e., 1). All terms and quantities refer to values 
determined in accordance with the procedures set forth in this appendix 
for the tested unit.

  B. Full-Load Operating Pressure and Full-Load Actual Volume Flow Rate

    Determine the full-load operating pressure and full-load actual 
volume flow rate (referenced throughout this appendix) in accordance 
with the procedures prescribed in section III of this appendix.

C. Full-Load Package Isentropic Efficiency for Fixed- and Variable-Speed 
                             Air Compressors

    Use this test method to test fixed-speed air compressors and 
variable-speed air compressors.
    C.1. Test unit at full-load operating pressure and full-load volume 
flow rate according to the requirements established in sections I, II.A, 
and II.B of this appendix. Measure volume flow rate and calculate actual 
volume flow rate in accordance with section C.4.2.1 of Annex C of ISO 
1217:2009(E) (incorporated by reference, see Sec.  431.343) with no 
corrections made for shaft speed. Measure discharge gauge pressure and 
packaged compressor power input. Measured discharge gauge pressure and 
calculated actual volume flow rate must be within the deviation limits 
for discharge pressure and volume flow rate specified in Tables C.1 and 
C.2 of Annex C of ISO 1217:2009(E) (incorporated by reference, see Sec.  
431.343), where full-load operating pressure and full-load actual volume 
flow rate (as determined in section III of this appendix) are the 
targeted values.
    C.2. Calculate the package isentropic efficiency at full-load 
operating pressure and full-load actual volume flow rate (full-load 
package isentropic efficiency, [eta]isen,FL) using the 
equation for isentropic efficiency in section 3.6.1 of ISO 1217:2009(E) 
as modified by ISO 1217:2009/Amd.1:2016(E) (incorporated by reference, 
see Sec.  431.343). For Pisen, use the isentropic power 
required for compression at full-load operating pressure and full-load 
actual volume flow rate, as determined in section II.C.2.1 of this 
appendix. For Preal, use the real packaged compressor power 
input at full-load operating pressure and full-load actual volume flow 
rate, as determined in section II.C.2.2 of this appendix.
    C.2.1. Calculate the isentropic power required for compression at 
full-load operating pressure and full-load actual volume flow rate using 
equation (H.6) of Annex H of ISO 1217:2009/Amd.1:2016(E) (incorporated 
by reference, see Sec.  431.343). For qV1, use the actual 
volume flow rate (cubic meters per second) calculated in section II.C.1 
of this appendix. For p1, use 100 kPa. For p2, use 
the sum of (a) 100 kPa, and (b) the measured discharge gauge pressure 
(Pa) from section II.C.1 of this appendix. For K, use the isentropic 
exponent (ratio of specific heats) of air, which, for the purposes of 
this test procedure, is 1.400.
    C.2.2. Calculate real packaged compressor power input at full-load 
operating pressure and full-load actual volume flow rate using the 
following equation:

Preal,100 = K5 [middot] 
          PPR,100

Where:

K5 = correction factor for inlet pressure, as determined in 
          section C.4.3.2 of Annex C to ISO 1217:2009(E) (incorporated 
          by reference, see Sec.  431.343). For calculations of this 
          variable use a value of 100 kPa for contractual inlet 
          pressure; and
PPR,100 = packaged compressor power input reading at 
          full-load operating pressure and full-load actual volume flow 
          rate

[[Page 976]]

          measured in section II.C.1 of this appendix (W).

   D. Part-Load Package Isentropic Efficiency for Variable-Speed Air 
                               Compressors

    Use this test method to test variable-speed air compressors.
    D.1. Test unit at two load points: (1) Full-load operating pressure 
and 70 percent of full-load actual volume flow rate and (2) full-load 
operating pressure and 40 percent of full-load actual volume flow rate, 
according to the requirements established in sections I, II.A, and II.B 
of this appendix. To reach each specified load point, adjust the speed 
of the driver and the backpressure of the system. For each load point, 
measure volume flow rate and calculate actual volume flow rate in 
accordance with section C.4.2.1 of Annex C of ISO 1217:2009(E) 
(incorporated by reference, see Sec.  431.343), with no corrections made 
for shaft speed. For each load point, measure discharge gauge pressure 
and packaged compressor power input. Measured discharge gauge pressure 
and calculated actual volume flow rate must be within the deviation 
limits for discharge pressure and volume flow rate specified in Tables 
C.1 and C.2 of Annex C of ISO 1217:2009(E), where the targeted values 
are as specified in the beginning of this section.
    D.2. For variable-speed compressors, calculate the part-load package 
isentropic efficiency using the following equation:

[eta]isen,PL = [omega]40 x 
          [eta]isen,40 + [omega]70 
          x [eta]isen,70 + 
          [omega]100 x 
          [eta]isen,100

Where:
[eta]isen,PL = part-load package isentropic efficiency for a 
          variable-speed compressor;
[eta]isen,100 = package isentropic efficiency at 
          full-load operating pressure and 100 percent of full-load 
          actual volume flow rate, as determined in section II.C.2 of 
          this appendix;
[eta]isen,70 = package isentropic efficiency at full-
          load operating pressure and 70 percent of full-load actual 
          volume flow rate, as determined in section II.D.3 of this 
          appendix;
[eta]isen,40 = package isentropic efficiency at full-
          load operating pressure and 40 percent of full-load actual 
          volume flow rate, as determined in section II.D.4 of this 
          appendix;
[omega]40 = weighting at 40 percent of full-load 
          actual volume flow rate and is 0.25;
[omega]70 = weighting at 70 percent of full-load 
          actual volume flow rate and is 0.50; and
[omega]100 = weighting at 100 percent of full-load 
          actual volume flow rate and is 0.25.
    D.3. Calculate package isentropic efficiency at full-load operating 
pressure and 70 percent of full-load actual volume flow rate using the 
equation for isentropic efficiency in section 3.6.1 of ISO 1217:2009(E) 
as modified by ISO 1217:2009/Amd.1:2016(E) (incorporated by reference, 
see Sec.  431.343). For Pisen, use the isentropic power 
required for compression at full-load operating pressure and 70 percent 
of full-load actual volume flow rate, as determined in section II.D.3.1 
of this appendix. For Preal, use the real packaged compressor 
power input at full-load operating pressure and 70 percent of full-load 
actual volume flow rate, as determined in section II.D.3.2 of this 
appendix.
    D.3.1. Calculate the isentropic power required for compression at 
full-load operating pressure and 70 percent of full-load actual volume 
flow rate using equation (H.6) of Annex H of ISO 1217:2009/Amd.1:2016(E) 
(incorporated by reference, see Sec.  431.343). For qV1, use 
actual volume flow rate (cubic meters per second) at full-load operating 
pressure and 70 percent of full-load actual volume flow rate, as 
calculated in section II.D.1 of this appendix. For p1, use 
100 kPa. For p2, use the sum of (a) 100 kPa, and (b) 
discharge gauge pressure (Pa) at full-load operating pressure and 70 
percent of full-load actual volume flow rate, as calculated in section 
II.D.1 of this appendix. For K, use the isentropic exponent (ratio of 
specific heats) of air, which, for the purposes of this test procedure, 
is 1.400.
    D.3.2. Calculate real packaged compressor power input at full-load 
operating pressure and 70 percent of full-load actual volume flow rate 
using the following equation:

Preal,70 = K5 [middot] 
          PPR,70

Where:

K5 = correction factor for inlet pressure, as determined in 
          section C.4.3.2 of Annex C to ISO 1217:2009(E) (incorporated 
          by reference, see Sec.  431.343). For calculations of this 
          variable use a value of 100 kPa for contractual inlet 
          pressure; and

PPR,70 = packaged compressor power input reading at 
          full-load operating pressure and 70 percent of full-load 
          actual volume flow rate, as measured in section II.D.1 of this 
          appendix (W).

    D.4. Calculate package isentropic efficiency at full-load operating 
pressure and 40 percent of full-load actual volume flow rate using the 
equation for isentropic efficiency in section 3.6.1 of ISO 1217:2009(E) 
as modified by ISO 1217:2009/Amd.1:2016(E) (incorporated by reference, 
see Sec.  431.343). For Pisen, use the isentropic power 
required for compression at full-load operating pressure and 40 percent 
of full-load actual volume flow rate, as determined in section II.D.4.1 
of this appendix. For Preal, use the real packaged compressor 
power input at full-load operating pressure and 40 percent of full-load 
actual volume flow rate, as determined in section II.D.4.2 of this 
appendix.
    D.4.1. Calculate the isentropic power required for compression at 
full-load operating pressure and 40 percent of full-load actual

[[Page 977]]

volume flow rate using equation (H.6) of Annex H of ISO 1217:2009/
Amd.1:2016(E) (incorporated by reference, see Sec.  431.343). For 
qV1, use actual volume flow rate (cubic meters per second) at 
full-load operating pressure and 40 percent of full-load actual volume 
flow rate, as calculated in section II.D.1 of this appendix. For 
p1, use 100 kPa. For p2, use the sum of (a) 100 
kPa, and (b) discharge gauge pressure (Pa) at full-load operating 
pressure and 40 percent of full-load actual volume flow rate, as 
calculated in section II.D.1 of this appendix. For K, use the isentropic 
exponent (ratio of specific heats) of air, which, for the purposes of 
this test procedure, is 1.400.
    D.4.2. Calculate real packaged compressor power input at full-load 
operating pressure and 40 percent of full-load actual volume flow rate 
using the following equation:

Preal,40 = K5 [middot] PPR,40%

Where:

K5 = correction factor for inlet pressure, as determined in 
          section C.4.3.2 of Annex C to ISO 1217:2009(E) (incorporated 
          by reference, see Sec.  431.343). For calculations of this 
          variable use a value of 100 kPa for contractual inlet 
          pressure; and
PPR,40 = packaged compressor power input reading at 
          full-load operating pressure and 40 percent of full-load 
          actual volume flow rate, as measured in section II.D.1 of this 
          appendix (W).

               E. Determination of Package Specific Power

    For both fixed and variable-speed air compressors, determine the 
package specific power, at any load point, using the equation for 
specific energy consumption in section C.4.4 of Annex C of ISO 
1217:2009(E) (incorporated by reference, see Sec.  431.343) and other 
values measured pursuant to this appendix, with no correction for shaft 
speed. Calculate PPcorr in section C.4.4 of Annex C of ISO 
1217:2009(E) (incorporated by reference, see Sec.  431.343) using the 
following equation:

PPcorr = K5 [middot] PPR

Where:

K5 = correction factor for inlet pressure, as determined in 
          section C.4.3.2 of Annex C to ISO 1217:2009(E) (incorporated 
          by reference, see Sec.  431.343). For calculations of this 
          variable use a value of 100 kPa for contractual inlet 
          pressure; and
PPR = packaged compressor power input reading (W), as determined in 
          section C.2.4 of Annex C to ISO 1217:2009(E) (incorporated by 
          reference, see Sec.  431.343).

   F. Determination of Pressure Ratio at Full-Load Operating Pressure

    Pressure ratio at full-load operating pressure, as defined in Sec.  
431.342, is calculated using the following equation:
[GRAPHIC] [TIFF OMITTED] TR04JA17.008

Where:

PR = pressure ratio at full-load operating pressure;
p1 = 100 kPa; and
pFL = full-load operating pressure, determined in section 
          III.C.4 of this appendix (Pa gauge).

III. Method to Determine Maximum Full-Flow Operating Pressure, Full-Load 
        Operating Pressure, and Full-Load Actual Volume Flow Rate

                          A. Principal Strategy

    The principal strategy of this method is to incrementally increase 
discharge pressure by 2 psig relative to a starting point, and identify 
the maximum full-flow operating pressure at which the compressor is 
capable of operating. The maximum discharge pressure achieved is the 
maximum full-flow operating pressure. The full-load operating pressure 
and full-load actual volume flow rate are determined based on the 
maximum full-flow operating pressure.

                        B. Pre-test Instructions

                               B.1. Safety

    For the method presented in section III.C.1 of this appendix, only 
test discharge pressure within the safe operating range of the 
compressor, as specified by the manufacturer in the installation and 
operation manual shipped with the unit. Make no changes to safety limits 
or equipment. Do not violate any manufacturer-provided motor operational 
guidelines for normal use, including any restriction on instantaneous 
and continuous input power draw and output shaft power (e.g., electrical 
rating and service factor limits).

                  B.2. Adjustment of Discharge Pressure

    B.2.1. If the air compressor is not equipped, as distributed in 
commerce by the manufacturer, with any mechanism to adjust the

[[Page 978]]

maximum discharge pressure output limit, proceed to section III.B.3 of 
this appendix.
    B.2.2. If the air compressor is equipped, as distributed in commerce 
by the manufacturer, with any mechanism to adjust the maximum discharge 
pressure output limit, then adjust this mechanism to the maximum 
pressure allowed, according to the manufacturer's operating instructions 
for these mechanisms. Mechanisms to adjust discharge pressure may 
include, but are not limited to, onboard digital or analog controls, and 
user-adjustable inlet valves.

                            B.3. Driver speed

    If the unit under test is a variable-speed compressor, maintain 
maximum driver speed throughout the test. If the unit under test is a 
fixed-speed compressor with a multi-speed driver, maintain driver speed 
at the maximum speed throughout the test.

                    B.4. Measurements and Tolerances

                            B.4.1. Recording

    Record data by electronic means such that the requirements of 
section B.4.5 of section III of this appendix are met.

                        B.4.2. Discharge Pressure

    Measure discharge pressure in accordance with section 5.2 of ISO 
1217:2009(E) (incorporated by reference, see Sec.  431.343). Express 
compressor discharge pressure in psig in reference to ambient 
conditions, and record it to the nearest integer. Specify targeted 
discharge pressure points in integer values only. The maximum allowable 
measured deviation from the targeted discharge pressure at each tested 
point is 1 psig.

                     B.4.3. Actual Volume Flow Rate

    Measure actual volume flow rate in accordance with section C.4.2.1 
of Annex C of ISO 1217:2009(E) (incorporated by reference, see Sec.  
431.343) (where it is called ``corrected volume flow rate'') with no 
corrections made for shaft speed. Express compressor actual volume flow 
rate in cubic feet per minute at inlet conditions (cfm).

                          B.4.4. Stabilization

    Record data at each tested load point under steady-state conditions, 
as determined in section II.A.1 of this appendix.

                   B.4.5. Data Sampling and Frequency

    At each load point, record a set of at least of two readings, 
collected at a minimum of 10 seconds apart. All readings at each load 
point must be within the maximum permissible fluctuation from the 
average (of the two consecutive readings), as specified in II.A.2 of 
this appendix. Average the measurements to determine the value of each 
parameter to be used in subsequent calculations.

                   B.5. Adjusting System Backpressure

    Set up the unit under test so that backpressure on the unit can be 
adjusted (e.g., by valves) incrementally, causing the measured discharge 
pressure to change, until the compressor is in an unloaded condition.

                         B.6. Unloaded Condition

    A unit is considered to be in an unloaded condition if capacity 
controls on the unit automatically reduce the actual volume flow rate 
from the compressor (e.g., shutting the motor off, or unloading by 
adjusting valves).

                          C. Test Instructions

    C.1. Adjust the backpressure of the system so the measured discharge 
pressure is 90 percent of the expected maximum full-flow operating 
pressure, rounded to the nearest integer, in psig. If the expected 
maximum full-flow operating pressure is not known, then adjust the 
backpressure of the system so that the measured discharge pressure is 65 
psig. Allow the unit to remain at this setting for 15 minutes to allow 
the unit to thermally stabilize. Then measure and record discharge 
pressure and actual volume flow rate at the starting pressure.
    C.2. Adjust the backpressure of the system to increase the discharge 
pressure by 2 psig from the previous value, allow the unit to remain at 
this setting for a minimum of 2 minutes, and proceed to section III.C.3 
of this appendix.
    C.3. If the unit is now in an unloaded condition, end the test and 
proceed to section III.C.4 of this appendix. If the unit is not in an 
unloaded condition, measure discharge pressure and actual volume flow 
rate, and repeat section III.C.2 of this appendix.
    C.4. Of the discharge pressures recorded under stabilized conditions 
in sections III.C.1 through III.C.3 of this appendix, identify the 
largest. This is the maximum full-flow operating pressure. Determine the 
full-load operating pressure as a self-declared value greater than or 
equal to the lesser of (A) 90 percent of the maximum full-flow operating 
pressure, or (B) 10 psig less than the maximum full-flow operating 
pressure.
    C.5. The full-load actual volume flow rate is the actual volume flow 
rate measured at the full-load operating pressure. If the self-declared 
full-load operating pressure falls on a previously tested value of 
discharge pressure, then use the previously measured actual volume flow 
rate as the full-load actual volume flow rate. If the self-declared 
full-load operating pressure does not fall on a previously tested value 
of discharge pressure, then adjust the backpressure of the system to the 
self-declared full-load operating pressure and allow the unit to remain 
at this setting for a minimum of 2 minutes. The measured actual volume 
flow rate at

[[Page 979]]

this setting is the full-load actual volume flow rate.

[82 FR 1102, Jan. 4, 2017]



                Subpart U_Enforcement for Electric Motors

    Source: 69 FR 61941, Oct. 21, 2004, unless otherwise noted. 
Redesignated at 70 FR 60416, Oct. 18, 2005.



Sec.  431.381  Purpose and scope for electric motors.

    This subpart describes violations of EPCA's energy conservation 
requirements, specific procedures we will follow in pursuing alleged 
non-compliance of an electric motor with an applicable energy 
conservation standard or labeling requirement, and general procedures 
for enforcement action, largely drawn directly from EPCA, that apply to 
electric motors.

[76 FR 12505, Mar. 7, 2011]



Sec.  431.382  Prohibited acts.

    (a) Each of the following is a prohibited act under sections 332 and 
345 of the Act:
    (1) Distribution in commerce by a manufacturer or private labeler of 
any ``new covered equipment'' which is not labeled in accordance with an 
applicable labeling rule prescribed in accordance with Section 344 of 
the Act, and in this part;
    (2) Removal from any ``new covered equipment'' or rendering 
illegible, by a manufacturer, distributor, retailer, or private labeler, 
of any label required under this part to be provided with such covered 
equipment;
    (3) Failure to permit access to, or copying of records required to 
be supplied under the Act and this part, or failure to make reports or 
provide other information required to be supplied under the Act and this 
part;
    (4) Advertisement of an electric motor or motors, by a manufacturer, 
distributor, retailer, or private labeler, in a catalog from which the 
equipment may be purchased, without including in the catalog all 
information as required by Sec.  431.31(b)(1), provided, however, that 
this shall not apply to an advertisement of an electric motor in a 
catalog if distribution of the catalog began before the effective date 
of the labeling rule applicable to that motor;
    (5) Failure of a manufacturer to supply at his expense a reasonable 
number of units of covered equipment to a test laboratory designated by 
the Secretary;
    (6) Failure of a manufacturer to permit a representative designated 
by the Secretary to observe any testing required by the Act and this 
part, and to inspect the results of such testing; and
    (7) Distribution in commerce by a manufacturer or private labeler of 
any new covered equipment which is not in compliance with an applicable 
energy efficiency standard prescribed under the Act and this part.
    (b) In accordance with sections 333 and 345 of the Act, any person 
who knowingly violates any provision of paragraph (a) of this section 
may be subject to assessment of a civil penalty of no more than $468 for 
each violation.
    (c) For purposes of this section:
    (1) The term ``new covered equipment'' means covered equipment the 
title of which has not passed to a purchaser who buys such product for 
purposes other than:
    (i) Reselling it; or
    (ii) Leasing it for a period in excess of one year; and
    (2) The term ``knowingly'' means:
    (i) Having actual knowledge; or
    (ii) Presumed to have knowledge deemed to be possessed by a 
reasonable person who acts in the circumstances, including knowledge 
obtainable upon the exercise of due care.

[69 FR 61941, Oct. 21, 2004. Redesignated at 70 FR 60416, Oct. 18, 2005, 
as amended at 79 FR 19, Jan. 2, 2014; 81 FR 41794, June 28, 2016; 81 FR 
96351, Dec. 30, 2016; 83 FR 1291, Jan. 11, 2018; 83 FR 66083, Dec. 26, 
2018; 85 FR 830, Jan. 8, 2020]



Sec.  431.383  Enforcement process for electric motors.

    (a) Test notice. Upon receiving information in writing, concerning 
the energy performance of a particular electric motor sold by a 
particular manufacturer or private labeler, which indicates that the 
electric motor may not be in compliance with the applicable energy 
efficiency standard, or upon undertaking to ascertain the accuracy of 
the efficiency rating on the nameplate

[[Page 980]]

or in marketing materials for an electric motor, disclosed pursuant to 
subpart B of this part, the Secretary may conduct testing of that 
electric motor under this subpart by means of a test notice addressed to 
the manufacturer in accordance with the following requirements:
    (1) The test notice procedure will only be followed after the 
Secretary or his/her designated representative has examined the 
underlying test data (or, where appropriate, data as to use of an 
alternative efficiency determination method) provided by the 
manufacturer and after the manufacturer has been offered the opportunity 
to meet with the Department to verify, as applicable, compliance with 
the applicable efficiency standard, or the accuracy of labeling 
information, or both. In addition, where compliance of a basic model was 
certified based on an AEDM, the Department shall have the discretion to 
pursue the provisions of Sec.  431.17(a)(4)(iii) prior to invoking the 
test notice procedure. A representative designated by the Secretary 
shall be permitted to observe any re-verification procedures undertaken 
pursuant to this subpart, and to inspect the results of such 
reverification.
    (2) The test notice will be signed by the Secretary or his/her 
designee. The test notice will be mailed or delivered by the Department 
to the plant manager or other responsible official, as designated by the 
manufacturer.
    (3) The test notice will specify the model or basic model to be 
selected for testing, the method of selecting the test sample, the date 
and time at which testing shall be initiated, the date by which testing 
is scheduled to be completed and the facility at which testing will be 
conducted. The test notice may also provide for situations in which the 
specified basic model is unavailable for testing, and may include 
alternative basic models.
    (4) The Secretary may require in the test notice that the 
manufacturer of an electric motor shall ship at his expense a reasonable 
number of units of a basic model specified in such test notice to a 
testing laboratory designated by the Secretary. The number of units of a 
basic model specified in a test notice shall not exceed 20.
    (5) Within five working days of the time the units are selected, the 
manufacturer shall ship the specified test units of a basic model to the 
testing laboratory.
    (b) Testing laboratory. Whenever the Department conducts enforcement 
testing at a designated laboratory in accordance with a test notice 
under this section, the resulting test data shall constitute official 
test data for that basic model. Such test data will be used by the 
Department to make a determination of compliance or noncompliance if a 
sufficient number of tests have been conducted to satisfy the 
requirements of appendix A of this subpart.
    (c) Sampling. The determination that a manufacturer's basic model 
complies with its labeled efficiency, or the applicable energy 
efficiency standard, shall be based on the testing conducted in 
accordance with the statistical sampling procedures set forth in 
appendix A of this subpart and the test procedures set forth in appendix 
B to subpart B of this part.
    (d) Test unit selection. A Department inspector shall select a 
batch, a batch sample, and test units from the batch sample in 
accordance with the provisions of this paragraph and the conditions 
specified in the test notice.
    (1) The batch may be subdivided by the Department utilizing criteria 
specified in the test notice.
    (2) A batch sample of up to 20 units will then be randomly selected 
from one or more subdivided groups within the batch. The manufacturer 
shall keep on hand all units in the batch sample until such time as the 
basic model is determined to be in compliance or non-compliance.
    (3) Individual test units comprising the test sample shall be 
randomly selected from the batch sample.
    (4) All random selection shall be achieved by sequentially numbering 
all of the units in a batch sample and then using a table of random 
numbers to select the units to be tested.
    (e) Test unit preparation. (1) Prior to and during the testing, a 
test unit selected in accordance with paragraph (d) of this section 
shall not be prepared, modified, or adjusted in any manner unless such 
preparation, modification,

[[Page 981]]

or adjustment is allowed by the applicable Department of Energy test 
procedure. One test shall be conducted for each test unit in accordance 
with the applicable test procedures prescribed in appendix B to subpart 
B of this part.
    (2) No quality control, testing, or assembly procedures shall be 
performed on a test unit, or any parts and sub-assemblies thereof, that 
is not performed during the production and assembly of all other units 
included in the basic model.
    (3) A test unit shall be considered defective if such unit is 
inoperative or is found to be in noncompliance due to failure of the 
unit to operate according to the manufacturer's design and operating 
instructions. Defective units, including those damaged due to shipping 
or handling, shall be reported immediately to the Department. The 
Department shall authorize testing of an additional unit on a case-by-
case basis.
    (4)(i) Non-standard endshields or flanges. For purposes of DOE-
initiated testing of electric motors with non-standard endshields or 
flanges, the Department will have the discretion to determine whether 
the lab should test a general purpose electric motor of equivalent 
electrical design and enclosure rather than replacing the nonstandard 
flange or endshield.
    (ii) Partial electric motors. For purposes of DOE-initiated testing, 
the Department has the discretion to determine whether the lab should 
test a general purpose electric motor of equivalent electrical design 
and enclosure rather than machining and attaching an endshield.
    (f) Testing at manufacturer's option. (1) If a manufacturer's basic 
model is determined to be in noncompliance with the applicable energy 
performance standard at the conclusion of Department testing in 
accordance with the sampling plan specified in appendix A of this 
subpart, the manufacturer may request that the Department conduct 
additional testing of the basic model according to procedures set forth 
in appendix A of this subpart.
    (2) All units tested under this paragraph shall be selected and 
tested in accordance with the provisions given in paragraphs (a) through 
(e) of this section.
    (3) The manufacturer shall bear the cost of all testing conducted 
under this paragraph.
    (4) The manufacturer shall cease distribution of the basic model 
tested under the provisions of this paragraph from the time the 
manufacturer elects to exercise the option provided in this paragraph 
until the basic model is determined to be in compliance. The Department 
may seek civil penalties for all units distributed during such period.
    (5) If the additional testing results in a determination of 
compliance, a notice of allowance to resume distribution shall be issued 
by the Department.

[69 FR 61941, Oct. 21, 2004. Redesignated at 70 FR 60416, Oct. 18, 2005, 
as amended at 78 FR 75995, Dec. 13, 2013]



Sec.  431.384  [Reserved]



Sec.  431.385  Cessation of distribution of a basic model of an electric motor.

    (a) In the event that a model of an electric motor is determined 
non-compliant by the Department in accordance with Sec.  431.192 or if a 
manufacturer or private labeler determines a model of an electric motor 
to be in noncompliance, then the manufacturer or private labeler shall:
    (1) Immediately cease distribution in commerce of the basic model.
    (2) Give immediate written notification of the determination of 
noncompliance, to all persons to whom the manufacturer has distributed 
units of the basic model manufactured since the date of the last 
determination of compliance.
    (3) Pursuant to a request made by the Secretary, provide the 
Department within 30 days of the request, records, reports, and other 
documentation pertaining to the acquisition, ordering, storage, 
shipment, or sale of a basic model determined to be in noncompliance.
    (4) The manufacturer may modify the non-compliant basic model in 
such manner as to make it comply with the applicable performance 
standard. Such modified basic model shall then be treated as a new basic 
model and must be certified in accordance with the provisions of this 
subpart; except that in addition to satisfying all requirements

[[Page 982]]

of this subpart, the manufacturer shall also maintain records that 
demonstrate that modifications have been made to all units of the new 
basic model prior to distribution in commerce.
    (b) If a basic model is not properly certified in accordance with 
the requirements of this subpart, the Secretary may seek, among other 
remedies, injunctive action to prohibit distribution in commerce of such 
basic model.



Sec.  431.386  Remedies.

    If the Secretary determines that a basic model of any covered 
equipment does not comply with an applicable energy conservation 
standard:
    (a) The Secretary will notify the manufacturer, private labeler, or 
any other person as required, of this finding and of the Secretary's 
intent to seek a judicial order restraining further distribution in 
commerce of units of such a basic model unless the manufacturer, private 
labeler or other person as required, delivers, within 15 calendar days, 
a satisfactory statement to the Secretary, of the steps the 
manufacturer, private labeler or other person will take to insure that 
the noncompliant basic model will no longer be distributed in commerce. 
The Secretary will monitor the implementation of such statement.
    (b) If the manufacturer, private labeler or any other person as 
required, fails to stop distribution of the noncompliant basic model, 
the Secretary may seek to restrain such violation in accordance with 
sections 334 and 345 of the Act.
    (c) The Secretary will determine whether the facts of the case 
warrant the assessment of civil penalties for knowing violations in 
accordance with sections 333 and 345 of the Act.



Sec.  431.387  Hearings and appeals.

    (a) Under sections 333(d) and 345 of the Act, before issuing an 
order assessing a civil penalty against any person, the Secretary must 
provide to such a person a notice of the proposed penalty. Such notice 
must inform the person that such person can choose (in writing within 30 
days after receipt of the notice) to have the procedures of paragraph 
(c) of this section (in lieu of those in paragraph (b) of this section) 
apply with respect to such assessment.
    (b)(1) Unless a person elects, within 30 calendar days after receipt 
of a notice under paragraph (a) of this section, to have paragraph (c) 
of this section apply with respect to the civil penalty under paragraph 
(a), the Secretary will assess the penalty, by order, after providing an 
opportunity for an agency hearing under 5 U.S.C. 554, before an 
administrative law judge appointed under 5 U.S.C. 3105, and making a 
determination of violation on the record. Such assessment order will 
include the administrative law judge's findings and the basis for such 
assessment.
    (2) Any person against whom the Secretary assesses a penalty under 
this paragraph may, within 60 calendar days after the date of the order 
assessing such penalty, initiate action in the United States Court of 
Appeals for the appropriate judicial circuit for judicial review of such 
order in accordance with 5 U.S.C. chapter 7. The court will have 
jurisdiction to enter a judgment affirming, modifying, or setting aside 
in whole or in part, the order of the Secretary, or the court may remand 
the proceeding to the Secretary for such further action as the court may 
direct.
    (c)(1) In the case of any civil penalty with respect to which the 
procedures of this paragraph have been elected, the Secretary will 
promptly assess such penalty, by order, after the date of the receipt of 
the notice under paragraph (a) of this section of the proposed penalty.
    (2) If the person has not paid the civil penalty within 60 calendar 
days after the assessment has been made under paragraph (c)(1) of this 
section, the Secretary will institute an action in the appropriate 
District Court of the United States for an order affirming the 
assessment of the civil penalty. The court will have authority to review 
de novo the law and the facts involved and jurisdiction to enter a 
judgment enforcing, modifying, and enforcing as so modified, or setting 
aside in whole or in part, such assessment.
    (3) Any election to have this paragraph apply can only be revoked 
with the consent of the Secretary.

[[Page 983]]

    (d) If any person fails to pay an assessment of a civil penalty 
after it has become a final and unappealable order under paragraph (b) 
of this section, or after the appropriate District Court has entered 
final judgment in favor of the Secretary under paragraph (c) of this 
section, the Secretary will institute an action to recover the amount of 
such penalty in any appropriate District Court of the United States. In 
such action, the validity and appropriateness of such final assessment 
order or judgment will not be subject to review.
    (e)(1) In accordance with the provisions of sections 333(d)(5)(A) 
and 345 of the Act and notwithstanding the provisions of title 28, 
United States Code, or Section 502(c) of the Department of Energy 
Organization Act, the General Counsel of the Department of Energy (or 
any attorney or attorneys within DOE designated by the Secretary) will 
represent the Secretary, and will supervise, conduct, and argue any 
civil litigation to which paragraph (c) of this section applies 
(including any related collection action under paragraph (d) of this 
section) in a court of the United States or in any other court, except 
the Supreme Court of the United States. However, the Secretary or the 
General Counsel will consult with the Attorney General concerning such 
litigation and the Attorney General will provide, on request, such 
assistance in the conduct of such litigation as may be appropriate.
    (2) In accordance with the provisions of sections 333(d)(5)(B) and 
345 of the Act, and subject to the provisions of Section 502(c) of the 
Department of Energy Organization Act, the Secretary will be represented 
by the Attorney General, or the Solicitor General, as appropriate, in 
actions under this section, except to the extent provided in paragraph 
(e)(1) of this section.
    (3) In accordance with the provisions of Section 333(d)(5)(c) and 
345 of the Act, Section 402(d) of the Department of Energy Organization 
Act will not apply with respect to the function of the Secretary under 
this section.



Sec. Appendix A to Subpart U of Part 431--Sampling Plan for Enforcement 
                       Testing of Electric Motors

    Step 1. The first sample size (n1) must be five or more 
units.
    Step 2. Compute the mean (X1 of the measured energy 
performance of the n1 units in the first sample as follows:
[GRAPHIC] [TIFF OMITTED] TR83AD04.005

where Xi is the measured full-load efficiency of unit i.
    Step 3. Compute the sample standard deviation (S1) of the 
measured full-load efficiency of the n1 units in the first 
sample as follows:
[GRAPHIC] [TIFF OMITTED] TR83AD04.006

    Step 4. Compute the standard error (SE(X1)) of the mean 
full-load efficiency of the first sample as follows:
[GRAPHIC] [TIFF OMITTED] TR83AD04.007

    Step 5. Compute the lower control limit (LCL1) for the 
mean of the first sample using RE as the desired mean as follows:
[GRAPHIC] [TIFF OMITTED] TR83AD04.008

where: RE is the applicable EPCA nominal full-load efficiency when the 
test is to determine compliance with the applicable statutory standard, 
or is the labeled nominal full-load efficiency when the test is to 
determine compliance with the labeled efficiency value, and t is the 
2.5th percentile of a t-distribution for a sample size of n1, 
which yields a 97.5 percent confidence level for a one-tailed t-test.
    Step 6. Compare the mean of the first sample (X1) with 
the lower control limit (LCL1) to determine one of the 
following:
    (i) If the mean of the first sample is below the lower control 
limit, then the basic model is in non-compliance and testing is at an 
end.
    (ii) If the mean is equal to or greater than the lower control 
limit, no final determination of compliance or non-compliance can be 
made; proceed to Step 7.
    Step 7. Determine the recommended sample size (n) as follows:

[[Page 984]]

[GRAPHIC] [TIFF OMITTED] TR83AD04.009

where S1, RE and t have the values used in Steps 3 and 5, 
respectively. The factor
[GRAPHIC] [TIFF OMITTED] TR83AD04.010

is based on a 20 percent tolerance in the total power loss at full-load 
and fixed output power.
    Given the value of n, determine one of the following:
    (i) If the value of n is less than or equal to n1 and if 
the mean energy efficiency of the first sample (X1) is equal 
to or greater than the lower control limit (LCL1), the basic 
model is in compliance and testing is at an end.
    (ii) If the value of n is greater than n1, the basic model is in 
non-compliance. The size of a second sample n2 is determined 
to be the smallest integer equal to or greater than the difference n-
n1. If the value of n2 so calculated is greater 
than 20-n1, set n2 equal to 20-n1.
    Step 8. Compute the combined (X2) mean of the measured 
energy performance of the n1 and n2 units of the 
combined first and second samples as follows:
[GRAPHIC] [TIFF OMITTED] TR83AD04.011

    Step 9. Compute the standard error (SE(X2)) of the mean 
full-load efficiency of the n1 and n2 units in the 
combined first and second samples as follows:
[GRAPHIC] [TIFF OMITTED] TR83AD04.012

(Note that S1 is the value obtained above in Step 3.)
    Step 10. Set the lower control limit (LCL2) to,
    [GRAPHIC] [TIFF OMITTED] TR83AD04.013
    
where t has the value obtained in Step 5, and compare the combined 
sample mean (X2) to the lower control limit (LCL2) 
to find one of the following:
    (i) If the mean of the combined sample (X2) is less than 
the lower control limit (LCL2), the basic model is in non-
compliance and testing is at an end.
    (ii) If the mean of the combined sample (X2) is equal to 
or greater than the lower control limit (LCL2), the basic 
model is in compliance and testing is at an end.

                       Manufacturer-Option Testing

    If a determination of non-compliance is made in Steps 6, 7 or 10, of 
this appendix A, the manufacturer may request that additional testing be 
conducted, in accordance with the following procedures.
    Step A. The manufacturer requests that an additional number, 
n3, of units be tested, with n3 chosen such that 
n1 + n2 + n3 does not exceed 20.
    Step B. Compute the mean full-load efficiency, standard error, and 
lower control limit of the new combined sample in accordance with the 
procedures prescribed in Steps 8, 9, and 10, of this appendix A.
    Step C. Compare the mean performance of the new combined sample to 
the lower control limit (LCL2) to determine one of the 
following:
    (a) If the new combined sample mean is equal to or greater than the 
lower control limit, the basic model is in compliance and testing is at 
an end.
    (b) If the new combined sample mean is less than the lower control 
limit and the value of n1 + n2 + n3 is 
less than 20, the manufacturer may request that additional units be 
tested. The total of all units tested may not exceed 20. Steps A, B, and 
C are then repeated.
    (c) Otherwise, the basic model is determined to be in non-
compliance.



                      Subpart V_General Provisions

    Source: 69 FR 61941, Oct. 21, 2004, unless otherwise noted. 
Redesignated at 70 FR 60417, Oct. 18, 2005.



Sec.  431.401  Petitions for waiver and interim waiver.

    (a) General information. This section provides a means for seeking 
waivers of the test procedure requirements of this part for basic models 
that meet the requirements of paragraph (a)(1) of this section. In 
granting a waiver or interim waiver, DOE will not change the energy use 
or efficiency metric that the manufacturer must use to certify 
compliance with the applicable energy conservation standard and to make 
representations about the energy use or efficiency of the covered 
equipment. The granting of a waiver or interim waiver by DOE does not 
exempt such basic models from any other regulatory requirement contained 
in this part or the certification and compliance requirements of 10 CFR 
part 429 and specifies an alternative method for

[[Page 985]]

testing the basic model(s) addressed in the waiver.
    (1) Any interested person may submit a petition to waive for a 
particular basic model the requirements of any uniform test method 
contained in this part, upon the grounds that either the basic model 
contains one or more design characteristics that prevent testing of the 
basic model according to the prescribed test procedures or cause the 
prescribed test procedures to evaluate the basic model in a manner so 
unrepresentative of its true energy or water consumption characteristics 
as to provide materially inaccurate comparative data.
    (2) Manufacturers of basic model(s) subject to a waiver or interim 
waiver are responsible for complying with the other requirements of this 
part and with the requirements of 10 CFR part 429 regardless of the 
person that originally submitted the petition for waiver and/or interim 
waiver. The filing of a petition for waiver and/or interim waiver shall 
not constitute grounds for noncompliance with any requirements of this 
part.
    (3) All correspondence regarding waivers and interim waivers must be 
submitted to DOE either electronically to [email protected] 
(preferred method of transmittal) or by mail to U.S. Department of 
Energy, Building Technologies Program, Test Procedure Waiver, 1000 
Independence Avenue SW., Mailstop EE-5B, Washington, DC 20585-0121.
    (b) Petition content and publication. (1) Each petition for waiver 
must:
    (i) Identify the particular basic model(s) for which a waiver is 
requested, each brand name under which the identified basic model(s) 
will be distributed in commerce, the design characteristic(s) 
constituting the grounds for the petition, and the specific requirements 
sought to be waived, and must discuss in detail the need for the 
requested waiver;
    (ii) Identify manufacturers of all other basic models distributed in 
commerce in the United States and known to the petitioner to incorporate 
design characteristic(s) similar to those found in the basic model that 
is the subject of the petition;
    (iii) Include any alternate test procedures known to the petitioner 
to evaluate the performance of the equipment type in a manner 
representative of the energy and/or water consumption characteristics of 
the basic model; and
    (iv) Be signed by the petitioner or an authorized representative. In 
accordance with the provisions set forth in 10 CFR 1004.11, any request 
for confidential treatment of any information contained in a petition 
for waiver or in supporting documentation must be accompanied by a copy 
of the petition, application or supporting documentation from which the 
information claimed to be confidential has been deleted. DOE will 
publish in the Federal Register the petition and supporting documents 
from which confidential information, as determined by DOE, has been 
deleted in accordance with 10 CFR 1004.11 and will solicit comments, 
data and information with respect to the determination of the petition.
    (2) Each petition for interim waiver must reference the related 
petition for waiver by identifying the particular basic model(s) for 
which a waiver is being sought. Each petition for interim waiver must 
demonstrate likely success of the petition for waiver and address what 
economic hardship and/or competitive disadvantage is likely to result 
absent a favorable determination on the petition for interim waiver. 
Each petition for interim waiver must be signed by the petitioner or an 
authorized representative.
    (c) Notification to other manufacturers. (1) Each petitioner for 
interim waiver must, upon publication of a grant of an interim waiver in 
the Federal Register, notify in writing all known manufacturers of 
domestically marketed basic models of the same equipment class (as 
specified in the relevant subpart of 10 CFR part 431), and of other 
equipment classes known to the petitioner to use the technology or have 
the characteristic at issue in the waiver. The notice must include a 
statement that DOE has published the interim waiver and petition for 
waiver in the Federal Register and the date the petition for waiver was 
published. The notice must also include a statement that DOE will 
receive and consider

[[Page 986]]

timely written comments on the petition for waiver. Within five working 
days, each petitioner must file with DOE a statement certifying the 
names and addresses of each person to whom a notice of the petition for 
waiver has been sent.
    (2) If a petitioner does not request an interim waiver and 
notification has not been provided pursuant to paragraph (c)(1) of this 
section, each petitioner, after filing a petition for waiver with DOE, 
and after the petition for waiver has been published in the Federal 
Register, must, within five working days of such publication, notify in 
writing all known manufacturers of domestically marketed basic models of 
the same equipment class (as listed in the relevant subpart of 10 CFR 
part 431), and of other equipment classes known to the petitioner to use 
the technology or have the characteristic at issue in the waiver. The 
notice must include a statement that DOE has published the petition in 
the Federal Register and the date the petition for waiver was published. 
Within five working days of the publication of the petition in the 
Federal Register, each petitioner must file with DOE a statement 
certifying the names and addresses of each person to whom a notice of 
the petition for waiver has been sent.
    (d) Public comment and rebuttal. (1) Any person submitting written 
comments to DOE with respect to an interim waiver must also send a copy 
of the comments to the petitioner by the deadline specified in the 
notice.
    (2) Any person submitting written comments to DOE with respect to a 
petition for waiver must also send a copy of such comments to the 
petitioner.
    (3) A petitioner may, within 10 working days of the close of the 
comment period specified in the Federal Register, submit a rebuttal 
statement to DOE. A petitioner may rebut more than one comment in a 
single rebuttal statement.
    (e) Provisions specific to interim waivers--(1) Disposition of 
application. If administratively feasible, DOE will notify the applicant 
in writing of the disposition of the petition for interim waiver within 
30 business days of receipt of the application. Notice of DOE's 
determination on the petition for interim waiver will be published in 
the Federal Register.
    (2) Criteria for granting. DOE will grant an interim waiver from the 
test procedure requirements if it appears likely that the petition for 
waiver will be granted and/or if DOE determines that it would be 
desirable for public policy reasons to grant immediate relief pending a 
determination on the petition for waiver.
    (f) Provisions specific to waivers--(1) Disposition of application. 
The petitioner shall be notified in writing as soon as practicable of 
the disposition of each petition for waiver. DOE shall issue a decision 
on the petition as soon as is practicable following receipt and review 
of the Petition for Waiver and other applicable documents, including, 
but not limited to, comments and rebuttal statements.
    (2) Criteria for granting. DOE will grant a waiver from the test 
procedure requirements if DOE determines either that the basic model(s) 
for which the waiver was requested contains a design characteristic that 
prevents testing of the basic model according to the prescribed test 
procedures, or that the prescribed test procedures evaluate the basic 
model in a manner so unrepresentative of its true energy or water 
consumption characteristics as to provide materially inaccurate 
comparative data. DOE may grant a waiver subject to conditions, which 
may include adherence to alternate test procedures specified by DOE. DOE 
will promptly publish in the Federal Register notice of each waiver 
granted or denied, and any limiting conditions of each waiver granted.
    (g) Extension to additional basic models. A petitioner may request 
that DOE extend the scope of a waiver or an interim waiver to include 
additional basic models employing the same technology as the basic 
model(s) set forth in the original petition. DOE will publish any such 
extension in the Federal Register.
    (h) Duration. (1) Within one year of issuance of an interim waiver, 
DOE will either:
    (i) Publish in the Federal Register a determination on the petition 
for waiver; or

[[Page 987]]

    (ii) Publish in the Federal Register a new or amended test procedure 
that addresses the issues presented in the waiver.
    (2) When DOE amends the test procedure to address the issues 
presented in a waiver, the waiver will automatically terminate on the 
date on which use of that test procedure is required to demonstrate 
compliance.
    (i) Compliance Certification. (1) If the alternate test procedure 
specified in the interim waiver differs from the alternate test 
procedure specified by DOE in a subsequent decision and order granting 
the petition for waiver, a manufacturer who has already certified basic 
models using the procedure permitted in DOE's grant of an interim test 
procedure waiver is not required to re-test and re-rate those basic 
models so long as: The manufacturer used that alternative procedure to 
certify the compliance of the basic model after DOE granted the 
company's interim waiver request; changes have not been made to those 
basic models that would cause them to use more energy or otherwise be 
less energy efficient; and the manufacturer does not modify the 
certified rating. However, if the alternate test procedure specified in 
the interim waiver differs from the alternate test procedure specified 
by DOE in a subsequent decision and order granting the petition for 
waiver and if specified by DOE in the decision and order, the 
manufacturer must re-test and re-certify compliance using the procedure 
specified by DOE in the decision and order by the time of the next 
annual certification.
    (2) After DOE publishes a decision and order in the Federal 
Register, a manufacturer must use the test procedure contained in that 
notice to rate any basic models covered by the waiver that have not yet 
been certified to DOE and for any future testing of any basic model(s) 
covered by the decision and order.
    (j) Petition for waiver required of other manufactures. Within 60 
days after DOE issues a waiver to a manufacturer for equipment employing 
a particular technology or having a particular characteristic, any 
manufacturer currently distributing in commerce in the United States 
equipment employing a technology or characteristic that results in the 
same need for a waiver (as specified by DOE in the published decision 
and order on the petition in the Federal Register) must submit a 
petition for waiver pursuant to the requirements of this section. 
Manufacturers not currently distributing such equipment in commerce in 
the United States must petition for and be granted a waiver prior to 
distribution in commerce in the United States. Manufacturers may also 
submit a request for interim waiver pursuant to the requirements of this 
section.
    (k) Rescission or modification. (1) DOE may rescind or modify a 
waiver or interim waiver at any time upon DOE's determination that the 
factual basis underlying the petition for waiver or interim waiver is 
incorrect, or upon a determination that the results from the alternate 
test procedure are unrepresentative of the basic model(s)' true energy 
consumption characteristics. Waivers and interim waivers are conditioned 
upon the validity of statements, representations, and documents provided 
by the requestor; any evidence that the original grant of a waiver or 
interim waiver was based upon inaccurate information will weigh against 
continuation of the waiver. DOE's decision will specify the basis for 
its determination and, in the case of a modification, will also specify 
the change to the authorized test procedure.
    (2) A person may request that DOE rescind or modify a waiver or 
interim waiver issued to that person if the person discovers an error in 
the information provided to DOE as part of its petition, determines that 
the waiver is no longer needed, or for other appropriate reasons. In a 
request for rescission, the requestor must provide a statement 
explaining why it is requesting rescission. In a request for 
modification, the requestor must explain the need for modification to 
the authorized test procedure and detail the modifications needed and 
the corresponding impact on measured energy consumption.
    (3) DOE will publish a proposed rescission or modification (DOE-
initiated or at the request of the original requestor) in the Federal 
Register for public comment. A requestor may, within 10 working days of 
the close of

[[Page 988]]

the comment period specified in the proposed rescission or modification 
published in the Federal Register, submit a rebuttal statement to DOE. A 
requestor may rebut more than one comment in a single rebuttal 
statement.
    (4) DOE will publish its decision in the Federal Register. DOE's 
determination will be based on relevant information contained in the 
record and any comments received.
    (5) After the effective date of a rescission, any basic model(s) 
previously subject to a waiver must be tested and certified using the 
applicable DOE test procedure in 10 CFR part 431.
    (l) Revision of regulation. As soon as practicable after the 
granting of any waiver, DOE will publish in the Federal Register a 
notice of proposed rulemaking to amend its regulations so as to 
eliminate any need for the continuation of such waiver. As soon 
thereafter as practicable, DOE will publish in the Federal Register a 
final rule.
    (m) To exhaust administrative remedies, any person aggrieved by an 
action under this section must file an appeal with the DOE's Office of 
Hearings and Appeals as provided in 10 CFR part 1003, subpart C.

[79 FR 26601, May 9, 2014]

    Effective Date Note: At 85 FR 79820, Dec. 11, 2020, Sec.  431.401 
was amended by revising paragraphs (e)(1), (h), and (i)(1), effective 
Jan. 11, 2021. For the convenience of the user, the revised text is set 
forth as follows:



Sec.  431.401  Petitions for waiver and interim waiver.

                                * * * * *

    (e) Provisions specific to interim waivers--(1) Disposition of 
petition. (i) Within 5 business days of receipt of a petition for an 
interim waiver, DOE will post that petition for an interim waiver on its 
website.
    (ii) In those cases where DOE receives a petition for an interim 
waiver in conjunction with a petition for waiver, DOE will review the 
petition for interim waiver within 45 business days of receipt of the 
petition. Where the manufacturer does not specify any alternate test 
procedure, or otherwise fails to satisfy any of the other required 
criteria specified under paragraph (b)(2) of this section, DOE will deny 
the petition for interim waiver. In such case, DOE will notify the 
applicant of the denial within the 45-day review period and process the 
request for waiver in accordance with this section. If DOE does not 
notify the applicant of the disposition of the petition for interim 
waiver, in writing, within 45 business days of receipt of the petition, 
the interim waiver is granted utilizing the alternate test procedure 
requested in the petition. Notice of DOE's determination on the petition 
for interim waiver will be posted on the Department's website not later 
than 5 business days after the end of the review period. Such 
determination will also be submitted for publication in the Federal 
Register.
    (iii) A petition submitted under this paragraph (whether for an 
interim waiver or waiver) is considered ``received'' on the date it is 
received by the Department through the Department's established email 
box for receipt of waiver petitions or, if delivered by mail, on the 
date the waiver petition is stamped as received by the Department.

                                * * * * *

    (h) Duration. (1) Interim waivers remain in effect until the earlier 
of the following:
    (i) DOE publishes a decision and order on a petition for waiver 
pursuant to paragraph (f) of this section in the Federal Register; or
    (ii) DOE publishes in the Federal Register a new or amended test 
procedure that addresses the issues presented in the waiver.
    (2) Within one year of a determination to grant an interim waiver, 
DOE will complete either paragraph (h)(1)(i) or (ii) of this section as 
specified in this section.
    (3) When DOE amends the test procedure to address the issues 
presented in a waiver, the waiver will automatically terminate on the 
date on which use of that test procedure is required to demonstrate 
compliance.
    (i) Compliance certification. (1) If the alternate test procedure 
specified in the interim waiver differs from the alternate test 
procedure specified by DOE in a subsequent decision and order granting 
the petition for waiver, a manufacturer who has already certified basic 
models using the procedure permitted in DOE's grant of an interim test 
procedure waiver is not required to re-test and re-rate those basic 
models so long as: The manufacturer used that alternative procedure to 
certify the compliance of the basic model after DOE granted the 
company's interim waiver request; changes have not been made to those 
basic models that would cause them to use more energy or otherwise be 
less energy efficient; and the manufacturer does not modify the 
certified rating. However, if DOE ultimately denies the petition for 
waiver, or if the alternate test procedure specified in the interim 
waiver differs from the alternate test procedure specified by DOE in a

[[Page 989]]

subsequent decision and order, DOE will provide a period of 180 days 
before the manufacturer is required to use the DOE test procedure or the 
alternate test procedure specified in the decision and order to make 
representations of energy efficiency.

                                * * * * *



Sec.  431.402  Preemption of State regulations for commercial 
HVAC & WH products.

    Beginning on the effective date of such standard, an energy 
conservation standard set forth in this part for a commercial HVAC & WH 
product supersedes any State or local regulation concerning the energy 
efficiency or energy use of that product, except as provided for in 
Section 345(b)(2)(B)-(D) of the Act.



Sec.  431.403  Maintenance of records for electric motors.

    (a) Manufacturers of electric motors must establish, maintain and 
retain records of the following:
    (1) The test data for all testing conducted pursuant to this part;
    (2) The development, substantiation, application, and subsequent 
verification of any AEDM used under this part;
    (3) Any written certification received from a certification program, 
including a certificate or conformity, relied on under the provisions of 
this part;
    (b) You must organize such records and index them so that they are 
readily accessible for review. The records must include the supporting 
test data associated with tests performed on any test units to satisfy 
the requirements of this part (except tests performed by DOE).
    (c) For each basic model, you must retain all such records for a 
period of two years from the date that production of all units of that 
basic model has ceased. You must retain records in a form allowing ready 
access to DOE, upon request.

[76 FR 12505, Mar. 7, 2011]



Sec.  431.404  Imported electric motors.

    (a) Under sections 331 and 345 of the Act, any person importing an 
electric motor into the United States must comply with the provisions of 
the Act and of this part, and is subject to the remedies of this part.
    (b) Any electric motor offered for importation in violation of the 
Act and of this part will be refused admission into the customs 
territory of the United States under rules issued by the Secretary of 
the Treasury, except that the Secretary of the Treasury may, by such 
rules, authorize the importation of such electric motor upon such terms 
and conditions (including the furnishing of a bond) as may appear to the 
Secretary of the Treasury appropriate to ensure that such electric motor 
will not violate the Act and this part, or will be exported or abandoned 
to the United States.

[76 FR 12505, Mar. 7, 2011]



Sec.  431.405  Exported electric motors.

    Under Sections 330 and 345 of the Act, this part does not apply to 
any electric motor if:
    (a) Such electric motor is manufactured, sold, or held for sale for 
export from the United States (or such electric motor was imported for 
export), unless such electric motor is, in fact, distributed in commerce 
for use in the United States; and,
    (b) Such electric motor, when distributed in commerce, or any 
container in which it is enclosed when so distributed, bears a stamp or 
label stating that such electric motor is intended for export.

[76 FR 12505, Mar. 7, 2011]



Sec.  431.406  Subpoena--Electric Motors.

    Pursuant to sections 329(a) and 345 of the Act, for purposes of 
carrying out this part, the Secretary or the Secretary's designee, may 
sign and issue subpoenas for the attendance and testimony of witnesses 
and the production of relevant books, records, papers, and other 
documents, and administer the oaths. Witnesses summoned under the 
provisions of this section shall be paid the same fees and mileage as 
are paid to witnesses in the courts of the United States. In case of 
contumacy by, or refusal to obey a subpoena served upon any persons 
subject to this part, the Secretary may seek an order from the District 
Court of the United States for any District in which such person is

[[Page 990]]

found or resides or transacts business requiring such person to appear 
and give testimony, or to appear and produce documents. Failure to obey 
such order is punishable by such court as a contempt thereof.

[76 FR 12505, Mar. 7, 2011]



Sec.  431.407  Confidentiality--Electric Motors.

    Pursuant to the provisions of 10 CFR 1004.11, any manufacturer or 
private labeler of electric motors submitting information or data which 
they believe to be confidential and exempt from public disclosure should 
submit one complete copy, and 15 copies from which the information 
believed to be confidential has been deleted. In accordance with the 
procedures established at 10 CFR 1004.11, the Department shall make its 
own determination with regard to any claim that information submitted be 
exempt from public disclosure.

[76 FR 12505, Mar. 7, 2011]



Sec.  431.408  Preemption of State regulations for covered equipment 
other than electric motors and commercial heating, ventilating, 
air-conditioning and water heating products.

    This section concerns State regulations providing for any energy 
conservation standard, or water conservation standard (in the case of 
commercial prerinse spray valves or commercial clothes washers), or 
other requirement with respect to the energy efficiency, energy use, or 
water use (in the case of commercial prerinse spray valves or commercial 
clothes washers), for any covered equipment other than an electric motor 
or commercial HVAC and WH product. Any such regulation that contains a 
standard or requirement that is not identical to a Federal standard in 
effect under this subpart is preempted by that standard, except as 
provided for in sections 327(b) and (c) and 345(a)(10), (e), (f) and (g) 
of the Act.

[75 FR 675, Jan. 5, 2010, as amended at 78 FR 62993, Oct. 23, 2013]



    Subpart W_Petitions To Exempt State Regulation From Preemption; 
           Petitions To Withdraw Exemption of State Regulation

    Source: 69 FR 61941, Oct. 21, 2004, unless otherwise noted. 
Redesignated at 70 FR 60417, Oct. 18, 2005.



Sec.  431.421  Purpose and scope.

    (a) The regulations in this subpart prescribe the procedures to be 
followed in connection with petitions requesting a rule that a State 
regulation prescribing an energy conservation standard or other 
requirement respecting energy use or energy efficiency of a type (or 
class) of covered equipment not be preempted.
    (b) The regulations in this subpart also prescribe the procedures to 
be followed in connection with petitions to withdraw a rule exempting a 
State regulation prescribing an energy conservation standard or other 
requirement respecting energy use or energy efficiency of a type (or 
class) of covered equipment.



Sec.  431.422  Prescriptions of a rule.

    (a) Criteria for exemption from preemption. Upon petition by a State 
which has prescribed an energy conservation standard or other 
requirement for a type or class of covered equipment for which a Federal 
energy conservation standard is applicable, the Secretary shall 
prescribe a rule that such standard not be preempted if he/she 
determines that the State has established by a preponderance of evidence 
that such requirement is needed to meet unusual and compelling State or 
local energy interests. For the purposes of this regulation, the term 
``unusual and compelling State or local energy interests'' means 
interests which are substantially different in nature or magnitude from 
those prevailing in the U.S. generally, and are such that when evaluated 
within the context of the State's energy plan and forecast, the costs, 
benefits, burdens, and reliability of energy savings resulting from the 
State regulation make such regulation preferable or necessary when 
measured against the costs, benefits, burdens,

[[Page 991]]

and reliability of alternative approaches to energy savings or 
production, including reliance on reasonably predictable market-induced 
improvements in efficiency of all equipment subject to the State 
regulation. The Secretary may not prescribe such a rule if he finds that 
interested persons have established, by a preponderance of the evidence, 
that the State's regulation will significantly burden manufacturing, 
marketing, distribution, sale or servicing of the covered equipment on a 
national basis. In determining whether to make such a finding, the 
Secretary shall evaluate all relevant factors including: The extent to 
which the State regulation will increase manufacturing or distribution 
costs of manufacturers, distributors, and others; the extent to which 
the State regulation will disadvantage smaller manufacturers, 
distributors, or dealers or lessen competition in the sale of the 
covered equipment in the State; the extent to which the State regulation 
would cause a burden to manufacturers to redesign and produce the 
covered equipment type (or class), taking into consideration the extent 
to which the regulation would result in a reduction in the current 
models, or in the projected availability of models, that could be 
shipped on the effective date of the regulation to the State and within 
the U.S., or in the current or projected sales volume of the covered 
equipment type (or class) in the State and the U.S.; and the extent to 
which the State regulation is likely to contribute significantly to a 
proliferation of State commercial and industrial equipment efficiency 
requirements and the cumulative impact such requirements would have. The 
Secretary may not prescribe such a rule if he/she finds that such a rule 
will result in the unavailability in the State of any covered equipment 
(or class) of performance characteristics (including reliability), 
features, sizes, capacities, and volumes that are substantially the same 
as those generally available in the State at the time of the Secretary's 
finding. The failure of some classes (or types) to meet this criterion 
shall not affect the Secretary's determination of whether to prescribe a 
rule for other classes (or types).
    (1) Requirements of petition for exemption from preemption. A 
petition from a State for a rule for exemption from preemption shall 
include the information listed in paragraphs (a)(1)(i) through 
(a)(1)(vi) of this section. A petition for a rule and correspondence 
relating to such petition shall be available for public review except 
for confidential or proprietary information submitted in accordance with 
the Department of Energy's Freedom of Information Regulations set forth 
in 10 CFR part 1004.
    (i) The name, address, and telephone number of the petitioner;
    (ii) A copy of the State standard for which a rule exempting such 
standard is sought;
    (iii) A copy of the State's energy plan and forecast;
    (iv) Specification of each type or class of covered equipment for 
which a rule exempting a standard is sought;
    (v) Other information, if any, believed to be pertinent by the 
petitioner; and
    (vi) Such other information as the Secretary may require.
    (b) Criteria for exemption from preemption when energy emergency 
conditions exist within State. Upon petition by a State which has 
prescribed an energy conservation standard or other requirement for a 
type or class of covered equipment for which a Federal energy 
conservation standard is applicable, the Secretary may prescribe a rule, 
effective upon publication in the Federal Register, that such regulation 
not be preempted if he determines that in addition to meeting the 
requirements of paragraph (a) of this Section the State has established 
that: an energy emergency condition exists within the State that 
imperils the health, safety, and welfare of its residents because of the 
inability of the State or utilities within the State to provide adequate 
quantities of gas or electric energy to its residents at less than 
prohibitive costs; and cannot be substantially alleviated by the 
importation of energy or the use of interconnection agreements; and the 
State regulation is necessary to alleviate substantially such condition.
    (1) Requirements of petition for exemption from preemption when 
energy

[[Page 992]]

emergency conditions exist within a State. A petition from a State for a 
rule for exemption from preemption when energy emergency conditions 
exist within a State shall include the information listed in paragraphs 
(a)(1)(i) through (a)(1)(vi) of this section. A petition shall also 
include the information prescribed in paragraphs (b)(1)(i) through 
(b)(1)(iv) of this section, and shall be available for public review 
except for confidential or proprietary information submitted in 
accordance with the Department of Energy's Freedom of Information 
Regulations set forth in 10 CFR part 1004:
    (i) A description of the energy emergency condition which exists 
within the State, including causes and impacts.
    (ii) A description of emergency response actions taken by the State 
and utilities within the State to alleviate the emergency condition;
    (iii) An analysis of why the emergency condition cannot be 
alleviated substantially by importation of energy or the use of 
interconnection agreements;
    (iv) An analysis of how the State standard can alleviate 
substantially such emergency condition.
    (c) Criteria for withdrawal of a rule exempting a State standard. 
Any person subject to a State standard which, by rule, has been exempted 
from Federal preemption and which prescribes an energy conservation 
standard or other requirement for a type or class of covered equipment, 
when the Federal energy conservation standard for such equipment 
subsequently is amended, may petition the Secretary requesting that the 
exemption rule be withdrawn. The Secretary shall consider such petition 
in accordance with the requirements of paragraph (a) of this section, 
except that the burden shall be on the petitioner to demonstrate that 
the exemption rule received by the State should be withdrawn as a result 
of the amendment to the Federal standard. The Secretary shall withdraw 
such rule if he determines that the petitioner has shown the rule should 
be withdrawn.
    (1) Requirements of petition to withdraw a rule exempting a State 
standard. A petition for a rule to withdraw a rule exempting a State 
standard shall include the information prescribed in paragraphs 
(c)(1)(i) through (c)(1)(vii) of this section, and shall be available 
for public review, except for confidential or proprietary information 
submitted in accordance with the Department of Energy's Freedom of 
Information Regulations set forth in 10 CFR part 1004:
    (i) The name, address and telephone number of the petitioner;
    (ii) A statement of the interest of the petitioner for which a rule 
withdrawing an exemption is sought;
    (iii) A copy of the State standard for which a rule withdrawing an 
exemption is sought;
    (iv) Specification of each type or class of covered equipment for 
which a rule withdrawing an exemption is sought;
    (v) A discussion of the factors contained in paragraph (a) of this 
section;
    (vi) Such other information, if any, believed to be pertinent by the 
petitioner; and
    (vii) Such other information as the Secretary may require.
    (2) [Reserved]



Sec.  431.423  Filing requirements.

    (a) Service. All documents required to be served under this subpart 
shall, if mailed, be served by first class mail. Service upon a person's 
duly authorized representative shall constitute service upon that 
person.
    (b) Obligation to supply information. A person or State submitting a 
petition is under a continuing obligation to provide any new or newly 
discovered information relevant to that petition. Such information 
includes, but is not limited to, information regarding any other 
petition or request for action subsequently submitted by that person or 
State.
    (c) The same or related matters. A person or State submitting a 
petition or other request for action shall state whether to the best 
knowledge of that petitioner the same or related issue, act, or 
transaction has been or presently is being considered or investigated by 
any State agency, department, or instrumentality.
    (d) Computation of time. (1) Computing any period of time prescribed 
by or allowed under this subpart, the day of

[[Page 993]]

the action from which the designated period of time begins to run is not 
to be included. If the last day of the period is Saturday, or Sunday, or 
Federal legal holiday, the period runs until the end of the next day 
that is neither a Saturday, or Sunday or Federal legal holiday.
    (2) Saturdays, Sundays, and intervening Federal legal holidays shall 
be excluded from the computation of time when the period of time allowed 
or prescribed is 7 days or less.
    (3) When a submission is required to be made within a prescribed 
time, DOE may grant an extension of time upon good cause shown.
    (4) Documents received after regular business hours are deemed to 
have been submitted on the next regular business day. Regular business 
hours for the DOE's National Office, Washington, DC, are 8:30 a.m. to 
4:30 p.m.
    (5) DOE reserves the right to refuse to accept, and not to consider, 
untimely submissions.
    (e) Filing of petitions. (1) A petition for a rule shall be 
submitted in triplicate to: The Assistant Secretary for Energy 
Efficiency and Renewable Energy, U.S. Department of Energy, Section 327 
Petitions, Building Technologies, EE-2J, Forrestal Building,1000 
Independence Avenue, SW., Washington, DC 20585.
    (2) A petition may be submitted on behalf of more than one person. A 
joint petition shall indicate each person participating in the 
submission. A joint petition shall provide the information required by 
Sec.  431.212 for each person on whose behalf the petition is submitted.
    (3) All petitions shall be signed by the person(s) submitting the 
petition or by a duly authorized representative. If submitted by a duly 
authorized representative, the petition shall certify this 
authorization.
    (4) A petition for a rule to withdraw a rule exempting a State 
regulation, all supporting documents, and all future submissions shall 
be served on each State agency, department, or instrumentality whose 
regulation the petitioner seeks to supersede. The petition shall contain 
a certification of this service which states the name and mailing 
address of the served parties, and the date of service.
    (f) Acceptance for filing. (1) Within 15 days of the receipt of a 
petition, the Secretary will either accept it for filing or reject it, 
and the petitioner will be so notified in writing. The Secretary will 
serve a copy of this notification on each other party served by the 
petitioner. Only such petitions which conform to the requirements of 
this subpart and which contain sufficient information for the purposes 
of a substantive decision will be accepted for filing. Petitions which 
do not so conform will be rejected and an explanation provided to 
petitioner in writing.
    (2) For purposes of the Act and this subpart, a petition is deemed 
to be filed on the date it is accepted for filing.
    (g) Docket. A petition accepted for filing will be assigned an 
appropriate docket designation. Petitioner shall use the docket 
designation in all subsequent submissions.



Sec.  431.424  Notice of petition.

    (a) Promptly after receipt of a petition and its acceptance for 
filing, notice of such petition shall be published in the Federal 
Register. The notice shall set forth the availability for public review 
of all data and information available, and shall solicit comments, data 
and information with respect to the determination on the petition. 
Except as may otherwise be specified, the period for public comment 
shall be 60 days after the notice appears in the Federal Register.
    (b) In addition to the material required under paragraph (a) of this 
section, each notice shall contain a summary of the State regulation at 
issue and the petitioner's reasons for the rule sought.



Sec.  431.425  Consolidation.

    DOE may consolidate any or all matters at issue in two or more 
proceedings docketed where there exist common parties, common questions 
of fact and law, and where such consolidation would expedite or simplify 
consideration of the issues. Consolidation shall not affect the right of 
any party to raise issues that could have been raised if consolidation 
had not occurred.

[[Page 994]]



Sec.  431.426  Hearing.

    The Secretary may hold a public hearing, and publish notice in the 
Federal Register of the date and location of the hearing, when he 
determines that such a hearing is necessary and likely to result in a 
timely and effective resolution of the issues. A transcript shall be 
kept of any such hearing.



Sec.  431.427  Disposition of petitions.

    (a) After the submission of public comments under Sec.  431.213(a), 
the Secretary shall prescribe a final rule or deny the petition within 6 
months after the date the petition is filed.
    (b) The final rule issued by the Secretary or a determination by the 
Secretary to deny the petition shall include a written statement setting 
forth his findings and conclusions, and the reasons and basis therefor. 
A copy of the Secretary's decision shall be sent to the petitioner and 
the affected State agency. The Secretary shall publish in the Federal 
Register a notice of the final rule granting or denying the petition and 
the reasons and basis therefor.
    (c) If the Secretary finds that he cannot issue a final rule within 
the 6-month period pursuant to paragraph (a) of this section, he shall 
publish a notice in the Federal Register extending such period to a date 
certain, but no longer than one year after the date on which the 
petition was filed. Such notice shall include the reasons for the delay.



Sec.  431.428  Effective dates of final rules.

    (a) A final rule exempting a State standard from Federal preemption 
will be effective:
    (1) Upon publication in the Federal Register if the Secretary 
determines that such rule is needed to meet an ``energy emergency 
condition'' within the State;
    (2) Three years after such rule is published in the Federal 
Register; or
    (3) Five years after such rule is published in the Federal Register 
if the Secretary determines that such additional time is necessary due 
to the burdens of retooling, redesign or distribution.
    (b) A final rule withdrawing a rule exempting a State standard will 
be effective upon publication in the Federal Register.



Sec.  431.429  Request for reconsideration.

    (a) Any petitioner whose petition for a rule has been denied may 
request reconsideration within 30 days of denial. The request shall 
contain a statement of facts and reasons supporting reconsideration and 
shall be submitted in writing to the Secretary.
    (b) The denial of a petition will be reconsidered only where it is 
alleged and demonstrated that the denial was based on error in law or 
fact and that evidence of the error is found in the record of the 
proceedings.
    (c) If the Secretary fails to take action on the request for 
reconsideration within 30 days, the request is deemed denied, and the 
petitioner may seek such judicial review as may be appropriate and 
available.
    (d) A petitioner has not exhausted other administrative remedies 
until a request for reconsideration has been filed and acted upon or 
deemed denied.



Sec.  431.430  Finality of decision.

    (a) A decision to prescribe a rule that a State energy conservation 
standard or other requirement not be preempted is final on the date the 
rule is issued, i.e., signed by the Secretary. A decision to prescribe 
such a rule has no effect on other regulations of covered equipment of 
any other State.
    (b) A decision to prescribe a rule withdrawing a rule exempting a 
State standard or other requirement is final on the date the rule is 
issued, i.e., signed by the Secretary. A decision to deny such a 
petition is final on the day a denial of a request for reconsideration 
is issued, i.e., signed by the Secretary.



                     Subpart X_Small Electric Motors

    Source: 74 FR 32072, July 7, 2009, unless otherwise noted.



Sec.  431.441  Purpose and scope.

    This subpart contains definitions, test procedures, and energy 
conservation requirements for small electric motors, pursuant to Part A-
1 of Title III of the Energy Policy and Conservation Act, as amended, 42 
U.S.C. 6311-

[[Page 995]]

6317. This subpart does not cover ``electric motors,'' which are 
addressed in subpart B of this part.

[77 FR 26638, May 4, 2012]



Sec.  431.442  Definitions.

    The following definitions are applicable to this subpart:
    Alternative efficiency determination method, or AEDM, means, with 
respect to a small electric motor, a method of calculating the total 
power loss and average full-load efficiency.
    Average full-load efficiency means the arithmetic mean of the full-
load efficiencies of a population of small electric motors of duplicate 
design, where the full-load efficiency of each motor in the population 
is the ratio (expressed as a percentage) of the motor's useful power 
output to its total power input when the motor is operated at its full 
rated load, rated voltage, and rated frequency.
    Basic model means, with respect to a small electric motor, all units 
of a given type of small electric motor (or class thereof) manufactured 
by a single manufacturer, and which have the same rating, have 
electrical characteristics that are essentially identical, and do not 
have any differing physical or functional characteristics that affect 
energy consumption or efficiency. For the purpose of this definition, 
``rating'' means a combination of the small electric motor's group 
(i.e., capacitor-start, capacitor-run; capacitor-start, induction-run; 
or polyphase), horsepower rating (or standard kilowatt equivalent), and 
number of poles with respect to which Sec.  431.446 prescribes nominal 
full load efficiency standards.
    CSA means Canadian Standards Association.
    DOE or the Department means the U.S. Department of Energy.
    EPCA means the Energy Policy and Conservation Act, as amended, 42 
U.S.C. 6291-6317.
    IEC means International Electrotechnical Commission.
    IEEE means Institute of Electrical and Electronics Engineers, Inc.
    NEMA means National Electrical Manufacturers Association.
    Small electric motor means a NEMA general purpose alternating 
current single-speed induction motor, built in a two-digit frame number 
series in accordance with NEMA Standards Publication MG1-1987, including 
IEC metric equivalent motors.

[74 FR 32072, July 7, 2009, as amended at 77 FR 26638, May 4, 2012]

                             Test Procedures



Sec.  431.443  Materials incorporated by reference.

    (a) General. The Department incorporates by reference the following 
standards into subpart X of part 431. The Director of the Federal 
Register has approved the material listed in paragraph (b) of this 
section for incorporation by reference in accordance with 5 U.S.C. 
552(a) and 1 CFR part 51. Any subsequent amendment to a standard by the 
standard-setting organization will not affect the DOE test procedures 
unless and until the DOE amends its test procedures. DOE incorporates 
the material as it exists on the date of the approval and a notice of 
any change in the material will be published in the Federal Register. 
All approved material is available for inspection at the National 
Archives and Records Administration (NARA). For information on the 
availability of this material at NARA, call 202-741-6030, or go to: 
http://www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html. Also, this material is available for inspection at 
U.S. Department of Energy, Office of Energy Efficiency and Renewable 
Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, 
SW., Washington, DC 20024, (202) 586-2945, or go to http://
www1.eere.energy.gov/buildings/appliance_standards/. Standards can be 
obtained from the sources below.
    (b) CAN/CSA. Canadian Standards Association, Sales Department, 5060 
Spectrum Way, Suite 100, Mississauga, Ontario, L4W 5N6, Canada, 1-800-
463-6727, or go to http://www.shopcsa.ca/onlinestore/welcome.asp.
    (1) CSA C747-09 (``CSA C747''), Energy efficiency test methods for 
small motors, October 2009, IBR approved for Sec. Sec.  431.444; 
431.447.

[[Page 996]]

    (2) CSA C390-10, Test methods, marking requirements, and energy 
efficiency levels for three-phase induction motors, March 2010, IBR 
approved for Sec. Sec.  431.444; 431.447.
    (c) IEEE. Institute of Electrical and Electronics Engineers, Inc., 
445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, 1-800-678-IEEE 
(4333), or go to http://www.ieee.org/web/publications/home/index.html.
    (1) IEEE Std 112-2004, Test Procedure for Polyphase Induction Motors 
and Generators, approved February 9, 2004, IBR approved as follows:
    (i) Section 6.3, Efficiency Test Method A, Input-Output, IBR 
approved for Sec. Sec.  431.444; 431.447;
    (ii) Section 6.4, Efficiency Test Method B, Input-Output with Loss 
Segregation, IBR approved for Sec. Sec.  431.444; 431.447.
    (2) IEEE Std 114-2010, Test Procedure for Single-Phase Induction 
Motors, approved September 30, 2010, IBR approved for Sec. Sec.  
431.444; 431.447.

[74 FR 32072, July 7, 2009, as amended at 77 FR 26638, May 4, 2012]



Sec.  431.444  Test procedures for the measurement of energy efficiency.

    (a) Scope. Pursuant to section 346(b)(1) of EPCA, this section 
provides the test procedures for measuring, pursuant to EPCA, the 
efficiency of small electric motors pursuant to EPCA. (42 U.S.C. 
6317(b)(1)) For purposes of this part 431 and EPCA, the test procedures 
for measuring the efficiency of small electric motors shall be the test 
procedures specified in Sec.  431.444(b).
    (b) Testing and Calculations. Determine the energy efficiency and 
losses by using one of the following test methods:
    (1) Single-phase small electric motors: Either IEEE Std 114-2010 or 
CSA C747 (incorporated by reference, see Sec.  431.443);
    (2) Polyphase small electric motors less than or equal to 1 
horsepower (0.75 kW): Either IEEE Std 112-2004 Test Method A or CSA C747 
(incorporated by reference, see Sec.  431.443); or
    (3) Polyphase small electric motors greater than 1 horsepower (0.75 
kW): Either IEEE Std 112-2004 Test Method B or CSA C390-10 (incorporated 
by reference, see Sec.  431.443).

[74 FR 32072, July 7, 2009, as amended at 77 FR 26638, May 4, 2012]



Sec.  431.445  Determination of small electric motor efficiency.

    (a) Scope. When a party determines the energy efficiency of a small 
electric motor to comply with an obligation imposed on it by or pursuant 
to Part A-1 of Title III of EPCA, 42 U.S.C. 6311-6317, this section 
applies.
    (b) Provisions applicable to all small electric motors--(1) General 
requirements. The average full-load efficiency of each basic model of 
small electric motor must be determined either by testing in accordance 
with Sec.  431.444 of this subpart, or by application of an alternative 
efficiency determination method (AEDM) that meets the requirements of 
paragraphs (a)(2) and (3) of this section, provided, however, that an 
AEDM may be used to determine the average full-load efficiency of one or 
more of a manufacturer's basic models only if the average full-load 
efficiency of at least five of its other basic models is determined 
through testing.
    (2) Alternative efficiency determination method. An AEDM applied to 
a basic model must be:
    (i) Derived from a mathematical model that represents the mechanical 
and electrical characteristics of that basic model, and
    (ii) Based on engineering or statistical analysis, computer 
simulation or modeling, or other analytic evaluation of performance 
data.
    (3) Substantiation of an alternative efficiency determination 
method. Before an AEDM is used, its accuracy and reliability must be 
substantiated as follows:
    (i) The AEDM must be applied to at least five basic models that have 
been tested in accordance with Sec.  431.444; and
    (ii) The predicted total power loss for each such basic model, 
calculated by applying the AEDM, must be within plus or minus 10 percent 
of the mean total power loss determined from the testing of that basic 
model.
    (4) Subsequent verification of an AEDM. (i) Each manufacturer that 
has used an AEDM under this section shall have available for inspection 
by the

[[Page 997]]

Department of Energy records showing the method or methods used; the 
mathematical model, the engineering or statistical analysis, computer 
simulation or modeling, and other analytic evaluation of performance 
data on which the AEDM is based; complete test data, product 
information, and related information that the manufacturer has generated 
or acquired pursuant to paragraph (a)(3) of this section; and the 
calculations used to determine the efficiency and total power losses of 
each basic model to which the AEDM was applied.
    (ii) If requested by the Department, the manufacturer shall conduct 
simulations to predict the performance of particular basic models of 
small electric motors specified by the Department, analyses of previous 
simulations conducted by the manufacturer, sample testing of basic 
models selected by the Department, or a combination of the foregoing.
    (5) Use of a certification program. (i) A manufacturer may use a 
certification program, that DOE has classified as nationally recognized 
under Sec.  431.447, to certify the average full-load efficiency of a 
basic model of small electric motor, and issue a certificate of 
conformity for the small electric motor.
    (ii) For each basic model for which a certification program is not 
used as described in paragraph (b)(5)(i) of this section, any testing of 
a motor to determine its energy efficiency must be carried out in 
accordance with paragraph (c) of this section.
    (c) Additional testing requirements applicable when a certification 
program is not used--(1) Selection of basic models for testing. (i) 
Basic models must be selected for testing in accordance with the 
following criteria:
    (A) Two of the basic models must be among the five basic models that 
have the highest unit volumes of production by the manufacturer in the 
prior year, or during the prior 12 calendar month period beginning in 
2015, whichever is later, and comply with the standards set forth in 
Sec.  431.446;
    (B) The basic models should be of different horsepowers without 
duplication;
    (C) At least one basic model should be selected from each of the 
frame number series for which the manufacturer is seeking compliance; 
and
    (D) Each basic model should have the lowest average full-load 
efficiency among the basic models with the same rating (``rating'' as 
used here has the same meaning as it has in the definition of ``basic 
model'').
    (ii) In any instance where it is impossible for a manufacturer to 
select basic models for testing in accordance with all of these 
criteria, the criteria shall be given priority in the order in which 
they are listed. Within the limits imposed by the criteria, basic models 
shall be selected randomly.
    (2) Selection of units for testing within a basic model. For each 
basic model selected for testing,\1\ a sample of units shall be selected 
at random and tested. The sample shall be comprised of production units 
of the basic model, or units that are representative of such production 
units. The sample size shall be no fewer than five units, except when 
fewer than five units of a basic model would be produced over a 
reasonable period of time (approximately 180 days). In such cases, each 
unit produced shall be tested.
---------------------------------------------------------------------------

    \1\ Components of similar design may be substituted without 
requiring additional testing if the represented measures of energy 
consumption continue to satisfy the applicable sampling provision.
---------------------------------------------------------------------------

    (3) Applying results of testing. When applying the test results to 
determine whether a motor complies with the required average efficiency 
level:
    The average full-load efficiency of the sample, X which is defined 
by
[GRAPHIC] [TIFF OMITTED] TR04MY12.000


where Xi is the measured full-load efficiency of unit i and n 
is the number of units tested, shall satisfy the condition:

[GRAPHIC] [TIFF OMITTED] TR04MY12.001

where RE is the required average full-load efficiency.

[74 FR 32072, July 7, 2009, as amended at 77 FR 26638, May 4, 2012]

[[Page 998]]

                      Energy Conservation Standards



Sec.  431.446  Small electric motors energy conservation standards 
and their effective dates.

    (a) Each small electric motor manufactured (alone or as a component 
of another piece of non-covered equipment) after March 9, 2015, or in 
the case of a small electric motor which requires listing or 
certification by a nationally recognized safety testing laboratory, 
after March 9, 2017, shall have an average full load efficiency of not 
less than the following:

------------------------------------------------------------------------
                                           Average full load efficiency
                                        --------------------------------
                                                    Polyphase
   Motor horsepower/standard kilowatt   --------------------------------
               equivalent                 Open motors (number of poles)
                                        --------------------------------
                                             6          4          2
------------------------------------------------------------------------
0.25/0.18..............................       67.5       69.5       65.6
0.33/0.25..............................       71.4       73.4       69.5
0.5/0.37...............................       75.3       78.2       73.4
0.75/0.55..............................       81.7       81.1       76.8
1/0.75.................................       82.5       83.5       77.0
1.5/1.1................................       83.8       86.5       84.0
2/1.5..................................        N/A       86.5       85.5
3/2.2..................................        N/A       86.9       85.5
------------------------------------------------------------------------


 
                                           Average full load efficiency
                                        --------------------------------
                                          Capacitor-start capacitor-run
                                          and capacitor-start induction-
   Motor horsepower/standard kilowatt                  run
               equivalent               --------------------------------
                                          Open motors (number of poles)
                                        --------------------------------
                                             6          4          2
------------------------------------------------------------------------
0.25/0.18..............................       62.2       68.5       66.6
0.33/0.25..............................       66.6       72.4       70.5
0.5/0.37...............................       76.2       76.2       72.4
0.75/0.55..............................       80.2       81.8       76.2
1/0.75.................................       81.1       82.6       80.4
1.5/1.1................................        N/A       83.8       81.5
2/1.5..................................        N/A       84.5       82.9
3/2.2..................................        N/A        N/A       84.1
------------------------------------------------------------------------

    (b) For purposes of determining the required minimum average full 
load efficiency of an electric motor that has a horsepower or kilowatt 
rating between two horsepower or two kilowatt ratings listed in any 
table of efficiency standards in paragraph (a) of this section, each 
such motor shall be deemed to have a listed horsepower or kilowatt 
rating, determined as follows:
    (1) A horsepower at or above the midpoint between the two 
consecutive horsepower ratings shall be rounded up to the higher of the 
two horsepower ratings;
    (2) A horsepower below the midpoint between the two consecutive 
horsepower ratings shall be rounded down to the lower of the two 
horsepower ratings; or
    (3) A kilowatt rating shall be directly converted from kilowatts to 
horsepower using the formula 1 kilowatt = (1/0.746) hp, without 
calculating beyond three significant decimal places, and the resulting 
horsepower shall be rounded in accordance with paragraphs (b)(1) or 
(b)(2) of this section, whichever applies.

[75 FR 10947, Mar. 9, 2010; 75 FR 17036, Apr. 5, 2010]



Sec.  431.447  Department of Energy recognition of nationally recognized 
certification programs.

    (a) Petition. For a certification program to be classified by the 
Department of Energy as being nationally recognized in the United States 
(``nationally recognized''), the organization operating the program must 
submit a petition to the Department requesting such classification, in 
accordance with paragraph (c) of this section and Sec.  431.448. The 
petition must demonstrate that the program meets the criteria in 
paragraph (b) of this section.
    (b) Evaluation criteria. For a certification program to be 
classified by the Department as nationally recognized, it must meet the 
following criteria:
    (1) It must have satisfactory standards and procedures for 
conducting and administering a certification system, including periodic 
follow up activities to assure that basic models of small electric 
motors continue to conform to the efficiency levels for which they were 
certified, and for granting a certificate of conformity.
    (2) It must be independent of small electric motor manufacturers, 
importers, distributors, private labelers or vendors. It cannot be 
affiliated with, have financial ties with, be controlled by, or be under 
common control with any such entity.
    (3) It must be qualified to operate a certification system in a 
highly competent manner.
    (4) It must be expert in the content and application of the test 
procedures and methodologies in IEEE Std 112-2004 Test Methods A and B, 
IEEE Std 114-2010, CSA C390-10, and CSA C747 (incorporated by reference, 
see Sec.  431.443) or

[[Page 999]]

similar procedures and methodologies for determining the energy 
efficiency of small electric motors. It must have satisfactory criteria 
and procedures for the selection and sampling of electric motors tested 
for energy efficiency.
    (c) Petition format. Each petition requesting classification as a 
nationally recognized certification program must contain a narrative 
statement as to why the program meets the criteria listed in paragraph 
(b) of this section, must be signed on behalf of the organization 
operating the program by an authorized representative, and must be 
accompanied by documentation that supports the narrative statement. The 
following provides additional guidance as to the specific criteria:
    (1) Standards and procedures. A copy of the standards and procedures 
for operating a certification system and for granting a certificate of 
conformity should accompany the petition.
    (2) Independent status. The petitioning organization should identify 
and describe any relationship, direct or indirect, that it or the 
certification program has with an electric motor manufacturer, importer, 
distributor, private labeler, vendor, trade association or other such 
entity, as well as any other relationship it believes might appear to 
create a conflict of interest for the certification program in operating 
a certification system for determining the compliance of small electric 
motors with the applicable energy efficiency standards. It should 
explain why it believes such relationship would not compromise its 
independence in operating a certification program.
    (3) Qualifications to operate a certification system. Experience in 
operating a certification system should be discussed and substantiated 
by supporting documents. Of particular relevance would be documentary 
evidence that establishes experience in the application of guidelines 
contained in the ISO/IEC Guide 65, General requirements for bodies 
operating product certification systems, ISO/IEC Guide 27, Guidelines 
for corrective action to be taken by a certification body in the event 
of either misapplication of its mark of conformity to a product, or 
products which bear the mark of the certification body being found to 
subject persons or property to risk, and ISO/IEC Guide 28, General rules 
for a model third-party certification system for products, as well as 
experience in overseeing compliance with the guidelines contained in the 
ISO/IEC Guide 25, General requirements for the competence of calibration 
and testing laboratories.
    (4) Expertise in small electric motor test procedures. The petition 
should set forth the program's experience with the test procedures and 
methodologies in IEEE Std 112-2004 Test Methods A and B, IEEE Std 114-
2010, CSA C390-10, and CSA C747-(incorporated by reference, see Sec.  
431.443) and with similar procedures and methodologies. This part of the 
petition should include items such as, but not limited to, a description 
of prior projects and qualifications of staff members. Of particular 
relevance would be documentary evidence that establishes experience in 
applying guidelines contained in the ISO/IEC Guide 25, General 
Requirements for the Competence of Calibration and Testing Laboratories 
to energy efficiency testing for electric motors.
    (5) The ISO/IEC Guides referenced in paragraphs (c)(3) and (c)(4) of 
this section are not incorporated by reference, but are for information 
and guidance only. International Organization for Standardization (ISO), 
1, ch. de la Voie-Creuse, CP 56, CH-1211 Geneva 20, Switzerland/
International Electrotechnical Commission, 3, rue de Varemb[eacute], 
P.O. Box 131, CH-1211 Geneva 20, Switzerland.
    (d) Disposition. The Department will evaluate the petition in 
accordance with Sec.  431.448, and will determine whether the applicant 
meets the criteria in paragraph (b) of this section for classification 
as a nationally recognized certification program.

[77 FR 26639, May 4, 2012]



Sec.  431.448  Procedures for recognition and withdrawal of recognition 
of certification programs.

    (a) Filing of petition. Any petition submitted to the Department 
pursuant to Sec.  431.447(a), shall be entitled ``Petition for 
Recognition'' (``Petition'') and must be submitted, in triplicate to the

[[Page 1000]]

Assistant Secretary for Energy Efficiency and Renewable Energy, U.S. 
Department of Energy, Forrestal Building, 1000 Independence Avenue SW., 
Washington, DC 20585-0121. In accordance with the provisions set forth 
in 10 CFR 1004.11, any request for confidential treatment of any 
information contained in such a Petition or in supporting documentation 
must be accompanied by a copy of the Petition or supporting 
documentation from which the information claimed to be confidential has 
been deleted.
    (b) Public notice and solicitation of comments. DOE shall publish in 
the Federal Register the Petition from which confidential information, 
as determined by DOE, has been deleted in accordance with 10 CFR 1004.11 
and shall solicit comments, data and information on whether the Petition 
should be granted. The Department shall also make available for 
inspection and copying the Petition's supporting documentation from 
which confidential information, as determined by DOE, has been deleted 
in accordance with 10 CFR 1004.11. Any person submitting written 
comments to DOE with respect to a Petition shall also send a copy of 
such comments to the petitioner.
    (c) Responsive statement by the petitioner. A petitioner may, within 
10 working days of receipt of a copy of any comments submitted in 
accordance with paragraph (b) of this section, respond to such comments 
in a written statement submitted to the Assistant Secretary for Energy 
Efficiency and Renewable Energy. A petitioner may address more than one 
set of comments in a single responsive statement.
    (d) Public announcement of interim determination and solicitation of 
comments. The Assistant Secretary for Energy Efficiency and Renewable 
Energy shall issue an interim determination on the Petition as soon as 
is practicable following receipt and review of the Petition and other 
applicable documents, including, but not limited to, comments and 
responses to comments. The petitioner shall be notified in writing of 
the interim determination. DOE shall also publish in the Federal 
Register the interim determination and shall solicit comments, data and 
information with respect to that interim determination. Written comments 
and responsive statements may be submitted as provided in paragraphs (b) 
and (c) of this section.
    (e) Public announcement of final determination. The Assistant 
Secretary for Energy Efficiency and Renewable Energy shall, as soon as 
practicable, following receipt and review of comments and responsive 
statements on the interim determination publish in the Federal Register 
a notice of final determination on the Petition.
    (f) Additional information. The Department may, at any time during 
the recognition process, request additional relevant information or 
conduct an investigation concerning the Petition. The Department's 
determination on a Petition may be based solely on the Petition and 
supporting documents, or may also be based on such additional 
information as the Department deems appropriate.
    (g) Withdrawal of recognition--(1) Withdrawal by the Department. If 
the Department believes that a certification program that has been 
recognized under Sec.  431.447 is failing to meet the criteria of 
paragraph (b) of the section under which it is recognized, the 
Department will so advise such entity and request that it take 
appropriate corrective action. The Department will give the entity an 
opportunity to respond. If after receiving such response, or no 
response, the Department believes satisfactory corrective action has not 
been made, the Department will withdraw its recognition from that 
entity.
    (2) Voluntary withdrawal. A certification program may withdraw 
itself from recognition by the Department by advising the Department in 
writing of such withdrawal. It must also advise those that use it (for a 
certification organization, the manufacturers) of such withdrawal.
    (3) Notice of withdrawal of recognition. The Department will publish 
in the Federal Register a notice of any withdrawal of recognition that 
occurs pursuant to this paragraph (g).

[77 FR 26639, May 4, 2012]

[[Page 1001]]



                             Subpart Y_Pumps

    Source: 81 FR 4145, Jan. 25, 2016, unless otherwise noted.



Sec.  431.461  Purpose and scope.

    This subpart contains definitions, test procedures, and energy 
conservation requirements for pumps, pursuant to Part A-1 of Title III 
of the Energy Policy and Conservation Act, as amended, 42 U.S.C. 6311-
6317.



Sec.  431.462  Definitions.

    The following definitions are applicable to this subpart, including 
appendices A and B. In cases where there is a conflict, the language of 
the definitions adopted in this section takes precedence over any 
descriptions or definitions found in the 2014 version of ANSI/HI 
Standard 1.1-1.2, ``Rotodynamic (Centrifugal) Pumps For Nomenclature And 
Definitions'' (ANSI/HI 1.1-1.2-2014; incorporated by reference, see 
Sec.  431.463), or the 2014 version of ANSI/HI Standard 2.1-2.2, 
``Rotodynamic (Vertical) Pumps For Nomenclature And Definitions'' (ANSI/
HI 2.1-2.2-2014; incorporated by reference, see Sec.  431.463). In cases 
where definitions reference design intent, DOE will consider marketing 
materials, labels and certifications, and equipment design to determine 
design intent.
    Bare pump means a pump excluding mechanical equipment, driver, and 
controls.
    Basic model means all units of a given class of pump manufactured by 
one manufacturer, having the same primary energy source, and having 
essentially identical electrical, physical, and functional (or 
hydraulic) characteristics that affect energy consumption, energy 
efficiency, water consumption, or water efficiency; and, in addition, 
for pumps that are subject to the standards specified in Sec.  
431.465(b), the following provisions also apply:
    (1) All variations in numbers of stages of bare RSV and ST pumps 
must be considered a single basic model;
    (2) Pump models for which the bare pump differs in impeller 
diameter, or impeller trim, may be considered a single basic model; and
    (3) Pump models for which the bare pump differs in number of stages 
or impeller diameter and which are sold with motors (or motors and 
controls) of varying horsepower may only be considered a single basic 
model if:
    (i) For ESCC, ESFM, IL, and RSV pumps, each motor offered in the 
basic model has a nominal full load motor efficiency rated at the 
Federal minimum (see the current table for NEMA Design B motors at Sec.  
431.25) or the same number of bands above the Federal minimum for each 
respective motor horsepower (see Table 3 of appendix A to subpart Y of 
this part); or
    (ii) For ST pumps, each motor offered in the basic model has a full 
load motor efficiency at the default nominal full load submersible motor 
efficiency shown in Table 2 of appendix A to subpart Y of this part or 
the same number of bands above the default nominal full load submersible 
motor efficiency for each respective motor horsepower (see Table 3 of 
appendix A to subpart Y of this part).
    Basket strainer means a perforated or otherwise porous receptacle, 
mounted within a housing on the suction side of a pump, that prevents 
solid debris from entering a pump. The basket strainer receptacle is 
capable of passing spherical solids of 1 mm in diameter, and can be 
removed by hand or using only simple tools (e.g., screwdriver, pliers, 
open-ended wrench).
    Best efficiency point (BEP) means the pump hydraulic power operating 
point (consisting of both flow and head conditions) that results in the 
maximum efficiency.
    Bowl diameter means the maximum dimension of an imaginary straight 
line passing through and in the plane of the circular shape of the 
intermediate bowl of the bare pump that is perpendicular to the pump 
shaft and that intersects the outermost circular shape of the 
intermediate bowl of the bare pump at both of its ends, where the 
intermediate bowl is as defined in ANSI/HI 2.1-2.2-2014.
    Clean water pump means a pump that is designed for use in pumping 
water with a maximum non-absorbent free solid content of 0.016 pounds 
per cubic foot, and with a maximum dissolved solid content of 3.1 pounds 
per cubic

[[Page 1002]]

foot, provided that the total gas content of the water does not exceed 
the saturation volume, and disregarding any additives necessary to 
prevent the water from freezing at a minimum of 14 [deg]F.
    Close-coupled pump means a pump in which the motor shaft also serves 
as the impeller shaft for the bare pump.
    Continuous control means a control that adjusts the speed of the 
pump driver continuously over the driver operating speed range in 
response to incremental changes in the required pump flow, head, or 
power output.
    Control means any device that can be used to operate the driver. 
Examples include, but are not limited to, continuous or non-continuous 
controls, schedule-based controls, on/off switches, and float switches.
    Dedicated-purpose pool pump comprises self-priming pool filter 
pumps, non-self-priming pool filter pumps, waterfall pumps, pressure 
cleaner booster pumps, integral sand-filter pool pumps, integral-
cartridge filter pool pumps, storable electric spa pumps, and rigid 
electric spa pumps.
    Dedicated-purpose pool pump motor total horsepower means the product 
of the dedicated-purpose pool pump nominal motor horsepower and the 
dedicated-purpose pool pump service factor of a motor used on a 
dedicated-purpose pool pump based on the maximum continuous duty motor 
power output rating allowable for the motor's nameplate ambient rating 
and insulation class. (Dedicated-purpose pool pump motor total 
horsepower is also referred to in the industry as service factor 
horsepower or motor capacity.)
    Dedicated-purpose pool pump service factor means a multiplier 
applied to the rated horsepower of a pump motor to indicate the percent 
above nameplate horsepower at which the motor can operate continuously 
without exceeding its allowable insulation class temperature limit.
    Designed and marketed means that the equipment is designed to 
fulfill the indicated application and, when distributed in commerce, is 
designated and marketed for that application, with the designation on 
the packaging and any publicly available documents (e.g., product 
literature, catalogs, and packaging labels).
    Driver means the machine providing mechanical input to drive a bare 
pump directly or through the use of mechanical equipment. Examples 
include, but are not limited to, an electric motor, internal combustion 
engine, or gas/steam turbine.
    Dry rotor pump means a pump in which the motor rotor is not immersed 
in the pumped fluid.
    End suction close-coupled (ESCC) pump means a close-coupled, dry 
rotor, end suction pump that has a shaft input power greater than or 
equal to 1 hp and less than or equal to 200 hp at BEP and full impeller 
diameter and that is not a dedicated-purpose pool pump. Examples 
include, but are not limited to, pumps within the specified horsepower 
range that comply with ANSI/HI nomenclature OH7, as described in ANSI/HI 
1.1-1.2-2014.
    End suction frame mounted/own bearings (ESFM) pump means a 
mechanically-coupled, dry rotor, end suction pump that has a shaft input 
power greater than or equal to 1 hp and less than or equal to 200 hp at 
BEP and full impeller diameter and that is not a dedicated-purpose pool 
pump. Examples include, but are not limited to, pumps within the 
specified horsepower range that comply with ANSI/HI nomenclature OH0 and 
OH1, as described in ANSI/HI 1.1-1.2-2014.
    End suction pump means a single-stage, rotodynamic pump in which the 
liquid enters the bare pump in a direction parallel to the impeller 
shaft and on the side opposite the bare pump's driver-end. The liquid is 
discharged through a volute in a plane perpendicular to the shaft.
    Fire pump means a pump that is compliant with NFPA 20-2016 
(incorporated by reference, see Sec.  431.463), ``Standard for the 
Installation of Stationary Pumps for Fire Protection,'' and is either:
    (1) UL listed under ANSI/UL 448-2013 (incorporated by reference, see 
Sec.  431.463), ``Standard for Safety Centrifugal Stationary Pumps for 
Fire-Protection Service,'' or
    (2) FM Global (FM) approved under the January 2015 edition of FM 
Class Number 1319, ``Approval Standard for

[[Page 1003]]

Centrifugal Fire Pumps (Horizontal, End Suction Type),'' (incorporated 
by reference, see Sec.  431.463).
    Freeze protection control means a pool pump control that, at a 
certain ambient temperature, turns on the dedicated-purpose pool pump to 
circulate water for a period of time to prevent the pool and water in 
plumbing from freezing.
    Full impeller diameter means the maximum diameter impeller with 
which a given pump basic model is distributed in commerce.
    Horizontal motor means a motor that requires the motor shaft to be 
in a horizontal position to function as designed, as specified in the 
manufacturer literature.
    In-line (IL) pump means a pump that is either a twin-head pump or a 
single-stage, single-axis flow, dry rotor, rotodynamic pump that has a 
shaft input power greater than or equal to 1 hp and less than or equal 
to 200 hp at BEP and full impeller diameter, in which liquid is 
discharged through a volute in a plane perpendicular to the shaft. Such 
pumps do not include pumps that are mechanically coupled or close-
coupled, have a pump power output that is less than or equal to 5 hp at 
BEP at full impeller diameter, and are distributed in commerce with a 
horizontal motor. Examples of in-line pumps include, but are not limited 
to, pumps within the specified horsepower range that comply with ANSI/HI 
nomenclature OH3, OH4, or OH5, as described in ANSI/HI 1.1-1.2-2014.
    Integral means a part of the device that cannot be removed without 
compromising the device's function or destroying the physical integrity 
of the unit.
    Integral cartridge-filter pool pump means a pump that requires a 
removable cartridge filter, installed on the suction side of the pump, 
for operation; and the cartridge filter cannot be bypassed.
    Integral sand-filter pool pump means a pump distributed in commerce 
with a sand filter that cannot be bypassed.
    Magnet driven pump means a pump in which the bare pump is isolated 
from the motor via a containment shell and torque is transmitted from 
the motor to the bare pump via magnetic force. The motor shaft is not 
physically coupled to the impeller or impeller shaft.
    Mechanical equipment means any component of a pump that transfers 
energy from the driver to the bare pump.
    Mechanically-coupled pump means a pump in which the bare pump has 
its own impeller shaft and bearings and so does not rely on the motor 
shaft to serve as the impeller shaft.
    Multi-speed dedicated-purpose pool pump means a dedicated-purpose 
pool pump that is capable of operating at more than two discrete, pre-
determined operating speeds separated by speed increments greater than 
100 rpm, where the lowest speed is less than or equal to half of the 
maximum operating speed and greater than zero, and must be distributed 
in commerce with an on-board pool pump control (i.e., variable speed 
drive and user interface or programmable switch) that changes the speed 
in response to pre-programmed user preferences and allows the user to 
select the duration of each speed and/or the on/off times.
    Non-continuous control means a control that adjusts the speed of a 
driver to one of a discrete number of non-continuous preset operating 
speeds, and does not respond to incremental reductions in the required 
pump flow, head, or power output.
    Non-self-priming pool filter pump means a pool filter pump that is 
not certified under NSF/ANSI 50-2015 (incorporated by reference, see 
Sec.  431.463) to be self-priming and is not capable of re-priming to a 
vertical lift of at least 5.0 feet with a true priming time less than or 
equal to 10.0 minutes, when tested in accordance with section F of 
appendix B or C of this subpart, and is not a waterfall pump.
    Pool filter pump means an end suction pump that:
    (1) Either:
    (i) Includes an integrated basket strainer; or
    (ii) Does not include an integrated basket strainer, but requires a 
basket strainer for operation, as stated in manufacturer literature 
provided with the pump; and
    (2) May be distributed in commerce connected to, or packaged with, a 
sand filter, removable cartridge filter, or other filtration accessory, 
so long as

[[Page 1004]]

the filtration accessory are connected with consumer-removable 
connections that allow the filtration accessory to be bypassed.
    Pool pump timer means a pool pump control that automatically turns 
off a dedicated-purpose pool pump after a run-time of no longer than 10 
hours.
    Pressure cleaner booster pump means an end suction, dry rotor pump 
designed and marketed for pressure-side pool cleaner applications, and 
which may be UL listed under ANSI/UL 1081-2016 (incorporated by 
reference, see Sec.  431.463).
    Prime-assist pump means a pump that:
    (1) Is designed to lift liquid that originates below the centerline 
of the pump inlet;
    (2) Requires no manual intervention to prime or re-prime from a dry-
start condition; and
    (3) Includes a device, such as a vacuum pump or air compressor and 
venturi eductor, to remove air from the suction line in order to 
automatically perform the prime or re-prime function at any point during 
the pump's operating cycle.
    Pump means equipment designed to move liquids (which may include 
entrained gases, free solids, and totally dissolved solids) by physical 
or mechanical action and includes a bare pump and, if included by the 
manufacturer at the time of sale, mechanical equipment, driver, and 
controls.
    Radially split, multi-stage, vertical, in-line diffuser casing (RSV) 
pump means a vertically suspended, multi-stage, single axis flow, dry 
rotor, rotodynamic pump:
    (1) That has a shaft input power greater than or equal to 1 hp and 
less than or equal to 200 hp at BEP and full impeller diameter and at 
the number of stages required for testing and
    (2) In which liquid is discharged in a place perpendicular to the 
impeller shaft; and
    (3) For which each stage (or bowl) consists of an impeller and 
diffuser;
    (4) For which no external part of such a pump is designed to be 
submerged in the pumped liquid; and
    (5) Examples include, but are not limited to, pumps complying with 
ANSI/HI nomenclature VS8, as described in ANSI/HI 2.1-2.2-2014.
    Removable cartridge filter means a filter component with fixed 
dimensions that captures and removes suspended particles from water 
flowing through the unit. The removable cartridge filter is not capable 
of passing spherical solids of 1 mm in diameter or greater, and can be 
removed from the filter housing by hand or using only simple tools 
(e.g., screwdrivers, pliers, open-ended wrench).
    Rigid electric spa pump means an end suction pump that does not 
contain an integrated basket strainer or require a basket strainer for 
operation as stated in manufacturer literature provided with the pump 
and that meets the following three criteria:
    (1) Is assembled with four through bolts that hold the motor rear 
endplate, rear bearing, rotor, front bearing, front endplate, and the 
bare pump together as an integral unit;
    (2) Is constructed with buttress threads at the inlet and discharge 
of the bare pump; and
    (3) Uses a casing or volute and connections constructed of a non-
metallic material.
    Rotodynamic pump means a pump in which energy is continuously 
imparted to the pumped fluid by means of a rotating impeller, propeller, 
or rotor.
    Sand filter means a device designed to filter water through sand or 
an alternate sand-type media.
    Self-priming pool filter pump means a pool filter pump that is 
certified under NSF/ANSI 50-2015 (incorporated by reference, see Sec.  
431.463) to be self-priming or is capable of re-priming to a vertical 
lift of at least 5.0 feet with a true priming time less than or equal to 
10.0 minutes, when tested in accordance with section F of appendix B or 
C of this subpart, and is not a waterfall pump.
    Self-priming pump means a pump that either is a self-priming pool 
filter pump or a pump that:
    (1) Is designed to lift liquid that originates below the centerline 
of the pump inlet;
    (2) Contains at least one internal recirculation passage; and
    (3) Requires a manual filling of the pump casing prior to initial 
start-up, but is able to re-prime after the initial start-up without the 
use of external

[[Page 1005]]

vacuum sources, manual filling, or a foot valve.
    Single axis flow pump means a pump in which the liquid inlet of the 
bare pump is on the same axis as the liquid discharge of the bare pump.
    Single-speed dedicated-purpose pool pump means a dedicated-purpose 
pool pump that is capable of operating at only one speed.
    Storable electric spa pump means a pump that is distributed in 
commerce with one or more of the following:
    (1) An integral heater; and
    (2) An integral air pump.
    Submersible pump means a pump that is designed to be operated with 
the motor and bare pump fully submerged in the pumped liquid.
    Submersible turbine (ST) pump means a single-stage or multi-stage, 
dry rotor, rotodynamic pump that is designed to be operated with the 
motor and stage(s) fully submerged in the pumped liquid; that has a 
shaft input power greater than or equal to 1 hp and less than or equal 
to 200 hp at BEP and full impeller diameter and at the number of stages 
required for testing; and in which each stage of this pump consists of 
an impeller and diffuser, and liquid enters and exits each stage of the 
bare pump in a direction parallel to the impeller shaft. Examples 
include, but are not limited to, pumps within the specified horsepower 
range that comply with ANSI/HI nomenclature VS0, as described in ANSI/HI 
2.1-2.2-2014.
    Twin head pump means a dry rotor, single-axis flow, rotodynamic pump 
that contains two impeller assemblies, which both share a common casing, 
inlet, and discharge, and each of which
    (1) Contains an impeller, impeller shaft (or motor shaft in the case 
of close-coupled pumps), shaft seal or packing, driver (if present), and 
mechanical equipment (if present);
    (2) Has a shaft input power that is greater than or equal to 1 hp 
and less than or equal to 200 hp at best efficiency point (BEP) and full 
impeller diameter;
    (3) Has the same primary energy source (if sold with a driver) and 
the same electrical, physical, and functional characteristics that 
affect energy consumption or energy efficiency;
    (4) Is mounted in its own volute; and
    (5) Discharges liquid through its volute and the common discharge in 
a plane perpendicular to the impeller shaft.
    Two-speed dedicated-purpose pool pump means a dedicated-purpose pool 
pump that is capable of operating at only two different pre-determined 
operating speeds, where the low operating speed is less than or equal to 
half of the maximum operating speed and greater than zero, and must be 
distributed in commerce either:
    (1) With a pool pump control (e.g., variable speed drive and user 
interface or switch) that is capable of changing the speed in response 
to user preferences; or
    (2) Without a pool pump control that has the capability to change 
speed in response to user preferences, but is unable to operate without 
the presence of such a pool pump control.
    Variable-speed dedicated-purpose pool pump means a dedicated-purpose 
pool pump that is capable of operating at a variety of user-determined 
speeds, where all the speeds are separated by at most 100 rpm increments 
over the operating range and the lowest operating speed is less than or 
equal to one-third of the maximum operating speed and greater than zero. 
Such a pump must include a variable speed drive and be distributed in 
commerce either:
    (1) With a user interface that changes the speed in response to pre-
programmed user preferences and allows the user to select the duration 
of each speed and/or the on/off times; or
    (2) Without a user interface that changes the speed in response to 
pre-programmed user preferences and allows the user to select the 
duration of each speed and/or the on/off times, but is unable to operate 
without the presence of a user interface.
    Variable speed drive means equipment capable of varying the speed of 
the motor.
    Waterfall pump means a pool filter pump with a certified maximum 
head less than or equal to 30.0 feet, and a maximum speed less than or 
equal to 1,800 rpm.

[81 FR 4145, Jan. 25, 2016, as amended at 82 FR 5742, Jan. 18, 2017; 82 
FR 36920, Aug. 7, 2017]

[[Page 1006]]



Sec.  431.463  Materials incorporated by reference.

    (a) General. DOE incorporates by reference the following standards 
into subpart Y of this part. The material listed has been approved for 
incorporation by reference by the Director of the Federal Register in 
accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any subsequent 
amendment to a standard by the standard-setting organization will not 
affect the DOE test procedures unless and until amended by DOE. Material 
is incorporated as it exists on the date of the approval, and 
notification of any change in the material will be published in the 
Federal Register. All approved material can be obtained from the sources 
listed in this section and is available for inspection at the U.S. 
Department of Energy, Office of Energy Efficiency and Renewable Energy, 
Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza SW., 
Washington, DC 20024, (202) 586-2945, or go to: http://
www1.eere.energy.gov/buildings/appliance_standards. It is also available 
for inspection at the National Archives and Records Administration 
(NARA). For information on the availability of this material at NARA, 
call 202-741-6030, or go to: www.archives.gov/federal_register/ 
code_of_federal_regulations/ ibr_locations.html.
    (b) CSA. Canadian Standards Association, 5060 Spectrum Way, Suite 
100, Mississauga, Ontario, L4W 5N6, Canada, (800) 463-6727. 
www.csagroup.org.
    (1) CSA C747-2009 (Reaffirmed 2014), (``CSA C747-2009 (RA 2014)''), 
``Energy efficiency test methods for small motors,'' CSA reaffirmed 
2014, IBR approved for appendices B and C to this subpart, as follows:
    (i) Section 1, ``Scope'';
    (ii) Section 3, ``Definitions'';
    (iii) Section 5, ``General Test Requirements''; and
    (iv) Section 6, ``Test Method.''
    (2) [Reserved]
    (c) FM. FM Global, 1151 Boston-Providence Turnpike, P.O. Box 9102, 
Norwood, MA 02062, (781) 762-4300. www.fmglobal.com.
    (1) FM Class Number 1319, ``Approval Standard for Centrifugal Fire 
Pumps (Horizontal, End Suction Type),'' January 2015, IBR approved for 
Sec.  431.462.
    (2) [Reserved]
    (d) HI. Hydraulic Institute, 6 Campus Drive, First Floor North, 
Parsippany, NJ 07054-4406, 973-267-9700. www.Pumps.org.
    (1) ANSI/HI 1.1-1.2-2014, (``ANSI/HI 1.1-1.2-2014''), ``American 
National Standard for Rotodynamic Centrifugal Pumps for Nomenclature and 
Definitions,'' approved October 30, 2014, section 1.1, ``Types and 
nomenclature,'' and section 1.2.9, ``Rotodynamic pump icons,'' IBR 
approved for Sec.  431.462.
    (2) ANSI/HI 2.1-2.2-2014, (``ANSI/HI 2.1-2.2-2014''), ``American 
National Standard for Rotodynamic Vertical Pumps of Radial, Mixed, and 
Axial Flow Types for Nomenclature and Definitions,'' approved April 8, 
2014, section 2.1, ``Types and nomenclature,'' IBR approved for Sec.  
431.462.
    (3) HI 40.6-2014, (``HI 40.6-2014''), ``Methods for Rotodynamic Pump 
Efficiency Testing,'' (except section 40.6.5.3, ``Test report;'' 
Appendix A, section A.7, ``Testing at temperatures exceeding 30 [deg]C 
(86 [deg]F);'' and Appendix B, ``Reporting of test results 
(normative);'') copyright 2014, IBR approved for appendix A to subpart Y 
of part 431.
    (4) HI 40.6-2014, (``HI 40.6-2014-B''), ``Methods for Rotodynamic 
Pump Efficiency Testing'' (except sections 40.6.4.1 ``Vertically 
suspended pumps'', 40.6.4.2 ``Submersible pumps'', 40.6.5.3 ``Test 
report'', 40.6.5.5 ``Test conditions'', 40.6.5.5.2 ``Speed of rotation 
during test'', and 40.6.6.1 ``Translation of test results to rated speed 
of rotation'', Appendix A ``Test arrangements (normative)'': A.7 
``Testing at temperatures exceeding 30 [deg]C (86[emsp14] [deg]F)'', and 
Appendix B, ``Reporting of test results (normative)''), copyright 2014, 
IBR approved for appendices B and C to this subpart.
    (e) IEEE. Institute of Electrical and Electronics Engineers, Inc., 
45 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, (732) 981-0060. 
http://www.ieee.org.
    (1) IEEE Std 113-1985, (``IEEE 113-1985''), ``IEEE Guide: Test 
Procedures for Direct-Current Machines,'' copyright 1985, IBR approved 
for appendices B and C to this subpart, as follows:

[[Page 1007]]

    (i) Section 3, Electrical Measurements and Power Sources for all 
Test Procedures:
    (A) Section 3.1, ``Instrument Selection Factors'';
    (B) Section 3.4 ``Power Measurement''; and
    (C) Section 3.5 ``Power Sources'';
    (ii) Section 4, Preliminary Tests:
    (A) Section 4.1, Reference Conditions, Section 4.1.2, ``Ambient 
Air''; and
    (B) Section 4.1, Reference Conditions, Section 4.1.4 ``Direction of 
Rotation''; and
    (iii) Section 5, Performance Determination:
    (A) Section 5.4, Efficiency, Section 5.4.1, ``Reference 
Conditions''; and
    (B) Section 5.4.3, Direct Measurements of Input and Output, Section 
5.4.3.2 ``Dynomometer or Torquemeter Method.''
    (2) IEEE Std 114-2010, (``IEEE 114-2010''), ``IEEE Standard Test 
Procedure for Single-Phase Induction Motors,'' approved September 30, 
2010, IBR approved for appendices B and C to this subpart, as follows:
    (i) Section 3, ``General tests'', Section 3.2, ``Tests with load'';
    (ii) Section 4 ``Testing facilities''; and
    (iii) Section 5, ``Measurements'':
    (A) Section 5.2 ``Mechanical measurements'';
    (B) Section 5.3 ``Temperature measurements''; and
    (iv) Section 6 ``Tests.''
    (f) NFPA. National Fire Protection Association, 1 Batterymarch Park, 
Quincy, MA 02169-7471, (617) 770-3000. www.nfpa.org.
    (1) NFPA 20, (``NFPA 20-2016''), ``Standard for the Installation of 
Stationary Pumps for Fire Protection,'' 2016 Edition, approved June 15, 
2015, IBR approved for Sec.  431.462.
    (2) [Reserved]
    (g) NSF. NSF International. 789 N. Dixboro Road, Ann Arbor, MI 
48105, (743) 769-8010. www.nsf.org.
    (1) NSF/ANSI 50-2015, ``Equipment for Swimming Pools, Spas, Hot Tubs 
and Other Recreational Water Facilities,'' Annex C, ``(normative Test 
methods for the evaluation of centrifugal pumps,'' Section C.3, ``Self-
priming capability,'' ANSI approved January 26, 2015, IBR approved for 
Sec.  431.462 and appendices B and C to this subpart.
    (2) [Reserved]
    (h) UL. UL, 333 Pfingsten Road, Northbrook, IL 60062, (847) 272-
8800. ul.com.
    (1) UL 448, (``ANSI/UL 448-2013''), ``Standard for Safety 
Centrifugal Stationary Pumps for Fire-Protection Service,'' 10th 
Edition, June 8, 2007, including revisions through July 12, 2013, IBR 
approved for Sec.  431.462.
    (2) UL 1081, (``ANSI/UL 1081-2016''), ``Standard for Swimming Pool 
Pumps, Filters, and Chlorinators,'' 7th Edition, ANSI approved October 
21, 2016, IBR approved for Sec.  431.462.

[81 FR 4145, Jan. 25, 2016, as amended at 82 FR 36920, Aug. 7, 2017]



Sec.  431.464  Test procedure for the measurement of energy efficiency, 
energy consumption, and other performance factors of pumps.

    (a) General pumps--(1) Scope. This paragraph (a) provides the test 
procedures for determining the constant and variable load pump energy 
index for:
    (i) The following categories of clean water pumps:
    (A) End suction close-coupled (ESCC);
    (B) End suction frame mounted/own bearings (ESFM);
    (C) In-line (IL);
    (D) Radially split, multi-stage, vertical, in-line casing diffuser 
(RSV); and
    (E) Submersible turbine (ST) pumps.
    (ii) With the following characteristics:
    (A) Flow rate of 25 gpm or greater at BEP and full impeller 
diameter;
    (B) Maximum head of 459 feet at BEP and full impeller diameter and 
the number of stages required for testing (see section 1.2.2 of appendix 
A of this subpart);
    (C) Design temperature range from 14 to 248 [deg]F;
    (D) Designed to operate with either:
    (1) A 2- or 4-pole induction motor; or
    (2) A non-induction motor with a speed of rotation operating range 
that includes speeds of rotation between 2,880 and 4,320 revolutions per 
minute (rpm) and/or 1,440 and 2,160 rpm, and in either case, the driver 
and impeller must rotate at the same speed;

[[Page 1008]]

    (E) For ST pumps, a 6-inch or smaller bowl diameter; and
    (F) For ESCC and ESFM pumps, a specific speed less than or equal to 
5,000 when calculated using U.S. customary units.
    (iii) Except for the following pumps:
    (A) Fire pumps;
    (B) Self-priming pumps;
    (C) Prime-assist pumps;
    (D) Magnet driven pumps;
    (E) Pumps designed to be used in a nuclear facility subject to 10 
CFR part 50, ``Domestic Licensing of Production and Utilization 
Facilities''; and
    (F) Pumps meeting the design and construction requirements set forth 
in Military Specifications: MIL-P-17639F, ``Pumps, Centrifugal, 
Miscellaneous Service, Naval Shipboard Use'' (as amended); MIL-P-17881D, 
``Pumps, Centrifugal, Boiler Feed, (Multi-Stage)'' (as amended); MIL-P-
17840C, ``Pumps, Centrifugal, Close-Coupled, Navy Standard (For Surface 
Ship Application)'' (as amended); MIL-P-18682D, ``Pump, Centrifugal, 
Main Condenser Circulating, Naval Shipboard'' (as amended); and MIL-P-
18472G, ``Pumps, Centrifugal, Condensate, Feed Booster, Waste Heat 
Boiler, And Distilling Plant'' (as amended). Military specifications and 
standards are available for review at http://everyspec.com/MIL-SPECS.
    (2) Testing and calculations. Determine the applicable constant load 
pump energy index (PEICL) or variable load pump energy index 
(PEIVL) using the test procedure set forth in appendix A of 
this subpart.
    (b) Dedicated-purpose pool pumps--(1) Scope. This paragraph (b) 
provides the test procedures for determining the weighted energy factor 
(WEF), rated hydraulic horsepower, dedicated-purpose pool pump nominal 
motor horsepower, dedicated-purpose pool pump motor total horsepower, 
dedicated-purpose pool pump service factor, and other pump performance 
parameters for:
    (i) The following varieties of dedicated-purpose pool pumps:
    (A) Self-priming pool filter pumps;
    (B) Non-self-priming pool filter pumps;
    (C) Waterfall pumps; and
    (D) Pressure cleaner booster pumps;
    (ii) Served by single-phase or polyphase input power;
    (iii) Except for:
    (A) Submersible pumps; and
    (B) Self-priming and non-self-priming pool filter pumps with 
hydraulic output power greater than or equal to 2.5 horsepower.
    (2) Testing and calculations. Determine the weighted energy factor 
(WEF) using the test procedure set forth in appendix B or appendix C of 
this subpart, as applicable.

[82 FR 36923, Aug. 7, 2017]



Sec.  431.465  Pumps energy conservation standards and their compliance dates.

    (a) For the purposes of paragraph (b) of this section, 
``PEICL'' means the constant load pump energy index and 
``PEIVL'' means the variable load pump energy index, both as 
determined in accordance with the test procedure in Sec.  431.464. For 
the purposes of paragraph (c) of this section, ``BEP'' means the best 
efficiency point as determined in accordance with the test procedure in 
Sec.  431.464.
    (b) Each pump that is manufactured starting on January 27, 2020 and 
that:
    (1) Is in one of the equipment classes listed in the table in 
paragraph (b)(4) of this section;
    (2) Meets the definition of a clean water pump in Sec.  431.462;
    (3) Is not listed in paragraph (c) of this section; and
    (4) Conforms to the characteristics listed in paragraph (d) of this 
section must have a PEICL or PEIVL rating of not 
more than 1.00 using the appropriate C-value in the table in this 
paragraph (b)(4):

------------------------------------------------------------------------
                                            Maximum PEI
           Equipment class \1\                  \2\         C-value \3\
------------------------------------------------------------------------
ESCC.1800.CL............................            1.00          128.47
ESCC.3600.CL............................            1.00          130.42
ESCC.1800.VL............................            1.00          128.47
ESCC.3600.VL............................            1.00          130.42
ESFM.1800.CL............................            1.00          128.85
ESFM.3600.CL............................            1.00          130.99
ESFM.1800.VL............................            1.00          128.85
ESFM.3600.VL............................            1.00          130.99
IL.1800.CL..............................            1.00          129.30
IL.3600.CL..............................            1.00          133.84
IL.1800.VL..............................            1.00          129.30
IL.3600.VL..............................            1.00          133.84
RSV.1800.CL.............................            1.00          129.63
RSV.3600.CL.............................            1.00          133.20
RSV.1800.VL.............................            1.00          129.63
RSV.3600.VL.............................            1.00          133.20

[[Page 1009]]

 
ST.1800.CL..............................            1.00          138.78
ST.3600.CL..............................            1.00          134.85
ST.1800.VL..............................            1.00          138.78
ST.3600.VL..............................            1.00          134.85
------------------------------------------------------------------------
\1\ Equipment class designations consist of a combination (in sequential
  order separated by periods) of: (1) An equipment family (ESCC = end
  suction close-coupled, ESFM = end suction frame mounted/own bearing,
  IL = in-line, RSV = radially split, multi-stage, vertical, in-line
  diffuser casing, ST = submersible turbine; all as defined in Sec.
  431.462); (2) nominal speed of rotation (1800 = 1800 rpm, 3600 = 3600
  rpm); and (3) an operating mode (CL = constant load, VL = variable
  load). Determination of the operating mode is determined using the
  test procedure in appendix A to this subpart.
\2\ For equipment classes ending in .CL, the relevant PEI is PEICL. For
  equipment classes ending in .VL, the relevant PEI is PEIVL.
\3\ The C-values shown in this table must be used in the equation for
  PERSTD when calculating PEICL or PEIVL, as described in section II.B
  of appendix A to this subpart.

    (c) The energy efficiency standards in paragraph (b) of this section 
do not apply to the following pumps:
    (1) Fire pumps;
    (2) Self-priming pumps;
    (3) Prime-assist pumps;
    (4) Magnet driven pumps;
    (5) Pumps designed to be used in a nuclear facility subject to 10 
CFR part 50, ``Domestic Licensing of Production and Utilization 
Facilities'';
    (6) Pumps meeting the design and construction requirements set forth 
in Military Specification MIL-P-17639F, ``Pumps, Centrifugal, 
Miscellaneous Service, Naval Shipboard Use'' (as amended); MIL-P-17881D, 
``Pumps, Centrifugal, Boiler Feed, (Multi-Stage)'' (as amended); MIL-P-
17840C, ``Pumps, Centrifugal, Close-Coupled, Navy Standard (For Surface 
Ship Application)'' (as amended); MIL-P-18682D, ``Pump, Centrifugal, 
Main Condenser Circulating, Naval Shipboard'' (as amended); MIL-P-
18472G, ``Pumps, Centrifugal, Condensate, Feed Booster, Waste Heat 
Boiler, And Distilling Plant'' (as amended). Military specifications and 
standards are available for review at http://everyspec.com/MIL-SPECS.
    (d) The energy conservation standards in paragraph (b) of this 
section apply only to pumps that have the following characteristics:
    (1) Flow rate of 25 gpm or greater at BEP at full impeller diameter;
    (2) Maximum head of 459 feet at BEP at full impeller diameter and 
the number of stages required for testing;
    (3) Design temperature range from 14 to 248 [deg]F;
    (4) Designed to operate with either:
    (i) A 2- or 4-pole induction motor; or
    (ii) A non-induction motor with a speed of rotation operating range 
that includes speeds of rotation between 2,880 and 4,320 revolutions per 
minute and/or 1,440 and 2,160 revolutions per minute; and
    (iii) In either case, the driver and impeller must rotate at the 
same speed;
    (5) For ST pumps, a 6-inch or smaller bowl diameter; and
    (6) For ESCC and ESFM pumps, specific speed less than or equal to 
5,000 when calculated using U.S. customary units.
    (e) For the purposes of paragraph (f) of this section, ``WEF'' means 
the weighted energy factor and ``hhp'' means the rated hydraulic 
horsepower, as determined in accordance with the test procedure in Sec.  
431.464(b) and applicable sampling plans in Sec.  429.59 of this 
chapter.
    (f) Each dedicated-purpose pool pump that is not a submersible pump 
and is manufactured starting on July 19, 2021 must have a WEF rating 
that is not less than the value calculated from the following table:

----------------------------------------------------------------------------------------------------------------
                        Equipment class                          Minimum allowable WEF    Minimum allowable WEF
---------------------------------------------------------------     score [kgal/kWh]         score [kgal/kWh]
                                                               -------------------------------------------------
 Dedicated-purpose pool pump variety      hhp Applicability           Motor phase
----------------------------------------------------------------------------------------------------------------
Self-priming pool filter pumps.......  0.711 hp <=hhp <2.5 hp.  Single.................  WEF = -2.30 * ln (hhp)
                                                                                          + 6.59.
Self-priming pool filter pumps.......  hhp <0.711 hp..........  Single.................  WEF = 5.55, for hhp
                                                                                          <=0.13 hp -1.30 * ln
                                                                                          (hhp) + 2.90, for hhp
                                                                                          0.13 hp.
Non-self-priming pool filter pumps...  hhp <2.5 hp............  Any....................  WEF = 4.60, for hhp
                                                                                          <=0.13 hp -0.85 * ln
                                                                                          (hhp) + 2.87, for hhp
                                                                                          0.13 hp.
Pressure cleaner booster pumps.......  Any....................  Any....................  WEF = 0.42.
----------------------------------------------------------------------------------------------------------------


[[Page 1010]]

    (g) Each integral cartridge filter pool pump and integral sand 
filter pool pump that is manufactured starting on July 19, 2021 must be 
distributed in commerce with a pool pump timer that is either integral 
to the pump or a separate component that is shipped with the pump.
    (h) For all dedicated-purpose pool pumps distributed in commerce 
with freeze protection controls, the pump must be shipped with freeze 
protection disabled or with the following default, user-adjustable 
settings:
    (1) The default dry-bulb air temperature setting is no greater than 
40 [deg]F;
    (2) The default run time setting shall be no greater than 1 hour 
(before the temperature is rechecked); and
    (3) The default motor speed shall not be more than \1/2\ of the 
maximum available speed.

[81 FR 4431, Jan. 26, 2016, as amended at 82 FR 5742, Jan. 18, 2017]



Sec.  431.466  Pumps labeling requirements.

    (a) General pumps. For the pumps described in Sec.  431.464(a), the 
following requirements apply to units manufactured on the same date that 
compliance is required with any applicable standards prescribed in Sec.  
431.465.
    (1) Pump nameplate--(i) Required information. The permanent 
nameplate must be marked clearly with the following information:
    (A) For bare pumps and pumps sold with electric motors but not 
continuous or non-continuous controls, the rated pump energy index--
constant load (PEICL), and for pumps sold with motors and 
continuous or non-continuous controls, the rated pump energy index--
variable load (PEIVL);
    (B) The bare pump model number; and
    (C) If transferred directly to an end-user, the unit's impeller 
diameter, as distributed in commerce. Otherwise, a space must be 
provided for the impeller diameter to be filled in.
    (ii) Display of required information. All orientation, spacing, type 
sizes, typefaces, and line widths to display this required information 
must be the same as or similar to the display of the other performance 
data on the pump's permanent nameplate. The PEICL or 
PEIVL, as appropriate to a given pump model, must be 
identified in the form ``PEICL ____'' or ``PEIVL 
____.'' The model number must be in one of the following forms: ``Model 
____'' or ``Model number ____'' or ``Model No. ____.'' The unit's 
impeller diameter must be in the form ``Imp. Dia. ____(in.).''
    (2) Disclosure of efficiency information in marketing materials. (i) 
The same information that must appear on a pump's permanent nameplate 
pursuant to paragraph (a)(1)(i) of this section, must also be 
prominently displayed:
    (A) On each page of a catalog that lists the pump; and
    (B) In other materials used to market the pump.
    (ii) [Reserved]
    (b) Dedicated-purpose pool pumps. For the pumps described in Sec.  
431.464(b), the following requirements apply on the same date that 
compliance is required with any applicable standards prescribed in Sec.  
431.465.
    (1) Pump nameplate--(i) Required information. The permanent 
nameplate must be marked clearly with the following information:
    (A) The weighted energy factor (WEF); and
    (B) The dedicated-purpose pool pump motor total horsepower.
    (ii) Display of required information. All orientation, spacing, type 
sizes, typefaces, and line widths to display this required information 
must be the same as or similar to the display of the other performance 
data on the pump's permanent nameplate.
    (A) The WEF must be identified in the form ``WEF ____.''
    (B) The dedicated-purpose pool pump motor total horsepower must be 
identified in one of the following forms: ``Dedicated-purpose pool pump 
motor total horsepower _____,'' ``DPPP motor total horsepower _____,'' 
``motor total horsepower _____,'' ``motor THP _____,'' or ``THP _____.''
    (2) [Reserved]

[82 FR 36923, Aug. 7, 2017]

[[Page 1011]]



 Sec. Appendix A to Subpart Y of Part 431--Uniform Test Method for the 
               Measurement of Energy Consumption of Pumps

    Note: Starting on July 25, 2016, any representations made with 
respect to the energy use or efficiency of pumps subject to testing 
pursuant to 10 CFR 431.464(a) must be made in accordance with the 
results of testing pursuant to this appendix.

                       I. Test Procedure for Pumps

    A. General. To determine the constant load pump energy index 
(PEICL) for bare pumps and pumps sold with electric motors or 
the variable load pump energy index (PEIVL) for pumps sold 
with electric motors and continuous or non-continuous controls, perform 
testing in accordance with HI 40.6-2014, except section 40.6.5.3, ``Test 
report;'' section A.7, ``Testing at temperatures exceeding 30 [deg]C (86 
[deg]F);'' and appendix B, ``Reporting of test results;'' (incorporated 
by reference, see Sec.  431.463) with the modifications and additions as 
noted throughout the provisions below. Where HI 40.6-2014 refers to 
``pump,'' the term refers to the ``bare pump,'' as defined in Sec.  
431.462. Also, for the purposes of applying this appendix, the term 
``volume per unit time,'' as defined in section 40.6.2, ``Terms and 
definitions,'' of HI 40.6-2014 shall be deemed to be synonymous with the 
term ``flow rate'' used throughout that standard and this appendix. In 
addition, the specifications of section 40.6.4.1 of HI 40.6-2014 do not 
apply to ST pumps and the performance of ST bare pumps considers the 
bowl performance only.
    A.1 Scope. Section II of this appendix is applicable to all pumps 
and describes how to calculate the pump energy index (section II.A) 
based on the pump energy rating for the minimally compliant reference 
pump (PERSTD; section II.B) and the constant load pump energy 
rating (PERCL) or variable load pump energy rating 
(PERVL) determined in accordance with one of sections III 
through VII of this appendix, based on the configuration in which the 
pump is distributed in commerce and the applicable testing method 
specified in sections III through VII and as described in Table 1 of 
this appendix.

   Table 1--Applicability of Calculation-Based and Testing-Based Test
              Procedure Options Based on Pump Configuration
------------------------------------------------------------------------
                                    Pump sub-          Applicable test
     Pump configuration           configuration            methods
------------------------------------------------------------------------
Bare Pump...................  Bare Pump...........  Section III: Test
                              OR..................   Procedure for Bare
                               Pump + Single-Phase   Pumps.
                               Induction Motor.
                              OR..................
                               Pump + Driver Other
                               Than Electric Motor.
Pump + Motor *..............  Pump + Polyphase      Section IV: Testing-
                               Motor Covered by      Based Approach for
                               DOE's Electric        Pumps Sold with
                               Motor Energy          Motors
                               Conservation         OR
                               Standards **.         Section V:
                              OR..................   Calculation-Based
                               Pump + Submersible    Approach for Pumps
                               Motor.                Sold with Motors.
                              Pump + Motor Not      Section IV: Testing-
                               Covered by DOE's      Based Approach for
                               Electric Motor        Pumps Sold with
                               Energy Conservation   Motors.
                               Standards (Except
                               Submersible Motors)
                               ** ***.
Pump + Motor + Continuous     Pump + Polyphase      Section VI: Testing-
 Controls.                     Motor Covered by      Based Approach for
OR..........................   DOE's Electric        Pumps Sold with
 Pump + Motor + Non-           Motor Energy          Motors and Controls
 Continuous Controls.          Conservation         OR
                               Standards** +        Section VII:
                               Continuous Control.   Calculation-Based
                              OR..................   Approach for Pumps
                               Pump + Submersible    Sold with Motors
                               Motor + Continuous    Controls.
                               Control.
                              Pump + Polyphase      Section VI: Testing-
                               Motor Covered by      Based Approach for
                               DOE's Electric        Pumps Sold with
                               Motor Energy          Motors and
                               Conservation          Controls.
                               Standards** + Non-
                               Continuous Control.
                              OR..................
                               Pump + Submersible
                               Motor + Non-
                               Continuous Control.
                              Pump + Motor Not      Section VI: Testing-
                               Covered by DOE's      Based Approach for
                               Electric Motor        Pumps Sold with
                               Energy Conservation   Motors and
                               Standards (Except     Controls.
                               Submersible Motors)
                               ** *** + Continuous
                               or Non-Continuous
                               Controls.
------------------------------------------------------------------------
* Also applies if unit is sold with controls other than continuous or
  non-continuous controls (e.g., ON/OFF switches).
** All references to ``Motors Covered by DOE's Electric Motor Energy
  Conservation Standards'' refer to those listed at Sec.   431.25(g) of
  this chapter.
*** Includes pumps sold with single-phase induction motors.

    A.2 Section III of this appendix addresses the test procedure 
applicable to bare pumps. This test procedure also applies to pumps sold 
with drivers other than motors and

[[Page 1012]]

pumps sold with single-phase induction motors.
    A.3 Section IV of this appendix addresses the testing-based approach 
for pumps sold with motors, which is applicable to all pumps sold with 
electric motors, including single-phase induction motors. This test 
procedure also applies to pumps sold with controls other than continuous 
or non-continuous controls (e.g., on/off switches).
    A.4 Section V of this appendix addresses the calculation-based 
approach for pumps sold with motors, which applies to:
    (1) Pumps sold with polyphase electric motors regulated by DOE's 
energy conservation standards for electric motors at Sec.  431.25(g), 
and
    (2) Pumps sold with submersible motors.
    A.5 Section VI of this appendix addresses the testing-based approach 
for pumps sold with motors and controls, which is applicable to all 
pumps sold with electric motors (including single-phase induction 
motors) and continuous or non-continuous controls.
    A.6 Section VII of this appendix discusses the calculation-based 
approach for pumps sold with motors and controls, which applies to:
    (1) Pumps sold with polyphase electric motors regulated by DOE's 
energy conservation standards for electric motors at Sec.  431.25(g) and 
continuous controls and
    (2) Pumps sold with submersible motors and continuous controls.
    B. Measurement Equipment. For the purposes of measuring pump power 
input, driver power input to the motor or controls, and pump power 
output, the equipment specified in HI 40.6-2014 Appendix C (incorporated 
by reference, see Sec.  431.463) necessary to measure head, speed of 
rotation, flow rate, temperature, torque, and electrical power must be 
used and must comply with the stated accuracy requirements in HI 40.6-
2014 Table 40.6.3.2.3 except as noted in sections III.B, IV.B, V.B, 
VI.B, and VII.B of this appendix. When more than one instrument is used 
to measure a given parameter, the combined accuracy, calculated as the 
root sum of squares of individual instrument accuracies, must meet the 
specified accuracy requirements.
    C. Test Conditions. Conduct testing at full impeller diameter in 
accordance with the test conditions, stabilization requirements, and 
specifications of HI 40.6-2014 (incorporated by reference, see Sec.  
431.463) section 40.6.3, ``Pump efficiency testing;'' section 40.6.4, 
``Considerations when determining the efficiency of a pump;'' section 
40.6.5.4 (including appendix A), ``Test arrangements;'' and section 
40.6.5.5, ``Test conditions.''. For ST pumps, head measurements must be 
based on the bowl assembly total head as described in section A.5 of 
40.6-2014 and the pump power input or driver power input, as applicable, 
must be based on the measured input power to the driver or bare pump, 
respectively; section 40.6.4.1, ``vertically suspended pumps,'' does not 
apply to ST pumps.
    C.1 Nominal Speed of Rotation. Determine the nominal speed of 
rotation based on the range of speeds of rotation at which the pump is 
designed to operate, in accordance with sections I.C.1.1, I.C.1.2, 
I.C.1.3, I.C.1.4, or I.C.1.5 of this appendix, as applicable. When 
determining the range of speeds at which the pump is designed to 
operate, DOE will refer to published data, marketing literature, and 
other publically-available information about the pump model and motor, 
as applicable.
    C.1.1 For pumps sold without motors, select the nominal speed of 
rotation based on the speed for which the pump is designed. For bare 
pumps designed for speeds of rotation including 2,880 to 4,320 
revolutions per minute (rpm), the nominal speed of rotation shall be 
3,600 rpm. For bare pumps designed for speeds of rotation including 
1,440 to 2,160 rpm, the nominal speed of rotation shall be 1,800 rpm.
    C.1.2 For pumps sold with 4-pole induction motors, the nominal speed 
of rotation shall be 1,800 rpm.
    C.1.3 For pumps sold with 2-pole induction motors, the nominal speed 
of rotation shall be 3,600 rpm.
    C.1.4 For pumps sold with non-induction motors where the operating 
range of the pump and motor includes speeds of rotation between 2,880 
and 4,320 rpm, the nominal speed of rotation shall be 3,600 rpm.
    C.1.5 For pumps sold with non-induction motors where the operating 
range of the pump and motor includes speeds of rotation between 1,440 
and 2,160 rpm, the nominal speed of rotation shall be 1,800 rpm.
    C.2 Multi-stage Pumps. For RSV and ST pumps, perform testing on the 
pump with three stages for RSV pumps and nine stages for ST pumps. If 
the basic model of pump being tested is only available with fewer than 
the required number of stages, test the pump with the maximum number of 
stages with which the basic model is distributed in commerce in the 
United States. If the basic model of pump being tested is only available 
with greater than the required number of stages, test the pump with the 
lowest number of stages with which the basic model is distributed in 
commerce in the United States. If the basic model of pump being tested 
is available with both fewer and greater than the required number of 
stages, but not the required number of stages, test the pump with the 
number of stages closest to the required number of stages. If both the 
next lower and next higher number of stages are equivalently close to 
the required number of stages, test the pump with the next higher number 
of stages.

[[Page 1013]]

    C.3 Twin Head Pumps. For twin head pumps, perform testing on an 
equivalent single impeller IL pump, constructed by incorporating one of 
the driver and impeller assemblies of the twin head pump being rated 
into an adequate, IL style, single impeller volute and casing. An 
adequate, IL style, single impeller volute and casing means a volute and 
casing for which any physical and functional characteristics that affect 
energy consumption and energy efficiency are the same to their 
corresponding characteristics for a single impeller in the twin head 
pump volute and casing.

                     D. Data Collection and Analysis

    D.1 Damping Devices. Use of damping devices, as described in section 
40.6.3.2.2 of HI 40.6-2014 (incorporated by reference, see Sec.  
431.463), are only permitted to integrate up to the data collection 
interval used during testing.
    D.2 Stabilization. Record data at any tested load point only under 
stabilized conditions, as defined in HI 40.6-2014 section 40.6.5.5.1 
(incorporated by reference, see Sec.  431.463), where a minimum of two 
measurements are used to determine stabilization.
    D.3 Calculations and Rounding. Normalize all measured data to the 
nominal speed of rotation of 3,600 or 1,800 rpm based on the nominal 
speed of rotation selected for the pump in section I.C.1 of this 
appendix, in accordance with the procedures specified in section 
40.6.6.1.1 of HI 40.6-2014 (incorporated by reference, see Sec.  
431.463). Except for the ``expected BEP flow rate,'' all terms and 
quantities refer to values determined in accordance with the procedures 
set forth in this appendix for the rated pump. Perform all calculations 
using raw measured values without rounding. Round PERCL and 
PERVL to three significant digits, and round 
PEICL, and PEIVL values, as applicable, to the 
hundredths place (i.e., 0.01).
    D.4 Pumps with BEP at Run Out.
    Test pumps for which the expected BEP corresponds to a volume rate 
of flow that is within 20 percent of the expected maximum flow rate at 
which the pump is designed to operate continuously or safely (i.e., 
pumps with BEP at run-out) in accordance with the test procedure 
specified in this appendix, but with the following exceptions:
    (1) Use the following seven flow points for determination of BEP in 
sections III.D, IV.D, V.D, VI.D, and VII.D of this appendix instead of 
those specified in those sections: 40, 50, 60, 70, 80, 90, and 100 
percent of the expected.
    (2) Use flow points of 60, 70, 80, 90, and 100 percent of the 
expected maximum flow rate of the pump to determine pump power input or 
driver power input at the specified load points in section III.E.1.1, 
IV.E.1, V.E.1.1, VI.E.1, and VII.E.1.1 of this appendix instead of those 
specified in those sections.
    (3) To determine of PERCL and PERSTD, use load 
points of 65, 90, and 100 percent of the BEP flow rate determined with 
the modified flow points specified in this section I.D.4 of this 
appendix instead of 75, 100, and 110 percent of BEP flow.

                II. Calculation of the Pump Energy Index

    A. Determine the PEI of each tested pump based on the configuration 
in which it is sold, as follows:
    A.1. For pumps rated as bare pumps or pumps sold with motors, 
determine the PEICL using the following equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.029

Where:

PEICL = the pump energy index for a constant load (hp),
PERCL = the pump energy rating for a constant load (hp), 
          determined in accordance with either section III (for bare 
          pumps, pumps sold with single-phase induction motors, and 
          pumps sold with drivers other than electric motors), section 
          IV (for pumps sold with motors and rated using the testing-
          based approach), or section V (for pumps sold with motors and 
          rated using the calculation-based approach) of this appendix, 
          and
PERSTD = the PERCL for a pump that is minimally 
          compliant with DOE's energy conservation standards with the 
          same flow and specific speed characteristics as the tested 
          pump (hp), as determined in accordance with section II.B of 
          this appendix.

    A.2 For pumps rated as pumps sold with motors and continuous 
controls or non-continuous controls, determine the PEIVL 
using the following equation:

[[Page 1014]]

[GRAPHIC] [TIFF OMITTED] TR25JA16.030

Where:

PEIVL = the pump energy index for a variable load,
PERVL = the pump energy rating for a variable load (hp) 
          determined in accordance with section VI (for pumps sold with 
          motors and continuous or non-continuous controls rated using 
          the testing-based approach) or section VII of this appendix 
          (for pumps sold with motors and continuous controls rated 
          using the calculation-based approach), and
PERSTD = the PERCL for a pump that is minimally 
          compliant with DOE's energy conservation standards with the 
          same flow and specific speed characteristics as the tested 
          pump (hp), as determined in accordance with section II.B of 
          this appendix.

    B. Determine the pump energy rating for the minimally compliant 
reference pump (PERSTD), according to the following equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.031

Where:

PERSTD = the PERCL for a pump that is minimally 
          compliant with DOE's energy conservation standards with the 
          same flow and specific speed characteristics as the tested 
          pump (hp),
[omega]i = 0.3333,
Piin,m = calculated driver power input to the 
          motor at load point i for the minimally compliant pump (hp), 
          calculated in accordance with section II.B.1of this appendix, 
          and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.

    B.1. Determine the driver power input at each load point 
corresponding to 75, 100, or 110 percent of the BEP flow rate as 
follows:
[GRAPHIC] [TIFF OMITTED] TR25JA16.032

Where:

Piin,m = driver power input to the motor at load 
          point i (hp),
Pi = pump power input to the bare pump at load point i (hp), 
          calculated in accordance with section II.B.1.1 of this 
          appendix,
Li = the part load motor losses at load point i (hp), 
          calculated in accordance with section II.B.1.2 of this 
          appendix, and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.

    B.1.1. Determine the pump power input to the minimally compliant 
pump at each load point corresponding to 75, 100, or 110 percent of the 
BEP flow rate as follows:
[GRAPHIC] [TIFF OMITTED] TR25JA16.033


[[Page 1015]]


Where:

Pi = pump power input to the bare pump at load point i (hp),
[alpha]i = 0.947 for 75 percent of the BEP flow rate, 1.000 
          for 100 percent of the BEP flow rate, and 0.985 for 110 
          percent of the BEP flow rate;
Pu,i = the pump power output at load point i of the tested 
          pump (hp), as determined in accordance with section II.B.1.1.2 
          of this appendix;
[eta]pump,STD = the minimally compliant pump efficiency (%), 
          calculated in accordance with section II.B.1.1.1 of this 
          appendix; and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.

    B.1.1.1 Calculate the minimally compliant pump efficiency based on 
the following equation:

[eta]pump,STD = -0.8500 x ln(Q100%)\2\ 
          -0.3800 x ln(Ns) x ln(Q100%) - 11.480 x 
          ln(Ns)\2\ + 17.800 x ln(Q100%) + 179.80 
          x ln(Ns) - (C + 555.60

Where:

[eta]pump,STD = minimally compliant pump efficiency (%),
Q100% = the BEP flow rate of the tested pump at 
          full impeller and nominal speed of rotation (gpm),
Ns = specific speed of the tested pump determined in accordance with 
          section II.B.1.1.1.1 of this appendix, and
C = the appropriate C-value for the category and nominal speed of 
          rotation of the tested pump, as listed at Sec.  431.466.

    B.1.1.1.1 Determine the specific speed of the rated pump using the 
following equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.034

Where:

Ns = specific speed,
nsp = the nominal speed of rotation (rpm),
Q100% = the measured BEP flow rate of the tested 
          pump at full impeller and nominal speed of rotation (gpm),
H100% = pump total head at 100 percent of the BEP 
          flow rate of the tested pump at full impeller and nominal 
          speed of rotation (ft), and
S = the number of stages with which the pump is being rated.

    B.1.1.2 Determine the pump power output at each load point 
corresponding to 75, 100, or 110 percent of the BEP flow rate using the 
following equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.035

Where:

Pu,i = the measured pump power output at load point i of the 
          tested pump (hp),
Qi = the measured flow rate at load point i of the tested 
          pump (gpm),
Hi = pump total head at load point i of the tested pump (ft),
SG = the specific gravity of water at specified test conditions, which 
          is equivalent to 1.00, and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.
    B.1.2 Determine the motor part load losses at each load point 
corresponding to 75, 100, or 110 percent of the BEP flow rate as 
follows:

Li = Lfull x yi

Where:

Li = part load motor losses at load point i (hp),
Lfull = motor losses at full load (hp), as determined in 
          accordance with section II.B.1.2.1 of this appendix,
yi = part load loss factor at load point i determined in 
          accordance with section II.B.1.2.2 of this appendix, and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.
    B.1.2.1 Determine the full load motor losses using the appropriate 
motor efficiency value and horsepower as shown in the following 
equation:

[[Page 1016]]

[GRAPHIC] [TIFF OMITTED] TR25JA16.036

Where:

Lfull = motor losses at full load (hp),
MotorHP = the motor horsepower as determined in accordance with section 
          II.B.1.2.1.1 of this appendix (hp), and
[eta]motor,full = the default nominal full load motor 
          efficiency as determined in accordance with section 
          II.B.1.2.1.2 of this appendix (%).

    B.1.2.1.1 Determine the motor horsepower as follows:
     For bare pumps other than ST pumps, the motor 
horsepower is determined as the horsepower rating listed in Table 2 of 
this appendix that is either equivalent to, or the next highest 
horsepower greater than, the pump power input to the bare pump at 120 
percent of the BEP flow rate of the tested pump.
     For ST bare pumps, the motor horsepower is 
determined as the horsepower rating listed in Table 2 of this appendix 
that, is either equivalent to, or the next highest horsepower greater 
than, the pump power input to the bare pump at 120 percent of the BEP 
flow rate of the tested pump divided by a service factor of 1.15.
     For pumps sold with motors, pumps sold with 
motors and continuous controls, or pumps sold with motors and non-
continuous controls, the motor horsepower is the rated horsepower of the 
motor with which the pump is being tested.
    B.1.2.1.2 Determine the default nominal full load motor efficiency 
as described in section II.B.1.2.1.2.1 of this appendix for pumps other 
than ST pumps or II.B.1.2.1.2.2 of this appendix for ST pumps.
    B.1.2.1.2.1. For pumps other than ST pumps, the default nominal full 
load motor efficiency is the minimum of the nominal full load motor 
efficiency standards (open or enclosed) from the table containing the 
current energy conservation standards for NEMA Design B motors at Sec.  
431.25, with the number of poles relevant to the speed at which the pump 
is being tested (see section I.C.1 of this appendix) and the motor 
horsepower determined in section II.B.1.2.1.1 of this appendix.
    B.1.2.1.2.2. For ST pumps, the default nominal full load motor 
efficiency is the default nominal full load submersible motor efficiency 
listed in Table 2 of this appendix, with the number of poles relevant to 
the speed at which the pump is being tested (see section I.C.1 of this 
appendix) and the motor horsepower determined in section II.B.1.2.1.1 of 
this appendix.
    B.1.2.2 Determine the part load loss factor at each load point 
corresponding to 75, 100, or 110 percent of the BEP flow rate as 
follows:
[GRAPHIC] [TIFF OMITTED] TR25JA16.037

Where:

yi = the part load loss factor at load point i,
Pi = pump power input to the bare pump at load point i (hp),
MotorHP = the motor horsepower (hp), as determined in accordance with 
          section II.B.1.2.1.1 of this appendix,
          [GRAPHIC] [TIFF OMITTED] TR25JA16.038
          

[[Page 1017]]



                   III. Test Procedure for Bare Pumps

    A. Scope. This section III applies only to:
    (1) Bare pumps,
    (2) Pumps sold with drivers other than electric motors, and
    (3) Pumps sold with single-phase induction motors.
    B. Measurement Equipment. The requirements regarding measurement 
equipment presented in section I.B of this appendix apply to this 
section III, and in addition, when testing pumps using a calibrated 
motor:
    (1) Electrical measurement equipment must be capable of measuring 
true RMS current, true RMS voltage, and real power up to the 40th 
harmonic of fundamental supply source frequency, and
    (2) Any instruments used to measure a particular parameter specified 
in paragraph (1) must have a combined accuracy of 2.0 percent of the measured value at the fundamental 
supply source frequency, where combined accuracy is the root sum of 
squares of individual instrument accuracies.
    C. Test Conditions. The requirements regarding test conditions 
presented in section I.C of this appendix apply to this section III. 
When testing pumps using a calibrated motor the following conditions 
also apply to the mains power supplied to the motor:
    (1) Maintain the voltage within 5 percent of 
the rated value of the motor,
    (2) Maintain the frequency within 1 percent of 
the rated value of the motor,
    (3) Maintain the voltage unbalance of the power supply within 3 percent of the rated values of the motor, and
    (2) Maintain total harmonic distortion below 12 percent throughout 
the test.
    D. Testing BEP for the Pump. Determine the best efficiency point 
(BEP) of the pump as follows:
    D.1. Adjust the flow by throttling the pump without changing the 
speed of rotation of the pump and conduct the test at a minimum of the 
following seven flow points: 40, 60, 75, 90, 100, 110, and 120 percent 
of the expected BEP flow rate of the pump at the nominal speed of 
rotation, as specified in HI 40.6-2014, except section 40.6.5.3, section 
A.7, and appendix B (incorporated by reference, see Sec.  431.463).
    D.2. Determine the BEP flow rate as the flow rate at the operating 
point of maximum pump efficiency on the pump efficiency curve, as 
determined in accordance with section 40.6.6.3 of HI 40.6-2014 
(incorporated by reference, see Sec.  431.463), where the pump 
efficiency is the ratio of the pump power output divided by the pump 
power input, as specified in Table 40.6.2.1 of HI 40.6-2014, 
disregarding the calculations provided in section 40.6.6.2.
    E. Calculating the Constant Load Pump Energy Rating. Determine the 
PERCL of each tested pump using the following equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.039

Where:

PERCL = the pump energy rating for a constant load (hp),
[omega]i = 0.3333,
Piin,m = calculated driver power input to the 
          motor at load point i (hp), as determined in accordance with 
          section III.E.1 of this appendix, and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.
    E.1 Determine the driver power input at each load point 
corresponding to 75, 100, or 110 percent of the BEP flow rate as 
follows:
[GRAPHIC] [TIFF OMITTED] TR25JA16.040

Where:

Piin,m = driver power input to the motor at load 
          point i (hp),
Pi = pump power input to the bare pump at load point i (hp), 
          as determined in section III.E.1.1 of this appendix,
Li = the part load motor losses at load point i (hp), as 
          determined in accordance with section III.E.1.2 of this 
          appendix, and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.
    E.1.1 Determine the pump power input at 75, 100, 110, and 120 
percent of the BEP flow rate by employing a least squares regression

[[Page 1018]]

to determine a linear relationship between the pump power input at the 
nominal speed of rotation of the pump and the measured flow rate at the 
following load points: 60, 75, 90, 100, 110, and 120 percent of the 
expected BEP flow rate. Use the linear relationship to determine the 
pump power input at the nominal speed of rotation for the load points of 
75, 100, 110, and 120 percent of the BEP flow rate.
    E.1.2 Determine the motor part load losses at each load point 
corresponding to 75, 100, or 110 percent of the BEP flow rate as 
follows:

Li = Lfull x yi

Where:

Li = motor losses at load point i (hp),
Lfull = motor losses at full load (hp), as determined in 
          accordance with section III.E.1.2.1 of this appendix,
yi = loss factor at load point i as determined in accordance 
          with section III.E.1.2.2 of this appendix, and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.
    E.1.2.1 Determine the full load motor losses using the appropriate 
motor efficiency value and horsepower as shown in the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.041

Where:

Lfull = motor losses at full load (hp);
MotorHP = the motor horsepower (hp), as determined in accordance with 
          section II.E.1.2.1.1 of this appendix, and
[eta]motor,full = the default nominal full load motor 
          efficiency (%), as determined in accordance with section 
          III.E.1.2.1.2 of this appendix.
    E.1.2.1.1 Determine the motor horsepower as follows:
     For bare pumps other than ST pumps, determine the 
motor horsepower by selecting the horsepower rating listed in Table 2 of 
this appendix that is either equivalent to, or the next highest 
horsepower greater than, the pump power input to the bare pump at 120 
percent of the BEP flow rate of the tested pump.
     For ST bare pumps, determine the motor horsepower 
by selecting the horsepower rating listed in Table 2 of this appendix 
that, is either equivalent to, or the next highest horsepower greater 
than, the pump power input to the bare pump at 120 percent of the BEP 
flow rate of the tested pump divided by a service factor of 1.15.
     For pumps sold with motors, pumps sold with 
motors and continuous controls, or pumps sold with motors and non-
continuous controls, the motor horsepower is the rated horsepower of the 
motor with which the pump is being tested.
    E.1.2.1.2 Determine the default nominal full load motor efficiency 
as described in section III.E.1.2.1.2.1 of this appendix for pumps other 
than ST pumps or III.E.1.2.1.2.2. of this appendix for ST pumps.
    E.1.2.1.2.1. For pumps other than ST pumps, the default nominal full 
load motor efficiency is the minimum of the nominal full load motor 
efficiency standards (open or enclosed) from the table containing the 
current energy conservation standards for NEMA Design B motors at Sec.  
431.25, with the number of poles relevant to the speed at which the pump 
is being tested (see section I.C.1 of this appendix) and the motor 
horsepower determined in section III.E.1.2.1.1 of this appendix.
    E.1.2.1.2.2. For ST pumps, the default nominal full load motor 
efficiency is the default nominal full load submersible motor efficiency 
listed in Table 2 of this appendix, with the number of poles relevant to 
the speed at which the pump is being tested (see section I.C.1 of this 
appendix) and the motor horsepower determined in section III.E.1.2.1.1 
of this appendix;
    E.1.2.2 Determine the loss factor at each load point corresponding 
to 75, 100, or 110 percent of the BEP flow rate as follows:
[GRAPHIC] [TIFF OMITTED] TR25JA16.042


[[Page 1019]]


Where:

yi = the part load loss factor at load point i,
Pi = pump power input to the bare pump at load point i (hp), 
          as determined in accordance with section III.E.1.1 of this 
          appendix,
MotorHP = as determined in accordance with section III.E.1.2.1 of this 
          appendix (hp),
          [GRAPHIC] [TIFF OMITTED] TR25JA16.043
          
          IV. Testing-Based Approach for Pumps Sold With Motors

    A. Scope. This section IV applies only to pumps sold with electric 
motors, including single-phase induction motors.
    B. Measurement Equipment. The requirements regarding measurement 
equipment presented in section I.B of this appendix apply to this 
section IV, and in addition, the electrical measurement equipment must:
    (1) Be capable of measuring true RMS current, true RMS voltage, and 
real power up to the 40th harmonic of fundamental supply source 
frequency, and
    (2) For all instruments used to measure a given parameter, have a 
combined accuracy of 2.0 percent of the measured 
value at the fundamental supply source frequency, where combined 
accuracy is the root sum of squares of individual instrument accuracies.
    C. Test Conditions. The requirements regarding test conditions 
presented in section I.C of this appendix apply to this section IV. The 
following conditions also apply to the mains power supplied to the 
motor:
    (1) Maintain the voltage within 5 percent of 
the rated value of the motor,
    (2) Maintain the frequency within 1 percent of 
the rated value of the motor,
    (3) Maintain the voltage unbalance of the power supply within 3 percent of the rated values of the motor, and
    (4) Maintain total harmonic distortion below 12 percent throughout 
the test.
    D. Testing BEP for the Pump. Determine the BEP of the pump as 
follows:
    D.1 Adjust the flow by throttling the pump without changing the 
speed of rotation of the pump to a minimum of seven flow points: 40, 60, 
75, 90, 100, 110, and 120 percent of the expected BEP flow rate of the 
pump at the nominal speed of rotation, as specified in HI 40.6-2014, 
except section 40.6.5.3, section A.7, and appendix B (incorporated by 
reference, see Sec.  431.463).
    D.2. Determine the BEP flow rate as the flow rate at the operating 
point of maximum overall efficiency on the pump efficiency curve, as 
determined in accordance with section 40.6.6.3 of HI 40.6-2014 
(incorporated by reference, see Sec.  431.463), where the overall 
efficiency is the ratio of the pump power output divided by the driver 
power input, as specified in Table 40.6.2.1 of HI 40.6-2014, 
disregarding the calculations provided in section 40.6.6.2.
    E. Calculating the Constant Load Pump Energy Rating. Determine the 
PERCL of each tested pump using the following equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.044

Where:

PERCL = the pump energy rating for a constant load (hp),
[omega]i = 0.3333,
Piin = measured driver power input to the motor at 
          load point i (hp) for the tested pump as determined in 
          accordance with section IV.E.1 of this appendix, and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.

    E.1 Determine the driver power input at 75, 100, and 110 percent of 
the BEP flow rate by employing a least squares regression to determine a 
linear relationship between the driver power input at the nominal speed 
of rotation of the pump and the measured flow

[[Page 1020]]

rate at the following load points: 60, 75, 90, 100, 110, and 120 percent 
of the expected BEP flow rate. Use the linear relationship to determine 
the driver power input at the nominal speed of rotation for the load 
points of 75, 100, and 110 percent of the BEP flow rate.

        V. Calculation-Based Approach for Pumps Sold With Motors

    A. Scope. This section V can only be used in lieu of the test method 
in section IV of this appendix to calculate the index for pumps sold 
with motors listed in section V.A.1 or V.A.2 of this appendix.
    A.1 Pumps sold with motors subject to DOE's energy conservation 
standards for polyphase electric motors at Sec.  431.25(g), and
    A.2. Pumps sold with submersible motors.
    A.3. Pumps sold with motors not listed in sections V.A.1 or V.A.2 of 
this appendix cannot use this section V and must apply the test method 
in section IV of this appendix.
    B. Measurement Equipment. The requirements regarding measurement 
equipment presented in section I.B of this appendix apply to this 
section V, and in addition, when testing pumps using a calibrated motor 
electrical measurement equipment must:
    (1) Be capable of measuring true RMS current, true RMS voltage, and 
real power up to the 40th harmonic of fundamental supply source 
frequency, and
    (2) For all instruments used to measure a given parameter, have a 
combined accuracy of 2.0 percent of the measured 
value at the fundamental supply source frequency, where combined 
accuracy is the root sum of squares of individual instrument accuracies.
    C. Test Conditions. The requirements regarding test conditions 
presented in section I.C of this appendix apply to this section V. When 
testing pumps using a calibrated motor the following conditions also 
apply to the mains power supplied to the motor:
    (1) Maintain the voltage within 5 percent of 
the rated value of the motor,
    (2) Maintain the frequency within 1 percent of 
the rated value of the motor,
    (3) Maintain the voltage unbalance of the power supply within 3 percent of the rated values of the motor, and
    (4) Maintain total harmonic distortion below 12 percent throughout 
the test.
    D. Testing BEP for the Bare Pump. Determine the best efficiency 
point (BEP) of the pump as follows:
    D.1 Adjust the flow by throttling the pump without changing the 
speed of rotation of the pump to a minimum of seven flow points: 40, 60, 
75, 90, 100, 110, and 120 percent of the expected BEP flow rate of the 
pump at the nominal speed of rotation, as specified in HI 40.6-2014, 
except section 40.6.5.3, section A.7, and appendix B (incorporated by 
reference, see Sec.  431.463).
    D.2. Determine the BEP flow rate as the flow rate at the operating 
point of maximum pump efficiency on the pump efficiency curve, as 
determined in accordance with section 40.6.6.3 of HI 40.6-2014 
(incorporated by reference, see Sec.  431.463), where pump efficiency is 
the ratio of the pump power output divided by the pump power input, as 
specified in Table 40.6.2.1 of HI 40.6-2014 and the calculations 
provided in section 40.6.6.2 are to be disregarded.
    E. Calculating the Constant Load Pump Energy Rating. Determine the 
PERCL of each tested pump using the following equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.045

Where:

PERCL = the pump energy rating for a constant load (hp),
[omega]i = 0.3333,
Piin,m = calculated driver power input to the 
          motor at load point i for the tested pump as determined in 
          accordance with section V.E.1 of this appendix (hp), and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.
    E.1 Determine the driver power input at each load point 
corresponding to 75, 100, or 110 percent of the BEP flow rate as 
follows:
[GRAPHIC] [TIFF OMITTED] TR25JA16.046

Where:

Piin,m = driver power input to the motor at load 
          point i (hp),
Pi = pump power input to the bare pump at load point i, as 
          determined in section V.E.1.1 of this appendix (hp),

[[Page 1021]]

Li = the part load motor losses at load point i as determined 
          in accordance with section V.E.1.2 of this appendix (hp), and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.
    E.1.1 Determine the pump power input at 75, 100, 110, and 120 
percent of the BEP flow rate by employing a least squares regression to 
determine a linear relationship between the pump power input at the 
nominal speed of rotation of the pump and the measured flow rate at the 
following load points: 60, 75, 90, 100, 110, and 120 percent of the 
expected BEP flow rate. Use the linear relationship to determine the 
pump power input at the nominal speed of rotation for the load points of 
75, 100, 110, and 120 percent of the BEP flow rate.
    E.1.2 Determine the motor part load losses at each load point 
corresponding to 75, 100, or 110 percent of the BEP flow rate as 
follows:

Li = Lfull x Yi

Where:
Li = motor losses at load point i (hp),
Lfull = motor losses at full load as determined in accordance 
          with section V.E.1.2.1 of this appendix (hp),
yi = part load loss factor at load point i as determined in 
          accordance with section V.E.1.2.2 of this appendix, and
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate.
    E.1.2.1 Determine the full load motor losses using the appropriate 
motor efficiency value and horsepower as shown in the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.047

Where:

Lfull = motor losses at full load (hp),
MotorHP = the horsepower of the motor with which the pump model is being 
          tested (hp), and
[eta]motor,full = the represented nominal full load motor 
          efficiency (i.e., nameplate/DOE-certified value) or default 
          nominal full load submersible motor efficiency as determined 
          in accordance with section V.E.1.2.1.1 of this appendix (%).
    E.1.2.1.1 For pumps sold with motors other than submersible motors, 
determine the represented nominal full load motor efficiency as 
described in section V.E.1.2.1.1.1 of this appendix. For pumps sold with 
submersible motors determine the default nominal full load submersible 
motor efficiency as described in section V.E.1.2.1.1.2 of this appendix.
    E.1.2.1.1.1. For pumps sold with motors other than submersible 
motors, the represented nominal full load motor efficiency is that of 
the motor with which the given pump model is being tested, as determined 
in accordance with the DOE test procedure for electric motors at Sec.  
431.16 and applicable representation procedures in parts 429 and 430.
    E.1.2.1.1.2. For pumps sold with submersible motors, the default 
nominal full load submersible motor efficiency is that listed in Table 2 
of this appendix, with the number of poles relevant to the speed at 
which the pump is being tested (see section I.C.1 of this appendix) and 
the motor horsepower of the pump being tested.
    E.1.2.2 Determine the loss factor at each load point corresponding 
to 75, 100, or 110 percent of the BEP flow rate as follows:
[GRAPHIC] [TIFF OMITTED] TR25JA16.048

Where:

yi = the part load loss factor at load point i,
Pi = the pump power input to the bare pump at load point i as 
          determined in accordance with section V.E.1.1 of this appendix 
          (hp),
MotorHP = the horsepower of the motor with which the pump model is being 
          tested (hp),
i = load point corresponding to 75, 100, or 110 percent of the BEP flow 
          rate, and

[[Page 1022]]

[GRAPHIC] [TIFF OMITTED] TR25JA16.049

in the equation in this section V.E.1.2.2. of this appendix to calculate 
the part load loss factor at each load point

   VI. Testing-Based Approach for Pumps Sold with Motors and Controls

    A. Scope. This section VI applies only to pumps sold with electric 
motors, including single-phase induction motors, and continuous or non-
continuous controls. For the purposes of this section VI, all references 
to ``driver input power'' in this section VI or HI 40.6-2014 
(incorporated by reference, see Sec.  431.463) refer to the input power 
to the continuous or non-continuous controls.
    B. Measurement Equipment. The requirements regarding measurement 
equipment presented in section I.B of this appendix apply to this 
section VI, and in addition electrical measurement equipment must:
    (1) Be capable of measuring true RMS current, true RMS voltage, and 
real power up to the 40th harmonic of fundamental supply source 
frequency, and
    (2) For all instruments used to measure a given parameter, have a 
combined accuracy of 2.0 percent of the measured 
value at the fundamental supply source frequency, where combined 
accuracy is the root sum of squares of individual instrument accuracies.
    C. Test Conditions. The requirements regarding test conditions 
presented in section I.C of this appendix apply to this section VI. The 
following conditions also apply to the mains power supplied to the 
continuous or non-continuous control:
    (1) Maintain the voltage within 5 percent of 
the rated value of the motor,
    (2) Maintain the frequency within 1 percent of 
the rated value of the motor,
    (3) Maintain the voltage unbalance of the power supply within 3 percent of the rated values of the motor, and
    (4) Maintain total harmonic distortion below 12 percent throughout 
the test.
    D. Testing BEP for the Pump. Determine the BEP of the pump as 
follows:
    D.1. Adjust the flow by throttling the pump without changing the 
speed of rotation of the pump to a minimum of seven flow points: 40, 60, 
75, 90, 100, 110, and 120 percent of the expected BEP flow rate of the 
pump at the nominal speed of rotation, as specified in HI 40.6-2014, 
except section 40.6.5.3, section A.7, and appendix B (incorporated by 
reference, see Sec.  431.463).
    D.2. Determine the BEP flow rate as the flow rate at the operating 
point of maximum overall efficiency on the pump efficiency curve, as 
determined in accordance with section 40.6.6.3 of HI 40.6-2014 
(incorporated by reference, see Sec.  431.463), where overall efficiency 
is the ratio of the pump power output divided by the driver power input, 
as specified in Table 40.6.2.1 of HI 40.6-2014 and the calculations 
provided in section 40.6.6.2 are to be disregarded.
    E. Calculating the Variable Load Pump Energy Rating. Determine the 
PERVL of each tested pump using the following equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.050

Where:

PERVL = the pump energy rating for a variable load (hp);
[omega]i = 0.25;
Piin,c = the normalized driver power input to 
          continuous or non-continuous controls at load point i for the 
          tested pump as determined in accordance with section VI.E.1 of 
          this appendix; and
i = load point corresponding 25, 50, 75, or 100 percent of the BEP flow 
          rate.
    E.1. Determine the driver power input at 100 percent of the measured 
BEP flow rate of the tested pump by employing a least

[[Page 1023]]

squares regression to determine a linear relationship between the 
measured driver power input at the nominal speed of rotation of the pump 
and the measured flow rate, using the following load points: 60, 75, 90, 
100, 110, and 120 percent of the expected BEP flow rate. Use the linear 
relationship to determine the driver power input at the nominal speed of 
rotation for the load point of 100 percent of the measured BEP flow rate 
of the tested pump.
    E.2 Determine the driver power input at 25, 50, and 75 percent of 
the BEP flow rate by measuring the driver power input at the load points 
defined by:
    (1) Those flow rates, and
    (2) The associated head points calculated according to the following 
reference system curve equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.051

Where:

Hi = pump total head at load point i (ft),
H100% = pump total head at 100 percent of the BEP 
          flow rate and nominal speed of rotation (ft),
Qi = flow rate at load point i (gpm),
Q100% = flow rate at 100 percent of the BEP flow 
          rate and nominal speed of rotation (gpm), and
i = load point corresponding to 25, 50, or 75 percent of the measured 
          BEP flow rate of the tested pump.
    E.2.1. For pumps sold with motors and continuous controls, the 
specific head and flow points must be achieved within 10 percent of the 
calculated values and the measured driver power input must be corrected 
to the exact intended head and flow conditions using the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.052

Where:

Piin,c = the corrected driver power input to the 
          continuous or non-continuous controls at load point i (hp),
Hsp,i = the specified total system head at load point i based 
          on the reference system curve (ft),
HM,j = the measured total system head at load point j (ft),
Qsp,i = the specified total system flow rate at load point i 
          based on the reference system curve (gpm),
QM,j = the measured total system flow rate at load point j 
          (gpm),
PM,jin,c = the measured normalized driver power 
          input to the continuous or non-continuous controls at load 
          point j (hp),
i = specified load point at 25, 50, 75, or 100 percent of BEP flow, and
j = measured load point corresponding to specified load point i.

    E.2.2. For pumps sold with motors and non-continuous controls, the 
head associated with each of the specified flow points shall be no lower 
than 10 percent below that defined by the reference system curve 
equation in section VI.E.2 of this appendix. Only the measured flow 
points must be achieved within 10 percent of the calculated values. 
Correct for flow and head as described in section VI.E.2.1, except do 
not correct measured head values that are higher than the reference 
system curve at the same flow rate; only correct flow rate and head 
values lower than the reference system curve at the same flow rate. For 
head values higher than the system curve, use the measured head points 
directly to calculate PEIVL.

 VII. Calculation-Based Approach for Pumps Sold With Motors and Controls

    A. Scope. This section VII can only be used in lieu of the test 
method in section VI of this appendix to calculate the index for pumps 
listed in section VII.A.1 or VII.A.2 of this appendix.
    A.1. Pumps sold with motors regulated by DOE's energy conservation 
standards for polyphase NEMA Design B electric motors at Sec.  431.25(g) 
and continuous controls, and
    A.2. Pumps sold with submersible motors and continuous controls.
    A.3. Pumps sold with motors not listed in VII.A.1 or VII.A.2 of this 
appendix and pumps sold without continuous controls, including pumps 
sold with non-continuous controls,

[[Page 1024]]

cannot use this section and must apply the test method in section VI of 
this appendix.
    B. Measurement Equipment. The requirements regarding measurement 
equipment presented in section I.B of this appendix apply to this 
section VII, and in addition, when testing pumps using a calibrated 
motor electrical measurement equipment must:
    (1) Be capable of measuring true RMS current, true RMS voltage, and 
real power up to the 40th harmonic of fundamental supply source 
frequency, and
    (2) For all instruments used to measure a given parameter, have a 
combined accuracy of 2.0 percent of the measured 
value at the fundamental supply source frequency, where combined 
accuracy is the root sum of squares of individual instrument accuracies.
    C. Test Conditions. The requirements regarding test conditions 
presented in section I.C of this appendix apply to this section VII. 
When testing pumps using a calibrated motor the following conditions 
also apply to the mains power supplied to the motor:
    (1) Maintain the voltage within 5 percent of 
the rated value of the motor,
    (2) Maintain the frequency within 1 percent of 
the rated value of the motor,
    (3) Maintain the voltage unbalance of the power supply within 3 percent of the rated values of the motor, and
    (4) Maintain total harmonic distortion below 12 percent throughout 
the test.
    D. Testing BEP for the Bare Pump. Determine the BEP of the pump as 
follows:
    D.1. Adjust the flow by throttling the pump without changing the 
speed of rotation of the pump to a minimum of seven flow points: 40, 60, 
75, 90, 100, 110, and 120 percent of the expected BEP flow rate of the 
pump at the nominal speed of rotation, as specified in HI 40.6-2014, 
except section 40.6.5.3, section A.7, and appendix B (incorporated by 
reference, see Sec.  431.463).
    D.2. Determine the BEP flow rate as the flow rate at the operating 
point of maximum pump efficiency on the pump efficiency curve, as 
determined in accordance with section 40.6.6.3 of HI 40.6-2014 
(incorporated by reference, see Sec.  431.463), where pump efficiency is 
the ratio of the pump power output divided by the pump power input, as 
specified in Table 40.6.2.1 of HI 40.6-2014 and the calculations 
provided in section 40.6.6.2 are to be disregarded.
    E. Calculating the Variable Load Pump Energy Rating. Determine the 
PERVL of each tested pump using the following equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.053

Where:

PERVL = the pump energy rating for a variable load (hp);
[omega]i = 0.25;
Piin,c = the calculated driver power input to the 
          continuous or non-continuous controls at load point i for the 
          tested pump as determined in accordance with section VII.E.1 
          of this appendix; and
i = load point corresponding to 25, 50, 75, or 100 percent of the BEP 
          flow rate.

    E.1 Determine the driver power input at each load point 
corresponding to 25, 50, 75, or 100 percent of the BEP flow rate as 
follows:
[GRAPHIC] [TIFF OMITTED] TR25JA16.054

Where:

Piin,c = driver power input at to the continuous 
          or non-continuous controls at load point i (hp),
Pi = pump power input to the bare pump at load point i as 
          determined in accordance with section VII.E.1.1 of this 
          appendix (hp),
Li = the part load motor and control losses at load point i 
          as determined in accordance with section VII.E.1.2 of this 
          appendix (hp), and
i = load point corresponding to 25, 50, 75, or 100 percent of the BEP 
          flow rate.

    E.1.1 Determine the pump power input at 100 percent of the measured 
BEP flow rate of the tested pump by employing a least squares regression 
to determine a linear relationship between the measured pump power input 
at the nominal speed of rotation and the measured flow rate at the 
following load points: 60, 75, 90, 100, 110, and 120 percent of the 
expected BEP flow rate. Use the linear relationship to determine the 
pump power input at the nominal speed of rotation for the load point of 
100 percent of the BEP flow rate.

[[Page 1025]]

    E.1.1.1 Determine the pump power input at 25, 50, and 75 percent of 
the BEP flow rate based on the measured pump power input at 100 percent 
of the BEP flow rate and using with the following equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.055

Where:

Pi = pump power input at load point i (hp);
P100% = pump power input at 100 percent of the BEP flow rate 
          and nominal speed of rotation (hp);
Qi = flow rate at load point i (gpm);
Q100% = flow rate at 100 percent of the BEP flow rate and 
          nominal speed of rotation (gpm); and
i = load point corresponding to 25, 50, or 75 percent of the measured 
          BEP flow rate of the tested pump.

    E.1.2 Calculate the motor and control part load losses at each load 
point corresponding to 25, 50, 75, and 100 percent of the BEP flow rate 
as follows:

Li = Lfull x zi

Where:

Li = motor and control losses at load point i (hp),
Lfull = motor losses at full load as determined in accordance 
          with section VII.E.1.2.1 of this appendix (hp),
zi = part load loss factor at load point i as determined in 
          accordance with section VII.E.1.2.2 of this appendix, and
i = load point corresponding to 25, 50, 75, or 100 percent of the BEP 
          flow rate.

    E.1.2.1 Determine the full load motor losses using the appropriate 
motor efficiency value and horsepower as shown in the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR25JA16.056

Where:

Lfull = motor losses at full load (hp),
MotorHP = the horsepower of the motor with which the pump model is being 
          tested (hp), and
[eta]motor,full = the represented nominal full load motor 
          efficiency (i.e., nameplate/DOE-certified value) or default 
          nominal full load submersible motor efficiency as determined 
          in accordance with section VII.E.1.2.1.1 of this appendix (%).

    E.1.2.1.1 For pumps sold with motors other than submersible motors, 
determine the represented nominal full load motor efficiency as 
described in section VII.E.1.2.1.1.1 of this appendix. For pumps sold 
with submersible motors, determine the default nominal full load 
submersible motor efficiency as described in section VII.E.1.2.1.1.2 of 
this appendix.
    E.1.2.1.1.1 For pumps sold with motors other than submersible 
motors, the represented nominal full load motor efficiency is that of 
the motor with which the given pump model is being tested, as determined 
in accordance with the DOE test procedure for electric motors at Sec.  
431.16 and applicable representation procedures in parts 429 and 430.
    E.1.2.1.1.2 For pumps sold with submersible motors, the default 
nominal full load submersible motor efficiency is that listed in Table 2 
of this appendix, with the number of poles relevant to the speed at 
which the pump is being tested (see section I.C.1 of this appendix) and 
the motor horsepower of the pump being tested.
    E.1.2.2 For load points corresponding to 25, 50, 75, and 100 percent 
of the BEP flow rate, determine the part load loss factor at each load 
point as follows:

[[Page 1026]]

[GRAPHIC] [TIFF OMITTED] TR25JA16.057

Where:

zi = the motor and control part load loss factor at load 
          point i,
a,b,c = coefficients listed in Table 4 of this appendix based on the 
          horsepower of the motor with which the pump is being tested,
Pi = the pump power input to the bare pump at load point i, 
          as determined in accordance with section VII.E.1.1 of this 
          appendix (hp),
MotorHP = the horsepower of the motor with which the pump is being 
          tested (hp),
          [GRAPHIC] [TIFF OMITTED] TR25JA16.058
          

Table 2--Default Nominal Full Load Submersible Motor Efficiency by Motor
                           Horsepower and Pole
------------------------------------------------------------------------
                                             Default nominal full load
                                           submersible motor efficiency
          Motor horsepower (hp)          -------------------------------
                                              2 poles         4 poles
------------------------------------------------------------------------
1.......................................              55              68
1.5.....................................              66              70
2.......................................              68              70
3.......................................              70            75.5
5.......................................              74            75.5
7.5.....................................              68              74
10......................................              70              74
15......................................              72            75.5
20......................................              72              77
25......................................              74            78.5
30......................................              77              80
40......................................            78.5            81.5
50......................................              80            82.5
60......................................            81.5              84
75......................................            81.5            85.5
100.....................................            81.5              84
125.....................................              84              84
150.....................................              84            85.5
200.....................................            85.5            86.5
250.....................................            86.5            86.5
------------------------------------------------------------------------


           Table 3--Nominal Full Load Motor Efficiency Values
------------------------------------------------------------------------
                   Nominal full load motor efficiency*
-------------------------------------------------------------------------
                                           50.5
                                           52.5
                                           55.0
                                           57.5
                                           59.5
                                           62.0
                                           64.0
                                           66.0
                                           68.0
                                           70.0
                                           72.0
                                           74.0
                                           75.5
                                           77.0
                                           78.5
                                           80.0
                                           81.5
                                           82.5
                                           84.0
                                           85.5
                                           86.5
                                           87.5
                                           88.5
                                           89.5
                                           90.2
                                           91.0
                                           91.7
                                           92.4
                                           93.0
                                           93.6
                                           94.1
                                           94.5
                                           95.0
                                           95.4
                                           95.8
                                           96.2
                                           96.5
                                           96.8
                                           97.1
                                           97.4
                                           97.6
                                           97.8
                                           98.0
                                           98.2
                                           98.4
                                           98.5
                                           98.6
                                           98.7
                                           98.8
                                           98.9
                                           99.0
------------------------------------------------------------------------
* Note: Each consecutive incremental value of nominal efficiency
  represents one band.


[[Page 1027]]


 Table 4--Motor and Control Part Load Loss Factor Equation Coefficients for Section VII.E.1.2.2 of This Appendix
                                                        A
----------------------------------------------------------------------------------------------------------------
                                                              Coefficients for Motor and Control Part Load Loss
                                                                                 Factor (zi)
                   Motor horsepower (hp)                   -----------------------------------------------------
                                                                    a                 b                 c
----------------------------------------------------------------------------------------------------------------
<=5.......................................................          - 0.4658            1.4965            0.5303
5 and <=20.....................................          - 1.3198            2.9551            0.1052
20 and <=50....................................          - 1.5122            3.0777            0.1847
50.............................................          - 0.8914            2.8846            0.2625
----------------------------------------------------------------------------------------------------------------


[81 FR 4145, Jan. 25, 2016, as amended at 82 FR 36924, Aug. 7, 2017]



 Sec. Appendix B to Subpart Y of Part 431--Uniform Test Method for the 
    Measurement of Energy Efficiency of Dedicated-Purpose Pool Pumps

    Note: On February 5, 2018 but before July 19, 2021, any 
representations made with respect to the energy use or efficiency of 
dedicated-purpose pool pumps subject to testing pursuant to 10 CFR 
431.464(b) must be made in accordance with the results of testing 
pursuant to this appendix. Any optional representations of energy factor 
(EF) must be accompanied by a representation of weighted energy factor 
(WEF).

           I. Test Procedure for Dedicated-Purpose Pool Pumps

                               A. General

    A.1 Test Method. To determine the weighted energy factor (WEF) for 
dedicated-purpose pool pumps, perform ``wire-to-water'' testing in 
accordance with HI 40.6-2014-B, except section 40.6.4.1, ``Vertically 
suspended pumps''; section 40.6.4.2, ``Submersible pumps''; section 
40.6.5.3, ``Test report''; section 40.6.5.5, ``Test conditions''; 
section 40.6.5.5.2, ``Speed of rotation during testing''; section 
40.6.6.1, ``Translation of test results to rated speed of rotation''; 
section 40.6.6.2, ``Pump efficiency''; section 40.6.6.3, ``Performance 
curve''; section A.7, ``Testing at temperatures exceeding 30 [deg]C 
(86[emsp14] [deg]F)''; and appendix B, ``Reporting of test results''; 
(incorporated by reference, see Sec.  431.463) with the modifications 
and additions as noted throughout the provisions below. Do not use the 
test points specified in section 40.6.5.5.1, ``Test procedure'' of HI 
40.6-2014-B and instead use those test points specified in section D.3 
of this appendix for the applicable dedicated-purpose pool pump variety 
and speed configuration. When determining overall efficiency, best 
efficiency point, or other applicable pump energy performance 
information, section 40.6.5.5.1, ``Test procedure''; section 40.6.6.2, 
``Pump efficiency''; and section 40.6.6.3, ``Performance curve'' must be 
used, as applicable. For the purposes of applying this appendix, the 
term ``volume per unit time,'' as defined in section 40.6.2, ``Terms and 
definitions,'' of HI 40.6-2014-B shall be deemed to be synonymous with 
the term ``flow rate'' used throughout that standard and this appendix.
    A.2. Calculations and Rounding. All terms and quantities refer to 
values determined in accordance with the procedures set forth in this 
appendix for the rated pump. Perform all calculations using raw measured 
values without rounding. Round WEF, EF, maximum head, vertical lift, and 
true priming time values to the tenths place (i.e., 0.1) and rated 
hydraulic horsepower to the thousandths place (i.e., 0.001). Round all 
other reported values to the hundredths place unless otherwise 
specified.

                        B. Measurement Equipment

    B.1 For the purposes of measuring flow rate, speed of rotation, 
temperature, and pump power output, the equipment specified in HI 40.6-
2014-B Appendix C (incorporated by reference, see Sec.  431.463) 
necessary to measure head, speed of rotation, flow rate, and temperature 
must be used and must comply with the stated accuracy requirements in HI 
40.6-2014-B Table 40.6.3.2.3, except as specified in section B.1.1 and 
B.1.2 of this appendix. When more than one instrument is used to measure 
a given parameter, the combined accuracy, calculated as the root sum of 
squares of individual instrument accuracies, must meet the specified 
accuracy requirements.
    B.1.1 Electrical measurement equipment for determining the driver 
power input to the motor or controls must be capable of measuring true 
root mean squared (RMS) current, true RMS voltage, and real power up to 
the 40th harmonic of fundamental supply source frequency, and have a 
combined accuracy of 2.0 percent of the measured 
value at the fundamental supply source frequency.
    B.1.2 Instruments for measuring distance (e.g., height above the 
reference plane or water level) must be accurate to and have a 
resolution of at least 0.1 inch.
    B.2 Calibration. Calibration requirements for instrumentation are 
specified in appendix

[[Page 1028]]

D of HI 40.6-2014-B (incorporated by reference, see Sec.  431.463). 
Historical calibration data may be used to justify time periods up to 
three times longer than those specified in table D.1 of HI 40.6-2014-B 
provided the supporting historical data shows maintenance of calibration 
of the given instrument up to the selected extended calibration interval 
on at least two unique occasions, based on the interval specified in HI 
40.6-2014-B.

                    C. Test Conditions and Tolerances

    C.1 Pump Specifications. Conduct testing at full impeller diameter 
in accordance with the test conditions, stabilization requirements, and 
specifications of HI 40.6-2014-B section 40.6.3, ``Pump efficiency 
testing''; section 40.6.4, ``Considerations when determining the 
efficiency of a pump''; section 40.6.5.4 (including appendix A), ``Test 
arrangements''; and section 40.6.5.5, ``Test conditions'' (incorporated 
by reference, see Sec.  431.463).
    C.2 Power Supply Requirements. The following conditions also apply 
to the mains power supplied to the DPPP motor or controls, if any:
    (1) Maintain the voltage within 5 percent of 
the rated value of the motor,
    (2) Maintain the frequency within 1 percent of 
the rated value of the motor,
    (3) Maintain the voltage unbalance of the power supply within 3 percent of the value with which the motor was rated, 
and
    (4) Maintain total harmonic distortion below 12 percent throughout 
the test.
    C.3 Test Conditions. Testing must be carried out with water that is 
between 50 and 107 [deg]F with less than or equal to 15 nephelometric 
turbidity units (NTU).
    C.4 Tolerances. For waterfall pumps, multi-speed self-priming and 
non-self-priming pool filter pumps, and variable-speed self-priming and 
non-self-priming pool filter pumps all measured load points must be 
within 2.5 percent of the specified head value and 
comply with any specified flow values or thresholds. For all other 
dedicated-purpose pool pumps, all measured load points must be within 
the greater of 2.5 percent of the specified flow 
rate values or 0.5 gpm and comply with any 
specified head values or thresholds.

                  D. Data Collection and Stabilization

    D.1 Damping Devices. Use of damping devices, as described in section 
40.6.3.2.2 of HI 40.6-2014-B (incorporated by reference, see Sec.  
431.463), are only permitted to integrate up to the data collection 
interval used during testing.
    D.2 Stabilization. Record data at any tested load point only under 
stabilized conditions, as defined in HI 40.6-2014-B section 40.6.5.5.1 
(incorporated by reference, see Sec.  431.463), where a minimum of two 
measurements are used to determine stabilization.
    D.3 Test Points. Measure the flow rate in gpm, pump total head in 
ft, the driver power input in W, and the speed of rotation in rpm at 
each load point specified in Table 1 of this appendix for each DPPP 
variety and speed configuration:

                                 Table 1--Load Points (i) and Weights (wi) for Each DPPP Variety and Speed Configuration
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                        Number of                                                  Test points
                                          Speed            load                        -----------------------------------------------------------------
         DPPP varieties             configuration(s)      points      Load point (i)
                                                           (n)                            Flow rate (Q) (GPM)       Head (H) (ft)         Speed (rpm)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Self-Priming Pool Filter Pumps    Single-speed                  1  High...............  Qhigh (gpm) =            H = 0.0082 x         Maximum speed
 And Non-Self-Priming Pool         dedicated-purpose                                     Qmax_speed@C **          Qhigh\2\
 Filter Pumps.                     pool pumps and all
                                   self-priming and
                                   non-self-priming
                                   pool filter pumps
                                   not meeting the
                                   definition of two-
                                   *, multi-, or
                                   variable-speed
                                   dedicated-purpose
                                   pool pump.
                                  Two-speed dedicated-          2  Low................  Qlow (gpm) = Flow rate   H = 0.0082 x         Lowest speed
                                   purpose pool pumps                                    associated with          Qlow\2\              capable of
                                   *.                                                    specified head and                            meeting the
                                                                                         speed that is not                             specified flow
                                                                                         below:                                        and head values,
                                                                                         31.1                        if any ***.
                                                                                         gpm if rated hydraulic
                                                                                         horsepower is 0.75 or
                                                                                         24.7
                                                                                         gpm if rated hydraulic
                                                                                         horsepower is <=0.75

[[Page 1029]]

 
                                                                   High...............  Qhigh (gpm) =            H = 0.0082 x         Maximum speed.
                                                                                         Qmax_speed@C **          Qhigh\2\
                                  Multi-speed and               2  Low................  Qlow (gpm) =             H = 0.0082 x         Lowest speed
                                   variable-speed                                        If     Qlow\2\              capable of
                                   dedicated-purpose                                     rated hydraulic                               meeting the
                                   pool pumps.                                           horsepower is 0.75, then Qlow >=                         and head values.
                                                                                         31.1 gpm
                                                                                         If
                                                                                         rated hydraulic
                                                                                         horsepower is <=0.75,
                                                                                         then Qlow >=24.7 gpm
                                                                   High...............  Qhigh (gpm) >=0.8 x      H = 0.0082 x         Lowest speed
                                                                                         Qmax_speed@C **          Qhigh\2\             capable of
                                                                                                                                       meeting the
                                                                                                                                       specified flow
                                                                                                                                       and head values.
Waterfall Pumps.................  Single-speed                  1  High...............  Qlow (gpm) = Flow        17.0 ft              Maximum speed.
                                   dedicated-purpose                                     corresponding to
                                   pool pumps.                                           specified head
Pressure Cleaner Booster Pumps..  Any.................          1  High...............  10.0 gpm                 =60.0 ft  Lowest speed
                                                                                                                                       capable of
                                                                                                                                       meeting the
                                                                                                                                       specified flow
                                                                                                                                       and head values.
--------------------------------------------------------------------------------------------------------------------------------------------------------
* In order to apply the test points for two-speed self-priming and non-self-priming pool filter pumps, self-priming pool filter pumps that are greater
  than or equal to 0.711 rated hydraulic horsepower that are two-speed dedicated-purpose pool pumps must also be distributed in commerce either: (1)
  With a pool pump control (variable speed drive and user interface or switch) that changes the speed in response to pre-programmed user preferences and
  allows the user to select the duration of each speed and/or the on/off times or (2) without a pool pump control that has such capability, but without
  which the pump is unable to operate. Two-speed self-priming pool filter pumps greater than or equal to 0.711 rated hydraulic horsepower that do not
  meet these requirements must be tested using the load point for single-speed self-priming or non-self-priming pool filter pumps, as appropriate.
** Qmax_speed@C = Flow at max speed on curve C (gpm)
*** If a two-speed pump has a low speed that results in a flow rate below the specified values, the low speed of that pump shall not be tested.

                             E. Calculations

    E.1 Determination of Weighted Energy Factor. Determine the WEF as a 
ratio of the measured flow and driver power input to the dedicated-
purpose pool pump in accordance with the following equation:
[GRAPHIC] [TIFF OMITTED] TR07AU17.010

Where:

WEF = Weighted Energy Factor in kgal/kWh;
wi = weighting factor at each load point i, as specified in section E.2 
          of this appendix;
Qi = flow at each load point i, in gpm;
Pi = driver power input to the motor (or controls, if present) at each 
          load point i, in watts;
i = load point(s), defined uniquely for each DPPP variety and speed 
          configuration as specified in section D.3 of this appendix; 
          and
n = number of load point(s), defined uniquely for each DPPP variety and 
          speed configuration as specified in section D.3 of this 
          appendix.

    E.2 Weights. When determining WEF, apply the weights specified in 
Table 2 of this appendix for the applicable load points, DPPP varieties, 
and speed configurations:

[[Page 1030]]



                                        Table 2--Load Point Weights (wi)
----------------------------------------------------------------------------------------------------------------
                                                                                          Load point(s) i
                DPPP varieties                       Speed configuration(s)      -------------------------------
                                                                                     Low flow        High flow
----------------------------------------------------------------------------------------------------------------
Self-Priming Pool Filter Pumps and Non-Self-   Single-speed dedicated-purpose     ..............             1.0
 Priming Pool Filter Pumps.                     pool pumps and all self-priming
                                                and non-self-priming pool filter
                                                pumps not meeting the definition
                                                of two-,* multi-, or variable-
                                                speed dedicated-purpose pool
                                                pump.
                                               Two-speed dedicated-purpose pool             0.80            0.20
                                                pumps *.
                                               Multi-speed and variable-speed               0.80            0.20
                                                dedicated-purpose pool pumps.
Waterfall Pumps..............................  Single-speed dedicated-purpose     ..............             1.0
                                                pool pumps.
Pressure Cleaner Booster Pump................  Any..............................  ..............             1.0
----------------------------------------------------------------------------------------------------------------
* In order to apply the test points for two-speed self-priming and non-self-priming pool filter pumps, self-
  priming pool filter pumps that are greater than or equal to 0.711 rated hydraulic horsepower that are two-
  speed dedicated-purpose pool pumps must also be distributed in commerce either: (1) With a pool pump control
  (variable speed drive and user interface or switch) that changes the speed in response to pre-programmed user
  preferences and allows the user to select the duration of each speed and/or the on/off times or (2) without a
  pool pump control that has such capability, but without which the pump is unable to operate. Two-speed self-
  priming pool filter pumps greater than or equal to 0.711 rated hydraulic horsepower that do not meet these
  requirements must be tested using the load point for single-speed self-priming or non-self-priming pool filter
  pumps, as appropriate.

    E.3 Determination of Horsepower and True Power Factor Metrics
    E.3.1 Determine the pump power output at any load point i using the 
following equation:
[GRAPHIC] [TIFF OMITTED] TR07AU17.011

Where:

Pu,i = the measured pump power output at load point i of the tested 
          pump, in hp;
Qi = the measured flow rate at load point i of the tested pump, in gpm;
Hi = pump total head at load point i of the tested pump, in ft; and
SG = the specific gravity of water at specified test conditions, which 
          is equivalent to 1.00.

    E.3.1.1 Determine the rated hydraulic horsepower as the pump power 
output measured on the reference curve at maximum rotating speed and 
full impeller diameter for the rated pump.
    E.3.2 For dedicated-purpose pool pumps with single-phase AC motors 
or DC motors, determine the dedicated-purpose pool pump nominal motor 
horsepower as the product of the measured full load speed and torque, 
adjusted to the appropriate units, as shown in the following equation:
[GRAPHIC] [TIFF OMITTED] TR07AU17.012

Where:

Pnm = the dedicated-purpose pool pump nominal total horsepower at full 
          load, in hp;
T = output torque at full load, in lb-ft; and
n = the motor speed at full load, in rpm.

    Full-load speed and torque shall be determined based on the maximum 
continuous duty motor power output rating allowable for the motor's 
nameplate ambient rating and insulation class.
    E.3.2.1 For single-phase AC motors, determine the measured speed and 
torque at full load according to either section E.3.2.1.1 or E.3.2.1.2 
of this appendix.
    E.3.2.1.1 Use the procedures in section 3.2, ``Tests with load''; 
section 4 ``Testing facilities''; section 5.2 ``Mechanical 
measurements''; section 5.3 ``Temperature measurements''; and section 6 
``Tests'' of IEEE 114-2010 (incorporated by reference, see Sec.  
431.463), or

[[Page 1031]]

    E.3.2.1.2 Use the applicable procedures in section 5, ``General test 
requirements'' and section 6, ``Tests'' of CSA C747-2009 (RA 2014); 
except in section 6.4(b) the conversion factor shall be 5252, only 
measurements at full load are required in section 6.5, and section 6.6 
shall be disregarded (incorporated by reference, see Sec.  431.463).
    E.3.2.2 For DC motors, determine the measured speed and torque at 
full load according to either section E.3.2.2.1 or E.3.2.2.2 of this 
appendix.
    E.3.2.2.1 Use the procedures in section 3.1, ``Instrument Selection 
Factors''; section 3.4 ``Power Measurement'': Section 3.5 ``Power 
Sources''; section 4.1.2 ``Ambient Air''; section 4.1.4 ``Direction of 
Rotation''; section 5.4.1 ``Reference Conditions''; and section 5.4.3.2 
``Dynomometer or Torquemeter Method'' of IEEE 113-1985 (incorporated by 
reference, see Sec.  431.463), or
    E.3.2.2.2 Use the applicable procedures in section 5, ``General test 
requirements'' and section 6, ``Tests'' of CSA C747-2009 (RA 2014); 
except in section 6.4(b) the conversion factor shall be 5252, only 
measurements at full load are required in section 6.5, and section 6.6 
shall be disregarded (incorporated by reference, see Sec.  431.463).
    E.3.3 For dedicated-purpose pool pumps with single-phase AC motors 
or DC motors, the dedicated-purpose pool pump service factor is equal to 
1.0.
    E.3.4 Determine the dedicated-purpose pool pump motor total 
horsepower according to section E.3.4.1 of this appendix for dedicated-
purpose pool pumps with single-phase AC motors or DC motors and section 
E.3.4.2 of this appendix for dedicated-purpose pool pumps with polyphase 
AC motors.
    E.3.4.1 For dedicated-purpose pool pumps with single-phase AC motors 
or DC motors, determine the dedicated-purpose pool pump motor total 
horsepower as the product of the dedicated-purpose pool pump nominal 
motor horsepower, determined in accordance with section E.3.2 of this 
appendix, and the dedicated-purpose pool pump service factor, determined 
in accordance with section E.3.3 of this appendix.
    E.3.4.2 For dedicated-purpose pool pumps with polyphase AC induction 
motors, determine the dedicated-purpose pool pump motor total horsepower 
as the product of the rated nominal motor horsepower and the rated 
service factor of the motor.
    E.3.5 Determine the true power factor at each applicable load point 
specified in Table 1 of this appendix for each DPPP variety and speed 
configuration as a ratio of driver power input to the motor (or 
controls, if present) (Pi), in watts, divided by the product of the 
voltage in volts and the current in amps at each load point i, as shown 
in the following equation:
[GRAPHIC] [TIFF OMITTED] TR07AU17.013

Where:

PFi = true power factor at each load point i, dimensionless;
Pi = driver power input to the motor (or controls, if present) at each 
          load point i, in watts;
Vi = voltage at each load point i, in volts;
Ii = current at each load point i, in amps; and
i = load point(s), defined uniquely for each DPPP variety and speed 
          configuration as specified in section D.3 of this appendix.

    E.4 Determination of Maximum Head. Determine the maximum head for 
self-priming pool filter pumps, non-self-priming pool filter pumps, and 
waterfall pumps by measuring the head at maximum speed and the minimum 
flow rate at which the pump is designed to operate continuously or 
safely, where the minimum flow rate is assumed to be zero unless stated 
otherwise in the manufacturer literature.

               F. Determination of Self-Priming Capability

    F.1 Test Method. Determine the vertical lift and true priming time 
of non-self-priming pool filter pumps and self-priming pool filter pumps 
that are not already certified as self-priming under NSF/ANSI 50-2015 
(incorporated by reference, see Sec.  431.463) by testing such pumps 
pursuant to section C.3 of appendix C of NSF/ANSI 50-2015, except for 
the modifications and exceptions listed in the following sections F.1.1 
through F.1.5 of this appendix:
    F.1.1 Where section C.3.2, ``Apparatus,'' and section C.3.4, ``Self-
priming capability test method,'' of NSF/ANSI 50-2015 (incorporated by 
reference, see Sec.  431.463) state that the ``suction line must be 
essentially as shown in annex C, figure C.1;'' the phrase ``essentially 
as shown in Annex C, figure C.1'' means:
     The centerline of the pump impeller shaft is 
situated a vertical distance equivalent to the specified vertical lift 
(VL), calculated in accordance with section F.1.1.1. of this appendix, 
above the water level of a

[[Page 1032]]

water tank of sufficient volume as to maintain a constant water surface 
level for the duration of the test;
     The pump draws water from the water tank with a 
riser pipe that extends below the water level a distance of at least 3 
times the riser pipe diameter (i.e., 3 pipe diameters);
     The suction inlet of the pump is at least 5 pipe 
diameters from any obstructions, 90[deg] bends, valves, or fittings; and
     The riser pipe is of the same pipe diameter as 
the pump suction inlet.
    F.1.1.1 The vertical lift (VL) must be normalized to 5.0 feet at an 
atmospheric pressure of 14.7 psia and a water density of 62.4 lb/ft\3\ 
in accordance with the following equation:
[GRAPHIC] [TIFF OMITTED] TR07AU17.014

Where:

VL = vertical lift of the test apparatus from the waterline to the 
          centerline of the pump impeller shaft, in ft;
[rho]test = density of test fluid, in lb/ft\3\; and
Pabs,test = absolute barometric pressure of test apparatus location at 
          centerline of pump impeller shaft, in psia.

    F.1.2 The equipment accuracy requirements specified in section B, 
``Measurement Equipment,'' of this appendix also apply to this section 
F, as applicable.
    F.1.2.1 All measurements of head (gauge pressure), flow, and water 
temperature must be taken at the pump suction inlet and all head 
measurements must be normalized back to the centerline of the pump 
impeller shaft in accordance with section A.3.1.3.1 of HI 40.6-2014-B 
(incorporated by reference, see Sec.  431.463).
    F.1.3 All tests must be conducted with clear water that meets the 
requirements adopted in section C.3 of this appendix.
    F.1.4 In section C.3.4, ``Self-priming capability test method,'' of 
NSF/ANSI 50-2015 (incorporated by reference, see Sec.  431.463), ``the 
elapsed time to steady discharge gauge reading or full discharge flow'' 
is determined when the changes in head and flow, respectively, are 
within the tolerance values specified in table 40.6.3.2.2, ``Permissible 
amplitude of fluctuation as a percentage of mean value of quantity being 
measured at any test point,'' of HI 40.6-2014-B (incorporated by 
reference, see Sec.  431.463). The measured priming time (MPT) is 
determined as the point in time when the stabilized load point is first 
achieved, not when stabilization is determined. In addition, the true 
priming time (TPT) is equivalent to the MPT.
    F.1.5 The maximum true priming time for each test run must not 
exceed 10.0 minutes. Disregard section C.3.5 of NSF/ANSI 50-2015 
(incorporated by reference, see Sec.  431.463).

                  G. Optional Testing and Calculations

    G.1 Energy Factor. When making representations regarding the EF of 
dedicated-purpose pool pumps, determine EF on one of four system curves 
(A, B, C, or D) and at any given speed (s) according to the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR07AU17.015

Where:

EFX,s = the energy factor on system curve X at speed s in gal/Wh;
X = one of four possible system curves (A, B, C, or D), as defined in 
          section G.1.1 of this appendix;
s = the tested speed, in rpm;
QX,s = flow rate measured on system curve X at speed s in gpm; and
PX,s = driver power input to the motor (or controls, if present) on 
          system curve X at speed s in watts.

    G.1.1 System Curves. The energy factor may be determined at any 
speed (s) and on

[[Page 1033]]

any of the four system curves A, B, C, and/or D specified in the Table 
3:

         Table 3--Systems Curves for Optional EF Test Procedure
------------------------------------------------------------------------
               System curve                    System curve equation *
------------------------------------------------------------------------
A.........................................  H = 0.0167 x Q\2\
B.........................................  H = 0.0500 x Q\2\
C.........................................  H = 0.0082 x Q\2\
D.........................................  H = 0.0044 x Q\2\
------------------------------------------------------------------------
* In the above table, Q refers to the flow rate in gpm and H refers to
  head in ft.

    G.2 Replacement Dedicated-Purpose Pool Pump Motors. To determine the 
WEF for replacement DPPP motors, test each replacement DPPP motor paired 
with each dedicated-purpose pool pump bare pump for which the 
replacement DPPP motor is advertised to be paired, as stated in the 
manufacturer's literature for that replacement DPPP motor model, 
according to the testing and calculations described in sections A, B, C, 
D, and E of this appendix. Alternatively, each replacement DPPP motor 
may be tested with the most consumptive dedicated-purpose pool pump bare 
pump for which it is advertised to be paired, as stated in the 
manufacturer's literature for that replacement DPPP motor model. If a 
replacement DPPP motor is not advertised to be paired with any specific 
dedicated-purpose pool pump bare pumps, test with the most consumptive 
dedicated-purpose pool pump bare pump available.

[82 FR 36924, Aug. 7, 2017]



 Sec. Appendix C to Subpart Y of Part 431--Uniform Test Method for the 
    Measurement of Energy Efficiency of Dedicated-Purpose Pool Pumps

    Note: Any representations made on or after July 19, 2021, with 
respect to the energy use or efficiency of dedicated-purpose pool pumps 
subject to testing pursuant to 10 CFR 431.464(b) must be made in 
accordance with the results of testing pursuant to this appendix.

           I. Test Procedure for Dedicated-Purpose Pool Pumps

                               A. General

    A.1 Test Method. To determine the weighted energy factor (WEF) for 
dedicated-purpose pool pumps, perform ``wire-to-water'' testing in 
accordance with HI 40.6-2014-B, except section 40.6.4.1, ``Vertically 
suspended pumps''; section 40.6.4.2, ``Submersible pumps''; section 
40.6.5.3, ``Test report''; section 40.6.5.5, ``Test conditions''; 
section 40.6.5.5.2, ``Speed of rotation during testing''; section 
40.6.6.1, ``Translation of test results to rated speed of rotation''; 
section 40.6.6.2, ``Pump efficiency''; section 40.6.6.3, ``Performance 
curve''; section A.7, ``Testing at temperatures exceeding 30 [deg]C 
(86[emsp14] [deg]F)''; and appendix B, ``Reporting of test results''; 
(incorporated by reference, see Sec.  431.463) with the modifications 
and additions as noted throughout the provisions below. Do not use the 
test points specified in section 40.6.5.5.1, ``Test procedure'' of HI 
40.6-2014-B and instead use those test points specified in section D.3 
of this appendix for the applicable dedicated-purpose pool pump variety 
and speed configuration. When determining overall efficiency, best 
efficiency point, or other applicable pump energy performance 
information, section 40.6.5.5.1, ``Test procedure''; section 40.6.6.2, 
``Pump efficiency''; and section 40.6.6.3, ``Performance curve'' must be 
used, as applicable. For the purposes of applying this appendix, the 
term ``volume per unit time,'' as defined in section 40.6.2, ``Terms and 
definitions,'' of HI 40.6-2014-B shall be deemed to be synonymous with 
the term ``flow rate'' used throughout that standard and this appendix .
    A.2 Calculations and Rounding. All terms and quantities refer to 
values determined in accordance with the procedures set forth in this 
appendix for the rated pump. Perform all calculations using raw measured 
values without rounding. Round WEF, maximum head, vertical lift, and 
true priming time values to the tenths place (i.e., 0.1) and rated 
hydraulic horsepower to the thousandths place (i.e., 0.001). Round all 
other reported values to the hundredths place unless otherwise 
specified.

                        B. Measurement Equipment

    B.1 For the purposes of measuring flow rate, speed of rotation, 
temperature, and pump power output, the equipment specified in HI 40.6-
2014-B Appendix C (incorporated by reference, see Sec.  431.463) 
necessary to measure head, speed of rotation, flow rate, and temperature 
must be used and must comply with the stated accuracy requirements in HI 
40.6-2014-B Table 40.6.3.2.3, except as specified in sections B.1.1 and 
B.1.2 of this appendix. When more than one instrument is used to measure 
a given parameter, the combined accuracy, calculated as the root sum of 
squares of individual instrument accuracies, must meet the specified 
accuracy requirements.
    B.1.1 Electrical measurement equipment for determining the driver 
power input to the motor or controls must be capable of measuring true 
root mean squared (RMS) current, true RMS voltage, and real power up to 
the 40th harmonic of fundamental supply source frequency, and have a 
combined accuracy of 2.0 percent of the measured 
value at the fundamental supply source frequency.

[[Page 1034]]

    B.1.2 Instruments for measuring distance (e.g., height above the 
reference plane or water level) must be accurate to and have a 
resolution of at least 0.1 inch.
    B.2 Calibration. Calibration requirements for instrumentation are 
specified in appendix D of HI 40.6-2014-B (incorporated by reference, 
see Sec.  431.463). Historical calibration data may be used to justify 
time periods up to three times longer than those specified in table D.1 
of HI 40.6-2014-B provided the supporting historical data shows 
maintenance of calibration of the given instrument up to the selected 
extended calibration interval on at least two unique occasions, based on 
the interval specified in HI 40.6-2014-B.

                    C. Test Conditions and Tolerances

    C.1 Pump Specifications. Conduct testing at full impeller diameter 
in accordance with the test conditions, stabilization requirements, and 
specifications of HI 40.6-2014-B section 40.6.3, ``Pump efficiency 
testing''; section 40.6.4, ``Considerations when determining the 
efficiency of a pump''; section 40.6.5.4 (including appendix A), ``Test 
arrangements''; and section 40.6.5.5, ``Test conditions'' (incorporated 
by reference, see Sec.  431.463).
    C.2 Power Supply Requirements. The following conditions also apply 
to the mains power supplied to the DPPP motor or controls, if any:
    (1) Maintain the voltage within 5 percent of 
the rated value of the motor,
    (2) Maintain the frequency within 1 percent of 
the rated value of the motor,
    (3) Maintain the voltage unbalance of the power supply within 3 percent of the value with which the motor was rated, 
and
    (4) Maintain total harmonic distortion below 12 percent throughout 
the test.
    C.3 Test Conditions. Testing must be carried out with water that is 
between 50 and 107 [deg]F with less than or equal to 15 nephelometric 
turbidity units (NTU).
    C.4 Tolerances. For waterfall pumps, multi-speed self-priming and 
non-self-priming pool filter pumps, and variable-speed self-priming and 
non-self-priming pool filter pumps all measured load points must be 
within 2.5 percent of the specified head value and 
comply with any specified flow values or thresholds. For all other 
dedicated-purpose pool pumps, all measured load points must be within 
the greater of 2.5 percent of the specified flow 
rate values or 0.5 gpm and comply with any 
specified head values or thresholds.

                  D. Data Collection and Stabilization

    D.1 Damping Devices. Use of damping devices, as described in section 
40.6.3.2.2 of HI 40.6-2014-B (incorporated by reference, see Sec.  
431.463), are only permitted to integrate up to the data collection 
interval used during testing.
    D.2 Stabilization. Record data at any tested load point only under 
stabilized conditions, as defined in HI 40.6-2014-B section 40.6.5.5.1 
(incorporated by reference, see Sec.  431.463), where a minimum of two 
measurements are used to determine stabilization.
    D.3 Test Points. Measure the flow rate in gpm, pump total head in 
ft, the driver power input in W, and the speed of rotation in rpm at 
each load point specified in Table 1 of this appendix for each DPPP 
variety and speed configuration:

                                 Table 1--Load Points (i) and Weights (wi) for Each DPPP Variety and Speed Configuration
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                        Number of                                                  Test points
                                          Speed            load                        -----------------------------------------------------------------
         DPPP varieties             configuration(s)      points      Load point (i)
                                                           (n)                            Flow rate (Q) (GPM)       Head (H) (ft)         Speed (rpm)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Self-Priming Pool Filter Pumps    Single-speed                  1  High...............  Qhigh (gpm) =            H = 0.0082 x         Maximum speed.
 And Non-Self-Priming Pool         dedicated-purpose                                     Qmax_speed@C **          Qhigh\2\
 Filter Pumps.                     pool pumps and all
                                   self-priming and
                                   non-self-priming
                                   pool filter pumps
                                   not meeting the
                                   definition of two-
                                   *, multi-, or
                                   variable-speed
                                   dedicated-purpose
                                   pool pump.

[[Page 1035]]

 
                                  Two-speed dedicated-          2  Low................  Qlow (gpm) = Flow rate   H = 0.0082 x         Lowest speed
                                   purpose pool pumps                                    associated with          Qlow\2\              capable of
                                   *.                                                    specified head and                            meeting the
                                                                                         speed that is not                             specified flow
                                                                                         below:                                        and head values,
                                                                                         31.1                        if any. ***
                                                                                         gpm if rated hydraulic
                                                                                         horsepower is 0.75 or
                                                                                         24.7
                                                                                         gpm if rated hydraulic
                                                                                         horsepower is <=0.75
                                                                   High...............  Qhigh (gpm) =            H = 0.0082 x         Maximum speed.
                                                                                         Qmax_speed@C **          Qlow\2\
                                  Multi-speed and               2  Low................  Qlow (gpm) =             H = 0.0082 x         Lowest speed
                                   variable-speed                                        If     Qlow\2\              capable of
                                   dedicated-purpose                                     rated hydraulic                               meeting the
                                   pool pumps.                                           horsepower is 0.75, then Qlow                            and head values.
                                                                                         >=31.1 gpm
                                                                                         If
                                                                                         rated hydraulic
                                                                                         horsepower is <=0.75,
                                                                                         then Qlow >=24.7 gpm
                                                                   High...............  Qhigh (gpm) >=0.8 x      H = 0.0082 x         Lowest speed
                                                                                         Qmax_speed@C **          Qhigh\2\             capable of
                                                                                                                                       meeting the
                                                                                                                                       specified flow
                                                                                                                                       and head values.
Waterfall Pumps.................  Single-speed                  1  High...............  Qlow (gpm) = Flow        17.0 ft              Maximum speed.
                                   dedicated-purpose                                     corresponding to
                                   pool pumps.                                           specified head
Pressure Cleaner Booster Pumps..  Any.................          1  High...............  10.0 gpm                 =60.0 ft  Lowest speed
                                                                                                                                       capable of
                                                                                                                                       meeting the
                                                                                                                                       specified flow
                                                                                                                                       and head values.
--------------------------------------------------------------------------------------------------------------------------------------------------------
* In order to apply the test points for two-speed self-priming and non-self-priming pool filter pumps, self-priming pool filter pumps that are greater
  than or equal to 0.711 rated hydraulic horsepower that are two-speed dedicated-purpose pool pumps must also be distributed in commerce either: (1)
  With a pool pump control (variable speed drive and user interface or switch) that changes the speed in response to pre-programmed user preferences and
  allows the user to select the duration of each speed and/or the on/off times or (2) without a pool pump control that has such capability, but without
  which the pump is unable to operate. Two-speed self-priming pool filter pumps greater than or equal to 0.711 rated hydraulic horsepower that do not
  meet these requirements must be tested using the load point for single-speed self-priming or non-self-priming pool filter pumps, as appropriate.
** Qmax_speed@C = Flow at max speed on curve C (gpm).
*** If a two-speed pump has a low speed that results in a flow rate below the specified values, the low speed of that pump shall not be tested.

                             E. Calculations

    E.1 Determination of Weighted Energy Factor. Determine the WEF as a 
ratio of the measured flow and driver power input to the dedicated-
purpose pool pump in accordance with the following equation:
[GRAPHIC] [TIFF OMITTED] TR07AU17.016

Where:

WEF = Weighted Energy Factor in kgal/kWh;
Wi = weighting factor at each load point i, as specified in section E.2 
          of this appendix;
Qi = flow at each load point i, in gpm;
Pi = driver power input to the motor (or controls, if present) at each 
          load point i, in watts;

[[Page 1036]]

i = load point(s), defined uniquely for each DPPP variety and speed 
          configuration as specified in section D.3 of this appendix; 
          and
n = number of load point(s), defined uniquely for each DPPP variety and 
          speed configuration as specified in section D.3 of this 
          appendix.

    E.2 Weights. When determining WEF, apply the weights specified in 
Table 2 of this appendix for the applicable load points, DPPP varieties, 
and speed configurations:

                                        Table 2--Load Point Weights (wi)
----------------------------------------------------------------------------------------------------------------
                                                                                          Load point(s) i
                DPPP varieties                       Speed configuration(s)      -------------------------------
                                                                                     Low flow        High flow
----------------------------------------------------------------------------------------------------------------
Self-Priming Pool Filter Pumps and Non-Self-   Single-speed dedicated-purpose     ..............             1.0
 Priming Pool Filter Pumps.                     pool pumps and all self-priming
                                                and non-self-priming pool filter
                                                pumps not meeting the definition
                                                of two-*, multi-, or variable-
                                                speed dedicated-purpose pool
                                                pump.
                                               Two-speed dedicated-purpose pool             0.80            0.20
                                                pumps *.
                                               Multi-speed and variable-speed               0.80            0.20
                                                dedicated-purpose pool pumps.
Waterfall Pumps..............................  Single-speed dedicated-purpose     ..............             1.0
                                                pool pumps.
Pressure Cleaner Booster Pump................  Any..............................  ..............             1.0
----------------------------------------------------------------------------------------------------------------
* In order to apply the test points for two-speed self-priming and non-self-priming pool filter pumps, self-
  priming pool filter pumps that are greater than or equal to 0.711 rated hydraulic horsepower that are two-
  speed dedicated-purpose pool pumps must also be distributed in commerce either: (1) With a pool pump control
  (variable speed drive and user interface or switch) that changes the speed in response to pre-programmed user
  preferences and allows the user to select the duration of each speed and/or the on/off times or (2) without a
  pool pump control that has such capability, but without which the pump is unable to operate. Two-speed self-
  priming pool filter pumps greater than or equal to 0.711 rated hydraulic horsepower that do not meet these
  requirements must be tested using the load point for single-speed self-priming or non-self-priming pool filter
  pumps, as appropriate.

    E.3 Determination of Horsepower and True Power Factor Metrics
    E.3.1 Determine the pump power output at any load point i using the 
following equation:
[GRAPHIC] [TIFF OMITTED] TR07AU17.017

Where:

Pu,i = the measured pump power output at load point i of the tested 
          pump, in hp;
Qi = the measured flow rate at load point i of the tested pump, in gpm;
Hi = pump total head at load point i of the tested pump, in ft; and
SG = the specific gravity of water at specified test conditions, which 
          is equivalent to 1.00.

    E.3.1.1 Determine the rated hydraulic horsepower as the pump power 
output measured on the reference curve at maximum rotating speed and 
full impeller diameter for the rated pump.
    E.3.2 For dedicated-purpose pool pumps with single-phase AC motors 
or DC motors, determine the dedicated-purpose pool pump nominal motor 
horsepower as the product of the measured full load speed and torque, 
adjusted to the appropriate units, as shown in the following equation:
[GRAPHIC] [TIFF OMITTED] TR07AU17.018

Where:

Pnm = the dedicated-purpose pool pump nominal total horsepower at full 
          load, in hp;
T = output torque at full load, in lb-ft; and
n = the motor speed at full load, in rpm.


[[Page 1037]]


    Full-load speed and torque shall be determined based on the maximum 
continuous duty motor power output rating allowable for the motor's 
nameplate ambient rating and insulation class.
    E.3.2.1 For single-phase AC motors, determine the measured speed and 
torque at full load according to either section E.3.2.1.1 or E.3.2.1.2 
of this appendix.
    E.3.2.1.1 Use the procedures in section 3.2, ``Tests with load''; 
section 4 ``Testing facilities''; section 5.2 ``Mechanical 
measurements''; section 5.3 ``Temperature measurements''; and section 6 
``Tests'' of IEEE 114-2010 (incorporated by reference, see Sec.  
431.463), or
    E.3.2.1.2 Use the applicable procedures in section 5, ``General test 
requirements'' and section 6, ``Tests'' of CSA C747-2009 (RA 2014); 
except in section 6.4(b) the conversion factor shall be 5252, only 
measurements at full load are required in section 6.5, and section 6.6 
shall be disregarded (incorporated by reference, see Sec.  431.463).
    E.3.2.2 For DC motors, determine the measured speed and torque at 
full load according to either section E.3.2.2.1 or E.3.2.2.2 of this 
appendix.
    E.3.2.2.1 Use the procedures in section 3.1, ``Instrument Selection 
Factors''; section 3.4 ``Power Measurement'': Section 3.5 ``Power 
Sources''; section 4.1.2 ``Ambient Air''; section 4.1.4 ``Direction of 
Rotation''; section 5.4.1 ``Reference Conditions''; and section 5.4.3.2 
``Dynomometer or Torquemeter Method'' of IEEE 113-1985 (incorporated by 
reference, see Sec.  431.463), or
    E.3.2.2.2 Use the applicable procedures in section 5, ``General test 
requirements'' and section 6, ``Tests'' of CSA C747-2009 (RA 2014); 
except in section 6.4(b) the conversion factor shall be 5252, only 
measurements at full load are required in section 6.5, and section 6.6 
shall be disregarded (incorporated by reference, see Sec.  431.463).
    E.3.3 For dedicated-purpose pool pumps with single-phase AC motors 
or DC motors, the dedicated-purpose pool pump service factor is equal to 
1.0.
    E.3.4 Determine the dedicated-purpose pool pump motor total 
horsepower according to section E.3.4.1 of this appendix for dedicated-
purpose pool pumps with single-phase AC motors or DC motors and section 
E.3.4.2 of this appendix for dedicated-purpose pool pumps with polyphase 
AC motors.
    E.3.4.1 For dedicated-purpose pool pumps with single-phase AC motors 
or DC motors, determine the dedicated-purpose pool pump motor total 
horsepower as the product of the dedicated-purpose pool pump nominal 
motor horsepower, determined in accordance with section E.3.2 of this 
appendix, and the dedicated-purpose pool pump service factor, determined 
in accordance with section E.3.3 of this appendix.
    E.3.4.2 For dedicated-purpose pool pumps with polyphase AC induction 
motors, determine the dedicated-purpose pool pump motor total horsepower 
as the product of the rated nominal motor horsepower and the rated 
service factor of the motor.
    E.3.5 Determine the true power factor at each applicable load point 
specified in Table 1 of this appendix for each DPPP variety and speed 
configuration as a ratio of driver power input to the motor (or 
controls, if present) (Pi), in watts, divided by the product of the 
voltage in volts and the current in amps at each load point i, as shown 
in the following equation:
[GRAPHIC] [TIFF OMITTED] TR07AU17.019

Where:

PFi = true power factor at each load point i, dimensionless;
Pi = driver power input to the motor (or controls, if present) at each 
          load point i, in watts;
Vi = voltage at each load point i, in volts;
Ii = current at each load point i, in amps; and
i = load point(s), defined uniquely for each DPPP variety and speed 
          configuration as specified in section D.3 of this appendix.

    E.4 Determination of Maximum Head. Determine the maximum head for 
self-priming pool filter pumps, non-self-priming pool filter pumps, and 
waterfall pumps by measuring the head at maximum speed and the minimum 
flow rate at which the pump is designed to operate continuously or 
safely, where the minimum flow rate is assumed to be zero unless stated 
otherwise in the manufacturer literature.

               F. Determination of Self-Priming Capability

    F.1 Test Method. Determine the vertical lift and true priming time 
of non-self-priming pool filter pumps and self-priming pool filter pumps 
that are not already certified as self-priming under NSF/ANSI 50-2015 
(incorporated by reference, see Sec.  431.463) by testing such pumps 
pursuant to section C.3 of appendix C of NSF/ANSI 50-2015, except for 
the modifications and exceptions

[[Page 1038]]

listed in the following sections F.1.1 through F.1.5 of this appendix:
    F.1.1 Where section C.3.2, ``Apparatus,'' and section C.3.4, ``Self-
priming capability test method,'' of NSF/ANSI 50-2015 (incorporated by 
reference, see Sec.  431.463) state that the ``suction line must be 
essentially as shown in annex C, figure C.1;'' the phrase ``essentially 
as shown in Annex C, figure C.1'' means:
    (1) The centerline of the pump impeller shaft is situated a vertical 
distance equivalent to the specified vertical lift (VL), calculated in 
accordance with section F.1.1.1. of this appendix, above the water level 
of a water tank of sufficient volume as to maintain a constant water 
surface level for the duration of the test;
    (2) The pump draws water from the water tank with a riser pipe that 
extends below the water level a distance of at least 3 times the riser 
pipe diameter (i.e., 3 pipe diameters);
    (3) The suction inlet of the pump is at least 5 pipe diameters from 
any obstructions, 90[deg] bends, valves, or fittings; and
    (4) The riser pipe is of the same pipe diameter as the pump suction 
inlet.
    F.1.1.1 The vertical lift (VL) must be normalized to 5.0 feet at an 
atmospheric pressure of 14.7 psia and a water density of 62.4 lb/ft\3\ 
in accordance with the following equation:
[GRAPHIC] [TIFF OMITTED] TR07AU17.020

Where:

VL = vertical lift of the test apparatus from the waterline to the 
          centerline of the pump impeller shaft, in ft;
[rho]test = density of test fluid, in lb/ft\3\; and
Pabs,test = absolute barometric pressure of test apparatus location at 
          centerline of pump impeller shaft, in psia.

    F.1.2 The equipment accuracy requirements specified in section B, 
``Measurement Equipment,'' of this appendix also apply to this section 
F, as applicable.
    F.1.2.1 All measurements of head (gauge pressure), flow, and water 
temperature must be taken at the pump suction inlet and all head 
measurements must be normalized back to the centerline of the pump 
impeller shaft in accordance with section A.3.1.3.1 of HI 40.6-2014-B 
(incorporated by reference, see Sec.  431.463).
    F.1.3 All tests must be conducted with clear water that meets the 
requirements adopted in section C.3 of this appendix.
    F.1.4 In section C.3.4, ``Self-priming capability test method,'' of 
NSF/ANSI 50-2015 (incorporated by reference, see Sec.  431.463), ``the 
elapsed time to steady discharge gauge reading or full discharge flow'' 
is determined when the changes in head and flow, respectively, are 
within the tolerance values specified in table 40.6.3.2.2, ``Permissible 
amplitude of fluctuation as a percentage of mean value of quantity being 
measured at any test point,'' of HI 40.6-2014-B (incorporated by 
reference, see Sec.  431.463). The measured priming time (MPT) is 
determined as the point in time when the stabilized load point is first 
achieved, not when stabilization is determined. In addition, the true 
priming time (TPT) is equivalent to the MPT.
    F.1.5 The maximum true priming time for each test run must not 
exceed 10.0 minutes. Disregard section C.3.5 of NSF/ANSI 50-2015 
(incorporated by reference, see Sec.  431.463).

                  G. Optional Testing and Calculations

    G.1 Replacement Dedicated-Purpose Pool Pump Motors. To determine the 
WEF for replacement DPPP motors, test each replacement DPPP motor paired 
with each dedicated-purpose pool pump bare pump for which the 
replacement DPPP motor is advertised to be paired, as stated in the 
manufacturer's literature for that replacement DPPP motor model, 
according to the testing and calculations described in sections A, B, C, 
D, and E of this appendix. Alternatively, each replacement DPPP motor 
may be tested with the most consumptive dedicated-purpose pool pump bare 
pump for which it is advertised to be paired, as stated in the 
manufacturer's literature for that replacement DPPP motor model. If a 
replacement DPPP motor is not advertised to be paired with any specific 
dedicated-purpose pool pump bare pumps, test with the most consumptive 
dedicated-purpose pool pump bare pump available.

[82 FR 36924, Aug. 7, 2017]

[[Page 1039]]



PART 433_ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND CONSTRUCTION 
OF NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS--
Table of Contents



Sec.
433.1 Purpose and scope.
433.2 Definitions.
433.3 Materials incorporated by reference.
433.4-433.7 [Reserved]
433.8 Life-cycle costing.

                 Subpart A_Energy Efficiency Performance

433.100 Energy efficiency performance standard.
433.101 Performance level determination.

Subpart B--Reduction in Fossil Fuel-Generated Energy Consumption [Reserved]

      Subpart C_Green Building Certification for Federal Buildings

433.300 Green building certification.

    Authority: 42 U.S.C. 6831-6832, 6834-6835; 42 U.S.C. 7101 et seq.

    Source: 71 FR 70281, Dec. 4, 2006, unless otherwise noted.



Sec.  433.1  Purpose and scope.

    (a) This part establishes an energy efficiency performance standard 
for the new Federal commercial and multi-family high-rise buildings, for 
which design for construction began on or after January 3, 2007, as 
required by section 305(a) of the Energy Conservation and Production 
Act, as amended (42 U.S.C. 6834(a)).
    (b) [Reserved]
    (c) This part also establishes green building certification 
requirements for new Federal buildings that are commercial and multi-
family high-rise residential buildings and major renovations to Federal 
buildings that are commercial and multi-family high-rise residential 
buildings, for which design for construction began on or after October 
14, 2015.

[71 FR 70281, Dec. 4, 2006, as amended at 79 FR 61569, Oct. 14, 2014]



Sec.  433.2  Definitions.

    For purposes of this part, the following terms, phrases and words 
are defined as follows:
    ANSI means the American National Standards Institute.
    ASHRAE means the American Society of Heating, Refrigerating and Air-
Conditioning Engineers.
    ASHRAE Baseline Building 2004 means a building that is otherwise 
identical to the proposed building but is designed to meet, but not 
exceed, the energy efficiency specifications in ANSI/ASHRAE/IESNA 
Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise 
Residential Buildings, January 2004 (incorporated by reference, see 
Sec.  433.3).
    ASHRAE Baseline Building 2007 means a building that is otherwise 
identical to the proposed building but is designed to meet, but not 
exceed, the energy efficiency specifications in ANSI/ASHRAE/IESNA 
Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise 
Residential Buildings, December 2007 (incorporated by reference, see 
Sec.  433.3).
    ASHRAE Baseline Building 2010 means a building that is otherwise 
identical to the proposed building but is designed to meet, but not 
exceed, the energy efficiency specifications in ANSI/ASHRAE/IESNA 
Standard 90.1-2010, Energy Standard for Buildings Except Low-Rise 
Residential Buildings, 2010 (incorporated by reference, see Sec.  
433.3).
    ASHRAE Baseline Building 2013 means a building that is otherwise 
identical to the proposed building but is designed to meet, but not 
exceed, the energy efficiency specifications in ANSI/ASHRAE/IES Standard 
90.1-2013, Energy Standard for Buildings Except Low-Rise Residential 
Buildings, 2013 (incorporated by reference, see Sec.  433.3).
    Commercial and multi-family high-rise residential building means all 
buildings other than low-rise residential buildings.
    Design for construction means the stage when the energy efficiency 
and sustainability details (such as insulation levels, HVAC systems, 
water-using systems, etc.) are either explicitly determined or 
implicitly included in a project cost specification.

[[Page 1040]]

    DOE means the U.S. Department of Energy.
    Federal agency means any department, agency, corporation, or other 
entity or instrumentality of the executive branch of the Federal 
Government, including the United States Postal Service, the Federal 
National Mortgage Association, and the Federal Home Loan Mortgage 
Corporation.
    IESNA means Illuminating Engineering Society of North America.
    Life-cycle cost means the total cost related to energy conservation 
measures of owning, operating and maintaining a building over its useful 
life as determined in accordance with 10 CFR part 436.
    Life-cycle cost-effective means that the proposed building has a 
lower life-cycle cost than the life-cycle costs of the baseline 
building, as described by 10 CFR 436.19, or has a positive estimated net 
savings, as described by 10 CFR 436.20; or has a savings-to-investment 
ratio estimated to be greater than one, as described by 10 CFR 436.21; 
or has an adjusted internal rate of return, as described by 10 CFR 
436.22, that is estimated to be greater than the discount rate as listed 
in OMB Circular Number A-94 (Guidelines and Discount Rates for Benefit-
Cost Analysis of Federal Programs.''
    Low-rise residential building means any building three stories or 
less in height above grade that includes sleeping accommodations where 
the occupants are primarily permanent in nature (30 days or more).
    New Federal building means any building to be constructed on a site 
that previously did not have a building or a complete replacement of an 
existing building from the foundation up, by, or for the use of, any 
Federal agency which is not legally subject to State or local building 
codes or similar requirements.
    Process load means the load on a building resulting from energy 
consumed in support of a manufacturing, industrial, or commercial 
process. Process loads do not include energy consumed maintaining 
comfort and amenities for the occupants of the building (including space 
conditioning for human comfort).
    Proposed building means the building design of a new Federal 
commercial and multi-family high-rise building proposed for 
construction.
    Receptacle load means the load on a building resulting from energy 
consumed by any equipment plugged into electrical outlets.

[71 FR 70281, Dec. 4, 2006, as amended at 72 FR 72570, Dec. 21, 2007; 76 
FR 49284, Aug. 10, 2011; 78 FR 40953, July 9, 2013; 80 FR 68757, Nov. 6, 
2015]



Sec.  433.3  Materials incorporated by reference.

    (a) General. The Department of Energy incorporates by reference the 
energy performance standards listed in paragraph (b) of this section 
into 10 CFR part 433. The Director of the Federal Register has approved 
the material listed in paragraph (b) of this section for incorporation 
by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any 
subsequent amendment to a standard by the standard-setting organization 
will not affect DOE regulations unless and until DOE amends its energy 
performance standards. Material is incorporated as it exists on the date 
of the approval, and a notice of any change in the material will be 
published in the Federal Register. All approved material is available 
for inspection at the U.S. Department of Energy, Office of Energy 
Efficiency and Renewable Energy, Building Technologies Program, Sixth 
Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024, (202) 586-2945. 
Also, this material is available for inspection at the National Archives 
and Records Administration (NARA). For information on the availability 
of this material at NARA, call 202-741-6030, or go to: http://
www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html.
    (b) ASHRAE. American Society of Heating Refrigerating and Air-
Conditioning Engineers, Inc., 1791 Tullie Circle, NE. Atlanta, GA 30329, 
(404) 636-8400; or go to, http://www.ashrae.org//.
    (1) ANSI/ASHRAE/IESNA 90.1-2004, (``ASHRAE 90.1-2004''), Energy 
Standard for Buildings Except Low-Rise Residential Buildings, January 
2004, ISSN 1041-2336, IBR approved for Sec. Sec.  433.2, 433.100, and 
433.101;

[[Page 1041]]

    (2) ANSI/ASHRAE/IESNA Standard 90.1-2007, (``ASHRAE 90.1-2007''), 
Energy Standard for Buildings Except Low-Rise Residential Buildings, 
2007, ISSN 1041-2336, IBR approved for Sec. Sec.  433.2, 433.100, and 
433.101.
    (3) ANSI/ASHRAE/IESNA 90.1-2010, (``ASHRAE 90.1-2010''), Energy 
Standard for Buildings Except Low-Rise Residential Buildings, I-P 
Edition, Copyright 2010, IBR approved for Sec. Sec.  433.2, 433.100, and 
433.101.
    (4) ANSI/ASHRAE/IES 90.1-2013, (``ASHRAE 90.1-2013''), Energy 
Standard for Buildings Except Low-Rise Residential Buildings, I-P 
Edition, Copyright 2013, IBR approved for Sec. Sec.  433.2, 433.100, and 
433.101.

[76 FR 49284, Aug. 10, 2011, as amended at 78 FR 40953, July 9, 2013; 79 
FR 61569, Oct. 14, 2014; 80 FR 68757, Nov. 6, 2015]



Sec. Sec.  433.4-433.7  [Reserved]



Sec.  433.8  Life-cycle costing.

    Each Federal agency shall determine life-cycle cost-effectiveness by 
using the procedures set out in subpart A of part 436. A Federal agency 
may choose to use any of four methods, including lower life-cycle costs, 
positive net savings, savings-to-investment ratio that is estimated to 
be greater than one, and an adjusted internal rate of return that is 
estimated to be greater than the discount rate as listed in OMB Circular 
Number A-94 ``Guidelines and Discount Rates for Benefit-Cost Analysis of 
Federal Programs.''



                 Subpart A_Energy Efficiency Performance

    Source: 79 FR 61569, Oct. 14, 2014, unless otherwise noted.



Sec.  433.100  Energy efficiency performance standard.

    (a) (1) All Federal agencies shall design new Federal buildings that 
are commercial and multi-family high-rise residential buildings, for 
which design for construction began on or after January 3, 2007, but 
before August 10, 2012, to:
    (i) Meet ASHRAE 90.1-2004, (incorporated by reference, see Sec.  
433.3); and
    (ii) If life-cycle cost-effective, achieve energy consumption 
levels, calculated consistent with paragraph (b) of this section, that 
are at least 30 percent below the levels of the ASHRAE Baseline Building 
2004.
    (2) All Federal agencies shall design new Federal buildings that are 
commercial and multi-family high-rise residential buildings, for which 
design for construction began on or after August 10, 2012, but before 
July 9, 2014, to:
    (i) Meet ASHRAE 90.1-2007, (incorporated by reference, see Sec.  
433.3); and
    (ii) If life-cycle cost-effective, achieve energy consumption 
levels, calculated consistent with paragraph (b) of this section, that 
are at least 30 percent below the levels of the ASHRAE Baseline Building 
2007.
    (3) All Federal agencies shall design new Federal buildings that are 
commercial and multi-family high-rise residential buildings, for which 
design for construction began on or after July 9, 2014, but before 
November 6, 2016 to:
    (i) Meet ASHRAE 90.1-2010, (incorporated by reference, see Sec.  
433.3); and
    (ii) If life-cycle cost-effective, achieve energy consumption 
levels, calculated consistent with paragraph (b) of this section, that 
are at least 30 percent below the levels of the ASHRAE Baseline Building 
2010.
    (4) All Federal agencies shall design new Federal buildings that are 
commercial and multi-family high-rise residential buildings, for which 
design for construction began on or after November 6, 2016 to:
    (i) Meet ASHRAE 90.1-2013, (incorporated by reference, see Sec.  
433.3); and
    (ii) If life-cycle cost-effective, achieve energy consumption 
levels, calculated consistent with paragraph (b) of this section, that 
are at least 30 percent below the levels of the ASHRAE Baseline Building 
2013.
    (b) Energy consumption for the purposes of calculating the 30 
percent savings requirements shall include the building envelope and 
energy consuming systems normally specified as part of the building 
design by ASHRAE 90.1 such as space heating, space cooling, ventilation, 
service water heating, and lighting, but shall not include receptacle 
and process loads not within the scope of ASHRAE 90.1 such as 
specialized medical or research equipment

[[Page 1042]]

and equipment used in manufacturing processes.
    (c) If a 30 percent reduction is not life-cycle cost-effective, the 
design of the proposed building shall be modified so as to achieve an 
energy consumption level at or better than the maximum level of energy 
efficiency that is life-cycle cost-effective, but at a minimum complies 
with paragraph (a) of this section.

[79 FR 61569, Oct. 14, 2014, as amended at 80 FR 68757, Nov. 6, 2015]



Sec.  433.101  Performance level determination.

    (a)(1) For Federal buildings for which design for construction began 
on or after January 3, 2007, but before August 10, 2012, each Federal 
agency shall determine energy consumption levels for both the ASHRAE 
Baseline Building 2004 and proposed building by using the Performance 
Rating Method found in Appendix G of ASHRAE 90.1-2004 (incorporated by 
reference, see Sec.  433.3), except the formula for calculating the 
Performance Rating in paragraph G1.2 shall read as follows:
    (i) Percentage improvement = 100 x ((Baseline building consumption--
Receptacle and process loads)--(Proposed building consumption--
Receptacle and process loads))/(Baseline building consumption--
Receptacle and process loads) (which simplifies as follows):
    (ii) Percentage improvement = 100 x (Baseline building consumption--
Proposed building consumption)/(Baseline building consumption--
Receptacle and process loads).
    (2) For Federal buildings for which design for construction began on 
or after August 10, 2012, but before July 9, 2014, each Federal agency 
shall determine energy consumption levels for both the ASHRAE Baseline 
Building 2007 and proposed building by using the Performance Rating 
Method found in Appendix G of ASHRAE 90.1-2007 (incorporated by 
reference, see Sec.  433.3), except the formula for calculating the 
Performance Rating in paragraph G1.2 shall read as follows:
    (i) Percentage improvement = 100 x ((Baseline building consumption--
Receptacle and process loads)--(Proposed building consumption--
Receptacle and process loads))/(Baseline building consumption--
Receptacle and process loads) (which simplifies as follows):
    (ii) Percentage improvement = 100 x (Baseline building consumption--
Proposed building consumption)/(Baseline building consumption--
Receptacle and process loads).
    (3) For Federal buildings for which design for construction began on 
or after July 9, 2014, but before November 6, 2016 each Federal agency 
shall determine energy consumption levels for both the ASHRAE Baseline 
Building 2010 and proposed building by using the Performance Rating 
Method found in Appendix G of ASHRAE 90.1-2010 (incorporated by 
reference, see Sec.  433.3), except the formula for calculating the 
Performance Rating in paragraph G1.2 shall read as follows:
    (i) Percentage improvement = 100 x ((Baseline building consumption--
Receptacle and process loads)--(Proposed building consumption--
Receptacle and process loads))/(Baseline building consumption--
Receptacle and process loads) (which simplifies as follows):
    (ii) Percentage improvement = 100 x (Baseline building consumption--
Proposed building consumption)/(Baseline building consumption--
Receptacle and process loads).
    (4) For Federal buildings for which design for construction began on 
or after before November 6, 2016 each Federal agency shall determine 
energy consumption levels for both the ASHRAE Baseline Building 2013 and 
proposed building by using the Performance Rating Method found in 
Appendix G of ASHRAE 90.1-2013 (incorporated by reference, see Sec.  
433.3), except the formula for calculating the Performance Rating in 
paragraph G1.2 shall read as follows:
    (i) Percentage improvement = 100 x ((Baseline building consumption - 
Receptacle and process loads)- (Proposed building consumption - 
Receptacle and process loads))/(Baseline building consumption - 
Receptacle and process loads) (which simplifies as follows):
    (ii) Percentage improvement = 100 x (Baseline building consumption - 
Proposed building consumption)/(Baseline building consumption - 
Receptacle and process loads).

[[Page 1043]]

    (b) Energy consumption for the purposes of calculating the 30 
percent savings requirements in Sec.  433.100 shall include the building 
envelope and energy consuming systems normally specified as part of the 
building design by ASHRAE 90.1 such as space heating, space cooling, 
ventilation, service water heating, and lighting, but shall not include 
receptacle and process loads not within the scope of ASHRAE 90.1 such as 
specialized medical or research equipment and equipment used in 
manufacturing processes.

[79 FR 61569, Oct. 14, 2014, as amended at 80 FR 68757, Nov. 6, 2015]

Subpart B--Reduction in Fossil Fuel-Generated Energy Consumption [Reserved]



      Subpart C_Green Building Certification for Federal Buildings



Sec.  433.300  Green building certification.

    (a) If a Federal agency chooses to use a green building 
certification system to certify a new Federal building or a Federal 
building undergoing a major renovation and such building is also either 
a public building (as defined in 40 U.S.C. 3301) for which transmittal 
of a prospectus to Congress is required under 40 U.S.C. 3307, or a 
Federal building for which estimated new building or major renovation 
design and construction costs are at least $2,500,000 (in 2007 dollars, 
adjusted for inflation), and design for construction began on or after 
October 14, 2015.
    (b) The system under which the building is certified must:
    (1) Allow assessors and auditors to independently verify the 
criteria and measurement metrics of the system;
    (2) Be developed by a certification organization that:
    (i) Provides an opportunity for public comment on the system; and
    (ii) Provides an opportunity for development and revision of the 
system through a consensus-based process;
    (3) Be nationally recognized within the building industry;
    (4) Be subject to periodic evaluation and assessment of the 
environmental and energy benefits that result under the rating system; 
and
    (5) Include a verification system for post-occupancy assessment of 
the rated buildings to demonstrate continued energy and water savings at 
least every four years after initial occupancy.
    (c) Certification level. The building must be certified to a level 
that promotes the high performance sustainable building guidelines 
referenced in Executive Order 13423 ``Strengthening Federal 
Environmental, Energy, and Transportation Management'' and Executive 
Order 13514 ``Federal Leadership in Environmental, Energy and Economic 
Performance.''

[79 FR 61570, Oct. 14, 2014]



PART 434_ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY 
HIGH RISE RESIDENTIAL BUILDINGS--Table of Contents



Sec.
434.99 Explanation of numbering system for codes.

            Subpart A_Administration and Enforcement_General

434.100 Purpose.
434.101 Scope.
434.102 Compliance.
434.103 Referenced standards (RS).
434.105 Materials and equipment.

                          Subpart B_Definitions

434.201 Definitions.

                       Subpart C_Design Conditions

434.301 Design criteria.

  Subpart D_Building Design Requirements_Electric Systems and Equipment

434.401 Electrical power and lighting systems.
434.402 Building envelope assemblies and materials.
434.403 Building mechanical systems and equipment.
434.404 Building service systems and equipment.

          Subpart E_Building Energy Cost Compliance Alternative

434.501 General.
434.502 Determination of the annual energy cost budget.
434.503 Prototype building procedure.
434.504 Use of the prototype building to determine the energy cost 
          budget.

[[Page 1044]]

434.505 Reference building method.
434.506 Use of the reference building to determine the energy cost 
          budget.
434.507 Calculation procedure and simulation tool.
434.508 Determination of the design energy consumption and design energy 
          cost.
434.509 Compliance.
434.510 Standard calculation procedure.
434.511 Orientation and shape.
434.512 Internal loads.
434.513 Occupancy.
434.514 Lighting.
434.515 Receptacles.
434.516 Building exterior envelope.
434.517 HVAC systems and equipment.
434.518 Service water heating.
434.519 Controls.
434.520 Speculative buildings.
434.521 The simulation tool.

            Subpart F_Building Energy Compliance Alternative

434.601 General.
434.602 Determination of the annual energy budget.
434.603 Determination of the design energy use.
434.604 Compliance.
434.605 Standard calculation procedure.
434.606 Simulation tool.
434.607 Life cycle cost analysis criteria.

                      Subpart G_Reference Standards

434.701 General.

    Authority: 42 U.S.C. 6831-6832, 6834-6836; 42 U.S.C. 8253-54; 42 
U.S.C. 7101, et seq.

    Source: 65 FR 60012, Oct. 6, 2000, unless otherwise noted.



Sec.  434.99  Explanation of numbering system for codes.

    (a) For purposes of this part, a derivative of two different 
numbering systems will be used.
    (1) For the purpose of designating a section, the system employed in 
the Code of Federal Regulations (CFR) will be employed. The number 
``434'' which signifies part 434 in chapter II of Title 10, Code of 
Federal Regulations, is used as a prefix for all section headings. The 
suffix is a two or three digit section number. For example the lighting 
section of the standards is designated Sec.  434.401.
    (2) Within each section, a numbering system common to many national 
voluntary consensus standards is used. A decimal system is used to 
denote paragraphs and subparagraphs within a section. For example, in 
Sec.  434.401, ``401.2.1'' refers to subsection 401, paragraph 2, 
subparagraph 1.
    (b) The hybrid numbering system is used for two purposes:
    (1) The use of the Code of Federal Regulations' numbering system 
allows the researcher using the CFR easy access to the standards.
    (2) The use of the second system allows the builder, designer, 
architect or engineer easy access because they are familiar to this 
system numbering. This system was chosen because of its commonality 
among the building industry.



            Subpart A_Administration and Enforcement_General



Sec.  434.100  Purpose.

    The provisions of this part provide minimum standards for energy 
efficiency for the design of new Federal commercial and multi-family 
high rise residential buildings, for which design for construction began 
before January 3, 2007. The performance standards are designed to 
achieve the maximum practicable improvements in energy efficiency and 
increases in the use of non-depletable sources of energy. This rule is 
based upon the ASHRAE/IESNA Standard 90.1-1989 and addenda b, c, d, e, 
f, g, and i. (This document is available from the American Society of 
Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1791 Tullie 
Circle NE, Atlanta, GA.) It is not incorporated by reference in this 
document, but is mentioned for informational purposes only.

[71 FR 70283, Dec. 4, 2006]



Sec.  434.101  Scope.

    101.1 This part provides design requirements for the building 
envelope, electrical distribution systems and equipment for electric 
power, lighting, heating, ventilating, air conditioning, service water 
heating and energy management. It applies to new Federal multi-family 
high rise residential buildings and new Federal commercial buildings, 
for which design for construction began before January 3, 2007.

[[Page 1045]]

    101.1.1 (a) Except as provided by section 101.2, the provisions of 
this part apply if an agency is constructing:
    (1) A building that has never been in service;
    (2) An addition for which design for construction began before 
January 3, 2007, that adds new space with provision for a heating or 
cooling system, or both, or for a hot water system; or
    (3) A substantial renovation of a building for which design for 
construction began before January 3, 2007, involving replacement of a 
heating or cooling system, or both, or hot water system, that is either 
in service or has been in service.
    101.2 The provisions of this part do not apply to:
    101.2.1 Buildings, or portions thereof separated from the remainder 
of the building, that have a peak energy usage for space conditioning, 
service water heating, and lighting of less than 3.5 Btu/
(hft \2\ of gross floor area.
    101.2.2 Buildings of less than 100 square feet of gross floor area.
    101.2.3 Heating, cooling, ventilating, or service hot water 
requirements for those spaces where processes occur for purposes other 
than occupant comfort and sanitation, and which impose thermal loads in 
excess of 5% of the loads that would otherwise be required for occupant 
comfort and sanitation without the process;
    101.2.4 Envelope requirements for those spaces where heating or 
cooling requirements are excepted in subsection 101.2.3 of this section.
    101.2.5 Lighting for tasks not listed or encompassed by areas or 
activities listed in Tables 401.3.2b, 401.3.2c and 401.3.2d.
    101.2.6 Buildings that are composed entirely of spaces listed in 
subsections 101.2.4 and 101.2.5.
    101.2.7 Individual components of a building under renovation, if the 
building components are not in the scope of a renovation as defined by 
the agency.

[65 FR 60012, Oct. 6, 2000, as amended at 71 FR 70283, Dec. 4, 2006; 72 
FR 72571, Dec. 21, 2007]



Sec.  434.102  Compliance.

    102.1 A covered building must be designed and constructed consistent 
with the provisions of subpart D of this part.
    102.2 Buildings designed and constructed to meet the alternative 
requirements of subparts E or F of this part shall be deemed to satisfy 
the requirements of this part. Such designs shall be certified by a 
registered architect or engineer stating that the estimated energy cost 
or energy use for the building as designed is no greater than the energy 
cost or energy use of a prototype building or reference building as 
determined pursuant to subparts E or F of this part.



Sec.  434.103  Referenced standards (RS).

    103.1 The standards, technical handbooks, papers and regulations 
listed in Sec.  434.701, shall be considered part of this part to the 
prescribed extent of such reference. Where differences occur between the 
provisions of this part and referenced standards, the provisions of this 
part shall apply. Whenever a reference is made in this part to an RS 
standard it refers to the standards listed in Sec.  434.701.



Sec.  434.105  Materials and equipment.

    105.1 Building materials and equipment shall be identified in 
designs in a manner that will allow for a determination of their 
compliance with the applicable provisions of this part.



                          Subpart B_Definitions



Sec.  434.201  Definitions.

    For the purposes of this part, the following terms, phrases, and 
words shall be defined as provided:
    Accessible (as applied to equipment): admitting close approach; not 
guarded by locked doors, elevations, or other effective means. (See also 
``readily accessible'')
    Annual Fuel Utilization Efficiency (AFUE): the ratio of annual 
output energy to annual input energy that includes any non-heating 
season pilot input loss.
    Area of the space (A): the horizontal lighted area of a given space 
measured from the inside of the perimeter walls or partitions, at the 
height of the working surface.
    Automatic: self-acting, operating by its own mechanism when actuated 
by some impersonal influence, such as a change in current strength, 
pressure,

[[Page 1046]]

temperature, or mechanical configuration. (See also``manual'')
    Automatic flue damper device: an electrically operated device, in 
the flue outlet or in the inlet of or upstream of the draft hood of an 
individual automatically operated gas-fired appliance, which is designed 
to automatically open the flue outlet during appliance operation and to 
automatically close off the flue outlet when the appliance is in a 
standby condition.
    Automatic vent damper device: a device intended for installation in 
the venting system, in the outlet of or downstream of the appliance 
draft hood, of an individual automatically operated gas-fired appliance, 
which is designed to automatically open the venting system when the 
appliance is in operation and to automatically close off the venting 
system when the appliance is in a standby or shutdown condition.
    (1) Electrically operated: an automatic vent damper device that 
employs electrical energy to control the device.
    (2) Thermally actuated: an automatic vent damper device dependent 
for operation exclusively upon the direct conversion of the thermal 
energy of the vent gases into mechanical energy.
    Boiler capacity: the rated heat output of the boiler, in Btu/h, at 
the design inlet and outlet conditions and rated fuel or energy input.
    Building: means any structure to be constructed which includes 
provision for a heating or cooling system, or both, or for a hot water 
system.
    Building code: means a legal instrument which is in effect in a 
State or unit of general purpose local government, the provisions of 
which must be adhered to if a building is to be considered to be in 
conformance with law and suitable for occupancy and use.
    Building envelope: the elements of a building that enclose 
conditioned spaces through which thermal energy may be transferred to or 
from the exterior or to or from unconditioned spaces.
    Check metering: measurement instrumentation for the supplementary 
monitoring of energy consumption (electric, gas, oil, etc) to isolate 
the various categories of energy use to permit conservation and control, 
in addition to the revenue metering furnished by the utility.
    Coefficient of performance (COP)--Cooling: the ratio of the rate of 
heat removal to the rate of energy input, in consistent units, for a 
complete cooling system or factory assembled equipment, as tested under 
a nationally recognized standard or designated operating conditions.
    Coefficient of performance (COP) heat pump--Heating: the ratio of 
the rate of heat delivered to the rate of energy input, in consistent 
units, for a complete heat pump system under designated operating 
conditions.
    Commercial building: a building other than a residential building, 
including any building developed for industrial or public purposes. 
Including but not limited to occupancies for assembly, business, 
education, institutions, food sales and service, merchants, and storage.
    Conditioned floor area: the area of the conditioned space measured 
at floor level from the interior surfaces of the walls.
    Conditioned space: a cooled space, heated space, or indirectly 
conditioned space.
    Cooled space: an enclosed space within a building that is cooled by 
a cooling system whose sensible capacity:
    (1) Exceeds 5 Btu/(h[middot]ft\2\); or
    (2) Is capable of maintaining a space dry bulb temperature of 90 
[deg]F or less at design cooling conditions.
    Daylight sensing control (DS): a device that automatically regulates 
the power input to electric lighting near the fenestration to maintain 
the desired workplace illumination, thus taking advantage of direct or 
indirect sunlight.
    Daylighted space: the space bounded by vertical planes rising from 
the boundaries of the daylighted area on the floor to the floor or roof 
above.
    Daylighted zone:
    (1) Under skylights: the area under each skylight whose horizontal 
dimension in each direction is equal to the skylight dimension in that 
direction plus either the floor-to-ceiling height or the dimension to an 
opaque partition, or one-half the distance to an adjacent skylight or 
vertical glazing, whichever is least.

[[Page 1047]]

    (2) At vertical glazing: the area adjacent to vertical glazing that 
receives daylighting from the glazing. For purposes of this definition 
and unless more detailed daylighting analysis is provided, the 
daylighting zone depth is assumed to extend into the space a distance of 
15 ft or to the nearest opaque partition, whichever is less. The 
daylighting zone width is assumed to be the width of the window plus 
either 2 ft on each side, the distance to an opaque partition, or one 
half the distance to an adjacent skylight or vertical glazing, whichever 
is least.
    Dead band (dead zone): the range of values within which an input 
variable that can be varied without initiating any noticeable change in 
the output variable.
    Degree-day, cooling: a unit, based upon temperature difference and 
time, used in estimating cooling energy consumption. For any one day, 
when the mean temperature is more than a reference temperature, 
typically 65 [deg]F, there are as many degree-days as degrees Fahrenheit 
temperature difference between the mean temperature for the day and the 
reference temperature. Annual cooling degree-days (CDD) are the sum of 
the degree-days over a calendar year.
    Degree-day, heating: a unit, based upon temperature difference and 
time, used in estimating heating energy consumption. For any one day, 
when the mean temperature is less than a reference temperature, 
typically 65 [deg]F, there are as many degree-days as degrees Fahrenheit 
temperature difference between the mean temperature for the day and the 
reference temperature. Annual heating degree days (HDD) are the sum of 
the degree-days over a calendar year.
    Dwelling unit: a single housekeeping unit comprised of one or more 
rooms providing complete independent living facilities for one or more 
persons, including permanent provisions for living, sleeping, eating, 
cooking, and sanitation.
    Economizer, air: a ducting arrangement and automatic control system 
that allows a cooling supply fan system to supply outdoor (outside) air 
to reduce or eliminate the need for mechanical refrigeration during mild 
or cold weather.
    Economizer, water: a system by which the supply air of a cooling 
system is cooled directly or indirectly or both by evaporation of water 
or by other appropriate fluid in order to reduce or eliminate the need 
for mechanical refrigeration.
    Efficiency, HVAC system: the ratio of the useful energy output, at 
the point of use to the energy input in consistent units, for a 
designated time period, expressed in percent.
    Emergency system (back-up system): a system that exists for the 
purpose of operating in the event of failure of a primary system.
    Emergency use: electrical and lighting systems required to supply 
power automatically for illumination and equipment in the event of a 
failure of the normal power supply.
    Energy efficiency ratio (EER): the ratio of net equipment cooling 
capacity in Btu/h to total rate of electric input in watts under 
designated operating conditions. When consistent units are used, this 
ratio becomes equal to COP. (See also ``coefficient of performance''.)
    Fan system energy demand: the sum of the demand of all fans that are 
required to operate at design conditions to supply air from the heating 
or cooling source to the conditioned space(s) and return it back to the 
source or exhaust it to the outdoors.
    Federal Agency: means any department, agency, corporation, or other 
entity or instrumentality of the executive branch of the Federal 
Government, including the United States Postal Service, the Federal 
National Mortgage Association, and the Federal Home Loan Mortgage 
Corporation.
    Federal Building: means any building to be constructed by, or for 
the use of, any Federal Agency which is not legally subject to State or 
local building codes or similar requirements.
    Fenestration: any light-transmitting section in a building wall or 
roof. The fenestration includes glazing material (which may be glass or 
plastic), framing (mullions, muntins, and dividers), external shading 
devices, internal shading devices, and integral (between glass) shading 
devices.

[[Page 1048]]

    Fenestration area: the total area of fenestration measured using the 
rough opening and including the glass or plastic, sash, and frame. For 
doors where the glazed vision area is less than 50% of the door area, 
the fenestration area is glazed vision area. For all other doors, the 
fenestration area is the door area.
    Flue damper: a device, in the flue outlet or in the inlet of or 
upstream of the draft hood of an individual automatically operated gas-
fired appliance, which is designed to automatically open the flue outlet 
during appliance operation and to automatically close off the flue 
outlet when the appliance is in a standby condition.
    Gross floor area: the sum of the floor areas of the conditioned 
spaces within the building, including basements, mezzanine and 
intermediate-floor tiers, and penthouses of headroom height 7.5 ft or 
greater. It is measured from the exterior faces of exterior walls or 
from the centerline of walls separating buildings (excluding covered 
walkways, open roofed-over areas, porches and similar spaces, pipe 
trenches, exterior terraces or steps, chimneys, roof overhangs, and 
similar features).
    Gross lighted area (GLA): the sum of the total lighted areas of a 
building measured from the inside of the perimeter walls for each floor 
of the building.
    Heat capacity (HC): the amount of heat necessary to raise the 
temperature of a given mass 1 [deg]F. Numerically, the mass expressed 
per unit of wall surface multiplied by the specific heat Btu/
(ft\2\[middot][deg]F).
    Heat trap: device or piping arrangement that effectively restricts 
the natural tendency of hot water to rise in vertical pipes during 
standby periods. Examples are the U-shaped arrangement of elbows or a 
360-degree loop of tubing.
    Heated space: an enclosed space within a building that is heated by 
a heating system whose output capacity
    (1) Exceeds 10 Btu/(h[middot]ft\2\), or
    (2) Is capable of maintaining a space dry-bulb temperature of 50 
[deg]F or more at design heating conditions.
    Heating seasonal performance factor (HSPF): the total heating output 
of a heat pump during its normal annual usage period for heating, in 
Btu, divided by the total electric energy input during the same period, 
in watt-hours.
    High rise residential building: hotels, motels, apartments, 
condominiums, dormitories, barracks, and other residential-type 
facilities that provide complete housekeeping or transient living 
quarters and are over three stories in height above grade.
    Humidistat: an automatic control device responsive to changes in 
humidity.
    HVAC system: the equipment, distribution network, and terminals that 
provide either collectively or individually the processes of heating, 
ventilating, or air conditioning to a building.
    Indirectly conditioned space: an enclosed space within the building 
that is not a heated or cooled space, whose area-weighted heat transfer 
coefficient to heated or cooled spaces exceeds that to the outdoors or 
to unconditioned spaces; or through which air from heated or cooled 
spaces is transferred at a rate exceeding three air changes per hour. 
(See also ``heated space'', ``cooled space'', and ``unconditioned 
space''.)
    Infiltration: the uncontrolled inward air leakage through cracks and 
crevices in any building element and around windows and doors of a 
building.
    Integrated part-load value (IPLV): a single-number figure of merit 
based on part-load EER or COP expressing part-load efficiency for air-
conditioning and heat pump equipment on the basis of weighted operation 
at various load capacities for the equipment.
    Lumen maintenance control: a device that senses the illumination 
level and causes an increase or decrease of illuminance to maintain a 
preset illumination level.
    Manual: action requiring personal intervention for its control. As 
applied to an electric controller, manual control does not necessarily 
imply a manual controller but only that personal intervention is 
necessary. (See automatic.)
    Marked rating: the design load operating conditions of a device as 
shown by the manufacturer on the nameplate or otherwise marked on the 
device.
    Multi-family high rise residential: a residential building 
containing three or

[[Page 1049]]

more dwelling units and is designed to be 3 or more stories above grade.
    Occupancy sensor: a device that detects the presence or absence of 
people within an area and causes any combination of lighting, equipment, 
or appliances to be adjusted accordingly.
    Opaque areas: all exposed areas of a building envelope that enclose 
conditioned space except fenestration areas and building service 
openings such as vents and grilles.
    Orientation: the directional placement of a building on a building 
site with reference to the building's longest horizontal axis or, if 
there is no longest horizontal axis, then with reference to the 
designated main entrance.
    Outdoor air: air taken from the exterior of the building that has 
not been previously circulated through the building. (See ``ventilation 
air'')
    Ozone depletion factor: a relative measure of the potency of 
chemicals in depleting stratospheric ozone. The ozone depletion factor 
potential depends upon the chlorine and the bromine content and 
atmospheric lifetime of the chemical. The depletion factor potential is 
normalized such that the factor for CFC-11 is set equal to unity and the 
factors for the other chemicals indicate their potential relative to 
CFC-11.
    Packaged terminal air conditioner (PTAC): a factory-selected wall 
sleeve and separate unencased combination of heating and cooling 
components, assemblies, or sections (intended for mounting through the 
wall to serve a single room or zone). It includes heating capability by 
hot water, steam, or electricity.
    Packaged terminal heat pump: a PTAC capable of using the 
refrigeration system in a reverse cycle or heat pump mode to provide 
heat.
    Plenum: an enclosure that is part of the air-handling system and is 
distinguished by having a very low air velocity. A plenum often is 
formed in part or in total by portions of the building.
    Private driveways, walkways, and parking lots: exterior transit 
areas that are associated with a commercial or residential building and 
intended for use solely by the employees or tenants and not by the 
general public.
    Process energy: energy consumed in support of a manufacturing, 
industrial, or commercial process other than the maintenance of comfort 
and amenities for the occupants of a building.
    Process load: the calculated or measured time-integrated load on a 
building resulting from the consumption or release of process energy.
    Programmable: capable of being preset to certain conditions and 
having self-initiation to change to those conditions.
    Projection factor: the exterior horizontal shading projection depth 
divided by the sum of the height of the fenestration and the distance 
from the top of the fenestration to the bottom of the external shading 
projection in units consistent with the projection depth.
    Prototype building: a generic building design of the same size and 
occupancy type as the proposed design that complies with the 
prescriptive requirements of subpart D of this part and has prescribed 
assumptions used to generate the energy budget concerning shape, 
orientation, and HVAC and other system designs.
    Public driveways, walkways, and parking lots: exterior transit areas 
that are intended for use by the general public.
    Public facility restroom: a restroom used by the transient public.
    Readily accessible: capable of being reached quickly for operation, 
renewal, or inspections without requiring those to whom ready access is 
requisite to climb over or remove obstacles or to resort to portable 
ladders, chairs, etc. (See also accessible.)
    Recooling: lowering the temperature of air that has been previously 
heated by a heating system.
    Reference building: a specific building design that has the same 
form, orientation, and basic systems as the prospective design that is 
to be evaluated for compliance and meets all the criteria listed in 
subsection 501.2 or subsection 601.2.
    Reheating: raising the temperature of air that has been previously 
cooled either by refrigeration or an economizer system.
    Reset: adjustment of the controller setpoint to a higher or lower 
value automatically or manually.

[[Page 1050]]

    Roof: those portions of the building envelope, including all opaque 
surfaces, fenestration, doors, and hatches, that are above conditioned 
space and are horizontal or tilted at less than 60[deg] from horizontal. 
(See also''walls'')
    Room air conditioner: an encased assembly designed as a unit to be 
mounted in a window or through a wall or as a console. It is designed 
primarily to provide free delivery of conditioned air to an enclosed 
space, room, or zone. It includes a prime source of refrigeration for 
cooling and dehumidification and means for circulating and cleaning air 
and may also include means for ventilating and heating.
    Seasonal energy efficiency ratio (SEER): the total cooling output of 
an air conditioner during its normal annual usage period for cooling, in 
Btu, divided by the total electric energy input during the same period, 
in watt-hours.
    Service systems: all energy-using or energy-distributing components 
in a building that are operated to support the occupant or process 
functions housed therein (including HVAC, service water heating, 
illumination, transportation, cooking or food preparation, laundering, 
or similar functions).
    Service water heating: the supply of hot water for purposes other 
than comfort heating and process requirements.
    Shading coefficient (SC): the ratio of solar heat gain through 
fenestration under a specific set of conditions, with or without 
integral shading devices, to that occurring through unshaded \1/8\-in-
thick clear double-strength glass under the same conditions.
    Shell Building: a building for which the envelope is designed, 
constructed, or both prior to knowing the occupancy type. (See also 
``speculative building'')
    Single-Line Diagram: a simplified schematic drawing that shows the 
connection between two or more items. Common multiple connections are 
shown as one line.
    Skylight: glazing that is horizontal or tilted less than 60[deg] 
from horizontal.
    Solar energy source: natural daylighting or thermal, chemical, or 
electrical energy derived from direct conversion of incident solar 
radiation at the building site.
    Solar heat gain coefficient (SHGC): the ratio of the solar heat gain 
entering the space through the fenestration area to the incident solar 
radiation. Solar heat gain includes directly transmitted solar heat and 
absorbed solar radiation, which is then reradiated, conducted, or 
convected into the space. (See fenestration area)
    Speculative building: a building for which the envelope is designed, 
constructed, or both prior to the design of the lighting, HVAC systems, 
or both. A speculative building differs from a shell building in that 
the intended occupancy is known for the speculative building. (See also 
``shell building'')
    System: a combination of equipment and/or controls, accessories, 
interconnecting means, and terminal elements by which energy is 
transformed so as to perform a specific function, such as HVAC, service 
water heating, or illumination.
    Tandem wiring: pairs of luminaries operating with lamps in each 
luminaire powered from a single ballast contained in one of the 
luminaires.
    Task lighting: lighting that provides illumination for specific 
functions and is directed to a specific surface or area.
    Task location: an area of the space where significant visual 
functions are performed and where lighting is required above and beyond 
that required for general ambient use.
    Terminal element: a device by which the transformed energy from a 
system is finally delivered. Examples include registers, diffusers, 
lighting fixtures, and faucets.
    Thermal conductance (C): the constant time rate of heat flow through 
the unit area of a body induced by a unit temperature difference between 
the surfaces, expressed in Btu/(h[middot]ft\2\[middot][deg]F). It is the 
reciprocal of thermal resistance. (See ``thermal resistance'')
    Thermal mass: materials with mass heat capacity and surface area 
capable of affecting building loads by storing and releasing heat as the 
interior or exterior temperature and radiant conditions fluctuate. (See 
also ``heat capacity'' and ``wall heat capacity'')
    Thermal mass wall insulation position:
    (1) Exterior insulation position: a wall having all or nearly all of 
its mass

[[Page 1051]]

exposed to the room air with the insulation on the exterior of that 
mass.
    (2) Integral insulation position: a wall having mass exposed to both 
room and outside (outside) air with substantially equal amounts of mass 
on the inside and outside of the insulation layer.
    (3) Interior insulation position: a wall not meeting either of the 
above definitions, particularly a wall having most of its mass external 
to an insulation layer.
    Thermal resistance (R): the reciprocal of thermal conductance 1/C, 
l/H, 1/U; expressed in (h[middot]ft\2\. [deg]F)/Btu.
    Thermal transmittance (U): the overall coefficient of heat transfer 
from air to air. It is the time rate of heat flow per unit area under 
steady conditions from the fluid on the warm side of the barrier to the 
fluid on the cold side, per unit temperature difference between the two 
fluids, expressed in Btu/(h[middot]ft\2\. [deg]F).
    Thermal transmittance, overall (Uo): the gross overall (area 
weighted average) coefficient of heat transfer from air to air for a 
gross area of the building envelope, Btu/(h[middot]ft\2\. [deg]F). The 
Uo value applies to the combined effect of the time rate of 
heat flows through the various parallel paths, such as windows, doors, 
and opaque construction areas, composing the gross area of one or more 
building envelope components, such as walls, floors, and roof or 
ceiling.
    Thermostat: an automatic control device responsive to temperature.
    Unconditioned space: space within a building that is not a 
conditioned space. (See ``conditioned space'')
    Unitary cooling equipment: one or more factory-made assemblies that 
normally include an evaporator or cooling coil, a compressor, and a 
condenser combination (and may also include a heating function).
    Unitary heat pump: one or more factory-made assemblies that normally 
include an indoor conditioning coil, compressor(s), and outdoor coil or 
refrigerant-to-water heater exchanger, including means to provide both 
heating and cooling functions.
    Variable-air-volume (VAV) HVAC system: HVAC systems that control the 
dry-bulb temperature within a space by varying the volume of heated or 
cooled supply air to the space.
    Vent damper: a device intended for installation in the venting 
system, in the outlet of or downstream of the appliance draft hood, of 
an individual automatically operating gas-fired appliance, which is 
designed to automatically open the venting system when the appliance is 
in operation and to automatically close off the venting system when the 
appliance is in a standby or shutdown condition.
    Ventilation: the process of supplying or removing air by natural or 
mechanical means to or from any space. Such air may or may not have been 
conditioned.
    Ventilation air: that portion of supply air which comes from the 
outside, plus any recirculated air, to maintain the desired quality of 
air within a designated space. (See also ``outdoor air'')
    Visible light transmittance: the fraction of solar radiation in the 
visible light spectrum that passes through the fenestration (window, 
clerestory, or skylight).
    Walls: those portions of the building envelope enclosing conditioned 
space, including all opaque surfaces, fenestration, and doors, which are 
vertical or tilted at an angle of 60* from horizontal or greater. (See 
also ``roof'')
    Wall heat capacity: the sum of the products of the mass of each 
individual material in the wall per unit area of wall surface times its 
individual specific heat, expressed in Btu/(ft \2\[middot][deg]F). 
(See'' thermal mass'')
    Window to wall ratio (WWR): the ratio of the wall fenestration area 
to the gross exterior wall area.
    Zone: a space or group of spaces within a building with any 
combination of heating, cooling, or lighting requirements sufficiently 
similar so that desired conditions can be maintained throughout by a 
single controlling device.



                       Subpart C_Design Conditions



Sec.  434.301  Design criteria.

    301.1 The following design parameters shall be used for calculations 
required under subpart D of this part.

[[Page 1052]]

    301.1.1 Exterior Design Conditions. Exterior Design Conditions shall 
be expressed in accordance with Table 301.1.

                 Table 301.1--Exterior Design Conditions
------------------------------------------------------------------------
 
------------------------------------------------------------------------
Winter Design Dry-Bulb (99%)....  ..................  Degrees F.
Summer Design Dry-Bulb (2.5%)...  ..................  Degrees F.
Mean Coincident Wet-Bulb (2.5%).  ..................  Degrees F.
Degree-Days, Heating (Base 65)..  ..................  HDD Base 65
                                                       [deg]F.
Degree-Days, Cooling (Base 65)..  ..................  CDD Base 65
                                                       [deg]F.
Annual Operating Hours, 8 a.m.    ..................  Hours.
 to 4 p.m. when 55 [deg]F<=T<=69
 [deg]F.
------------------------------------------------------------------------
[The exterior design conditions shall be added to Table 301.1 from the
  city-specific Shading Coefficient table from appendix A of RS-1
  (incorporated by reference, see Sec.   434.701). Copies of specific
  tables contained in appendix A of RS-1 (incorporated by reference, see
  Sec.   434.701). can be obtained from the Energy Code for Federal
  Commercial Buildings, Docket No. EE-RM-79-112-C, EE-43, Office of
  Building Research and Standards, U.S. Department of Energy, Room 1J-
  018, 1000 Independence Avenue, SW., Washington, DC 20585, (202) 586-
  9127. Adjustments may be made to reflect local climates which differ
  from the tabulated temperatures or local weather experience as
  determined by the building official. Where local building site
  climatic data are not available, climate data from a nearby location
  included in RS-1, appendix C, (incorporated by reference, see Sec.
  434.701) and RS-4 Chapter 24, Table 1, (incorporated by reference, see
  Sec.   434.701) shall be used as determined by the building official.]

    301.2 Indoor Design Conditions. Indoor design temperature and 
humidity conditions shall be in accordance with the comfort criteria in 
RS-2 (incorporated by reference, see Sec.  434.701), except that 
humidification and dehumidification are not required.



  Subpart D_Building Design Requirements_Electric Systems and Equipment



Sec.  434.401  Electrical power and lighting systems.

    Electrical power and lighting systems, other than those systems or 
portions thereof required for emergency use only, shall meet these 
requirements.
    401.1 Electrical Distribution Systems.
    401.1.1 Check Metering. Single-tenant buildings with a service over 
250 kVA and tenant spaces with a connected load over 100 kVA in 
multiple-tenant buildings shall have provisions for check metering of 
electrical consumption. The electrical power feeders for which provision 
for check metering is required shall be subdivided as follows:
    401.1.1.1 Lighting and receptacle outlets
    401.1.1.2 HVAC systems and equipment
    401.1.1.3 Service water heating (SWH), elevators, and special 
occupant equipment or systems of more than 20 kW.
    401.1.1.4 Exception to 401.1.1.1 through 401.1.1.3: 10 percent or 
less of the loads on a feeder may be from another usage or category.
    401.1.2 Tenant-shared HVAC and service hot water systems in multiple 
tenant buildings shall have provision to be separately check metered.
    401.1.3 Subdivided feeders shall contain provisions for portable or 
permanent check metering. The minimum acceptable arrangement for 
compliance shall provide a safe method for access by qualified persons 
to the enclosures through which feeder conductors pass and provide 
sufficient space to attach clamp-on or split core current transformers. 
These enclosures may be separate compartments or combined spaces with 
electrical cabinets serving another function. Dedicated enclosures so 
furnished shall be identified as to measuring function available.
    401.1.4 Electrical Schematic. The person responsible for installing 
the electrical distribution system shall provide the Federal building 
manager a single-line diagram of the record drawing for the electrical 
distribution system, which includes the location of check metering 
access, schematic diagrams of non-HVAC electrical control systems, and 
electrical equipment manufacturer's operating and maintenance 
literature.
    401.2 Electric Motors. All permanently wired polyphase motors of 1 
hp or more shall meet these requirements:
    401.2.1 Efficiency. NEMA design A & B squirrel-cage, foot-mounted, 
T-frame induction motors having synchronous speeds of 3600, 1800, 1200, 
and 900 rpm, expected to operate more than 1000 hours per year shall 
have a nominal full-load efficiency no less than that shown in Table 
401.2.1 or shall be classified as an ``energy efficient motor'' in 
accordance with RS-3 (incorporated by reference, see Sec.  434.701). The 
following are not covered:
    (a) Multispeed motors used in systems designed to use more than one 
speed.
    (b) Motors used as a component of the equipment meeting the minimum 
equipment efficiency requirements of subsection 403, provided that the 
motor

[[Page 1053]]

input is included when determining the equipment efficiency.

  Table 401.2.1--Minimum Acceptable Nominal Full-Load Efficiency for Single-Speed Polyphase Squirrel-Cage Induction Motors Having Synchronous Speeds of
                                                            3600, 1800, 1200 and 900 rpm \1\
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                  2-Pole                  4-Pole                  6-Pole                  8-Pole
                                                         -----------------------------------------------------------------------------------------------
                           HP                               Nominal     Minimum     Nominal     Minimum     Nominal     Minimum     Nominal     Minimum
                                                          efficiency  efficiency  efficiency  efficiency  efficiency  efficiency  efficiency  efficiency
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                           Full-Load Efficiencies--Open Motors
--------------------------------------------------------------------------------------------------------------------------------------------------------
1.0.....................................................  ..........  ..........        82.5        81.5        80.0        78.5        74.0        72.0
1.5.....................................................        82.5        81.5        84.0        82.5        84.0        82.5        75.5        74.0
2.0.....................................................        84.0        82.5        84.0        82.5        85.5        84.0        85.5        84.0
3.0.....................................................        84.0        82.5        86.5        85.5        86.5        85.5        86.5        85.5
5.0.....................................................        85.5        84.0        87.5        86.5        87.5        86.5        87.5        86.0
7.5.....................................................        87.5        86.5        88.5        87.5        88.5        87.5        88.5        87.5
10.0....................................................        88.5        87.5        89.5        88.5        90.2        89.5        89.5        88.5
15.0....................................................        89.5        88.5        91.0        90.2        90.2        89.5        89.5        88.5
20.0....................................................        90.2        89.5        91.0        90.2        91.0        90.2        90.2        89.5
25.0....................................................        91.0        90.2        91.7        91.0        91.7        91.0        90.2        89.5
30.0....................................................        91.0        90.2        92.4        91.7        92.4        91.7        91.7        90.2
40.0....................................................        91.7        91.0        93.0        92.4        93.0        92.4        91.0        90.2
50.0....................................................        92.4        91.7        93.0        92.4        93.0        92.4        91.7        91.0
60.0....................................................        93.0        92.4        93.6        93.0        93.6        93.0        92.4        91.7
75.0....................................................        93.0        92.4        94.1        93.6        93.6        93.0        93.6        93.0
100.0...................................................        93.0        92.4        94.1        93.6        94.1        93.6        93.6        93.0
125.0...................................................        93.6        93.0        94.5        94.1        94.1        93.6        93.6        93.0
150.0...................................................        93.6        93.0        95.0        94.5        94.5        94.1        93.6        93.0
200.0...................................................        94.5        94.1        95.0        94.5        94.5        94.1        93.6        93.0
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                         Full-Load Efficiencies--Enclosed Motors
--------------------------------------------------------------------------------------------------------------------------------------------------------
1.0.....................................................        75.5        74.5        82.5        81.5        80.0        78.5        74.0        72.0
1.5.....................................................        82.5        81.5        84.0        82.5        85.5        84.0        77.0        75.5
2.0.....................................................        84.0        82.5        84.5        82.5        86.5        85.5        82.5        81.5
3.0.....................................................        85.5        84.0        87.5        86.5        87.5        86.5        84.0        82.5
5.0.....................................................        87.5        86.5        87.5        86.5        87.5        86.5        85.5        84.0
7.5.....................................................        88.5        87.5        89.5        88.5        89.5        88.5        85.5        84.0
10.0....................................................        89.5        88.5        89.5        88.5        89.5        88.5        88.5        87.5
15.0....................................................        90.2        89.5        91.0        90.2        90.2        89.5        88.5        87.5
20.0....................................................        90.2        89.5        91.0        90.2        90.2        89.5        89.5        88.5
25.0....................................................        91.0        90.2        92.4        91.7        91.7        91.0        89.5        88.5
30.0....................................................        91.0        90.2        92.4        91.7        91.7        91.0        91.0        90.2
40.0....................................................        91.7        91.0        93.0        92.4        93.0        92.4        91.0        90.2
50.0....................................................        92.4        91.7        93.0        92.4        93.0        92.4        91.7        91.0
60.0....................................................        93.0        92.4        93.6        93.0        93.6        93.0        91.7        91.0
75.0....................................................        93.0        92.4        94.1        93.6        93.6        93.0        93.0        92.4
100.0...................................................        93.6        93.0        94.5        94.1        94.1        93.6        93.0        92.4
125.0...................................................        94.5        94.1        94.5        94.1        94.1        93.6        93.6        93.0
150.0...................................................        94.5        94.1        95.0        94.5        94.5        94.1        94.1        93.0
200.0...................................................        95.0        94.5        95.0        94.5        95.0        94.5        94.1       93.6
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ For many applications, efficiencies greater than those listed are likely to be cost-effective. Guidance for evaluating the cost effectiveness of
  energy efficient motor applications is given in RS-43 and RS-44 (incorporated by reference, see Sec.   434.701).

    401.3 Lighting Power Allowance. The lighting system shall meet the 
provisions of subsections 401.3.1 through 401.3.5.
    401.3.1 Building Exteriors. The total connected exterior lighting 
power for the building, or a facility containing multiple buildings, 
shall not exceed the total exterior lighting power allowance, which is 
the sum of the individual allowances determined from Table 401.3.1. The 
individual allowances are determined by multiplying the specific area or 
length of each area description times the allowance for that

[[Page 1054]]

area. Exceptions are as follows: Lighting for outdoor manufacturing or 
processing facilities, commercial greenhouses, outdoor athletic 
facilities, public monuments, designated high-risk security areas, 
signs, retail storefronts, exterior enclosed display windows, and 
lighting specifically required by local ordinances and regulations.

            Table 401.3.1--Exterior Lighting Power Allowance
------------------------------------------------------------------------
             Area description                         Allowance
------------------------------------------------------------------------
Exit (with or without canopy).............  25 W/lin ft of door opening.
Entrance (without canopy).................  30 W/lin ft of door opening.
Entrance (with canopy):
    High Traffic (retail, hotel, airport,   10 W/ft \2\ of canopied
     theater, etc.).                         area.
    Light Traffic (hospital, office,        4 W/ft \2\ of canopied area.
     school, etc.).
Loading area..............................  0.40 W/ft \2\.
Loading door..............................  20 W/lin ft of door opening.
Building exterior surfaces/facades........  0.25 W/ft \2\ of surface
                                             area to be illuminated.
Storage and non-manufacturing work areas..  0.20 W/ft \2\.
Other activity areas for casual use such    0.10 W/ft \2\.
 as picnic grounds, gardens, parks, and
 other landscaped areas.
Private driveways/walkways................  0.10 W/ft \2\.
Public driveways/walkways.................  0.15 W/ft \2\.
Private parking lots......................  0.12 W/ft \2\.
Public parking lots.......................  0.18 W/ft \2\.
------------------------------------------------------------------------

    401.3.1.1 Trade-offs of exterior lighting budgets among exterior 
areas shall be allowed provided the total connected lighting power of 
the exterior area does not exceed the exterior lighting power allowance. 
Trade-offs between interior lighting power allowances and exterior 
lighting power allowances shall not be allowed.
    401.3.2 Building interiors. The total connected interior lighting 
power for a building, including adjustments in accordance with 
subsection 401.3.3, shall not exceed the total interior lighting power 
allowance explained in this paragraph. Using Table 401.3.2a, multiply 
the interior lighting power allowance value by the gross lighted area of 
the most appropriate building or space activity. For multi-use 
buildings, using Table 401.3.2a, select the interior power allowance 
value for each activity using the column for the gross lighted area of 
the whole building and multiply it by the associated gross area for that 
activity. The interior lighting power allowance is the sum of all the 
wattages for each area/activity. Using Table 401.3.2b, c, or d, multiply 
the interior lighting power allowance values of each individual area/
activity by the area of the space and by the area factor from Figure 
401.3.2e, based on the most appropriate area/activity provided. The 
interior lighting power allowance is the sum of the wattages for each 
individual space. When over 20% of the building's tasks or interior 
areas are undefined, the most appropriate value for that building from 
Table 401.3.2a shall be used for the undefined spaces. Exceptions are as 
follows:
    (a) Lighting power that is an essential technical element for the 
function performed in theatrical, stage, broadcasting, and similar uses.
    (b) Specialized medical, dental, and research lighting.
    (c) Display lighting for exhibits in galleries, museums, and 
monuments.
    (d) Lighting solely for indoor plant growth (between the hours of 
10:00 pm and 6:00 am).
    (e) Emergency lighting that is automatically off during normal 
building operation.
    (f) High-risk security areas.
    (g) Spaces specifically designed for the primary use by the 
physically impaired or aged.
    (h) Lighting in dwelling units.
    401.3.2.1 Trade-offs of the interior lighting power budgets among 
interior spaces shall be allowed provided the total connected lighting 
power within the building does not exceed the interior lighting power 
allowance. Trade-offs between interior lighting power allowances and 
exterior lighting power allowances shall not be allowed.
    401.3.2.2 Building/Space Activities. Definitions of buildings/space 
activity as

[[Page 1055]]

they apply to Table 401.3.2a are as follows. These definitions are 
necessary to characterize the activities for which lighting is provided. 
They are applicable only to Table 401.3.2a. They are not intended to be 
used elsewhere in place of building use group definitions provided in 
the Building Code. They are not included in Sec.  434.201, 
``Definitions,'' to avoid confusion with ``Occupancy Type Categories.''
    (a) Food service, fast food, and cafeteria: This group includes 
cafeterias, hamburger and sandwich stores, bakeries, ice cream parlors, 
cookie stores, and all other kinds of retail food service establishments 
in which customers are generally served at a counter and their direct 
selections are paid for and taken to a table or carried out.
    (b) Garages: This category includes all types of parking garages, 
except for service or repair areas.
    (c) Leisure dining and bar: This group includes cafes, diners, bars, 
lounges, and similar establishments where orders are placed with a wait 
person.
    (d) Mall concourse, multi-store service: This group includes the 
interior of multifunctional public spaces, such as shopping center 
malls, airports, resort concourses and malls, entertainment facilities, 
and related types of buildings or spaces.
    (e) Offices: This group includes all kinds of offices, including 
corporate and professional offices, office/laboratories, governmental 
offices, libraries, and similar facilities, where paperwork occurs.
    (f) Retail: A retail store, including departments for the sale of 
accessories, clothing, dry goods, electronics, and toys, and other types 
of establishments that display objects for direct selection and purchase 
by consumers. Direct selection means literally removing an item from 
display and carrying it to the checkout or pick-up at a customer service 
facility.
    (g) Schools: This category, subdivided by pre-school/elementary, 
junior high/high school, and technical/vocational, includes public and 
private educational institutions, for children or adults, and may also 
include community centers, college and university buildings, and 
business educational centers.
    (h) Service establishment: A retail-like facility, such as watch 
repair, real estate offices, auto and tire service facilities, parts 
departments, travel agencies and similar facilities, in which the 
customer obtains services rather than the direct selection of goods.
    (i) Warehouse and storage: This includes all types of support 
facilities, such as warehouses, barns, storage buildings, shipping/
receiving buildings, boiler or mechanical buildings, electric power 
buildings, and similar buildings where the primary visual task is large 
items.

                       401.3.2--Tables and Figures

                                               Table 401.3.2a--Interior Lighting Power Allowance W/ft \2\
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                       Gross lighted area of total building
                                                         -----------------------------------------------------------------------------------------------
               Building space activity \1\                 0 to 2,000 ft     2,001 to        10,001 to       25,001 to       50,001 to
                                                                \2\        10,000 ft \2\   25,000 ft \2\   50,000 ft \2\  250,000 ft \2\  250,000 ft \2\
--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Service:
    Fast Food/Cafeteria.................................            1.50            1.38            1.34            1.32            1.31            1.30
    Leisure Dining/Bar..................................            2.20            1.91            1.71            1.56            1.46            1.40
Offices.................................................            1.90            1.81            1.72            1.65            1.57            1.50
Retail \3\..............................................            3.30            3.08            2.83            2.50            2.28            2.10
Mall Concourse Multi-store Service......................            1.60            1.58            1.52            1.46            1.43            1.40
Service Establishment...................................            2.70            2.37            2.08            1.92            1.80            1.70
Garages.................................................            0.30            0.28            0.24            0.22            0.21            0.20
Schools:
    Preschool/Elementary................................            1.80            1.80            1.72            1.65            1.57            1.50
    Jr. High/High School................................            1.90            1.90            1.88            1.83            1.76            1.70
    Technical/Vocational................................            2.40            2.33            2.17            2.01            1.84            1.70
Warehouse/Storage.......................................            0.80            0.66            0.56            0.48            0.43           0.40
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ If at least 10% of the building area is intended for multiple space activities, such as parking, retail, and storage in an office building, then
  calculate for each separate building type/space activity.

[[Page 1056]]

 
\2\ The values in the categories are building wide allowances which include the listed activity and directly related facilities such as conference
  rooms, lobbies, corridors, restrooms, etc.
\3\ Includes general, merchandising, and display lighting.


         Table 401.3.2b--Unit Interior Lighting Power Allowance
------------------------------------------------------------------------
                                                               UPD W/ft
                  Common area/activity \1\                       \2\
------------------------------------------------------------------------
Auditorium \2\.............................................          1.4
Corridor \3\...............................................          0.8
Classroom/Lecture Hall.....................................          2.0
Electrical/Mechanical Equipment Room:
    General \3\............................................          0.7
    Control Rooms \3\......................................          1.5
Food Service:
    Fast Food/Cafeteria....................................          1.3
    Leisure Dining \4\.....................................          1.4
    Bar/Lounge \4\.........................................          2.5
    Kitchen................................................          1.4
Recreation/Lounge..........................................          0.7
Stair:
    Active Traffic.........................................          0.6
    Emergency Exit.........................................          0.4
Toilet & Washroom..........................................          0.8
Garage:
    Auto & Pedestrian Circulation Area.....................          0.3
    Parking Area...........................................          0.2
Laboratory.................................................          2.2
Library:
    Audio Visual...........................................          1.1
    Stack Area.............................................          1.1
    Card File & Cataloging.................................          0.8
    Reading Area...........................................          1.1
Lobby (General):
    Reception & Waiting....................................          1.0
    Elevator Lobbies.......................................          0.4
Atrium (Multi-Story):
    First 3 Floors.........................................          0.7
    Each Additional Floor..................................          0.2
Locker Room & Shower.......................................          0.8
Office Category 1
Enclosed offices, all open plan offices w/o partitions or w/
 partitions \6\ lower than 4.5 ft below the ceiling. \5\
    Reading, Typing and Filing.............................          1.5
    Drafting...............................................          1.9
    Accounting.............................................          1.6
Office Category 2:
Open plan offices 900 ft \2\ or larger w/partitions
          1 3.5 to 4.5 ft below the ceiling................
Offices less than 900 ft2 shall use category 1 \3\
    Reading, Typing and Filing.............................          1.5
    Drafting...............................................          2.0
    Accounting.............................................          1.8
Office Category 3:
Open plan offices 900 ft \2\ or larger w/partitions \6\
 higher than 3.5 ft below the ceiling.
Offices less than 900 ft \2\ shall use category 1. \3\
    Reading, Typing and Filing.............................          1.7
    Drafting...............................................          2.3
    Accounting.............................................          1.9
Common Activity Areas
    Conference/Meeting Room \2\............................          1.3
Computer/Office Equipment..................................          1.1
    Filing, Inactive.......................................          1.0
    Mail Room..............................................          1.8
Shop (Non-Industrial):
    Machinery..............................................          2.5
    Electrical/Electronic..................................          2.5
    Painting...............................................          1.6
    Carpentry..............................................          2.3
    Welding................................................          1.2
Storage and Warehouse;
    Inactive Storage.......................................          0.2
    Active Storage, Bulky..................................          0.3
    Active Storage, Fine...................................          0.9
    Material Handling......................................          1.0
Unlisted Space.............................................         0.2
------------------------------------------------------------------------
\1\ Use a weighted average UPD in rooms with multiple simultaneous
  activities, weighted in proportion to the area served.

[[Page 1057]]

 
\2\ A 1.5 power adjustment factor is applicable for multi-function
  spaces when a supplementary system having independent controls is
  installed that has installed power <=33% of the adjusted lighting
  power for that space.
\3\ Area factor of 1.0 shall be used for these spaced.
\4\ UPD includes lighting power required for clean-up purposes.
\5\ Area factor shall not exceed 1.55.
\6\ Not less than 90 percent of all work stations shall be individually
  enclosed with partitions of at least the height described.


         Table 401.3.2c--Unit Interior Lighting Power Allowance
------------------------------------------------------------------------
                                                               UPD W/ft
            Specific building area/activity \1\                  \2\
------------------------------------------------------------------------
Airport, Bus and Rail Station:
    Baggage Area...........................................          0.8
    Concourse/Main Thruway.................................          0.9
    Ticket Counter.........................................          2.0
    Waiting & Lounge Area..................................          0.8
Bank:
    Customer Area..........................................          1.0
    Banking Activity Area..................................          2.2
Barber & Beauty Parlor.....................................          1.6
Church, Synagogue, Chapel:
    Worship/Congregational.................................          1.7
    Preaching & Sermon/Choir...............................          1.8
Dormitory:
    Bedroom................................................          1.0
    Bedroom w/Study........................................          1.3
    Study Hall.............................................          1.2
Fire & Police Department:
    Fire Engine Room.......................................          0.7
    Jail Cell..............................................          0.8
Hospital/Nursing Home:
    Corridor \3\...........................................          1.3
    Dental Suite/Examination/Treatment.....................          1.6
    Emergency..............................................          2.0
    Laboratory.............................................          1.7
    Lounge/Waiting Room....................................          0.9
    Medical Supplies.......................................          2.4
    Nursery................................................          1.6
    Nurse Station..........................................          1.8
    Occupational Therapy/Physical Therapy..................          1.4
    Patient Room...........................................          1.2
    Pharmacy...............................................          1.5
    Radiology..............................................          1.8
Surgical & Obstetrics Suites:
    General Area...........................................          1.8
    Operating Room.........................................          6.0
    Recovery...............................................          2.0
Hotel/Conference Center:
    Banquet Room/Multipurpose \2\..........................          1.7
    Bathroom/Powder Room...................................          1.2
    Guest Room.............................................          0.9
    Public Area............................................          1.0
    Exhibition Hall........................................          1.8
    Conference/Meeting \2\.................................          1.5
    Lobby..................................................          1.5
    Reception Desk.........................................          2.4
Laundry:
    Washing................................................          0.9
    Ironing & Sorting......................................          1.3
Museum & Gallery:
    General Exhibition.....................................          1.9
    Inspection/Restoration.................................          3.0
Storage (Artifacts):
    Inactive...............................................          0.6
    Active.................................................          0.7
Post Office:
    Lobby..................................................          1.1
    Sorting & Mailing......................................          2.1
Service Station/Auto Repair................................          0.8
Theater:
    Performance Arts.......................................          1.3
    Motion Picture.........................................          1.0
    Lobby..................................................          1.3
Retail Establishments--Merchandising & Circulation Area
 (Applicable to all lighting, including accent and display
 lighting, installed in merchandising and circulation
 areas):
    Type 1: Jewelry merchandising, where minute examination          5.6
     of displayed merchandise is critical..................
    Type 2: Fine merchandising, such as fine apparel and             2.9
     accessories, china, crystal, and silver art galleries
     and where the detailed display and examination of
     merchandising is important............................

[[Page 1058]]

 
    Type 3: Mass merchandising, such as general apparel,             2.7
     variety goods, stationary, books, sporting goods,
     hobby materials, cameras, gifts, and luggage,
     displayed in a warehouse type of building, where
     focused display and detailed examination of
     merchandise is important..............................
    Type 4: General merchandising, such as general apparel,          2.3
     variety goods, stationary, books, sporting goods,
     hobby materials, cameras, gifts, and luggage,
     displayed in a department store type of building,
     where general display and examination of merchandise
     is adequate...........................................
    Type 5: Food and miscellaneous such as bakeries,                 2.4
     hardware and housewares, grocery stores, appliance and
     furniture stores, where pleasant appearance is
     important.............................................
    Type 6: Service establishments, where functional                 2.6
     performance is important..............................
Mall Concourse.............................................          1.4
Retail Support Areas.......................................          2.1
    Tailoring..............................................          1.1
    Dressing/Fitting Rooms.................................
------------------------------------------------------------------------
\1\ Use a weighted average UPD in rooms with multiple simultaneous
  activities, weighted in proportion to the area served.
\2\ A 1.5 power adjustment factor is applicable for multi-function
  spaces when a supplementary system having independent controls is
  installed that has installed power <=33% of the adjusted lighting
  power for that space.
\3\ Area factor shall not exceed 1.55.


         Table 401.3.2d--Unit Interior Lighting Power Allowance
------------------------------------------------------------------------
                                                               UPD W/ft
            Indoor athletic area/activity \1 2\                  \2\
------------------------------------------------------------------------
Seating Area, All Sports...................................          0.4
Badminton:
    Club...................................................          0.5
    Tournament.............................................          0.8
Basketball/Volleyball:
    Intramural.............................................          0.8
    College................................................          1.3
    Professional...........................................          1.9
Bowling:
    Approach Area..........................................          0.5
    Lanes..................................................          1.1
Boxing or Wrestling (platform):
    Amateur................................................          2.4
    Professional...........................................          4.8
Gymnasium:
    General Exercising and Recreation Only.................          1.0
Handball/Racquetball/Squash:
    Club...................................................          1.3
    Tournament.............................................          2.6
Hockey, Ice:
    Amateur................................................          1.3
    College or Professional................................          2.6
Skating Rink:
    Recreational...........................................          0.6
    Exhibition/Professional................................          2.6
Swimming:
    Recreational...........................................          0.9
    Exhibition.............................................          1.5
    Underwater.............................................          1.0
Tennis:
    Recreational (Class III)...............................          1.3
    Club/College (Class II)................................          1.9
    Professional (Class I).................................          2.6
Tennis, Table:
    Club...................................................          1.0
    Tournament.............................................         1.6
------------------------------------------------------------------------
\1\ Area factor of 1.0 shall be used for these spaces.
\2\ Consider as 10 ft. beyond playing boundaries but less than or equal
  to the total floor area of the sports space minus spectator seating
  area.


[[Page 1059]]

                  Figure 401.3.2e--Area Factor Formula
[GRAPHIC] [TIFF OMITTED] TR06OC00.018


Area Factor Formula:

Area Factor (AF) = 0.2 + 0.8(1/0.9\n\)

Where:

AF = area factor,
CH = ceiling height (ft),
Ar = space area (ft\2\).

If AF <1.0 use 1.0; if AF 1.8 use 1.8

    401.3.3 Lighting Power Control Credits. The interior connected 
lighting power determined in accordance with Sec.  434.401.3.2 can be 
decreased for luminaries that are automatically controlled for 
occupancy, daylight, lumen maintenance, or programmable timing. The 
adjusted interior connected lighting power shall be determined by 
subtracting the sum of all lighting power control credits from the 
interior connected lighting power. Using Table 401.3.3, the lighting 
power control credit equals the power adjustment factor times the 
connected lighting power of the controlled lighting. The lighting power 
adjustment shall be applied with the following limitations:
    (a) It is limited to the specific area controlled by the automatic 
control device.
    (b) Only one lighting power adjustment may be used for each building 
space or luminaire, and 50 percent or more of the controlled luminaire 
shall be within the applicable space.
    (c) Controls shall be installed in series with the lights and in 
series with all manual switching devices.
    (d) When sufficient daylight is available, daylight sensing controls 
shall be capable of reducing electrical power consumption for lighting 
(continuously or in steps) to 50 percent or less of maximum power 
consumption.
    (e) Daylight sensing controls shall control all luminaires to which 
the adjustment is applied and that direct a minimum of 50 percent of 
their light output into the daylight zone.
    (f) Programmable timing controls shall be able to program different 
schedules for occupied and unoccupied days, be readily accessible for 
temporary override with automatic return to the original schedule, and 
keep time during power outages for at least four hours.

            Table 401.3.3--Lighting Power Adjustment Factors
------------------------------------------------------------------------
                 Automatic control devices                       PAF
------------------------------------------------------------------------
(1) Daylight Sensing controls (DS), continuous dimming.....         0.30
(2) DS, multiple step dimming..............................         0.20
(3) DS, ON/OFF.............................................         0.10
(4) DS continuous dimming and programmable timing..........         0.35
(5) DS multiple step dimming and programmable timing.......         0.25
(6) DS ON/OFF and programmable timing......................         0.15
(7) DS continuous dimming, programmable timing, and lumen           0.40
 maintenance...............................................
(8) DS multiple step dimming, programmable timing, and              0.30
 lumen maintenance.........................................
(9) DS ON/OFF, programmable timing, and lumen maintenance..         0.20
(10) Lumen maintenance control.............................         0.10
(11) Lumen maintenance and programmable timing control.....         0.15
(12) Programmable timing control...........................         0.15
(13) Occupancy sensor (OS).................................         0.30
(14) OS and DS, continuous dimming.........................         0.40
(15) OS and DS, multiple-step dimming......................         0.35
(16) OS and DS, ON/OFF.....................................         0.35
(17) OS, DS continuous dimming, and lumen maintenance......         0.45
(18) OS, DS multiple-step dimming and lumen maintenance....         0.40
(19) OS, DS ON/OFF, and lumen maintenance..................         0.35
(20) OS and lumen maintenance..............................         0.35
(21) OS and programmable timing control....................         0.35
------------------------------------------------------------------------

    401.3.4 Lighting controls.
    401.3.4.1 Type of Lighting Controls. All lighting systems shall have 
controls, with the exception of emergency use or exit lighting.
    401.3.4.2 Number of Manual Controls. Spaces enclosed by walls or 
ceiling-

[[Page 1060]]

high partitions shall have a minimum of one manual control (on/off 
switch) for lighting in that space. Additional manual controls shall be 
provided for each task location or for each group of task locations 
within an area of 450 ft\2\ or less. For spaces with only one lighting 
fixture or with a single ballast, one manual control is required. 
Exceptions are as follows:
    401.3.4.2.1 Continuous lighting for security;
    401.3.4.2.2 Systems in which occupancy sensors, local programmable 
timers, or three-level (including OFF) step controls or preset dimming 
controls are substituted for manual controls at the rate of one for 
every two required manual controls, providing at least one control is 
installed for every 1500 watts of power.
    401.3.4.2.3 Systems in which four-level (including OFF) step 
controls or preset dimming controls or automatic or continuous dimming 
controls are substituted for manual controls at a rate of one for every 
three required manual controls, providing at least one control is 
installed for every 1500 watts of power.
    401.3.4.2.4 Spaces that must be used as a whole, such as public 
lobbies, retail stores, warehouses, and storerooms.
    401.3.4.3 Multiple Location Controls. Manual controls that operate 
the same load from multiple locations must be counted as one manual 
control.
    401.3.4.4 Control Accessibility. Lighting controls shall be readily 
accessible from within the space controlled. Exceptions are as follows: 
Controls for spaces that are to be used as a whole, automatic controls, 
programmable controls, controls requiring trained operators, and 
controls for safety hazards and security.
    401.3.4.5 Hotel and Motel Guest Room Control. Hotel and motel guest 
rooms and suites shall have at least one master switch at the main entry 
door that controls all permanently wired lighting fixtures and switched 
receptacles excluding bathrooms. The following exception applies: Where 
switches are provided at the entry to each room of a multiple-room 
suite.
    401.3.4.6 Switching of Exterior Lighting. Exterior lighting not 
intended for 24-hour use shall be automatically switched by either timer 
or photocell or a combination of timer and photocell. When used, timers 
shall be capable of seven-day and seasonal daylight schedule adjustment 
and have power backup for at least four hours.
    401.3.5 Ballasts.
    401.3.5.1 Tandem Wiring. One-lamp or three-lamp fluorescent 
luminaries that are recess mounted within 10 ft center-to-center of each 
other, or pendant mounted, or surface mounted within 1 ft of each other, 
and within the same room, shall be tandem wired, unless three-lamp 
ballasts are used.
    401.3.5.2 Power Factor. All ballasts shall have a power factor of at 
least 90%, with the exception of dimming ballasts, and ballasts for 
circline and compact fluorescent lamps and low wattage high intensity 
discharge (HID) lamps not over 100 W.



Sec.  434.402  Building envelope assemblies and materials.

    The building envelope and its associated assemblies and materials 
shall meet the provisions of this section.
    402.1 Calculations and Supporting Information.
    402.1.1 Material Properties. Information on thermal properties, 
building envelope system performance, and component heat transfer shall 
be obtained from RS-4. When the information is not available from RS-4, 
(incorporated by reference, see Sec.  434.701) the data shall be 
obtained from manufacturer's information or laboratory or field test 
measurements using RS-5, RS-6, RS-7, or RS-8 (incorporated by reference, 
see Sec.  434.701).
    402.1.1.1 The shading coefficient (SC) for fenestration shall be 
obtained from RS-4 (incorporated by reference, see Sec.  434.701) or 
from manufacturer's test data. The shading coefficient of the 
fenestration, including both internal and external shading devices, is 
SCX and excludes the effect of external shading projections, 
which are calculated separately. The shading coefficient used for 
louvered shade screens shall be determined using a profile angle of 30 
degrees as found in Table 41, Chapter 27 of RS-4 (incorporated by 
reference, see Sec.  434.701).

[[Page 1061]]

    402.1.2 Thermal Performance Calculations. The overall thermal 
transmittance of the building envelope shall be calculated in accordance 
with Equation 402.1.2:
[GRAPHIC] [TIFF OMITTED] TR06OC00.022

Where:

Uo = the area-weighted average thermal transmittance of the 
          gross area of the building envelope; i.e., the exterior wall 
          assembly including fenestration and doors, the roof and 
          ceiling assembly, and the floor assembly, Btu/
          (h[middot]ft\2\[middot][deg]F)
Ao = the gross area of the building envelope, ft\2\
Ui = the thermal transmittance of each individual path of the 
          building envelope, i.e., the opaque portion or the 
          fenestration, Btu/(h[middot]ft\2\[middot][deg]F)
Ui = 1/Ri (where Ri is the total 
          resistance to heat flow of an individual path through the 
          building envelope)
Ai = the area of each individual element of the building 
          envelope, ft\2\

    The thermal transmittance of each component of the building envelope 
shall be determined with due consideration of all major series and 
parallel heat flow paths through the elements of the component and film 
coefficients and shall account for any compression of insulation. The 
thermal transmittance of opaque elements of assemblies shall be 
determined using a series path procedure with corrections for the 
presence of parallel paths within an element of the envelope assembly 
(such as wall cavities with parallel paths through insulation and 
studs). The thermal performance of adjacent ground in below-grade 
applications shall be excluded from all thermal calculations.
    402.1.2.1 Envelope Assemblies Containing Metal Framing. The thermal 
transmittance of the envelope assembly containing metal framing shall be 
determined from one of three methods:
    (a) Laboratory or field test measurements based on RS-5, RS-6, RS-7, 
or RS-8 (incorporated by reference, see Sec.  434.701).
    (b) The zone method described in Chapter 22 of RS-4 (incorporated by 
reference, see Sec.  434.701) and the formulas on page 22.10.
    (c) For metal roof trusses or metal studs covered by Tables 
402.1.2.1a and b, the total resistance of the series path shall be 
calculated in accordance with the following Equations:
[GRAPHIC] [TIFF OMITTED] TR06OC00.023

Where:

Rt = the total resistance of the envelope assembly
Ri = the resistance of the series elements (for i = 1 to n) 
          excluding the parallel path element(s)
Re = the equivalent resistance of the element containing the 
          parallel path (R-value of insulation x Fc). Values 
          for Fc and equivalent resistances shall be taken 
          from Tables 402.1.2.1a or b.

 Table 402.1.2.1a--Parallel Path Correction Factors--Metal Roof Trusses
       Spaced 4 ft. o.c. or Greater That Penetrate the Insulation
------------------------------------------------------------------------
                                                             Equivalent
      Effective framing cavity R-values        Correction    resistance
                                                factor Fc      Re \1\
------------------------------------------------------------------------
R-0.........................................          1.00           R-0
R-5.........................................          0.96         R-4.8
R-10........................................          0.92         R-9.2
R-15........................................          0.88        R-13.2
R-20........................................          0.85        R-17.0
R-25........................................          0.81        R-20.3
R-30........................................          0.79        R-23.7
R-35........................................          0.76        R-26.6
R-40........................................          0.73        R-29.2
R-45........................................          0.71        R-32.0
R-50........................................          0.69        R-34.5
R-55........................................          0.67       R-36.0
------------------------------------------------------------------------
\1\ Based on 0.66-inch-diameter cross members every one foot.


[[Page 1062]]


       Table 402.1.2.1b--Parallel Path Correction Factors--Metal Framed Walls With Studs 16 Ga. or Lighter
----------------------------------------------------------------------------------------------------------------
                                                                                                     Equivalent
           Size of members              Spacing of framing,    Cavity insulation R-    Correction    resistance
                                                in.                    Value            factor Fc        Re
----------------------------------------------------------------------------------------------------------------
2 x 4...............................  16 O.C.                 R-11                            0.50         R-5.5
                                                              R-13                            0.46         R-6.0
                                                              R-15                            0.43         R-6.4
2 x 4...............................  24 O.C.                 R-11                            0.60         R-6.6
                                                              R-13                            0.55         R-7.2
                                                              R-15                            0.52         R-7.8
2 x 6...............................  16 O.C.                 R-19                            0.37         R-7.1
                                                              R-21                            0.35         R-7.4
2 x 6...............................  24 O.C.                 R-19                            0.45         R-8.6
                                                              R-21                            0.43         R-9.0
2 x 8...............................  16 O.C.                 R-25                            0.31         R-7.8
2 x 8...............................  24 O.C.                 R-25                            0.38         R-9.6
----------------------------------------------------------------------------------------------------------------

    402.1.2.2 Envelope Assemblies Containing Nonmetal Framing. The 
thermal transmittance of the envelope assembly shall be determined from 
laboratory or field test measurements based on RS-5, RS-6, RS-7, or RS-8 
(incorporated by reference, see Sec.  434.701) or from the series-
parallel (isothermal planes) method provided in page 23.2 of Chapter 23 
of RS-4 (incorporated be reference, see Sec.  434.701).
    402.1.2.3 Metal Buildings. For elements with internal metallic 
structures bonded on one or both sides to a metal skin or covering, the 
calculation procedure specified in RS-9 (incorporated by reference, see 
Sec.  434.701) shall be used.
    402.1.2.4 Fenestration Assemblies. Determine the overall thermal 
transmittance of fenestration assemblies in accordance with RS-18 and 
RS-19 (incorporated by reference, see Sec.  434.701) or by calculation. 
Calculation of the overall thermal transmittance of fenestration 
assemblies shall consider the center-of-glass, edge-of-glass, and frame 
components.
    (a) The following equation 402.1.2.4a shall be used.
    [GRAPHIC] [TIFF OMITTED] TR06OC00.024
    
Where:

Uof = the overall thermal transmittance of the fenestration 
          assemblies, including the center-of-glass, edge-of-glass, and 
          frame components, Btu/(h[middot]ft\2\[middot][deg]F)
i = numerical subscript (1, 2, . . .n) refers to each of the various 
          fenestration types present in the wall
n = the number of fenestration assemblies in the wall assembly
Ucg = the thermal transmittance of the center-of-glass area, 
          Btu/(h[middot]ft\2\[middot][deg]F)
Acg = the center of glass area, that is the overall visible 
          glass area minus the edge-of-glass area, ft\2\
Ueg = the thermal transmittance of the edge of the visible 
          glass area including the effects of spacers in multiple glazed 
          units, Btu/(h[middot]ft\2\[middot][deg]F)

[[Page 1063]]

Aeg = the edge of the visible glass area, that is the 2.5 in. 
          perimeter band adjacent to the frame, ft\2\
Uf = the thermal transmittance of the frame area, Btu/
          (h[middot]ft\2\[middot][deg]F)
Af = the frame area that is the overall area of the entire 
          glazing product minus the center-of-glass area and minus the 
          edge-of-glass area, ft\2\

    (b) Values of Uof shall be based on one of the following 
methods:
    (1) Results from laboratory test of center-of-glass, edge-of-glass, 
and frame assemblies tested as a unit at winter conditions. One of the 
procedures in Section 8.3.2 of RS-1 (incorporated by reference, see 
Sec.  434.701) shall be used.
    (2) Overall generic product C (commercial) in Table 13, Chapter 27, 
of the RS-4 (incorporated by reference, see Sec.  434.701). The generic 
product C in Table 13, Chapter 27, is based on a product of 24 ft\2\. 
Larger units will produce lower U-values and thus it is recommended to 
use the calculation procedure detailed in Equation 402.1.2.4a.
    (3) Calculations based on the actual area for center-of-glass, edge-
of-glass, and frame assemblies and on the thermal transmittance of 
components derived from 402.1.2.4a, 402.1.2.4b or a combination of the 
two.
    402.1.3 Gross Areas of Envelope Components.
    402.1.3.1 Roof Assembly. The gross area of a roof assembly shall 
consist of the total surface of the roof assembly exposed to outside air 
or unconditioned spaces and is measured from the exterior faces of 
exterior walls and centerline of walls separating buildings. The roof 
assembly includes all roof or ceiling components through which heat may 
flow between indoor and outdoor environments, including skylight 
surfaces but excluding service openings. For thermal transmittance 
purposes when return air ceiling plenums are employed, the roof or 
ceiling assembly shall not include the resistance of the ceiling or the 
plenum space as part of the total resistance of the assembly.
    402.1.3.2 Floor Assembly. The gross area of a floor assembly over 
outside or unconditioned spaces shall consist of the total surface of 
the floor assembly exposed to outside air or unconditioned space and is 
measured from the exterior face of exterior walls and centerline of 
walls separating buildings. The floor assembly shall include all floor 
components through which heat may flow between indoor and outdoor or 
unconditioned space environments.
    402.1.3.3 Wall Assembly. The gross area of exterior walls enclosing 
a heated or cooled space is measured on the exterior and consists of the 
opaque walls, including between-floor spandrels, peripheral edges of 
flooring, window areas (including sash), and door areas but excluding 
vents, grilles, and pipes.
    402.2 Air Leakage and Moisture Mitigation. The requirements of this 
section shall apply only to those building components that separate 
interior building conditioned space from the outdoors or from 
unconditioned space or crawl spaces. Compliance with the criteria for 
air leakage through building components shall be determined by tests 
conducted in accordance with RS-10 (incorporated by reference, see Sec.  
434.701).
    402.2.1 Air Barrier System. A barrier against leakage shall be 
installed to prevent the leakage of air through the building envelope 
according to the following requirements:
    (a) The air barrier shall be continuous at all plumbing and heating 
penetrations of the building opaque wall.
    (b) The air barrier shall be sealed at all penetrations of the 
opaque building wall for electrical and telecommunications equipment.

 Table 402.2.1--Air Leakage for Fenestration and Doors Maximum Allowable
                            Infiltration Rate
------------------------------------------------------------------------
                                                       cfm/lin ft Sash
             Component                 Reference      crack or cfm/ft\2\
                                        standard           of area
------------------------------------------------------------------------
           Fenestration
Aluminum:
    Operable......................  RS-11*           0.37 cfm/lin ft.
    Jalousie......................  RS-11*           1.50 cfm/ft\2\.
    Fixed.........................  RS-11*           0.15 cfm/ft\2\.
Poly Vinyl Chloride (PVC):
    Prime Windows.................  RS-12*           0.37 cfm/ft\2\.
Wood:
    Residential...................  RS-13*           0.37 cfm/ft\2\.
    Light Commercial..............  RS-13*           0.25 cfm/ft\2\.
    Heavy Commercial..............  RS-13*           0.15 cfm/ft\2\.
Sliding Glass Doors:
    Aluminum......................  RS-11*           0.37 cfm/ft\2\.
    PVC...........................  RS-12*           0.37 cfm/lin ft.
Doors--Wood:
    Residential...................  RS-14*           0.34 cfm/ft\2\.
    Light Commercial..............  RS-14*           0.25 cfm/ft\2\.
    Heavy Commercial..............  RS-14*           0.10 cfm/ft\2\.
Commercial Entrance Doors.........  RS-10*           1.25 cfm/ft\2\.

[[Page 1064]]

 
Residential Swinging Doors........  RS-10*           0.50 cfm/ft\2\.
Wall Sections Aluminum............  RS-10*           0.06 cfm/ft\2\.
------------------------------------------------------------------------
Note: [The ``Maximum Allowable Infiltration Rates'' are from current
  standards to allow the use of available products.]
* Incorporated by reference, see Sec.   434.701.

    402.2.2 Building Envelope. The following areas of the building 
envelope shall be sealed, caulked, gasketed, or weatherstripped to limit 
air leakage:
    (a) Intersections of the fenestration and door frames with the 
opaque wall sections.
    (b) Openings between walls and foundations, between walls and roof 
and wall panels.
    (c) Openings at penetrations of utility service through, roofs, 
walls, and floors.
    (d) Site built fenestration and doors.
    (e) All other openings in the building envelope.
    Exceptions are as follows: Outside air intakes, exhaust outlets, 
relief outlets, stair shaft, elevator shaft smoke relief openings, and 
other similar elements shall comply with subsection 403.
    402.2.2.1 Fenestration and Doors Fenestration and doors shall meet 
the requirements of Table 402.2.1.
    402.2.2.2 Building Assemblies Used as Ducts or Plenums. Building 
assemblies used as ducts or plenums shall be sealed, caulked, and 
gasketed to limit air leakage.
    402.2.2.3 Vestibules. A door that separates conditioned space from 
the exterior shall be equipped with an enclosed vestibule with all doors 
opening into and out of the vestibule equipped with self-closing 
devices. Vestibules shall be designed so that in passing through the 
vestibule, it is not necessary for the interior and exterior doors to 
open at the same time. Exceptions are as follows: Exterior doors need 
not be protected with a vestibule where:
    (a) The door is a revolving door.
    (b) The door is used primarily to facilitate vehicular movement or 
material handling.
    (c) The door is not intended to be used as a general entrance door.
    (d) The door opens directly from a dwelling unit.
    (e) The door opens directly from a retail space less than 2,000 
ft\2\ in area, or from a space less than 1,500 ft\2\ for other uses.
    (f) In buildings less than three stories in building height in 
regions that have less than 6,300 heating degree days base 65 [deg]F.
    402.2.2.4 Compliance Testing. All buildings shall be tested after 
completion using the methodology in RS-11, (incorporated by reference, 
see Sec.  434.701) or an equivalent approved method to determine the 
envelope air leakage. A standard blower door test is an acceptable 
technique to pressurize the building if the building is 5,000 ft\2\ or 
less in area. The buildings's air handling system can be used to 
pressurize the building if the building is larger than 5,000 ft\2\. The 
following test conditions shall be:
    (a) The measured envelope air leakage shall not exceed 1.57 pounds 
per square foot of wall area at a pressure difference of 0.3 inches 
water.
    (b) At the time of testing, all windows and outside doors shall be 
installed and closed, all interior doors shall be open, and all air 
handlers and dampers shall be operable. The building shall be 
unoccupied.
    (c) During the testing period, the average wind speed during the 
test shall be less than 6.6 feet per second, the average outside 
temperature greater than 59 [deg]F, and the average inside-outside 
temperature difference is less than 41 [deg]F.
    402.2.2.5 Moisture Migration. The building envelope shall be 
designed to limit moisture migration that leads to deterioration in 
insulation or equipment performance as determined by the following 
construction practices:
    (a) A vapor retarder shall be installed to retard, or slow down the 
rate of water vapor diffusion through the building envelope. The 
position of the vapor retarder shall be determined taking into account 
local climate and indoor humidity levels. The methodologies presented in 
Chapter 20 of RS-4 (incorporated by reference, see Sec.  434.701) shall 
be used to determine temperature and water vapor profiles through the

[[Page 1065]]

envelope systems to assess the potential for condensation within the 
envelope and to determine the position of the vapor retarder within the 
envelope system.
    (b) The vapor retarder shall be installed over the entire building 
envelope.
    (c) The perm rating requirements of the vapor retarder shall be 
determined using the methodologies contained in Chapter 20 of RS-4, 
(incorporated by reference, see Sec.  434.701) and shall take into 
account local climate and indoor humidity level. The vapor retarder 
shall have a performance rating of 1 perm or less.
    402.3 Thermal Performance Criteria.
    402.3.1 Roofs; Floors and Walls Adjacent to Unconditioned Spaces. 
The area weighted average thermal transmittance of roofs and also of 
floors and walls adjacent to unconditioned spaces shall not exceed the 
criteria in Table 402.3.1a. Exceptions are as follows: Skylights for 
which daylight credit is taken may be excluded from the calculations of 
the roof assembly Uor if all of the following conditions are 
met:
    (a) The opaque roof thermal transmittance is less than the criteria 
in Table 402.3.1b.
    (b) Skylight areas, including framing, as a percentage of the roof 
area do not exceed the values specified in Table 402.3.1b. The maximum 
skylight area from Table 402.3.1b may be increased by 50% if a shading 
device is used that blocks over 50% of the solar gain during the peak 
cooling design condition. For shell buildings, the permitted skylight 
area shall be based on a light level of 30 foot candles and a lighting 
power density (LPD) of less than 1.0 w/ft \2\. For speculative 
buildings, the permitted skylight area shall be based on the unit 
lighting power allowance from Table 401.3.2a and an illuminance level as 
follows: for LPD <1.0, use 30 footcandles; for 1.0 =2.5, use 70 footcandles.
    (c) All electric lighting fixtures within daylighted zones under 
skylights are controlled by automatic daylighting controls.
    (d) The Uo of the skylight assembly including framing 
does not exceed______Btu/(h[middot]ft \2\[middot][deg]F) [Use 0.70 for 
<=8000 HDD65 and 0.45 for 8000 HDD65 or both if the 
jurisdiction includes cities that are both below and above 8000 HDD65.]
    (e) Skylight curb U-value does not exceed 0.21 Btu/(h[middot]ft 
\2\[middot][deg]F).
    (f) The infiltration coefficient of the skylights does not exceed 
0.05 cfm/ft \2\.
    402.3.2 Below-Grade Walls and Slabs-on-Grade. The thermal resistance 
(R-value) of insulation for slabs-on-grade, or the overall thermal 
resistance of walls in contact with the earth, shall be equal to or 
greater than the values in Table 402.3.2.
    402.4 Exterior Walls. Exterior walls shall comply with either 
402.4.1 or 402.4.2.
    402.4.1 Prescriptive Criteria. (a) The exterior wall shall be 
designed in accordance with subsections 402.4.1.1 and 402.4.1.2. When 
the internal load density range is not known, the 0-1.50 W/ft \2\ range 
shall be used for residential, hotel/motel guest rooms, or warehouse 
occupancies; the 3.01-3.50 w/ft \2\ range shall be used for retail 
stores smaller than 2,000 ft \2\ and technical and vocational schools 
smaller than 10,000 ft \2\; and the 1.51-3.00 W/ft \2\ range shall be 
used for all other occupancies and building sizes. When the building 
envelope is designed or constructed prior to knowing the building 
occupancy type, an internal load density of ___ W/ft \2\ shall be used. 
[Use 3.0 W/ft \2\ for HDD65 <3000, 2.25 W/ft \2\ for 3000 6000.]
    (b) When more than one condition exists, area weighted averages 
shall be used. This requirement shall apply to all thermal 
transmittances, shading coefficients, projection factors, and internal 
load densities rounded to the same number of decimal places as shown in 
the respective table.
    402.4.1.1 Opaque Walls. The weighted average thermal transmittance 
(U-value) of opaque wall elements shall be less than the values in Table 
402.4.1.1. For mass walls (HC =5), criteria are presented for 
low and high window/wall ratios and the criteria shall be determined by 
interpolating between these values for the window/wall ratio of the 
building.
    402.4.1.2 Fenestration. The design of the fenestration shall meet 
the criteria

[[Page 1066]]

of Table 402.4.1.2. When the fenestration columns labeled ``Perimeter 
Daylighting'' are used, automatic daylighting controls shall be 
installed in the perimeter daylighted zones of the building. These 
daylighting controls shall be capable of reducing electric lighting 
power to at least 50% of full power. Only those shading or lighting 
controls for perimeter daylighting that are shown on the plans shall be 
considered. The column labeled ``VLT = SC'' shall be used 
only when the shading coefficient of the glass is less than its visible 
light transmittance.

                               Appendix A

    The example Alternate Component Package tables illustrate the 
requirements of subsections 434.301.1, 434.402.3.1, 434.402.3.2, 
434.402.4.1.1 and 434.402.4.1.2. Copies of specific tables contained in 
this appendix A can be obtained from the Energy Code for Federal 
Commercial Buildings, Docket No. EE-RM-79-112-C, EE-43, Office of 
Building Research and Standards, U.S. Department of Energy, Room 1J-018, 
1000 Independence Avenue, SW., Washington, DC 20585, (202) 586-9127.

[[Page 1067]]

[GRAPHIC] [TIFF OMITTED] TR06OC00.011

    402.4.2 System Performance Criteria. The cumulative annual energy 
flux attributable to thermal transmittance and solar gains shall be less 
than the criteria determined using the ENVSTD24 computer program in 
Standard 90.1-1989, or the equations in RS-1, (incorporated by 
reference, see Sec.  434.701) Attachment 8-B. The cumulative annual 
energy flux shall be calculated using the ENVSTD24 computer program or 
the equations in RS-1, (incorporated by reference, see Sec.  434.701) 
Attachment 8-B.

[[Page 1068]]



            Table 402.4.2--EQUIP Default Values for ENVSTD24
------------------------------------------------------------------------
                                      Default     Default      Default
                                     equipment   occupant     adjusted
             Occupancy                 power       load       equipment
                                      density   adjustment      power
                                        \1\         \1\        density
------------------------------------------------------------------------
Assembly..........................        0.25        0.75          1.00
Health/Institutional..............        1.00       -0.26          0.74
Hotel/Motel.......................        0.25       -0.33          0.00
Warehouse/Storage.................        0.10       -0.60          0.00
Multi-Family High Rise............        0.75         N/A          0.00
Office............................        0.75       -0.35          0.40
Restaurant........................        0.10        0.07          0.17
Retail............................        0.25       -0.38          0.00
School............................        0.50        0.30         0.80
------------------------------------------------------------------------
\1\ Defaults as defined in Section 8.6.10.5, Table 8-4, and Sections
  8.6.10.6 and 13.7.2.1, Table 13-2 from RS-1 (incorporated by
  reference, see Sec.   434.701).

    402.4.2.1 Equipment Power Density (EQUIP). The equipment power 
density used in the ENVSTD24 computer program shall use the actual 
equipment power density from the building plans and specifications or be 
taken from Table 402.4.2 using the column titled ``Default Adjusted 
Equipment Power Density'' or calculated for the building using the 
procedures of RS-1. (incorporated by reference, see Sec.  434.701). The 
program limits consideration of the equipment power density to a maximum 
of 1 W/ft \2\.
    402.4.2.2 Lighting Power Density (LIGHTS). The lighting power 
density used in the ENVSTD24 computer program shall use the actual 
lighting power density from the building plans and specifications or the 
appropriate value from Tables 401.3.2a, b, c, or d.
    402.4.2.3 Daylighting Control Credit Fraction (DLCF). When the 
daylighting control credit fraction is other than zero, automatic 
daylighting controls shall be installed in the appropriate perimeter 
zones(s) of the building to justify the credit.



Sec.  434.403  Building mechanical systems and equipment.

    Mechanical systems and equipment used to provide heating, 
ventilating, and air conditioning functions as well as additional 
functions not related to space conditioning, such as, but not limited 
to, freeze protection in fire projection systems and water heating, 
shall meet the requirements of this section.
    403.1 Mechanical Equipment Efficiency. When equipment shown in 
Tables 403.1a through 403.1f is used, it shall have a minimum 
performance at the specified rating conditions when tested in accordance 
with the specified reference standard. The reference standards listed in 
Tables 403.1a through 403.1f are incorporated by reference, see Sec.  
434.701. Omission of minimum performance requirements for equipment not 
listed in Tables 403.1a through 403.1f does not preclude use of such 
equipment.

     Table 403.1a--Unitary Air Conditioners and Condensing Units, Electrically Operated, Minimum Efficiency
                                                  Requirements
----------------------------------------------------------------------------------------------------------------
                                                        Subcategory or    Minimum Efficiency
         Equipment type             Size category      rating condition           \2\         Test procedure \1\
----------------------------------------------------------------------------------------------------------------
Air Conditioners, Air Cooled...  <65,000 Btu/h.....  Split system.......  10.0 SEER.........  ARI 210/240
                                                     Single Package.....  9.7 SEER..........  (RS-15)*
                                 =65,000  Split System and     8.9 EER \3\.......  ARI 210/240
                                  Btu/h and <135,00.  Single Package.     8.3 IPLV \3\......  (RS-15)*
                                 Btu/h.............
                                 =135,00  Split System and     8.5 EER\3\........
                                  0 Btu/h and         Single Package.     7.5 IPLV\3\.......
                                  <240,000 Btu/h.
                                 =240,00  Split System and     8.5 EER\3\........  ARI-340/360
                                  0 Btu/h and         Single Package.     7.5 IPLV\3\.......  (RS-16)*
                                  <760,000 Btu/h.
                                 =760,00  Split System and     8.3 EER\3\........  ARI-340/360
                                  0 Btu/h.            Package.            7.5 IPLV\3\.......  (RS-16)*
Air Conditioners, Water and      <65,000 Btu/h.....  Split System and     9.3 EER\3\........  ARI 210/240
 Evaporatively Cooled.                                Single Package.     8.4 IPLV\3\.......  (RS-15)*
                                 =65,000  Split System and     10.5 EER\c\.......  ARI 210/240
                                  Btu/h and           Single Package.     9.7 IPLV\c\.......  (RS-15)*
                                  <135,000 Btu/h.
                                 =135,00  Split System and     9.6 EER\c\........  ARI-340/360
                                  0 Btu/h and         Single Package.     9.0 IPLV\c\.......  (RS-16)*
                                  <240,000 Btu/h.
                                 =240,00  Split System and     9.6 EER\c\........  ARI-340/360
                                  0 Btu/h.            Single Package.     9.0 IPLV\c\.......  (RS-16)*
Condensing Units, Air Cooled...  135,000 Btu/h.....  ...................  9.9 EER...........  ARI 365
                                                                          11.0 IPLV.........  (RS-29)*

[[Page 1069]]

 
Condensing Units, Water or       135,000 Btu/h.....  ...................  12.9 EER..........  ARI 365
 Evaporatively Cooled.                                                    12.9 IPLV.........  (RS-29)*
----------------------------------------------------------------------------------------------------------------
\1\ See subpart E for detailed references
\2\ IPLVs are only applicable to equipment with capacity modulation.
\3\ Deduct 0.2 from the required EERs and IPLVs for units that have a heating section.
* Incorporation by reference, see Sec.   434.701


      Table 403.1b--Unitary and Applied Heat Pumps, Electrically Operated, Minimum Efficiency Requirements
----------------------------------------------------------------------------------------------------------------
                                                        Subcategory or    Minimum efficiency
         Equipment type              Size category     rating condition           \2\         Test procedure \1\
----------------------------------------------------------------------------------------------------------------
Air Cooled (Cooling Mode).......  <65,000 Btu/h.....  Split System......  10.0 SEER.........  ARI 210/240
                                                      Single Package....  9.7 SEER..........  (RS-15)*
                                  =65,000  Split System and    8.9 EER \3\.......  ARI 210/240
                                   Btu/h and           Single Package.    8.3 IPLV \3\......  (RS-15)*
                                   <135,000 Btu/h.
                                  =135,00  Split System and    8.5 EER \3\.......  ARI-340/360
                                   0 Btu/h and         Single Package.    7.5 IPLV \3\......  (RS-16)*
                                   <240,000 Btu/h.
                                  =240,00  Split System and    8.5 EER \3\.......  ARI-340/360
                                   0 Btu/h.            Single Package.    7.5 IPLV \3\......  (RS-16)*
Water Source....................  <65,000 Btu/h.....  85 [deg]F Entering  9.3 EER...........  ARI-320
(Cooling Mode)..................                       Water.             10.2 EER..........  (RS-27)*
                                                      75 [deg]F Entering
                                                       Water.
                                  =65,000  85 [deg]F Entering  10.5 EER..........  ARI-320
                                   Btu/h and           Water.             11.0 EER..........  (RS-27)*
                                   <135,000.          75 [deg]F Entering
                                  Btu/h.............   Water.
Groundwater-Source (Cooling       <135,000 Btu/h....  70 F Entering       11.0 EER..........  ARI 325
 Mode).                                                Water.             11.5 EER..........  (RS-28)*
                                                      50 F Entering
                                                       Water.
Ground Source (Cooling Mode)....  <135,000 Btu/h....  77 F Entering       10.0 EER..........  ARI 325
                                                       Water.             10.4 EER..........  (RS-28)*
                                                      70 F Entering
                                                       Water.
Air Cooled (Heating Mode).......  <65,000 Btu/h       Split System......  6.8 HSPF..........  ARI 210/240
                                   (Cooling           Single Package....  6.6 HSPF..........  (RS-15)*
                                   Capacity).
                                  65,000 Btu/h and    47 F db/43 F wb     3.00 COP..........  ARI 210/240
                                   <135,000 Btu/h      Outdoor Air.       2.00 COP..........  (RS-15)*
                                   (Cooling           17 F db/15 F wb
                                   Capacity).          Outdoor Air.
                                  135,000 Btu/h       47 F db/43 F wb     2.90 COP..........  ARI-340/360
                                   (Cooling            Outdoor Air.       2.00 COP..........  (RS-1/)*
                                   Capacity).         17 F db/15 F wb
                                                       Outdoor.
Water-Source (Heating Mode).....  <135,000 Btu/h      70 F Entering       3.80 COP..........  ARI-320
                                   (Cooling            Water.             3.90 COP..........  (RS-27)*
                                   Capacity).         75 F Entering
                                                       Water.
Groundwater-Source (Heating       <135,000 Btu/h      70 F Entering       3.40 COP..........  ARI 325
 Mode).                            (Cooling            Water.             3.00 COP..........  (RS-28)*
                                   Capacity).         50 F Entering
                                                       Water.
Ground Source (Heating Mode)....  <135,000 Btu/h      32 F Entering       2.50 EER..........  ARI-330
                                   (Cooling            Water.             2.70 EER..........  (RS-45)*
                                   Capacity).         41 F Entering
                                                       Water.
----------------------------------------------------------------------------------------------------------------
\1\ See subpart E for detailed references.
\2\ IPLVs are only applicable to equipment with capacity modulation.
\3\ Deduct 0.2 from the required EERs and IPLVs for units that have a heating section.
* Incorporation by reference, see Sec.   434.701.


                     Table 403.1c--Water Chilling Packages, Minimum Efficiency Requirements
----------------------------------------------------------------------------------------------------------------
                                                        Subcategory or    Minimum efficiency
         Equipment type              Size category     rating condition           \2\         Test procedure \1\
----------------------------------------------------------------------------------------------------------------
Air-Cooled, With Condenser,       <150 Tons.........  2.70 COP..........  2.50 COP..........  ARI 550
 Electrically Operated.           =150     2.80 IPLV.........  2.50 IPLV.........   Centrifugal/
                                   Tons.                                                       Rotary Screw (RS-
                                                                                               30)* or ARI 590
                                                                                               Reciprocating (RS-
                                                                                               31)*
Air-Cooled, Without Condenser,    All Capacities....  ..................  3.10 COP
 Electrically Operated.                                                   3.20 IPLV.........
Water Cooled, Electrically        All Capacities....  ..................  3.80 COP
 Operated, Positive Displacement                                          3.90 IPLV.........
 (Reciprocating).
Water Cooled, Electrically        <150 Tons                               3.80 COP
 Operated, Positive Displacement  =150     ..................  3.90 IPLV.........
 (Rotary Screw and Scroll).        Tons and <300                          4.20 COP..........
                                   Tons.                                  4.50 IPLV.........
                                  =300                         5.20 COP..........
                                   Tons.                                  5.30 IPLV.........

[[Page 1070]]

 
Water-Cooled, Electrically        <150 Tons.........                      3.80 COP..........  ARI 550
 Operated, Centrifugal.           150 Tons and <300   ..................  3.90 IPLV.........  (RS-30)*
                                   Tons.              ..................  4.20 COP..........
                                  300 Tons..........                      4.50 IPLV.........
                                                                          5.20 COP..........
                                                                          5.30 IPLV.........
Absorption Single Effect........  All Capacities....  ..................  0.48 COP..........
Absorption Double Effect,         All Capacities....  ..................  0.95 COP..........  ARI 560
 Indirect-Fired.                                                          1.00 IPLV.........  (RS-46)*
Absorption Double-Effect, Direct- All Capacities....  ..................  0.95 COP
 Fired.                                                                   1.00 IPLV ........
----------------------------------------------------------------------------------------------------------------
\1\ See subpart E for detailed references.
\2\ Equipment must comply with all efficiencies when multiple efficiencies are indicated.
*Incorporation by reference, see Sec.   434.701.


 Table 403.1d--Packaged Terminal Air Conditioners, Packaged Terminal Heat Pumps, Room Air Conditioners, and Room
                Air-Conditioner Heat Pumps Electrically Operated, Minimum Efficiency Requirements
----------------------------------------------------------------------------------------------------------------
                                                        Subcategory or    Minimum efficiency
         Equipment type              Size category     rating condition           \2\         Test procedure \1\
----------------------------------------------------------------------------------------------------------------
PTAC (Cooling Mode).............  All Capacities....  95 [deg]F db        10.0 - (0.16 x Cap/ ARI 310/380
                                                       Outdoor Air.        1,000) \3\EER.     (RS-17)*
                                                      ..................  12.2 - (0.20 x Cap/ ARI 310/380
                                                      82 [deg]F db         1,000) \3\EER.     (RS-17)*
                                                       Outdoor Air.
PTHP (Cooling Mode).............  All Capacities....  95 [deg]F db        10.0-(0.16 x Cap/
                                                       Outdoor Air.        1,000) \3\ EER.
                                                      ..................  12.2-(0.20 x Cap/
                                                      82 [deg]F db         1,000) EER.
                                                       Outdoor Air.
PTHP (Heating Mode).............  All Capacities....  ..................  2.90-(0.026 x CAP/
                                                                           1,000) \3\ COP.
Room Air Conditioners, With       <6,000 Btu/h......  ..................  8.0 EER...........  ANSI/AHAM RAC-1
 Louvered Sides.                  =6,000                       8.5 EER...........  (RS-40)*
                                   Btu/h and <8,000                       ..................
                                   Btu/h.                                 9.0 EER...........
                                  =8,000                       ..................
                                   Btu/h and <14,000                      8.8 EER...........
                                   Btu/h.                                 ..................
                                  =14,000                      8.2 EER...........
                                   Btu/h and <20,000
                                   Btu/h.
                                  =20,000
                                   Btu/h.
Room Air Conditioner, Without     <6,000 Btu/h......  ..................  8.0 EER...........  ANSI/AHAM RAC-1
 Louvered Sides.                  =6,000                       8.5 EER...........  (RS-40)*
                                   Btu/h and <20,000                      ..................
                                   Btu/h.                                 8.2 EER...........
                                  =20,000
                                   Btu/h.
Room Air-Conditioner Heat Pumps   All Capacities....  ..................  8.5 EER...........  ANSI/AHAM RAC-1
 With Louvered Sides.                                                                         (RS-40)*
Room Air-Conditioner Heat Pumps   All Capacities....  ..................  8.0 EER...........  ANSI/AHAM RAC-1
 Without Louvered Sides.                                                                      (RS-40*
----------------------------------------------------------------------------------------------------------------
\1\ See subpart E for detailed references.
\2\ Equipment must comply with all efficiencies when multiple efficiencies are indicated. (Note products covered
  by the 1992 Energy Policy Act have no efficiency requirement for operation at other than standard rating
  conditions for products manufactured after 1/1/94).
\3\ Cap means the rated capacity of the product in Btu/h. If the unit's capacity is less than 7,000 Btu/h, use
  7,000 Btu/h in the calculation. If the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the
  calculation.
* Incorporation by reference, see Sec.   434.701.


Table 403.1e--Warm Air Furnaces and Combination Warm Air Furnaces/Air Conditioning Units, Warm Air Duct Furnaces
                                and Unit Heaters, Minimum Efficiency Requirements
----------------------------------------------------------------------------------------------------------------
                                                        Subcategory or          Minimum
         Equipment type              Size category     rating condition     efficiency\b e\   Test procedure \a\
----------------------------------------------------------------------------------------------------------------
Warm Air-Furnace, Gas-Fired.....  <225,000 Btu/h....  ..................  78% AFUE or 80% Et  DOE 10 CFR 430
                                                                                              Appendix N
                                  =225,00  Maximum Capacity    80% Et............  ANSI Z21.47
                                   0 Btu/h.            \c\.               78% Et............  (RS-21)*
                                                      Minimum
                                                       Capacity\c\.
Warm Air-Furnace, Oil-Fired.....  <225,000 Btu/h....  ..................  78% AFUE or 80%     DOE 10 CFR 430
                                                                           Et\d\.             Appendix N

[[Page 1071]]

 
                                  =225,00  Maximum Capacity    81% Et............  U.L. 727
                                   0 But/h.            \c\.               81% Et............  (RS-22)*
                                                      Minimum Capacity..
Warm Air Duct Furnaces, Gas-      All Capacities....  Maximum Capacity    78% Et............  ANSI Z83.9
 Fired.                                                \c\.               75% Et............  (RS-23)
                                                      Minimum Capacity..
Warm Air Unit Heaters, Gas Fired  All Capacities....  Maximum Capacity    78% Et............  ANSI Z83.8
                                                       \c\.               74% Et............  (RS-24)*
                                                      Minimum Capacity..
Oil-Fired.......................  All Capacities....  Maximum Capacity    81% Et............  U.L. 731
                                                       \c\.               81% Et............  (RS-25)*
                                                      Minimum Capacity..
----------------------------------------------------------------------------------------------------------------
\a\ See subpart E for detailed references.
\b\ Minimum and maximum ratings as provided for and allowed by the unit's controls.
\c\ Combination units not covered by NAECA (Three-phase power or cooling capacity =65,000 Btu/h) may
  comply with either rating.
\d\ Et = thermal efficiency. See referenced document for detailed discussion.
\e\ Ec = combustion efficiency. Units must also include an IID and either power venting or a flue damper. For
  those furnaces where combustion air is drawn from the conditioned space, a vent damper may be substituted for
  a flue damper.
* Incorporation by reference, see Sec.   434.701


                   Table 403.1f--Boilers, Gas- and Oil-Fired, Minimum Efficiency Requirements
----------------------------------------------------------------------------------------------------------------
                                                        Subcategory or    Minimum efficiency
         Equipment type              Size category     rating condition           \b\         Test procedure \a\
----------------------------------------------------------------------------------------------------------------
Boilers, Gas-Fired..............  <300,000 Btu/h....  Hot Water.........  80% AGUE..........  DOE 10 CFR 430
                                                                                              Appendix N
                                  ..................  Steam.............  75% AGUE..........  DOE 10 CFR 430
                                                                                              Appendix N
                                  <300,000 Btu/h....  Maximum Capacity    80% Ec............  ANSI Z21.13
                                                       \c\.               80% Ec............  (RS-32)*
                                                      Minimum Capacity..
Boilers, Oil-Fired..............  <300,000 Btu/h....  ..................  80% AGUE..........  DOE 10 CFR 430
                                                                                              (RS-20)*
                                  <300,000 Btu/h....  Maximum Capacity    83% Ec............  U.L. 726
                                                       \c\.               83% Ec............  (RS-33)*
                                                      Minimum Capacity..
Oil-Fired (Residual)............  <3000,000 Btu/h...  Maximum Capacity    83% Ec............
                                                       \c\.               83% Ec ...........
                                                      Minimum Capacity..
----------------------------------------------------------------------------------------------------------------
\a\ See subpart E for detailed references.
\b\ Minimum and maximum ratings as provided for and allowed by the unit's controls.
\c\ Ec = combustion efficiency (100% less flue losses). See reference document for detailed information.
* Incorporation by reference, see Sec.   434.701.

    403.1.1 Where multiple rating conditions and/or performance 
requirements are provided, the equipment shall satisfy all stated 
requirements.
    403.1.2 Equipment used to provide water heating functions as part of 
a combination integrated system shall satisfy all stated requirements 
for the appropriate space heating or cooling category.
    403.1.3 The equipment efficiency shall be supported by data 
furnished by the manufacturer or shall be certified under a nationally 
recognized certification program or rating procedure.
    403.1.4 Where components, such as indoor or outdoor coils, from 
different manufacturers are used, the system designer shall specify 
component efficiencies whose combined efficiency meets the standards 
herein.
    403.2 HVAC Systems.
    403.2.1 Load Calculations. Heating and cooling system design loads 
for the purpose of sizing systems and equipment shall be determined in 
accordance with the procedures described in RS-1 (incorporated by 
reference, see Sec.  434.701) using the design parameters specified in 
subpart C of this part.
    403.2.2 Equipment and System Sizing. Heating and cooling equipment 
and systems shall be sized to provide no more than the loads calculated 
in accordance with subsection 403.2.1. A single piece of equipment 
providing both heating and cooling must satisfy this provision for one 
function with the other function sized as small as possible to meet the 
load, within available equipment options. Exceptions are as follows:

[[Page 1072]]

    (a) When the equipment selected is the smallest size needed to meet 
the load within available options of the desired equipment line.
    (b) Standby equipment provided with controls and devices that allow 
such equipment to operate automatically only when the primary equipment 
is not operating.
    (c) Multiple units of the same equipment type with combined 
capacities exceeding the design load and provided with controls that 
sequence or otherwise optimally control the operation of each unit based 
on load.
    403.2.3 Separate Air Distribution System. Zones with special process 
temperature and/or humidity requirements shall be served by air 
distribution systems separate from those serving zones requiring only 
comfort conditions or shall include supplementary provisions so that the 
primary systems may be specifically controlled for comfort purposes 
only. Exceptions: Zones requiring only comfort heating or comfort 
cooling that are served by a system primarily used for process 
temperature and humidity control need not be served by a separate system 
if the total supply air to these comfort zones is no more than 25% of 
the total system supply air or the total conditioned floor area of the 
zones is less than 1000 ft2.
    403.2.4 Ventilation and Fan System Design. Ventilation systems shall 
be designed to be capable of reducing the supply of outdoor air to the 
minimum ventilation rates required by Section 6.1.3 of RS-41 
(incorporated by reference, see Sec.  434.701) through the use of return 
ducts, manually or automatically operated control dampers, fan volume 
controls, or other devices. Exceptions are as follows: Minimum outdoor 
air rates may be greater if:
    (a) Required to make up air exhausted for source control of 
contaminants such as in a fume hood.
    (b) Required by process systems.
    (c) Required to maintain a slightly positive building pressure. For 
this purpose, minimum outside air intake may be increased up to no 
greater than 0.30 air changes per hour in excess of exhaust quantities.
    403.2.4.1 Ventilation controls for variable or high occupancy areas. 
Systems with design outside air capacities greater than 3,000 cfm 
serving areas having an average design occupancy density exceeding 100 
people per 1,000 ft\2\ shall include means to automatically reduce 
outside air intake to the minimum values required by RS-41 (incorporated 
by reference, see Sec.  434.701) during unoccupied or low-occupancy 
periods. Outside air shall not be reduced below 0.14 cfm/ft\2\. Outside 
air intake shall be controlled by one or more of the following:
    (a) A clearly labeled, readily accessible bypass timer that may be 
used by occupants or operating personnel to temporarily increase minimum 
outside air flow up to design levels.
    (b) A carbon dioxide (CO2) control system having sensors 
located in the spaces served, or in the return air from the spaces 
served, capable of maintaining space CO2 concentrations below 
levels recommended by the manufacturer, but no fewer than one sensor per 
25,000 ft\2\ of occupied space shall be provided.
    (c) An automatic timeclock that can be programmed to maintain 
minimum outside air intake levels commensurate with scheduled occupancy 
levels.
    (d) Spaces equipped with occupancy sensors.
    403.2.4.2 Ventilation Controls for enclosed parking garages. Garage 
ventilation fan systems with a total design capacity greater than 30,000 
cfm shall have automatic controls that stage fans or modulate fan volume 
as required to maintain carbon monoxide (CO) below levels recommended in 
RS-41.
    403.2.4.3 Ventilation and Fan Power. The fan system energy demand of 
each HVAC system at design conditions shall not exceed 0.8 W/cfm of 
supply air for constant air volume systems and 1.25 W/cfm of supply air 
for variable-air-volume (VAV) systems. Fan system energy demand shall 
not include the additional power required by air treatment or filtering 
systems with pressure drops over 1 in. w.c. Individual VAV fans with 
motors 75 hp and larger shall include controls and devices necessary for 
the fan motor to demand no more than 30 percent of design wattage at 50 
percent of design air volume, based on manufacturer's test data. 
Exceptions are as follows:

[[Page 1073]]

    (a) Systems with total fan system motor horsepower of 10 hp or less.
    (b) Unitary equipment for which the energy used by the fan is 
considered in the efficiency ratings of subsection 403.1.
    403.2.5 Pumping System Design. HVAC pumping systems used for comfort 
heating and/or comfort air conditioning that serve control valves 
designed to modulate or step open and closed as a function of load shall 
be designed for variable fluid flow and capable of reducing system flow 
to 50 percent of design flow or less. Exceptions are as follows:
    (a) Systems where a minimum flow greater than 50% of the design flow 
is required for the proper operation of equipment served by the system, 
such as chillers.
    (b) Systems that serve no more than one control valve.
    (c) Systems with a total pump system horse power <=10 hp.
    (d) Systems that comply with subsection 403.2.6.8 without exception.
    403.2.6 Temperature and Humidity Controls.
    403.2.6.1 System Controls. Each heating and cooling system shall 
include at least one temperature control device.
    403.2.6.2 Zone Controls. The supply of heating and cooling energy to 
each zone shall be controlled by individual thermostatic controls 
responding to temperature within the zone. For the purposes of this 
section, a dwelling unit is considered a zone. Exceptions are as 
follows: Independent perimeter systems that are designed to offset 
building envelope heat losses or gains or both may serve one or more 
zones also served by an interior system when the perimeter system 
includes at least one thermostatic control zone for each building 
exposure having exterior walls facing only one orientation for at least 
50 contiguous ft and the perimeter system heating and cooling supply is 
controlled by thermostat(s) located within the zone(s) served by the 
system.
    403.2.6.3 Zone Thermostatic Control Capabilities. Where used to 
control comfort heating, zone thermostatic controls shall be capable of 
being set locally or remotely by adjustment or selection of sensors down 
to 55 [deg]F or lower. Where used to control comfort cooling, zone 
thermostatic controls shall be capable of being set locally or remotely 
by adjustment or selection of sensors up to 85 [deg]F or higher. Where 
used to control both comfort heating and cooling, zone thermostatic 
controls shall be capable of providing a temperature range or deadband 
of at least 5 [deg]F within which the supply of heating and cooling 
energy to the zone is shut off or reduced to a minimum. Exceptions are 
as follows:
    (a) Special occupancy or special usage conditions approved by the 
building official or
    (b) Thermostats that require manual changeover between heating and 
cooling modes.
    403.2.6.4 Heat Pump Auxiliary Heat. Heat pumps having supplementary 
electric resistance heaters shall have controls that prevent heater 
operation when the heating load can be met by the heat pump. 
Supplemental heater operation is permitted during outdoor coil defrost 
cycles not exceeding 15 minutes.
    403.2.6.5 Humidistats. Humidistats used for comfort purposes shall 
be capable of being set to prevent the use of fossil fuel or electricity 
to reduce relative humidity below 60% or increase relative humidity 
above 30%.
    403.2.6.6 Simultaneous Heating and Cooling. Zone thermostatic and 
humidistatic controls shall be capable of operating in sequence the 
supply of heating and cooling energy to the zone. Such controls shall 
prevent: Reheating; recooling; mixing or simultaneous supply of air that 
has been previously mechanically heated and air that has been previously 
cooled, either by mechanical refrigeration or by economizer systems; and 
other simultaneous operation of heating and cooling systems to the same 
zone. Exceptions are as follows:
    (a) Variable-air-volume systems that, during periods of occupancy, 
are designed to reduce the air supply to each zone to a minimum before 
heating, recooling, or mixing takes place. This minimum volume shall be 
no greater than the larger of 30% of the peak supply volume, the minimum 
required to meet minimum ventilation requirements of the Federal agency. 
(0.4 cfm/

[[Page 1074]]

ft\2\ of zone conditioned floor area, and 300 cfm).
    (b) Zones where special pressurization relationships or cross-
contamination requirements are such that variable-air-volume systems are 
impractical, such as isolation rooms, operating areas of hospitals and 
clean rooms.
    (c) At least 75% of the energy for reheating or for providing warm 
air in mixing systems is provided from a site-recovered or site-solar 
energy source.
    (d) Zones where specified humidity levels are required to satisfy 
process needs, such as computer rooms and museums.
    (e) Zones with a peak supply air quantity of 300 cfm or less.
    403.2.6.7 Temperature Reset for Air Systems. Air systems supplying 
heated or cooled air to multiple zones shall include controls that 
automatically reset supply air temperatures by representative building 
loads or by outside air temperature. Temperature shall be reset by at 
least 25% of the design supply air to room air temperature difference. 
Zones that are expected to experience relatively constant loads, such as 
interior zones, shall be designed for the fully reset supply 
temperature. Exception are as follows: Systems that comply with 
subsection 403.2.6.6 without using exceptions (a) or (b).
    403.2.6.8 Temperature Reset for Hydronic Systems. Hydronic systems 
of at least 600,000 Btu/hr design capacity supplying heated and/or 
chilled water to comfort conditioning systems shall include controls 
that automatically reset supply water temperatures by representative 
building loads (including return water temperature) or by outside air 
temperature. Temperature shall be reset by at least 25% of the design 
supply-to-return water temperature difference. Exceptions are as 
follows:
    (a) Systems that comply with subsection 403.2.5 without exception or
    (b) Where the design engineer certifies to the building official 
that supply temperature reset controls cannot be implemented without 
causing improper operation of heating, cooling, humidification, or 
dehumidification systems.
    403.2.7 Off Hour Controls.
    403.2.7.1 Automatic Setback or Shutdown Controls. HVAC systems shall 
be equipped with automatic controls capable of accomplishing a reduction 
of energy use through control setback or equipment shutdown. Exceptions 
are as follows:
    (a) Systems serving areas expected to operate continuously or
    (b) Equipment with full load demands not exceeding 2 kW controlled 
by readily accessible, manual off-hour controls.
    403.2.7.2 Shutoff Dampers. Outdoor air supply and exhaust systems 
shall be provided with motorized or gravity dampers or other means of 
automatic volume shutoff or reduction. Exceptions are as follows:
    (a) Systems serving areas expected to operate continuously.
    (b) Individual systems which have a design airflow rate or 3000 cfm 
or less.
    (c) Gravity and other non-electrical ventilation systems controlled 
by readily accessible, manual damper controls.
    (d) Where restricted by health and life safety codes.
    403.2.7.3 Zone Isolation systems that serve zones that can be 
expected to operate nonsimultaneously for more than 750 hours per year 
shall include isolation devices and controls to shut off or set back the 
supply of heating and cooling to each zone independently. Isolation is 
not required for zones expected to operate continuously or expected to 
be inoperative only when all other zones are inoperative. For buildings 
where occupancy patterns are not known at the time of system design, 
such as speculative buildings, the designer may predesignate isolation 
areas. The grouping of zones on one floor into a single isolation area 
shall be permitted when the total conditioned floor area does not exceed 
25,000 ft\2\ per group.
    403.2.8 Economizer Controls.
    403.2.8.1 Each fan system shall be designed and capable of being 
controlled to take advantage of favorable weather conditions to reduce 
mechanical cooling requirements. The system shall include either: A 
temperature or enthalpy air economizer system that is capable of 
automatically modulating outside air and return air dampers to

[[Page 1075]]

provide up to 85% of the design supply air quantity as outside air, or a 
water economizer system that is capable of cooling supply air by direct 
and/or indirect evaporation and is capable of providing 100% of the 
expected system cooling load at outside air temperatures of 50 [deg]F 
dry-bulb/45 [deg]F wet-bulb and below. Exceptions are as follows:
    (a) Individual fan-cooling units with a supply capacity of less than 
3000 cfm or a total cooling capacity less than 90,000 Btu/h.
    (b) Systems with air-cooled or evaporatively cooled condensers that 
include extensive filtering equipment provided in order to meet the 
requirements of RS-41 (incorporated by reference, see Sec.  434.701).
    (c) Systems with air-cooled or evaporatively cooled condensers where 
the design engineer certifies to the building official that use of 
outdoor air cooling affects the operation of other systems, such as 
humidification, dehumidification, and supermarket refrigeration systems, 
so as to increase overall energy usage.
    (d) Systems that serve envelope-dominated spaces whose sensible 
cooling load at design conditions, excluding transmission and 
infiltration loads, is less than or equal to transmission and 
infiltration losses at an outdoor temperature of 60 [deg]F.
    (e) Systems serving residential spaces and hotel or motel rooms.
    (f) Systems for which at least 75% of the annual energy used for 
mechanical cooling is provided from a site-recovered or site-solar 
energy source.
    (g) The zone(s) served by the system each have operable openings 
(windows, doors, etc.) with an openable area greater than 5% of the 
conditioned floor area. This applies only to spaces open to and within 
20 ft of the operable openings. Automatic controls shall be provided 
that lock out system mechanical cooling to these zones when outdoor air 
temperatures are less than 60 [deg]F.
    403.2.8.2 Economizer systems shall be capable of providing partial 
cooling even when additional mechanical cooling is required to meet the 
remainder of the cooling load. Exceptions are as follows:
    (a) Direct-expansion systems may include controls to reduce the 
quantity of outdoor air as required to prevent coil frosting at the 
lowest step of compressor unloading. Individual direct-expansion units 
that have a cooling capacity of 180,000 Btu/h or less may use economizer 
controls that preclude economizer operation whenever mechanical cooling 
is required simultaneously.
    (b) Systems in climates with less than 750 average operating hours 
per year between 8 a.m. and 4 p.m. when the ambient dry-bulb 
temperatures are between 55 [deg]F and 69 [deg]F inclusive.
    403.2.8.3 System design and economizer controls shall be such that 
economizer operation does not increase the building heating energy use 
during normal operation.
    403.2.9 Distribution System Construction and Insulation.
    403.2.9.1 Piping Insulation. All HVAC system piping shall be 
thermally insulated in accordance with Table 403.2.9.1. Exceptions are 
as follows:
    (a) Factory-installed piping within HVAC equipment tested and rated 
in accordance with subsection 403.1.
    (b) Piping that conveys fluids that have a design operating 
temperature range between 55 [deg]F and 105 [deg]F.
    (c) Piping that conveys fluids that have not been heated or cooled 
through the use of fossil fuels or electricity.

                               Table 403.2.9.1--Minimum Pipe Insulation (in.) \a\
----------------------------------------------------------------------------------------------------------------
                                          Insulation conductivity            Nominal pipe diameter (in.)
----------------------------------------            \a\            ---------------------------------------------
                                        ---------------------------
                                          Conductivity                        1.0 to   1.5 to    4.0 to
 Fluid Design Operating Temp. Range (F)  Range Btu in./     Mean      <1.0     1.25      3.0      6.0      8.0
                                           (h ft\2\ F)    Temp. F
----------------------------------------------------------------------------------------------------------------
                         Heating systems (Steam, Steam Condensate, and Hot Water) \b c\
----------------------------------------------------------------------------------------------------------------
350.........................       0.32-0.34        250      1.0      1.5      1.5       2.0      2.5
251-350................................       0.29-0.32        200      1.0      1.0      1.5       2.0      2.0
201-250................................       0.27-0.30        150      1.0      1.0      1.0       1.5      1.5
141-200................................       0.25-0.29        125      1.0      1.0      1.0       1.5      1.5

[[Page 1076]]

 
105-140................................       0.22-0.28        100      0.5      0.5      0.75      1.0      1.0
----------------------------------------------------------------------------------------------------------------
                                     Domestic and Service Hot Water Systems
----------------------------------------------------------------------------------------------------------------
105 and Greater........................       0.22-0.28        100      0.5      0.5      0.75      1.0      1.0
----------------------------------------------------------------------------------------------------------------
                           Cooling Systems (Chilled Water, Brine, and Refrigerant) \d\
----------------------------------------------------------------------------------------------------------------
40-55..................................       0.22-0.28        100      0.5      0.5      0.5       0.5      0.5
Below 40...............................       0.22-0.28        100      0.5      0.5      0.5       0.5     0.5
----------------------------------------------------------------------------------------------------------------
\a\ For insulation outside the stated conductivity range, the minimum thickness (T) shall be determined as
  follows: T = r{1 + t/r)K/k - 1{time}
Where T = minimum insulation thickness (in), r = actual outside radius of pipe (in), t = insulation thickness
  listed in this table for applicable fluid temperature and pipe size, K = conductivity of alternate material at
  mean rating temperature indicated for the applicable fluid temperature (Btu in/h ft\2\ F); and k = the upper
  value of the conductivity range listed in this table for the applicable fluid temperature.
\b\ These thicknesses are based on energy efficiency considerations only. Safety issues, such as insulation
  surface temperatures, have not been considered.
\c\ Piping insulation is not required between the control valve and coil on run-outs when the control valve is
  located within four feet of the coil and the pipe diameter is 1 inch or less.
\d\ Note that the required minimum thickness does not take water vapor transmission and possible surface
  condensation into account.


                                                                      Table 403.2.9.2--Minimum Duct Insulation R-value \a\
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                         Cooling supply ducts                                                     Heating supply ducts
                              --------------------------------------------------------------------------------------------------------------------------------------------------
        Duct location                               500 =2,000        HDD65 <=1,500        <=4,500          <=7,500          eq>=7,500
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Exterior of Building.........  R-3.3...........  R-5.0...........  R-6.5...........  R-8.0.............  R-3.3...........  R-5.0...........  R-6.5..........  R-8.0............  R-5.0
Ventilated Attic.............  R-3.3...........  R-3.3...........  R-3.3...........  R-5.0.............  R-5.0...........  R-5.0...........  R-5.0..........  R-5.0............  R-3.3
Unvented Attic...............  R-5.0...........  R-5.0...........  R-5.0...........  R-5.0.............  R-5.0...........  R-5.0...........  R-5.0..........  R-5.0............  R-3.3
Other Conditioned Spaces \b\.  R-3.3...........  R-3.3...........  R-3.3...........  R-3.3.............  R-3.3...........  R-3.3...........  R-3.3..........  R-3.3............  R-3.3
Indirectly Conditioned Spaces  none............  R-3.3...........  R-3.3...........  R-3.3.............  R-3.3...........  R-3.3...........  R-3.3..........  R-3.3............  none
 \c\.
Buried.......................  none............  none............  none............  none..............  R-5.0...........  R-5.0...........  R-5.0..........  R-5.0............  R-3.3
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
\a\ Insulation R-values, measured in (h.ft \2\.[deg]F)/Btu, are for the insulation as installed and do not include film resistance. The required minimum thickness do not consider water vapor
  transmission and possible surface condensation. The required minimum thicknesses do not consider water vapor transmission and condensation. For ducts that are designed to convey both heated
  and cooled air, duct insulation shall be as required by the most restrictive condition. Where exterior walls are used as plenum walls, wall insulation shall be as required by the most
  restrictive condition of this section or subsection 402. Insulation resistance measured on a horizontal plane in accordance with RS-6 (incorporated by reference, see Sec.   434.701) at a
  mean temperature of 75 [deg]F. RS-6 is in incorporated by reference at Sec.   434.701.
\b\ Includes crawl spaces, both ventilated and non-ventilated.
\c\ Includes return air plenums, with and without exposed roofs above.

    403.2.9.2 Duct and Plenum Insulation. All supply and return air 
ducts and plenums installed as part of an HVAC air distribution system 
shall be thermally insulated in accordance with Table 403.2.9.1. 
Exceptions are as follows:
    (a) Factory-installed plenums, casings, or ductwork furnished as a 
part of the HVAC equipment tested and rated in accordance with 
subsection 403.1
    (b) Ducts within the conditioned space that they serve. 
(incorporated by reference, see Sec.  434.701)ca a06oc0.186
    403.2.9.3 Duct and Plenum Construction. All air-handling ductwork 
and plenums shall be constructed and erected in accordance with RS-34, 
RS-35, and RS-36 (incorporated by reference, see Sec.  434.701). Where 
supply ductwork and plenums designed to operate at static pressures from 
0.25 in. wc to 2 in. wc, inclusive, are located outside of the 
conditioned space or in return plenums, joints shall be sealed in 
accordance with Seal Class C as defined in RS-34 (incorporated by 
reference, see Sec.  434.701). Pressure sensitive tape shall not be used 
as the primary

[[Page 1077]]

sealant where such ducts are designed to operate at static pressures of 
1 in. wc, or greater.
    403.2.9.3.1 Ductwork designed to operate at static pressures in 
excess of 3 in. wc shall be leak-tested in accordance with Section 5 of 
RS-35, (incorporated by reference, see Sec.  434.701), or equivalent. 
Test reports shall be provided in accordance with Section 6 of RS-35, 
(incorporated by reference, see Sec.  434.701)m or equivalent. The 
tested duct leakage class at a test pressure equal to the design duct 
pressure class rating shall be equal to or less than leakage Class 6 as 
defined in Section 4.1 of RS-35 (incorporated by reference, see Sec.  
434.701). Representative sections totaling at least 25% of the total 
installed duct area for the designated pressure class shall be tested.
    403.2.10 Completion.
    403.2.10.1 Manuals. Construction documents shall require an 
operating and maintenance manual provided to the Federal Agency. The 
manual shall include, at a minimum, the following:
    (a) Submittal data stating equipment size and selected options for 
each piece of equipment requiring maintenance, including assumptions 
used in outdoor design calculations.
    (b) Operating and maintenance manuals for each piece of equipment 
requiring maintenance. Required maintenance activity shall be specified.
    (c) Names and addresses of at least one qualified service agency to 
perform the required periodic maintenance shall be provided.
    (d) HVAC controls systems maintenance and calibration information, 
including wiring diagrams, schematics, and control sequence 
descriptions. Desired or field determined setpoints shall be permanently 
recorded on control drawings, at control devices, or, for digital 
control systems, in programming comments.
    (e) A complete narrative, prepared by the designer, of how each 
system is intended to operate shall be included with the construction 
documents.
    403.2.10.2 Drawings. Construction documents shall require that 
within 30 days after the date of system acceptance, record drawings of 
the actual installation be provided to the Federal agency. The drawings 
shall include details of the air barrier installation in every envelope 
component, demonstrating continuity of the air barrier at all joints and 
penetrations.
    403.2.10.3 Air System Balancing. Construction documents shall 
require that all HVAC systems be balanced in accordance with the 
industry accepted procedures (such as National Environmental Balancing 
Bureau (NEBB) Procedural Standards, Associated Air Balance Council 
(AABC) National Standards, or ANSI/ASHRAE Standard 111). Air and water 
flow rates shall be measured and adjusted to deliver final flow rates 
within 10% of design rates, except variable flow distribution systems 
need not be balanced upstream of the controlling device (VAV box or 
control valve).
    403.2.10.3.1 Construction documents shall require a written balance 
report be provided to the Federal agency for HVAC systems serving zones 
with a total conditioned area exceeding 5,000 ft\2\.
    403.2.10.3.2 Air systems shall be balanced in a manner to first 
minimize throttling losses, then fan speed shall be adjusted to meet 
design flow conditions or equivalent procedures. Exceptions are as 
follows: Damper throttling may be used for air system balancing;
    (a) With fan motors of 1 hp (0.746 kW) or less, or
    (b) Of throttling results in no greater than \1/3\ hp (0.248 kW) fan 
horsepower draw above that required if the fan speed were adjusted.
    403.2.10.4 Hydronic System Balancing. Hydronic systems shall be 
balanced in a manner to first minimize throttling losses; then the pump 
impeller shall be trimmed or pump speed shall be adjusted to meet design 
flow conditions. Exceptions are as follows:
    (a) Pumps with pump motors of 10 hp (7.46 kW) or less.
    (b) If throttling results in no greater than 3 hp (2.23 kW) pump 
horsepower draw above that required if the impeller were trimmed.
    (c) To reserve additional pump pressure capability in open circuit 
piping systems subject to fouling. Valve throttling pressure drop shall 
not exceed that expected for future fouling.
    403.2.10.5 Control System Testing. HVAC control systems shall be 
tested

[[Page 1078]]

to assure that control elements are calibrated, adjusted, and in proper 
working condition. For projects larger than 50,000 ft2 conditioned area, 
detailed instructions for commissioning HVAC systems shall be provided 
by the designer in plans and specifications.



Sec.  434.404  Building service systems and equipment.

    404.1 Service Water Heating Equipment Efficiency. Equipment must 
satisfy the minimum performance efficiency specified in Table 404.1 when 
tested in accordance with RS-37, RS-38, or RS-39 (incorporated by 
reference, see Sec.  434.701). Omission of equipment from Table 404.1 
shall not preclude the use of such equipment. Service water heating 
equipment used to provide additional function of space heating as part 
of a combination (integrated) system shall satisfy all stated 
requirements for the service water heating equipment. All gas-fired 
storage water heaters that are not equipped with a flue damper and use 
indoor air for combustion or draft hood dilution and that are installed 
in a conditioned space, shall be equipped with a vent damper listed in 
accordance with RS-42 (incorporated by reference, see Sec.  434.701). 
Unless the water heater has an available electrical supply, the 
installation of such a vent damper shall not require an electrical 
connection.

                                               Table 404.1--Minimum Performance of Water Heating Equipment
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                            Input to                                Thermal
           Category                    Type               Fuel           Input       VT     VT ratio    Test Method     Energy     efficiency   Standby
                                                                        rating              Btuh/gal        \a\         factor        Et%      loss %/HR
--------------------------------------------------------------------------------------------------------------------------------------------------------
NAECA.........................  all..............  electric.........  12 kW       all \c\  ..........  DOE Test      0.93-0.0013
                                                                                                                      2V
Covered.......................  storage..........  gas..............  75,000      all \c\  ..........  Procedure 10  0.62-0.0019
                                                                       Btuh                                           V
Water.........................  instantaneous....  gas..............  200,000     all      ..........  CFR part 430  0.62-0.0019
                                                                                                                      V
Heating.......................  storage..........  oil..............  Btuh \c\    all      ..........  430           0.59-0.0019
                                                                                                                      V
Equipment \b\.................  instantaneous....  oil..............  105,000     all      ..........  Appendix E    0.59-0.0019
                                                                      Btuh                                            V
                                pool heater......  gas/oil..........  210,000     all      ..........  ANSI Z21.56   ...........  78
                                                                       Btuh
                                                                      all         .......  ..........  (RS-38) *
--------------------------------------------------------------------------------------------------------------------------------------------------------
Other Water...................  storage..........  electric.........  all         all      ..........  ANSI
Heating.......................                                        ..........  .......  ..........  Z21.10.3      ...........  78           .030 + 27/
                                                                                                                                                VT
Equipment \d\.................  storage/.........  gas/oil..........  155m999     all      <4,000      (RS-39)*      ...........  78           1.3 + 114/
                                instantaneous....                      Btuh                                                                     /VT
                                                                                  all      <4,000      ............  ...........  80           1.3 + 95/
                                                                                                                                                VT
                                                                      155,000
                                                                       Btuh
                                                                                  10       4,000       ............  ...........  ...........  2.3 + 67/
                                                                                                                                                VT
--------------------------------------------------------------------------------------------------------------------------------------------------------
Unfired.......................                                        ..........  .......  all         ............  ...........  ...........  6.5 Btuh/
Storage.......................                                                                                                                  ft\2\
Tanks.........................
--------------------------------------------------------------------------------------------------------------------------------------------------------
\a\ For detailed references see subpart E.
\b\ Consistent with National Appliance Energy Conservation Act (NAECA) of 1987.
\c\ DOE Test Procedures apply to electric and gas storage water heaters with rated volumes 20 gallons and gas instantaneous water heaters with input
  ratings of 50,000 to 200,000 Btuh.
\d\ All except those water heaters covered by NAECA.
* Incorporated by reference, see Sec.   434.701.

    404.1.1 Testing Electric and Oil Storage Water Heaters for Standby 
Loss.
    (a) When testing an electric storage water heater, the procedures of 
Z21.10.3-1990 (RS-39, incorporated by reference, see Sec.  434.701), 
Section 2.9, shall be used. The electrical supply voltage shall be 
maintained with 1% of the center of the voltage 
range specified on the water heater nameplate. Also, when needed for 
calculations, the thermal efficiency (Et) shall be 98%.

[[Page 1079]]

When testing an oil-fired water heater, the procedures of Z21.10.3-1990 
(RS-39 incorporated by reference, see Sec.  434.701), Sections 2.8 and 
2.9, shall be used.
    (b) The following modifications shall be made: A vertical length of 
flue pipe shall be connected to the flue gas outlet of sufficient height 
to establish the minimum draft specified in the manufacturer's 
installation instructions. All measurements of oil consumption shall be 
taken by instruments with an accuracy of 1% or 
better. The burner rate shall be adjusted to achieve an hourly Btu input 
rate within 2% of the manufacturer's specified 
input rate with the CO2 reading as specified by the 
manufacturer with smoke no greater than 1 and the fuel pump pressure 
within 1% of the manufacturer's specification.
    404.1.2 Unfired Storage Tanks. The heat loss of the tank surface 
area Btu/(h[middot]ft\2\) shall be based on an 80 [deg]F water-air 
temperature difference.
    404.1.3 Storage Volume Symbols in Table 404.1. The symbol ``V'' is 
the rated storage volume in gallons as specified by the manufacturer. 
The symbol ``VT'' is the storage volume in gallons as 
measured during the test to determine the standby loss. VT 
may differ from V, but it is within tolerances allowed by the applicable 
Z21 and Underwriters Laboratories standards. Accordingly, for the 
purpose of estimating the standby loss requirement using the rated 
volume shown on the rating plate, VT should be considered as 
no less than 0.95V for gas and oil water heaters and no less than 0.90V 
for electric water heaters.
    404.1.4 Electric Water Heaters. In applications where water 
temperatures not greater than 145 [deg]F are required, an economic 
evaluation shall be made on the potential benefit of using an electric 
heat pump water heater(s) instead of an electric resistance water 
heater(s). The analysis shall compare the extra installed costs of the 
heat pump unit with the benefits in reduced energy costs (less increased 
maintenance costs) over the estimated service life of the heat pump 
water heater. Exceptions are as follows: Electric water heaters used in 
conjunction with site-recovered or site-solar energy sources that 
provide 50% or more of the water heating load or off-peak heating with 
thermal storage.
    404.2 Service Hot Water Piping Insulation. Circulating system piping 
and noncirculating systems without heat traps, the first eight feet of 
outlet piping from a constant-temperature noncirculating storage system, 
and the inlet pipe between the storage tank and a heat trap in a 
noncirculating storage system shall meet the provisions of subsection 
403.2.9.
    404.2.1 Vertical risers serving storage water heaters not having an 
integral heat trap and serving a noncirculating system shall have heat 
traps on both the inlet and outlet piping as close as practical to the 
water heater.
    404.3 Service Water Heating System Controls. Temperature controls 
that allow for storage temperature adjustment from 110 [deg]F to a 
temperature compatible with the intended use shall be provided in 
systems serving residential dwelling units and from 90 [deg]F for other 
systems. When designed to maintain usage temperatures in hot water 
pipes, such as circulating hot water systems or heat trace, the system 
shall be equipped with automatic time switches or other controls that 
can be set to turn off the system.
    404.3.1 The outlet temperature of lavatory faucets in public 
facility restrooms shall be limited to 110 [deg]F.
    404.4 Water Conservation. Showerheads and lavatory faucets must meet 
the requirements of 10 CFR 430.32 (o)-(p).
    404.4.1 Lavatory faucets in public facility restrooms shall be 
equipped with a foot switch, occupancy sensor, or similar device or, in 
other than lavatories for physically handicapped persons, limit water 
delivery to 0.25 gal/cycle.
    404.5 Swimming Pools. All pool heaters shall be equipped with a 
readily accessible on-off switch.
    404.5.1 Time switches shall be installed on electric heaters and 
pumps. Exceptions are as follows:
    (a) Pumps required to operate solar or heat recovery pool heating 
systems.
    (b) Where public health requirements require 24-hour pump operation.
    404.5.2 Heated swimming pools shall be equipped with pool covers. 
Exception: When over 70% of the annual energy for heating is obtained 
from a

[[Page 1080]]

site-recovered or site-solar energy source.
    404.6 Combined Service Water Heating and Space Heating Equipment. A 
single piece of equipment shall not be used to provide both space 
heating and service water heating. Exceptions are as follows:
    (a) The energy input or storage volume of the combined boiler or 
water heater is less than twice the energy input or storage volume of 
the smaller of the separate boilers or water heaters otherwise required 
or
    (b) The input to the combined boiler is less than 150,000 Btuh.



          Subpart E_Building Energy Cost Compliance Alternative



Sec.  434.501  General.

    501.1 Subpart E permits the use of the Building Energy Cost 
Compliance Alternative as an alternative to many elements of subpart D. 
When this subpart is used, it must be used with subpart C and subpart D, 
401.1, 401.2, 401.3.4 and in conjunction with the minimum requirements 
found in subsections 402.1, 402.2, and 402.3., 403.1, 403.2.1-7, 403.2.9 
and 404.
    501.2 Compliance. Compliance under this method requires detailed 
energy analyses of the entire Proposed Design, referred to as the Design 
Energy Consumption; an estimate of annual energy cost for the proposed 
design, referred to as the Design Energy Cost; and comparison against an 
Energy Cost Budget. Compliance is achieved when the estimated Design 
Energy Cost is less than or equal to the Energy Cost Budget. This 
subpart provides instructions for determining the Energy Cost Budget and 
for calculating the Design Energy Consumption and Design Energy Cost. 
The Energy Cost Budget shall be determined through the calculation of 
monthly energy consumption and energy cost of a Prototype or Reference 
Building design configured to meet the requirements of subsections 401 
through 404.
    501.3 Designers are encouraged to employ the Building Energy Cost 
Budget compliance method set forth in this section for evaluating 
proposed design alternatives to using the elements prescribed in subpart 
D. The Building Energy Cost Budget establishes the relative 
effectiveness of each design alternative in energy cost savings, 
providing an energy cost basis upon which the building owner and 
designer may select one design over another. This Energy Cost Budget is 
the highest allowable calculated energy cost for a specific building 
design. Other alternative designs are likely to have lower annual energy 
costs and life cycle costs than those used to minimally meet the Energy 
Cost Budget.
    501.4 The Energy Cost Budget is a numerical reference for annual 
energy cost. It's purpose is to assure neutrality with respect to 
choices such as HVAC system type, architectural design and fuel choice 
by providing a fixed, repeatable budget that is independent of any of 
these choices wherever possible (i.e., for the prototype buildings). The 
Energy Cost Budget for a given building size and type will vary only 
with climate, the number of stories, and the choice of simulation tool. 
The specifications of the prototypes are necessary to assure 
repeatability, but have no other significance. They are not necessarily 
recommended energy conserving practice, or even physically reasonable 
practice for some climates or buildings, but represent a reasonable 
worst case of energy cost resulting from compliance with the provisions 
of subsections 401 through 404.



Sec.  434.502  Determination of the annual energy cost budget.

    502.1 The annual Energy Cost Budgets shall be determined in 
accordance with the Prototype Building Procedure in Sec.  434.503 and 
Sec.  434.504 or the Reference Building Procedure in Sec.  434.505. Both 
methods calculate an annual Energy Cost by summing the 12 monthly Energy 
Cost Budgets. Each monthly Energy Cost Budget is the product of the 
monthly Building Energy Consumption of each type of energy used 
multiplied by the monthly Energy Cost per unit of energy for each type 
of energy used.
    502.2 The Energy Cost Budget shall be determined in accordance with 
Equation 502.2.a as follows:

[[Page 1081]]

[GRAPHIC] [TIFF OMITTED] TR06OC00.025


Based on:
[GRAPHIC] [TIFF OMITTED] TR06OC00.026

Where:

ECB = The annual Energy Cost Budget
ECBm = The monthly Energy Cost Budget
BECONmi = The monthly Budget Energy Consumption of the 
          ith type of energy
ECOSmi = The monthly Energy Cost, per unit of the 
          ith type of energy

    502.3 The monthly Energy Cost Budget shall be determined using 
current rate schedules or contract prices available at the building site 
for all types of energy purchased. These costs shall include demand 
charges, rate blocks, time of use rates, interruptible service rates, 
delivery charges, taxes, and all other applicable rates for the type, 
location, operation, and size of the proposed design. The monthly Budget 
Energy Consumption shall be calculated from the first day through the 
last day of each month, inclusive.



Sec.  434.503  Prototype building procedure.

    503.1 The Prototype Building procedure shall be used for all 
building types listed below. For mixed-use buildings the Energy Cost 
Budget is derived by allocating the floor space of each building type 
within the floor space of the prototype building. For buildings not 
listed below, the Reference Building procedure of Sec.  434.505 shall be 
used. Prototype buildings include:
    (a) Assembly;
    (b) Office (Business);
    (c) Retail (Mercantile);
    (d) Warehouse (Storage);
    (e) School (Educational);
    (f) Hotel/Motel;
    (g) Restaurant;
    (h) Health/Institutional; and
    (i) Multi-Family.



Sec.  434.504  Use of the prototype building to determine 
the energy cost budget.

    504.1 Determine the building type of the Proposed Design using the 
categories in subsection 503.1. Using the appropriate Prototype Building 
characteristics from all of the tables contained in subpart E, the 
building shall be simulated using the same gross floor area and number 
of floors for the Prototype Building as in the Proposed Design.
    504.2 The form, orientation, occupancy and use profiles for the 
Prototype Building shall be fixed as described in subsection 511. 
Envelope, lighting, other internal loads and HVAC systems and equipment 
shall meet the requirements of subsection 301, 401, 402, 403, and 404 
and are standardized inputs.



Sec.  434.505  Reference building method.

    505.1 The Reference Building procedure shall be used only when the 
Proposed Design cannot be represented by one or a combination of the 
Prototype Building listed in subsection 503.1 or the assumptions for the 
Prototype Building in Subsection 510, such as occupancy and use-
profiles, do not reasonably represent the Proposed Design.



Sec.  434.506  Use of the reference building to determine 
the energy cost budget.

    506.1 Each floor shall be oriented in the same manner for the 
Reference Building as in the Proposed Design. The form, gross and 
conditioned floor areas of each floor and the number of floors shall be 
the same as in the Proposed Design. All other characteristics, such as 
lighting, envelope and HVAC systems and equipment, shall meet the 
requirements of subsections 301, 401, 402, 403 and 404.



Sec.  434.507  Calculation procedure and simulation tool.

    507.1 The Prototype or Reference Buildings shall be modeled using 
the

[[Page 1082]]

criteria of subsections 510 and 521. The modeling shall use a climate 
data set appropriate for both the site and the complexity of the energy 
conserving features of the design. ASHRAE Weather Year for Energy 
Calculations (WYEC) data or bin weather data shall be used in the 
absence of other appropriate data.



Sec.  434.508  Determination of the design energy consumption 
and design energy cost.

    508.1 The Design Energy Consumption shall be calculated by modeling 
the Proposed Design using the same methods, assumptions, climate data, 
and simulation tool as were used to establish the Energy Cost Budget, 
except as explicitly stated in 509 through 534. The Design Energy Cost 
shall be calculated per Equation 508.1.
[GRAPHIC] [TIFF OMITTED] TR06OC00.027


Based on:

DECOSm = DECONml x ECOSml + . . . + 
DECONmi x ECOSmi (Equation 508.1.2)

Where:

DECOS = The annual Design Energy Cost
DECOSm = The monthly Design Energy Cost
DECONmi = The monthly Design Energy Consumption of the 
          ith type of energy
ECOSmi = The monthly Energy Cost per unit of the 
          ith type of energy

    The DECONmi shall be calculated from the first day 
through the last day of the month, inclusive.



Sec.  434.509  Compliance.

    509.1 If the Design Energy Cost is less than or equal to the Energy 
Cost Budget, and all of the minimum requirements of subsection 501.2 are 
met, the Proposed Design complies with the standards.



Sec.  434.510  Standard calculation procedure.

    510.1 The Standard Calculation Procedure consists of methods and 
assumptions for calculating the Energy Cost Budget for the Prototype or 
Reference Building and the Design Energy Consumption and Design Energy 
Cost of the Proposed Design. In order to maintain consistency between 
the Energy Cost Budget and the Design Energy Cost, the input assumptions 
to be used are stated below. These inputs shall be used to determine the 
Energy Cost Budget and the Design Energy Consumption.
    510.2 Prescribed assumptions shall be used without variation. 
Default assumptions shall be used unless the designer can demonstrate 
that a different assumption better characterizes the building's energy 
use over its expected life. The default assumptions shall be used in 
modeling both the Prototype or Reference Building and the Proposed 
Design, unless the designer demonstrates clear cause to modify these 
assumptions. Special procedures for speculative buildings are discussed 
in subsection 503. Shell buildings may not use subpart E.



Sec.  434.511  Orientation and shape.

    511.1 The Prototype Building shall consist of the same number of 
stories, and gross and conditioned floor area as the Proposed Design, 
with equal area per story. The building shape shall be rectangular, with 
a 2.5:1 aspect ratio. The long dimensions of the building shall face 
East and West. The fenestration shall be uniformly distributed in 
proportion to exterior wall area. Floor-to-floor height for the 
Prototype Building shall be 13 ft. except for dwelling units in hotels/
motels and multi-family high-rise residential buildings where floor-to-
floor height shall be 9.5 ft.
    511.2 The Reference Building shall consist of the same number of 
stories, and gross floor area for each story as the Proposed Design. 
Each floor shall be oriented in the same manner as the Proposed Design. 
The geometric form shall be the same as the Proposed Design.

[[Page 1083]]



Sec.  434.512  Internal loads.

    512.1 The systems and types of energy specified in this section are 
provided only for purposes of calculating the Energy Cost Budget. They 
are not requirements for either systems or the type of energy to be used 
in the Proposed Design or for calculation of Design Energy Cost.
    512.2 Internal loads for multi-family high-rise residential 
buildings are prescribed in Tables 512.2.a and b, Multi-Family High Rise 
Residential Building Schedules. Internal loads for other building types 
shall be modeled as noted in this subsection.

         Table 512.2. a--Multi-Family High Rise Residential Buildings Schedules--One-Zone Dwelling Unit
                                    [Internal loads per dwelling unit Btu/h]
----------------------------------------------------------------------------------------------------------------
                                                         Occupants            Lights            Equipment
                      Hour                      ----------------------------------------------------------------
                                                   Sensible      Latent      Sensible     Sensible      Latent
----------------------------------------------------------------------------------------------------------------
1..............................................          300          260            0          750          110
2..............................................          300          260            0          750          110
3..............................................          300          260            0          750          110
4..............................................          300          260            0          750          110
5..............................................          300          260            0          750          110
6..............................................          300          260            0          750          110
7..............................................          300          260            0          750          110
8..............................................          210          260          980         1250          190
9..............................................          100           80          840         2600          420
10.............................................          100           80            0         1170          180
11.............................................          100           80            0         1270          190
12.............................................          100           80            0         2210          330
13.............................................          100           80            0         2210          330
14.............................................          100           80            0         1270          190
15.............................................          100           80            0         1270          190
16.............................................          100           80            0         1270          190
17.............................................          100           80            0         1270          190
18.............................................          300          260            0         3040          450
19.............................................          300          260            0         3360          500
20.............................................          300          260          960         1490          220
21.............................................          300          260          960         1490          220
22.............................................          300          260          960         1490          220
23.............................................          300          260          960         1060          160
24.............................................          300          260          960         1060          160
----------------------------------------------------------------------------------------------------------------


                              Table 512.2. b--Multi-Family High Rise Residential Building Schedules-Two-Zone Dwelling Unit
                                                        [Internal loads per dwelling unit Btu/h]
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                    Bedrooms & bathrooms                                   Other rooms
                                                     ---------------------------------------------------------------------------------------------------
                        Hour                               Occupants       Lights        Equipment           Occupants       Lights        Equipment
                                                     ---------------------------------------------------------------------------------------------------
                                                      Sensible   Latent   Sensible  Sensible   Latent   Sensible   Latent   Sensible  Sensible   Latent
--------------------------------------------------------------------------------------------------------------------------------------------------------
1...................................................       300       260         0       750       110
2...................................................       300       260         0       750       110
3...................................................       300       260         0       750       110
4...................................................       300       260         0       750       110
5...................................................       300       260         0       750       110
6...................................................       300       260         0       750       110
7...................................................       300       260         0       750       110
8...................................................       210       260       980      1250       190
9...................................................       100        80       840      2600       420
10..................................................       100        80         0      1170       180
11..................................................       100        80         0      1270       190
12..................................................       100        80         0      2210       330
13..................................................       100        80         0      2210       330
14..................................................       100        80         0      1270       190
15..................................................       100        80         0      1270       190
16..................................................       100        80         0      1270       190
17..................................................       100        80         0      1270       190
18..................................................       300       260         0      3040       450
19..................................................       300       260         0      3360       500
20..................................................       300       260       960      1490       220

[[Page 1084]]

 
21..................................................       300       260       960      1490       220
22..................................................       300       260       960      1490       220
23..................................................       300       260       960      1060       160
24..................................................       300       260       960      1060       160
--------------------------------------------------------------------------------------------------------------------------------------------------------


                              Table 512.2. b--Multi-Family High Rise Residential Building Schedules-Two-Zone Dwelling Unit
                                                        [Internal loads per dwelling unit Btu/h]
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                    Bedrooms & bathrooms                                   Other rooms
                                                     ---------------------------------------------------------------------------------------------------
                        Hour                               Occupants       Lights        Equipment           Occupants       Lights        Equipment
                                                     ---------------------------------------------------------------------------------------------------
                                                      Sensible   Latent   Sensible  Sensible   Latent   Sensible   Latent   Sensible  Sensible   Latent
--------------------------------------------------------------------------------------------------------------------------------------------------------
1...................................................       300       260         0       100        20         0         0         0       650        90
2...................................................       300       260         0       100        20         0         0         0       650        90
3...................................................       300       260         0       100        20         0         0         0       650        90
4...................................................       300       260         0       100        20         0         0         0       650        90
5...................................................       300       260         0       100        20         0         0         0       650        90
6...................................................       300       260         0       100        20         0         0         0       650        90
7...................................................       200       180       680       200        40       100        80       300      1050       150
8...................................................       110       120       240       200        40       100        80       600      2400       380
9...................................................         0         0         0       100        20       100        80         0      1070       160
0...................................................         0         0         0       100        20       100        80         0      1170       170
0...................................................         0         0         0       100        20       100        80         0      1170       170
0...................................................         0         0         0       100        20       100        80         0      2110       310
0...................................................         0         0         0       100        20       100        80         0      2110       310
14..................................................         0         0         0       100        20       100        80         0      1170       170
15..................................................         0         0         0       100        20       100        80         0      1170       170
16..................................................         0         0         0       100        20       100        80         0      1170       170
17..................................................         0         0         0       100        20       100        80         0      1170       170
18..................................................         0         0         0       100        20       300       260         0      2940       430
19..................................................         0         0         0       100        20       300       260         0      3260       480
20..................................................       100        80       320       300        60       200       180       640      1190       160
21..................................................       100        80       320       300        60       200       180       640      1190       160
22..................................................       150       130       480       700        90       150       130       480       790       130
23..................................................       300       260       640       410        70         0         0       320       650        90
24..................................................       300       260       640       410        70         0         0       320       650        90
--------------------------------------------------------------------------------------------------------------------------------------------------------



Sec.  434.513  Occupancy.

    5131 Occupancy schedules are default assumptions. The same 
assumptions shall be made in computing Design Energy Consumption as were 
used in calculating the Energy Cost Budget.
    513.2 Table 513.2.a, Occupancy Density, establishes the density, in 
ft\2\ person of conditioned floor area, to be used for each building 
type. Table 513.2.b, Building Schedule Percentage Multipliers, 
establishes the percentage of total occupants in the building by hour of 
the day for each building type.

                    Table 513.2. a--Occupancy Density
------------------------------------------------------------------------
                                                             Conditioned
                                                              floor area
                       Building type                            Ft \2\
                                                                person
------------------------------------------------------------------------
Assembly...................................................           50
Office.....................................................          275
Retail.....................................................          300
Warehouse..................................................        15000
School.....................................................           75
Hotel/Motel................................................          250
Restaurant.................................................          100
Health/Institutional.......................................          200
Multi-family High-rise Residential.........................   2 per unit
                                                                  . \1\
------------------------------------------------------------------------
\1\ Heat generation: Btu/h per person: 230 Btu/h per person sensible,
  and 190 Btu/h per person latent. See Tables 512.2 a and b.


[[Page 1085]]

[GRAPHIC] [TIFF OMITTED] TR06OC00.012


[[Page 1086]]

[GRAPHIC] [TIFF OMITTED] TR06OC00.013


[[Page 1087]]

[GRAPHIC] [TIFF OMITTED] TR06OC00.014


[[Page 1088]]

[GRAPHIC] [TIFF OMITTED] TR06OC00.015


[[Page 1089]]

[GRAPHIC] [TIFF OMITTED] TR06OC00.016



Sec.  434.514  Lighting.

    514.1 Interior Lighting Power Allowance (ILPA), for calculating the 
Energy Cost Budget shall be determined from subsection 401.3.2. The 
lighting power used to calculate the Design Energy Consumption shall be 
the actual adjusted power for lighting in the Proposed Design. If the 
lighting controls in the Proposed Design are more effective at saving 
energy than those required by subsection 401.3.1 and 401.3.2, the actual 
installed lighting power shall be used along with the schedules 
reflecting the action of the controls to calculate the Design Energy 
Consumption. This actual installed lighting

[[Page 1090]]

power shall not be adjusted by the Power Adjustment Factors listed in 
Table 514.1.

               Table 514.1--Power Adjustment Factor (PAF)
------------------------------------------------------------------------
                                                               Standard
                Automatic control device(s)                      PAF
------------------------------------------------------------------------
(1) Occupancy Sensor.......................................         0.30
(2) Daylight Sensing Continuous Dimming....................         0.30
(3) Daylight Sensing Multiple Step Dimming.................         0.20
(4) Daylight Sensing On/Off................................         0.10
(5) Lumen Maintenance......................................         0.10
------------------------------------------------------------------------

    514.2 Table 513.2.b establishes default assumptions for the 
percentage of the lighting load switched-on in each Prototype or 
Reference Building by hour of the day. These default assumptions can be 
changed when calculating the Energy Cost Budget to provide, for example, 
a 12-hour rather than an 8-hour workday.



Sec.  434.515  Receptacles.

    515.1 Receptacle loads and profiles are default assumptions. The 
same assumptions shall be made in calculating Design Energy Consumption 
as were used in calculating the Energy Cost Budget.
    515.2 Receptacle loads include all general service loads that are 
typical in a building. These loads exclude any process electrical usage 
and HVAC primary or auxiliary electrical usage. Table 515.2, Receptacle 
Power Densities, establishes the density, in W/ft\2\, to be used for 
each building type. The receptacle energy profiles shall be the same as 
the lighting energy profiles in Table 513.2.b. This profile establishes 
the percentage of the receptacle load that is switched on by hour of the 
day and by building type.

                 Table 515.2--Receptacle Power Densities
------------------------------------------------------------------------
                                                            W/ft\2\ of
                      Building type                         conditioned
                                                            floor area
------------------------------------------------------------------------
Assembly................................................            0.25
Office..................................................            0.75
Retail..................................................            0.25
Warehouse...............................................             0.1
School..................................................             0.5
Hotel/Motel.............................................            0.25
Restaurant..............................................             0.1
Health..................................................             1.0
Multi-family High Rise Residential......................
------------------------------------------------------------------------
Included in Lights and Equipment portions of Tables 512.2 a and b.



Sec.  434.516  Building exterior envelope.

    516.1 Insulation and Glazing. The insulation and glazing 
characteristics of the Prototype and Reference Building envelope shall 
be determined by using the first column under ``Base Case'', with no 
assumed overhangs, for the appropriate Alternate Component Tables (ACP) 
in Table 402.4.1.2, as defined by climate range. The insulation and 
glazing characteristics from this ACP are prescribed assumptions for 
Prototype and Reference Buildings for calculating the Energy Cost 
Budget. In calculating the Design Energy Consumption of the Proposed 
Design, the envelope characteristics of the Proposed Design shall be 
used.
    516.2 Infiltration. For Prototype and Reference Buildings, the 
infiltration assumptions in subsection 516.2.1 shall be prescribed 
assumptions for calculating the Energy Cost Budget and default 
assumptions for the Design Energy Consumption. Infiltration shall impact 
perimeter zones only.
    516.2.1 When the HVAC system is switched ``on,'' no infiltration 
shall be assumed. When the HVAC system is switched ``off,'' the 
infiltration rate for buildings with or without operable windows shall 
be assumed to be 0.038 cfm/ft\2\ of gross exterior wall. Hotels/motels 
and multi-family high-rise residential buildings shall have infiltration 
rates of 0.038 cfm/ft\2\ of gross exterior wall area at all times.
    516.3 Envelope and Ground Absorptivities. For Prototype and 
Reference Buildings, absorptivity assumptions shall be prescribed 
assumptions for computing the Energy Cost Budget and default assumptions 
for computing the Design Energy Consumption. The solar absorptivity of 
opaque elements of the building envelope is assumed to be 70%. The solar 
absorptivity of ground surfaces is assumed to be 80% (20% reflectivity).
    516.4 Window Management. For the Prototype and Reference Building, 
window management drapery assumptions shall be prescribed assumptions 
for setting the Energy Cost Budget. No draperies shall be the default 
assumption for computing the Design Energy Consumption. Glazing is 
assumed to be internally shaded by medium-weight draperies, closed one-
half time. The

[[Page 1091]]

draperies shall be modeled by assuming that one-half the area in each 
zone is draped and one-half is not. If manually-operated draperies, 
shades, or blinds are to be used in the Proposed Design, the Design 
Energy Consumption shall be calculated by assuming they are effective 
over one-half the glazing area in each zone.
    516.5 Shading. For Prototype and Reference buildings and the 
Proposed Design, shading by permanent structures, terrain, and 
vegetation shall be taken into account for computing energy consumption, 
whether or not these features are located on the building site. A 
permanent fixture is one that is likely to remain for the life of the 
Proposed Design.



Sec.  434.517  HVAC systems and equipment.

    517.1 The specifications and requirements for the HVAC systems of 
the Prototype and Reference Buildings shall be those in Table 517.1.1, 
HVAC Systems for Prototype and Reference Buildings. For the calculation 
of the Design Energy Consumption, the HVAC systems and equipment of the 
Proposed Design shall be used.
    517.2 The systems and types of energy presented in Table 517.1.1 are 
assumptions for calculating the Energy Cost Budget. They are not 
requirements for either systems or the type of energy to be used in the 
Proposed Building or for the calculation of the Design Energy Cost.

 Table 517.1.1--HVAC Systems of Prototype and Reference Buildings \1 2\
------------------------------------------------------------------------
                                System No. (Table      Remarks (Table
   Building/space occupancy         517.4.1)              517.4.1)
------------------------------------------------------------------------
Assembly:
    a. Churches (any size)...                  1
    b. <=50,000 ft \2\ or <=3             1 or 3   Note 1.
     floors.
    c. 50,000 ft                    3
     \2\ or 3
     floors.
Office:
    a. <=20,000 ft \2\.......                  1
    b. <=50,000 ft \2\ and                     4
     either <=3 floors or
     <=75,000 ft \2\.
    c. <75,000 ft \2\ or 3 floors.
Retail:
    a. <=50,000 ft \2\.......             1 or 3   Note 1.
    b. 50,000 ft               4 or 5   Note 1.
     \2\.
Warehouse....................                  1   Note 1.
School:
    a. <=75,000 ft \2\ or <=3                  1
     floors.
    b. 75,000 ft                    3
     \2\ or 3
     floors.
Hotel/Motel:
    a. <=3 stories...........             2 or 7   Note 5, 7.
    b. 3 stories..                  6   Note 6.
Restaurant...................             1 or 3   Note 1.
Health:
    a. Nursing Home (any                  2 or 7   Note 7.
     size).
    b. <=15,000 ft \2\.......                  1
    c. <15,000 ft \2\ or                       4   Note 2.
     <=50,000 ft \2\.
    d. 50,000 ft                    5   Note 2, 3.
     \2\.
Multi-family High Rise                        7
 Residential 3
 stories.
------------------------------------------------------------------------
\1\ Space and Service Water Heating budget calculations shall be made
  using both electricity and natural gas. The Energy Cost Budget shall
  be the lower of these two calculations. If natural gas is not
  available at the rate, electricity and 2 fuel oil shall be used for
  the budget calculations.
\2\ The system and energy types presented in this Table are not intended
  as requirements or recommendations for the proposed design. Floor
  areas below are the total conditioned floor areas for the listed
  occupancy type in the building. The number of floors indicated below
  is the total number of occupied floors for the listed occupancy type.

    517.3 HVAC Zones. HVAC zones for calculating the Energy Cost Budget 
of the Prototype or Reference Building shall consist of at least four 
perimeter and one interior zones per floor. Prototype Buildings shall 
have one perimeter zone facing each cardinal direction. The perimeter 
zones of Prototype and Reference Buildings shall be 15 ft in width, or 
one-third the narrow dimension of the building, when this dimension is 
between 30 ft and 45 ft inclusive, or one-half the narrow dimension of 
the building when this dimension is less than 30 ft. Zoning requirements 
shall be a default assumption for calculating the Energy Cost Budget. 
For multi-family high-rise residential

[[Page 1092]]

buildings, the prototype building shall have one zone per dwelling unit. 
The proposed design shall have one zone per unit unless zonal 
thermostatic controls are provided within units; in this case, two zones 
per unit shall be modeled. Building types such as assembly or warehouse 
may be modeled as a single zone if there is only one space.
    517.4 For calculating the Design Energy Consumption, no fewer zones 
shall be used than were in the Prototype and Reference Buildings. The 
zones in the simulation shall correspond to the zones provided by the 
controls in the Proposed Design. Thermally similar zones, such as those 
facing one orientation on different floors, may be grouped together for 
the purposes of either the Design Energy Consumption or Energy Cost 
Budget simulation.

               Table 517.4.1--HVAC System Description for Prototype and Reference Buildings \1 2\
----------------------------------------------------------------------------------------------------------------
         HVAC component                System 1           System 2           System 3           System 4
----------------------------------------------------------------------------------------------------------------
System Description..............  Packaged rooftop    Packaged terminal   Air handler per     Packaged rooftop
                                   single room, one    air conditioner     zone with central   VAV w/perimeter
                                   unit per zone.      with space heater   plant.              reheat.
                                                       or heat pump, one
                                                       heating/cooling
                                                       unit per zone.
Fan system--Design supply         Note 9............  Note 10...........  Note 9............  Note 9.
 circulation rate.
Supply fan total static pressure  1.3 in. W.C.......  N/A...............  2.0 in. W.C.......  3.0 in. W.C.
Combined supply fan, motor, and   40%...............  N/A...............  50%...............  45%.
 drive efficiency.
Supply fan control..............  Constant volume...  Fan Cycles with     Constant volume...  VAV w/forward
                                                       call for heating                        curved
                                                       or cooling.                             contrifugal fan
                                                                                               and variable
                                                                                               inlet vanes.
Return fan total static pressure  N/A...............  N/A...............  0.6 in. W.C.......  0.6 in. W.C.
Combined return fan, motor, and   N/A...............  N/A...............  25%...............  25%.
 drive efficiency.
Return fan control..............  N/A...............  N/A...............  Constant volume...  VAV w/forward
                                                                                               curved
                                                                                               centrifugal fan
                                                                                               and discharge
                                                                                               dampers.
Cooling System..................  Direct expansion    Direct expansion    Chilled water       Direct expansion
                                   air cooled.         air cooled.         (Note 1).           air cooled.
Heating System..................  Furnace, heat       Heat pump w/        Hot water (Note 8,  Hot water (Note
                                   pump, or electric   electric            12).                12) or electric
                                   resistance (Note    resistance                              resistance (Note
                                   8).                 auxiliary or air                        B).
                                                       conditioner w/
                                                       space heater
                                                       (Note 8).
Remarks.........................  Dry bulb            No economizer.....  Dry bulb            Dry bulb
                                   economizer per                          economizer per      economizer per
                                   Section 7.4.3                           Section 434.514.    Section 434.514.
                                   (barometric                                                 Minimum VAV
                                   relief).                                                    setting per
                                                                                               434.514 exception
                                                                                               1. Supply air
                                                                                               reset by zone of
                                                                                               greatest cooling
                                                                                               demand.
----------------------------------------------------------------------------------------------------------------
\1\ The systems and energy types presented in this Table are not intended as requirements or recommendations for
  the proposed design.
\2\ For numbered notes see end of Table 517.4.1.


                Table 517.4.1--HVAC System Description for Prototype and Reference Buildings \1\
----------------------------------------------------------------------------------------------------------------
            HVAC component                    Systems 5               System 6                System 7
----------------------------------------------------------------------------------------------------------------
System Description...................  Built-up central VAV     Fourpipe fan coil per    Water source heat pump
                                        with perimeter reheat.   zone with central
                                                                 plant.
Fan system--Design supply circulation  Note 9.................  Note 9.................  Note 10.
 rate.
Supply fan total static pressure.....  4.0 in W.C.............  0.5 in W.C.............  0.5 in. W.C.
Combined supply fan, motor, and drive  55%....................  25A....................  25%.
 efficiency.

[[Page 1093]]

 
Supply fan control...................  VAV w/air-foil           Fan Cycles with call     Fan cycles w/call for
                                        centrifugal fan and AC   for heating or cooling.  heating or cooling.
                                        frequency variable
                                        speed drive.
Return fan total static pressure.....  1.0 in W.C.............  N/A....................  N/A.
Combined return fan, motor, and drive  30%....................  N/A....................  N/A.
 efficiency.
Return fan control...................  VAV with air-foil        N/A....................  N/A.
                                        centrifugal fan and AC
                                        frequency variable
                                        speed drive.
Cooling System.......................  Chilled water (Note 11)  Chilled water (Note 11)  Closed circuit,
                                                                                          centrifugal blower
                                                                                          type cooling tower
                                                                                          sized per Note 11.
                                                                                          Circulating pump sized
                                                                                          for 2.7 GPM per ton.
Heating System.......................  Hot water (Note 12) or   Hot water (Note 12) or   Electric or natural
                                        electric resistance      electric resistance      draft fossil fuel
                                        (Note 8).                (Note 8).                boiler (Note 8).
Remarks..............................  Dry bulb economizer per  No economizer..........  Tower fans and boiler
                                        Section 7.4.3. Minimum                            cycled to maintain
                                        VAV setting per                                   circulating water
                                        Section 7.4.4.3.                                  temperature between 60
                                        Supply air reset by                               and design tower
                                        zone of greatest                                  leaving water
                                        cooling demand.                                   temperature.
----------------------------------------------------------------------------------------------------------------

                    Numbered Notes for Table 517.4.1

     HVAC System Descriptions for Prototype and Reference Buildings

    Notes:
    1. For occupancies such as restaurants, assembly and retail which 
are part of a mixed use building which, according to Table 517.4.1, 
includes a central chilled water plant (systems 3, 5, or 6), chilled 
water system type 3 or 5, as indicated in the Table, shall be used.
    2. Constant volume may be used in zones where pressurization 
relationships must be maintained by code. VAV shall be used in all other 
areas, in accordance with Sec.  517.4
    3. Provide run-around heat recovery systems for all fan systems with 
minimum outside air intake greater than 75%. Recovery effectiveness 
shall be 0.60.
    4. If a warehouse is not intended to be mechanically cooled, both 
the Energy Cost Budgets and Design Energy Costs, may be calculated 
assuming no mechanical cooling.
    5. The system listed is for guest rooms only. Areas such as public 
areas and back-of-house areas shall be served by system 4. Other areas 
such as offices and retail shall be served by the systems listed in 
Table 517.4.1 for those occupancy types.
    6. The system listed is for guest rooms only. Areas such as public 
areas and back-of-house areas shall be served by System 5. Other areas 
such as offices and retail shall be served by the systems listed in 
Table 517.4.1.1 for those occupancy types.
    7. System 2 shall be used for Energy Cost Budget calculation except 
in areas with design heating outside air temperatures less than 10 
[deg]F.
    8. Prototype energy budget cost calculations shall be made using 
both electricity and natural gas. If natural gas is not available at the 
site, electricity and 2 fuel oil shall be used. The Energy Cost Budget 
shall be the lower of these results. Alternatively, the Energy Cost 
Budget may be based on the fuel source that minimizes total operating, 
maintenance, equipment, and installation costs for the prototype over 
the building lifetime. Equipment and installation cost estimates shall 
be prepared using professionally recognized cost estimating tools, 
guides, and techniques. The methods of analysis shall conform to those 
of subpart A of 10 CFR part 436. Energy costs shall be based on actual 
costs to the building as defined in this Section.
    9. Design supply air circulation rate shall be based on a supply air 
to room air temperature differences of 20 [deg]F. A higher supply air 
temperature may be used if required to maintain a minimum circulation 
rate of 4.5 air changes per hour or 15 cfm per person at design 
conditions to each zone served by the system. If return fans are 
specified, they shall be sized from the supply fan capacity less the 
required minimum ventilation with outside air, or 75% or the supply air 
capacity, whichever is larger. Except where noted, supply and return 
fans shall be operated continually during occupied hours.
    10. Fan System Energy when included in the efficiency rating of the 
unit as defined in Sec.  403.2.4.3 need not be modeled explicitly for 
this system. The fan shall cycle with calls for heating or cooling.
    11. Chilled water systems shall be modeled using a reciprocating 
chiller for systems with total cooling capacities less than 175 tons, 
and centrifugal chillers for systems

[[Page 1094]]

with cooling capacities of 175 tons or greater. For systems with cooling 
or 600 ton or more, the Energy Cost Budget shall be calculated using two 
centrifugal chillers lead/lag controlled. Chilled water pumps shall be 
sized using a 12 [deg]F temperature rise, from 44 [deg]F to 56 [deg]F 
operating at 65 feed of head and 65% combined impeller and motor 
efficiency. Condenser water pumps shall be sized using a 10 [deg]F 
temperature rise, operating at 60 feet of head and 60% combined impeller 
and motor efficiency. The cooling tower shall be an open circuit, 
centrifugal blower type sized for the larger of 85 [deg]F leaving water 
temperature or 10 [deg]F approach to design wet bulb temperature. The 
tower shall be controlled to provide a 65 [deg]F leaving water 
temperature whenever weather conditions permit, floating up to design 
leaving water temperature at design conditions. Chilled water supply 
temperature shall be reset in accordance with Sec.  434.518.
    12. Hot water system shall include a natural draft fossil fuel or 
electric boiler per Note 8. The hot water pump shall be sized based on a 
30 [deg]F temperature drop, for 18 [deg]F to 150 [deg]F, operating at 60 
feet of head and a combined impeller and motor efficiency of 60%. Hot 
water supply temperature shall be reset in accordance with Sec.  
434.518.

    517.5 Equipment Sizing and Redundant Equipment. For calculating the 
Energy Cost Budget of Prototype or Reference Buildings, HVAC equipment 
shall be sized to meet the requirements of subsection 403.2.2, without 
using any of the exceptions. The size of equipment shall be that 
required for the building without process loads considered. Redundant or 
emergency equipment need not be simulated if it is controlled so that it 
will not be operated during normal operations of the building. The 
designer shall document the installation of process equipment and the 
size of process loads.
    517.6 For calculating the Design Energy Consumption, actual air flow 
rates and installed equipment size shall be used in the simulation, 
except that excess capacity provided to meet process loads need not be 
modeled unless the process load was not modeled in setting Energy Cost 
Budget. Equipment sizing in the simulation of the Proposed Design shall 
correspond to the equipment actually selected for the design and the 
designer shall not use equipment sized automatically by the simulation 
tool.
    517.6.1 Redundant or emergency equipment need not be simulated if it 
is controlled to not be operated during normal operations of the 
building.



Sec.  434.518  Service water heating.

    518.1 The service water loads for Prototype and Reference Buildings 
are defined in terms of Btu/h per person in Table 518.1.1, Service Hot 
Water Quantities. The service water heating loads from Table 518.1.1 are 
prescribed assumptions for multi-family high-rise residential buildings 
and default assumptions for all other buildings. The same service water 
heating load assumptions shall be made in calculating Design Energy 
Consumption as were used in calculating the Energy Cost Budget.

               Table 518.1.1--Service Hot water Quantities
------------------------------------------------------------------------
                                                             Btu/person-
                       Building type                           hour \1\
------------------------------------------------------------------------
Assembly...................................................          215
Office.....................................................          175
Retail.....................................................          135
Warehouse..................................................          225
School.....................................................          215
Hotel/Motel................................................         1110
Restaurant.................................................          390
Health.....................................................          135
Multi-family High Rise Residential.........................    \2\ 1700
------------------------------------------------------------------------
\1\ This value is the number to be multiplied by the percentage
  multipliers of the Building Profile Schedules in Table 513.2.b. See
  Table 513.2.a for occupancy levels.
\2\ Total hot water use per dwelling unit for each hour shall be 3,400
  Btu/h times the multi-family high rise residential building SWH system
  multiplier from Table 513.2.b.

    518.2 The service water heating system, including piping losses for 
the Prototype Building, shall be modeled using the methods of the RS-47 
(incorporated by reference, see Sec.  434.701) using a system that meets 
all requirements of subsection 404. The service water heating equipment 
for the Prototype or Reference Building shall be either an electric heat 
pump or natural gas, or if natural gas is not available at the site, 2 
fuel oil. Exception: If electric resistance service water heating is 
preferable to an electric heat pump when analyzed according to the 
criteria of Sec.  434.404.1.4 or when service water temperatures 
exceeding 145 [deg]F are required for a particular application, electric 
resistance water heating may be used.

[[Page 1095]]



Sec.  434.519  Controls.

    519.1 All occupied conditioned spaces in the Prototype, Reference 
and Proposed Design Buildings in all climates shall be simulated as 
being both heated and cooled. The assumptions in this subsection are 
prescribed assumptions. If the Proposed Design does not include 
equipment for cooling or heating, the Design Energy Consumption shall be 
determined by the specifications for calculating the Energy Cost Budget 
as described in Table 517.4.1 HVAC System Description for Prototype and 
Reference Buildings. Exceptions to 519.1 are as follows:
    519.1.1 If a building is to be provided with only heating or 
cooling, both the Prototype or Reference Building and the Proposed 
Design shall be simulated, using the same assumptions. Such an 
assumption cannot be made unless the building interior temperature meets 
the comfort criteria of RS-2 (incorporated by reference, see Sec.  
434.701) at least 98% of the occupied hours during the year.
    519.1.2 If warehouses are not intended to be mechanically cooled, 
both the Energy Cost Budget and Design Energy Consumption shall be 
modeled assuming no mechanical cooling; and
    519.1.3 In climates where winter design temperature (97.5% 
occurrence) is greater than 59 [deg]F, space heating need not be 
modeled.
    519.2 Space temperature controls for the Prototype or Reference 
Building, except multi-family high-rise residential buildings, shall be 
set at 70 [deg]F for space heating and 75 [deg]F for space cooling with 
a deadband per subsection 403.2.6.3. The system shut off during off-
hours shall be according to the schedule in Table 515.2, except that the 
heating system shall cycle on if any space should drop below the night 
setback setting of 55 [deg]F. There shall be no similar setpoint during 
the cooling season. Lesser deadband ranges may be used in calculating 
the Design Energy Consumption. Exceptions to 519.2 are as follows:
    (a) Setback shall not be modeled in determining either the Energy 
Cost Budget or Design Energy Cost if setback is not realistic for the 
Proposed Design, such as 24-hour/day operations. Health facilities need 
not have night setback during the heating season; and
    (b) Hotel/motels and multi-family high-rise residential buildings 
shall have a night setback temperature of 60 [deg]F from 11:00 p.m. to 
6:00 a.m. during the heating season; and
    (c) If deadband controls are not to be installed, the Design Energy 
Cost shall be calculated with both heating and cooling thermostat 
setpoints set to the same value between 70 [deg]F and 75 [deg]F 
inclusive, assumed to be constant for the year.
    519.2.1 For multi-family buildings, the thermostat schedule for the 
dwelling units shall be as in Table 519.1.2, Thermostat Settings for 
Multi-Family High-rise Buildings. The Prototype Building shall use the 
single zone schedule. The Proposed Design shall use the two-zone 
schedule only if zonal thermostatic controls are provided. For Proposed 
Designs that use heat pumps employing supplementary heat, the controls 
used to switch on the auxiliary heat source during morning warm-up 
periods shall be simulated accurately. The thermostat assumptions for 
multi-family high-rise buildings are prescribed assumptions.
    519.3 When providing for outdoor air ventilation in calculating the 
Energy Cost Budget, controls shall be assumed to close the outside air 
intake to reduce the flow of outside air to 0 cfm during setback and 
unoccupied periods. Ventilation using inside air may still be required 
to maintain scheduled setback temperature. Outside air ventilation, 
during occupied periods, shall be as required by RS-41, (incorporated by 
reference, see Sec.  434.701) or the Proposed Design, whichever is 
greater.
    519.4 If humidification is to be used in the Proposed Design, the 
same level of humidification and system type shall be used in the 
Prototype or Reference Building. If dehumidification requires subcooling 
of supply air, then reheat for the Prototype or Reference Building shall 
be from recovered waste heat such as condenser waste heat.

[[Page 1096]]



                                   Table 519.1.2--Thermostat Settings for Multi-Family High-Rise Residential Buildings
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                             Single zone dwelling unit                        Two zone dwelling unit
                                                         -----------------------------------------------------------------------------------------------
                       Time of day                                                              Bedrooms/bathrooms                  Other rooms
                                                               Heat            Cool      ---------------------------------------------------------------
                                                                                               Heat            Cool            Heat            Cool
--------------------------------------------------------------------------------------------------------------------------------------------------------
Midnight-6 a.m..........................................              60              78              60              78              60              85
6 a.m.-9 a.m............................................              70              78              70              78              70              78
9 a.m.-5 p.m............................................              70              78              60              85              70              78
5 p.m.-11 p.m...........................................              70              78              70              78              70              78
11 p.m.-Midnight........................................              60              78              60              78              60              78
--------------------------------------------------------------------------------------------------------------------------------------------------------



Sec.  434.520  Speculative buildings.

    520.1 Lighting. The interior lighting power allowance (ILPA) for 
calculating the Energy Cost Budget shall be determined from Table 
401.3.2a. The Design Energy Consumption may be based on an assumed 
adjusted lighting power for future lighting improvements.
    520.2 The assumption about future lighting power used to calculate 
the Design Energy Consumption must be documented so that the future 
installed lighting systems may be in compliance with these standards. 
Documentation must be provided to enable future lighting systems to use 
either the Prescriptive method or the Systems Performance method of 
subsection 401.3.
    520.3 Documentation for future lighting systems that use subsection 
401.3 shall be stated as a maximum adjusted lighting power for the 
tenant spaces. The adjusted lighting power allowance for tenant spaces 
shall account for the lighting power provided for the common areas of 
the building.
    520.4 Documentation for future lighting systems that use subsection 
401.3 shall be stated as a required lighting adjustment. The required 
lighting adjustment is the whole building lighting power assumed in 
order to calculate the Design Energy Consumption minus the ILPA value 
from Table 401.3.2c that was used to calculate the Energy Cost Budget. 
When the required lighting adjustment is less than zero, a complete 
lighting design must be developed for one or more representative tenant 
spaces, demonstrating acceptable lighting within the limits of the 
assumed lighting power allowance.
    520.5 HVAC Systems and Equipment. If the HVAC system is not 
completely specified in the plans, the Design Energy Consumption shall 
be based on reasonable assumptions about the construction of future HVAC 
systems and equipment. These assumptions shall be documented so that 
future HVAC systems and equipment may be in compliance with these 
standards.



Sec.  434.521  The simulation tool.

    521.1 Annual energy consumption shall be simulated with a multi-
zone, 8760 hours per year building energy model. The model shall account 
for:
    521.1.1 The dynamic heat transfer of the building envelope such as 
solar and internal gains;
    521.1.2 Equipment efficiencies as a function of load and climate;
    521.1.3 Lighting and HVAC system controls and distribution systems 
by simulating the whole building;
    521.1.4 The operating schedule of the building including night 
setback during various times of the year; and
    521.1.5 Energy consumption information at a level necessary to 
determine the Energy Cost Budget and Design Energy Cost through the 
appropriate utility rate schedules.
    521.1.6 While the simulation tool should simulate an entire year on 
an hour by hour basis (8760 hours), programs that approximate this 
dynamic analysis procedure and provide equivalent results are 
acceptable.
    521.1.7 Simulation tools shall be selected for their ability to 
simulate accurately the relevant features of the building in question, 
as shown in the tool's documentation. For example, a single-zone model 
shall not be used to simulate a large, multi-zone building, and a 
steady-state model such as the degree-day method shall not be used to 
simulate buildings when equipment efficiency or performance is 
significantly affected by the dynamic patterns of

[[Page 1097]]

weather, solar radiation, and occupancy. Relevant energy-related 
features shall be addressed by a model such as daylighting, atriums or 
sunspaces, night ventilation or thermal storage, chilled water storage 
or heat recovery, active or passive solar systems, zoning and controls 
of heating and cooling systems, and ground-coupled buildings. In 
addition, models shall be capable of translating the Design Energy 
Consumption into energy cost using actual utility rate schedules with 
the coincidental electrical demand of a building. Examples of public 
domain models capable of handling such complex building systems and 
energy cost translations available in the United States are DOE--2.1C 
and BLAST 3.0 and in Canada, Energy Systems Analysis Series.
    521.1.8 All simulation tools shall use scientifically justifiable 
documented techniques and procedures for modeling building loads, 
systems, and equipment. The algorithms used in the program shall have 
been verified by comparison with experimental measurements, loads, 
systems, and equipment.



            Subpart F_Building Energy Compliance Alternative



Sec.  434.601  General.

    601.1 This subpart provides an alternative path for compliance with 
the standards that allow for greater flexibility in the design of energy 
efficient buildings using an annual energy use method. This path 
provides an opportunity for the use of innovative designs, materials, 
and equipment such as daylighting, passive solar heating, and heat 
recovery, that may not be adequately evaluated by methods found in 
subpart D.
    601.2 The Building Energy Compliance Alternative shall be used with 
subpart C and subpart D, 401.1, 401.2, 401.3.4 and in conjunction with 
the minimum requirements found in subsections 402.1, 402.2, and 402.3., 
403.1, 403.2.1-7, 403.2.9 and 404.
    601.3 Compliance under this section is demonstrated by showing that 
the calculated annual energy usage for the Proposed Design is less than 
or equal to a calculated Energy Use Budget. (See Figure 601.3, Building 
Energy Compliance Alternative). The analytical procedures in this 
subpart are only for determining design compliance, and are not to be 
used either to predict, document or verify annual energy consumption.

[[Page 1098]]

[GRAPHIC] [TIFF OMITTED] TR06OC00.017

    601.4 Compliance under the Building Energy Use Budget method 
requires a detailed energy analysis, using a conventional simulation 
tool, of the Proposed Design. A life cycle cost analysis shall be used 
to select the fuel source for the HVAC systems, service hot water, and 
process loads from available alternatives. The Annual Energy Consumption 
of the Proposed Design with the life cycle cost-effective fuel selection 
is calculated to determine the modeled energy consumption, called the 
Design Energy Use.
    601.5 The Design Energy Use is defined as the energy that is 
consumed within the five foot line of a proposed building per ft\2\ over 
a 24-hour day, 365-

[[Page 1099]]

day year period and specified operating hours. The calculated Design 
Energy Use is then compared to a calculated Energy Use Budget.
    601.6 Compliance. The Energy Use Budget is determined by calculating 
the annual energy usage for a Reference or Prototype Building that is 
configured to comply with the provisions of subpart E for such 
buildings, except that the fuel source(s) of the Prototype or Reference 
Building shall be the same life cycle cost-effective source(s) selected 
for the Proposed Design. If the Design Energy Use is less than or equal 
to the Energy Use Budget then the proposed design complies with these 
standards.
    601.7 This section provides instructions for determining the Design 
Energy Use and for calculating the Energy Use Budget. The Energy Use 
Budget is the highest allowable calculated annual energy consumption for 
a specified building design. Designers are encouraged to design 
buildings whose Design Energy Use is lower than the Energy Use Budget.



Sec.  434.602  Determination of the annual energy budget.

    602.1 The Energy Use Budget shall be calculated for the appropriate 
Prototype or Reference Building in accordance with the procedures 
prescribed in subsection 502 with the following exceptions: The Energy 
Use Budget shall be stated in units of Btu/ft\2\/yr and the simulation 
tool shall segregate the calculated energy consumption by fuel type 
producing an Energy Use Budget for each fuel (the fuel selections having 
been made by a life cycle cost analysis in determining the proposed 
design).
    602.2 The Energy Use Budget is calculated similarly for the 
Reference or Prototype Building using equation 602.2.
[GRAPHIC] [TIFF OMITTED] TR06OC00.029

    Where EUB1, EUB2, EUBi are the 
calculated annual energy targets for each fuel used in the Reference or 
Prototype building and f1, f2, . . . fi 
are the energy conversion factors given in Table 602.2, Fuel Conversion 
Factors for Computing Design Annual Energy Uses. In lieu of case by case 
calculation of the Energy Use Budget, the designer may construct Energy 
Use Budget tables for the combinations of energy source(s) that may be 
considered in a set of project designs, such as electric heating, 
electric service water, and gas cooling or oil heating, gas service 
water and electric cooling. The values in such optional Energy Use 
Budget tables shall be equal to or less than the corresponding Energy 
Use Budgets calculated on a case by case basis according to this 
section. Energy Use Budget tables shall be constructed to correspond to 
the climatic regions and building types in accordance with provisions 
for Prototype or Reference Building models in subpart E of this part.

Table 602.2--Fuel Conversion Factors, for Computing Design Annual Energy
                                  Uses
------------------------------------------------------------------------
                 Fuels                          Conversion factor
------------------------------------------------------------------------
Electricity............................  3412 Btu/kilowatt hour.
Fuel Oil...............................  138,700 Btu/gallon.
Natural Gas............................  1,031,000 Btu/1000 ft\2\.
Liquified Petroleum (including Propane   95,5000 Btu/gallon.
 and Butane).
Anthracite Coal........................  28,300,000 Btu/short ton.
Bituminous Coal........................  24,580,000 Btu/short ton.
Purchase Steam and Steam from Central    1,000 Btu/Pound.
 Plants.
High Temperature or Medium Temperature   Use the heat value based on the
 Water from Central Plants.               water actually delivered at
                                          the building five foot line.
------------------------------------------------------------------------
Note: At specific locations where the energy source Btu content varies
  significantly from the value presented above then the local fuel value
  may be used provided there is supporting documentation from the fuel
  source supplier stating this actual energy value and varifying that
  this value will remain consistent for the foreseeable future. The fuel
  content for fuels not given this table shall be determined from the
  best available source.


[[Page 1100]]



Sec.  434.603  Determination of the design energy use.

    603.1 The Design Energy Use shall be calculated by modeling the 
Proposed Design using the same methods, assumptions, climate data, and 
simulation tool as were used to establish the Energy Use Budget, but 
with the design features that will be used in the final building design. 
The simulation tool used shall segregate the calculated energy 
consumption by fuel type giving an annual Design Energy Use for each 
fuel. The sum of the Design Energy Uses multiplied by the fuel 
conversion factors in Table 602.2 yields the Design Energy Use for the 
proposed design:
[GRAPHIC] [TIFF OMITTED] TR06OC00.030

    Where f1, f2, * * * fi are the fuel 
conversion factors in Table 602.2.
    603.2 Required Life Cycle Cost Analysis for Fuel Selection.
    603.2.1 Fuel sources selected for the Proposed Design and Prototype 
or Reference buildings shall be determined by considering the energy 
cost and other costs and cost savings that occur during the expected 
economic life of the alternative.
    603.2.2 The designer shall use the procedures set forth in subpart A 
of 10 CFR part 436 to make this determination. The fuel selection life 
cycle cost analysis shall include the following steps:
    603.2.2.1 Determine the feasible alternatives for energy sources of 
the Proposed Design's HVAC systems, service hot water, and process 
loads.
    603.2.2.2 Model the Proposed Design including the alternative HVAC 
and service water systems and conduct an annual energy analysis for each 
fuel source alternative using the simulation tool specified in this 
section. The annual energy analysis shall be computed on a monthly basis 
in conformance with subpart E with the exception that all process loads 
shall be included in the calculation. Separate the output of the 
analysis by fuel type.
    603.2.2.3 Determine the unit price of each fuel using information 
from the utility or other reliable local source. During rapid changes in 
fuel prices it is recommended that an average fuel price for the 
previous twelve months be used in lieu of the current price. Calculate 
the annual energy cost of each energy source alternative in accordance 
with procedures in subpart E for the Design Energy Cost. Estimate the 
initial cost of the HVAC and service water systems and other initial 
costs such as energy distribution lines and service connection fees 
associated with each fuel source alternative. Estimate other costs and 
benefits for each alternative including, but not necessarily limited to, 
annual maintenance and repair, periodic and one time major repairs and 
replacements and salvage of the energy and service water systems. Cost 
estimates shall be prepared using professionally recognized cost 
estimating tools, guides and techniques.
    603.2.2.4 Perform a life cycle cost analysis using the procedure 
specified in subsection 603.2.
    603.2.2.5 Compare the total life cycle cost of each energy source 
alternative. The alternative with the lowest total life cycle cost shall 
be chosen as the energy source for the proposed design.



Sec.  434.604  Compliance.

    604.1 Compliance with this section is demonstrated if the Design 
Energy Use is equal to or less than the Energy Use Budget.
[GRAPHIC] [TIFF OMITTED] TR06OC00.031

    604.2 The energy consumption shall be measured at the building five 
foot line for all fuels. Energy consumed from non-depletable energy 
sources and heat recovery systems shall not be included in the Design 
Energy Use calculations. The thermal efficiency of fixtures, equipment, 
systems or plants in the proposed design shall be simulated by the 
selected calculation tool.

[[Page 1101]]



Sec.  434.605  Standard Calculation Procedure.

    605.1 The Standard Calculation Procedure consists of methods and 
assumptions for calculating the Energy Use Budgets for Prototype and 
Reference Buildings and the Energy Use for the Proposed Design. In order 
to maintain consistency between the Energy Use Budgets and the Design 
Energy Use, the input assumptions stated in subsection 510.2 are to be 
used.
    605.2 The terms Energy Cost Budget and Design Energy Cost or Design 
Energy Consumption used in subpart E of this part correlate to Energy 
Use Budget and Design Energy Use, respectively, in subpart F of this 
part.



Sec.  434.606  Simulation tool.

    606.1 The criteria established in subsection 521 for the selection 
of a simulation tool shall be followed when using the compliance path 
prescribed in subpart F of this part.



Sec.  434.607  Life cycle cost analysis criteria.

    607.1 The following life cycle cost criteria applies to the fuel 
selection requirements of this subpart and to option life cycle cost 
analyses performed to evaluate energy conservation design alternatives. 
The fuel source(s) selection shall be made in accordance with the 
requirements of subpart A of 10 CFR part 436. When performing optional 
life cycle cost analyses of energy conservation opportunities the 
designer may use the life cycle cost procedures of subpart A of 10 CFR 
part 436 or OMB Circular 1-94 or an equivalent procedure that meets the 
assumptions listed below:
    607.1.1 The economic life of the Prototype Building and Proposed 
Design shall be 25 years. Anticipated replacements or renovations of 
energy related features and systems in the Prototype or Reference 
Building and Proposed Design during this period shall be included in 
their respective life cycle cost calculations.
    607.1.2 The designer shall follow established professional cost 
estimating practices when determining the costs and benefits associated 
with the energy related features of the Prototype or Reference Building 
and Proposed Design.
    607.1.3 All costs shall be expressed in current dollars. General 
inflation shall be disregarded. Differential escalation of prices 
(prices estimated to rise faster or slower than general inflation) for 
energy used in the life cycle cost calculations shall be those in effect 
at the time of the latest ``Annual Energy Outlook'' (DOE/EIA-0383) as 
published by the Department of Energy's Energy Information 
Administration.
    607.1.4 The economic effects of taxes, depreciation and other 
factors not consistent with the practices of subpart A of 10 CFR part 
436 shall not be included in the life cycle cost calculation.



                      Subpart G_Reference Standards



Sec.  434.701  General.

    701.1 General. The standards, technical handbooks, papers, 
regulations, and portions thereof, that are referred to in the sections 
and subsections in the following list are hereby incorporated by 
reference into this part 434. The following standards have been approved 
for incorporation by reference by the Director of the Federal Register 
in accordance with 5 U.S.C. 522(a) and 1 CFR part 51. A notice of any 
change in these materials will be published in the Federal Register. The 
standards incorporated by reference are available for inspection at the 
U.S. Department of Energy, Office of Energy Efficiency, Hearings and 
Dockets, Forrestal Building, 1000 Independence Avenue SW, Washington, DC 
20585, or at the National Archives and Records Administration (NARA). 
For information on the availability of this material at NARA, call 202-
741-6030, or go to: http://www.archives.gov/federal_register/ 
code_of_federal_regulations/ ibr_locations.html. The standards may be 
purchased at the addresses listed at the end of each standard. The 
following standards are incorporated by reference in this part:

[[Page 1102]]



----------------------------------------------------------------------------------------------------------------
               Ref. No.                              Standard designation                      CFR section
----------------------------------------------------------------------------------------------------------------
RS-1.................................  ANSI/ASHRAE/IESNA 90.1-1989, Energy Efficient     434.301.1;
                                        Design of New Buildings Except Low-Rise           434.402.1.2.4;
                                        Residential Buildings, and Addenda 90.1b-1992,    434.402.4.2;
                                        90.1c-1993, 90.1d-1992, 90.1e-1992, 90.1f-1995,   434.403.2.1.
                                        90.1g-1993, 90.1i-1993, American Society of
                                        Heating, Refrigerating and Air-Conditioning
                                        Engineers, Inc., ASHRAE 1791 Tullie Circle NE,
                                        Atlanta, GA 30329.
RS-2.................................  ANSI/ASHRAE 55-1992 including addenda 55a-1995,   434.301.2; 434.519.1.1.
                                        Thermal Environmental Conditions for Human
                                        Occupancy, American Society of Heating,
                                        Refrigerating and Air-Conditioning Engineers,
                                        Inc., 1791 Tullie Circle NE, Atlanta, GA 30329.
RS-3.................................  NEMA MG1-1993, ``Motors and Generators,''         434.401.2.1.
                                        Revision No. 1, December 7, 1993, National
                                        Electrical Manufacturers Association, 1300
                                        North 17th Street, Suite 1847, Rosslyn, VA
                                        22209.
RS-4.................................  ASHRAE, Handbook, 1993 Fundamentals Volume,       434.402.1.1;
                                        American Society of Heating, Refrigerating, and   434.402.1.2.1;
                                        Air-Conditioning Engineers, Inc., 1791 Tullie     434.402.1.2.2;
                                        Circle NE, Atlanta, GA 30329.                     434.402.1.2.4;
                                                                                          434.402.2.2.5.
RS-5.................................  ASTM C 177-85 (Reapproved 1993), Test Method for  434.402.1.1;
                                        Steady-State Heat Flux Measurements and Thermal   434.402.1.2.1;
                                        Transmission Properties by Means of the Guarded-  434.402.1.2.2.
                                        Hot-Plate Apparatus, American Society for
                                        Testing and Materials, 1916 Race Street,
                                        Philadelphia, PA 19103.
RS-6.................................  ASTM C 518-91, Test Method for Steady-State Heat  434.402.1.1;
                                        Flux Measurements and Thermal Transmission        434.402.1.2.1; Table
                                        Properties by Means of the Heat Flow Meter        402.1.2.2; Table
                                        Apparatus, American Society for Testing and       403.2.9.2.
                                        Materials, 1916 Race Street, Philadelphia, PA
                                        19103.
RS-7.................................  ASTM C 236-89 (Reapproved 1993), Test Method for  434.402.1.1;
                                        Steady-State Thermal Performance of Building      434.402.1.2.1;
                                        Assemblies by Means of a Guarded Hot Box,         434.402.1.2.2.
                                        American Society for Testing and Materials,
                                        1916 Race Street, Philadelphia, PA 19103.
RS-8.................................  ASTM C 976-90, Test Method for Thermal            434.402.1.1;
                                        Performance of Building Assemblies by Means of    434.402.1.2.1;
                                        a Calibrated Hot Box, American Society for        434.402.1.2.2.
                                        Testing and Materials, 1916 Race Street,
                                        Philadelphia, PA 19103.
RS-9.................................  Report TVAHB-3007, 1981, ``Thermal Bridges in     434.402.1.2.3.
                                        Sheet Metal Construction'' by Gudni
                                        Johannesson. Lund Institute of Technology,
                                        Lund, Sweden.
RS-10................................  ASTM E 283-91, Test Method for Determining the    434.402.2; 434.402.2.1.
                                        Rate of Air Leakage Through Exterior Windows,
                                        Curtain Walls, and Doors Under Specified
                                        Pressure Difference Across the Specimen,
                                        American Society for Testing and Materials,
                                        1916 Race Street, Philadelphia, PA 19103.
RS-11................................  ANSI/AAMA/NWWDA 101/I.S.2-97, Voluntary           434.402.2.1;
                                        Specifications for Aluminum, Vinyl (PVC) and      434.402.2.2.4.
                                        Wood Windows and Glass Doors, American
                                        Architectural Manufacturers Association, 1827
                                        Walden Office Square, Suite 104, Schaumburg, IL
                                        60173-4628.
RS-12................................  ASTM D 4099-95, Standard Specification for Poly   434.402.2.1.
                                        (Vinyl Chloride) (PVC) Prime Windows/Sliding
                                        Glass Doors, American Society for Testing and
                                        Materials, 1916 Race Street, Philadelphia, PA
                                        19103.
RS-13................................  ANSI/AAMA/NWWDA 101/I.S.2-97, Voluntary           434.402.2.1.
                                        Specifications for Aluminum, Vinyl (PVC) and
                                        Wood Windows and Glass Doors, National Wood
                                        Window and Door Association (formerly the
                                        National Woodwork Manufacturers Association),
                                        1400 East Toughy Avenue, Suite 470, Des
                                        Plaines, IL 60018.
RS-14................................  ANSI/NWWDA I.S.3-95, Wood Sliding Patio Doors,    434.402.2.2.1.
                                        National Wood Window and Door Association
                                        (formerly the National Woodwork Manufacturers
                                        Association), 1400 East Toughy Avenue, Suite
                                        470, Des Plaines, IL 60018.
RS-15................................  ARI Standard 210/240-94, Unitary Air-             434.403.1.
                                        Conditioning and Air-Source Heat Pump Equipment
                                        1994. Air-Conditioning and Refrigeration
                                        Institute, 4301 North Fairfax Drive, Suite 425,
                                        Arlington, VA 22203.
RS-16................................  ARI Standard 340/360-93, Commercial and           434.403.1.
                                        Industrial Unitary Air-Conditioning and Heat
                                        Pump Equipment 1993 edition. Air-Conditioning
                                        and Refrigeration Institute, 4301 North Fairfax
                                        Drive, Suite 425, Arlington, VA 22203.
RS-17................................  ARI 310/380-93, Packaged Terminal Air-            434.403.1.
                                        Conditioners and Heat Pumps, 1993 edition. Air-
                                        Conditioning and Refrigeration Institute, 4301
                                        North Fairfax Drive, Suite 425, Arlington, VA
                                        22203.
RS-18................................  NFRC 100-97, Procedure for Determining            434.402.1.2.4.
                                        Fenestration Product Thermal Properties,
                                        National Fenestration Rating Council, Inc.,
                                        1300 Spring Street, Suite 500, Silver Spring,
                                        MD 20910.
RS-19................................  NFRC 200--Procedure for Determining Fenestration  434.402.1.2.4.
                                        Product Solar Heat Gain Coefficients at Normal
                                        Incidence (1995) National Fenestration Rating
                                        Council, Inc., 1300 Spring Street, Suite 500,
                                        Silver Spring, MD 20910.
RS-20................................  Reserved........................................
RS-21................................  Z21.47-1993, Gas-Fired Central Furnaces,          434.403.1.
                                        including addenda Z21.47a-1995, American Gas
                                        Association, 400 North Capitol Street, N.W.
                                        Washington, DC 20001.
RS-22................................  U.L. 727, including addendum dated January 30,    434.403.1.
                                        1996, Oil-Fired Central Furnaces (Eighth
                                        Edition) 1994, available from: Global
                                        Documents, 15 Inverness Way East, Englewood, CO
                                        80112-5704, Underwriters Laboratories,
                                        Northbrook, IL 60062, 1994..
RS-23................................  ANSI Z83.9-90, Including addenda Z83.9a-1992,     434.403.1.
                                        Gas-Fired Duct Furnaces, 1990. (Addendum 90.1b)
                                        available from: Global Documents, 15 Inverness
                                        Way East, Englewood, CO 80112-5704.
RS-24................................  ANSI Z83.8-96, Gas Unit Heater and Gas-Fired      434.403.1.
                                        Duct Furnaces, American National Standards
                                        Institute, 11 West 42nd Street, New York, NY
                                        10036.

[[Page 1103]]

 
RS-25................................  U.L. 731, Oil-Fired Unit Heaters (Fifth Edition)  434.403.1.
                                        1995 available from: Global Documents, 15
                                        Inverness Way East, Englewood, CO 80112-5704,
                                        Underwriters Laboratories, Northbrook, IL 60062.
RS-26................................  CTI Standard-201, Standard for the Certification  434.403.1.
                                        of Water-Cooling Towers Thermal Performance,
                                        November 1996, Cooling Tower Institute, P.O.
                                        Box 73383, Houston, TX 77273.
RS-27................................  ARI Standard 320-93, Water-Source Heat Pumps,     434.403.1.
                                        Air-Conditioning and Refrigeration Institute,
                                        4301 North Fairfax Drive, Arlington, VA 22203.
RS-28................................  ARI Standard 325-93, Ground Water-Source Heat     434.403.1.
                                        Pumps, Air-Conditioning and Refrigeration
                                        Institute, 4301 North Fairfax Drive, Arlington,
                                        VA 22203.
RS-29................................  ARI Standard 365-94, Commercial and Industrial    434.403.1.
                                        Unitary Air-Conditioning Condensing Units, Air-
                                        Conditioning and Refrigeration Institute, 4301
                                        North Fairfax Drive, Arlington, VA 22203.
RS-30................................  ARI Standard 550-92, Centrifugal and Rotary       434.403.1.
                                        Screw Water-Chilling Packages, Air-Conditioning
                                        and Refrigeration Institute, 4301 North Fairfax
                                        Drive, Arlington, VA 22203.
RS-31................................  ARI Standard 590-92, Positive Displacement        434.403.1.
                                        Compressor Water-Chilling Packages, Air-
                                        Conditioning and Refrigeration Institute, 4301
                                        North Fairfax Drive, Arlington, VA 22203.
RS-32................................  ANSI Z21.13-1991, including addenda Gas-Fired     434.403.1.
                                        Low-Pressure Steam and Hot Water Boilers,
                                        Addenda Z21.13a-1993 and Z21-13b-1994, American
                                        National Standards Institute, 11 West 42nd
                                        Street, New York, NY 10036.
RS-33................................  ANSI/U.L. 726 (7th edition, 1995), Oil-Fired      434.403.1.
                                        Boiler Assemblies, available from: Global
                                        Documents, 15 Inverness Way East, Englewood, CO
                                        80112-5704, Underwriters Laboratories,
                                        Northbrook, IL 60062.
RS-34................................  HVAC Duct Construction Standards--Metal and       434.403.2.9.3.
                                        Flexible, 2nd edition, 1995, Sheet Metal and
                                        Air-Conditioning Contractors' National
                                        Association, Inc., 4201 Lafayette Center Drive,
                                        Chantilly, VA 20151.
RS-35................................  HVAC Air Duct Leakage Test Manual, 1st edition,   434.403.2.9.3;
                                        1985, Sheet Metal and Air-Conditioning            434.403.1.
                                        Contractors' National Association, Inc., 4201
                                        Lafayette Center Drive, Chantilly, VA 20151.
RS-36................................  Fibrous Glass Duct Construction Standards, 6th    434.403.2.9.3.
                                        edition, 1992, Sheet Metal and Air-Conditioning
                                        Contractors National Association, Inc., 4201
                                        Lafayette Center Drive, Chantilly, VA 20151.
RS-37................................  Reserved........................................
RS-38................................  ANSI Z21.56-1994, Gas-Fired Pool Heaters;         Table 404.1.
                                        Addenda Z21.56a-1996, American National
                                        Standards Institute, 11 West 42nd Street, New
                                        York, NY 10036; American Gas Association, 1515
                                        Wilson Boulevard, Arlington, VA 22209.
RS-39................................  ANSI Z21.10.3-1993, Gas Water Heaters, Volume     Table 404.1;
                                        III, Storage with Input Ratings above 75,000      434.404.1.1.
                                        Btu's per Hour, Circulating and Instantaneous
                                        Water Heaters, American National Standards
                                        Institute, 11 West 42nd Street, New York, NY
                                        10036; American Gas Association, 1515 Wilson
                                        Boulevard, Arlington, VA 22209.
RS-40................................  ANSI/AHAM RAC-1-1992, Room Air Conditioners,      434.403.1.
                                        Association of Home Appliance Manufacturers, 20
                                        North Wacker Drive, Chicago, IL 60606.
RS-41................................  ASHRAE Standard 62-1989, Ventilation for          434.403.2.4;
                                        Acceptable Indoor Air Quality, American Society   434.403.2.8;
                                        of Heating, Refrigerating and Air-Conditioning    434.519.3.
                                        Engineers, 1791 Tulle Circle, Atlanta, GA 30329.
RS-42................................  ANSI Z21.66-1996, Automatic Vent Damper Devices   434.404.1.
                                        for Use with Gas-Fired Appliances, available
                                        from: Global Documents, 15 Inverness Way East,
                                        Englewood, CO 80112-5704..
RS-43................................  NEMA MG 10-1994, Energy Management Guide for      434.401.2.1.
                                        Selection and Use of Polyphase Motors, National
                                        Electric Manufacturers Association, National
                                        Electrical Manufacturers Association, 1300
                                        North 17th Street, Suite 1847, Rosslyn, VA
                                        22209.
RS-44................................  NEMA MG 11-1977 (Revised 1982, 1987, Energy       434.401.2.1.
                                        Management Guide for Selection and Use of
                                        Single-Phase Motors, National Electrical
                                        Manufacturers Association, National Electrical
                                        Manufacturers Association, 1300 North 17th
                                        Street, Suite 1847, Rosslyn, VA 22209.
RS-45................................  ARI Standard 330-93, Ground-Source Closed-Loop    434.403.1.
                                        Heat Pumps, Air-Conditioning and Refrigeration
                                        Institute, 4301 North Fairfax Drive, Arlington,
                                        VA 22209.
RS-46................................  ARI Standard 560-92, Absorption Water Chilling    434.403.1.
                                        and Water Heating Packages, Air-Conditioning
                                        and Refrigeration Institute, 4301 North Fairfax
                                        Drive, Arlington, VA 22209.
RS-47................................  ASHRAE, Handbook, HVAC Applications; I-P          434.518.2.
                                        Edition, 1995, American Society of Heating,
                                        Refrigerating, and Air-Conditioning Engineers,
                                        Inc., 1791 Tullie Circle NE, Atlanta, GA 30329.
----------------------------------------------------------------------------------------------------------------


[65 FR 60012, Oct. 6, 2000, as amended at 69 FR 18803, Apr. 9, 2004]

[[Page 1104]]



PART 435_ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND CONSTRUCTION 
OF NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS--Table of Contents



  Subpart A_Mandatory Energy Efficiency Standards for Federal Low-Rise 
                         Residential Buildings.

Sec.
435.1 Purpose and scope.
435.2 Definitions.
435.3 Material incorporated by reference.
435.4 Energy efficiency performance standard.
435.5 Performance level determination.
435.6 Life-cycle costing.

Subpart B--Reduction in Fossil Fuel-Generated Energy Consumption [Reserved]

      Subpart C_Green Building Certification for Federal Buildings

435.300 Green building certification.

Subpart D--Voluntary Performance Standards for New Non-Federal Residential 
Buildings [Reserved]

Subpart E_Mandatory Energy Efficiency Standards for Federal Residential 
                                Buildings

435.500 Purpose.
435.501 Scope.
435.502 Definitions.
435.503 Requirements for the design of a Federal residential building.
435.504 The COSTSAFR Program.
435.505 Alternative compliance procedure.
435.506 Selecting a life cycle effective proposed building design.

    Authority: 42 U.S.C. 6831-6832; 6834-6836; 42 U.S.C. 8253-54; 42 
U.S.C. 7101 et seq.

    Source: 53 FR 32545, Aug. 25, 1988, unless otherwise noted.



  Subpart A_Mandatory Energy Efficiency Standards for Federal Low-Rise 
                         Residential Buildings.

    Source: 71 FR 70283, Dec. 4, 2006, unless otherwise noted.



Sec.  435.1  Purpose and scope.

    (a) This part establishes energy efficiency performance standard for 
the construction of new Federal low-rise residential buildings as 
required by section 305(a) of the Energy Conservation and Production 
Act, as amended (42 U.S.C. 6834(a)).
    (b) [Reserved]
    (c) This part also establishes green building certification 
requirements for new Federal buildings that are low-rise residential 
buildings and major renovations to Federal buildings that are low-rise 
residential buildings, for which design for construction began on or 
after October 14, 2015.

[71 FR 70283, Dec. 4, 2006, as amended at 79 FR 61571, Oct. 14, 2014]



Sec.  435.2  Definitions.

    For purposes of this part, the following terms, phrases and words 
shall be defined as follows:
    Design for construction means the stage when the energy efficiency 
and sustainability details (such as insulation levels, HVAC systems, 
water-using systems, etc.) are either explicitly determined or 
implicitly included in a project cost specification.
    DOE means U.S. Department of Energy.
    Federal agency means any department, agency, corporation, or other 
entity or instrumentality of the executive branch of the Federal 
Government, including the United States Postal Service, the Federal 
National Mortgage Association, and the Federal Home Loan Mortgage 
Corporation.
    ICC means International Code Council.
    IECC means International Energy Conservation Code.
    IECC Baseline Building 2004 means a building that is otherwise 
identical to the proposed building but is designed to meet, but not 
exceed, the energy efficiency specifications in the ICC International 
Energy Conservation Code, 2004 Supplement Edition, January 2005 
(incorporated by reference, see Sec.  435.3).
    IECC Baseline Building 2009 means a building that is otherwise 
identical to the proposed building but is designed to meet, but not 
exceed, the energy efficiency specifications in the ICC International 
Energy Conservation Code, 2009 Edition, January 2009 (incorporated by 
reference, see Sec.  435.3).
    IECC Baseline Building 2015 means a building that is otherwise 
identical to

[[Page 1105]]

the proposed building but is designed to meet, but not exceed, the 
energy efficiency specifications in the ICC IECC 2015 (incorporated by 
reference, see Sec.  435.3).
    Life-cycle cost means the total cost related to energy conservation 
measures of owning, operating and maintaining a building over its useful 
life as determined in accordance with 10 CFR part 436.
    Life-cycle cost-effective means that the proposed building has a 
lower life-cycle cost than the life-cycle costs of the baseline 
building, as described by 10 CFR 436.19, or has a positive estimated net 
savings, as described by 10 CFR 436.20, or has a savings-to-investment 
ratio estimated to be greater than one, as described by 10 CFR 436.21; 
or has an adjusted internal rate of return, as described by 10 CFR 
436.22, that is estimated to be greater than the discount rate as listed 
in OMB Circular Number A-94 ``Guidelines and Discount Rates for Benefit-
Cost Analysis of Federal Programs.''
    Low-rise residential building means any building three stories or 
less in height above grade that includes sleeping accommodations where 
the occupants are primarily permanent in nature (30 days or more).
    New Federal building means any new building (including a complete 
replacement of an existing building from the foundation up) to be 
constructed by, or for the use of, any federal agency. Such term shall 
include buildings built for the purpose of being leased by a federal 
agency, and privatized military housing.
    Proposed building means the building design of a new Federal low-
rise residential building proposed for construction.

[71 FR 70283, Dec. 4, 2006, as amended at 72 FR 72571, Dec. 21, 2007; 76 
FR 49285, Aug. 10, 2011; 82 FR 2867, Jan. 10, 2017]



Sec.  435.3  Materials incorporated by reference.

    (a) General. The Department of Energy incorporates by reference the 
energy performance standards listed in paragraph (b) of this section 
into 10 CFR part 435. The Director of the Federal Register has approved 
the material listed in paragraph (b) of this section for incorporation 
by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any 
subsequent amendment to a standard by the standard-setting organization 
will not affect DOE regulations unless and until DOE amends its energy 
performance standards. Material is incorporated as it exists on the date 
of the approval, and a notice of any change in the material will be 
published in the Federal Register. All approved material is available 
for inspection at the U.S. Department of Energy, Office of Energy 
Efficiency and Renewable Energy, Building Technologies Program, Sixth 
Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024, (202) 586-2945. 
Also, this material is available for inspection at the National Archives 
and Records Administration (NARA). For information on the availability 
of this material at NARA, call 202-741-6030, or go to: http://
www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html.
    (b) ICC. International Code Council, 4051 West Flossmoor Road, 
Country Club Hills, IL 60478, 1-888-422-7233, or go to http://
www.iccsafe.org/.
    (1) ICC International Energy Conservation Code (IECC), 2004 
Supplement Edition (``IECC 2004''), January 2005, IBR approved for 
Sec. Sec.  435.2, 435.4, 435.5;
    (2) ICC International Energy Conservation Code (IECC), 2009 Edition 
(``IECC 2009''), January 2009, IBR approved for Sec. Sec.  435.2, 435.4, 
435.5.
    (3) ICC International Energy Conservation Code (IECC), 2015 Edition 
(``IECC 2015''), published May 30, 2014, IBR approved for Sec. Sec.  
435.2, 435.4, 435.5.

[76 FR 49285, Aug. 10, 2011, as amended at 82 FR 2867, Jan. 10, 2017]



Sec.  435.4  Energy efficiency performance standard.

    (a)(1) All Federal agencies shall design new Federal buildings that 
are low-rise residential buildings, for which design for construction 
began on or after January 3, 2007, but before August 10, 2012, to:
    (i) Meet the IECC 2004 (incorporated by reference, see Sec.  435.3), 
and
    (ii) If life-cycle cost-effective, achieve energy consumption 
levels, calculated consistent with paragraph (b) of this section, that 
are at least 30

[[Page 1106]]

percent below the levels of the IECC Baseline Building 2004.
    (2) All Federal agencies shall design new Federal buildings that are 
low-rise residential buildings, for which design for construction began 
on or after August 10, 2012, but before January 10, 2018 to:
    (i) Meet the IECC 2009 (incorporated by reference, see Sec.  435.3), 
and
    (ii) If life-cycle cost-effective, achieve energy consumption 
levels, calculated consistent with paragraph (b) of this section, that 
are at least 30 percent below the levels of the IECC Baseline Building 
2009.
    (3) All Federal agencies shall design new Federal buildings that are 
low-rise residential buildings, for which design for construction began 
on or after January 10, 2018 to:
    (i) Meet the IECC 2015, (incorporated by reference, see Sec.  
435.3), including the mandatory mechanical ventilation requirements in 
Section R403.6 of the 2015 IECC; and
    (ii) If life-cycle cost-effective, achieve energy consumption 
levels, calculated consistent with paragraph (b) of this section, that 
are at least 30 percent below the levels of the IECC Baseline Building 
2015.
    (b)(1) For new Federal low-rise residential buildings whose design 
for construction began before January 10, 2018, energy consumption for 
the purposes of calculating the 30 percent savings shall include space 
heating, space cooling, and domestic water heating.
    (2) For new Federal low-rise residential buildings whose design for 
construction began on or after before January 10, 2018, energy 
consumption for the purposes of calculating the 30 percent savings shall 
include space heating, space cooling, lighting, mechanical ventilation, 
and domestic water heating.
    (c) If a 30 percent reduction is not life-cycle cost-effective, the 
design of the proposed building shall be modified so as to achieve an 
energy consumption level at or better than the maximum level of energy 
efficiency that is life-cycle cost-effective, but at a minimum complies 
with paragraph (a) of this section.

[71 FR 70283, Dec. 4, 2006, as amended at 72 FR 72571, Dec. 21, 2007; 76 
FR 49285, Aug. 10, 2011; 82 FR 2867, Jan. 10, 2017]



Sec.  435.5  Performance level determination.

    (a) For new Federal buildings for which design for construction 
began on or after January 3, 2007, but before August 10, 2012, each 
Federal agency shall determine energy consumption levels for both the 
IECC Baseline Building 2004 and proposed building by using the Simulated 
Performance Alternative found in section 404 of the IECC 2004 
(incorporated by reference, see Sec.  435.3).
    (b) For new Federal buildings for which design for construction 
began on or after August 10, 2012, but before January 10, 2018, each 
Federal agency shall determine energy consumption levels for both the 
IECC Baseline Building 2009 and proposed building by using the Simulated 
Performance Alternative found in section 405 of the IECC 2009 
(incorporated by reference, see Sec.  435.3).
    (c) For new Federal buildings for which design for construction 
began on or after January 10, 2018 each Federal agency shall determine 
energy consumption levels for both the IECC Baseline Building 2015 and 
proposed building by using the Simulated Performance Alternative found 
in section R405 of the IECC 2015 (incorporated by reference, see Sec.  
435.3).

[82 FR 2867, Jan. 10, 2017]



Sec.  435.6  Life-cycle costing.

    Each Federal agency shall determine life-cycle cost-effectiveness by 
using the procedures set out in subpart A of 10 CFR part 436. A Federal 
agency may choose to use any of four methods, including lower life-cycle 
costs, positive net savings, savings-to-investment ratio that is 
estimated to be greater than one, and an adjusted internal rate of 
return that is estimated to be greater than the discount rate as listed 
in

[[Page 1107]]

OMB Circular Number A-94 ``Guidelines and Discount Rates for Benefit-
Cost Analysis of Federal Programs.''

[71 FR 70283, Dec. 4, 2006, redesignated at 79 FR 61571, Oct. 14, 2014]

Subpart B--Reduction in Fossil Fuel-Generated Energy Consumption [Reserved]



      Subpart C_Green Building Certification for Federal Buildings



Sec.  435.300  Green building certification.

    (a) If a Federal agency chooses to use a green building 
certification system to certify a new Federal building or a Federal 
building undergoing a major renovation and construction costs for such 
new building or major renovation are at least $2,500,000 (in 2007 
dollars, adjusted for inflation), and design for construction began on 
or after October 14, 2015:
    (b) The system under which the building is certified must:
    (1) Allow assessors and auditors to independently verify the 
criteria and measurement metrics of the system;
    (2) Be developed by a certification organization that
    (i) Provides an opportunity for public comment on the system; and
    (ii) Provides an opportunity for development and revision of the 
system through a consensus-based process;
    (3) Be nationally recognized within the building industry;
    (4) Be subject to periodic evaluation and assessment of the 
environmental and energy benefits that result under the rating system; 
and
    (5) Include a verification system for post occupancy assessment of 
the rated buildings to demonstrate continued energy and water savings at 
least every four years after initial occupancy.
    (c) Certification level. The building must be certified to a level 
that promotes the high performance sustainable building guidelines 
referenced in Executive Order 13423 ``Strengthening Federal 
Environmental, Energy, and Transportation Management'' and Executive 
Order 13514 ``Federal Leadership in Environmental, Energy and Economic 
Performance.''

[79 FR 61571, Oct. 14, 2014]

Subpart D--Voluntary Performance Standards for New Non-Federal Residential 
Buildings [Reserved]



Subpart E_Mandatory Energy Efficiency Standards for Federal Residential 
                                Buildings



Sec.  435.500  Purpose.

    (a) This subpart establishes voluntary energy conservation 
performance standards for new residential buildings. The voluntary 
energy conservation performance standards are designed to achieve the 
maximum practicable improvements in energy efficiency and increases in 
the use of non-depletable sources of energy.
    (b) Voluntary energy conservation performance standards prescribed 
under this subpart shall be developed solely as guidelines for the 
purpose of providing technical assistance for the design of energy 
conserving buildings, and shall be mandatory only for the Federal 
buildings for which design for construction began before January 3, 
2007.
    (c) The energy conservation performance standards will direct 
Federal policies and practices to ensure that cost-effective energy 
conservation features will be incorporated into the designs of all new 
Federal residential buildings for which design for construction began 
January 3, 2007.

[53 FR 32545, Aug. 25, 1988, as amended at 71 FR 70284, Dec. 4, 2006. 
Redesignated at 79 FR 61571, Oct. 14, 2014]



Sec.  435.501  Scope.

    (a) The energy conservation performance standards in this subpart 
will apply to all Federal residential buildings for which design of 
construction began before January 3, 2007 except multifamily buildings 
more than three stories above grade.
    (b) The primary types of buildings built by or for the Federal 
agencies, to which the energy conservation performance standards will 
apply, are:

[[Page 1108]]

    (1) Single-story single-family residences;
    (2) Split-level single-family residences;
    (3) Two-story single-family residences;
    (4) End-unit townhouses;
    (5) Middle-unit townhouses;
    (6) End-units in multifamily buildings (of three stories above grade 
or less);
    (7) Middle-units in multifamily buildings (of three stories above 
grade or less);
    (8) Single-section mobile homes; and
    (9) Multi-section mobile homes.

[53 FR 32545, Aug. 25, 1988, as amended at 71 FR 70284, Dec. 4, 2006. 
Redesignated at 79 FR 61571, Oct. 14, 2014]



Sec.  435.502  Definitions.

    (a) ANSI means American National Standards Institute.
    (b) ASHRAE Handbook means American Society of Heating, Refrigerating 
and Air-Conditioning Engineers, Inc., ASHRAE Handbook, 1985 
Fundamentals. Volume, 1-P Edition.
    (c) ASTM means American Society of Testing and Measurement.
    (d) British thermal unit (Btu) means approximately the amount of 
heat required to raise the temperature of one pound of water from 59 
[deg]F to 60 [deg]F.
    (e) Building means any new residential structure:
    (1) That includes or will include a heating or cooling system, or 
both, or a domestic hot water system, and
    (2) For which a building design is created after the effective date 
of this rule.
    (f) Building design means the development of plans and 
specifications for human living space.
    (g) Conservation Optimization Standard for Savings in Federal 
Residences means the computerized calculation procedure that is used to 
establish an energy consumption goal for the design of Federal 
residential buildings.
    (h) COSTSAFR means the Conservation Optimization Standard for 
Savings in Federal Residences.
    (i) DOE means U.S. Department of Energy.
    (j) Domestic hot water (DHW) means the supply of hot water for 
purposes other than space conditioning.
    (k) Energy conservation measure (ECM) means a building material or 
component whose use will affect the energy consumed for space heating, 
space cooling, domestic hot water or refrigeration.
    (l) Energy performance standard means an energy consumption goal or 
goals to be met without specification of the method, materials, and 
processes to be employed in achieving that goal or goals, but including 
statements of the requirements, criteria evaluation methods to be used, 
and any necessary commentary.
    (m) Federal agency means any department, agency, corporation, or 
other entity or instrumentality of the executive branch of the Federal 
Government, including the United States Postal Service, the Federal 
National Mortgage Association, and the Federal Home Loan Mortgage 
Corporation.
    (n) Federal residential building means any residential building to 
be constructed by or for the use of any Federal agency in the 
Continental U.S., Alaska, or Hawaii that is not legally subject to state 
or local building codes or similar requirements.
    (o) Life cycle cost means the minimum life cycle cost calculated by 
using a methodology specified in subpart A of 10 CFR part 436.
    (p) Point system means the tables that display the effect of the set 
of energy conservation measures on the design energy consumption and 
energy costs of a residential building for a particular location, 
building type and fuel type.
    (q) Practicable optimum life cycle energy cost means the energy 
costs of the set of conservation measures that has the minimum life 
cycle cost to the Federal government incurred during a 25 year period 
and including the costs of construction, maintenance, operation, and 
replacement.
    (r) Project means the group of one or more Federal residential 
buildings to be built at a specific geographic location that are 
included by a Federal agency in specifications issued or used by a 
Federal agency for design or construction of the buildings.
    (s) Prototype means a fundamental house design based on typical 
construction assumptions. The nine prototypes

[[Page 1109]]

in COSTSAFR are: single-section manufactured house, double-section 
manufactured house, ranch-style house, two-story house, split-level 
house, mid-unit apartment, end-unit apartment, mid-unit townhouse, end-
unit townhouse.
    (t) Residential building means a new building that is designed to be 
constructed and developed for residential occupancy.
    (u) Set of conservation options means the combination of envelope 
design and equipment measures that influences the long term energy use 
in a building designed to maintain a minimum of ventilation level of 0.7 
air changes per hour, including the heating and cooling equipment, 
domestic hot water equipment, glazing, insulation, refrigerators and air 
infiltration control measures.
    (v) Shading coefficient means the ratio of the heat gains through 
windows, with or without integral shading devices, to that occurring 
through unshaded, \1/8\-inch clear glass.
    (w) Total annual coil load means the energy for space heating and/or 
cooling with no adjustment for HVAC equipment efficiency.

[56 FR 3772, Jan. 31, 1991, redesignated at 79 FR 61571, Oct. 14, 2014]



Sec.  435.503  Requirements for the design of a Federal residential building.

    (a) The head of each Federal agency responsible for the construction 
of Federal residential buildings shall establish an energy consumption 
goal for each residential building to be designed or constructed by or 
for the agency, for which design for construction began before January 
3, 2007.
    (b) The energy consumption goal for a Federal residential building 
for which design for construction began before January 3, 2007, shall be 
a total point score derived by using the micro-computer program and user 
manual entitled ``Conservation Optimization Standard for Savings in 
Federal Residences (COSTSAFR),'' unless the head of the Federal agency 
shall establish more stringent requirements for that agency.
    (c) The head of each Federal agency shall adopt such procedures as 
may be necessary to ensure that the design of a Federal residential 
building is not less energy conserving than the energy consumption goal 
established for the building.

[53 FR 32545, Aug. 25, 1988, as amended at 71 FR 70284, Dec. 4, 2006. 
Redesignated at 79 FR 61571, Oct. 14, 2014]



Sec.  435.504  The COSTSAFR Program.

    (a) The COSTSAFR Program (Version 3.0) provides a computerized 
calculation procedure to determine the most effective set of energy 
conservation measures, selected from among the measures included within 
the Program that will produce the practicable optimum life cycle cost 
for a type of residential building in a specific geographic location. 
The most effective set of energy conservation measures is expressed as a 
total point score that serves as the energy consumption goal.
    (b) The COSTSAFR Program (Version 3.0) also prints out a point 
system that identifies a wide array of different energy conservation 
measures indicating how many points various levels of each measure would 
contribute to reaching the total point score of the energy consumption 
goal. This enables a Federal agency to use the energy consumption goal 
and the point system in the design and procurement procedures so that 
designers and builders can pick and choose among different combinations 
of energy conservation measures to meet or exceed the total point score 
required to meet the energy consumption goal.
    (c) The COSTSAFR Program (Version 3.0) operates on a micro-computer 
system that uses the MS DOS operating system and is equipped with an 
8087 co-processor.
    (d) The COSTSAFR Program (Version 3.0) may be obtained from:

National Technical Information Service; Department of Commerce; 
Springfield, Virginia 22161; (202) 487-4600

[53 FR 32545, Aug. 25, 1988, as amended at 56 FR 3772, Jan. 31, 1991. 
Redesignated at 79 FR 61571, Oct. 14, 2014]



Sec.  435.505  Alternative compliance procedure.

    (a) If a proposed building design includes unusual or innovative 
energy conservation measures which are not covered by the COSTSAFR 
program, the Federal agency shall determine whether that design meets or 
exceeds

[[Page 1110]]

the applicable energy consumption goal in compliance with the procedures 
set forth in this section.
    (b) The Federal agency shall determine the estimated discounted 
energy cost for the COSTSAFR prototype building design, which is the 
most similar of the COSTSAFR prototypes to the proposed building design, 
by--
    (1) Printing out the COSTSAFR compliance forms for the prototype 
showing the points attributable to levels of various energy conservation 
measures;
    (2) Calculating the estimated unit energy cost on the compliance 
forms, on the basis of selecting the optimum levels on the compliance 
forms or otherwise in the User's Manual for each energy conservation 
measure; and
    (3) Multiplying the estimated unit energy cost by 100.
    (c) The Federal agency shall determine the estimated discounted 
energy cost for the proposed building design by--
    (1) Estimating the heating and cooling total annual coil loads of 
the proposed building design with the DOE 2.1C computer program on the 
basis of input assumptions including--
    (i) Shading coefficients of 0.6 for summer and 0.8 for winter;
    (ii) Thermostat setpoints of 78 degrees Fahrenheit for cooling, 70 
degrees Fahrenheit for heating (6 am to 12 midnight), and 60 degrees 
Fahrenheit for Night Setback (12 midnight to 6 am, except for houses 
with heat pumps);
    (iii) The infiltration rate measured in air changes per hour as 
calculated using appendix B of the COSTSAFR User's Manual;
    (iv) Natural venting with a constant air change rate of 10 air 
changes per hour--
    (A) When the outdoor temperature is lower than the indoor 
temperature, but not above 78 degrees Fahrenheit; and
    (B) When the enthalpy of the outdoor air is lower than the indoor 
air.
    (v) Internal gains in accordance with the following table for a 
house with 1540 square feet of floor area, adjusted by 0.35 Btu/ft \2\/
hr to account for changes in lighting as the floor area varies from 1540 
square feet--

                  Table 1--Internal Gain Schedule (Btu)
------------------------------------------------------------------------
                    Hour of day                      Sensible    Latent
------------------------------------------------------------------------
1.................................................        1139       247
2.................................................        1139       247
3.................................................        1139       247
4.................................................        1139       247
5.................................................        1139       247
6.................................................        1903       412
7.................................................        2391       518
8.................................................        4782      1036
9.................................................        2790       604
10................................................        1707       370
11................................................        1707       370
12................................................        2277       493
13................................................        1707       370
14................................................        1424       308
15................................................        1480       321
16................................................        1480       321
17................................................        2164       469
18................................................        2334       506
19................................................        2505       543
20................................................        3928       851
21................................................        3928       851
22................................................        4101       888
23................................................        4101       888
24................................................        3701       802
------------------------------------------------------------------------

    (vi) Thermal transmittances for building envelope materials measured 
in accordance with applicable ASTM procedures or from the ASHRAE 
Handbook;
    (vii) Proposed heating and cooling equipment types included in 
COSTSAFR or having a certified seasonal efficiency rating;
    (viii) Weather Year for Energy Calculations (WYEC) weather year data 
(WYEC data are on tapes available from ASHRAE, 1791 Tullie Circle, N.E., 
Atlanta, Georgia 30329), or if unavailable, Test Reference Year (TRY) 
weather data (obtainable from National Climatic Data Center, 1983 Test 
Reference Year, Tape Reference Manual, TD-9706, Asheville, North 
Carolina) relevant to project location.
    (2) Estimating the discounted energy cost for the heating and 
cooling energy loads, respectively, according to the following 
equation--
[GRAPHIC] [TIFF OMITTED] TC14NO91.084


[[Page 1111]]


Where:

Total Annual Coil Load = the total heating or cooling annual coil load 
          calculated under paragraph (c)(1);
Fuel Cost = the heating or cooling fuel cost calculated in accordance 
          with sections 3.3.D and 3.3.E of the User's Manual;
UPW* = the uniform present worth discount factor; selected from the last 
          page of the compliance forms.
Equipment Efficiency = the test seasonal efficiency rating of the 
          heating and cooling equipment only (i.e., not including duct 
          or distribution system losses).

    (3) Estimating the discounted energy cost for water heating and 
refrigerator/freezer energy consumption--
    (i) For equipment types covered by the COSTSAFR compliance forms, by 
multiplying the estimated unit energy cost by 100; or
    (ii) For equipment types not covered by COSTSAFR--
    [GRAPHIC] [TIFF OMITTED] TC14NO91.085
    
Where:

Fuel Cost and UPW* are as defined in paragraph (c)(2) of this section; 
          Annual Energy Consumption is as calculated in 10 CFR 430.22; 
          and Energy Factor is the measure of energy efficiency as 
          calculated under 10 CFR 430.22

    (iii) [Reserved]
    (4) Adding together the discounted energy costs calculated under 
paragraphs (c)(2) and (c)(3) of this section;
    (d) If the discounted energy cost of the proposed building design 
calculated under paragraph (c)(4) of this section is equal to or less 
than the discounted energy cost of the COSTSAFR prototype building 
design calculated under paragraph (b) of this section, then the proposed 
building design is in compliance with the applicable energy consumption 
goal under this part.

[56 FR 3772, Jan. 31, 1991, redesignated at 79 FR 61571, Oct. 14, 2014]



Sec.  435.506  Selecting a life cycle effective proposed building design.

    In selecting between or among proposed building designs which comply 
with the applicable energy consumption goal under this part, each 
Federal agency shall select the design which, in comparison to the 
applicable COSTSAFR prototype, has the highest Net Savings or lowest 
total life cycle costs calculated in compliance with subpart A of 10 CFR 
part 436.

[56 FR 3773, Jan. 31, 1991, redesignated at 79 FR 61571, Oct. 14, 2014]



PART 436_FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS--Table of Contents



Sec.
436.1 Scope.
436.2 General objectives.

    Subpart A_Methodology and Procedures for Life Cycle Cost Analyses

436.10 Purpose.
436.11 Definitions.
436.12 Life cycle cost methodology.
436.13 Presuming cost-effectiveness results.
436.14 Methodological assumptions.
436.15 Formatting cost data.
436.16 Establishing non-fuel and non-water cost categories.
436.17 Establishing energy or water cost data.
436.18 Measuring cost-effectiveness.
436.19 Life cycle costs.
436.20 Net savings.
436.21 Savings-to-investment ratio.
436.22 Adjusted internal rate of return.
436.23 Estimated simple payback time.
436.24 Uncertainty analysis.

    Subpart B_Methods and Procedures for Energy Savings Performance 
                               Contracting

436.30 Purpose and scope.
436.31 Definitions.
436.32 Qualified contractors lists.
436.33 Procedures and methods for contractor selection.
436.34 Multiyear contracts.
436.35 Standard terms and conditions.
436.36 Conditions of payment.
436.37 Annual energy audits.
436.38 Terminating contracts.

[[Page 1112]]

        Subpart C_Agency Procurement of Energy Efficient Products

436.40 Purpose and scope.
436.41 Definitions.
436.42 Evaluation of Life-Cycle Cost Effectiveness
436.43 Procurement Planning.

Subparts D-E [Reserved]

            Subpart F_Guidelines for General Operations Plans

436.100 Purpose and scope.
436.101 Definitions.
436.102 General operations plan format and content.
436.103 Program goal setting.
436.104 Energy conservation measures and standards.
436.105 Emergency conservation plan.
436.106 Reporting requirements.
436.107 Review of plan.
436.108 Waivers.

Appendix A to Part 436--Energy Conservation Standards for General 
          Operations [Reserved]
Appendix B to Part 436--Goal Setting Methodology
Appendix C to Part 436--General Operations Energy Conservation Measures
Appendix D to Part 436--Energy Program Conservation Elements

    Authority: 42 U.S.C. 7101 et seq.; 42 U.S.C. 8254; 42 U.S.C. 8258; 
42 U.S.C. 8259b.

    Source: 44 FR 60669, Oct. 19, 1979, unless otherwise noted.



Sec.  436.1  Scope.

    This part sets forth the rules for Federal energy management and 
planning programs to reduce Federal energy consumption and to promote 
life cycle cost effective investments in building energy systems, 
building water systems and energy and water conservation measures for 
Federal buildings.

[61 FR 32649, June 25, 1996]



Sec.  436.2  General objectives.

    The objectives of Federal energy management and planning programs 
are:
    (a) To apply energy conservation measures to, and improve the design 
for construction of Federal buildings such that the energy consumption 
per gross square foot of Federal buildings in use during the fiscal year 
1995 is at least 10 percent less than the energy consumption per gross 
square foot in 1985;
    (b) To promote the methodology and procedures for conducting life 
cycle cost analyses of proposed investments in building energy systems, 
building water systems and energy and water conservation measures;
    (c) To promote the use of energy savings performance contracts by 
Federal agencies for implementation of privately financed investment in 
building and facility energy conservation measures for existing 
Federally owned buildings; and
    (d) To promote efficient use of energy in all agency operations 
through general operations plans.

[55 FR 48220, Nov. 20, 1990, as amended at 60 FR 18334, Apr. 10, 1995; 
61 FR 32649, June 25, 1996]



    Subpart A_Methodology and Procedures for Life Cycle Cost Analyses

    Source: 55 FR 48220, Nov. 20, 1990, unless otherwise noted.



Sec.  436.10  Purpose.

    This subpart establishes a methodology and procedures for estimating 
and comparing the life cycle costs of Federal buildings, for determining 
the life cycle cost effectiveness of energy conservation measures and 
water conservation measures, and for rank ordering life cycle cost 
effective measures in order to design a new Federal building or to 
retrofit an existing Federal building. It also establishes the method by 
which efficiency shall be considered when entering into or renewing 
leases of Federal building space.

[61 FR 32649, June 25, 1996]



Sec.  436.11  Definitions.

    As used in this subpart--
    Base Year means the fiscal year in which a life cycle cost analysis 
is conducted.
    Building energy system means an energy conservation measure or any 
portion of the structure of a building or any mechanical, electrical, or 
other functional system supporting the building, the nature or selection 
of

[[Page 1113]]

which for a new building influences significantly the cost of energy 
consumed.
    Building water system means a water conservation measure or any 
portion of the structure of a building or any mechanical, electrical, or 
other functional system supporting the building, the nature or selection 
of which for a new building influences significantly the cost of water 
consumed.
    Component price means any variable sub-element of the total charge 
for a fuel or energy or water, including but not limited to such charges 
as ``demand charges,'' ``off-peak charges'' and ``seasonal charges.''
    Demand charge means that portion of the charge for electric service 
based upon the plant and equipment costs associated with supplying the 
electricity consumed.
    DOE means Department of Energy.
    Energy conservation measures means measures that are applied to an 
existing Federal building that improve energy efficiency and are life 
cycle cost effective and that involve energy conservation, cogeneration 
facilities, renewable energy sources, improvements in operation and 
maintenance efficiencies, or retrofit activities.
    Federal agency means ``agency'' as defined by 5 U.S.C. 551(1).
    Federal building means an energy or water conservation measure or 
any building, structure, or facility, or part thereof, including the 
associated energy and water consuming support systems, which is 
constructed, renovated, leased, or purchased in whole or in part for use 
by the Federal government. This term also means a collection of such 
buildings, structures, or facilities and the energy and water consuming 
support systems for such collection.
    Investment costs means the initial costs of design, engineering, 
purchase, construction, and installation exclusive of sunk costs.
    Life cycle cost means the total cost of owning, operating and 
maintaining a building over its useful life (including its fuel and 
water, energy, labor, and replacement components), determined on the 
basis of a systematic evaluation and comparison of alternative building 
systems, except that in the case of leased buildings, the life cycle 
cost shall be calculated over the effective remaining term of the lease.
    Non-fuel operation and maintenance costs means material and labor 
cost for routine upkeep, repair and operation exclusive of energy cost.
    Non-recurring costs means costs that are not uniformly incurred 
annually over the study period.
    Non-water operation and maintenance costs mean material and labor 
cost for routine upkeep, repair and operation exclusive of water cost.
    Recurring costs means future costs that are incurred uniformly and 
annually over the study period.
    Replacement costs mean future cost to replace a building energy 
system or building water system, an energy or water conservation 
measure, or any component thereof.
    Retrofit means installation of a building energy system or building 
water system alternative in an existing Federal building.
    Salvage value means the value of any building energy system or 
building water system removed or replaced during the study period, or 
recovered through resale or remaining at the end of the study period.
    Study period means the time period covered by a life cycle cost 
analysis.
    Sunk costs means costs incurred prior to the time at which the life 
cycle cost analysis occurs.
    Time-of-day rate means the charge for service during periods of the 
day based on the cost of supplying services during various times of the 
day.
    Water conservation measures mean measures that are applied to an 
existing Federal building that improve the efficiency of water use, 
reduce the amount of water for sewage disposal and are life cycle cost 
effective and that involve water conservation, improvements in operation 
and maintenance efficiencies, or retrofit activities.

[55 FR 48220, Nov. 20, 1990, as amended at 61 FR 32649, June 25, 1996]



Sec.  436.12  Life cycle cost methodology.

    The life cycle cost methodology for this part is a systematic 
analysis of relevant costs, excluding sunk costs, over a study period, 
relating initial costs to future costs by the technique

[[Page 1114]]

of discounting future costs to present values.



Sec.  436.13  Presuming cost-effectiveness results.

    (a) If the investment and other costs for an energy or water 
conservation measure considered for retrofit to an existing Federal 
building or a building energy system or building water system considered 
for incorporation into a new building design are insignificant, a 
Federal agency may presume that such a system is life cycle cost-
effective without further analysis.
    (b) A Federal agency may presume that an investment in an energy or 
water conservation measure retrofit to an existing Federal building is 
not life cycle cost-effective for Federal investment if the Federal 
building is--
    (1) Occupied under a short-term lease with a remaining term of one 
year or less, and without a renewal option or with a renewal option 
which is not likely to be exercised;
    (2) Occupied under a lease which includes the cost of utilities in 
the rent and does not provide a pass-through of energy or water savings 
to the government; or
    (3) Scheduled to be demolished or retired from service within one 
year or less.

[55 FR 48220, Nov. 20, 1990, as amended at 61 FR 32650, June 25, 1996]



Sec.  436.14  Methodological assumptions.

    (a) Each Federal Agency shall discount to present values the future 
cash flows established in either current or constant dollars consistent 
with the nominal or real discount rate, and related tables, published in 
the annual supplement to the Life Cycle Costing Manual for the Federal 
Energy Management Program (NIST 85-3273) and determined annually by DOE 
as follows--
    (1) The nominal discount rate shall be a 12 month average of the 
composite yields of all outstanding U.S. Treasury bonds neither due nor 
callable in less than ten years, as most recently reported by the 
Federal Reserve Board; and
    (2) Subject to a ceiling of 10 percent and a floor of three percent 
the real discount rate shall be a 12 month average of the composite 
yields of all outstanding U.S. Treasury bonds neither due nor callable 
in less than ten years, as most recently reported by the Federal Reserve 
Board, adjusted to exclude estimated increases in the general level of 
prices consistent with projections of inflation in the most recent 
Economic Report of the President's Council of Economic Advisors.
    (b) Each Federal agency shall assume that energy prices will change 
at rates projected by DOE's Energy Information Administration and 
published by NIST annually no later than the beginning of the fiscal 
year in the Annual Supplement to the Life Cycle Costing Manual for the 
Federal Energy Management Program, in tables consistent with the 
discount rate determined by DOE under paragraph (a) of this section, 
except that--
    (1) If the Federal agency is using component prices under Sec.  
436.14(c), that agency may use corresponding component escalation rates 
provided by the energy or water supplier.
    (2) For Federal buildings in foreign countries, the Federal agency 
may use a ``reasonable'' escalation rate.
    (c) Each Federal agency shall assume that the price of energy or 
water in the base year is the actual price charged for energy or water 
delivered to the Federal building and may use actual component prices as 
provided by the energy or water supplier.
    (d) Each Federal agency shall assume that the appropriate study 
period is as follows:
    (1) For evaluating and ranking alternative retrofits for an existing 
Federal building, the study period is the expected life of the retrofit, 
or 40 years from the beginning of beneficial use, whichever is shorter.
    (2) For determining the life cycle costs or net savings of mutually 
exclusive alternatives for a given building energy system or building 
water system (e.g., alternative designs for a particular system or size 
of a new or retrofit building energy system or building water system), a 
uniform study period for all alternatives shall be assumed which is 
equal to--
    (i) The estimated life of the mutually exclusive alternative having 
the longest life, not to exceed 40 years from the

[[Page 1115]]

beginning of beneficial use with appropriate replacement and salvage 
values for each of the other alternatives; or
    (ii) The lowest common multiple of the expected lives of the 
alternative, not to exceed 40 from the beginning of beneficial use with 
appropriate replacement and salvage values for each alternative.
    (3) For evaluating alternative designs for a new Federal building, 
the study period extends from the base year through the expected life of 
the building or 40 years from the beginning of beneficial use, whichever 
is shorter.
    (e) Each Federal agency shall assume that the expected life of any 
building energy system or building water system is the period of service 
without major renewal or overhaul, as estimated by a qualified engineer 
or architect, as appropriate, or any other reliable source except that 
the period of service of a building energy or water system shall not be 
deemed to exceed the expected life of the owned building, or the 
effective remaining term of the leased building (taking into account 
renewal options likely to be exercised).
    (f) Each Federal agency may assume that investment costs are a lump 
sum occurring at the beginning of the base year, or may discount future 
investment costs to present value using the appropriate present worth 
factors under paragraph (a) of this section.
    (g) Each Federal agency may assume that energy or water costs and 
non-fuel or non-water operation and maintenance costs begin to accrue at 
the beginning of the base year or when actually projected to occur.
    (h) Each Federal agency may assume that costs occur in a lump sum at 
any time within the year in which they are incurred.
    (i) This section shall not apply to calculations of estimated simple 
payback time under Sec.  436.22 of this part.

[55 FR 48220, Nov. 20, 1990, as amended at 61 FR 32650, June 25, 1996; 
79 FR 61571, Oct. 14, 2014]



Sec.  436.15  Formatting cost data.

    In establishing cost data under Sec. Sec.  436.16 and 436.17 and 
measuring cost effectiveness by the modes of analysis described by Sec.  
436.19 through Sec.  436.22, a format for accomplishing the analysis 
which includes all required input data and assumptions shall be used. 
Subject to Sec.  436.18(b), Federal agencies are encouraged to use 
worksheets or computer software referenced in the Life Cycle Cost Manual 
for the Federal Energy Management Program.



Sec.  436.16  Establishing non-fuel and non-water cost categories.

    (a) The relevant non-fuel cost categories are--
    (1) Investment costs;
    (2) Non-fuel operation and maintenance cost;
    (3) Replacement cost; and
    (4) Salvage value.
    (b) The relevant non-water cost categories are--
    (1) Investment costs;
    (2) Non-water operation and maintenance cost;
    (3) Replacement cost; and
    (4) Salvage value.
    (c) The present value of recurring costs is the product of the base 
year value of recurring costs as multiplied by the appropriate uniform 
present worth factor under Sec.  436.14, or as calculated by computer 
software indicated in Sec.  436.18(b) and used with the official 
discount rate and escalation rate assumptions under Sec.  436.14. When 
recurring costs begin to accrue at a later time, subtract the present 
value of recurring costs over the delay, calculated using the 
appropriate uniform present worth factor for the period of the delay, 
from the present value of recurring costs over the study period or, if 
using computer software, indicate a delayed beneficial occupancy date.
    (d) The present value of non-recurring cost under Sec.  436.16(a) is 
the product of the non-recurring costs as multiplied by appropriate 
single present worth factors under Sec.  436.14 for the respective years 
in which the costs are expected to be incurred, or as calculated by 
computer software provided or approved by DOE and used with the official 
discount rate and escalation rate assumptions under Sec.  436.14.

[55 FR 48220, Nov. 20, 1990, as amended at 61 FR 32650, June 25, 1996]

[[Page 1116]]



Sec.  436.17  Establishing energy or water cost data.

    (a) Each Federal agency shall establish energy costs in the base 
year by multiplying the total units of energy used in the base year by 
the price per unit of energy in the base year as determined in 
accordance with Sec.  436.14(c).
    (b) When energy costs begin to accrue in the base year, the present 
value of energy costs over the study period is the product of energy 
costs in the base year as established under Sec.  436.17(a), multiplied 
by the appropriate modified uniform present worth factor adjusted for 
energy price escalation for the applicable region, sector, fuel type, 
and study period consistent with Sec.  436.14, or as calculated by 
computer software provided or approved by DOE and used with the official 
discount rate and escalation rate assumptions under Sec.  436.14. When 
energy costs begin to accrue at a later time, subtract the present value 
of energy costs over the delay, calculated using the adjusted, modified 
uniform present worth factor for the period of delay, from the present 
value of energy costs over the study period or, if using computer 
software, indicate a delayed beneficial occupancy date.
    (c) Each Federal agency shall establish water costs in the base year 
by multiplying the total units of water used in the base year by the 
price per unit of water in the base year as determined in accordance 
with Sec.  436.14(c).
    (d) When water costs begin to accrue in the base year, the present 
value of water costs over the study period is the product of water costs 
in the base year as established under Sec.  436.17(a), or as calculated 
by computer software provided or approved by DOE and used with the 
official discount rate and assumptions under Sec.  436.14. When water 
costs begin to accrue at a later time, subtract the present value of 
water costs over the delay, calculated using the uniform present worth 
factor for the period of delay, from the present value of water costs 
over the study period or, if using computer software, indicate a delayed 
beneficial occupancy date.

[55 FR 48220, Nov. 20, 1990, as amended at 61 FR 32650, June 25, 1996]



Sec.  436.18  Measuring cost-effectiveness.

    (a) In accordance with this section, each Federal agency shall 
measure cost-effectiveness by combining cost data established under 
Sec. Sec.  436.16 and 436.17 in the appropriate mode of analysis as 
described in Sec.  436.19 through Sec.  436.22.
    (b) Federal agencies performing LCC analysis on computers shall use 
either the Federal Buildings Life Cycle Costing (FBLCC) software 
provided by DOE or software consistent with this subpart.
    (c) Replacement of a building energy or water system with an energy 
or water conservation measure by retrofit to an existing Federal 
building or by substitution in the design for a new Federal building 
shall be deemed cost-effective if--
    (1) Life cycle costs, as described by Sec.  436.19, are estimated to 
be lower; or
    (2) Net savings, as described by Sec.  436.20, are estimated to be 
positive; or
    (3) The savings-to-investment ratio, as described by Sec.  436.21, 
is estimated to be greater than one; or
    (4) The adjusted internal rate of return, as described by Sec.  
436.22, is estimated to be greater than the discount rate as set by DOE.
    (d) As a rough measure, each Federal agency may determine estimated 
simple payback time under Sec.  436.23, which indicates whether a 
retrofit is likely to be cost effective under one of the four 
calculation methods referenced in Sec.  436.18(c). An energy or water 
conservation measure alternative is likely to be cost-effective if 
estimated payback time is significantly less than the useful life of 
that system, and of the Federal building in which it is to be installed.
    (e) Mutually exclusive alternatives for a given building energy or 
water system, considered in determining such matters as the optimal size 
of a solar energy system, the optimal thickness of insulation, or the 
best choice of double-glazing or triple-glazing for windows, shall be 
compared and evaluated on the basis of life cycle costs or net savings 
over equivalent study periods. The alternative which is estimated to 
result in the lowest life cycle costs or the highest net savings shall 
be deemed the most cost-effective because it tends

[[Page 1117]]

to minimize the life cycle cost of Federal building.
    (f) When available appropriations will not permit all cost-effective 
energy or water conservation measures to be undertaken, they shall be 
ranked in descending order of their savings-to-investment ratios, or 
their adjusted internal rate of return, to establish priority. If 
available appropriations cannot be fully exhausted for a fiscal year by 
taking all budgeted energy or water conservation measures according to 
their rank, the set of energy or water conservation measures that will 
maximize net savings for available appropriations should be selected.
    (g) Alternative building designs for new Federal buildings shall be 
evaluated on the basis of life cycle costs. The alternative design which 
results in the lowest life cycle costs for a given new building shall be 
deemed the most cost-effective.

[55 FR 48220, Nov. 20, 1990, as amended at 61 FR 32650, June 25, 1996]



Sec.  436.19  Life cycle costs.

    Life cycle costs are the sum of the present values of--
    (a) Investment costs, less salvage values at the end of the study 
period;
    (b) Non-fuel operation and maintenance costs:
    (c) Replacement costs less salvage costs of replaced building 
systems; and
    (d) Energy and/or water costs.

[55 FR 48220, Nov. 20, 1990, as amended at 61 FR 32651, June 25, 1996]



Sec.  436.20  Net savings.

    For a retrofit project, net savings may be found by subtracting life 
cycle costs based on the proposed project from life cycle costs based on 
not having it. For a new building design, net savings is the difference 
between the life cycle costs of an alternative design and the life cycle 
costs of the basic design.



Sec.  436.21  Savings-to-investment ratio.

    The savings-to-investment ratio is the ratio of the present value 
savings to the present value costs of an energy or water conservation 
measure. The numerator of the ratio is the present value of net savings 
in energy or water and non-fuel or non-water operation and maintenance 
costs attributable to the proposed energy or water conservation measure. 
The denominator of the ratio is the present value of the net increase in 
investment and replacement costs less salvage value attributable to the 
proposed energy or water conservation measure.

[61 FR 32651, June 25, 1996]



Sec.  436.22  Adjusted internal rate of return.

    The adjusted internal rate of return is the overall rate of return 
on an energy or water conservation measure. It is calculated by 
subtracting 1 from the nth root of the ratio of the terminal value of 
savings to the present value of costs, where n is the number of years in 
the study period. The numerator of the ratio is calculated by using the 
discount rate to compound forward to the end of the study period the 
yearly net savings in energy or water and non-fuel or non-water 
operation and maintenance costs attributable to the proposed energy or 
water conservation measure. The denominator of the ratio is the present 
value of the net increase in investment and replacement costs less 
salvage value attributable to the proposed energy or water conservation 
measure.

[61 FR 32651, June 25, 1996]



Sec.  436.23  Estimated simple payback time.

    The estimated simple payback time is the number of years required 
for the cumulative value of energy or water cost savings less future 
non-fuel or non-water costs to equal the investment costs of the 
building energy or water system, without consideration of discount 
rates.

[61 FR 32651, June 25, 1996]



Sec.  436.24  Uncertainty analyses.

    If particular items of cost data or timing of cash flows are 
uncertain and are not fixed under Sec.  436.14, Federal agencies may 
examine the impact of uncertainty on the calculation of life cycle cost 
effectiveness or the assignment of rank order by conducting additional 
analyses using any standard engineering economics method such as

[[Page 1118]]

sensitivity and probabilistic analysis. If additional analysis casts 
substantial doubt on the life cycle cost analysis results, a Federal 
agency should consider obtaining more reliable data or eliminating the 
building energy or water system alternative.

[55 FR 48220, Nov. 20, 1990, as amended at 61 FR 32651, June 25, 1996]



    Subpart B_Methods and Procedures for Energy Savings Performance 
                               Contracting

    Source: 60 FR 18334, Apr. 10, 1995, unless otherwise noted.



Sec.  436.30  Purpose and scope.

    (a) General. This subpart provides procedures and methods which 
apply to Federal agencies with regard to the award and administration of 
energy savings performance contracts awarded on or before September 30, 
2003. This subpart applies in addition to the Federal Acquisition 
Regulation at Title 48 of the CFR and related Federal agency 
regulations. The provisions of this subpart are controlling with regard 
to energy savings performance contracts notwithstanding any conflicting 
provisions of the Federal Acquisition Regulation and related Federal 
agency regulations.
    (b) Utility incentive programs. Nothing in this subpart shall 
preclude a Federal agency from--
    (1) Participating in programs to increase energy efficiency, 
conserve water, or manage electricity demand conducted by gas, water, or 
electric utilities and generally available to customers of such 
utilities;
    (2) Accepting financial incentives, goods, or services generally 
available from any such utility to increase energy efficiency or to 
conserve water or manage electricity demand; or
    (3) Entering into negotiations with electric, water, and gas 
utilities to design cost-effective demand management and conservation 
incentive programs to address the unique needs of each Federal agency.
    (c) Promoting competition. To the extent allowed by law, Federal 
agencies should encourage utilities to select contractors for the 
conduct of utility incentive programs in a competitive manner to the 
maximum extent practicable.
    (d) Interpretations. The permissive provisions of this subpart shall 
be liberally construed to effectuate the objectives of Title VIII of the 
National Energy Conservation Policy Act, 42 U.S.C. 8287-8287c.

[60 FR 18334, Apr. 10, 1995, as amended at 60 FR 19343, Apr. 18, 1995; 
65 FR 39786, June 28, 2000]



Sec.  436.31  Definitions.

    As used in this subpart--
    Act means Title VIII of the National Energy Conservation Policy Act.
    Annual energy audit means a procedure including, but not limited to, 
verification of the achievement of energy cost savings and energy unit 
savings guaranteed resulting from implementation of energy conservation 
measures and determination of whether an adjustment to the energy 
baseline is justified by conditions beyond the contractor's control.
    Building means any closed structure primarily intended for human 
occupancy in which energy is consumed, produced, or distributed.
    Detailed energy survey means a procedure which may include, but is 
not limited to, a detailed analysis of energy cost savings and energy 
unit savings potential, building conditions, energy consuming equipment, 
and hours of use or occupancy for the purpose of confirming or revising 
technical and price proposals based on the preliminary energy survey.
    DOE means Department of Energy.
    Energy baseline means the amount of energy that would be consumed 
annually without implementation of energy conservation measures based on 
historical metered data, engineering calculations, submetering of 
buildings or energy consuming systems, building load simulation models, 
statistical regression analysis, or some combination of these methods.
    Energy conservation measures means measures that are applied to an 
existing Federally owned building or facility that improves energy 
efficiency, are life-cycle cost-effective under subpart A of this part, 
and involve energy conservation, cogeneration facilities,

[[Page 1119]]

renewable energy sources, improvements in operation and maintenance 
efficiencies, or retrofit activities.
    Energy cost savings means a reduction in the cost of energy and 
related operation and maintenance expenses, from a base cost established 
through a methodology set forth in an energy savings performance 
contract, utilized in an existing federally owned building or buildings 
or other federally owned facilities as a result of--
    (1) The lease or purchase of operating equipment, improvements, 
altered operation and maintenance, or technical services; or
    (2) The increased efficient use of existing energy sources by 
cogeneration or heat recovery, excluding any cogeneration process for 
other than a federally owned building or buildings or other federally 
owned facilities.
    Energy savings performance contract means a contract which provides 
for the performance of services for the design, acquisition, 
installation, testing, operation, and, where appropriate, maintenance 
and repair of an identified energy conservation measure or series of 
measures at one or more locations.
    Energy unit savings means the determination, in electrical or 
thermal units (e.g., kilowatt hour (kwh), kilowatt (kw), or British 
thermal units (Btu)), of the reduction in energy use or demand by 
comparing consumption or demand, after completion of contractor-
installed energy conservation measures, to an energy baseline 
established in the contract.
    Facility means any structure not primarily intended for human 
occupancy, or any contiguous group of structures and related systems, 
either of which produces, distributes, or consumes energy.
    Federal agency has the meaning given such term in section 551(1) of 
Title 5, United States Code.
    Preliminary energy survey means a procedure which may include, but 
is not limited to, an evaluation of energy cost savings and energy unit 
savings potential, building conditions, energy consuming equipment, and 
hours of use or occupancy, for the purpose of developing technical and 
price proposals prior to selection.
    Secretary means the Secretary of Energy.



Sec.  436.32  Qualified contractors lists.

    (a) DOE shall prepare a list, to be updated annually, or more often 
as necessary, of firms qualified to provide energy cost savings 
performance services and grouped by technology. The list shall be 
prepared from statements of qualifications by or about firms engaged in 
providing energy savings performance contract services on questionnaires 
obtained from DOE. Such statements shall, at a minimum, include prior 
experience and capabilities of firms to perform the proposed energy cost 
savings services by technology and financial and performance 
information. DOE shall issue a notice annually, for publication in the 
Commerce Business Daily, inviting submission of new statements of 
qualifications and requiring listed firms to update their statements of 
qualifications for changes in the information previously provided.
    (b) On the basis of statements of qualifications received under 
paragraph (a) of this section and any other relevant information, DOE 
shall select a firm for inclusion on the qualified list if--
    (1) It has provided energy savings performance contract services or 
services that save energy or reduce utility costs for not less than two 
clients, and the firm possesses the appropriate project experience to 
successfully implement the technologies which it proposes to provide;
    (2) Previous project clients provide ratings which are ``fair'' or 
better;
    (3) The firm or any principal of the firm has neither been insolvent 
nor declared bankruptcy within the last five years;
    (4) The firm or any principal of the firm is not on the list of 
parties excluded from procurement programs under 48 CFR part 9, subpart 
9.4; and
    (5) There is no other adverse information which warrants the 
conclusion that the firm is not qualified to perform energy savings 
performance contracts.
    (c) DOE may remove a firm from DOE's list of qualified contractors

[[Page 1120]]

after notice and an opportunity for comment if--
    (1) There is a failure to update its statement of qualifications;
    (2) There is credible information warranting disqualification; or
    (3) There is other good cause.
    (d) A Federal agency shall use DOE's list unless it elects to 
develop its own list of qualified firms consistent with the procedures 
in paragraphs (a) and (b) of this section.
    (e) A firm not designated by DOE or a Federal agency pursuant to the 
procedures in paragraphs (a) and (b) of this section as qualified to 
provide energy cost savings performance services shall receive a written 
decision and may request a debriefing.
    (f) Any firm receiving an adverse final decision under this section 
shall apply to the Board of Contract Appeals of the General Services 
Administration in order to exhaust administrative remedies.



Sec.  436.33  Procedures and methods for contractor selection.

    (a) Competitive selection. Competitive selections based on 
solicitation of firms are subject to the following procedures--
    (1) With respect to a particular proposed energy cost savings 
performance project, Federal agencies shall publish a Commerce Business 
Daily notice which synopsizes the proposed contract action.
    (2) Each competitive solicitation--
    (i) Shall request technical and price proposals and the text of any 
third-party financing agreement from interested firms;
    (ii) Shall consider DOE model solicitations and should use them to 
the maximum extent practicable;
    (iii) May provide for a two-step selection process which allows 
Federal agencies to make an initial selection based, in part, on 
proposals containing estimated energy cost savings and energy unit 
savings, with contract award conditioned on confirmation through a 
detailed energy survey that the guaranteed energy cost savings are 
within a certain percentage (specified in the solicitation) of the 
estimated amount; and
    (iv) May state that if the Federal agency requires a detailed energy 
survey which identifies life cycle cost effective energy conservation 
measures not in the initial proposal, the contract may include such 
measures.
    (3) Based on its evaluation of the technical and price proposals 
submitted, any applicable financing agreement (including lease-
acquisitions, if any), statements of qualifications submitted under 
Sec.  436.32 of this subpart, and any other information determines to be 
relevant, the Federal agency may select a firm on a qualified list to 
conduct the project.
    (4) If a proposed energy cost savings project involves a large 
facility with too many contiguously related buildings and other 
structures at one site for proposing firms to assume the costs of a 
preliminary energy survey of all such structures, the Federal agency--
    (i) May request technical and price proposals for a representative 
sample of buildings and other structures and may select a firm to 
conduct the proposed project; and
    (ii) After selection of a firm, but prior to award of an energy 
savings performance contract, may request the selected firm to submit 
technical and price proposals for all or some of the remaining buildings 
and other structures at the site and may include in the award for all or 
some of the remaining buildings and other structures.
    (5) After selection under paragraph (a)(3) or (a)(4) of this 
section, but prior to award, a Federal agency may require the selectee 
to conduct a detailed energy survey to confirm that guaranteed energy 
cost savings are within a certain percentage (specified in the 
solicitation) of estimated energy cost savings in the selectee's 
proposal. If the detailed energy survey does not confirm that guaranteed 
energy savings are within the fixed percentage of estimated savings, the 
Federal agency may select another firm from those within the competitive 
range.
    (b) Unsolicited proposals. Federal agencies may--
    (1) Consider unsolicited energy savings performance contract 
proposals from firms on a qualified contractor list under this subpart 
which include

[[Page 1121]]

technical and price proposals and the text of any financing agreement 
(including a lease-acquisition) without regard to the requirements of 48 
CFR 15.602 and 15.602-2(a)(1); 48 CFR 15.603; and 48 CFR 15.607(a), 
(a)(2), (a)(3), (a)(4) and (a)(5).
    (2) Reject an unsolicited proposal that is too narrow because it 
does not address the potential for significant energy conservation 
measures from other than those measures in the proposal.
    (3) After requiring a detailed energy survey, if appropriate, and 
determining that technical and price proposals are adequate, award a 
contract to a firm on a qualified contractor list under this subpart on 
the basis of an unsolicited proposal, provided that the Federal agency 
complies with the following procedures--
    (i) An award may not be made to the firm submitting the unsolicited 
proposal unless the Federal agency first publishes a notice in the 
Commerce Business Daily acknowledging receipt of the proposal and 
inviting other firms on the qualified list to submit competing 
proposals.
    (ii) Except for unsolicited proposals submitted in response to a 
published general statement of agency needs, no award based on such an 
unsolicited proposal may be made in instances in which the Federal 
agency is planning the acquisition of an energy conservation measure 
through an energy savings performance contract.
    (c) Certified cost or pricing data. (1) Energy savings performance 
contracts under this part are firm fixed-price contracts.
    (2) Pursuant to the authority provided under section 304A(b)(1)(B) 
of the Federal Property and Administrative Services Act of 1049, the 
heads of procuring activities shall waive the requirement for submission 
of certified cost or pricing data. However, this does not exempt 
offerors from submitting information (including pricing information) 
required by the Federal agency to ensure the impartial and comprehensive 
evaluation of proposals.

[60 FR 18334, Apr. 10, 1995, as amended at 65 FR 39786, June 28, 2000]



Sec.  436.34  Multiyear contracts.

    (a) Subject to paragraph (b) of this section, Federal agencies may 
enter into a multiyear energy savings performance contract for a period 
not to exceed 25 years, as authorized by 42 U.S.C. 8287, without funding 
of cancellation charges, if:
    (1) The multiyear energy savings performance contract was awarded in 
a competitive manner using the procedures and methods established by 
this subpart;
    (2) Funds are available and adequate for payment of the scheduled 
energy cost for the first fiscal year of the multiyear energy savings 
performance contract;
    (3) Thirty days before the award of any multiyear energy savings 
performance contract that contains a clause setting forth a cancellation 
ceiling in excess of $750,000, the head of the awarding Federal agency 
gives written notification of the proposed contract and the proposed 
cancellation ceiling for the contract to the appropriate authorizing and 
appropriating committees of the Congress; and
    (4) Except as otherwise provided in this section, the multiyear 
energy savings performance contract is subject to 48 CFR part 17, 
subpart 17.1, including the requirement that the contracting officer 
establish a cancellation ceiling.
    (b) Neither this subpart nor any provision of the Act requires, 
prior to contract award or as a condition of a contract award, that a 
Federal agency have appropriated funds available and adequate to pay for 
the total costs of an energy savings performance contract for the term 
of such contract.



Sec.  436.35  Standard terms and conditions.

    (a) Mandatory requirements. In addition to contractual provisions 
otherwise required by the Act or this subpart, any energy savings 
performance contract shall contain clauses--
    (1) Authorizing modification, replacement, or changes of equipment, 
at no cost to the Federal agency, with the prior approval of the 
contracting officer who shall consider the expected level of performance 
after such modification, replacement or change;

[[Page 1122]]

    (2) Providing for the disposition of title to systems and equipment;
    (3) Requiring prior approval by the contracting officer of any 
financing agreements (including lease-acquisitions) and amendments to 
such an agreement entered into after contract award for the purpose of 
financing the acquisition of energy conservation measures;
    (4) Providing for an annual energy audit and identifying who shall 
conduct such an audit, consistent with Sec.  436.37 of this subpart; and
    (5) Providing for a guarantee of energy cost savings to the Federal 
agency, and establishing payment schedules reflecting such guarantee.
    (b) Third party financing. If there is third party financing, then 
an energy savings performance contract may contain a clause:
    (1) Permitting the financing source to perfect a security interest 
in the installed energy conservation measures, subject to and 
subordinate to the rights of the Federal agency; and
    (2) Protecting the interests of a Federal agency and a financing 
source, by authorizing a contracting officer in appropriate 
circumstances to require a contractor who defaults on an energy savings 
performance contract or who does not cure the failure to make timely 
payments, to assign to the financing source, if willing and able, the 
contractor's rights and responsibilities under an energy savings 
performance contract;



Sec.  436.36  Conditions of payment.

    (a) Any amount paid by a Federal agency pursuant to any energy 
savings performance contract entered into under this subpart may be paid 
only from funds appropriated or otherwise made available to the agency 
for the payment of energy expenses and related operation and maintenance 
expenses which would have been incurred without an energy savings 
performance contract. The amount the agency would have paid is equal to:
    (1) The energy baseline under the energy savings performance 
contract (adjusted if appropriate under Sec.  436.37), multiplied by the 
unit energy cost; and
    (2) Any related operations and maintenance cost prior to 
implementation of energy conservation measures, adjusted for increases 
in labor and material price indices.
    (b) Federal agencies may incur obligations pursuant to energy 
savings performance contracts to finance energy conservation measures 
provided guaranteed energy cost savings exceed the contractor's debt 
service requirements.



Sec.  436.37  Annual energy audits.

    (a) After contractor implementation of energy conservation measures 
and annually thereafter during the contract term, an annual energy audit 
shall be conducted by the Federal agency or the contractor as determined 
by the contract. The annual energy audit shall verify the achievement of 
annual energy cost savings performance guarantees provided by the 
contractor.
    (b) The energy baseline is subject to adjustment due to changes 
beyond the contractor's control, such as--
    (1) Physical changes to building;
    (2) Hours of use or occupancy;
    (3) Area of conditioned space;
    (4) Addition or removal of energy consuming equipment or systems;
    (5) Energy consuming equipment operating conditions;
    (6) Weather (i.e., cooling and heating degree days); and
    (7) Utility rates.
    (c) In the solicitation or in the contract, Federal agencies shall 
specify requirements for annual energy audits, the energy baseline, and 
baseline adjustment procedures.



Sec.  436.38  Terminating contracts.

    (a) Except as otherwise provided by this subpart, termination of 
energy savings performance contracts shall be subject to the termination 
procedures of the Federal Acquisition Regulation in 48 CFR part 49.
    (b) In the event an energy savings performance contract is 
terminated for the convenience of a Federal agency, the termination 
liability of the Federal agency shall not exceed the cancellation 
ceiling set forth in the contract, for the year in which the contract is 
terminated.

[[Page 1123]]



        Subpart C_Agency Procurement of Energy Efficient Products

    Source: 74 FR 10835, Mar. 13, 2009, unless otherwise noted.



Sec.  436.40  Purpose and scope.

    This subpart provides guidance to promote the procurement of energy 
efficient products by Federal agencies and promote procurement practices 
which facilitate the procurement of energy efficient products, 
consistent with the requirements in section 553 of the National Energy 
Conservation Policy Act. (42 U.S.C. 8259b)



Sec.  436.41  Definitions.

    Agency means each authority of the Government of the United States, 
whether or not it is within or subject to review by another agency, but 
does not include--
    (1) The Congress, and agencies thereof;
    (2) The courts of the United States;
    (3) The governments of the territories or possessions of the United 
States; or
    (4) The government of the District of Columbia.
    Covered product means a product that is of a category for which an 
ENERGY STAR qualification or FEMP designation is established.
    ENERGY STAR qualified product means a product that is rated for 
energy efficiency under an ENERGY STAR program established by section 
324A of the Energy Policy and Conservation Act (42 U.S.C. 6294a).
    FEMP designated product means a product that is designated under the 
Federal Energy Management Program as being among the highest 25 percent 
of equivalent products for energy efficiency.



Sec.  436.42  Evaluation of Life-Cycle Cost Effectiveness.

    For the purpose of compliance with section 553 of the National 
Energy Conservation Policy Act:
    (a) ENERGY STAR qualified and FEMP designated products may be 
assumed to be life-cycle cost-effective.
    (b) In making a determination that a covered product is not life-
cycle cost-effective, an agency should rely on the life-cycle cost 
analysis method in part 436, subpart A, of title 10 of the Code of 
Federal Regulations.



Sec.  436.43  Procurement planning.

    (a) Agencies should consider the procurement planning requirements 
of section 553 of the National Energy Conservation Policy Act as 
applying to:
    (1) Design, design/build, renovation, retrofit and services 
contracts; facility maintenance and operations contracts;
    (2) Energy savings performance contracts and utility energy service 
contracts;
    (3) If applicable, lease agreements for buildings or equipment, 
including build-to-lease contracts;
    (b) Agencies should require the procurement of ENERGY STAR and FEMP 
designated products in new service contracts and other existing service 
contracts as they are recompeted and should, to the extent possible, 
incorporate such requirements and preferences into existing contracts as 
they are modified or extended through options.
    (c) Agencies should include criteria for energy efficiency that are 
consistent with the criteria used for rating qualified products in the 
factors for the evaluation of:
    (1) Offers received for procurements involving covered products, and
    (2) Offers received for construction, renovation, and services 
contracts that include provisions for covered products.
    (d) Agencies should notify their vendors of the Federal requirements 
for energy efficient purchasing.

Subparts D-E [Reserved]



            Subpart F_Guidelines for General Operations Plans

    Authority: Energy Policy and Conservation Act, as amended, 42 U.S.C. 
6361; Executive Order 11912, as amended, 42 FR 37523 (July 20, 1977); 
National Energy Conservation Policy Act, title V, part 3, 42 U.S.C. 8251 
et seq.; Department of Energy Organization Act, 42 U.S.C. 7254.

    Source: 45 FR 44561, July 1, 1980, unless otherwise noted.

[[Page 1124]]



Sec.  436.100  Purpose and scope.

    (a) Purpose. The purpose of this subpart is to provide guidelines 
for use by Federal agencies in their development of overall 10-year 
energy management plans to establish energy conservation goals, to 
reduce the rate of energy consumption, to promote the efficient use of 
energy, to promote switching for petroleum-based fuels and natural gas 
to coal and other energy sources, to provide a methodology for reporting 
their progress in meeting the goals of those plans, and to promote 
emergency energy conservation planning to assuage the impact of a sudden 
disruption in the supply of oil-based fuels, natural gas or electricity. 
The plan is intended to provide the cornerstone for a program to 
conserve energy in the general operations of an agency.
    (b) Scope. This subpart applies to all general operations of Federal 
agencies and is applicable to management of all energy used by Federal 
agencies that is excluded from coverage pursuant to section 543(a)(2) of 
part 3 of title V of the National Energy Conservation Policy Act, as 
amended (42 U.S.C. 8251-8261).

[45 FR 44561, July 1, 1980, as amended at 55 FR 48223, Nov. 20, 1990]



Sec.  436.101  Definitions.

    As used in this subpart--
    Automotive gasoline means all grades of gasoline for use in internal 
combustion engines except aviation gasoline. Does not include diesel 
fuel.
    Aviation gasoline (AVGAS) means all special grades of gasoline for 
use in aviation reciprocating engines.
    Btu means British thermal unit; the quantity of heat required to 
raise the temperature of one pound of water one degree Fahrenheit.
    Cogeneration means the utilization of surplus energy, e.g., steam, 
heat or hot water produced as a by-product of the manufacture of some 
other form of energy, such as electricity. Thus, diesel generators are 
converted to cogeneration sets when they are equipped with boilers that 
make steam and hot water (usable as energy) from the heat of the exhaust 
and the water that cools the generator.
    Diesel and petroleum distillate fuels means the lighter fuel oils 
distilled-off during the refining process. Included are heating oils, 
fuels, and fuel oil. The major uses of distillate fuel oils include 
heating, fuel for on- and off-highway diesel engines, marine diesel 
engines and railroad diesel fuel.
    DOE means the Department of Energy.
    Emergency conservation plan means a set of instructions designed to 
specify actions to be taken in response to a serious interruption of 
energy supply.
    Energy efficiency goal means the ratio of production achieved to 
energy used.
    Energy use avoidance means the amount of energy resources, e.g., 
gasoline, not used because of initiatives related to conservation. It is 
the difference between the baseline without a plan and actual 
consumption.
    Facility means any structure or group of closely located structures, 
comprising a manufacturing plant, laboratory, office or service center, 
plus equipment.
    Federal agency means any Executive agency under 5 U.S.C. 105 and the 
United States Postal Service, each entity specified in 5 U.S.C. 5721(1) 
(B) through (H) and, except that for purposes of this subpart, the 
Department of Defense shall be separated into four reporting 
organizations: the Departments of the Army, Navy and Air Force and the 
collective DOD agencies, with each responsible for complying with the 
requirements of this subpart.
    Fiscal year or FY means, for a given year, October 1 of the prior 
year through September 30 of the given year.
    Fuel types means purchased electricity, fuel oil, natural gas, 
liquefied petroleum gas, coal, purchased steam, automotive gasoline, 
diesel and petroleum distillate fuels, aviation gasoline, jet fuel, Navy 
special, and other identified fuels.
    General operations means world-wide Federal agency operations, other 
than building operations, and includes services; production and 
industrial activities; operation of aircraft, ships, and land vehicles; 
and operation of Government-owned, contractor-operated plants.

[[Page 1125]]

    General transportation means the use of vehicles for over-the-road 
driving as opposed to vehicles designed for off-road conditions, and the 
use of aircraft and vessels. This category does not include special 
purpose vehicles such as combat aircraft, construction equipment or mail 
delivery vehicles.
    Goal means a specific statement of an intended energy conservation 
result which will occur within a prescribed time period. The intended 
result must be time-phased and must reflect expected energy use assuming 
planned conservation programs are implemented.
    Guidelines means a set of instructions designed to prescribe, direct 
and regulate a course of action.
    Industrial or production means the operation of facilities including 
buildings and plants which normally use large amounts of capital 
equipment, e.g., GOCO plants, to produce goods (hardware).
    Jet fuel means fuels for use, generally in aircraft turbine engines.
    Life cycle cost means the total cost of acquiring, operating and 
maintaining equipment over its economic life, including its fuel costs, 
determined on the basis of a systematic evaluation and comparison of 
alternative investments in programs, as defined in subpart A of this 
part.
    Liquefied petroleum gas means propane, propylene-butanes, butylene, 
propane-butane mixtures, and isobutane that are produced at a refinery, 
a natural gas processing plant, or a field facility.
    Maintenance means activities undertaken to assure that equipment and 
energy-using systems operate effectively and efficiently.
    Measures means actions, procedures, devices or other means for 
effecting energy efficient changes in general operations which can be 
applied by Federal agencies.
    Measure of performance means a scale against which the fulfillment 
of a requirement can be measured.
    Navy special means a heavy fuel oil that is similar to ASTM grade 
No. 6 oil or Bunker C oil. It is used to power U.S. Navy ships.
    Non-renewable energy source means fuel oil, natural gas, liquefied 
petroleum gas, synthetic fuels, and purchased steam or electricity, or 
other such energy sources.
    Operational training and readiness means those activities which are 
necessary to establish or maintain an agency's capability to perform its 
primary mission. Included are major activities to provide essential 
personnel strengths, skills, equipment/supply inventory and equipment 
condition. General administrative and housekeeping activities are not 
included.
    Overall plan means the comprehensive agency plan for conserving fuel 
and energy in all operations, to include both the Buildings Plan 
developed pursuant to subpart C of this part and the General Operations 
Plan.
    Plan means those actions which an agency envisions it must undertake 
to assure attainment of energy consumption and efficiency goals without 
an unacceptably adverse impact on primary missions.
    Program means the organized set of activities and allocation of 
resources directed toward a common purpose, objective, or goal 
undertaken or proposed by an agency in order to carry out the 
responsibilities assigned to it.
    Renewable energy sources means sunlight, wind, geothermal, biomass, 
solid wastes, or other such sources of energy.
    Secretary means the Secretary of the Department of Energy.
    Services means the provision of administrative assistance or 
something of benefit to the public.
    Specific Functional Category means those Federal agency activities 
which consume energy, or which are directly linked to energy consuming 
activities and which fall into one of the following groups: Services, 
General Transportation, Industrial or Production, Operational Training 
and Readiness, and Others.
    Standard means an energy conservation measure determined by DOE to 
be applicable to a particular agency or agencies. Once established as a 
standard, any variance or decision not to adopt the measure requires a 
waiver.
    Under Secretary means the Under Secretary of the Department of 
Energy.
    Variance means the difference between actual consumption and goal.

[[Page 1126]]

    656 Committee means the Interagency Federal Energy Policy Committee, 
the group designated in section 656 of the DOE Organization Act to 
provide general oversight for interdepartmental FEMP matters. It is 
chaired by the Under Secretary of DOE and includes the designated 
Assistant Secretaries or Assistant Administrator of the Department of 
Defense, Commerce, Housing and Urban Development, Transportation, 
Agriculture, Interior and the U.S. Postal Service and General Services 
Administration, along with similar level representatives of the National 
Aeronautics and Space Administration and the Veterans Administration.



Sec.  436.102  General operations plan format and content.

    (a) Each Federal agency shall prepare and submit to the Under 
Secretary, DOE, within six months from the effective date of these 
guidelines, a general operations 10-year plan which shall consist of two 
parts, an executive summary and a text. Subsequent agency revisions to 
plans shall be included in each agency's annual report on progress which 
shall be forwarded to DOE by July 1 annually.
    (b) The following information shall be included in each Federal 
agency general operations 10-year plan for the period of fiscal years 
1980-1990:
    (1) An Executive Summary which includes--
    (i) A brief description of agency missions, and applicable 
functional categories pursuant to Sec.  436.106(a)(2);
    (ii) A Goals and Objectives Section which summarizes what energy 
savings or avoidance will be achieved during the plan period, and what 
actions will be taken to achieve those savings, and the costs and 
benefits of measures planned for reducing energy consumption, increasing 
energy efficiencies, and shifting to a more favorable fuel mix. 
Assumptions of environmental, safety and health effects of the goals 
should be included;
    (iii) A chart depicting the agency organizational structure for 
energy management, showing energy management program organization for 
headquarters and for major subordinate elements of the agency;
    (iv) A schedule for completion of requirements directed in this 
subpart, including phase-out of any procedures made obsolete by these 
guidelines; and
    (v) Identification of any significant problem which may impede the 
agency from meeting its energy management goals.
    (2) A Text which includes--
    (i) A Goals and Objectives Section developed pursuant to Sec.  
436.103 describing agency conservation goals; these goals will be 
related to primary mission goals;
    (ii) An Investment Section describing the agency planned investment 
program by fiscal year, pursuant to appendix B of this subpart, all 
measures selected pursuant to Sec.  436.104, and the estimated costs and 
benefits of the measures planned for reducing energy consumption and 
increasing energy efficiencies;
    (iii) An Organization Section which includes: (A) Designation of the 
principal energy conservation officer, such as an Assistant Secretary or 
Assistant Administrator, who is responsible for supervising the 
preparation, updating and execution of the Plan, for planning and 
implementation of agency energy conservation programs, and for 
coordination with DOE with respect to energy matters; (B) designation of 
a middle-level staff member as a point of contact to interface with the 
DOE Federal Programs Office at the staff level; and (C) designation of 
key staff members within the agency who are responsible for technical 
inputs to the plan or monitoring progress toward meeting the goals of 
the plan;
    (iv) An Issues Section addressing problems, alternative courses of 
action for resolution, and agency recommendations that justify any 
decisions not to plan for or implement measures contained in appendix C 
of this subpart, and identifying any special projects, programs, or 
administrative procedures which may be beneficial to other Federal 
agency energy management programs:
    (v) An implementing Instructions Section which includes a summary of 
implementing instructions issued by agency headquarters, and attachments 
of appropriate documents such as:

[[Page 1127]]

    (A) Specific tasking resulting from development of the Plan;
    (B) Guidance for the development of emergency conservation plans;
    (C) Task milestones;
    (D) Listing of responsible sub-agencies and individuals at both 
agency headquarters and subordinate units;
    (E) Reporting and administrative procedures for headquarters and 
subordinate organizations;
    (F) Report schedules pursuant to Sec.  436.106(c);
    (G) Schedules for feedback in order to facilitate plan updating, to 
include reviews of emergency conservation plans developed pursuant to 
Sec.  436.105;
    (H) Schedules for preparing and submitting the annual report on 
energy management pursuant to Sec.  436.106(a);
    (I) Schedules of plan preparation and publication;
    (J) Communication, implementation, and control measures such as 
inspections, audits, and others; and
    (vi) An Emergency Conservation Plan Summary Section pursuant to the 
requirements of Sec.  436.105(d).
    (3) Appendices which are needed to discuss and evaluate any 
innovative energy conserving technologies or methods, not included in 
this part, which the agency has identified for inclusion in its plan.
    (c) Each plan must be approved and signed by the principal energy 
conservation officer designated pursuant to paragraph (b)(2) of this 
section.



Sec.  436.103  Program goal setting.

    (a) In developing and revising plans for a projected 10-year plan 
each agency shall establish and maintain energy conservation goals in 
accordance with the requirements of this section.
    (b) Agencies shall establish three types of conservation goals:
    (1) Energy consumption goals, by fuel type by functional category 
(see appendix B).
    (2) Energy efficiency goals by fuel type by functional category (see 
appendix B).
    (3) Fuel switching goals for shifting energy use from oil and 
natural gas to other fuels in more plentiful supply from domestic 
sources (see appendix B).
    (c) General operations energy conservation goals shall be 
established by each Federal agency with the broad purpose of achieving 
reductions in total energy consumption and increased efficiency without 
serious mission degradation or unmitigated negative environmental 
impacts. Within the broad framework, each agency should seek first to 
reduce energy consumption per unit of output in each applicable 
functional category. In evaluating energy efficiency, each agency should 
select and use standards of measurement which are consistent throughout 
the planning period. Particular attention should be given to increased 
energy use efficiency in nonrenewable fuel consumption. The second focus 
of attention should be on initiatives which shift energy use from oil 
and natural gas to other fuels in more plentiful supply from domestic 
sources.



Sec.  436.104  Energy conservation measures and standards.

    (a) Each agency shall consider for inclusion in its plan the 
measures identified in appendix C of this subpart.
    (b) The following questions should be considered in the evaluation 
of each measure:
    (1) Does this measure provide an incentive or disincentive?
    (2) What is the estimate of savings by fuel type?
    (3) What are the direct and indirect impacts of this measure?
    (4) Is this measure to be mandatory throughout the agency?
    (5) If not mandatory, under what circumstances will it be 
implemented, and who will be responsible for determining specific 
applicability?
    (6) Who will be the direct participants in the implementation of 
this measure?
    (7) What incentives (if any) are to be provided for the 
participants?
    (8) When will this measure be implemented?
    (9) Will this measure be implemented in a single step or will it be 
phased in? If it will be phased in, over what period of time?
    (10) Will performance of the measure be evaluated and reported?
    (11) By what criterion will performance be determined?

[[Page 1128]]

    (12) Who will prepare performance reports?
    (13) What is the reporting chain?
    (14) What is the reporting period?
    (c) Each agency will take all necessary steps to implement the 
energy conservation standards for general operations listed in appendix 
A (reserved).



Sec.  436.105  Emergency conservation plan.

    (a) Each agency shall establish an emergency conservation plan, a 
summary of which shall be included in the general operations plan, for 
assuaging the impact of a sudden disruption in the supply of oil-based 
fuels, natural gas or electricity. Priorities for temporarily reducing 
missions, production, services, and other programmatic or functional 
activities shall be developed in accordance with paragraph (b) of this 
section. Planning for emergencies is to address both buildings and 
general operations. Provisions shall be made for testing emergency 
actions to ascertain that they are effective.
    (b) Federal agencies shall prepare emergency conservation plans for 
10 percent, fifteen percent, and 20 percent reduction compared to the 
previous fiscal year in gasoline, other oil-based fuels, natural gas, or 
electricity for periods of up to 12 months. In developing these plans, 
agencies shall consider the potential for emergency reductions in energy 
use in buildings and facilities which the agency owns, leases, or has 
under contract and by employees through increased use of car and van 
pooling, preferential parking for multipassenger vehicles, and greater 
use of mass transit. Agencies may formulate whatever additional 
scenarios they consider necessary to plan for various energy 
emergencies.
    (c) In general, Federal agencies' priorities shall go to those 
activities which directly support the agencies' primary missions. 
Secondary mission activities which must be curtailed or deferred will be 
reported to DOE as mission impacts. The description of mission impacts 
shall include estimates of the associated resources and time required to 
mitigate the effects of the reduction in energy. Other factors or 
assumptions to be used in energy conservation emergency planning are as 
follows:
    (1) Agencies will be given 15-30 days notice to implement any given 
plan.
    (2) Substitution of fuels in plentiful supply for fuels in short 
supply is authorized, if the substitution can be completed within a 3-
month period and the cost is within the approval authority of the 
executive branch.
    (3) All costs and increases in manpower or other resources 
associated with activities or projects to assuage mission impacts will 
be clearly defined in respective agency plans. One-time costs will be 
identified separately.
    (4) Confronting the emergency situation will be considered a 
priority effort and all projects and increases in operating budgets 
within the approval authority of the executive branch will be 
expeditiously considered and approved if justified.
    (d) Summary plans for agency-wide emergency conservation management 
shall be provided to DOE pursuant to Sec.  436.102(b)(2)(vi). Such 
summaries shall include:
    (1) Agency-wide impacts of energy reductions as determined in 
accordance with paragraph (b) of this section.
    (2) Actions to be taken agency-wide to alleviate the energy 
shortfalls as they occur.
    (3) An assessment of agency services or production that may need to 
be curtailed or limited after corrective actions have been taken.
    (4) A summation of control and feedback mechanisms for managing an 
energy emergency situation.



Sec.  436.106  Reporting requirements.

    (a) By July 1 of each year each Federal agency shall submit an 
``Annual Report on Energy Management'' based on fiscal year data to the 
Secretary of DOE. The general operations portion of this report will 
encompass all agency energy use not reported in the buildings portion 
and shall include:
    (1) A summary evaluation of progress toward the achievement of 
energy consumption, energy efficiency, and fuel switching goals 
established by the agency in its plans;
    (2) Energy consumption reported by functional categories. Reports 
must include General Transportation and one

[[Page 1129]]

or more of the following functional categories: industrial or 
production, services, operational training and readiness, and other. 
Agencies may report in subcategories of their own choosing. The 
following information is to be reported for the usage of each fuel type 
in physical units for each selected functional category:
    (i) Total energy consumption goal;
    (ii) Total energy consumed;
    (iii) Total energy use avoidance;
    (iv) Variance between actual consumption and consumption goal;
    (v) Cost saved;
    (vi) Status of planned investments, and if different from the 
investment program upon which existing goals are based, the expected 
impact on meeting goals; and
    (vii) Summary of any other benefits realized.
    (3) The energy efficiencies as calculated in accordance with 
appendix B of this subpart, or by an equivalent method, for the 
appropriate functional categories identified in paragraph (a)(2) of this 
section. The following information is to be reported for the energy 
efficiency for each fuel type by functional category:
    (i) Energy efficiency goal;
    (ii) Efficiency for the reporting period;
    (iii) Summary of any other benefits realized.
    (4) A summary of fuel switching progress including:
    (i) Description and cost of investments in fuel switching;
    (ii) Avoidance in use of oil-based fuels and natural gas;
    (iii) Increased use of solar, wood, gasohol and other renewable 
energy sources;
    (iv) Increased use of coal and coal derivatives, and
    (v) Use of all other alternative fuels.
    (b) Each agency's annual report shall be developed in accordance 
with a format to be provided by DOE and will include agency revisions to 
10-year plans.
    (c) Agencies whose annual total energy consumption exceeds one 
hundred billion Btu's, shall, in addition to the annual report required 
under paragraph (a) of this section, submit quarterly reports of the 
energy usage information specified in paragraph (a)(2) of this section.
    (d) Agencies who consume energy in operations in foreign countries 
will include data on foreign operations if foreign consumption is 
greater than 10% of that consumed by the agency in the United States, 
its territories and possessions. If an agency's estimated foreign 
consumption is less than 10% of its total domestic energy use, reporting 
of foreign consumption is optional. Reports should be annotated if 
foreign consumption is not included.

[45 FR 44561, July 1, 1980, as amended at 51 FR 4586, Feb. 6, 1986]



Sec.  436.107  Review of plan.

    (a) Each plan or revision of a plan shall be submitted to DOE and 
DOE will evaluate the sufficiency of the plan in accordance with the 
requirements of this subpart. Written notification of the adequacy of 
the plan including a critique, will be made by DOE and sent to the 
agency submitting the plan or revision within 60 days of submission. 
Agencies shall be afforded an opportunity to modify and return the plan 
within an appropriate period of time for review by DOE.
    (b) A general operations plan under the guidelines will be evaluated 
with respect to:
    (1) Adequacy of information or plan content required to be included 
by Sec.  436.102;
    (2) Adequacy of goal setting methodology or baseline justification 
as stated in Sec.  436.103;
    (3) Adequacy of a well-justified investment program which considers 
all measures included in appendix C of this subpart; and
    (4) Other factors as appropriate.
    (c) After reviewing agency plans or revisions of plans, the Under 
Secretary of DOE, may submit to the ``656'' Committee for its 
recommendation, major problem areas or common deficiencies.
    (d) Status of the plan review, the Under Secretary's decisions, and 
``656'' Committee recommendations, will be published as appropriate in 
the DOE annual report to the President, titled ``Energy Management in 
the Federal Government.''

[[Page 1130]]



Sec.  436.108  Waivers.

    (a) Any Federal agency may submit a written request to the Under 
Secretary for a waiver from the procedures and requirements of this 
subpart. The request for a waiver must identify the specific 
requirements and procedures of this subpart from which a waiver is 
sought and provide a detailed explanation, including appropriate 
information or documentation, as to why a waiver should be granted.
    (b) A request for a waiver under this section must be submitted at 
least 60 days prior to the due date for the required submission.
    (c) A written response to a request for a waiver will be issued by 
the Under Secretary no later than 30 days from receipt of the request. 
Such a response will either (1) grant the request with any conditions 
determined to be necessary to further the purposes of this subpart, (2) 
deny the request based on a determination that the reasons given in the 
request for a waiver do not establish a need that takes precedence over 
the futherance of the purposes of this subpart, or (3) deny the request 
based on the failure to submit adequate information upon which to grant 
a waiver.
    (d) A requested waiver may be submitted by the Under Secretary to 
the ``656'' Committee for its review and recommendation. The agency 
official that submitted the request may attend any scheduled meeting of 
the ``656'' Committee at which the request is planned to be discussed. 
The determination to approve or disapprove a request for a waiver shall 
be made by the Under Secretary.
    (e) Status of the requests for a waiver, the Under Secretary's 
decisions, and ``656'' Committee recommendations, will be published, as 
appropriate, in the DOE annual report to the President, entitled 
``Energy Management in the Federal Government.''



 Sec. Appendix A to Part 436--Energy Conservation Standards for General 
                          Operations [Reserved]



          Sec. Appendix B to Part 436--Goal Setting Methodology

    In establishing and updating agency goals for energy conservation, 
the following methodology or an equivalent method should be utilized:
    (a) For overall energy consumption--
    (1) An analysis shall be made to determine what factors have the 
most significant impact upon the amount of each fuel type used by the 
agency in performing functions in support of its overall mission. 
Consideration is to be given, but not limited to, the following factors: 
Number of people using energy; number of vehicles using gasoline; 
amounts of other equipment using energy; tempo of operations (one, two, 
or three shifts); the type of operations (degree of equipment or labor 
intensity); equipment fuel limitations; environmental conditions 
(tropical versus arctic, etc.); budget levels for fuel, operations, 
maintenance, and equipment acquisition; and phase-out schedule (of older 
equipment or plants which may be inefficient). After identifying these 
factors, a further analysis shall be made to identify any projected 
workload changes in the quality or quantity of these factors on a yearly 
basis up to 1990.
    (2) Based upon the analysis in (a)(1) and an evaluation of available 
information on past energy usage, a baseline of energy use by fuel type 
by functional category shall be established beginning with FY 1975. In 
addition to ``General Transportation,'' other functional categories 
should be selected to enhance energy management. Total fuel use for a 
particular activity may be allocated to the functional category for 
which the preponderance of fuel is used. Figure B-1 is an example of one 
such baseline.

[[Page 1131]]

[GRAPHIC] [TIFF OMITTED] TC04OC91.241

    This example shows an increase in energy use, for a specific fuel 
type, during the period 1975-1981, with a further increase from 1981 to 
1984 and a leveling off and no growth from 1984-1990. A justification, 
based on factors as discussed above, shall accompany each baseline.
    (3) Thereafter, analyses should be made of the measures available 
for reducing the energy consumption profiles without adverse impact on 
mission accomplishment. Finding viable opportunities for reducing energy 
use, increasing energy efficiency and switching energy sources, will 
require consultation with specialists in the fields of operations, 
maintenance, engineering, design, and economics, and consideration of 
the measures identified in appendix C. The DOE Federal Energy Management 
Programs Office can, upon request, provide information on where such 
resources can be located. Once these measures are identified, they are 
to be incorporated into a time-phased investment program, (using where 
appropriate, the life cycle costing factors and methodology in subpart A 
of this part). If investment and other costs for implementing a measure 
are insignificant, a Federal agency may presume that a measure is cost-
effective without further analysis. An estimate must then be made as to 
the lead time required to implement the program and realize energy 
reductions.
    Figure B-2 shows a summarized investment program, which should be 
accompanied by a detailed description of the measures, projects, and 
programs making up the total planned investments for each year. This 
summary need not be by function or fuel type.

[[Page 1132]]

[GRAPHIC] [TIFF OMITTED] TC04OC91.242

    These analyses should enable the agency to project an energy 
consumption goal, with the assumption that funds for executing the 
planned projects will be approved. Figure B-3 shows a new energy use 
profile, with planned initiatives and related investments taken into 
consideration, and the resulting goal entitled ``Energy Use With A 
Plan'' superimposed on Figure B-1. Included are the anticipated effects 
on consumption cause by improvements in energy efficiency and fuel 
switching.
[GRAPHIC] [TIFF OMITTED] TC04OC91.243

    A comparison of these projections will show the energy use avoidance 
resulting from the investment program as depicted in Figure B-2. Using 
the prices of fuel contained in appendix C to subpart A, the dollars 
saved can be projected against the dollars invested. Life cycle costing 
methodology pursuant to subpart A, will be used to determine priorities 
for submitting individual initiatives into the appropriate budget year.
    (b) For energy efficiencies--Energy efficiency baselines and goals 
for each fuel type shall be calculated using the same consumption 
factors and similar methodology to that outlined in paragraph (a). 
Energy consumption by fuel type shall be linked to mission through the 
functional categories listed in Sec.  436.106(a)(2). This will identify 
a rate which will indicate energy efficiency trends. This linkage may be 
accomplished through the following algorithm:

[[Page 1133]]

    Step 1: Determine functional categories from section 436.106(a)(2) 
which best describe the Agency overall mission.
    Step 2: Determine types of fuels used to support the functions 
selected in Step 1.
    Step 3: Determine quantities of fuel consumed or planned for 
consumption over a specific period of time.
    Step 4: Determine quantity of output of function for same period of 
time used in Step 3. Quantify output in a standard measure which best 
describes functional category.
    Step 5: Determine the energy efficiency ratio by dividing quantity 
from Step 4 by quantity from Step 3.
    This ratio of fuel consumed to a unit measure of output will be used 
to develop a projection of a baseline and goals through 1990, and used 
in reporting variance. Examples of ratios that should be considered are:

     Production or industrial process type operations

Ton of product

Cu. ft. of natural gas

     Services, such as postal delivery

Customers served or
pounds delivered

Gallons of automotive
gasoline

     General transportation

Passenger miles

Gallons of automotive gasoline

     Training

Persons trained
or in training

Gallons of navy special

    Agencies shall select one or more of these ratios, which shall be 
used throughout the planning period, or use more appropriate energy 
efficiency ratios, to describe their overall functions. Figure B-4 
illustrates the planning baseline and goal resulting from this type of 
analysis.

[[Page 1134]]

[GRAPHIC] [TIFF OMITTED] TC04OC91.244

    (c) For fuel switching--Fuel switching goals for gasoline other oil-
based fuel and natural gas may be calculated as follows:
    Step 1: For each fiscal year, identify investments, where 
appropriate, in fuel switching

[[Page 1135]]

from gasoline, other oil-based fuel and natural gas to alternate 
renewable or nonrenewable fuel sources.
    Step 2: Project for each fiscal year, the avoidance in the use of 
gasoline, other oil-based fuel and natural gas resulting from previous 
fuel switching investments.
    Completion of these steps will permit the formulation of charts such 
as that shown in Figure B-5.
[GRAPHIC] [TIFF OMITTED] TC04OC91.245



  Sec. Appendix C to Part 436--General Operations Energy Conservation 
                                Measures

    (a) The following individual measures or set of measures must be 
considered for inclusion in each agency 10-year energy management plan:
    (1) Federal Employee Ridesharing Programs--Includes the use of 
vanpooling and carpooling and complies with existing orders and 
regulations governing parking for vanpools and carpools.
    (2) Fleet Profile Change--Includes energy considerations in 
equipment selection and assignment.
    (3) Fleet Mileage Efficiency--Includes agency plans to implement 
existing orders, goals, and laws related to vehicle fuel economy.
    (4) Driver Training--Includes development of appropriate programs 
for training operators of U.S. Government vehicles in energy 
conservation.
    (5) Maintenance Procedures Improvement--Includes activities to 
insure proper vehicle maintenance to optimize energy conservation.
    (6) Operating Procedures Improvement--Includes use of cooperative 
passenger shuttle and courier services on an interagency or other basis 
within each metropolitan area.
    (7) Mass Transit--Includes employee use of existing services for 
business-related activities and commuting.
    (8) Public Education to Promote Vanpooling and Carpooling--Includes 
activities to support the EPCA requirement to establish ``responsible 
public education programs to promote vanpooling and carpooling 
arrangements'' through their employee awareness programs.
    (9) Elimination of Free or Subsidized Employee Parking--Includes 
elimination of free or subsidized employee parking on Federal 
installations in accordance with OMB Cir. A-118, August 13, 1979.
    (10) Two-Wheeled Vehicle Programs--Includes activities to encourage 
the substitution of bicycles, mopeds, etc. for automobiles for commuting 
and operational purposes. These may include the establishment of 
weather-protected secure storage facilities, shower and locker 
facilities, and restricted routes for these vehicles on Federal 
property. Cooperative programs with local civil authorities may also be 
included.

[[Page 1136]]

    (11) Consolidation of Facilities and Process Activities--Includes 
such measures as physical consolidation of operations to minimize intra-
operational travel and may include facility closure or conversion. 
Alternative work patterns, availability of transportation, energy source 
availability, and technical and financial feasibility are among the 
considerations that should be evaluated.
    (12) Agency Procurement Programs--Includes activities to ensure that 
energy conservation opportunities are fully exploited with respect to 
the agency's procurement programs including procurements relating to 
operations and maintenance activities; e.g., (a) giving preference to 
fuel-efficient products whenever practicable, and (b) ensuring that 
agency's contractors having a preponderance of cost-type contracts 
pursue a comprehensive energy conservation program.
    (13) Energy Conservation Awareness Programs--Includes programs aimed 
toward gaining and perpetuating employee awareness and participation in 
energy conservation measures on the job and in their personal 
activities.
    (14) Communication--Includes substitution of communications for 
physical travel.
    (15) Dress Code--Includes measures to allow employees greater 
freedom in their choice of wearing apparel to promote greater 
participation in conservation.
    (16) Land Use--Includes energy considerations to be employed in new 
site selection, such as colocation.
    (17) Automatic Data Processing (ADP)--Includes all energy aspects of 
ADP operation and equipment selection.
    (18) Aircraft Operations--Includes energy-conserving measures 
developed for both military and Federal administrative and research and 
development aircraft operations.
    (19) GOCO Facilities and Industrial Plants Operated by Federal 
Employees--Includes development of energy conservation plans at these 
facilities and plants which contain measures such as energy efficient 
periodic maintenance.
    (20) Energy Conserving Capital Plant and Equipment Modification--
Includes development of energy conservation and life cycle cost 
parameter measures for replacement of capital plant and equipment.
    (21) Process Improvements--Includes measures to improve energy 
conservation in industrial process operations. These may include 
consideration of equipment replacement or modification, as well as 
scheduling and other operational changes.
    (22) Improved Steam Maintenance and Management--Includes measures to 
improve energy efficiency of steam systems. These may include improved 
maintenance, installation of energy-conserving devices, and the 
operational use of substitutes for live steam where feasible.
    (23) Improvements in Waste Heat Recovery--Includes measures 
utilizing waste heat for other purposes.
    (24) Improvement in Boiler Operations--Includes energy-conserving 
retrofit measures for boiler operations.
    (25) Improved Insulation--Includes measures addressing the addition 
or replacement of insulation on pipes, storage tanks, and in other 
appropriate areas.
    (26) Scheduling by Major Electric Power Users--Includes measures to 
shift major electrical power demands to non-peak hours, to the maximum 
extent possible.
    (27) Alternative Fuels--Includes measures to alter equipment such as 
generators to use lower quality fuels and to fill new requirements with 
those that use alternative fuels. The use of gasohol in stationary 
gasoline-powered equipment should be considered, in particular.
    (28) Cogeneration--Includes measures to make full use of 
cogeneration in preference to single-power generation.
    (29) Mobility Training and Operational Readiness--Includes measures 
which can reduce energy demands through the use of simulators, 
communications, computers for planning, etc.
    (30) Energy Conservation Inspection or Instruction Teams--Includes 
measures which formulate and perpetuate the review of energy 
conservation through inspections to determine where specific 
improvements can be made and then followed by an instruction and 
training program.
    (31) Intra-agency and Interagency Information Exchange Program--
Includes measures providing a free exchange of energy conservation ideas 
and experiences between elements of an agency and between other agencies 
in the same geographic area.
    (32) Recycled Waste--Includes measures to recycle waste materials 
such as paper products, glass, aluminum, concrete and brick, garbage, 
asphalt road materials or any material which requires a petroleum base.
    (33) Fuel Conversion--Includes measures to accomplish conversion 
from petroleum based fuels and natural gas to coal and other alternative 
fuels for appropriate equipment.
    (34) Operational Lighting--Includes measures to reduce energy 
consumption for lighting in operational areas and GOCO plants by: 
switching off by means of automatic controls; maximizing the use of 
daylight by floor planning; keeping window and light fixtures clean and 
replacing fixtures when they begin to deteriorate, rather than when they 
fail altogether; providing automatic dimmer controls to reduce lighting 
when daylight increases; and cleaning the work area during daylight, if 
possible, rather than at night.
    (35) Lighting Fixtures--Includes measures to increase energy 
efficiency of lighting. The following reveals the relative efficiencies 
of common lamp types.

[[Page 1137]]



------------------------------------------------------------------------
                                                             Improvement
                   Lamp type                       Lumens        over
                                                    watt       tungsten
------------------------------------------------------------------------
Tungsten lamp..................................          12           X1
Modern fluorescent lamp........................          85           X7
Mercury halide lamp............................         100           X8
High pressure sodium lamp......................         110           X9
Low pressure sodium lamp.......................         180          X15
------------------------------------------------------------------------

    (36) Industrial Buildings Heating--Includes measures to improve the 
energy conservation of industrial buildings such as: fixing holes in 
roofs, walls and windows; fitting flexible doors, fitting controls to 
heating systems; use of ``economizer units'' which circulate hot air 
back down from roof level to ground level; use of controlled 
ventilation; insulation of walls and roof; use of ``optimisers'' or 
optimum start controls in heating systems, so that the heating switch-on 
is dictated by actual temperature conditions rather than simply by time.
    (37) Hull Cleaning and Antifouling Coating--Includes measures to 
reduce energy consumption through periodic cleaning of hulls and 
propellers or through the use of antifouling coatings.
    (38) [Reserved]
    (39) Building Temperature Restrictions on Thermostat Setting for 
Heating, Cooling and Hot Water--Includes enforcement of suggested 
restriction levels: 65 degrees for heating, 78 degrees for cooling, and 
105 degrees or ban for hot water.
    (40) Such other measures as DOE may from time-to-time add to this 
appendix, or as the Federal agency concerned may find to be energy-
saving or efficient.



    Sec. Appendix D to Part 436--Energy Program Conservation Elements

    (a) In all successful energy conservation programs, certain key 
elements need to be present. The elements listed below must be 
incorporated into each agency conservation program and must be reflected 
in the 10-year plan prescribed in Sec.  436.102. Those organizations 
that have already developed programs should review them to determine 
whether the present management systems incorporate these elements.
    (1) Top Management Control. Top management must have a personal and 
sustained commitment to the program, provide active direction and 
motivation, and require regular review of overall energy usage at senior 
staff meetings.
    (2) Line Management Accountability. Line managers must be 
accountable for the energy conservation performance of their 
organizations and should participate in establishing realistic goals and 
developing strategies and budgets to meet these goals.
    (3) Formal Planning. An overall 10-year plan for the period 1980-
1990 must be developed and formalized which sets forth performance-
oriented conservation goals, including the categorized reduction in 
rates of energy consumption that the program is expected to realize. The 
plan will be supplemented by guidelines enumerating specific 
conservation procedures that will be followed. These procedures and 
initiatives must be life cycle cost-effective as well as energy 
efficient.
    (4) Goals. Goals must be established in a measurable manner to 
answer questions of ``Where are we?'' ``Where do we want to go?'' ``Are 
we getting there?'' and ``Are our initiatives for getting there life 
cycle cost-effective?''
    (5) Monitoring. Progress must be reviewed periodically both at the 
agency headquarters and at local facility levels to identify program 
weakness or additional areas for conservation actions. Progress toward 
achievement of goals should be assessed, and explanations should be 
required for non-achievement or unusual variations in energy use. 
Monitoring should include personal inspections and staff visits, 
management information reporting and audits.
    (6) Using Technical Expertise. Personnel with adequate technical 
background and knowledge of programmatic objectives should be used to 
help management set technical goals and parameters for efficient 
planning and implementation of energy conservation programs. These 
technicians should work in conjunction with the line managers who are 
accountable for both mission accomplishment and energy conservation.
    (7) Employee Awareness. Employees must gain an awareness of energy 
conservation through formal training and employee information programs. 
They should be invited to participate in the process of developing an 
energy conservation program, and to submit definitive suggestions for 
conservation of energy.
    (8) Energy Emergency Planning. Every energy management plan must 
provide for programs to respond to contingencies that may occur at the 
local, state or National level. Programs must be developed for potential 
energy emergency situations calling for reductions of 10 percent, 15 
percent and 20 percent for up to 12 months. Emergency plans must be 
tested to ascertain their effectiveness.
    (9) Budgetary and Fiscal Support. Resources necessary for the energy 
conservation program must be planned and provided for, and the fiscal 
systems adjusted to support energy management investments and 
information reporting.
    (10) Environmental Considerations. Each agency shall fulfill its 
obligations under the National Environmental Policy Act in developing 
its plan.

[[Page 1138]]



PART 440_WEATHERIZATION ASSISTANCE FOR LOW-INCOME PERSONS--Table of Contents



Sec.
440.1 Purpose and scope.
440.2 Administration of grants.
440.3 Definitions.
440.10 Allocation of funds.
440.11 Native Americans.
440.12 State application.
440.13 Local application.
440.14 State plans.
440.15 Subgrantees.
440.16 Minimum program requirements.
440.17 Policy Advisory Council.
440.18 Allowable expenditures.
440.19 Labor.
440.20 Low-cost/no-cost weatherization activities.
440.21 Weatherization materials standards and energy audit procedures.
440.22 Eligible dwelling units.
440.23 Oversight, training, and technical assistance.
440.24 Recordkeeping.
440.25 Reports.
440.26-440.29 [Reserved]
440.30 Administrative review.

Appendix A to Part 440--Standards for Weatherization Materials

    Authority: 42 U.S.C. 6861 et seq.; 42 U.S.C. 7101 et seq.

    Source: 49 FR 3629, Jan. 27, 1984, unless otherwise noted.



Sec.  440.1  Purpose and scope.

    This part implements a weatherization assistance program to increase 
the energy efficiency of dwellings owned or occupied by low-income 
persons or to provide such persons renewable energy systems or 
technologies, reduce their total residential expenditures, and improve 
their health and safety, especially low-income persons who are 
particularly vulnerable such as the elderly, persons with disabilities, 
families with children, high residential energy users, and households 
with high energy burden.

[65 FR 77217, Dec. 8, 2000, as amended at 71 FR 35778, June 22, 2006]



Sec.  440.2  Administration of grants.

    Grant awards under this part shall comply with applicable law 
including, without limitation, the requirements of:
    (a) Executive Order 12372 entitled ``Intergovernmental Review of 
Federal Programs'', 48 FR 3130, and the DOE Regulation implementing this 
Executive Order entitled ``Intergovernmental Review of Department of 
Energy Programs and Activities'' (10 CFR part 1005);
    (b) Office of Management and Budget Circular A-97, entitled ``Rules 
and Regulations Permitting Federal Agencies to Provide Specialized or 
Technical Services to State and Local Units of Government under Title 
III of the Inter-Governmental Coordination Act of 1968;''
    (c) Unless in conflict with provisions of this part, the DOE 
Financial Assistance Rule (10 CFR part 600); and
    (d) Such other procedures applicable to this part as DOE may from 
time to time prescribe for the administration of financial assistance.
    (e)(1) States, Tribes and their subawardees, including, but not 
limited to subrecipients, subgrantees, contractors and subcontractors 
that participate in the program established under this Part are required 
to treat all requests for information concerning applicants and 
recipients of WAP funds in a manner consistent with the Federal 
Government's treatment of information requested under the Freedom of 
Information Act (FOIA), 5 U.S.C. 552, including the privacy protections 
contained in Exemption (b)(6) of the FOIA, 5 U.S.C. 552(b)(6). Under 5 
U.S.C. 552(b)(6), information relating to an individual's eligibility 
application or the individual's participation in the program, such as 
name, address, or income information, are generally exempt from 
disclosure.
    (2) A balancing test must be used in applying Exemption (b)(6) in 
order to determine:
    (i) Whether a significant privacy interest would be invaded;
    (ii) Whether the release of the information would further the public 
interest by shedding light on the operations or activities of the 
Government; and
    (iii) Whether in balancing the privacy interests against the public 
interest, disclosure would constitute a clearly unwarranted invasion of 
privacy.
    (3) A request for personal information including but not limited to 
the names, addresses, or income information of WAP applicants or 
recipients

[[Page 1139]]

would require the State or other service provider to balance a clearly 
defined public interest in obtaining this information against the 
individuals' legitimate expectation of privacy.
    (4) Given a legitimate, articulated public interest in the 
disclosure, States and other service providers may release information 
regarding recipients in the aggregate that does not identify specific 
individuals. However, a State or service provider must apply an FOIA 
Exemption (b)(6) balancing test to any request for information that can 
not be satisfied by such less-intrusive methods.

[49 FR 3629, Jan. 27, 1984, as amended at 75 FR 11422, Mar. 11, 2010; 77 
FR 11737, Feb. 28, 2012]



Sec.  440.3  Definitions.

    As used in this part:
    Act means the Energy Conservation in Existing Buildings Act of 1976, 
as amended, 42 U.S.C. 6851 et seq.
    Assistant Secretary means the Assistant Secretary for Conservation 
and Renewable Energy or official to whom the Assistant Secretary's 
functions may be redelegated by the Secretary.
    Base Allocation means the fixed amount of funds for each State as 
set forth in Sec.  440.10(b)(1).
    Base temperature means the temperature used to compute heating and 
cooling degree days. The average daily outdoor temperature is subtracted 
from the base temperature to compute heating degree days, and the base 
temperature is subtracted from the average daily outdoor temperature to 
compute cooling degree days.
    Biomass means any organic matter that is available on a renewable or 
recurring basis, including agricultural crops and trees, wood and wood 
wastes and residues, plants (including aquatic plants), grasses, 
residues, fibers, and animal wastes, municipal wastes, and other waste 
materials.
    CAA means a Community Action Agency.
    Capital-Intensive furnace or cooling efficiency modifications means 
those major heating and cooling modifications which require a 
substantial amount of funds, including replacement and major repairs, 
but excluding such items as tune-ups, minor repairs, and filters.
    Children means dependents not exceeding 19 years or a lesser age set 
forth in the State plan.
    Community Action Agency means a private corporation or public agency 
established pursuant to the Economic Opportunity Act of 1964, Pub. L. 
88-452, which is authorized to administer funds received from Federal, 
State, local, or private funding entities to assess, design, operate, 
finance, and oversee antipoverty programs.
    Cooling Degree Days means a population-weighted annual average of 
the climatological cooling degree days for each weather station within a 
State, as determined by DOE.
    Deputy Assistant Secretary means the Deputy Assistant Secretary for 
Technical and Financial Assistance or any official to whom the Deputy 
Assistant Secretary's functions may be redelegated by the Assistant 
Secretary.
    DOE means the Department of Energy.
    Dwelling Unit means a house, including a stationary mobile home, an 
apartment, a group of rooms, or a single room occupied as separate 
living quarters.
    Elderly Person means a person who is 60 years of age or older.
    Electric base-load measures means measures which address the energy 
efficiency and energy usage of lighting and appliances.
    Family Unit means all persons living together in a dwelling unit.
    Formula Allocation means the amount of funds for each State as 
calculated based on the formula in Sec.  440.10(b)(3).
    Formula Share means the percentage of the total formula allocation 
provided to each State as calculated in Sec.  440.10 (b)(3).
    Governor means the chief executive officer of a State, including the 
Mayor of the District of Columbia.
    Grantee means the State or other entity named in the Notification of 
Grant Award as the recipient.
    Heating Degree Days means a population-weighted seasonal average of 
the climatological heating degree days for each weather station within a 
State, as determined by DOE.

[[Page 1140]]

    High residential energy user means a low-income household whose 
residential energy expenditures exceed the median level of residential 
expenditures for all low-income households in the State.
    Household with a high energy burden means a low-income household 
whose residential energy burden (residential expenditures divided by the 
annual income of that household) exceeds the median level of energy 
burden for all low-income households in the State.
    Incidental Repairs means those repairs necessary for the effective 
performance or preservation of weatherization materials. Such repairs 
include, but are not limited to, framing or repairing windows and doors 
which could not otherwise be caulked or weather-stripped and providing 
protective materials, such as paint, used to seal materials installed 
under this program.
    Indian Tribe means any tribe, band, nation, or other organized group 
or community of Native Americans, including any Alaskan native village, 
or regional or village corporation as defined in or established pursuant 
to the Alaska Native Claims Settlement Act, Pub. L. 92-203, 85 Stat. 
688, which (1) is recognized as eligible for the special programs and 
services provided by the United States to Native Americans because of 
their status as Native Americans, or (2) is located on, or in proximity 
to, a Federal or State reservation or rancheria.
    Local Applicant means a CAA or other public or non profit entity 
unit of general purpose local government.
    Low income means that income in relation to family size which:
    (1) At or below 200 percent of the poverty level determined in 
accordance with criteria established by the Director of the Office of 
Management and Budget, except that the Secretary may establish a higher 
level if the Secretary, after consulting with the Secretary of 
Agriculture and the Secretary of Health and Human Services, determines 
that such a higher level is necessary to carry out the purposes of this 
part and is consistent with the eligibility criteria established for the 
weatherization program under Section 222(a)(12) of the Economic 
Opportunity Act of 1964;
    (2) Is the basis on which cash assistance payments have been paid 
during the preceding twelve month-period under Titles IV and XVI of the 
Social Security Act or applicable State or local law; or
    (3) If a State elects, is the basis for eligibility for assistance 
under the Low Income Home Energy Assistance Act of 1981, provided that 
such basis is at least 200 percent of the poverty level determined in 
accordance with criteria established by the Director of the Office of 
Management and Budget.
    Native American means a person who is a member of an Indian tribe.
    Non-Federal leveraged resources means those benefits identified by 
State or local agencies to supplement the Federal grant activities and 
that are made available to or used in conjunction with the DOE 
Weatherization Assistance Program for the purposes of the Act for use in 
eligible low-income dwelling units.
    Persons with Disabilities means any individual (1) who is a 
handicapped individual as defined in section 7(6) of the Rehabilitation 
Act of 1973, (2) who is under a disability as defined in section 
1614(a)(3)(A) or 223(d)(1) of the Social Security Act or in section 
102(7) of the Developmental Disabilities Services and Facilities 
Construction Act, or (3) who is receiving benefits under chapter 11 or 
15 of title 38, U.S.C.
    Program Allocation means the base allocation plus formula allocation 
for each State.
    Relevant Reporting Period means the Federal fiscal year beginning on 
October 1 and running through September 30 of the following calendar 
year.
    Renewable energy system means a system which when installed in 
connection with a dwelling--
    (1) Transmits or uses solar energy, energy derived from geothermal 
deposits, energy derived from biomass (or any other form of renewable 
energy which DOE subsequently specifies through an amendment of this 
part) for the purpose of heating or cooling such dwelling or providing 
hot water or electricity for use within such dwelling; or wind energy 
for nonbusiness residential purposes; and

[[Page 1141]]

    (2) Which meets the performance and quality standards prescribed in 
Sec.  440.21 (c) of this part.
    Rental Dwelling Unit means a dwelling unit occupied by a person who 
pays rent for the use of the dwelling unit.
    Residential Energy Expenditures means the average annual cost of 
purchased residential energy, including the cost of renewable energy 
resources.
    Secretary means the Secretary of the Department of Energy.
    Separate Living Quarters means living quarters in which the 
occupants do not live and eat with any other persons in the structure 
and which have either direct access from the outside of the building or 
through a common hall or complete kitchen facilities for the exclusive 
use of the occupants. The occupants may be a single family, one person 
living alone, two or more families living together, or any other group 
of related or unrelated persons who share living arrangements, and 
includes shelters for homeless persons.
    Shelter means a dwelling unit or units whose principal purpose is to 
house on a temporary basis individuals who may or may not be related to 
one another and who are not living in nursing homes, prisons, or similar 
institutional care facilities.
    Single-Family Dwelling Unit means a structure containing no more 
than one dwelling unit.
    Skirting means material used to border the bottom of a dwelling unit 
to prevent infiltration.
    State means each of the States, the District of Columbia, American 
Samoa, Guam, Commonwealth of the Northern Mariana Islands, Commonwealth 
of Puerto Rico, and the Virgin Islands.
    Subgrantee means an entity managing a weatherization project which 
receives a grant of funds awarded under this part from a grantee.
    Support Office Director means the Director of the DOE Field Support 
Office with the responsibility for grant administration or any official 
to whom that function may be redelegated by the Assistant Secretary.
    Total Program Allocations means the annual appropriation less funds 
reserved for training and technical assistance.
    Tribal Organization means the recognized governing body of any 
Indian tribe or any legally established organization of Native Americans 
which is controlled, sanctioned, or chartered by such governing body.
    Unit of General Purpose Local Government means any city, county, 
town, parish, village, or other general purpose political subdivision of 
a State.
    Vestibule means an enclosure built around a primary entry to a 
dwelling unit.
    Weatherization Materials mean:
    (1) Caulking and weatherstripping of doors and windows;
    (2) Furnace efficiency modifications including, but not limited to--
    (i) Replacement burners, furnaces, or boilers or any combination 
thereof;
    (ii) Devices for minimizing energy loss through heating system, 
chimney, or venting devices; and
    (iii) Electrical or mechanical furnace ignition systems which 
replace standing gas pilot lights;
    (3) Cooling efficiency modifications including, but not limited to--
    (i) Replacement air conditioners;
    (ii) Ventilation equipment;
    (iii) Screening and window films; and
    (iv) Shading devices.
    Weatherization Project means a project conducted in a single 
geographical area which undertakes to weatherize dwelling units that are 
energy inefficient.

[49 FR 3629, Jan. 27, 1984, as amended at 50 FR 712, Jan. 4, 1985; 50 FR 
49917, Dec. 5, 1985; 55 FR 41325, Oct. 10, 1990; 58 FR 12525, Mar. 4, 
1993; 60 FR 29480, June 5, 1995; 65 FR 77217, Dec. 8, 2000; 71 FR 35778, 
June 22, 2006; 74 FR 12539, Mar. 25, 2009]



Sec.  440.10  Allocation of funds.

    (a) DOE shall allocate financial assistance for each State from sums 
appropriated for any fiscal year, upon annual application.
    (b) Based on total program allocations at or above the amount of 
$209,724,761, DOE shall determine the program allocation for each State 
from available funds as follows:
    (1) Allocate to each State a ``Base Allocation'' as listed in Table 
1.

                          Base Allocation Table
 
                                                               Base
                          State                             allocation
------------------------------------------------------------------------
Alabama.................................................      $1,636,000

[[Page 1142]]

 
Alaska..................................................       1,425,000
Arizona.................................................         760,000
Arkansas................................................       1,417,000
California..............................................       4,404,000
Colorado................................................       4,574,000
Connecticut.............................................       1,887,000
Delaware................................................         409,000
District of Columbia....................................         487,000
Florida.................................................         761,000
Georgia.................................................       1,844,000
Hawaii..................................................         120,000
Idaho...................................................       1,618,000
Illinois................................................      10,717,000
Indiana.................................................       5,156,000
Iowa....................................................       4,032,000
Kansas..................................................       1,925,000
Kentucky................................................       3,615,000
Louisiana...............................................         912,000
Maine...................................................       2,493,000
Maryland................................................       1,963,000
Massachusetts...........................................       5,111,000
Michigan................................................      12,346,000
Minnesota...............................................       8,342,000
Mississippi.............................................       1,094,000
Missouri................................................       4,615,000
Montana.................................................       2,123,000
Nebraska................................................       2,013,000
Nevada..................................................         586,000
New Hampshire...........................................       1,193,000
New Jersey..............................................       3,775,000
New Mexico..............................................       1,519,000
New York................................................      15,302,000
North Carolina..........................................       2,853,000
North Dakota............................................       2,105,000
Ohio....................................................      10,665,000
Oklahoma................................................       1,846,000
Oregon..................................................       2,320,000
Pennsylvania............................................      11,457,000
Rhode Island............................................         878,000
South Carolina..........................................       1,130,000
South Dakota............................................       1,561,000
Tennessee...............................................       3,218,000
Texas...................................................       2,999,000
Utah....................................................       1,692,000
Vermont.................................................       1,014,000
Virginia................................................       2,970,000
Washington..............................................       3,775,000
West Virginia...........................................       2,573,000
Wisconsin...............................................       7,061,000
Wyoming.................................................         967,000
American Samoa..........................................         120,000
Guam....................................................         120,000
Puerto Rico.............................................         120,000
Northern Mariana Islands................................         120,000
Virgin Islands..........................................         120,000
Total...................................................     171,858,000
------------------------------------------------------------------------

    (2) Subtract 171,258,000 from total program allocations.
    (3) Calculate each State's formula share as follows:
    (i) Divide the number of ``Low Income'' households in each State by 
the number of ``Low Income'' households in the United States and 
multiply by 100.
    (ii) Divide the number of ``Heating Degree Days'' for each State by 
the median ``Heating Degree Days'' for all States.
    (iii) Divide the number of ``Cooling Degree Days'' for each State by 
the median ``Cooling Degree Days'' for all States, then multiply by 0.1.
    (iv) Calculate the sum of the two numbers from paragraph (b)(3)(ii) 
and (iii) of this section.
    (v) Divide the residential energy expenditures for each State by the 
number of households in the State.
    (vi) Divide the sum of the residential energy expenditures for the 
States in each Census division by the sum of the households for the 
States in that division.
    (vii) Divide the quotient from paragraph (b)(3)(v) of this section 
by the quotient from paragraph (b)(3)(vi) of this section.
    (viii) Multiply the quotient from paragraph (b)(3)(vii) of this 
section for each State by the residential energy expenditures per low-
income household for its respective Census division.
    (ix) Divide the product from paragraph (b)(3)(viii) of this section 
for each State by the median of the products of all States.
    (x) Multiply the results for paragraph (b)(3)(i), (iv) and (ix) of 
this section for each State.
    (xi) Divide the product in paragraph (b)(3)(x) of this section for 
each State by the sum of the products in paragraph (b)(3)(x) of this 
section for all States.
    (4) Calculate each State's program allocation as follows:
    (i) Multiply the remaining funds calculated in paragraph (b)(2) of 
this section by the formula share calculated in paragraph (b)(3)(xi) of 
this section,
    (ii) Add the base allocation from paragraph (b)(1) of this section 
to the product of paragraph (b)(4)(i) of this section.
    (c) Should total program allocations for any fiscal year fall below 
$209,724,761, then each State's program allocation shall be reduced from 
its allocated amount under a total program allocation of $209,724,761 by 
the same percentage as total program allocations for the fiscal year 
fall below $209,724,761.
    (d) All data sources used in the development of the formula are 
publicly available. The relevant data is available from the Bureau of 
the Census, the

[[Page 1143]]

Department of Energy's Energy Information Administration and the 
National Oceanic and Atmospheric Administration.
    (e) Should updates to the data used in the formula become available 
in any fiscal year, these changes would be implemented in the formula in 
the following program year.
    (f) DOE may reduce the program allocation for a State by the amount 
DOE determines cannot be reasonably expended by a grantee to weatherize 
dwelling units during the budget period for which financial assistance 
is to be awarded. In reaching this determination, DOE will consider the 
amount of unexpended financial assistance currently available to a 
grantee under this part and the number of dwelling units which remains 
to be weatherized with the unexpended financial assistance.
    (g) DOE may increase the program allocation of a State by the amount 
DOE determines the grantee can expend to weatherize additional dwelling 
units during the budget period for which financial assistance is to be 
awarded.
    (h) The Support Office Director shall notify each State of the 
program allocation for which that State is eligible to apply.

[60 FR 29480, June 5, 1995, as amended at 74 FR 12539, Mar. 25, 2009]



Sec.  440.11  Native Americans.

    (a) Notwithstanding any other provision of this part, the Support 
Office Director may determine, after taking into account the amount of 
funds made available to a State to carry out the purposes of this part, 
that:
    (1) The low-income members of an Indian tribe are not receiving 
benefits under this part equivalent to the assistance provided to other 
low-income persons in the State under this part and
    (2) The low-income members of such tribe would be better served by 
means of a grant made directly to provide such assistance.
    (b) In any State for which the Support Office Director shall have 
made the determination referred to in paragraph (a) of this section, the 
Support Office Director shall reserve from the sums that would otherwise 
be allocated to the State under this part not less than 100 percent, or 
more than 150 percent, of an amount which bears the same ratio to the 
State's allocation for the fiscal year involved as the population of all 
low-income Native Americans for whom a determination under paragraph (a) 
of this section has been made bears to the population of all low-income 
persons in the State.
    (c) The Support Office Director shall make the determination 
prescribed in paragraph (a) of this section in the event a State:
    (1) Does not apply within the sixty-day time period prescribed in 
Sec.  440.12(a);
    (2) Recommends that direct grants be made for low-income members of 
an Indian tribe as provided in Sec.  440.12(b)(5);
    (3) Files an application which DOE determines, in accordance with 
the procedures in Sec.  440.30, not to make adequate provision for the 
low-income members of an Indian tribe residing in the State; or
    (4) Has received grant funds and DOE determines, in accordance with 
the procedures in Sec.  440.30, that the State has failed to implement 
the procedures required by Sec.  440.16(6).
    (d) Any sums reserved by the Support Office Director pursuant to 
paragraph (b) of this section shall be granted to the tribal 
organization serving the individuals for whom the determination has been 
made, or where there is no tribal organization, to such other entity as 
the Support Office Director determines is able to provide adequate 
weatherization assistance pursuant to this part. Where the Support 
Office Director intends to make a grant to an organization to perform 
services benefiting more than one Indian tribe, the approval of each 
Indian tribe shall be a prerequisite for the issuance of a notice of 
grant award.
    (e) Within 30 days after the Support Office Director has reserved 
funds pursuant to paragraph (b) of this section, the Support Office 
Director shall give written notice to the tribal organization or other 
qualified entity of the amount of funds reserved and its eligibility to 
apply therefor.
    (f) Such tribal organization or other qualified entity shall 
thereafter be treated as a unit of general purpose local government 
eligible to apply for

[[Page 1144]]

funds hereunder, pursuant to the provisions of Sec.  440.13.

[49 FR 3629, Jan. 27, 1984, as amended at 58 FR 12529, Mar. 4, 1993]



Sec.  440.12  State application.

    (a) To be eligible for financial assistance under this part, a State 
shall submit an application to DOE in conformity with the requirements 
of this part not later than 60 days after the date of notice to apply is 
received from the Support Office Director. After receipt of an 
application for financial assistance or for approval of an amendment to 
a State plan, the Support Office Director may request the State to 
submit within a reasonable period of time any revisions necessary to 
make the application complete or to bring the application into 
compliance with the requirements of this part. The Support Office 
Director shall attempt to resolve any dispute over the application 
informally and to seek voluntary compliance. If a State fails to submit 
timely appropriate revisions to complete the application, the Support 
Office Director may reject the application as incomplete in a written 
decision, including a statement of reasons, which shall be subject to 
administrative review under Sec.  440.30 of this part.
    (b) Each application shall include:
    (1) The name and address of the State agency or office responsible 
for administering the program;
    (2) A copy of the final State plan prepared after notice and a 
public hearing in accordance with Sec.  440.14(a), except that an 
application by a local applicant need not include a copy of the final 
State plan;
    (3) The budget for total funds applied for under the Act, which 
shall include a justification and explanation of any amounts requested 
for expenditure pursuant to Sec.  440.18(d) for State administration;
    (4) The total number of dwelling units proposed to be weatherized 
with grant funds during the budget period for which assistance is to be 
awarded--
    (i) With financial assistance previously obligated under this part, 
and
    (ii) With the program allocation to the State;
    (5) A recommendation that a tribal organization be treated as a 
local applicant eligible to submit an application pursuant to Sec.  
440.13(b), if such a recommendation is to be made;
    (6) A monitoring plan which shall indicate the method used by the 
State to insure the quality of work and adequate financial management 
control at the subgrantee level;
    (7) A training and technical assistance plan which shall indicate 
how funds for training and technical assistance will be used; and
    (8) Any further information which the Secretary finds necessary to 
determine whether an application meets the requirements of this part.
    (c) On or before 60 days from the date that a timely filed 
application is complete, the Support Office Director shall decide 
whether DOE shall approve the application. The Support Office Director 
may--
    (1) Approve the application in whole or in part to the extent that 
the application conforms to the requirements of this part;
    (2) Approve the application in whole or in part subject to special 
conditions designed to ensure compliance with the requirements of this 
part; or
    (3) Disapprove the application if it does not conform to the 
requirements of this part.

(Approved by the Office of Management and Budget under control number 
1904-0047)

[49 FR 3629, Jan. 27, 1984, as amended at 50 FR 712, Jan. 4, 1985; 55 FR 
41325, Oct. 10, 1990; 58 FR 12529, Mar. 4, 1993; 60 FR 29481, June 5, 
1995]



Sec.  440.13  Local applications.

    (a) The Support Office Director shall give written notice to all 
local applicants throughout a State of their eligibility to apply for 
financial assistance under this part in the event:
    (1) A State, within which a local applicant is situated, fails to 
submit an application within 60 days after notice in accordance with 
Sec.  440.12(a) or
    (2) The Support Office Director finally disapproves the application 
of a State, and, under Sec.  440.30, either no appeal is filed or the 
Support Office Director's decision is affirmed.
    (b) To be eligible for financial assistance, a local applicant shall 
submit an application pursuant to Sec.  440.12(b) to the Support Office 
Director within 30

[[Page 1145]]

days after receiving the notice referred to in paragraph (a) of this 
section.
    (c) In the event one or more local applicants submits an application 
for financial assistance to carry out projects in the same geographical 
area, the Support Office Director shall hold a public hearing with the 
same procedures that apply under section Sec.  440.14(a).
    (d) Based on the information provided by a local applicant and 
developed in any hearing held under paragraph (c) of this section, the 
Support Office Director shall determine in writing whether to award a 
grant to carry out one or more weatherization projects.
    (e) If there is an adverse decision in whole or in part under 
paragraph (d) of this section, that decision is subject to 
administrative review under Sec.  440.30 of this part.
    (f) If, after a State application has been finally disapproved by 
DOE and the Support Office Director approves local applications under 
this section, the Support Office Director may reject a new State 
application in whole or in part as disruptive and untimely without 
prejudice to submission of an application for the next program year.

(Approved by the Office of Management and Budget under control number 
1904-0047)

[49 FR 3629, Jan. 27, 1984, as amended at 58 FR 12525, 12529, Mar. 4, 
1993]



Sec.  440.14  State plans.

    (a) Before submitting to DOE an application, a State must provide at 
least 10 days notice of a hearing to inform prospective subgrantees, and 
must conduct one or more public hearings to receive comments on a 
proposed State plan. The notice for the hearing must specify that copies 
of the plan are available and state how the public may obtain them. The 
State must prepare a transcript of the hearings and accept written 
submission of views and data for the record.
    (b) The proposed State plan must:
    (1) Identify and describe proposed weatherization projects, 
including a statement of proposed subgrantees and the amount of funding 
each will receive;
    (2) Address the other items contained in paragraph (c) of this 
section; and
    (3) Be made available throughout the State prior to the hearing.
    (c) After the hearing, the State must prepare a final State plan 
that identifies and describes:
    (1) The production schedule for the State indicating projected 
expenditures and the number of dwelling units, including previously 
weatherized units which are expected to be weatherized annually during 
the program year;
    (2) The climatic conditions within the State;
    (3) The type of weatherization work to be done;
    (4) An estimate of the amount of energy to be conserved;
    (5) Each area to be served by a weatherization project within the 
State, and must include for each area:
    (i) The tentative allocation;
    (ii) The number of dwelling units expected to be weatherized during 
the program year; and
    (iii) Sources of labor.
    (6) How the State plan is to be implemented, including:
    (i) An analysis of the existence and effectiveness of any 
weatherization project being carried out by a subgrantee;
    (ii) An explanation of the method used to select each area served by 
a weatherization project;
    (iii) The extent to which priority will be given to the 
weatherization of single-family or other high energy-consuming dwelling 
units;
    (iv) The amount of non-Federal resources to be applied to the 
program;
    (v) The amount of Federal resources, other than DOE weatherization 
grant funds, to be applied to the program;
    (vi) The amount of weatherization grant funds allocated to the State 
under this part;
    (vii) The expected average cost per dwelling to be weatherized, 
taking into account the total number of dwellings to be weatherized and 
the total amount of funds, Federal and non-Federal, expected to be 
applied to the program;
    (viii) The average amount of the DOE funds specified in Sec.  
440.18(c)(1) through (9) to be applied to any dwelling unit;
    (ix) [Reserved]
    (x) The procedures used by the State for providing additional 
administrative

[[Page 1146]]

funds to qualified subgrantees as specified in Sec.  440.18(d);
    (xi) Procedures for determining the most cost-effective measures in 
a dwelling unit;
    (xii) The definition of ``low-income'' which the State has chosen 
for determining eligibility for use statewide in accordance with Sec.  
440.22(a);
    (xiii) The definition of ``children'' which the State has chosen 
consistent with Sec.  440.3; and
    (xiv) The amount of Federal funds and how they will be used to 
increase the amount of weatherization assistance that the State obtains 
from non-Federal sources, including private sources, and the expected 
leveraging effect to be accomplished.

[65 FR 77217, Dec. 8, 2000, as amended at 66 FR 58366, Nov. 21, 2001]



Sec.  440.15  Subgrantees.

    (a) The grantee shall ensure that:
    (1) Each subgrantee is a CAA or other public or nonprofit entity;
    (2) Each subgrantee is selected on the basis of public comment 
received during a public hearing conducted pursuant to Sec.  440.14(a) 
and other appropriate findings regarding:
    (i) The subgrantee's experience and performance in weatherization or 
housing renovation activities;
    (ii) The subgrantee's experience in assisting low-income persons in 
the area to be served; and
    (iii) The subgrantee's capacity to undertake a timely and effective 
weatherization program.
    (3) In selecting a subgrantee, preference is given to any CAA or 
other public or nonprofit entity which has, or is currently 
administering, an effective program under this part or under title II of 
the Economic Opportunity Act of 1964, with program effectiveness 
evaluated by consideration of factors including, but not necessarily 
limited to, the following:
    (i) The extent to which the past or current program achieved or is 
achieving weatherization goals in a timely fashion;
    (ii) The quality of work performed by the subgrantee;
    (iii) The number, qualifications, and experience of the staff 
members of the subgrantee; and
    (iv) The ability of the subgrantee to secure volunteers, training 
participants, public service employment workers, and other Federal or 
State training programs.
    (b) The grantee shall ensure that the funds received under this part 
will be allocated to the entities selected in accordance with paragraph 
(a) of this section, such that funds will be allocated to areas on the 
basis of the relative need for a weatherization project by low-income 
persons.
    (c) If DOE finds that a subgrantee selected to undertake 
weatherization activities under this part has failed to comply 
substantially with the provisions of the Act or this part and should be 
replaced, such finding shall be treated as a finding under Sec.  
440.30(i) for purposes of Sec.  440.30.
    (d) Any new or additional subgrantee shall be selected at a hearing 
in accordance with Sec.  440.14(a) and upon the basis of the criteria in 
paragraph (a) of this section.
    (e) A State may terminate financial assistance under a subgrant 
agreement for a grant period only in accordance with established State 
procedures that provide to the subgrantee appropriate notice of the 
State's reasons for termination and afford the subgrantee an adequate 
opportunity to be heard.

[49 FR 3629, Jan. 27, 1984, as amended at 55 FR 41326, Oct. 10, 1990; 58 
FR 12526, Mar. 4, 1993; 65 FR 77218, Dec. 8, 2000]



Sec.  440.16  Minimum program requirements.

    Prior to the expenditure of any grant funds each grantee shall 
develop, publish, and implement procedures to ensure that:
    (a) No dwelling unit may be weatherized without documentation that 
the dwelling unit is an eligible dwelling unit as provided in Sec.  
440.22;
    (b) Priority is given to identifying and providing weatherization 
assistance to:
    (1) Elderly persons;
    (2) Persons with disabilities;
    (3) Families with children;
    (4) High residential energy users; and
    (5) Households with a high energy burden.

[[Page 1147]]

    (c) Financial assistance provided under this part will be used to 
supplement, and not supplant, State or local funds, and, to the maximum 
extent practicable as determined by DOE, to increase the amounts of 
these funds that would be made available in the absence of Federal funds 
provided under this part;
    (d) To the maximum extent practicable, the grantee will secure the 
services of volunteers when such personnel are generally available, 
training participants and public service employment workers, other 
Federal or State training program workers, to work under the supervision 
of qualified supervisors and foremen;
    (e) To the maximum extent practicable, the use of weatherization 
assistance shall be coordinated with other Federal, State, local, or 
privately funded programs in order to improve energy efficiency and to 
conserve energy;
    (f) The low-income members of an Indian tribe shall receive benefits 
equivalent to the assistance provided to other low-income persons within 
a State unless the grantee has made the recommendation provided in Sec.  
440.12(b)(5);
    (g) No dwelling unit may be reported to DOE as completed until all 
weatherization materials have been installed and the subgrantee, or its 
authorized representative, has performed a final inspection(s) including 
any mechanical work performed and certified that the work has been 
completed in a workmanlike manner and in accordance with the priority 
determined by the audit procedures required by Sec.  440.21; and
    (h) Subgrantees limit expenditure of funds under this part for 
installation of materials (other than weatherization materials) to abate 
energy-related health and safety hazards, to a list of types of such 
hazards, permissible abatement materials and their costs which is 
submitted, and updated as necessary at the same time as an annual 
application under Sec.  440.12 of this part and which DOE shall approve 
if--
    (1) Elimination of such hazards are necessary before, or as a result 
of, installation of weatherization materials; and
    (2) The grantee sets forth a limitation on the percent of average 
dwelling unit costs which may be used to abate such hazards which is 
reasonable in light of the primary energy conservation purpose of this 
part;
    (i) The benefits of weatherization to occupants of rental units are 
protected in accordance with Sec.  440.22(b)(3) of this part.

(Approved by the Office of Management and Budget under control number 
1904-0047)

[49 FR 3629, Jan. 27, 1984, as amended at 58 FR 12526, Mar. 4, 1993; 65 
FR 77218, Dec. 8, 2000]



Sec.  440.17  Policy Advisory Council.

    (a) Prior to the expenditure of any grant funds, a State policy 
advisory council, or a State commission or council which serves the same 
functions as a State policy advisory council, must be established by a 
State or by the Regional Office Director if a State does not participate 
in the Program which:
    (1) Has special qualifications and sensitivity with respect to 
solving the problems of low-income persons, including the weatherization 
and energy conservation problems of these persons;
    (2) Is broadly representative of organizations and agencies, 
including consumer groups that represent low-income persons, 
particularly elderly and handicapped low-income persons and low-income 
Native Americans, in the State or geographical area in question; and
    (3) Has responsibility for advising the appropriate official or 
agency administering the allocation of financial assistance in the State 
or area with respect to the development and implementation of a 
weatherization assistance program.
    (b) Any person employed in any State Weatherization Program may also 
be a member of an existing commission or council, but must abstain from 
reviewing and approving activities associated with the DOE 
Weatherization Assistance Program.
    (c) States which opt to utilize an existing commission or council 
must certify to DOE, as a part of the annual application, of the 
council's or commission's independence in reviewing and

[[Page 1148]]

approving activities associated with the DOE Weatherization Assistance 
Program.

[49 FR 3629, Jan. 27, 1984, as amended at 58 FR 12529, Mar. 4, 1993; 65 
FR 77218, Dec. 8, 2000]



Sec.  440.18  Allowable expenditures.

    (a) Except as adjusted, the expenditure of financial assistance 
provided under this part for labor, weatherization materials, and 
related matters included in paragraphs (c)(1) through (9) of this 
section shall not exceed an average of $6,500 per dwelling unit 
weatherized in the State, except as adjusted in paragraph (c) of this 
section.
    (b) The expenditure of financial assistance provided under this part 
for labor, weatherization materials, and related matters for a renewable 
energy system, shall not exceed an average of $3,000 per dwelling unit.
    (c) The $6,500 average will be adjusted annually by DOE beginning in 
calendar year 2010 and the $3,000 average for renewable energy systems 
will be adjusted annually by DOE beginning in calendar year 2007, by 
increasing the limitations by an amount equal to:
    (1) The limitation amount for the previous year, multiplied by
    (2) The lesser of:
    (i) The percentage increase in the Consumer Price Index (all items, 
United States city average) for the most recent calendar year completed 
before the beginning of the year for which the determination is being 
made, or
    (ii) Three percent.
    (3) For the purposes of determining the average cost per dwelling 
limitation, costs for the purchase of vehicles or other certain types of 
equipment as defined in 10 CFR part 600 may be amortized over the useful 
life of the vehicle or equipment.
    (d) Allowable expenditures under this part include only:
    (1) The cost of purchase and delivery of weatherization materials;
    (2) Labor costs, in accordance with Sec.  440.19;
    (3) Transportation of weatherization materials, tools, equipment, 
and work crews to a storage site and to the site of weatherization work;
    (4) Maintenance, operation, and insurance of vehicles used to 
transport weatherization materials;
    (5) Maintenance of tools and equipment;
    (6) The cost of purchasing vehicles, except that any purchase of 
vehicles must be referred to DOE for prior approval in every instance.
    (7) Employment of on-site supervisory personnel;
    (8) Storage of weatherization materials, tools, and equipment;
    (9) The cost of incidental repairs if such repairs are necessary to 
make the installation of weatherization materials effective;
    (10) The cost of liability insurance for weatherization projects for 
personal injury and for property damage;
    (11) The cost of carrying out low-cost/no-cost weatherization 
activities in accordance with Sec.  440.20;
    (12) The cost of weatherization program financial audits as required 
by Sec.  440.23(d);
    (13) Allowable administrative expenses under paragraph (d) of this 
section; and
    (14) Funds used for leveraging activities in accordance with Sec.  
440.14(b)(9)(xiv); and
    (15) The cost of eliminating health and safety hazards elimination 
of which is necessary before, or because of, installation of 
weatherization materials.
    (e) Not more than 10 percent of any grant made to a State may be 
used by the grantee and subgrantees for administrative purposes in 
carrying out duties under this part, except that not more than 5 percent 
may be used by the State for such purposes, and not less than 5 percent 
must be made available to subgrantees by States. A State may provide in 
its annual plan for recipients of grants of less than $350,000 to use up 
to an additional 5 percent of such grants for administration if the 
State has determined that such recipient requires such additional amount 
to implement effectively the administrative requirements established by 
DOE pursuant to this part.
    (f) No grant funds awarded under this part shall be used for any of 
the following purposes:

[[Page 1149]]

    (1) To weatherize a dwelling unit which is designated for 
acquisition or clearance by a Federal, State, or local program within 12 
months from the date weatherization of the dwelling unit would be 
scheduled to be completed; or
    (2) To install or otherwise provide weatherization materials for a 
dwelling unit weatherized previously with grant funds under this part, 
except:
    (i) As provided under Sec.  440.20;
    (ii) If such dwelling unit has been damaged by fire, flood, or act 
of God and repair of the damage to weatherization materials is not paid 
for by insurance; or
    (iii) That dwelling units partially weatherized under this part or 
under other Federal programs during the period September 30, 1975, 
through September 30, 1993, may receive further financial assistance for 
weatherization under this part. While DOE will continue to require these 
homes to be reported separately, States may count these homes as 
completions for the purposes of compliance with the per-home expenditure 
limit in Sec.  440.18. Each dwelling unit must receive a new energy 
audit which takes into account any previous energy conservation 
improvements to the dwelling.

[58 FR 12526, Mar. 4, 1993, as amended at 65 FR 77218, Dec. 8, 2000; 66 
FR 58366, Nov. 21, 2001; 71 FR 35778, June 22, 2006; 74 FR 12540, Mar. 
25, 2009]



Sec.  440.19  Labor.

    Payments for labor costs under Sec.  440.18(c)(2) must consist of:
    (a) Payments permitted by the Department of Labor to supplement 
wages paid to training participants, public service employment workers, 
or other Federal or State training programs; and
    (b) Payments to employ labor or to engage a contractor (particularly 
a nonprofit organization or a business owned by disadvantaged 
individuals which performs weatherization services), provided a grantee 
has determined an adequate number of volunteers, training participants, 
public service employment workers, or other Federal or State training 
programs are not available to weatherize dwelling units for a subgrantee 
under the supervision of qualified supervisors.

[65 FR 77218, Dec. 8, 2000]



Sec.  440.20  Low-cost/no-cost weatherization activities.

    (a) An eligible dwelling unit may be weatherized without regard to 
the limitations contained in Sec.  440.18 (e)(2) or Sec.  440.21(b) from 
funds designated by the grantee for carrying out low-cost/no-cost 
weatherization activities provided:
    (1) Inexpensive weatherization materials are used, such as water 
flow controllers, furnace or cooling filters, or items which are 
primarily directed toward reducing infiltration, including 
weatherstripping, caulking, glass patching, and insulation for plugging 
and
    (2) No labor paid with funds provided under this part is used to 
install weatherization materials referred to in paragraph (a)(1) of this 
section.
    (b) A maximum of 10 percent of the amount allocated to a subgrantee, 
not to exceed $50 in materials costs per dwelling unit, may be expended 
to carry out low-cost/no-cost weatherization activities, unless the 
Support Office Director approves a higher expenditure per dwelling unit.

[49 FR 3629, Jan. 27, 1984, as amended at 50 FR 713, Jan. 4, 1985; 58 FR 
12529, Mar. 4, 1993]



Sec.  440.21  Weatherization materials standards and energy audit procedures.

    (a) Paragraph (b) of this section describes the required standards 
for weatherization materials. Paragraph (c)(1) of this section describes 
the performance and quality standards for renewable energy systems. 
Paragraph (c)(2) of this section specifies the procedures and criteria 
that are used for considering a petition from a manufacturer requesting 
the Secretary to certify an item as a renewable energy system. 
Paragraphs (d) and (e) of this section describe the cost-effectiveness 
tests that weatherization materials must pass before they may be 
installed in an eligible dwelling unit. Paragraph (f) of this section 
lists the other energy audit requirements that do not pertain to cost-
effectiveness tests of weatherization materials. Paragraphs (g) and

[[Page 1150]]

(h) of this section describe the use of priority lists and presumptively 
cost-effective general heat waste reduction materials as part of a 
State's energy audit procedures. Paragraph (i) of this section explains 
that a State's energy audit procedures and priority lists must be re-
approved by DOE every five years.
    (b) Only weatherization materials which are listed in appendix A to 
this part and which meet or exceed standards prescribed in appendix A to 
this part may be purchased with funds provided under this part. However, 
DOE may approve an unlisted material upon application from any State.
    (c)(1) A system or technology shall not be considered by DOE to be a 
renewable energy system under this part unless:
    (i) It will result in a reduction in oil or natural gas consumption;
    (ii) It will not result in an increased use of any item which is 
known to be, or reasonably expected to be, environmentally hazardous or 
a threat to public health or safety;
    (iii) Available Federal subsidies do not make such a specification 
unnecessary or inappropriate (in light of the most advantageous 
allocation of economic resources); and
    (iv) If a combustion rated system, it has a thermal efficiency 
rating of at least 75 percent; or, in the case of a solar system, it has 
a thermal efficiency rating of at least 15 percent.
    (2) Any manufacturer may submit a petition to DOE requesting the 
Secretary to certify an item as a renewable energy system.
    (i) Petitions should be submitted to: Weatherization Assistance 
Program, Office of Energy Efficiency and Renewable, Mail Stop EE-2K, 
1000 Independence Avenue, SW., Washington, DC 20585.
    (ii) A petition for certification of an item as a renewable energy 
system must be accompanied by information demonstrating that the item 
meets the criteria in paragraph (c)(1) of this section.
    (iii) DOE may publish a document in the Federal Register that 
invites public comment on a petition.
    (iv) DOE shall notify the petitioner of the Secretary's action on 
the request within one year after the filing of a complete petition, and 
shall publish notice of approvals and denials in the Federal Register.
    (d) Except for materials to eliminate health and safety hazards 
allowable under Sec.  440.18(c)(15), each individual weatherization 
material and package of weatherization materials installed in an 
eligible dwelling unit must be cost-effective. These materials must 
result in energy cost savings over the lifetime of the measure(s), 
discounted to present value, that equal or exceed the cost of materials, 
installation, and on-site supervisory personnel as defined by the 
Department. States have the option of requiring additional related costs 
to be included in the determination of cost-effectiveness. The cost of 
incidental repairs must be included in the cost of the package of 
measures installed in a dwelling.
    (e) The energy audit procedures must assign priorities among 
individual weatherization materials in descending order of their cost-
effectiveness according to paragraph (d) of this section after:
    (1) Adjusting for interaction between architectural and mechanical 
weatherization materials by using generally accepted engineering methods 
to decrease the estimated fuel cost savings for a lower priority 
weatherization material in light of fuel cost savings for a related 
higher priority weatherization material; and
    (2) Eliminating any weatherization materials that are no longer 
cost-effective, as adjusted under paragraph (e)(1) of this section.
    (f) The energy audit procedures also must--
    (1) Compute the cost of fuel saved per year by taking into account 
the climatic data of the area where the dwelling unit is located, where 
the base temperature that determines the number of heating or cooling 
degree days (if used) reasonably approximates conditions when operation 
of heating and cooling equipment is required to maintain comfort, and 
must otherwise use reasonable energy estimating methods and assumptions;
    (2) Determine existing energy use and energy requirements of the 
dwelling

[[Page 1151]]

unit from actual energy bills or by generally accepted engineering 
calculations;
    (3) Address significant heating and cooling needs;
    (4) Make provision for the use of advanced diagnostic and assessment 
techniques which DOE has determined are consistent with sound 
engineering practices;
    (5) Identify health and safety hazards to be abated with DOE funds 
in compliance with the State's DOE-approved health and safety procedures 
under Sec.  440.16(h);
    (6) Treat the dwelling unit as a whole system by examining its 
heating and cooling system, its air exchange system, and its occupants' 
living habits and needs, and making necessary adjustments to the 
priority of weatherization materials with adequate documentation of the 
reasons for such an adjustment; and
    (7) Be specifically approved by DOE for use on each major dwelling 
type that represents a significant portion of the State's weatherization 
program in light of the varying energy audit requirements of different 
dwelling types including single-family dwellings, multi-family 
buildings, and mobile homes.
    (g) For similar dwelling units without unusual energy-consuming 
characteristics, energy audits may be accomplished by using a priority 
list developed by conducting, in compliance with paragraphs (b) through 
(f) of this section, site-specific energy audits of a representative 
subset of these dwelling units. For DOE approval, States must describe 
how the priority list was developed, how the subset of similar homes was 
determined, and circumstances that will require site-specific audits 
rather than the use of the priority lists. States also must provide the 
input data and list of weatherization measures recommended by the energy 
audit software or manual methods for several dwelling units from the 
subset of similar units.
    (h) States may use, as a part of an energy audit, general heat waste 
reduction weatherization materials that DOE has determined to be 
generally cost-effective. States may request approval to use general 
heat waste materials not listed in DOE policy guidance by providing 
documentation of their cost-effectiveness and a description of the 
circumstances under which such materials will be used.
    (i) States must resubmit their energy audit procedures (and priority 
lists, if applicable, under certain conditions) to DOE for approval 
every five years. States must also resubmit to DOE, for approval every 
five years, their list of general heat waste materials in addition to 
those approved by DOE in policy guidance, if applicable. Policy guidance 
will describe the information States must submit to DOE and the 
circumstances that reduce or increase documentation requirements.

[65 FR 77218, Dec. 8, 2000, as amended at 71 FR 35778, June 22, 2006]



Sec.  440.22  Eligible dwelling units.

    (a) A dwelling unit shall be eligible for weatherization assistance 
under this part if it is occupied by a family unit:
    (1) Whose income is at or below 200 percent of the poverty level 
determined in accordance with criteria established by the Director of 
the Office of Management and Budget,
    (2) Which contains a member who has received cash assistance 
payments under Title IV or XVI of the Social Security Act or applicable 
State or local law at any time during the 12-month period preceding the 
determination of eligibility for weatherization assistance; or
    (3) If the State elects, is eligible for assistance under the Low-
Income Home Energy Assistance Act of 1981, provided that such basis is 
at least 200 percent of the poverty level determined in accordance with 
criteria established by the Director of the Office of Management and 
Budget.
    (b) A subgrantee may weatherize a building containing rental 
dwelling units using financial assistance for dwelling units eligible 
for weatherization assistance under paragraph (a) of this section, 
where:
    (1) The subgrantee has obtained the written permission of the owner 
or his agent;
    (2) Not less than 66 percent (50 percent for duplexes and four-unit 
buildings, and certain eligible types of large

[[Page 1152]]

multi-family buildings) of the dwelling units in the building:
    (i) Are eligible dwelling units, or
    (ii) Will become eligible dwelling units within 180 days under a 
Federal, State, or local government program for rehabilitating the 
building or making similar improvements to the building; and
    (3) The grantee has established procedures for dwellings which 
consist of a rental unit or rental units to ensure that:
    (i) The benefits of weatherization assistance in connection with 
such rental units, including units where the tenants pay for their 
energy through their rent, will accrue primarily to the low-income 
tenants residing in such units;
    (ii) For a reasonable period of time after weatherization work has 
been completed on a dwelling containing a unit occupied by an eligible 
household, the tenants in that unit (including households paying for 
their energy through their rent) will not be subjected to rent increases 
unless those increases are demonstrably related to matters other than 
the weatherization work performed;
    (iii) The enforcement of paragraph (b)(3)(ii) of this section is 
provided through procedures established by the State by which tenants 
may file complaints, and owners, in response to such complaints, shall 
demonstrate that the rent increase concerned is related to matters other 
than the weatherization work performed; and
    (iv) No undue or excessive enhancement shall occur to the value of 
the dwelling units.
    (4)(i) A building containing rental dwelling units meets the 
requirements of paragraph (b)(2), and paragraphs (b)(3)(ii) and 
(b)(3)(iv), of this section if it is included on the most recent list 
posted by DOE of Assisted Housing and Public Housing buildings 
identified by the U.S. Department of Housing and Urban Development as 
meeting those requirements.
    (ii) A building containing rental dwelling units meets the 
requirements of paragraph (b)(2), and paragraph (b)(3)(iv), of this 
section if it is included on the most recent list posted by DOE of 
Assisted Housing and Public Housing buildings identified by the U.S. 
Department of Housing and Urban Development as meeting those 
requirements.
    (iii) A building containing rental dwelling units meets the 
requirement of paragraph (b)(2) of this section if it is included on the 
most recent list posted by DOE of Low Income Housing Tax Credit 
buildings identified by the U.S. Department of Housing and Urban 
Development as meeting that requirement and of Rural Housing Service 
Multifamily Housing buildings identified by the U.S. Department of 
Agriculture as meeting that requirement.
    (iv) For buildings identified under paragraphs (b)(4)(i), (ii) and 
(iii) of this section, States will continue to be responsible for 
ensuring compliance with the remaining requirements of this section, and 
States shall establish requirements and procedures to ensure such 
compliance in accordance with this section.
    (c) In order to secure the Federal investment made under this part 
and address the issues of eviction from and sale of property receiving 
weatherization materials under this part, States may seek landlord 
agreement to placement of a lien or to other contractual restrictions;
    (d) As a condition of having assistance provided under this part 
with respect to multifamily buildings, a State may require financial 
participation, when feasible, from the owners of such buildings. Such 
financial participation shall not be reported as program income, nor 
will it be treated as if it were appropriated funds. The funds 
contributed by the landlord shall be expended in accordance with the 
agreement between the landlord and the weatherization agency.
    (e) In devising procedures under paragraph (b)(3)(iii) of this 
section, States should consider requiring use of alternative dispute 
resolution procedures including arbitration.
    (f) A State may weatherize shelters. For the purpose of determining 
how many dwelling units exist in a shelter, a grantee may count each 800 
square feet of the shelter as a dwelling unit or

[[Page 1153]]

it may count each floor of the shelter as a dwelling unit.

[58 FR 12528, Mar. 4, 1993, as amended at 65 FR 77219, Dec. 8, 2000; 74 
FR 12540, Mar. 25, 2009; 75 FR 3856, Jan. 25, 2010]



Sec.  440.23  Oversight, training, and technical assistance.

    (a) The Secretary and the appropriate Support Office Director, in 
coordination with the Secretary of Health and Human Services, shall 
monitor and evaluate the operation of projects carried out by CAA's 
receiving financial assistance under this part through on-site 
inspections, or through other means, in order to ensure the effective 
provision of weatherization assistance for the dwelling units of low-
income persons.
    (b) DOE shall also carry out periodic evaluations of a program and 
weatherization projects that are not carried out by a CAA and that are 
receiving financial assistance under this part.
    (c) The Secretary and the appropriate Support Office Director, the 
Comptroller General of the United States, and for a weatherization 
project carried out by a CAA, the Secretary of Health and Human Services 
or any of their duly authorized representatives, shall have access to 
any books, documents, papers, information, and records of any 
weatherization project receiving financial assistance under the Act for 
the purpose of audit and examination.
    (d) Each grantee shall ensure that audits by or on behalf of 
subgrantees are conducted with reasonable frequency, on a continuing 
basis, or at scheduled intervals, usually annually, but not less 
frequently than every two years, in accordance with 10 CFR part 600, and 
OMB Circular 110, Attachment F, as applicable.
    (e) The Secretary may reserve from the funds appropriated for any 
fiscal year an amount not to exceed 20 percent to provide, directly or 
indirectly, training and technical assistance to any grantee or 
subgrantee. Such training and technical assistance may include providing 
information concerning conservation practices to occupants of eligible 
dwelling units.

[49 FR 3629, Jan. 27, 1984, as amended at 58 FR 12529, Mar. 4, 1993; 74 
FR 12540, Mar. 25, 2009]



Sec.  440.24  Recordkeeping.

    Each grantee or subgrantee receiving Federal financial assistance 
under this part shall keep such records as DOE shall require, including 
records which fully disclose the amount and disposition by each grantee 
and subgrantee of the funds received, the total cost of a weatherization 
project or the total expenditure to implement the State plan for which 
assistance was given or used, the source and amount of funds for such 
project or program not supplied by DOE, the average costs incurred in 
weatherization of individual dwelling units, the average size of the 
dwelling being weatherized, the average income of households receiving 
assistance under this part, and such other records as DOE deems 
necessary for an effective audit and performance evaluation. Such 
recordkeeping shall be in accordance with the DOE Financial Assistance 
Rule, 10 CFR part 600, and any further requirements of this part.

[58 FR 12529, Mar. 4, 1993]



Sec.  440.25  Reports.

    DOE may require any recipient of financial assistance under this 
part to provide, in such form as may be prescribed, such reports or 
answers in writing to specific questions, surveys, or questionnaires as 
DOE determines to be necessary to carry out its responsibilities or the 
responsibilities of the Secretary of Health and Human Services under 
this part.

(Approved by the Office of Management and Budget under control number 
1901-0127)



Sec. Sec.  440.26-440.29  [Reserved]



Sec.  440.30  Administrative review.

    (a) An applicant shall have 20 days from the date of receipt of a 
decision under Sec.  440.12 or Sec.  440.13 to file a notice requesting 
administrative review. If an applicant does not timely file such a 
notice, the decision under Sec.  440.12 or Sec.  440.13 shall become 
final for DOE.

[[Page 1154]]

    (b) A notice requesting administrative review shall be filed with 
the Support Office Director and shall be accompanied by a written 
statement containing supporting arguments and requesting, if desired, 
the opportunity for a public hearing.
    (c) A notice or any other document shall be deemed filed under this 
section upon receipt.
    (d) On or before 15 days from receipt of a notice requesting 
administrative review which is timely filed, the Support Office Director 
shall forward to the Deputy Assistant Secretary, the notice requesting 
administrative review, the decision under Sec.  440.12 or Sec.  440.13 
as to which administrative review is sought, a draft recommended final 
decision for the concurrence of the Deputy Assistant Secretary, and any 
other relevant material.
    (e) If the applicant requests a public hearing, the Deputy Assistant 
Secretary, within 15 days, shall give actual notice to the State and 
Federal Register notice of the date, place, time, and procedures which 
shall apply to the public hearing. Any public hearing under this section 
shall be informal and legislative in nature.
    (f) On or before 45 days from receipt of documents under paragraph 
(d) of this section or the conclusion of the public hearing, whichever 
is later, the Deputy Assistant Secretary shall concur in, concur in as 
modified, or issue a substitute for the recommended decision of the 
Support Office Director.
    (g) On or before 15 days from the date of receipt of the 
determination under paragraph (f) of this section, the Governor may file 
an application, with a supporting statement of reasons, for 
discretionary review by the Assistant Secretary. On or before 15 days 
from filing, the Assistant Secretary shall send a notice to the Governor 
stating whether the Deputy Assistant Secretary's determination will be 
reviewed. If the Assistant Secretary grants review, a decision shall be 
issued no later than 60 days from the date review is granted. The 
Assistant Secretary may not issue a notice or decision under this 
paragraph without the concurrence of the DOE Office of General Counsel.
    (h) A decision under paragraph (f) of this section shall be final 
for DOE if there is no review under paragraph (g) of this section. If 
there is review under paragraph (g) of this section, the decision 
thereunder shall be final for DOE, and no appeal shall lie elsewhere in 
DOE.
    (i) Prior to the effective date of the termination of eligibility 
for further participation in the program because of failure to comply 
substantially with the requirements of the Act or of this part, a 
grantee shall have the right to written notice of the basis for the 
enforcement action and the opportunity for a public hearing 
notwithstanding any provisions to contrary of 10 CFR 600.26, 600.28(b), 
600.29, 600.121(c), and 600.443. A notice under this paragraph shall be 
mailed by the Support Office Director by registered mail, return-receipt 
requested, to the State, local grantee, and other interested parties. To 
obtain a public hearing, the grantee must request an evidentiary 
hearing, with prior Federal Register notice, in the election letter 
submitted under Rule 2 of 10 CFR 1024.4 and the request shall be granted 
notwithstanding any provisions of Rule 2 to the contrary.

[55 FR 41326, Oct. 10, 1990, as amended at 58 FR 12529, Mar. 4, 1993]



   Sec. Appendix A to Part 440--Standards for Weatherization Materials

    The following Government standards are produced by the Consumer 
Product Safety Commission and are published in title 16, Code of Federal 
Regulations:
    Thermal Insulating Materials for Building Elements Including Walls, 
Floors, Ceilings, Attics, and Roofs Insulation--organic fiber--
conformance to Interim Safety Standard in 16 CFR part 1209;
    Fire Safety Requirements for Thermal Insulating Materials According 
to Insulation Use--Attic Floor--insulation materials intended for 
exposed use in attic floors shall be capable of meeting the same 
flammability requirements given for cellulose insulation in 16 CFR part 
1209;
    Enclosed spaces--insulation materials intended for use within 
enclosed stud or joist spaces shall be capable of meeting the smoldering 
combustion requirements in 16 CFR part 1209.
    The following standards which are not otherwise set forth in part 
440 are incorporated by reference and made a part of part 440. The 
following standards have been approved for

[[Page 1155]]

incorporation by reference by the Director of the Federal Register in 
accordance with 5 U.S.C. 552(a) and 1 CFR part 51. These materials are 
incorporated as they exist on April 5, 1993 and a notice of any change 
in these materials will be published in the Federal Register. The 
standards incorporated by reference are available for inspection at the 
National Archives and Records Administration (NARA). For information on 
the availability of this material at NARA, call 202-741-6030, or go to: 
http://www.archives.gov/federal_register/ code_of_federal_regulations/ 
ibr_locations.html.
    The standards incorporated by reference in part 440 can be obtained 
from the following sources:

Air Conditioning and Refrigeration Institute, 1501 Wilson Blvd., 
Arlington, VA 22209; (703) 524-8800.
American Gas Association, 1515 Wilson Blvd., Arlington, VA 22209; (703) 
841-8400.
American National Standards Institute, Inc., 1430 Broadway, New York, NY 
10018; (212) 642-4900.
American Society of Mechanical Engineers, United Engineering Center, 345 
East 47th Street, New York, NY 10017; (212) 705-7800.
American Society for Testing and Materials, 1916 Race Street, 
Philadelphia, PA 19103; (215) 299-5400.
American Architectural Manufacturers Association, 1540 East Dundee Road, 
Palatine, IL 60067; (708) 202-1350.
Federal Specifications, General Services Administration, Specifications 
Section, Room 6654, 7th and D Streets, SW, Washington, DC 20407; (202) 
708-5082.
Gas Appliance Manufacturers Association, 1901 Moore St., Arlington, VA 
22209; (703) 525-9565.
National Electrical Manufacturers Association, 2101 L Street, NW, Suite 
300, Washington, DC 20037; (202) 457-8400.
National Fire Protection Association, Batterymarch Park, P.O. Box 9101, 
Quincy, MA 02269; (617) 770-3000.
National Standards Association, 1200 Quince Orchard Blvd., Gaithersburg, 
MD 20878; (301) 590-2300. (NSA is a local contact for materials from 
ASTM).
National Wood Window and Door Association, 1400 East Touhy Avenue, Des 
Plaines, IL 60018; (708) 299-5200.
Sheet Metal and Air Conditioning Contractors Association, P.O. Box 
221230, Chantilly, VA 22022-1230; (703) 803-2980.
Steel Door Institute, 712 Lakewood Center North, 14600 Detroit Avenue, 
Cleveland, OH 44107; (216) 899-0100.
Steel Window Institute, 1230 Keith Building, Cleveland, OH 44115; (216) 
241-7333.
Tubular Exchanger Manufacturers Association, 25 North Broadway, 
Tarrytown, NY 10591; (914) 332-0040.
Underwriters Laboratories, Inc., P.O. Box 75530, Chicago, IL 60675-5330; 
(708) 272-8800.
    More information regarding the standards in this reference can be 
obtained from the following sources:

Environmental Protection Agency, 401 M Street, NW, Washington, DC 20006; 
(202) 554-1080.
National Institute of Standards and Technology, U.S. Department of 
Commerce, Gaithersburg, MD 20899, (301) 975-2000
Weatherization Assistance Programs Division, Conservation and Renewable 
Energy, Mail Stop 5G-023, Forrestal Bldg, 1000 Independence Ave, SW, 
Washington, DC 20585; (202) 586-2207.

   Thermal Insulating Materials for Building Elements Including Walls,
                   Floors, Ceilings, Attics, and Roofs
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Insulation--mineral fiber:
  Blanket insulation..............................  ASTM \1\ C665-88.
  Roof insulation board...........................  ASTM C726-88.
  Loose-fill insulation...........................  ASTM C764-88.
Insulation--mineral cellular:
  Vermiculite loose-fill insulation...............  ASTM C516-80 (1990).
  Perlite loose-fill insulation...................  ASTM C549-81 (1986).
  Cellular glass insulation block.................  ASTM C552-88.
  Perlite insulation board........................  ASTM C728-89a.
Insulation--organic fiber:
  Cellulosic fiber insulating board...............  ASTM C208-72 (1982).
  Cellulose loose-fill insulation.................  ASTM C739-88.
Insulation-organic cellular:
  Preformed block-type polystyrene insulation.....  ASTM C578-87a.
  Rigid preformed polyurethane insulation board...  ASTM C591-85.
  Polyurethane or polyisocyanurate insulation       FS \2\ HH-I-1972/1
   board faced with aluminum foil on both sides.     (1981).
  Polyurethane or polyisocyanurate insulation       FS HH-I-1972/2
   board faced with felt on both sides.              (1981). And
                                                     Amendment 1,
                                                     October 3, 1985.
Insulation--composite boards:
  Mineral fiber and rigid cellular polyurethane     ASTM C726-88.
   composite roof insulation board.
  Perlite board and rigid cellular polyurethane     ASTM C984-83.
   composite roof insulation.
  Gypsum board and polyurethane or polisocyanurate  FS HH-I-1972/4
   composite board.                                  (1981).

[[Page 1156]]

 
Materials used as a patch to reduce infiltration    Commercially
 through the building envelope.                      available.
------------------------------------------------------------------------
\1\ ASTM indicates American Society for Testing and Materials.
\2\ FS indicates Federal Specifications.


  Thermal Insulating Materials for Pipes, Ducts, and Equipment Such as
                          Boilers and Furnaces
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Insulation--mineral fiber:
  Preformed pipe insulation............  ASTM \1\ C547-77.
  Blanket and felt insulation            ASTM C553-70 (1977).
   (industrial type).
  Blanket insulation and blanket type    ASTM C592-80.
   pipe insulation (metal-mesh covered)
   (industrial type).
  Block and board insulation...........  ASTM C612-83.
  Spray applied fibrous insulation for   ASTM C720-89.
   elevated temperature.
  High-temperature fiber blanket         ASTM C892-89.
   insulation.
  Duct work insulation.................  Selected and applied according
                                          to ASTM C971-82.
Insulation--mineral cellular:
  Diatomaceous earth block and pipe      ASTM C517-71 (1979)
   insulation.
  Calcium silicate block and pipe        ASTM C533-85 (1990).
   insulation.
  Cellular glass insulation............  ASTM C552-88.
  Expanded perlite block and pipe        ASTM C610-85.
   insulation.
Insulation--Organic Cellular:
  Preformed flexible elastomeric         ASTM C534-88.
   cellular insulation in sheet and
   tubular form.
  Unfaced preformed rigid cellular       ASTM C591-85.
   polyurethane insulation.
Insulation skirting....................  Commercially available.
------------------------------------------------------------------------
\1\ ASTM indicates American Society for Testing and Materials.


     Fire Safety Requirements for Insulating Materials According to
                             Insulation Use
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Attic floor.......................  Insulation materials intended for
                                     exposed use in attic floors shall
                                     be capable of meeting the same
                                     smoldering combustion requirements
                                     given for cellulose insulation in
                                     ASTM \1\ C739-88.
Enclosed space....................  Insulation materials intended for
                                     use within enclosed stud or joist
                                     spaces shall be capable of meeting
                                     the smoldering combustion
                                     requirements in ASTM C739-88.
Exposed interior walls and          Insulation materials, including
 ceilings.                           those with combustible facings,
                                     which remain exposed and serve as
                                     wall or ceiling interior finish,
                                     shall have a flame spread
                                     classification not to exceed 150
                                     (per ASTM E84-89a).
Exterior envelope walls and roofs.  Exterior envelope walls and roofs
                                     containing thermal insulations
                                     shall meet applicable local
                                     government building code
                                     requirements for the complete wall
                                     or roof assembly.
Pipes, ducts, and equipment.......  Insulation materials intended for
                                     use on pipes, ducts and equipment
                                     shall be capable of meeting a flame
                                     spread classification not to exceed
                                     150 (per ASTM E84-89a).
------------------------------------------------------------------------
\1\ ASTM indicates American Society for Testing and Materials.


                              Storm Windows
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Storm windows:
  Aluminum insulating storm windows..  ANSI/AAMA \1\1002.10-83.
  Aluminum frame storm windows.......  ANSI/AAMA 1002.10-83.
  Wood frame storm windows...........  ANSI/NWWDA \2\ I.S. 2-87.
                                        (Section 3)
  Rigid vinyl frame storm windows....  ASTM \3\ D4099-89.
  Frameless plastic glazing storm....  Required minimum thickness
                                        windows is 6 mil (.006 inches).
Movable insulation systems for         Commercially available.
 windows.
------------------------------------------------------------------------
\1\ ANSI/AAMA indicates American National Standards Institute/American
  Architectural Manufacturers Association.
\2\ ANSI/NWWDA indicates American National Standards Institute/National
  Wood Window & Door Association.
\3\ ASTM indicates American Society for Testing and Materials.


                               Storm Doors
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Storm doors--Aluminum:
  Storm Doors........................  ANSI/AAMA \1\ 1102.7-89.
  Sliding glass storm doors..........  ANSI/AAMA 1002.10-83.

[[Page 1157]]

 
Wood storm doors.....................  ANSI/NWWDA \2\ I.S. 6-86.
Rigid vinyl storm doors..............  ASTM \3\ D3678-88.
Vestibules:
  Materials to construct vestibules..  Commercially available.
Replacement windows:
  Aluminum frame windows.............  ANSI/AAMA 101-88.
  Steel frame windows................  Steel Window Institute
                                        recommended specifications for
                                        steel windows, 1990.
  Wood frame windows.................  ANSI/NWWDA I.S. 2-87.
  Rigid vinyl frame windows..........  ASTM D4099-89.
------------------------------------------------------------------------
\1\ ANSI/AAMA indicates American National Standards Institute/American
  Architectural Manufacturers Association.
\2\ ANSI/NWWDA indicates American National Standards Institute/National
  Wood Window & Door Association.
\3\ ASTM indicates American Society for Testing and Materials.


                            Replacement Doors
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Replacement doors--Hinged doors:
  Steel doors..........................  ANSI/SDI \1\ 100-1985.
Wood doors:
  Flush doors..........................  ANSI/NWWDA \2\ I.S. 1-87.
                                          (exterior door provisions)
  Pine, fir, hemlock and spruce doors..  ANSI/NWWDA I.S. 6-86.
Sliding patio doors:
  Aluminum doors.......................  ANSI/AAMA \3\ 101-88.
  Wood doors...........................  NWWDA I.S. 3-83.
------------------------------------------------------------------------
\1\ ANSI/SDI indicates American National Standards Institute/Steel Door
  Institute.
\2\ ANSI/NWWDA indicates American National Standards Institute/National
  Wood Window & Door Association.
\3\ ANSI/AAMA indicates American National Standards Institute/American
  Architectural Manufacturers Association.


                          Caulks and sealants:
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Caulks and sealants:
  Putty..............................  FS \1\ TT-P-00791B, October 16,
                                        1969 and Amendment 2, March 23,
                                        1971.
  Glazing compounds for metal sash...  ASTM \2\ C669-75 (1989).
  Oil and resin base caulks..........  ASTM C570-72 (1989).
  Acrylic (solvent types) sealants...  FS TT-S-00230C, February 2, 1970
                                        and Amendment 2, October 9,
                                        1970.
  Butyl rubber sealants..............  FS TT-S-001657, October 8, 1970.
  Chlorosulfonated polyethylene        FS TT-S-00230C, February 2, 1970
   sealants.                            and Amendment 2, October 9,
                                        1970.
  Latex sealing compounds............  ASTM C834-76 (1986).
  Elastomeric joint sealants           ASTM C920-87.
   (normally considered to include
   polysulfide, polyurethane, and
   silicone).
  Preformed gaskets and sealing        ASTM C509-84.
   materials.
------------------------------------------------------------------------
\1\ FS indicates Federal Specifications.
\2\ ASTM indicates American Society for Testing and Materials.


                            Weatherstripping
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Weatherstripping..................  Commercially available.
Vapor retarders...................  Selected according to the provisions
                                     cited in ASTM \1\ C755-85 (1990).
                                     Permeance not greater than 1 perm
                                     when determined according to the
                                     desiccant method de- scribed in
                                     ASTM E96-90.
Items to improve attic ventilation  Commercially available.
Clock thermostats.................  NEMA \2\ DC 3-1989.
------------------------------------------------------------------------
\1\ ASTM indicates American Society for Testing and Materials.
\2\ NEMA indicates National Electrical Manufacturers Association.


                             Heat Exchangers
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Heat exchangers, water-to-water     ASME \1\ Boiler and Pressure Vessel
 and steam-to-water.                 Code, 1992, Sections II, V, VIII,
                                     IX, and X, as applicable to
                                     pressure vessels. Standards of
                                     Tubular Exchanger Manufacturers
                                     Association, Seventh Edition, 1988.
Heat exchangers with gas-fired      Conformance to AGA \3\ Requirements
 appliances \2\.                     for Heat Reclaimer Devices for Use
                                     with Gas-Fired Appliances No. 1-80,
                                     June 1, 1980. AGA Laboratories
                                     Certification Seal.

[[Page 1158]]

 
Heat pump water heating heat        Electrical components to be listed
 recovery systems.                   by UL. \4\
------------------------------------------------------------------------
\1\ ASME indicates American Society of Mechanical Engineers.
\2\ The heat reclaimer is for installation in a section of the vent
  connector from appliances equipped with draft hoods or appliances
  equipped with powered burners or induced draft and not equipped with a
  draft hood.
\3\ AGA indicates American Gas Association.
\4\ UL indicates Underwriters Laboratories.


                     Boiler/Furnace Control Systems
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Automatic set back thermostats.........  Listed by UL. \1\ Conformance
                                          to NEMA \2\ DC 3-1989.
Line voltage or low voltage room         NEMA DC 3-1989.
 thermostats.
Automatic gas ignition systems.........  ANSI \3\ Z21.21-1987 and
                                          Z21.21a-1989. AGA \4\
                                          Laboratories Certification
                                          Seal.
Energy management systems..............  Listed by UL.
Hydronic boiler controls...............  Listed by UL.
Other burner controls..................  Listed by UL.
------------------------------------------------------------------------
\1\ UL indicates Underwriters Laboratories.
\2\ NEMA indicates National Electrical Manufacturers Association.
\3\ ANSI indicates American National Standards Institute.
\4\ AGA indicates American Gas Association.


                       Water Heater Modifications
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Insulate tank and distribution piping  (See insulation section of this
                                        appendix).
Install heat traps on inlet and        Applicable local plumbing code.
 outlet piping.
Install/replace water heater heating   Listed by UL. \1\
 elements.
Electric, freeze-prevention tape for   Listed by UL.
 pipes.
Reduce thermostat settings...........  State or local recommendations.
Install stack damper, gas-fueled.....  ANS1 \2\ Z21.66-1988, including
                                        Exhibits A&B, and ANSI Z223.1-
                                        1988.
Install stack damper, oil-fueled.....  UL 17, November 28, 1988, and
                                        NFPA \3\ 31-1987.
Install water flow modifiers.........  Commercially available.
------------------------------------------------------------------------
\1\ UL indicates Underwriters Laboratories.
\2\ ANSI indicates American National Standards Institute.
\3\ NFPA indicates National Fire Prevention Association.


                       Waste Heat Recovery Devices
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Desuperheater/water heaters.......  ARI \1\ 470-1987.
Condensing heat exchangers........  Commercially available components
                                     and in new heating furnace systems
                                     to manufacturers' specifications.
Condensing heat exchangers........  Commercially available (Commercial,
                                     multi-story building, with teflon-
                                     lined tubes institutional) to
                                     manufacturers' specifications.
Energy recovery equipment.........  Energy Recovery Equipment and
                                     Systems Air-to-Air (1978) Sheet
                                     Metal and Air-Conditioning
                                     Contractors National Association
                                     (SMACNA). \2\
------------------------------------------------------------------------
\1\ ARI indicates Air Conditioning and Refrigeration Institute.
\2\ SMACNA denotes Sheet Metal and Air Conditioning Contractors'
  National Association.


         Boiler Repair and Modifications/Efficiency Improvements
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Install gas conversion burners.........  ANSI \1\ Z21.8-1984, (for gas
                                          or oil-fired systems) ANSI
                                          Z21.17-1984, ANSI Z21.17a-
                                          1990, and ANSI Z223.1-1988.
                                          AGA \2\ Laboratories
                                          Certification seal.
Replace oil burner                       UL \3\ 296, February 28, 1989
                                          Revision and NFPA \4\ 31-1987.
Install burners (oil/gas)                ANSI Z223.1-1988 for gas
                                          equipment and NFPA 31-1987 for
                                          oil equipment.
Re-adjust boiler water temperature or    ASME \5\ CSD-1-1988, ASME CSD-
 install automatic boiler temperature     1a-1989, ANSI Z223.1-1988, and
 reset control.                           NFPA 31-1987.
Replace/modify boilers                   ASME Boiler and Pressure Vessel
                                          Code, 1992, Sections II, IV,
                                          V, VI, VIII, IX, and X.
                                          Boilers must be Institute of
                                          Boilers and Radiation
                                          Manufacturers (IBR) equipment.
Clean heat exchanger, adjust burner air  Per manufacturers'
 shutter(s), check smoke no. on oil-      instructions.
 fueled equipment. Check operation of
 pump(s) and replacement filters.
Repair combustion chambers.............  Refractory linings may be
                                          required for conversions.

[[Page 1159]]

 
Replace heat exchangers, tubes.........  Protection from flame contact
                                          with conversion burners by
                                          refractory shield.
Install/replace thermostatic radiator    Commercially available. One
 valves.                                  pipe steam systems require air
                                          vents on each radiator; see
                                          manufacturers' requirements.
Install boiler duty cycle control        Commercially available. NFPA
 system.                                  70, National Electrical Code
                                          (NEC) 1993 and local
                                          electrical codes provisions
                                          for wiring.
------------------------------------------------------------------------
\1\ ANSI indicates American National Standards Institute.
\2\ AGA indicates American Gas Association.
\3\ UL indicates Underwriters Laboratories.
\4\ NFPA indicates National Fire Prevention Association.
\5\ ANSI/ASME indicates American National Standards Institute/American
  Society of Mechanical Engineers.


 Heating and Cooling System Repairs and Tune-ups/Efficiency Improvements
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Install duct insulation................  FS \1\ HH-I-558C, January 7,
                                          1992 (see insulation sections
                                          of this appendix).
Reduce input of burner; derate gas-      Local utility company and
 fueled equipment.                        procedures if applicable for
                                          gas-fueled furnaces and ANSI
                                          \2\ Z223.1-1988 (NFPA \3\ 54-
                                          1988) including appendix H.
Repair/replace oil-fired equipment.....  NFPA 31-1987.
Replace combustion chamber in oil-fired  NFPA 31-1987.
 furnaces or boilers.
Clean heat exchanger and adjust burner:  ANSI Z223.1-1988 (NFPA 54-1988)
 adjust air shutter and check CO2 and     including appendix H.
 stack temperature. Clean or replace
 air filter on forced air furnace.
Install vent dampers for gas-fueled      Applicable sections of ANSI
 heating systems.                         Z223.1-1988 (NFPA 54-1988)
                                          including appendices H, I, J,
                                          and K. ANSI Z21.66-1988 and
                                          exhibits A & B for
                                          electrically operated dampers.
Install vent dampers for oil-fueled      Applicable sections of NFPA 31-
 heating systems.                         1987 for installation and in
                                          conformance with UL \4\ 17,
                                          November 28, 1988.
Reduce excess combustion air:
  A: Reduce vent connector size of gas-  ANSI Z223.1-1988 (NFPA 54-1988)
   fueled appliances.                     part 9 and appendices G & H.
  B: Adjust barometric draft regulator   NFPA 31-1987 and per
   for oil fuels.                         manufacturers' (furnace or
                                          boiler) instructions.
Replace constant burning pilot with      ANSI Z21.71-1981, Z21.71a-1985,
 electric ignition device on gas-fueled   and Z21.71b-1989.
 furnaces or boilers.
Readjust fan switch on forced air gas    Applicable sections and
 or oil-fueled furnaces.                  appendix H of ANSI Z223.1-1988
                                          (NFPA 54-1988) for gas
                                          furnaces and NFPA 31-1987 for
                                          oil furnaces.
Replace burners........................  See power burners (oil/gas).
Install/replace duct furnaces (gas)....  ANSI Z223.1-1988 (NFPA 54-
                                          1988).
Install/replace heat pumps.............  Listed by UL.
Replace air diffusers, intakes,          Commercially available.
 registers, and grilles.
Install/replace warm air heating metal   Commercially available.
 ducts.
Filter alarm units.....................  Commercially available.
------------------------------------------------------------------------
\1\ FS indicates Federal Specifications.
\2\ ANSI indicates American National Standards Institute.
\3\ NFPA indicates National Fire Prevention Association.
\4\ UL indicates Underwriters Laboratories.


             Replacement Furnaces, Boilers, and Wood Stoves
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Chimneys, fireplaces, vents and solid    NFPA \1\ 211-1988.
 fuel burning appliances.
Gas-fired furnaces.....................  ANS1 \2\ Z21.47-1987, Z21.47a-
                                          1988, and Z21.47b-1989. ANSI
                                          Z223.1-1988 (NFPA 54-1988).
Oil-fired furnaces.....................  UL \3\ 727, August 27, 1991
                                          Revision and NFPA 31-1987.
Liquified petroleum gas storage........  NFPA 58-1989.
Ventilation fans:
  Including electric attic, ceiling,     UL 507, August 23, 1990
   and whole house fans.                  Revision.
------------------------------------------------------------------------
\1\ NFPA indicates National Fire Prevention Association.
\2\ ANSI indicates American National Standards Institute.
\3\ UL indicates Underwriters Laboratories.


                 Air Conditioners and Cooling Equipment
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Air conditioners:
  Central air conditioners...................  ARI \1\ 210/240-1989.

[[Page 1160]]

 
  Room size units............................  ANSI/AHAM \2\ RAC-1-1982.
Other cooling equipment:
  Including evaporative coolers, heat pumps    UL \3\ 1995, November 30,
   and other equipment.                         1990. \4\
------------------------------------------------------------------------
\1\ ARI indicates Air Conditioning and Refrigeration Institute.
\2\ AHAM/ANSI indicates American Home Appliance Manufacturers/American
  National Standards Institute.
\3\ UL indicates Underwriters Laboratories.
\4\ This standard is a general standard covering many different types of
  heating and cooling equipment.


             Screens, Window Films, and Reflective Materials
                       [Standards for conformance]
 
 
------------------------------------------------------------------------
Insect screens...............................  Commercially available.
Window films.................................  Commercially available.
Shade screens:
  Fiberglass shade screens...................  Commercially available.
  Polyester shade screens....................  Commercially available.
Rigid awnings:
  Wood rigid awnings.........................  Commercially available.
  Metal rigid awnings........................  Commercially available.
Louver systems:
  Wood louver systems........................  Commercially available.
  Metal louver systems.......................  Commercially available.
Industrial-grade white paint used as a heat-   Commercially available.
 reflective measure on awnings, window
 louvers, doors, and exterior duct work
 (exposed).
------------------------------------------------------------------------


[58 FR 12529, Mar. 4, 1993, as amended at 69 FR 18803, Apr. 9, 2004]

                           PART 445 [RESERVED]



PART 451_RENEWABLE ENERGY PRODUCTION INCENTIVES--Table of Contents



Sec.
451.1 Purpose and scope.
451.2 Definitions.
451.3 Who may apply.
451.4 What is a qualified renewable energy facility.
451.5 Where and when to apply.
451.6 Duration of incentive payments.
451.7 Metering requirements.
451.8 Application content requirements.
451.9 Procedures for processing applications.
451.10 Administrative appeals.

    Authority: 42 U.S.C. 7101, et seq.; 42 U.S.C. 13317.

    Source: 60 FR 36964, July 19, 1995, unless otherwise noted.



Sec.  451.1  Purpose and scope.

    (a) The provisions of this part cover the policies and procedures 
applicable to the determinations by the Department of Energy (DOE) to 
make incentive payments, under the authority of 42 U.S.C. 13317, for 
electric energy generated and sold by a qualified renewable energy 
facility owned by a State or political subdivision thereof; a not-for-
profit electric cooperative; a public utility described in section 115 
of the Internal Revenue Code of 1986; an Indian tribal government or 
subdivision thereof; or a Native corporation.
    (b) Determinations to make incentive payments under this part are 
not subject to the provisions of 10 CFR part 600 and such payments shall 
not be construed to be financial assistance.

[60 FR 36964, July 19, 1995, as amended at 71 FR 46386, Aug. 14, 2006]



Sec.  451.2  Definitions.

    As used in this part--
    Biomass means biologically generated energy sources such as heat 
derived from combustion of plant matter, or from combustion of gases or 
liquids derived from plant matter, animal wastes, or sewage, or from 
combustion of gases derived from landfills, or hydrogen derived from 
these same sources.
    Closed-loop biomass means any organic material from a plant which is 
planted exclusively for purposes of being used at a qualified renewable 
energy facility to generate electricity.
    Date of first use means, at the option of the facility owner, the 
date of the first kilowatt-hour sale, the date of

[[Page 1161]]

completion of facility equipment testing, or the date when all approved 
permits required for facility construction are received.
    Deciding Official means the Manager of the Golden Field Office of 
the Department of Energy (or any DOE official to whom the authority of 
the Manager of the Golden Field Office may be redelegated by the 
Secretary of Energy).
    DOE means the Department of Energy.
    Finance Office means the DOE Office of the Chief Financial Officer 
(or any office to which that Office's authority may be redelegated by 
the Secretary of Energy).
    Fiscal year means the Federal fiscal year beginning October 1 and 
ending on September 30 of the following calendar year.
    Indian tribal government means the governing body of an Indian tribe 
as defined in section 4 of the Indian Self-Determination and Education 
Assistance Act (25 U.S.C. 450b).
    Native corporation has the meaning set forth in the Alaska Native 
Claims Settlement Act (25 U.S.C. 1602).
    Net electric energy means the metered kilowatt-hours (kWh) generated 
and sold, and excludes electric energy used within the renewable energy 
facility to power equipment such as pumps, motors, controls, lighting, 
heating, cooling, and other systems needed to operate the facility.
    Not-for-profit electrical cooperative means a cooperative 
association that is legally obligated to operate on a not-for-profit 
basis and is organized under the laws of any State for the purpose of 
providing electric service to its members.
    Ocean means the waters of the Atlantic Ocean (including the Gulf of 
Mexico) and the Pacific Ocean within the jurisdiction of the United 
States from which energy may be derived through application of tides, 
waves, currents, thermal differences, or other means.
    Renewable energy facility means a single module or unit, or an 
aggregation of such units, that generates electric energy which is 
independently metered and which results from the utilization of a 
renewable energy source.
    Renewable energy source means solar heat, solar light, wind, ocean, 
geothermal heat, and biomass, except for--
    (1) Heat from the burning of municipal solid waste; or
    (2) Heat from a dry steam geothermal reservoir which--
    (i) Has no mobile liquid in its natural state;
    (ii) Is a fluid composed of at least 95 percent water vapor; and
    (iii) Has an enthalpy for the total produced fluid greater than or 
equal to 2.791 megajoules per kilogram (1200 British thermal units per 
pound).
    State means the District of Columbia, Puerto Rico, and any of the 
States, Commonwealths, territories, and possessions of the United 
States.

[60 FR 36964, July 19, 1995, as amended at 71 FR 46386, Aug. 14, 2006]



Sec.  451.3  Who may apply.

    Any owner, or operator with the written consent of the owner, but 
not both, of a qualified renewable energy facility, may apply for 
incentive payments for net electric energy generated from a renewable 
energy source and sold.



Sec.  451.4  What is a qualified renewable energy facility.

    In order to qualify for an incentive payment under this part, a 
renewable energy facility must meet the following qualifications--
    (a) Owner qualifications. The owner must be--
    (1) A State or a political subdivision of a State (or agency, 
authority, or instrumentality thereof);
    (2) A public utility described in section 115 of the Internal 
Revenue Code of 1986;
    (3) A not-for-profit electrical cooperative;
    (4) An Indian tribal government or subdivision thereof; or
    (5) A Native corporation.
    (b) What constitutes ownership. The owner must have all rights to 
the beneficial use of the renewable energy facility, and legal title 
must be held by, or for the benefit of, the owner.
    (c) Sales affecting interstate commerce. The net electric energy 
generated by the renewable energy facility must be

[[Page 1162]]

sold to another entity for consideration.
    (d) Type of renewable energy sources. The source of the electric 
energy for which an incentive payment is sought must be a renewable 
energy source, as defined in Sec.  451.2.
    (e) Time of first use. The date of the first use of a newly 
constructed renewable energy facility, or a facility covered by 
paragraph (f) of this section, must occur during the inclusive period 
beginning October 1, 1993, and ending on September 30, 2016. For 
facilities whose date of first use occurred in the period October 1, 
2003, through September 30, 2004, the time of first use shall be deemed 
to be October 1, 2004.
    (f) Conversion of non-qualified facilities. Existing non-qualified 
facilities that are converted must meet either of the following 
criteria--
    (1) A facility employing solar, wind ocean, geothermal or biomass 
sources must be refurbished during the allowed time of first use such 
that the fair market value of any previously used property does not 
exceed 20% of the facility's total value.
    (2) A facility not employing solar, wind ocean, geothermal or 
biomass sources must be converted in part or in whole to a qualified 
facility during the allowed time of first use.
    (g) Location. The qualified renewable energy facility must be 
located in a State or in U.S. jurisdictional waters.

[60 FR 36964, July 19, 1995, as amended at 71 FR 46386, Aug. 14, 2006]



Sec.  451.5  Where and when to apply.

    (a) Pre-application and notification. (1) An applicant may submit at 
any time a pre-application, containing the information described in 
Sec.  451.8 (a) through (e), to obtain a preliminary and conditional 
determination of eligibility.
    (2) To assist DOE in its budget planning, the owner or operator of a 
qualified renewable energy facility is requested to provide notification 
at least 6 months in advance of when a facility is expected to be first 
used, providing projected information specified in Sec.  451.8 (a) 
through (e).
    (b) Application. (1) An application for an incentive payment for 
electric energy generated and sold in a fiscal year must be filed during 
the first quarter (October 1 through December 31) of the next fiscal 
year, except as provided in paragraph (b)(2) of this section.
    (2) For facilities whose date of first use occurred in the period 
October 1, 2003, through September 30, 2005, applications for incentive 
payments for electric energy generated and sold in fiscal year 2005 must 
be filed by August 31, 2006.
    (3) Failure to file an application in any fiscal year for payment 
for energy generated in the preceding fiscal year shall disqualify the 
owner or operator from eligibility for any incentive payment for energy 
generated in that preceding fiscal year.
    (c) Where. Applications and notifications to the Department shall be 
submitted to the Renewable Energy Production Incentive Program, U.S. 
Department of Energy, Golden Field Office, 1617 Cole Boulevard, Golden, 
CO, 80401.

[60 FR 36964, July 19, 1995, as amended at 71 FR 46387, Aug. 14, 2006]



Sec.  451.6  Duration of incentive payments.

    Subject to the availability of appropriated funds, DOE shall make 
incentive payments under this part with respect to a qualified renewable 
energy facility for 10 consecutive fiscal years. Such period shall begin 
with the fiscal year in which application for payment for electricity 
generated by the facility is first made and the facility is determined 
by DOE to be eligible for receipt of an incentive payment. The period 
for payment under this program ends with fiscal year 2026.

[60 FR 36964, July 19, 1995, as amended at 71 FR 46387, Aug. 14, 2006]



Sec.  451.7  Metering requirements.

    The net electric energy generated and sold (kilowatt-hours) by the 
owner or operator of a qualified renewable energy facility must be 
measured by a standard metering device that--
    (a) Meets generally accepted industry standards;
    (b) Is maintained in proper working order according to the 
instructions of its manufacturer; and
    (c) Is calibrated according to generally accepted industry 
standards.

[[Page 1163]]



Sec.  451.8  Application content requirements.

    An application for an incentive payment under this part must be 
signed by an authorized executive official and shall provide the 
following information--
    (a) A statement indicating that the applicant is the owner of the 
facility or is the operator of the facility and has the written consent 
of an authorized executive official of the owner to file an application;
    (b) The name of the facility or other official designation;
    (c) The location and address of the facility and type of renewable 
energy source;
    (d) The name, address, and telephone number of a point of contact to 
respond to questions or requests for additional information;
    (e) A clear statement of how the application satisfies each and 
every part of the eligibility criteria under Sec.  451.4;
    (f) A statement of the annual and monthly metered net electric 
energy generated and sold during the prior fiscal year by the qualified 
renewable energy facility, measured in kilowatt-hours, for which an 
incentive payment is requested;
    (g) In the case of a qualified renewable energy facility which 
generates electric energy using a fossil fuel, nuclear energy, or other 
non-qualified energy source in addition to using a renewable energy 
source, a statement of the net electric energy generated, measured in 
kilowatt-hours, attributable to the renewable energy source, including a 
calculation showing the total monthly and annual kilowatt-hours 
generated and sold during the fiscal year multiplied by a fraction 
consisting of the heat input, as measured in appropriate energy units, 
received by the working fluid from the renewable energy sources divided 
by the heat input, as measured in the same energy units, received by the 
working fluid from all energy sources;
    (h) The total amount of electric energy for which payment is 
requested, including the net electric energy generated in the prior 
fiscal year, as determined according to paragraph (f) or (g) of this 
section;
    (i) Copies of permit authorizations if the date of first use is 
based on permit approvals and this is the initial application;
    (j) Instructions for payment by electronic funds transfer;
    (k) A statement agreeing to retain records for a period of three (3) 
years which substantiate the annual and monthly metered number of 
kilowatt-hours generated and sold, and to provide access to, or copies 
of, such records within 30 days of a written request by DOE; and
    (l) A statement signed by an authorized executive official 
certifying that the information contained in the application is 
accurate.
    (m) If a not-for-profit electric cooperative, a statement certifying 
that no claim for tax credit has been made for the same electricity for 
which incentive payments are requested.

[60 FR 36964, July 19, 1995, as amended at 71 FR 46387, Aug. 14, 2006]



Sec.  451.9  Procedures for processing applications.

    (a) Supplemental information. DOE may request supplementary 
information relating to the application.
    (b) Audits. DOE may require the applicant to conduct at its own 
expense and submit an independent audit, or DOE may conduct an audit, to 
verify the number of kilowatt-hours claimed to have been generated and 
sold by the qualified renewable energy facility and for which an 
incentive payment has been requested or made.
    (c) DOE determinations. The Assistant Secretary for Energy 
Efficiency and Renewable Energy shall determine the extent to which 
appropriated funds are available to be obligated under this program for 
each fiscal year. Upon evaluating each application and any other 
relevant information, DOE shall further determine:
    (1) Eligibility of the applicant for receipt of an incentive 
payment, based on the criteria for eligibility specified in this part;
    (2) The number of kilowatt-hours to be used in calculating a 
potential incentive payment, based on the net electric energy generated 
from a qualified

[[Page 1164]]

renewable energy source at the qualified renewable energy facility and 
sold during the prior fiscal year;
    (3) The number of kilowatt-hours to be used in calculating a 
potential additional incentive payment, based on the total quantity of 
accrued energy generated during prior fiscal years;
    (4) The amounts represented by 60 percent of available funds and by 
40 percent of available funds; and
    (5) Whether justification exists for altering the 60:40 payment 
ratio specified in paragraph (e) of this section. If DOE intends to 
modify the 60:40 ratio, the Department shall notify Congress, setting 
forth reasons for such change.
    (d) Calculating payments. Subject to the provisions of paragraph (e) 
of this section, potential incentive payments under this part shall be 
determined by multiplying the number of kilowatt-hours determined under 
Sec.  451.9(c)(2) by 1.5 cents per kilowatt-hour, and adjusting that 
product for inflation for each fiscal year beginning after calendar year 
1993 in the same manner as provided in section 29(d)(2)(B) of the 
Internal Revenue Code of 1986, except that in applying such provisions 
calendar year 1993 shall be substituted for calendar year 1979. Using 
the same procedure, a potential additional payment shall be determined 
for the number of kilowatt-hours determined under paragraph (c)(3) of 
this section. If the sum of these calculated payments does not exceed 
the funds determined to be available by the Assistant Secretary for 
Energy Efficiency and Renewable Energy under Sec.  451.9(c), DOE shall 
make payments to all qualified applicants.
    (e) Insufficient funds. If funds are not sufficient to make full 
incentive payments to all qualified applicants, DOE shall--
    (1) Calculate potential incentive payments, if necessary on a pro 
rata basis, not to exceed 60 percent of available funds to owners or 
operators of qualified renewable energy facilities using solar, wind, 
ocean, geothermal, and closed-loop biomass technologies based on prior 
year energy generation;
    (2) Calculate potential incentive payments, if necessary on a pro 
rata basis, not to exceed 40 percent of available funds to owners or 
operators of all other qualified renewable energy facilities based on 
prior year energy generation;
    (3) If the amounts calculated in paragraph (e)(1) and (2) of this 
section result in one owner group with insufficient funds and one with 
excess funds, allocate excess funds to the owner group with insufficient 
funds and calculate additional incentive payments, on a pro rata basis 
if necessary, to such owners or operators based on prior year energy 
generation.
    (4) If potential payments calculated in paragraphs (e)(1), (2), and 
(3) of this section do not exceed available funding, allocate 60% of 
remaining funds to paragraph (e)(1) recipients and 40% to paragraph 
(e)(2) recipients and calculate additional incentive payments, if 
necessary on a pro rata basis, to owners or operators based on accrued 
energy;
    (5) If the amounts calculated in paragraph (e)(4) of this section 
result in one owner group with insufficient funds and one with excess 
funds, allocate excess funds to the owner group with insufficient funds 
and calculate additional incentive payments, on a pro rata basis if 
necessary, to such owners or operators based on accrued energy.
    (6) Notify Congress if potential payments resulting from paragraphs 
(e)(3) or (5) of this section above will result in alteration of the 
60:40 payment ratio;
    (7) Make incentive payments based on the sum of the amounts 
determined in paragraphs (e)(1) through (5) of this section for each 
applicant;
    (8) Treat the number of kilowatt-hours for which an incentive 
payment is not made as a result of insufficient funds as accrued energy 
for which future incentive payment may be made; and
    (9) Maintain a record of each applicant's accrued energy.
    (f) Notice to applicant. After calculating the amount of the 
incentive payment under paragraphs (e) through (g) of this section, the 
DOE Deciding Official shall then issue a written notice of the 
determination to the applicant--
    (1) Approving the application as eligible for payment and forwarding 
a copy to the DOE Finance Office with a request to pay;

[[Page 1165]]

    (2) Setting forth the calculation of the approved amount of the 
incentive payment; and
    (3) Stating the amount of accrued energy, measured in kilowatt-
hours, for each qualified renewable energy facility, if any, and the 
energy source for same.
    (g) Disqualification. If the application does not meet the 
requirements of this part or some of the kilowatt-hours claimed in the 
application are disallowed as unqualified, the Deciding Official shall 
issue a written notice denying the application in whole or in part with 
an explanation of the basis for denial.

[60 FR 36964, July 19, 1995, as amended at 71 FR 46387, Aug. 14, 2006]



Sec.  451.10  Administrative appeals.

    (a) In order to exhaust administrative remedies, an applicant who 
receives a notice denying an application in whole or in part shall 
appeal, on or before 45 days from date of the notice issued by the DOE 
Deciding Official, to the Office of Hearings and Appeals, 1000 
Independence Avenue, S.W., Washington, D.C. 20585, in accordance with 
the procedures set forth in subpart C of 10 CFR part 1003.
    (b) If an applicant does not appeal under paragraph (a) of this 
section, the determination of the DOE Deciding Official shall become 
final for DOE and judicially unreviewable.
    (c) If an applicant appeals on a timely basis under paragraph (a) of 
this section, the decision and order of the Office of Hearings and 
Appeals shall be final for DOE.
    (d) If the Office of Hearings and Appeals orders an incentive 
payment, the DOE Deciding Official shall send a copy of such order to 
the DOE Finance Office with a request to pay.



PART 452_PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS--Table of Contents



Sec.
452.1 Purpose and scope.
452.2 Definitions.
452.3 Solicitations.
452.4 Eligibility requirements.
452.5 Bidding procedures.
452.6 Incentive award terms and limitations.

    Authority: 42 U.S.C. 7101 et seq.; 42 U.S.C. 16251.

    Source: 74 FR 52871, Oct. 15, 2009, unless otherwise noted.



Sec.  452.1  Purpose and scope.

    (a) This part sets forth the standards, policies, and procedures 
that the Department of Energy uses for receiving, evaluating, and 
awarding bids in reverse auctions of production incentive payments for 
cellulosic biofuels under section 942 of the Energy Policy Act of 2005 
(42 U.S.C. 16251).
    (b) Part 1024 of chapter X of title 10 of the Code of Federal 
Regulations shall not apply to actions taken under this part.



Sec.  452.2  Definitions.

    As used in this part:
    Cellulosic biofuel means any liquid fuel produced from cellulosic 
feedstocks.
    Cellulosic feedstock means any lignocellulosic feedstock as defined 
by EPAct, section 932(a)(2).
    Commercially significant quantity means 10 million gallons or more 
of cellulosic biofuels produced in one year.
    DOE means the U.S. Department of Energy.
    Eligible biofuels producer means a business association, including 
but not limited to a sole proprietorship, partnership, joint venture, 
corporation, or other business entity that owns and operates, or plans 
to own and operate, an eligible cellulosic biofuels production facility 
and that meets all other eligibility requirements that are conditions on 
the receipt of production incentives under this part.
    Eligible cellulosic biofuels production facility means a facility--
    (1) Located in the United States (including U.S. territories and 
possessions);
    (2) Which meets all applicable Federal and State permitting 
requirements;
    (3) Employs a demonstrated refining technology; and
    (4) Meets any relevant financial criteria established by the 
Secretary.

[[Page 1166]]

    EPAct 2005 means the Energy Policy Act of 2005, Public Law 109-58 
(August 8, 2005).
    Open window means the period during each reverse auction, as 
specified in an associated solicitation, during which DOE accepts bids 
for production incentives under this part.
    Secretary means the Secretary of Energy.



Sec.  452.3  Solicitations.

    The reverse auction process commences with the issuance of a 
solicitation by DOE. DOE will publish a solicitation in the Federal 
Register and shall post the solicitation on its website at 
www.eere.energy.gov no later than 60 days before the bidding in a 
reverse auction under this part commences. The solicitation shall:
    (a) Invite interested persons and businesses to submit pre-
qualification statements;
    (b) Set forth the terms on which bids will be accepted;
    (c) Specify the open window for bidding; and
    (d) Specify the date by which successful bidders will be required to 
file pre-auction eligibility submissions.



Sec.  452.4  Eligibility requirements.

    (a) Pre-auction eligibility submissions. (1) Entities that intend to 
participate in a reverse auction, within the time period stated in the 
relevant solicitation, must file a pre-auction eligibility submission 
that provides all information requested in the applicable solicitation 
to which it is responding, including an implementation plan.
    (2) Each pre-auction eligibility submission's implementation plan 
must, at a minimum:
    (i) Demonstrate that the filing party owns and operates or plans to 
own and operate an eligible cellulosic biofuels production facility;
    (ii) Identify the site or proposed site for the filing party's 
eligible cellulosic biofuels production facility;
    (iii) Demonstrate that the cellulosic biofuel to be produced for 
purposes of receiving an award either currently is suitable for 
widespread general use as a transportation fuel or will be suitable for 
such use in a timeframe and in sufficient volumes to significantly 
contribute to the goal of 1 billion gallons of refined cellulosic 
biofuel by August 2015.
    (iv) Provide audited or pro forma financial statements for the 
latest 12 month period; and
    (v) Identify one or more proposed sources of financing for the 
construction or expansion of the filing party's eligible cellulosic 
biofuels production facility.
    (b) Notification of pre-auction eligibility status. DOE shall notify 
each entity that files a pre-auction eligibility submission of its 
acceptance or rejection no later than 15 days before the reverse auction 
for which the submission was made. A DOE decision constitutes final 
agency action and is conclusive.
    (c) Progress reports. Within one year after the reverse auction in 
which a bidder successfully competed, the bidder must submit a progress 
report that includes all additional information required by the 
solicitation in which the bidder submitted a successful bid and which 
demonstrates that the bidder has:
    (1) Acquired the site where its proposed eligible cellulosic 
biofuels production facility is or will be located;
    (2) Obtained secure financing commitments for the plant or expansion 
thereof, as necessary to produce cellulosic biofuels; and
    (3) Entered into a written engineering, procurement, and 
construction (EPC) contract for design and construction of the eligible 
cellulosic biofuels production facility; such EPC contract must provide 
for completion of construction of the eligible cellulosic biofuels 
production facility such that operations at the plant or plant expansion 
will commence within three years of the reverse auction in which the 
bidder successfully competed.
    (d) Production agreement. Within 90 days after submission of its 
progress report under paragraph (c) of this section, the successful 
bidder must enter into an agreement with DOE which requires the bidder 
to begin production of commercially significant quantities of cellulosic 
biofuels, at the eligible cellulosic biofuels production facility that 
was the subject of the relevant bid, not later than three years from the 
date of the acceptance of the successful bid.

[[Page 1167]]

    (e) Confirmation of continuing eligibility. After receiving the 
progress report described in the paragraph (e) of the section and upon 
confirmation by DOE that the successful bidder has entered into a 
production agreement with DOE, as described in paragraph (d) of this 
section, DOE will confirm to the bidder that it continues to meet the 
eligibility requirements of this part.
    (f) Contractual condition on eligibility. (1) As a condition of the 
receipt of an award under this part, a successful bidder in a reverse 
auction under this part must demonstrate that it has fulfilled the terms 
of its production agreement entered into with DOE pursuant to paragraph 
(d) of this section.
    (2) As a condition of continuing to receive production incentive 
payments under this part, a bidder that has entered into a production 
agreement with DOE must annually submit to DOE, by a commercially 
reasonable date specified by DOE, verification of the bidder's 
production volumes for the prior calendar year. Within 90 days of the 
submission of such verification, DOE shall notify the successful bidder 
whether the bidder has fulfilled the terms of the production agreement 
and shall make payment of any production incentive awards then 
outstanding for the one year period covered by the verified data 
submission.



Sec.  452.5  Bidding procedures.

    DOE shall conduct an electronic reverse auction through a limited 
duration single bid per producer auction process open only to pre-
auction eligible cellulosic biofuels producers. The following procedures 
shall be used:
    (a) DOE shall accept only electronic bids received from pre-auction 
eligible cellulosic biofuels producers during the open window 
established in the solicitation. The open window shall consist of a 
single continuous period of at least four hours for each auction.
    (b) Bids shall identify an estimated annual production amount from 
an eligible cellulosic biofuels production facility on a per gallon, 
site, entity, and year specific basis for a consecutive six year 
production period. A bid also may be submitted for additional incentives 
for uncovered production volumes at a site where an award was made in an 
earlier auction round.
    (c) All bids must set forth the methodology used to derive the 
estimates of annual production volumes covered by the bid and the bid 
shall be calculated on a gasoline equivalent volumetric basis using the 
lower heating Btu value of the fuel compared to the lower heating Btu 
value of gasoline.
    (d) All bids will be confidential until 45 days after the close of 
the window for submission of bids for the reverse auction.
    (e) Bid evaluation and incentive awards selection procedures include 
the following:
    (1) After DOE evaluates the bids received during the open window, it 
shall, within 45 days following the close of the open window for 
submission of bids for the reverse auction, announce on DOE's website 
and by direct mail the names of the successful bidders and the terms of 
their bids.
    (2) DOE shall issue awards for the bid production amounts beginning 
with the bidder that submitted the bid for the lowest level of 
production incentive on a per gallon basis.
    (3) In the event of a tie among the lowest bids, preference will be 
given to the lowest tied bidder based on DOE's evaluation of the extent 
to which the tied bids meet the following criteria:
    (i) Demonstrates outstanding potential for local and regional 
economic development;
    (ii) Includes agricultural producers or cooperatives of agricultural 
producers as equity partners in the ventures; and
    (iii) Has a strategic agreement in place to fairly reward feedstock 
suppliers.
    (4) In the event more than one lowest tied bid equally meets the 
standards in paragraph (c)(3) of this section, the award will be 
distributed equally on a per capita basis among those lowest tied 
bidders meeting the standards.



Sec.  452.6  Incentive award terms and limitations.

    (a) Amount of incentive. Subject to the availability of appropriated 
funds and the limitations in paragraph (c) of this section, an eligible 
cellulosic biofuels producer selected to receive an award

[[Page 1168]]

shall receive the amount of the production incentive on the per gallon 
basis requested in the auction solicitation for each gallon produced and 
sold by the entity during the first six years of operation of its 
eligible cellulosic biofuels production facility.
    (b) Failure to commence production. Except in the circumstance of a 
force majeure event, as solely determined by DOE, failure by an eligible 
cellulosic biofuels producer that made a successful bid to commence 
production of cellulosic biofuels, at the eligible cellulosic biofuels 
production facility that was the subject of the successful bid, by the 
end of the third year after the close of submission of the open window 
of bids for the reverse auction in which it submitted a successful bid, 
shall result in immediate revocation of DOE's award to that producer.
    (c) Failure of the successful bidder to meet annual production 
obligations. Except in the circumstance of a force majeure event, as 
solely determined by DOE, a successful bidder's failure to produce at 
least 50 percent of the volumes specified in its production agreement by 
December 31 of any year covered by the bid shall result in immediate 
revocation of DOE's award; if the successful bidder produces 50 percent 
or more of the volumes set forth in the production agreement on an 
annual basis by December 31 of any year covered by the agreement, any 
production shortfall will be carried forward and added to the successful 
bidder's production obligations for next year covered by the agreement.
    (d) Shortfalls remaining at the end of the production period. If, 
for any reason, by December 31 of the last year of the production 
agreement, the bidder has failed to produce the total production volumes 
for all years covered by the agreement, any such remaining shortfall 
shall be awarded to the bidder with the next lowest bid in the auction 
round for which the award was made. If, however, the next best bidder is 
unable to enter into a production agreement with DOE within 30 days 
after being notified of its award, the shortfall shall be allocated 
instead to the next reverse auction.
    (e) Incentive award limitations. The following limits shall apply to 
awards of cellulosic biofuels production incentives under this part:
    (1) During the first four years after the commencement of the 
program, the incentive shall be limited to $1.00 per gallon. For 
purposes of this limitation, the program shall be deemed to have 
commenced on the date that the first solicitation for a reverse auction 
is issued;
    (2) A per gallon cap over the remaining lifetime of the program of 
$.95 per gallon provided that--
    (i) This cap shall be lowered by $.05 each year commencing the first 
year after annual cellulosic biofuels production in the United States 
exceeds 1 billion gallons;
    (ii) Not more than 25 percent of the funds committed within each 
reverse auction shall be awarded to any single project;
    (iii) Not more than $100 million in production incentives shall be 
awarded in any one calendar year; and
    (iv) Not more than $1 billion in production incentives shall be 
awarded over the lifetime of the program.
    (f) Participation in subsequent auctions. A successful bidder in a 
reverse auction under this part may participate in subsequent reverse 
auctions if the incentives sought will assist the addition of plant 
production capacity for the eligible cellulosic biofuels production 
facility associated with its previously successful bid.

    (g) Transferability of awards. A production incentive award under 
this part may be transferred to a successor entity at the same 
production facility for which the award was made, provided that the 
successor entity meets all eligibility requirements of this part, 
including execution of an agreement with DOE to commence production of 
cellulosic biofuels in commercially significant quantities not later 
than three years of the date that bidding closes on the reverse auction 
in which the predecessor entity submitted a successful bid.

[[Page 1169]]



PART 455_GRANT PROGRAMS FOR SCHOOLS AND HOSPITALS AND BUILDINGS OWNED 
BY UNITS OF LOCAL GOVERNMENT AND PUBLIC CARE INSTITUTIONS--Table of Contents



                      Subpart A_General Provisions

Sec.
455.1 Purpose and scope.
455.2 Definitions.
455.3 Administration of grants.
455.4 Recordkeeping.
455.5 Suspension and termination of grants.

              Subpart B_State Plan Development and Approval

455.20 Contents of State Plan.
455.21 Submission and approval of State Plans and State Plan amendments.

         Subpart C_Allocation of Appropriations Among the States

455.30 Allocation of funds.
455.31 Allocation formulas.
455.32 Reallocation of funds.

Subpart D--Preliminary Energy Audit and Energy Audit Grants [Reserved]

Subpart E_Technical Assistance Programs for Schools, Hospitals, Units of 
             Local Government, and Public Care Institutions

455.60 Purpose.
455.61 Eligibility.
455.62 Contents of a technical assistance program.
455.63 Cost-effectiveness testing.
455.64 Life-cycle cost methodology.

    Subpart F_Energy Conservation Measures for Schools and Hospitals

455.70 Purpose.
455.71 Eligibility.
455.72 Scope of the grant.

                 Subpart G_State Administrative Expenses

455.80 Purpose.
455.81 Eligibility.
455.82 Scope of the grant.

Subpart H_State Grants for Technical Assistance, Program Assistance, and 
                                Marketing

455.90 Purpose.
455.91 Eligibility.
455.92 State technical assistance awards.

                         Subpart I_Cost Sharing

455.100 Limits to Federal share.
455.101 Borrowing the non-Federal share/title to equipment.
455.102 Energy conservation measure cost-share credit.
455.103 Requirements for applications for credit.
455.104 Rebates from utilities and other entities.

    Subpart J_Applicant Responsibilities_Grants to Institutions and 
                          Coordinating Agencies

455.110 Grant application submittals for technical assistance and energy 
          conservation measures.
455.111 Applicant certifications for technical assistance and energy 
          conservation measure grants to institutions and coordinating 
          agencies.
455.112 Davis-Bacon wage rate requirement.
455.113 Grantee records and reports for technical assistance and energy 
          conservation measure grants to institutions and coordinating 
          agencies.

          Subpart K_Applicant Responsibilities_Grants to States

455.120 Grant applications for State administrative expenses.
455.121 Grant applications for State technical assistance, program 
          assistance, and marketing programs.
455.122 Applicant certifications for State grants for technical 
          assistance, program assistance, and marketing.
455.123 Grantee records and reports for State grants for administrative 
          expenses, technical assistance, program assistance, and 
          marketing.

                    Subpart L_State Responsibilities

455.130 State evaluation of grant applications.
455.131 State ranking of grant applications.
455.132 State evaluation of requests for severe hardship assistance.
455.133 Forwarding of applications from institutions and coordinating 
          agencies for technical assistance and energy conservation 
          measure grants.
455.134 Forwarding of applications for State grants for technical 
          assistance, program assistance, and marketing.
455.135 State liaison, monitoring, and reporting.

                         Subpart M_Grant Awards

455.140 Approval of applications from institutions and coordinating 
          agencies for technical assistance and energy conservation 
          measures.

[[Page 1170]]

455.141 Grant awards for units of local government, public care 
          institutions, and coordinating agencies.
455.142 Grant awards for schools, hospitals, and coordinating agencies.
455.143 Grant awards for State administrative expenses.
455.144 Grant awards for State programs to provide technical assistance, 
          program assistance, and marketing.

                     Subpart N_Administrative Review

455.150 Right to administrative review.
455.151 Notice requesting administrative review.
455.152 Transmittal of record on review.
455.153 Review by the Deputy Assistant Secretary.
455.154 Discretionary review by the Assistant Secretary.
455.155 Finality of decision.

    Authority: 42 U.S.C. 6371 et seq., and 42 U.S.C. 7101 et seq.

    Source: 58 FR 9438, Feb. 19, 1993, unless otherwise noted.



                      Subpart A_General Provisions



Sec.  455.1  Purpose and scope.

    (a) This part establishes programs of financial assistance pursuant 
to Title III of the Energy Policy and Conservation Act, as amended, 42 
U.S.C. 6371 et seq.
    (b) This part authorizes grants to States or to public or non-profit 
schools and hospitals to assist them in conducting preliminary energy 
audits and energy audits, in identifying and implementing energy 
conservation maintenance and operating procedures, and in evaluating, 
acquiring, and installing energy conservation measures, including 
renewable resource measures, to reduce the energy use and anticipated 
energy costs of buildings owned by schools and hospitals.
    (c) This part also authorizes grants to States or units of local 
government and public care institutions to assist them in conducting 
preliminary energy audits and energy audits, in identifying and 
implementing energy conservation maintenance and operating procedures, 
and in evaluating energy conservation measures, including renewable 
resource measures, to reduce the energy use and anticipated energy costs 
of buildings owned by units of local government and public care 
institutions.



Sec.  455.2  Definitions.

    Act, as used in this part, means the Energy Policy and Conservation 
Act, Public Law 94-163, 89 Stat. 871 (42 U.S.C. 6201, et seq.), as 
amended by title III of the National Energy Conservation Policy Act, 
Public Law 95-619, 92 Stat. 3238 (42 U.S.C. 6371), and the State Energy 
Efficiency Programs Improvement Act of 1990, Public Law 101-440, 104 
Stat. 1011.
    Assistant Secretary means the Assistant Secretary for Conservation 
and Renewable Energy or any official to whom the Assistant Secretary's 
functions may be redelegated by the Secretary.
    Auditor means any person who is qualified in accordance with 10 CFR 
450.44 and with State requirements pursuant to Sec.  455.20(k), to 
conduct an energy audit.
    Building means any structure, including a group of closely situated 
structural units that are centrally metered or served by a central 
utility plant, or an eligible portion thereof, the construction of which 
was completed on or before May 1, 1989, which includes a heating or 
cooling system, or both.
    Civil rights requirements means civil rights responsibilities of 
applicants and grantees pursuant to the Nondiscrimination in Federally 
Assisted Programs regulation of the Department of Energy (10 CFR part 
1040).
    Complex means a closely situated group of buildings on a contiguous 
site such as a school or college campus or multibuilding hospital.
    Construction completion means the date of issuance of an occupancy 
permit for a building or the date the building is ready for occupancy as 
determined by DOE.
    Cooling degree days means the annual sum of the number of Fahrenheit 
degrees of each day's mean temperature above 65[deg] for a given 
locality.
    Coordinating agency means a State or any public or nonprofit 
organization legally constituted within a State which provides either 
administrative control or services for a group of institutions within a 
State and which acts on behalf of such institutions with respect to 
their participation in the program.

[[Page 1171]]

    Deputy Assistant Secretary means the Deputy Assistant Secretary for 
Technical and Financial Assistance or any official to whom the Deputy 
Assistant Secretary's functions may be redelegated by the Assistant 
Secretary.
    DOE means the Department of Energy.
    Energy audit means a determination of the energy consumption 
characteristics of a building which:
    (1) Identifies the type, size, and rate of energy consumption of 
such building and the major energy-using systems of such building;
    (2) Determines appropriate energy conservation maintenance and 
operating procedures;
    (3) Indicates the need, if any, for the acquisition and installation 
of energy conservation measures; and
    (4) If paid for with financial assistance under this part, complies 
with 10 CFR 450.43.
    Energy conservation maintenance and operating procedures means 
modifications in the maintenance and operations of a building and any 
installation therein which are designed to reduce the energy consumption 
in such building and which require no significant expenditure of funds, 
including, but not limited to:
    (1) Effective operation and maintenance of ventilation systems and 
control of infiltration conditions, including:
    (i) Repair of caulking or weatherstripping around windows and doors;
    (ii) Reduction of outside air intake, shutting down ventilation 
systems in unoccupied areas, and shutting down ventilation systems when 
the building is not occupied; and
    (iii) Assuring central or unitary ventilation controls, or both, are 
operating properly;
    (2) Changes in the operation and maintenance of heating or cooling 
systems through:
    (i) Lowering or raising indoor temperatures;
    (ii) Locking thermostats;
    (iii) Adjusting supply or heat transfer medium temperatures; and
    (iv) Reducing or eliminating heating or cooling at night or at times 
when a building or complex is unoccupied;
    (3) Changes in the operation and maintenance of lighting systems 
through:
    (i) Reducing illumination levels;
    (ii) Maximizing use of daylight;
    (iii) Using higher efficiency lamps; and
    (iv) Reducing or eliminating evening cleaning of buildings;
    (4) Changes in the operation and maintenance of water systems 
through:
    (i) Repairing leaks;
    (ii) Reducing the quantity of water used, e.g., using flow 
restrictors;
    (iii) Lowering settings for hot water temperatures; and
    (iv) Raising settings for chilled water temperatures;
    (5) Changes in the maintenance and operating procedures of the 
building's mechanical systems through:
    (i) Cleaning equipment;
    (ii) Adjusting air/fuel ratio;
    (iii) Monitoring combustion;
    (iv) Adjusting fan, motor, or belt drive systems;
    (v) Maintaining steam traps; and
    (vi) Repairing distribution pipe insulation; and
    (6) Such other actions relating to operations and maintenance 
procedures as the State may determine useful or necessary. In general, 
energy conservation maintenance and operating procedures involve 
cleaning, repairing or adjusting existing equipment rather than 
acquiring new equipment.
    Energy conservation measure means an installation or modification of 
an installation in a building which is primarily intended to maintain 
(in the case of load management systems) or reduce energy consumption 
and reduce energy costs, or allow the use of an alternative energy 
source, including, but not limited to:
    (1) Insulation of the building structure and systems within the 
building;
    (2) Storm windows and doors, multiglazed windows and doors, heat-
absorbing or heat-reflective glazed and coated windows and door systems, 
additional glazing, reductions in glass area, and other window and door 
systems modifications;
    (3) Automatic energy control systems which would reduce energy 
consumption;

[[Page 1172]]

    (4) Load management systems which would shift demand for energy from 
peak hours to hours of low demand and lower cost;
    (5) Equipment required to operate variable steam, hydraulic, and 
ventilating systems adjusted by automatic energy control systems;
    (6) Active or passive solar space heating or cooling systems, solar 
electric generating systems, or any combination thereof;
    (7) Active or passive solar water heating systems;
    (8) Furnace or utility plant and distribution system modifications 
including:
    (i) Replacement burners, furnaces, boilers, or any combination 
thereof which substantially increase the energy efficiency of the 
heating system;
    (ii) Devices for modifying flue openings which will increase the 
energy efficiency of the heating system;
    (iii) Electrical or mechanical furnace ignition systems which 
replace standing gas pilot lights; and
    (iv) Utility plant system conversion measures including conversion 
of existing oil- and gas-fired boiler installations to alternative 
energy sources;
    (9) Addition of caulking and weatherstripping;
    (10) Replacement or modification of lighting fixtures (including 
exterior light fixtures which are physically attached to, or connected 
to, the building) to increase the energy efficiency of the lighting 
system without increasing the overall illumination of a facility, unless 
such increase in illumination is necessary to conform to any applicable 
State or local building code or, if no such code applies, the increase 
is considered appropriate by DOE;
    (11) Energy recovery systems;
    (12) Cogeneration systems which produce steam or forms of energy 
such as heat as well as electricity for use primarily within a building 
or a complex of buildings owned by an eligible institution and which 
meet such fuel efficiency requirements as DOE may by rule prescribe;
    (13) Such other measures as DOE identifies by rule for purposes of 
this part as set forth in subpart D of 10 CFR part 450; and
    (14) Such other measures as a grant applicant shows will save a 
substantial amount of energy and as are identified in an energy audit or 
energy use evaluation in accordance with Sec.  455.20(k) or a technical 
assistance report in accordance with Sec.  455.62.
    Energy use evaluation means a determination of:
    (1) Whether the building is a school facility, hospital facility, or 
a building owned and primarily occupied and used throughout the year by 
a unit of local government or by a public care institution.
    (2) The name and address of the owner of record, indicating whether 
owned by a public institution, private nonprofit institution, or an 
Indian tribe;
    (3) The building's potential suitability for renewable resource 
applications;
    (4) Major changes in functional use or mode of operation planned in 
the next 15 years, such as demolition, disposal, rehabilitation, or 
conversion from office to warehouse;
    (5) Appropriate energy conservation maintenance and operating 
procedures which have been implemented for the building;
    (6) The need, if any, for the acquisition and installation of energy 
conservation measures including an assessment of the estimated costs and 
energy and cost savings likely to result from the purchase and 
installation of one or more energy conservation measures and an 
evaluation of the need and potential for retrofit based on consideration 
of one or more of the following:
    (i) An energy use index or indices, for example, Btu's per gross 
square foot per year;
    (ii) An energy cost index or indices, for example, annual energy 
costs per gross square foot; or
    (iii) The physical characteristics of the building envelope and 
major energy-using systems; and
    (7) Such other information as the State has determined useful or 
necessary, in accordance with Sec.  455.20(k).
    Fuel means any commercial source of energy used within the building 
or complex being surveyed such as natural gas, fuel oil, electricity, or 
coal.

[[Page 1173]]

    Governor means the chief executive officer of a State including the 
Mayor of the District of Columbia or a person duly designated in writing 
by the Governor to act on her or his behalf.
    Grant program cycle means the period of time specified by DOE which 
relates to the fiscal year or years for which monies are appropriated 
for grants under this part, during which one complete cycle of DOE grant 
activity occurs including fund allocations to the States; applications 
receipt, review, approval, or disapproval; and award of grants by DOE 
but which does not include the grantee's performance period.
    Grantee means the entity or organization named in the Notice of 
Financial Assistance Award as the recipient of the grant.
    Gross square feet means the sum of all heated or cooled floor areas 
enclosed in a building, calculated from the outside dimensions or from 
the centerline of common walls.
    Heating or cooling system means any mechanical system for heating, 
cooling, or ventilating areas of a building including a system of 
through-the-wall air conditioning units.
    Heating degree days means the annual sum of the number of Fahrenheit 
degrees for each day's mean temperature below 65[deg] for a given 
locality.
    Hospital means a public or nonprofit institution which is a general 
hospital, tuberculosis hospital, or any other type of hospital other 
than a hospital furnishing primarily domiciliary care and which is duly 
authorized to provide hospital services under the laws of the State in 
which it is situated.
    Hospital facilities means buildings housing a hospital and related 
facilities including laboratories, laundries, outpatient departments, 
nurses' residence and training facilities, and central service 
facilities operated in connection with a hospital; it also includes 
buildings containing education or training facilities for health 
profession personnel operated as an integral part of a hospital.
    Indian tribe means any tribe, band, nation, or other organized group 
or community of Indians including any Alaska native village or regional 
or village corporation, as defined in or established pursuant to, the 
Alaska Native Claims Settlement Act, Public Law 92-203; 85 Stat. 688, 
which (a) is recognized as eligible for the special programs and 
services provided by the United States to Indians because of their 
status as Indians; or (b) is located on, or in proximity to, a Federal 
or State reservation or rancheria.
    Load management system means a device or devices which are designed 
to shift energy use to hours of low demand in order to reduce energy 
costs and which do not cause more energy to be used than was used before 
their installation.
    Local educational agency means a public board of education or other 
public authority or a nonprofit institution legally constituted within, 
or otherwise recognized by, a State either for administrative control or 
direction of, or to perform administrative services for, a group of 
schools within a State.
    Maintenance means activities undertaken in a building to assure that 
equipment and energy-using systems operate effectively and efficiently.
    Marketing means a program or activity managed or performed by the 
State including but not limited to:
    (1) Obtaining non-Federal funds to finance energy conservation 
measures consistent with this part;
    (2) Making site visits to school and hospital officials to review 
program opportunities;
    (3) Giving presentations to groups such as school or hospital board 
officials and personnel; and
    (4) Preparing and disseminating articles in publications directed to 
school and hospital personnel.
    Native American means a person who is a member of an Indian tribe.
    Non-Federal funds means financing sources obtained or arranged for 
by a State as a result of the State program(s) pursuant to Sec.  
455.20(j), to be used to pay for energy conservation measures for 
institutions eligible under this part, and includes petroleum violation 
escrow funds except for those funds required to be treated as if they 
were Federal funds by statute, court order, or settlement agreement.
    Operating means the operation of equipment and energy-using systems 
in

[[Page 1174]]

a building to achieve or maintain specified levels of environmental 
conditions of service.
    Owned or owns means property interest including without limitation a 
leasehold interest which is or shall become a fee simple title in a 
building or complex.
    Preliminary energy audit means a determination of the energy 
consumption characteristics of a building including the size, type, rate 
of energy consumption, and major energy-using systems of such building 
which if paid for with financial assistance under this part, complies 
with 10 CFR 450.42.
    Primarily occupied means that in excess of 50 percent of a 
building's square footage or time of occupancy is occupied by a public 
care institution or an office or agency of a unit of local government.
    Program assistance means a program or activity managed or performed 
by the State and designed to provide support to eligible institutions to 
help ensure the effectiveness of energy conservation programs carried 
out consistent with this part including such relevant activities as:
    (1) Evaluating the services and reports of consulting engineers;
    (2) Training school or hospital personnel to perform energy 
accounting and to identify and implement energy conservation maintenance 
and operating procedures;
    (3) Monitoring the implementation and operation of energy 
conservation measures; and
    (4) Aiding in the procurement of energy-efficient equipment.
    Public care institution means a public or nonprofit institution 
which owns:
    (1) A facility for long-term care, rehabilitation facility, or 
public health center, as described in section 1624 of the Public Health 
Service Act (42 U.S.C. 300s-3; 88 Stat. 2270); or
    (2) A residential child care center which is an institution, other 
than a foster home, operated by a public or nonprofit institution. It is 
primarily intended to provide full-time residential care, with an 
average length of stay of at least 30 days, for at least 10 minor 
persons who are in the care of such institution as a result of a finding 
of abandonment or neglect or of being persons in need of treatment or 
supervision.
    Public or nonprofit institution means an institution owned and 
operated by:
    (1) A State, a political subdivision of a State, or an agency or 
instrumentality of either; or
    (2) A school or hospital which is, or would be in the case of such 
entities situated in American Samoa, Guam, the Commonwealth of Puerto 
Rico, the Commonwealth of the Northern Mariana Islands, and the U.S. 
Virgin Islands, exempt from income tax under section 501(c)(3) of the 
Internal Revenue Code of 1954; or
    (3) A unit of local government or public care institution which is, 
or would be in the case of such entities situated in American Samoa, 
Guam, the Commonwealth of Puerto Rico, the Commonwealth of the Northern 
Mariana Islands, and the U.S. Virgin Islands, exempt from income tax 
under section 501(c)(3) or 501(c)(4) of the Internal Revenue Code of 
1954.
    Renewable resource energy conservation measure means an energy 
conservation measure which produces at least 50 percent of its Btu's 
from a non-depletable energy source.
    School means a public or nonprofit institution which:
    (1) Provides, and is legally authorized to provide, elementary 
education or secondary education, or both, on a day or residential 
basis;
    (2) Provides, and is legally authorized to provide, a program of 
education beyond secondary education, on a day or residential basis and:
    (i) Admits as students only persons having a certificate of 
graduation from a school providing secondary education, or the 
recognized equivalent of such certificate;
    (ii) Is accredited by a nationally recognized accrediting agency or 
association; and
    (iii) Provides an educational program for which it awards a 
bachelor's degree or higher degree or provides not less than a 2-year 
program which is acceptable for full credit toward such a degree at any 
institution which meets the preceding requirements and which provides 
such a program;

[[Page 1175]]

    (3) Provides not less than a 1-year program of training to prepare 
students for gainful employment in a recognized occupation and which 
meets the provisions cited in paragraph (2), and subparagraphs (2)(i), 
and (2)(ii) of this definition; or
    (4) Is a local educational agency.
    School facilities means buildings housing classrooms, laboratories, 
dormitories, administrative facilities, athletic facilities, or related 
facilities operated in connection with a school.
    Secretary means the Secretary of the Department of Energy or his/her 
designee.
    State means, in addition to the several States of the Union, the 
District of Columbia, the Commonwealth of Puerto Rico, Guam, American 
Samoa, the Commonwealth of the Northern Mariana Islands, and the U.S. 
Virgin Islands.
    State energy agency means the State agency responsible for 
developing State energy conservation plans pursuant to section 362 of 
the Energy Policy and Conservation Act (42 U.S.C. 6322) or, if no such 
agency exists, a State agency designated by the Governor of such State 
to prepare and submit the State Plan required under section 394 of the 
Energy Policy and Conservation Act.
    State hospital facilities agency means an existing agency which is 
broadly representative of the public hospitals and the nonprofit 
hospitals or, if no such agency exists, an agency designated by the 
Governor of such State which conforms to the requirements of this 
definition.
    State school facilities agency means an existing agency which is 
broadly representative of public institutions of higher education, 
nonprofit institutions of higher education, public elementary and 
secondary schools, nonprofit elementary and secondary schools, public 
vocational education institutions, nonprofit vocational education 
institutions, and the interests of handicapped persons in a State or, if 
no such agency exists, an agency which is designated by the Governor of 
such State which conforms to the requirements of this definition.
    Support office director means the Director of the DOE field support 
office with the responsibility for grant administration or any official 
to whom that function may be redelegated.
    Technical assistance means: (1) The conduct of specialized studies 
to identify and specify energy savings or energy cost savings that are 
likely to be realized as a result of the modification of maintenance and 
operating procedures in a building, the acquisition and installation of 
one or more specified energy conservation measures in a building, or 
both; and
    (2) The planning or administration of such specialized studies. For 
schools and hospitals which are eligible to receive grants to carry out 
energy conservation measures, the term also means the planning or 
administration of specific remodeling, renovation, repair, replacement, 
or insulation projects related to the installation of energy 
conservation or renewable resource measures in a building.
    Technical assistance program update means a brief revision to an 
existing technical assistance program report designed to provide current 
information such as that relating to energy use, equipment costs, and 
other data needed to substantiate an application for an energy 
conservation measure grant. Such an update shall be limited to the 
particular measures included in the related grant application together 
with any relevant data regarding interactions or relationships to 
previously installed energy conservation measures.
    Unit of local government means the government of a county, 
municipality, parish, borough, or township which is a unit of general 
purpose government below the State (determined on the basis of the same 
principles as are used by the Bureau of the Census for general 
statistical purposes) and the District of Columbia. Such term also means 
the recognized governing body of an Indian tribe which governing body 
performs substantial governmental functions and includes libraries which 
serve all residents of a political subdivision below the State level 
(such as a community, district, or region) free of charge and which 
derive at least 40 percent of their operating funds from tax revenues of 
a taxing authority below the State level.

[[Page 1176]]



Sec.  455.3  Administration of grants.

    Grants provided under this part shall comply with applicable law, 
regulation, or procedure including, without limitation, the requirements 
of:
    (a) The DOE Financial Assistance Rules (10 CFR part 600 as amended) 
except as otherwise provided in this rule;
    (b) Executive Order 12372 entitled ``Intergovernmental Review of 
Federal Programs'' (48 FR 3130, January 24, 1983; 3 CFR, 1982 Comp., p. 
197) and the DOE regulation implementing this Executive Order entitled 
``Intergovernmental Review of Department of Energy Programs and 
Activities'' (10 CFR part 1005);
    (c) Office of Management and Budget Circular A-97 entitled ``Rules 
and Regulations Permitting Federal Agencies to Provide Specified or 
Technical Services to State and Local Units of Government under title 
III of the Inter-Governmental Coordination Act of 1968'' available from 
the Office of Management and Budget, Office of Publication Services, 725 
17th Street, NW., Washington, DC 20503;
    (d) DOE regulation entitled ``Nondiscrimination in Federally 
Assisted Programs'' (10 CFR part 1040) which implements the following 
public laws: Title VI of the Civil Rights Act of 1964; section 16 of the 
Federal Energy Administration Act of 1974; section 401 of the Energy 
Reorganization Act of 1974; title IX of the Education Amendments of 
1972; The Age Discrimination Act of 1975; and section 504 of the 
Rehabilitation Act of 1973; and
    (e) Such other procedures applicable to this part as DOE may from 
time to time prescribe for the administration of financial assistance.



Sec.  455.4  Recordkeeping.

    Each State or other entity within a State receiving financial 
assistance under this part shall make and retain records required and 
specified by the DOE Financial Assistance Rules, 10 CFR part 600, and 
this part.



Sec.  455.5  Suspension and termination of grants.

    Suspension and termination procedures shall be as set forth in the 
DOE Financial Assistance Rules, 10 CFR part 600.



              Subpart B_State Plan Development and Approval



Sec.  455.20  Contents of State Plan.

    Each State shall develop and submit to DOE a State Plan for 
technical assistance programs and energy conservation measures, 
including renewable resource measures and, to the extent appropriate, 
program assistance, and/or marketing. The State Plan shall include:
    (a) A statement setting forth the procedures by which the views of 
eligible institutions or coordinating agencies representing such 
institutions, or both, were solicited and considered during development 
of the State Plan and any amendment to a State Plan;
    (b) The procedures the State will follow to notify eligible 
institutions and coordinating agencies of the content of the approved 
State Plan or any approved amendment to a State Plan;
    (c) The procedures the State will follow to notify eligible 
institutions and coordinating agencies of the availability (each funding 
cycle) of funding under this program and related funding available from 
non-Federal sources to fund technical assistance programs and energy 
conservation measures consistent with this part;
    (d) The procedures for submittal of grant applications to the State;
    (e) The procedures to be used by the State for evaluating and 
ranking technical assistance and energy conservation measure grant 
applications pursuant to Sec.  455.130 and Sec.  455.131, including the 
weights assigned to each criterion set forth in Sec. Sec.  455.131 
(c)(1), (c)(2), (c)(3), (c)(4) and (c)(5). In addition, the State shall 
determine the order of priority given to fuel types that include oil, 
natural gas, and electricity, under Sec.  455.131(c)(2);
    (f) The procedures that the State will follow to insure that funds 
will be allocated equitably among eligible applicants within the State 
including procedures to insure that funds will not be allocated on the 
basis of size or type of institution, but rather on the basis of 
relative need, taking into account such factors as cost, energy 
consumption, and energy savings, in accordance with Sec.  455.131;

[[Page 1177]]

    (g) The procedures that the States will follow for identifying 
schools and hospitals experiencing severe hardship and for apportioning 
the funds that are available for schools and hospitals in a case of 
severe hardship. Such policies and procedures shall be in accordance 
with Sec.  455.132;
    (h) A statement setting forth the extent to which, and by which 
methods, the State will encourage utilization of solar space heating, 
cooling and electric systems, and solar water heating systems;
    (i) The procedures to assure that all financial assistance under 
this part will be expended in compliance with the requirements of the 
State Plan, in compliance with the requirements of this part, and in 
coordination with other State and Federal energy conservation programs;
    (j) If a State is eligible and elects to use up to 100 percent of 
the funds provided by DOE under this part for any fiscal year for 
program and technical assistance and/or up to 50 percent of such funds 
for marketing:
    (1) A description of each activity the State proposes, including the 
procedures for program operation, monitoring, and evaluation;
    (2) The level of funding to be used for each program and the source 
of those funds;
    (3) The amount of the State's allocated funds that the State 
proposes to use for each;
    (4) A description of the non-Federal financing mechanisms to be used 
to fund energy conservation measures in the State during the fiscal 
year;
    (5) A description of the evaluation/selection criteria to be used by 
the State in determining which institutions receive funding for energy 
conservation measures;
    (6) The procedures for assuring that all segments of the State's 
eligible institutions, including religiously affiliated institutions 
receive an equitable share of the assistance provided both for program 
and technical assistance, marketing, and energy conservation measures;
    (7) A description of how the State will track: the amount of total 
available funds by source; the amount of funds obligated against those 
funds; and any limits on types of institutions eligible for particular 
funding sources; and
    (8) The procedures for assisting institutions which initially 
receive program, technical, or marketing assistance (as part of the 
State's special program(s)) in later participating in the State's 
program(s) to provide energy conservation measure funding;
    (k) The requirements for an energy audit or an energy use 
evaluation, and the requirements for qualifications for auditors or 
persons who will conduct energy use evaluations in the State;
    (l) With regard to energy conservation maintenance and operating 
procedures:
    (1) The procedures to insure implementation of energy conservation 
maintenance and operating procedures in those buildings for which 
financial assistance is requested under this part;
    (2) A provision that all maintenance and operating procedure changes 
recommended in an energy audit pursuant to Sec.  455.20(k), or in a 
technical assistance report under Sec.  455.62, or a combination of 
these are implemented as provided under this part; or
    (3) An assurance that the maintenance and operating procedures will 
be implemented in the future, or a reasonable justification for not 
implementing such procedures, as appropriate;
    (m) The procedures to assure that financial assistance under this 
part will be used to supplement, and not to supplant, State, local or 
other funds, including at least:
    (1) The screening of applicants for eligibility for available State 
funds;
    (2) The identification of applicants which are seeking or have 
obtained private sector funds; and,
    (3) Limiting or excluding (at the option of the State) the 
availability of financial assistance under this part for funding 
particular measures for which funding is being provided by other sources 
in the State (such as utility rebates) together with any requirements 
for potential applicants to first seek other sources of funding and 
document the results of that attempt before seeking financial assistance 
under this part and a description of the State's plan to

[[Page 1178]]

assist potential applicants in identifying and obtaining other sources 
of funding;
    (n) The procedures for determining that technical assistance 
programs performed without the use of Federal funds and used as the 
basis for energy conservation measure grant applications have been 
performed in compliance with the requirements of Sec.  455.62, for the 
purposes of satisfying the eligibility requirements contained in Sec.  
455.71(a)(3);
    (o) The State's policy regarding reasonable selection of energy 
conservation measures for study in a technical assistance program 
including any restrictions based on category of building or on groups of 
structures where measures may, or may not, be appropriate for all the 
structures and any additional State requirements for the conduct of such 
a program;
    (p) The procedures for State management, monitoring, and evaluation 
of technical assistance programs and energy conservation measures 
receiving financial assistance under this part. This includes any State 
requirements for hospital certifications from a State agency with 
descriptions of the review procedures and coordination process 
applicable in such cases. If there is no school facilities agency in the 
State, or if the existing agency does not certify all types of schools, 
it also includes any State requirements for an alternative review and 
certification process for schools;
    (q) The circumstances under which the State requires an updated 
technical assistance program report to accompany an application for an 
energy conservation measure grant and the scope and contents of such an 
update;
    (r) A description of the State's policies for establishing and 
insuring compliance with qualifications for technical assistance 
analysts. Such policies shall require that technical assistance analysts 
be free from financial interests which may conflict with the proper 
performance of their duties and have experience in energy conservation 
and:
    (1) Be a registered professional engineer licensed under the 
regulatory authority of the State;
    (2) Be an architect-engineer team, the principal members of which 
are licensed under the regulatory authority of the State; or
    (3) Be otherwise qualified in accordance with such criteria as the 
State may prescribe in its State Plan to insure that individuals 
conducting technical assistance programs possess the appropriate 
training and experience in building energy systems;
    (s) The circumstances under which the State will or will not 
consider accepting applications for technical assistance programs or 
energy conservation measures which were included in earlier approved 
grant awards but which were not implemented and for which no funds were 
expended after the original grant award;
    (t) A statement setting forth:
    (1) An estimate of energy savings which may result from the 
modification of maintenance and operating procedures and installation of 
energy conservation measures;
    (2) A recommendation as to the types of energy conservation measures 
considered appropriate within the State; and
    (3) An estimate of the costs of carrying out technical assistance 
and energy conservation measure programs;
    (u) For purposes of the technical assistance program pursuant to 
Sec.  455.62:
    (1) A statement setting forth uniform conversion factors to be used 
by all grant applicants in the technical assistance analysis for 
conversion of fuels to Btu equivalents. For the conversion of kilowatt 
hours to Btus, the State may use 3,413, representing consumption at the 
consumer's end, or 11,600, representing consumption at the producer's 
end, or may assign 3,413 to some types of energy conservation measures 
and 11,600 to other types of measures in which case the State shall 
specify the conversion factor to be used for each type of measure, 
providing a rationale and citing the sources used in making this 
decision, and the State shall always apply the specified factor 
consistently to all ECMs of a particular type;
    (2) A statement setting forth the cost-effectiveness testing 
approach to be used to evaluate energy conservation measures pursuant to 
Sec.  455.63. States may select either the simple payback approach or 
the life-cycle

[[Page 1179]]

costing approach. Only one approach may be used for all technical 
assistance programs in the State. If the State elects to use the life-
cycle costing approach, it must specify, consistent with Sec.  
455.64(g), whether it will use DOE-provided or its own energy cost 
escalation rate or annual discount rate, together with any other 
procedures required to be used (in addition to those specified in Sec.  
455.64); and
    (3) A statement setting forth that 50 percent (or a higher percent) 
of total cost savings (used in calculating cost effectiveness pursuant 
to Sec.  455.63(a)(1) for simple payback, or Sec.  455.64(c) for life-
cycle costing) must be from the cost of the energy to be saved.
    (v) For any coordinating agency, a description of how it will 
operate including but not limited to:
    (1) Name and address;
    (2) Type of institutions covered;
    (3) Application processing procedures;
    (4) Whether TA applications, ECM applications, or both are covered;
    (5) Intended schedule for soliciting and processing applications;
    (6) Any special provisions for religiously affiliated institutions;
    (7) Nature of subagreement to be used with institutions;
    (8) Whether TA or ECM contractors selected by the coordinating 
agency will be offered incident to, or as a condition in, subagreements; 
and
    (9) Other significant policies and procedures;
    (w) If a State elects to allow credit toward the cost share for an 
energy conservation measure for the costs of technical assistance 
programs, technical assistance program updates, or energy conservation 
measures previously incurred and wholly paid for with non-Federal funds, 
the policies regarding such credit, including any time limits for the 
age of the earlier-funded work being proposed for credit; and
    (x) The limit to the Federal share to be provided to applicants in 
the State if a State elects to provide less than a 50 percent Federal 
share to its applicants that do not qualify for severe hardship.



Sec.  455.21  Submission and approval of State Plans and State Plan amendments.

    (a) Proposed State Plans or Plan amendments necessitated by a change 
in regulations shall be submitted to DOE within 90 days of the effective 
date of this subpart or any amended regulations. Upon request by a 
State, and for good cause shown, DOE may grant an extension of time.
    (b) The Support Office Director shall, within 60 days of receipt of 
a proposed State Plan, review each plan and, if it is reasonable and 
found to conform to the requirements of this part, approve the State 
Plan. If the Support Office Director does not disapprove a State Plan 
within the 60-day period, the State Plan will be deemed to have been 
approved.
    (c) If the Support Office Director determines that a proposed State 
Plan fails to comply with the requirements of this part or is not 
reasonable, DOE shall return the plan to the State with a statement 
setting forth the reasons for disapproval.
    (d) Except for State Plan amendments covered by paragraph (a) of 
this section, if a State wishes to deviate from its approved State Plan, 
the State must submit and obtain DOE approval of the State Plan 
amendment.
    (e) The Support Office Director shall, within 60 days or less of 
receipt of a proposed State Plan amendment review each amendment and, if 
it is found to conform to the requirements of this part, approve the 
amendment. If the Support Office Director determines that a proposed 
State Plan amendment fails to comply with the requirements of this part, 
or is not reasonable, DOE shall return the amendment to the State with a 
statement setting forth the reasons for disapproval.



         Subpart C_Allocation of Appropriations Among the States



Sec.  455.30  Allocation of funds.

    (a) DOE will allocate available funds among the States for two 
purposes: to award grants to schools, hospitals, units of local 
government, and public care institutions and coordinating agencies 
representing them to implement technical assistance and energy

[[Page 1180]]

conservation measures grant programs and to award grants to eligible 
States for administrative expenses, technical assistance programs, 
program assistance, and marketing expenses in accordance with this part.
    (b) DOE shall notify each Governor of the total amount allocated for 
grants within the State for any grant program cycle:
    (1) For schools and hospitals, the allocation amount shall be for 
technical assistance programs, subject to any limitation placed on 
technical assistance, and energy conservation measures;
    (2) For States that are eligible pursuant to Sec.  455.91, up to 100 
percent of the funds allocated to the State by DOE may be used for 
technical assistance programs and/or for program assistance and up to 50 
percent of the funds allocated to the State by DOE may be used for 
marketing as defined in Sec.  455.2;
    (3) For States eligible under Sec.  455.81, a portion of the 
allocation may be used for a grant to the State for administrative 
expenses as described in Sec.  455.120;
    (4) For unit of local government and public care institutions, the 
allocation amount shall be solely for technical assistance programs; and
    (5) For coordinating agencies, the allocation amount shall be for 
either technical assistance programs subject to any limitation placed on 
technical assistance, or energy conservation measures, or both depending 
on how the coordinating agency elects to operate.
    (c) DOE shall notify each Governor of the period for which funds 
allocated for a grant program cycle will be made available for grants 
within the State.
    (d) Each State shall make available up to 10 percent of its 
allocation for schools and hospitals in each grant program cycle to 
provide financial assistance, not to exceed a 90 percent Federal share, 
for technical assistance programs and energy conservation measures for 
schools and hospitals determined to be in a class of severe hardship. 
Such determinations shall be made in accordance with Sec.  455.132.



Sec.  455.31  Allocation formulas.

    (a) Financial assistance for conducting technical assistance 
programs for units of local government and public care institutions 
shall be allocated among the States by multiplying the sum available by 
the allocation factor set forth in paragraph (c) of this section.
    (b) Financial assistance for conducting technical assistance 
programs and acquiring and installing energy conservation measures, 
including renewable resource measures, for schools and hospitals, shall 
be allocated among the States by multiplying the sum available by the 
allocation factor set forth in paragraph (c) of this section.
    (c) The allocation factor (K) shall be determined by the formula:
    [GRAPHIC] [TIFF OMITTED] TC14NO91.086
    

where, as determined by DOE:
    (1) Sfc is the projected average retail cost per million Btu's of 
energy consumed within the region in which the State is located as 
contained in current regional energy cost projections obtained from DOE.
    (2) Nfc is the summation of the Sfc numerators for all States;
    (3) N is the total number of eligible States;
    (4) SP is the population of the State;
    (5) SC is the sum of the State's heating and cooling degree days; 
and
    (6) NPC is the summation of the (SP)(SC) numerators for all States.
    (d) Except for the District of Columbia, Puerto Rico, Guam, American 
Samoa, the Commonwealth of the Northern Mariana Islands, and the U.S. 
Virgin Islands, no allocation available to any State may be less than 
0.5 percent of all amounts allocated in any grant program cycle. No 
State will be allocated more than 10 percent of the funds allocated in 
any grant program cycle.



Sec.  455.32  Reallocation of funds.

    (a) If a State Plan has not been approved and implemented by a State 
by the close of the period for which allocated funds are available as 
set forth in the notice issued by DOE pursuant to Sec.  455.30(c), funds 
allocated to that State for technical assistance and energy

[[Page 1181]]

conservation measures will be reallocated among all States for the next 
grant program cycle, if available.
    (b) Funds which have been allocated to States in a grant program 
cycle but which have not been obligated to eligible State, school, or 
hospital grant applicants by the end of that cycle shall be reallocated 
by DOE among all States in the next grant program cycle.
    (c) Funds which become available due to deobligations resulting from 
funds returned by grantees due to cost underruns or scope-of-work 
reductions on completed projects shall be reallocated by DOE among all 
States in the next grant program cycle.
    (d) Funds which become available because of declined grants to 
schools and hospitals within a State may be reobligated to other 
eligible applicants in the State until the December 31 following the 
close of the cycle for which the funds were allocated to the State. Such 
funds which have not been reobligated by that deadline shall be 
reallocated by DOE among all States in the next grant program cycle.
    (e) Funds which become available because of declined or deobligated 
financial assistance provided through coordinating agencies to schools 
and hospitals within a State may be reobligated to other eligible 
applicants in the State until the December 31 following the close of the 
cycle for which the funds were allocated to the coordinating agency. 
Such funds which have not been reobligated by that deadline shall be 
reallocated by DOE among all States in the next grant program cycle.
    (f) Funds granted to States for technical assistance, program 
assistance, and marketing pursuant to Sec.  455.144 are subject to 
reallocation by DOE among all the States in the next program cycle if 
such funds are not committed by the State to their intended purposes by 
means of grants, contracts, or other legally binding obligations, or 
redirected to schools and hospitals grant applications pursuant to Sec.  
455.144(d), by the December 31 following the close of the cycle for 
which the funds were allocated to the State.

Subpart D--Preliminary Energy Audit and Energy Audit Grants [Reserved]



Subpart E_Technical Assistance Programs for Schools, Hospitals, Units of 
             Local Government, and Public Care Institutions



Sec.  455.60  Purpose.

    This subpart specifies what constitutes a technical assistance 
program eligible for financial assistance under this part and sets forth 
the eligibility criteria for schools, hospitals, units of local 
government, and public care institutions to receive grants for technical 
assistance to be performed in buildings owned by such institutions.



Sec.  455.61  Eligibility.

    To be eligible to receive financial assistance for a technical 
assistance program, an applicant must:
    (a) Be a school, hospital, unit of local government, public care 
institution, or coordinating agency representing them except that 
financial assistance for units of local government and public care 
institutions will be provided only for buildings which are owned and 
primarily occupied by offices or agencies of a unit of local government 
or public care institution and which are not intended for seasonal use 
and not utilized primarily as a school or hospital eligible for 
assistance under this program;
    (b) Be located in a State which has an approved State Plan as 
described in subpart B of this part;
    (c) Have conducted an energy audit or an energy use evaluation 
required pursuant to Sec.  455.20(k) and adequate to estimate energy 
conservation potential for the building for which financial assistance 
is to be requested, subsequent to the most recent construction, 
reconfiguration, or utilization change which significantly modified 
energy use within the building;
    (d) If an energy audit has been performed, give assurance that it 
has implemented all energy conservation maintenance and operating 
procedures required pursuant to Sec.  455.20(k) or provide a written 
justification for not implementing them pursuant to Sec.  455.20(l)(3); 
and
    (e) Submit an application in accordance with the provisions of this 
part and the approved State Plan.

[[Page 1182]]



Sec.  455.62  Contents of a technical assistance program.

    (a) The purpose of a technical assistance program is to provide a 
report based on an on-site analysis of the building which meets the 
requirements of this section and the State's procedures for implementing 
this section.
    (b) A technical assistance program shall be designed to identify and 
document energy conservation maintenance and operating procedure changes 
and energy conservation measures in sufficient detail to support 
possible application for an energy conservation measure grant and to 
provide reviewers and decision makers handling such applications 
sufficient information upon which to base a judgment as to their 
reasonableness and a decision whether to pursue any or all of the 
recommended improvements.
    (c) A technical assistance program shall be conducted by a technical 
assistance analyst who has the qualifications established in the State 
Plan in accordance with Sec.  455.20(r).
    (d) At the conclusion of a technical assistance program, the 
technical assistance analyst shall prepare a report which shall include:
    (1) A description of building characteristics and energy data 
including:
    (i) The results of the energy audit or energy use evaluation of the 
building together with a statement as to the accuracy and completeness 
of the energy audit or energy use evaluation data and recommendations;
    (ii) The operation characteristics of energy-using systems; and
    (iii) The estimated remaining useful life of the building;
    (2) An analysis of the estimated energy consumption of the building, 
by fuel type in total Btus and Btu/sq.ft./yr., using conversion factors 
prescribed by the State in the State Plan, at optimum efficiency 
(assuming implementation of all energy conservation maintenance and 
operating procedures);
    (3) A description and analysis of all identified energy conservation 
maintenance and operating procedure changes, if any, and energy 
conservation measures selected in accordance with the State Plan, 
including renewable resource measures, setting forth:
    (i) A description of each energy conservation maintenance and 
operating procedure change and an estimate of the costs of adopting such 
energy conservation maintenance and operating procedure changes;
    (ii) An estimate of the cost of design, acquisition and installation 
of each energy conservation measure, discussing pertinent assumptions as 
necessary;
    (iii) Estimated useful life of each energy conservation measure;
    (iv) An estimate of any increases or decreases in maintenance and 
operating costs that would result from each conservation measure, if 
relevant to the cost effectiveness test applicable under this part;
    (v) An estimate of any significant salvage value or disposal cost of 
each energy conservation measure at the end of its useful life if 
relevant to the cost effectiveness test applicable under this part;
    (vi) An estimate, supported by all data and assumptions used in 
arriving at the estimate, of the annual energy savings, the annual cost 
of energy to be saved, and total annual cost savings using current 
energy prices including demand charges expected from each energy 
conservation maintenance and operating procedure change and the 
acquisition and installation of each energy conservation measure. In 
calculating the potential annual energy savings, annual cost of energy 
to be saved, or total annual cost savings of each energy conservation 
measure, including renewable resource measures, the technical assistance 
analyst shall:
    (A) Assume that all energy savings obtained from energy conservation 
maintenance and operating procedures have been realized;
    (B) Calculate the total annual energy savings, annual cost of energy 
to be saved, and total annual cost savings, by fuel type, expected to 
result from the acquisition and installation of the energy conservation 
measures, taking into account the interaction among the various 
measures;
    (C) Calculate that portion of the total annual energy savings, 
annual cost of energy to be saved, and total annual cost savings, as 
determined in paragraph (d)(3)(vi)(B) of this section,

[[Page 1183]]

attributable to each individual energy conservation measure; and
    (D) Consider climate and other variables;
    (vii) An analysis of the cost effectiveness of each energy 
conservation measure consistent with Sec.  455.63 and, if applicable, 
Sec.  455.64 of this part;
    (viii) The estimated cost of the measure, which shall be the total 
cost for design and other professional service (excluding the cost of a 
technical assistance program), if any, and acquisition and installation 
costs. If required by the State in its State Plan, or if requested by 
the applicant, the technical assistance report shall provide a life-
cycle cost analysis which is consistent with Sec.  455.64 and states the 
discount and energy cost escalation rates that were used;
    (ix) The simple payback period of each energy conservation measure, 
calculated pursuant to Sec.  455.63(a);
    (4) Energy use and cost data, actual or estimated, for each fuel 
type used for the prior 12-month period, by month, if possible;
    (5) Documentation of demand charges paid by the institution for the 
prior 12-month period, by month if possible, when demand charges are 
included in current energy prices or when the technical assistance 
report recommends an energy conservation measure that shifts energy 
usage to periods of lower demand and cost; and
    (6) A signed and dated certification that the technical assistance 
program has been conducted in accordance with the requirements of this 
section and that the data presented is accurate to the best of the 
technical assistance analyst's knowledge.



Sec.  455.63  Cost-effectiveness testing.

    (a) This paragraph applies to calculation of the simple payback 
period of energy conservation measures.
    (1) The simple payback period of each energy conservation measure 
(except measures to shift demand, or renewable resource measures) shall 
be calculated, taking into account the interactions among the various 
measures, by dividing the estimated total cost of the measure, as 
determined pursuant to Sec.  455.62(d)(3)(ii), by the estimated annual 
cost savings accruing from the measure (adjusted for demand charges), as 
determined pursuant to Sec.  455.62(d)(3)(vi), provided that:
    (i) At least 50 percent of the annual cost savings used in this 
calculation shall be from the cost of the energy to be saved or a higher 
percent if required by a State in its State Plan pursuant to Sec.  
455.20(u)(3); and
    (ii) No more than 50 percent of the annual cost savings used in this 
calculation shall be from other cost savings, such as those resulting 
from energy conservation maintenance and operating procedures related to 
particular energy conservation measures, or from changes in type of fuel 
used, or a lower percent if required by a State in its State Plan 
pursuant to Sec.  455.20(u)(3).
    (2) The simple payback period of each renewable resource energy 
conservation measure shall be calculated, taking into account the 
interactions among the various measures, by dividing the estimated total 
cost of the measure, as determined pursuant to Sec.  455.62(d)(3)(ii), 
by the estimated annual cost savings accruing from the measure taking 
into account at least the annual cost of the non-renewable fuels 
displaced less the annual cost of the renewable fuel, if any, and the 
annual cost of any backup non-renewable fuel needed to operate the 
system, adjusted for demand charges, as determined pursuant to Sec.  
455.62(d)(3)(vi).
    (3) The simple payback period of each energy conservation measure 
designed to shift demand to a period of lower demand and lower cost 
shall be calculated, taking into account the interactions among the 
various measures, by dividing the estimated total cost of the measure, 
as determined pursuant to Sec.  455.62(d)(3)(ii), by the estimated 
annual cost savings accruing from the measure taking into account at 
least the annual cost of the energy used before the measure is installed 
less the estimated annual cost of the energy to be used after the 
measure is installed, adjusted for demand charges, as determined 
pursuant to Sec.  455.62(d)(3)(vi).
    (b) This paragraph applies, in addition to paragraph (a) of this 
section, if the State plan requires the cost effectiveness of an energy 
conservation measure to be determined by life-cycle

[[Page 1184]]

cost analysis or if the applicant requests such an analysis.
    (1) A life-cycle cost analysis, showing a savings-to-investment 
ratio greater than or equal to one over the useful life of the energy 
conservation measure or 15 years, whichever is less, shall be conducted 
in accordance with the requirements set forth in the State Plan pursuant 
to Sec. Sec.  455.20(u)(2), 455.20(u)(3) and Sec.  455.64.
    (2) The resulting savings-to-investment ratio shall be used for the 
purpose of ranking applications.



Sec.  455.64  Life-cycle cost methodology.

    (a) The life-cycle cost methodology under Sec.  455.63(b) of this 
part is a systematic comparison of the relevant significant cost savings 
and costs associated with an energy conservation measure over its 
expected useful life, or other appropriate study period with future cost 
savings and costs discounted to present value. The format for displaying 
life-cycle costs shall be a savings-to-investment ratio.
    (b) An energy conservation measure must be cost effective, and its 
savings-to-investment ratio must be greater than or equal to one no 
earlier than the end of the second year of the study period.
    (c) A savings-to-investment ratio is the ratio of the present value 
of net cost savings attributable to an energy conservation measure to 
the present value of the net increase in investment, maintenance and 
operating, and replacement costs less salvage value or disposal cost 
attributable to that measure over a study period.
    (d) Except for energy conservation measures to shift demand or to 
use renewable energy resources, the numerator of the savings-to-
investment ratio shall include net cost savings, appropriately 
discounted and adjusted for energy cost escalation consistent with 
paragraph (g) of this section, subject to the limitation that the cost 
of the energy to be saved shall constitute at least 50 percent of the 
net cost savings unless the State specifies a higher percent in its 
State plan pursuant to Sec.  455.20(u)(3).
    (e) With respect to energy conservation measures to shift demand or 
to use renewable energy resources, the numerator of the savings-to-
investment ratio shall be net cost savings appropriately discounted and 
adjusted for energy cost escalation consistent with paragraph (g) of 
this section.
    (f) The study period for a life-cycle cost analysis, which may not 
exceed 15 years, shall be the useful life of the energy conservation 
measure or of the energy conservation measure with the longest life (for 
purposes of ranking buildings with multiple energy conservation 
measures).
    (g) The discount rate must equal or exceed the discount rate 
annually provided by DOE under 10 CFR part 436. The energy cost 
escalation rates must not exceed those annually provided by DOE under 10 
CFR part 436.
    (h) Investment costs may be assumed to be a lump sum occurring at 
the beginning of the base year, or to the extent that there are future 
investment costs, discounted to present value.
    (i) The cost of energy and maintenance and operating costs may be 
assumed to begin to accrue at the beginning of the base year or when 
they are actually projected to occur.
    (j) It may be assumed that costs occur in a lump sum at any time 
within the year in which they are incurred.



    Subpart F_Energy Conservation Measures for Schools and Hospitals



Sec.  455.70  Purpose.

    This subpart sets forth the eligibility criteria for schools and 
hospitals to receive grants for energy conservation measures, including 
renewable resource measures, and the elements of an energy conservation 
measure program.



Sec.  455.71  Eligibility.

    (a) To be eligible to receive financial assistance for an energy 
conservation measure, including renewable resource measures, an 
applicant must:
    (1) Be a school, hospital, or coordinating agency representing them 
as defined in Sec.  455.2;
    (2) Be located in a State which has an approved State Plan as 
described in subpart B of this part;
    (3) Have completed a technical assistance program consistent with 
Sec.  455.62,

[[Page 1185]]

as determined by the State in accordance with the State Plan, for the 
building for which financial assistance is to be requested subsequent to 
the most recent construction, reconfiguration, or utilization change to 
the building which significantly modified energy use within the 
building;
    (4) Have completed an updated technical assistance program if 
required in the State Plan as specified in Sec.  455.20(q);
    (5) Have implemented all energy conservation maintenance and 
operating procedures which are identified as the result of a technical 
assistance program or have provided pursuant to the State plan a 
satisfactory written justification for not implementing any specific 
maintenance and operating procedures so identified;
    (6) Have met any requirements set forth in the State Plan pursuant 
to Sec.  455.20(m) regarding the avoidance of supplanting other funds in 
the financing of energy conservation measures under this part;
    (7) Have no plan or intention at the time of application to close or 
otherwise dispose of the building for which financial assistance is to 
be requested within the simple payback period or useful life (depending 
on the State's requirement for determining cost effectiveness) of any 
energy conservation measure recommended for that building; and
    (8) Submit an application in accordance with the provisions of this 
part and the approved State Plan;
    (b) To be eligible for financial assistance:
    (1) In States where simple payback has been selected as the cost-
effectiveness test pursuant to Sec.  455.20(u)(2), the simple payback 
period of each energy conservation measure for which financial 
assistance is requested shall not be less than 2 years nor greater than 
10 years, and the estimated useful life of the measure shall be greater 
than its simple payback period; or
    (2) In States where life-cycle costing has been selected as the 
cost-effectiveness test pursuant to Sec.  455.20(u)(2), the savings-to-
investment ratio of each energy conservation measure must be greater 
than or equal to one under Sec.  455.63(b)(1), over a period for 
analysis which does not exceed 15 years, and the useful life of the 
energy conservation measure must be at least 2 years.
    (c) Leased equipment is not eligible for financial assistance under 
this part. Equipment which becomes the property of the grantee at the 
conclusion of a long-term purchase agreement without any additional 
payment is eligible.



Sec.  455.72  Scope of the grant.

    Financial assistance awarded under this subpart may be expended for 
the design (excluding design costs funded under the technical assistance 
program), acquisition, and installation of energy conservation measures 
to reduce energy consumption or measures to allow the use of renewable 
resources in schools and hospitals or to shift energy usage to periods 
of low demand and cost. Such measures include, but are not necessarily 
limited to, those included in the definition of ``energy conservation 
measure'' in Sec.  455.2.



                 Subpart G_State Administrative Expenses



Sec.  455.80  Purpose.

    This subpart describes what constitutes a State administrative 
expense that may receive financial assistance under this part and sets 
forth the eligibility criteria for States to receive grants for 
administrative expenses.



Sec.  455.81  Eligibility.

    To be eligible to receive financial assistance for administrative 
expenses, a State must:
    (a) Have in place a State Plan approved by DOE pursuant to Sec.  
455.21 and
    (b) Be operating a program to provide technical assistance and 
energy conservation measure grants, or technical assistance, program 
assistance, and marketing (where energy conservation measures are funded 
non-Federally) to eligible institutions pursuant to this part.



Sec.  455.82  Scope of the grant.

    A State's administrative expenses shall be limited to those directly 
related to administration of technical assistance programs, program 
assistance and marketing programs, and energy

[[Page 1186]]

conservation measures including costs associated with:
    (a) Personnel whose time is expended directly in support of such 
administration;
    (b) Supplies and services expended directly in support of such 
administration;
    (c) Equipment purchased or acquired solely for and utilized directly 
in support of such administration, subject to 10 CFR 600.436;
    (d) Printing, directly in support of such administration; and
    (e) Travel, directly related to such administration.



Subpart H_State Grants for Technical Assistance, Program Assistance, and 
                                Marketing



Sec.  455.90  Purpose.

    This subpart describes what constitutes a State program for 
technical assistance, program assistance, and marketing that may receive 
financial assistance under this part and sets forth the eligibility 
criteria for States to receive grants for technical assistance, program 
assistance, and marketing.



Sec.  455.91  Eligibility.

    To be eligible to receive financial assistance for technical 
assistance, program assistance, and marketing, a State must:
    (a) Have in place a State Plan approved by DOE which includes a 
description of the State's program or programs to provide technical 
assistance, program assistance, and marketing, pursuant to Sec.  
455.20(j)(1);
    (b) Have established a program consistent with this part to fund, 
from non-Federal sources, energy conservation measures for eligible 
institutions; and
    (c) Provide to DOE a certification pursuant to Sec.  455.122.



Sec.  455.92  State technical assistance awards.

    Technical assistance awards by States under this subpart are subject 
to all requirements of this part which apply to DOE-awarded technical 
assistance program grants except that States:
    (a) Are not required to award the funds in grant instruments;
    (b) May award the funds throughout the fiscal year subject to Sec.  
455.144(a)(3); and
    (c) Are not required to rank applications under Sec.  455.131(b) of 
this part.



                         Subpart I_Cost Sharing



Sec.  455.100  Limits to Federal share.

    Amounts made available under this part, together with any other 
amounts made available from other Federal sources, may not be used to 
pay more than 50 percent of the costs of technical assistance programs 
and energy conservation measures unless the grantee qualifies for the 
exceptions specified in Sec. Sec.  455.141(a), 455.142(a), 455.142(b), 
or for severe hardship assistance specified in Sec.  455.142(c). In 
cases of severe hardship, the Federal share of the cost cannot exceed 90 
percent.



Sec.  455.101  Borrowing the non-Federal share/title to equipment.

    The non-Federal share of the costs of acquiring and installing 
energy conservation measures may be provided by using financing or other 
forms of borrowed funds, such as those provided by loans and performance 
contracts, even if such financing does not provide for the grantee to 
receive clear title to the equipment being financed until after the 
grant is closed out. However, grantees in such cases must otherwise meet 
all the requirements of this part, and financing and loan agreements and 
performance contracts under this section are subject to the requirements 
of 10 CFR part 600 and the certification requirements under Sec.  
455.111(e). Grantees must receive clear title to the equipment when the 
loan is paid off.



Sec.  455.102  Energy conservation measure cost-share credit.

    To the extent a State provides in its State Plan, DOE may wholly or 
partially credit the costs of the following, with respect to a building, 
toward the required cost-share for an energy conservation measure grant 
in that building:
    (a) A non-Federally funded technical assistance program;

[[Page 1187]]

    (b) A non-Federally funded technical assistance program update to 
comply with Sec.  455.20(q); and
    (c) The non-Federally funded implementation of one or more energy 
conservation measures, which complies with the eligibility criteria set 
forth in Sec.  455.71.



Sec.  455.103  Requirements for applications for credit.

    (a) If a State has provided for credit in its State Plan pursuant to 
Sec.  455.20(w), applications for credit will be considered only when 
the technical assistance programs or updates and the energy conservation 
measure projects for which credit is sought meet the applicable program 
requirements, such as those specified in Sec.  455.61, Sec.  455.62, 
Sec.  455.71, and the relevant sections of 10 CFR part 600, except that 
the project need not comply with the Davis-Bacon Act regarding labor 
standards or wage rates.
    (b) Credit for energy conservation measures will be considered only 
when supported by a technical assistance analysis that meets the 
requirements of Sec.  455.62 and that was performed prior to the 
installation of the energy conservation measures.



Sec.  455.104  Rebates from utilities and other entities.

    (a) Grantees which receive rebates or other monetary considerations 
from utilities or other entities for installing the energy conservation 
measures funded by a grant under this part may use such funds to meet 
their cost- sharing obligations pursuant to Sec.  455.100.
    (b) Where the rebate or monetary consideration does not exceed the 
non-Federal share of the cost of the measures applied for in a grant 
application, grantees are not required to deduct the amount of the 
rebate or monetary consideration from the cost of the measures, and DOE 
does not consider such rebates or monetary considerations to be program 
income which would have to be remitted to DOE upon receipt by the 
grantee.
    (c) Where the rebate or monetary consideration does exceed the non-
Federal share of the cost of the measures applied for in a grant 
application, grantees may use the excess to fund additional measures if 
such measures have been recommended in the technical assistance report. 
If it is not possible to use the excess funding in this way, the grantee 
must reduce the cost--and DOE will reduce the Federal share--by the 
amount of the excess above the non-Federal share.



    Subpart J_Applicant Responsibilities_Grants to Institutions and 
                          Coordinating Agencies



Sec.  455.110  Grant application submittals for technical assistance 
and energy conservation measures.

    (a) Each eligible applicant desiring to receive financial assistance 
(either from DOE directly, through a State serving as a coordinating 
agency, or through another organization serving as a coordinating 
agency) shall file an application in accordance with the provisions of 
this subpart and the approved State Plan of the State in which such 
building is located. The application, which may be amended in accordance 
with applicable State procedures at any time prior to the State's final 
determination thereon, shall be filed with the State energy agency 
designated in the State Plan. Coordinating agencies shall file a single 
application with DOE which includes all of the information required 
below for each building for which assistance has been requested and to 
which is attached a copy of each application from each building owner.
    (b) Applications from schools, hospitals, units of local government, 
public care institutions, and coordinating agencies for financial 
assistance for technical assistance programs shall include the 
certifications contained in Sec.  455.111 and:
    (1) The applicant's name and mailing address;
    (2) The energy audit or energy use evaluation required by the State 
pursuant to Sec.  455.20(k) for each building for which financial 
assistance is requested;
    (3) A project budget, by building, which stipulates the intended use 
of all Federal and non-Federal funds, including in-kind contributions 
(valued in accordance with the guidelines in 10 CFR part 600), to be 
used to meet the cost-

[[Page 1188]]

sharing requirements described in subpart I of this part;
    (4) A brief description, by building, of the proposed technical 
assistance program, including a schedule, with appropriate milestone 
dates, for completing the technical assistance program;
    (5) Additional information required by the applicable State Plan and 
any other information which the applicant desires to have considered, 
such as information to support an application from a school or hospital 
for financial assistance in excess of the 50 percent Federal share on 
the basis of severe hardship or an application which proposes the use of 
Federal funds, paid under and authorized by another Federal agreement to 
meet cost sharing requirements.
    (c) Applications from schools and hospitals and coordinating 
agencies for financial assistance for energy conservation measures, 
including renewable resource measures, shall include the certifications 
contained in Sec.  455.111 and:
    (1) The applicant's name and mailing address;
    (2) A description of each building for which financial assistance is 
requested sufficient to determine the building's eligibility, ownership, 
use, and size in gross square feet;
    (3) A project budget, by measure or building, as provided in the 
State Plan which stipulates the intended use of all Federal and non-
Federal funds and identifies the sources and amounts of non-Federal 
funds, including in-kind contributions (valued in accordance with the 
guidelines in 10 CFR part 600) to be used to meet the cost-sharing 
requirements described in subpart I of this part;
    (4) A schedule, including appropriate milestone dates, for the 
completion of the design, acquisition, and installation of the proposed 
energy conservation measures for each building;
    (5) For each energy conservation measure proposed for funding, the 
projected cost, the projected simple payback period, and if appropriate, 
the life-cycle cost savings-to-investment ratio calculated under Sec.  
455.64. Applications with more than one energy conservation measure per 
building shall include projected costs and paybacks, and if appropriate, 
the savings-to-investment ratios for each measure and the average simple 
payback period or overall savings-to-investment ratio for all measures 
proposed for the building;
    (6) The report of the technical assistance analyst (unless waived by 
DOE because the report is already in its possession). This report must 
have been completed since the most recent construction, reconfiguration, 
or utilization change to the building which significantly modified 
energy use, for each building;
    (7) An update of the technical assistance program report if required 
by the State in its State Plan and as specified in Sec.  455.20(q);
    (8) If the applicant is aware of any adverse environmental impact 
which may arise from adoption of any energy conservation measure, an 
analysis of that impact and the applicant's plan to minimize or avoid 
such impact; and
    (9) Additional information required by the applicable State Plan, 
and any additional information which the applicant desires to have 
considered, such as information to support an application for financial 
assistance in excess of the non-Federal share set forth in the State 
plan on the basis of severe hardship, or an application which proposes 
the use of Federal funds paid under and authorized by another Federal 
agreement to meet cost sharing requirements.



Sec.  455.111  Applicant certifications for technical assistance 
and energy conservation measure grants to institutions 
and coordinating agencies.

    Applications for financial assistance for technical assistance 
programs and energy conservation measures, including renewable resource 
measures, shall include certification that the applicant:
    (a) Is eligible under Sec.  455.61 for technical assistance or Sec.  
455.71 for energy conservation measures;
    (b) Has satisfied the requirements set forth in Sec.  455.110;
    (c) For applications for technical assistance, has implemented all 
energy conservation maintenance and operating procedures recommended in 
the energy audit pursuant to Sec.  455.20(k), if done, and for 
applications for energy

[[Page 1189]]

conservation measures, those recommended in the report obtained under a 
technical assistance program pursuant to Sec.  455.62. If any such 
procedure has not been implemented, the application shall contain a 
satisfactory written justification consistent with the State plan for 
not implementing that procedure;
    (d) Will obtain from the technical assistance analyst, before the 
analyst performs any work in connection with a technical assistance 
program or energy conservation measure, a signed statement certifying 
that the technical assistance analyst has no conflicting financial 
interest and is otherwise qualified to perform the duties of technical 
assistance analyst in accordance with the standards and criteria 
established in the approved State Plan;
    (e) When using borrowed funds for the non-Federal share of an energy 
conservation project where a lien is placed by the lender on equipment 
funded under the grant, will obtain clauses in the financing contract:
    (1) Stating the percent of DOE interest in the equipment (i.e., the 
percent of the total cost provided by the grant); and
    (2) Requiring lender notification, with certified return receipt 
requested, to the applicable Support Office Director of the filing of a 
lawsuit seeking a remedy for a default; and
    (f) Will comply with all reporting requirements contained in Sec.  
455.113.



Sec.  455.112  Davis-Bacon wage rate requirement.

    When an energy conservation measure or group of measures in a 
building, funded under this part, has a total estimated cost for 
acquisition and installation of more than $5,000, any construction 
contract or subcontract in excess of $2,000, using any grant funds 
awarded under this part must include:
    (a) Those contract labor standards provisions set forth in 29 CFR 
5.5 and
    (b) A provision for payment of laborers and mechanics at the minimum 
wage rates determined by the Secretary of Labor in accordance with the 
Davis-Bacon Act (40 U.S.C. 276a) as set forth in 29 CFR part 1.



Sec.  455.113  Grantee records and reports for technical assistance 
and energy conservation measure grants to institutions 
and coordinating agencies.

    (a) Each unit of local government or public care institution which 
receives a grant for a technical assistance program and each school, 
hospital, and coordinating agency which receives a grant for a technical 
assistance program or an energy conservation measure, including 
renewable resource measures, shall keep all the records required by 
Sec.  455.4 in accordance with this part and the DOE Financial 
Assistance Rules.
    (b) Each grantee shall submit reports as follows:
    (1) For technical assistance programs, two copies of a final report 
of the analysis completed on each building for which financial 
assistance was provided shall be submitted, either both to the State 
energy agency, or one to the State energy agency, and one to DOE as 
agreed upon between the State and the DOE Support Office no later than 
90 days following completion of the analysis. These reports shall 
contain:
    (i) The report submitted to the institution by the technical 
assistance analyst, and
    (ii) The institution's plan to implement energy conservation 
maintenance and operating procedures;
    (2) For energy conservation measure projects:
    (i) Semi-annual progress reports. Two copies shall be submitted, 
either both to the State energy agency or one to the State energy agency 
and one to DOE, as agreed upon between the State and the DOE Support 
Office, no later than the end of July (for the period January 1 through 
June 30), and January (for the period July 1 through December 31) and 
shall detail and discuss milestones accomplished, those not 
accomplished, status of in-progress activities, and remedial actions if 
needed to achieve project objectives. Reports of coordinating agency 
grantees shall include financial assistance which an institution 
declines or does not use as a result of a change in scope. A final 
report may be submitted in lieu of the last semi-annual report if it 
satisfies

[[Page 1190]]

the semi-annual progress report and final report designated time frames;
    (ii) A final report. Two copies shall be submitted, either both to 
the State energy agency or one to the State energy agency and one to 
DOE, as agreed upon between the State and the DOE Support Office, within 
90 days of the completion of the project and shall list and describe the 
energy conservation measures acquired and installed, contain a final 
actual cost and a final estimated simple payback period for each measure 
and the project as a whole, or a final savings-to-investment ratio for 
each measure and the project as a whole (depending on the State 
requirement), and include a statement that the completed energy 
conservation measures conform to the approved grant application;
    (iii) Annual energy use reports from a representative sample to be 
selected by the State which will reflect the grantee's actual post-
retrofit energy use experiences for 3 years after project completion. 
Two copies of these reports shall be submitted, either both to the State 
energy agency or one to the State energy agency and one to DOE, as 
agreed upon between the State and the DOE Support Office within 60 days 
after the end of each 12-month period covered in the reports and shall 
identify each building and provide data on energy use for that building 
for the relevant 12-month period. To the extent feasible, energy 
consumption data in each annual report should be the monthly usage data 
by fuel or energy type, and the reports should include brief 
descriptions of any changes in building usage, equipment, or structure 
occurring during the reporting period.
    (3) Each copy of any technical assistance or energy conservation 
measure report shall be accompanied by a financial status report 
completed in accordance with the documents listed in Sec.  455.3;
    (4) In cases where both copies of the grantee technical assistance, 
energy conservation measure, and financial status reports are submitted 
to the State, as agreed upon between the State and the DOE Support 
Office, the State shall in turn submit copies to DOE on a mutually 
agreed-upon schedule; and
    (5) Such other information as DOE may from time to time request.



          Subpart K_Applicant Responsibilities_Grants to States



Sec.  455.120  Grant applications for State administrative expenses.

    Each State desiring to receive grants to help defray State 
administrative expenses shall file an application in accordance with the 
provisions of this section.
    (a) Where a State is operating a program solely to provide grants to 
schools and hospitals, the maximum amount of administrative expenses the 
State may apply for is $50,000 or 5 percent of the Federal share of its 
schools and hospitals grant awards, whichever is greater.
    (1) At any time after notice by DOE of the amounts allocated to each 
State for a grant program cycle, each State may apply to DOE for an 
amount for administrative expenses not exceeding $50,000.
    (2) After making a submittal to DOE as required under Sec.  455.133, 
each State may apply for a further grant not exceeding 5 percent of the 
total Federal share of all grant awards for technical assistance and 
energy conservation measures within the State, less the $50,000 provided 
for in paragraph (a)(l) of this section if that was previously awarded 
to the State for administrative expenses in the same grant program 
cycle.
    (b) Where a State is eligible and elects to apply to use its 
appropriated allocation for grants for technical assistance, program 
assistance, and/or marketing pursuant to Sec.  455.121, the maximum 
amount of administrative expenses the State may apply for is $50,000 or 
5 percent of the total amount obligated or legally committed to eligible 
recipients in the State pursuant to the State's program under this part, 
whichever is greater.
    (1) At any time after notice by DOE of amounts allocated to each 
State for a grant program cycle, each State may apply to DOE for an 
amount for administrative expenses not exceeding $50,000.
    (2) Once the total amount obligated or legally committed to the 
program in

[[Page 1191]]

the cycle is known, a State may subsequently apply for a further grant, 
not exceeding 5 percent of the total amount (less the $50,000 provided 
for in paragraph (b)(1) of this section if that was previously awarded 
to the State for administrative expenses in the same fiscal year) 
obligated or legally committed to eligible recipients in the State 
during the fiscal year for technical assistance, program assistance, and 
marketing, and for energy conservation measures which are funded with 
non-Federal funds but which meet the certification and other 
requirements of this part for such energy conservation measures.
    (3) The aggregate amount applied for to cover State administrative 
expenses, technical assistance, program assistance, and marketing cannot 
exceed the State's allocation for the fiscal year.
    (c) In the event that a State cannot, or decides not to use the 
amount available to it for an administrative grant under this section 
for administrative purposes, these funds may, at the discretion of the 
State, be used for technical assistance and energy conservation measure 
grants to eligible institutions within that State in accordance with 
this part.
    (d) Applications for financial assistance to defray State 
administrative expenses shall include:
    (1) The name and address of the person designated by the State to be 
responsible for the State's functions under this part;
    (2) An identification of intended use of all Federal and non-Federal 
funds to be used for the State administrative expenses listed in Sec.  
455.82; and
    (3) Any other information required by DOE.



Sec.  455.121  Grant applications for State technical assistance, 
program assistance, and marketing programs.

    (a) A State may apply for up to 100 percent of the amount allocated 
to it for a grant program cycle to fund administrative expenses under 
Sec.  455.120 and technical assistance and program assistance programs, 
or for up to 50 percent of the amount allocated to it for a grant 
program cycle to fund marketing programs provided that:
    (1) The State has established a program to fund technical 
assistance, program assistance, or marketing programs, and has described 
its program or programs in its State Plan, as specified in Sec.  
455.20(j);
    (2) The State has a program or programs established consistent with 
this part of that fund, from non-Federal sources, energy conservation 
measures eligible under this part;
    (3) Not more than 15 percent of the aggregate amount of Federal and 
non-Federal funds legally committed or obligated to eligible recipients 
in the State to provide program assistance, marketing and technical 
assistance programs, implement energy conservation measures consistent 
with this part, and otherwise carry out a program pursuant to this part 
for the fiscal year concerned are expended for program assistance, 
technical assistance and marketing costs for such program;
    (4) The energy conservation measures funded from non-Federal sources 
under this section would be eligible for funding under Sec.  455.71; and
    (5) The institutions undertaking the non-Federally funded energy 
conservation measures do so in accordance with all applicable Federal, 
State, and local laws and regulations with particular attention paid to 
applicable Federal and State non-discrimination laws and regulations.
    (b) Applications for financial assistance to defray State technical 
assistance, program assistance, or marketing expenses shall include:
    (1) The name and address of the person designated by the State to be 
responsible for the State's functions under this part;
    (2) An identification of intended use of all Federal and non-Federal 
funds for the State administrative expenses listed in Sec.  455.82, or 
the technical assistance, program assistance, or marketing programs 
pursuant to this section;
    (3) Descriptions of the activities to be implemented together with a 
description of the State's program to provide non-Federal sources of 
funding to carry out the State's program(s) for energy conservation 
measures consistent with this part;

[[Page 1192]]

    (4) A certification that the 15 percent limit specified in 
subparagraph (a)(3) of this section will not be exceeded; and
    (5) Any other information required by DOE.



Sec.  455.122  Applicant certifications for State grants 
for technical assistance, program assistance, and marketing.

    Applications from States for financial assistance for technical 
assistance programs, program assistance, and marketing shall include 
certifications that the State:
    (a) Has established a program or programs to fund, from non-Federal 
sources, energy conservation measures for eligible buildings consistent 
with this part;
    (b) Will not expend, for technical assistance, program assistance, 
and marketing, more than 15 percent of the aggregate amount of Federal 
and non-Federal funds legally obligated or committed to eligible 
recipients in the State to provide technical assistance, program 
assistance, marketing programs, implement energy conservation measures 
consistent with this part, and otherwise carry out a program pursuant to 
this part for the fiscal year concerned; and
    (c) Has provided for regular DOE-funded grants to eligible 
religiously affiliated institutions if the State has a State 
constitutional or other legal prohibition on providing State assistance 
to such institutions and if such institutions would be ineligible to 
apply for the non-Federally funded energy conservation measures or 
State-funded technical assistance.



Sec.  455.123  Grantee records and reports for State grants 
for administrative expenses, technical assistance, program assistance, 
and marketing.

    (a) Each State which receives a grant for administrative expenses, 
or a grant for technical assistance programs, program assistance, or 
marketing shall keep all the records required by Sec.  455.4 in 
accordance with this part and the DOE Financial Assistance Rules.
    (b) Each State shall submit a semi-annual program performance report 
to DOE by the close of each February and August, including, but not 
limited to:
    (1) A discussion of administrative activities pursuant to Sec.  
455.82, if a State has received a grant to fund such activities, and a 
discussion of milestones accomplished, those not accomplished, status of 
in-progress activities, problems encountered, and remedial actions, if 
any, planned pursuant to Sec.  455.135(f);
    (2) A discussion of technical assistance, program assistance, and/or 
marketing programs pursuant to Sec.  455.121, if the State has received 
grants to fund such activities, including a discussion of the results of 
the State's program to non-Federally fund energy conservation measures 
consistent with this part pursuant to Sec.  455.121, with a list of 
buildings receiving assistance for technical assistance programs and a 
list of buildings which obtained energy conservation measures using non-
Federal funds, including the name and address of each building, the 
amount and type of funding provided to each, and for energy conservation 
measures, the types of measures funded in each building together with 
each measure's total estimated cost and estimated annual cost savings, 
annual energy savings, and the annual cost of the energy to be saved 
(determined pursuant to Sec.  455.62(d)) consistent with the data 
currently provided to DOE on all ICP grants;
    (3) A summary of grantee reports received by the State during the 
report period pursuant to Sec. Sec.  455.113(b)(1) and (b)(2);
    (4) For the report due to be submitted to DOE by the close of each 
August, an estimate of annual energy use reductions in the State, by 
energy source, attributable to implementation of energy conservation 
maintenance and operating procedures and installation of energy 
conservation measures under this part. Such estimates shall be based 
upon a sampling of institutions participating in the technical 
assistance phase of this program and upon the energy use reports 
submitted to the State pursuant to Sec.  455.113(b)(2)(iii); and
    (5) Such other information as DOE may from time to time request.
    (c) Each copy of any report covering grants for State 
administrative, technical assistance, program assistance,

[[Page 1193]]

or marketing expenses shall be accompanied by a financial status report 
completed in accordance with the documents listed in Sec.  455.3. In 
addition, States shall file quarterly financial status reports for the 
quarters which occur between the semi-annual report periods covered in 
their program performance reports. These quarterly reports are due 
within 30 days following the end of the applicable quarters.



                    Subpart L_State Responsibilities



Sec.  455.130  State evaluation of grant applications.

    (a) If an application received by a State is reviewed and evaluated 
by that State and determined to be in compliance with subparts E, F, and 
J of this part, Sec.  455.130(b), any additional requirements of the 
approved State Plan, State environmental laws, and other applicable laws 
and regulations, then such application will be eligible for financial 
assistance.
    (b) Concurrent with its evaluation and ranking of grant applications 
pursuant to Sec.  455.131, the State will forward applications for 
technical assistance or for energy conservation measures for schools to 
the State school facilities agency for review and certification that 
each school application is consistent with related State programs for 
educational facilities. For hospitals the certification requirement 
applies only if there is a State requirement for it in which case the 
procedure should be described in the State Plan.



Sec.  455.131  State ranking of grant applications.

    (a) Except as provided by Sec.  455.92 of this part, all eligible 
applications received by the State will be ranked by the State in 
accordance with its approved State Plan.
    (b) For technical assistance programs, buildings shall be ranked in 
descending priority based upon the energy conservation potential, on a 
savings percentage basis, of the building as determined in the energy 
audit or energy use evaluation pursuant to Sec.  455.20(k). Each State 
shall develop separate rankings for all buildings covered by eligible 
applications for:
    (1) Technical assistance programs for units of local government and 
public care institutions and
    (2) Technical assistance programs for schools and hospitals.
    (c) All eligible applications for energy conservation measures 
received will be ranked by the State on building-by-building or a 
measure-by-measure basis. If a State ranks on a building-by-building 
basis, several buildings may be ranked as a single building if the 
application proposes a single energy conservation measure which is 
physically connected to all of the buildings. If a State ranks on a 
measure-by-measure basis, a measure that is physically connected to a 
number of buildings may be ranked as a single measure. Buildings or 
measures shall be ranked in accordance with the procedures established 
by the State Plan on the basis of the information developed during a 
technical assistance program (or its equivalent) for the building and 
the criteria for ranking applications. The criterion set forth in 
paragraph (1) of this subsection shall receive at least 50 percent of 
the weight given to the criteria used to rank applications. Each State 
may assign weights to the other criteria as set forth in the State Plan 
pursuant to Sec.  455.20(e). The criteria for ranking applications are:
    (1) Simple payback or a life-cycle cost analysis, calculated in 
accordance with Sec.  455.63 and Sec.  455.64, as applicable;
    (2) The types and quantities of energy to be saved, including oil, 
natural gas, or electricity, in a priority as established in the 
approved State Plan;
    (3) The types of energy sources to which conversion is proposed, 
including renewable energy;
    (4) The quality of the technical assistance program report; and
    (5) Other factors as determined by the State.
    (d) A State is exempt from the ranking requirements of this section 
when:
    (1) The total amount requested by all applications for schools and 
hospitals for technical assistance and energy conservation measures in a 
given grant program cycle for grants up to 50 percent is less than or 
equal to the funds available to the State for such grants and the total 
amount recommended for

[[Page 1194]]

hardship funding is less than or equal to the amounts available to the 
State for such grants and
    (2) The total amount requested by all applications for buildings 
owned by units of local government and public care institutions in a 
given grant program cycle is less than or equal to the total amount 
allocated to the State for technical assistance program grants in the 
State;
    (e) If a State elects to permit applications for credit pursuant to 
Sec.  455.102, such applications for completed or partially completed 
energy conservation measures shall reflect both the work done and the 
work to be done and will be reviewed and ranked on the basis of the cost 
of all of the measures in the project. The credit shall not exceed the 
non-Federal share of the proposed additional energy conservation 
measures (and the Federal share shall not exceed the cost of the work 
remaining to be done).
    (f) Within the rankings of school and hospital buildings for 
technical assistance and energy conservation measures including 
renewable resource measures to the extent that approvable applications 
are submitted, a State shall initially assure that:
    (1) Schools receive at least 30 percent of the total funds allocated 
for schools and hospitals to the State in any grant program cycle and
    (2) Hospitals receive at least 30 percent of the total funds 
allocated for schools and hospitals to the State in any grant program 
cycle.
    (g) If there are insufficient applications from schools or hospitals 
to cover the respective 30 percent requirements specified in paragraph 
(f) of this section, then the State may recommend use of the remaining 
funds in those allocations for other qualified applicants.



Sec.  455.132  State evaluation of requests for severe hardship assistance.

    (a) To the extent provided in Sec.  455.30(d), financial assistance 
will be initially available for schools and hospitals experiencing 
severe hardship based upon an applicant's inability to provide the non-
Federal share as specified in the State plan pursuant to Sec.  
455.20(g). This financial assistance will be available only to the 
extent necessary to enable such institutions to participate in the 
program.
    (b) The State shall recommend funds for severe hardship applications 
wholly or partially from the funds reserved in accordance with Sec.  
455.30(d) and as stated in an approved State Plan.
    (c) Applications for Federal funding in excess of the non-Federal 
share in the State plan pursuant to Sec.  455.20(x) based on claims of 
severe hardship shall be given an additional evaluation by the State to 
assess on a quantifiable basis to the maximum extent practicable the 
relative need among eligible institutions. The minimum amount of 
additional Federal funding necessary for the applicant to participate in 
the program will be determined by the State in accordance with the 
procedures established in the State Plan. The primary consideration 
shall be the institution's inability to provide the non-Federal share of 
the project cost as specified in the State plan pursuant to Sec.  
455.20(x). Secondary criteria such as climate, fuel cost and fuel 
availability, borrowing capacity, median family income in the area, and 
other relevant factors as determined by the State may be addressed in 
the State Plan as specified in Sec.  455.20(g).
    (d) A State shall indicate, for those schools and hospitals with the 
highest rankings, determined pursuant to Sec.  455.131(b) and (c):
    (1) The amount of additional hardship funding requested by each 
eligible applicant for each building determined to be in a class of 
severe hardship and
    (2) The amount of hardship funding recommended by the State based 
upon relative need, as determined in accordance with the State Plan, to 
the limit of the hardship funds available. The State must decide on a 
case-by-case basis whether, and to what extent, it will recommend 
hardship funding.
    (e) If there are insufficient applications from hardship applicants 
to cover the 10 percent allocation provided for in Sec.  455.30(d), then 
the State may recommend use of the remaining funds for other qualified 
applicants. The total amount recommended for hardship grants cannot 
exceed the 10 percent limit.

[[Page 1195]]



Sec.  455.133  Forwarding of applications from institutions 
and coordinating agencies for technical assistance 
and energy conservation measure grants.

    (a) Except as provided by Sec.  455.92 of this part, each State 
shall forward all applications recommended for funding within its 
allocation to DOE once each program cycle along with a listing of 
buildings or measures covered by eligible applications for schools, 
hospitals, units of local government, and public care institutions 
ranked by the State if necessary pursuant to the provisions of Sec.  
455.131. If ranking has been employed, the list shall include the 
standings of buildings or measures.
    (1) Measure-by-measure rankings will be recombined for the 
respective buildings with more than one recommended measure and
    (2) Buildings will be consolidated under one grantee application.
    (b) The State shall indicate the amount of financial assistance 
requested by the applicant for each eligible building and, for those 
buildings recommended for funding within the limits of the State's 
allocation, the amount recommended for funding. If the amount 
recommended is less than the amount requested by the applicant, the list 
shall also indicate the reason for that recommendation.
    (c) The State shall indicate that it has reviewed and evaluated all 
of the submitted applications and that those applications meet the 
relevant requirements of the program, and shall certify that 
applications submitted are eligible pursuant to Sec.  455.130(a).



Sec.  455.134  Forwarding of applications for State grants 
for technical assistance, program assistance, and marketing.

    A State eligible to apply for grants for technical assistance, 
program assistance, or marketing, as described in Sec.  455.121, may 
submit such an application to DOE any time after the allocations have 
been announced as part of, or in lieu of, an application for a grant for 
State administrative expenses. Such applications shall provide separate 
narrative descriptions, budgets and appropriate milestone dates, 
covering each activity or program, that are sufficiently detailed to 
enable DOE to reasonably evaluate the application.



Sec.  455.135  State liaison, monitoring, and reporting.

    Each State shall be responsible for:
    (a) Consulting with eligible institutions and coordinating agencies 
representing such institutions in the development of its State Plan;
    (b) Notifying eligible institutions and coordinating agencies of the 
content of the approved State Plan and any amendment to a State Plan;
    (c) Notifying each applicant how the applicant's building or measure 
ranked among other applications, and whether and to what extent its 
application will be recommended for funding or if not to be recommended 
for funding, the specific reasons(s) therefor;
    (d) Certifying that each institution has given its assurance that it 
is willing and able to participate on the basis of any changes in 
amounts recommended for that institution in the State ranking pursuant 
to Sec.  455.131;
    (e) Reporting requirements pursuant to Sec.  455.113; and
    (f) Direct program oversight and monitoring of the activities for 
which grants are awarded as defined in the State Plan. States shall 
immediately notify DOE of any noncompliance or indication thereof.



                         Subpart M_Grant Awards



Sec.  455.140  Approval of applications from institutions 
and coordinating agencies for technical assistance 
and energy conservation measures.

    (a) DOE shall review and approve applications submitted by a State 
in accordance with Sec.  455.133 if DOE determines that the applications 
meet the objectives of the Act, and comply with the applicable State 
Plan and the requirements of this part. DOE may disapprove all or any 
portion of an application to the extent funds are not available to carry 
out a program or measure (or portion thereof) contained in the 
application, or for such other reason as DOE may deem appropriate.

[[Page 1196]]

    (b) DOE shall notify a State and the applicant of the final approval 
or disapproval of an application at the earliest practicable date after 
the DOE receipt of the application, and, in the event of disapproval, 
shall include a statement of the reasons therefor.
    (c) An application which has been disapproved for reasons other than 
lack of funds may be amended to correct the cause of its disapproval and 
resubmitted in the same manner as the original application at any time 
within the same grant program cycle. Such an application will be 
considered to the extent funds have not already been designated for 
applicants by the ranking process at the time of resubmittal. However, 
nothing in this provision shall obligate either the State or DOE to take 
final action regarding a resubmitted application within the grant 
program cycle. An application not acted upon may be resubmitted in a 
subsequent grant program cycle.
    (d) DOE shall not provide supplemental funds to cover cost overruns 
or other additional costs beyond those provided for in the original 
grant award for technical assistance projects and shall fund only one 
technical assistance project per building.
    (e) DOE shall not provide supplemental funds to cover cost overruns 
or other additional costs beyond those provided for in the original 
grant award for energy conservation measures funded under a grant in a 
given grant program cycle. DOE shall not provide funds to cover energy 
conservation measures intended to replace energy conservation measures 
funded in an earlier grant cycle unless the State has funds remaining 
after all applications for new energy conservation measures have been 
evaluated and submitted to DOE for funding.
    (f) If provided for in the State Plan, an applicant may reapply for 
a technical assistance program or an energy conservation measure grant 
which was included in a prior grant application but which was not 
implemented and for which no funds were expended.
    (g) An applicant may apply for, and DOE may make, grant awards in 
another grant program cycle for additional energy conservation measures 
which relate to a building which previously received grants for other 
energy conservation measures.
    (h) Funds which become available to a grantee after the installation 
of all approved measures, due to cost underruns in the installed 
measures, may be used by the grantee for additional measures if such 
measures are approved in writing by the State and DOE.
    (i) DOE may fund costs incurred by an applicant for technical 
assistance and energy conservation measure projects after the date of 
the grant application, so long as that date is no earlier than the close 
of the preceding grant program cycle. Such costs may be funded when, in 
the judgment of DOE, the applicant has complied with program 
requirements and the costs incurred are allowable under applicable cost 
principles and the approved project budget. The applicant bears the 
responsibility for the entire project cost unless the application is 
approved by DOE in accordance with this part.
    (j) In addition to the prior approval requirements for project 
changes as specified in the DOE Financial Assistance Rules (10 CFR part 
600), a grantee shall request prior written approval from DOE before:
    (1) Transferring DOE or matching amounts between buildings included 
in an approved application when the State ranks applications on a 
building-by-building basis or
    (2) Transferring DOE or matching amounts between energy conservation 
measures included in an approved application when the State ranks on a 
measure-by-measure basis.



Sec.  455.141  Grant awards for units of local government, 
public care institutions, and coordinating agencies.

    (a) DOE may make grants to units of local government, public care 
institutions, and coordinating agencies representing them for up to 50 
percent of the costs of performing technical assistance programs for 
buildings covered by an application approved in accordance with Sec.  
455.140 except that in the case of units of local government and public 
care institutions a majority of whose operating and capital funds are 
provided by the Government of the U.S. Virgin Islands, Guam, American

[[Page 1197]]

Samoa, or the Commonwealth of the Northern Mariana Islands, a grant may 
be made for up to 100 percent of such costs.
    (b) Total grant awards within any State to units of local government 
and public care institutions are limited to funds allocated to each 
State in accordance with Sec.  455.30.
    (c) Units of local government and public care institutions are not 
eligible for financial assistance for severe hardship.



Sec.  455.142  Grant awards for schools, hospitals, and coordinating agencies.

    (a) DOE may make grants to schools, hospitals, and coordinating 
agencies for up to 50 percent of the costs of performing technical 
assistance programs for buildings covered by an application approved in 
accordance with Sec.  455.140; except that in the case of schools and 
hospitals a majority of whose operating and capital funds are provided 
by the Government of the U.S. Virgin Islands, Guam, American Samoa, or 
the Commonwealth of the Northern Mariana Islands a grant may be made for 
up to 100 percent of such costs. Grant awards for technical assistance 
programs in any State within any grant program cycle shall be limited to 
a portion of the total allocation as specified in Sec.  455.30(b)(1).
    (b) DOE may make grants to schools, hospitals and coordinating 
agencies for up to 50 percent of the costs of acquiring and installing 
energy conservation measures, including renewable resource measures, for 
buildings covered by an application approved in accordance with Sec.  
455.140, except that in the case of schools and hospitals a majority of 
whose operating and capital funds are provided by the Government of the 
U.S. Virgin Islands, Guam, American Samoa, or the Commonwealth of the 
Northern Mariana Islands, a grant may be made for up to 100 percent of 
such costs.
    (c) DOE may award up to 10 percent of the total amount allocated to 
a State for schools and hospitals in cases of severe hardship, 
ascertained by the State in accordance with the State Plan, for 
buildings recommended and in amounts determined by the State pursuant to 
Sec.  455.132(d)(2).



Sec.  455.143  Grant awards for State administrative expenses.

    (a) For the purpose of defraying State expenses in the 
administration of technical assistance programs in accordance with 
subpart E and energy conservation measures in accordance with subpart F 
or energy conservation measures non-Federally funded pursuant to Sec.  
455.121, DOE may make grant awards to a State:
    (1) Immediately following public notice of the amounts allocated to 
a State for the grant program cycle, and upon approval of the 
application for administrative costs, in an amount not exceeding 
$50,000;
    (2) Concurrent with grant awards for approved applications for 
technical assistance or energy conservation measures for institutions in 
that State and upon approval of an application for administrative costs, 
in an amount not exceeding the difference between the amount granted 
pursuant to paragraph (a)(1) of this section and 5 percent of the 
Federal share of the total amount of grants awarded within the State for 
technical assistance programs and energy conservation measures in the 
applicable grant program cycle; or
    (3) Upon receipt by DOE of documentation from the State 
demonstrating that sufficient non-Federal funding has been obligated or 
legally committed to schools and hospitals for energy conservation 
measures pursuant to Sec.  455.121(a) and Sec.  455.123(b)(2), and upon 
approval of an application for administrative costs, in an amount not 
exceeding the difference between the amount granted pursuant to 
paragraph (a)(1) of this section and 5 percent of the aggregate Federal 
and non-Federal funds obligated or legally committed to eligible 
recipients in the State to provide technical assistance, program 
assistance, and marketing programs and implement energy conservation 
measures consistent with this part, for the fiscal year concerned.
    (b) Grants for such purposes may be made for up to 100 percent of 
the projected administrative expenses, not to exceed the State's 
allocation or the

[[Page 1198]]

$50,000 or 5 percent limit, as approved by DOE.
    (c) The total of all grants for State administrative costs, 
technical assistance programs, and energy conservation measures (or for 
State administrative costs, technical assistance, program assistance, 
and marketing, if the State elects and is eligible to apply for such 
grants) in that State shall not exceed the total amount allocated for 
that State for any grant program cycle.
    (d) In the event that a State cannot or decides not to use the 
amount available to it for an administrative grant under this section 
for administrative purposes, these funds may, at the discretion of the 
State, be used for technical assistance and energy conservation grants 
to eligible institutions within that State in accordance with this part.



Sec.  455.144  Grant awards for State programs to provide 
technical assistance, program assistance, and marketing.

    (a) For the purpose of defraying State expenses in the 
administration of special programs to provide technical assistance and 
program assistance pursuant to Sec.  455.121, DOE may make a grant award 
to a State for up to 100 percent of the funds allocated to the State for 
the grant program cycle, provided that the State meets the requirements 
described in Sec.  455.121(b). In addition:
    (1) Funds for individual technical assistance programs provided by 
the State pursuant to this section shall not exceed 50 percent of the 
cost of the technical assistance program;
    (2) Grants for program assistance may be made for up to 100 percent 
of a State's projected program assistance expenses; and
    (3) Grants for State technical assistance, and program assistance 
programs may be awarded by DOE upon approval of an application from the 
State.
    (b) For the purpose of defraying State expenses in the 
administration of a marketing program pursuant to Sec.  455.121, DOE may 
make a grant award to a State for up to 50 percent of the funds 
allocated to the State for the grant program cycle, provided that the 
State meets the requirements described in Sec.  455.121(b). In addition:
    (1) Grants for marketing may be made for up to 100 percent of a 
State's projected marketing expenses; and
    (2) Such grants may be awarded by DOE upon approval of an 
application from the State.
    (c) If a State provides a certification under section 455.121(b) and 
is unable to document that the required non-Federal funding levels for 
energy conservation measures were achieved substantially for the 
previous fiscal year for which a similar certification was submitted, 
DOE may deny the application, accept it after the percentage of 
allocated funds is reduced in light of past performance, or take other 
appropriate action.
    (d) In the event that a State, after receiving a grant under this 
section, cannot or decides not to use all or part of the amount 
available to it for technical assistance, program assistance, and 
marketing, these funds may, at the discretion of the State and after 
appropriate application to and approval of DOE, be used for technical 
assistance and energy conservation grants to eligible institutions 
within that State in accordance with this part.



                     Subpart N_Administrative Review



Sec.  455.150  Right to administrative review.

    (a) A State shall have a right to file a notice requesting 
administrative review of a decision under Sec.  455.143 by a Support 
Office Director to disapprove an application for a grant award for State 
administrative expenses subject to special conditions or a decision 
under Sec.  455.21 of this part by a Support Office Director to 
disapprove a State Plan or an amendment to a State Plan.
    (b) A State shall have a right to file a notice requesting 
administrative review of a decision under Sec.  455.144 by a Support 
Office Director to disapprove an application for a grant award for State 
technical assistance, program assistance, or marketing programs.
    (c) A school, hospital, coordinating agency, or State acting as an 
institution's duly authorized agent shall have a right to file a notice 
requesting administrative review of a decision under

[[Page 1199]]

Sec.  455.140 by a Support Office Director to disapprove an application 
for a grant award to perform technical assistance programs or to acquire 
and install an energy conservation measure if the disapproval is based 
on a determination that:
    (1) The applicant is ineligible, under Sec.  455.61 or Sec.  455.71 
or for any other reason; or
    (2) An energy use evaluation submitted in lieu of an energy audit is 
unacceptable under the State Plan; or
    (3) A technical assistance program equivalent performed without the 
use of Federal funds does not comply with the requirements of Sec.  
455.62 for purposes of satisfying the eligibility requirements of Sec.  
455.71(a)(3).



Sec.  455.151  Notice requesting administrative review.

    (a) Any applicant shall have 20 days from the date of receipt of a 
decision subject to administrative review under Sec.  455.150 to 
disapprove its application for a grant award to file a notice requesting 
administrative review. If an applicant does not timely file such a 
notice, the decision to disapprove shall become final for DOE.
    (b) A notice requesting administrative review shall be filed with 
the Support Office Director and shall be accompanied by a written 
statement containing supporting arguments.
    (c) If the applicant is a State appealing pursuant to paragraph (a) 
of Sec.  455.150, the State shall have the right to a public hearing. To 
exercise that right, the State must request such a hearing in the notice 
filed under paragraph (b) of this section. A public hearing under this 
section shall be informal and legislative in nature.
    (d) A notice or any other document shall be deemed filed under this 
subpart upon receipt.



Sec.  455.152  Transmittal of record on review.

    On or before 15 days from receipt of a notice requesting 
administrative review which is timely filed, the Support Office Director 
shall forward to the Deputy Assistant Secretary the notice requesting 
administrative review, the decision to disapprove as to which 
administrative review is sought, a draft recommended final decision for 
concurrence, and any other relevant material.



Sec.  455.153  Review by the Deputy Assistant Secretary.

    (a) If a State requests a public hearing pursuant to paragraph (a) 
of Sec.  455.150, the Deputy Assistant Secretary, within 15 days, shall 
give actual notice to the State and Federal Register notice of the date, 
place, time, and procedures which shall apply to the public hearing. Any 
public hearing under this section shall be informal and legislative in 
nature.
    (b) The Deputy Assistant Secretary shall concur in, concur in as 
modified, or issue a substitute for the recommended decision of the 
Support Office Director:
    (1) With respect to a notice filed pursuant to paragraph (a) of 
Sec.  455.150, on or before 60 days from receipt of documents under 
Sec.  455.152 or the conclusion of a public hearing, whichever is later; 
or
    (2) With respect to a notice filed pursuant to paragraph (b) of 
Sec.  455.150, on or before 30 days from receipt of documents under 
Sec.  455.152.



Sec.  455.154  Discretionary review by the Assistant Secretary.

    On or before 15 days from the date of the determination under Sec.  
455.153(b), the applicant for a grant award may file an application, 
with a supporting statement of reasons, for discretionary review by the 
Assistant Secretary. If administrative review is sought pursuant to 
paragraph (a) of Sec.  455.150, the Assistant Secretary shall send a 
notice granting or denying discretionary review within 15 days and upon 
granting such review, shall issue a decision no later that 60 days from 
the date discretionary review is granted. If administrative review is 
sought pursuant to paragraph (b) of Sec.  455.150, the Assistant 
Secretary shall send a notice granting or denying discretionary review 
within 15 days and upon granting such review shall issue a decision no 
later than 30 days from the date discretionary review is granted. The 
Assistant Secretary may not issue a notice or decision under this 
paragraph without the concurrence of the DOE Office of General Counsel.

[[Page 1200]]



Sec.  455.155  Finality of decision.

    A decision under Sec.  455.153 shall be final for DOE if there is no 
review sought under Sec.  455.154. If there is review under Sec.  
455.154, the decision thereunder shall be final for DOE, and no appeal 
shall lie elsewhere in DOE.

                           PART 456 [RESERVED]



PART 470_APPROPRIATE TECHNOLOGY SMALL GRANTS PROGRAM--Table of Contents



Sec.
470.1 Purpose and scope.
470.2 Definitions.
470.10 Establishment of program.
470.11 Eligibility requirements.
470.12 Management.
470.13 Program solicitation.
470.14 Evaluation and selection.
470.15 Allocation of funds.
470.16 Cost sharing and funds from other sources.
470.17 General requirements.
470.18 Debriefing.
470.20 Dissemination of information.

    Authority: Energy Research and Development Administration 
Appropriation Authorization of 1977, Pub. L. 95-39; Energy 
Reorganization Act of 1974, Pub. L. 93-438; Department of Energy 
Organization Act, Pub. L. 95-91.

    Source: 45 FR 8928, Feb. 8, 1980, unless otherwise noted.



Sec.  470.1  Purpose and scope.

    This part contains guidelines for the implementation of the 
appropriate technology small grants program required to be prescribed by 
section 112 of the Act.



Sec.  470.2  Definitions.

    As used in this part--
    Act means the Energy Research and Development Administration 
Appropriation Authorization of 1977, Pub. L. 95-39, 91 Stat. 180, 42 
U.S.C. 5907a.
    Affiliate means a concern which, either directly or indirectly, 
controls or has the power to control another concern, is controlled by 
or is within the power to control of another concern or, together with 
another concern, is controlled by or is within the power to control of a 
third party, taking into consideration all appropriate factors, 
including common ownership, common management and contractual 
relationships.
    Concern means any business entity organized for profit (even if its 
ownership is in the hands of a nonprofit entity) with its principal 
place of business located in the United States. ``Concern'' includes, 
but is not limited to, an individual, partnership, corporation, joint 
venture, association or cooperative. For the purpose of making 
affiliation findings, any business entity, whether organized for profit 
or not, and any foreign business entity (i.e., any entity located 
outside the United States), shall be included.
    DOE means the Department of Energy.
    DOE-AR means the Department of Energy Assistance Regulations (10 CFR 
part 600).
    DOE-PR means the Department of Energy Procurement Regulations (41 
CFR part 9).
    Indian tribe means any tribe band, nation, or other organized group 
or community of Indians (including any Alaska native village or regional 
or village corporation as defined in or established pursuant to the 
Alaska Native Claims Settlement Act, Pub. L. 92-203, 85 Stat. 688, which 
(1) is recognized as eligible for the special programs and services 
provided by the United States to Indians because of their status as 
Indians; or (2) is located on, or in proximity to, a Federal or State 
reservation or rancheria, acting through its tribal organization.
    Local agency means an agency or instrumentality of a local 
government.
    Local government means a local unit of government including 
specifically a county, municipality, city, town, township, local public 
authority, special district, intrastate district, council of 
governments, sponsor group representative organization, and other 
regional or intrastate government entity.
    Local nonprofit organization or institution means any corporation 
trust, foundation, trade association, or other institution (1) which is 
entitled to exemption under section 501(c)(3) of the Internal Revenue 
Code or (2) which is not organized for profit and no part of the net 
earnings of which insure to the

[[Page 1201]]

benefit of any private shareholder or individual.
    Program means the appropriate technology small grants program.
    Small business means a concern, including its affiliates, which is 
organized for profit, is independently owned and operated, is not 
dominant in the field of operation in which it is submitting a proposal 
to DOE, and has 100 employees or less.
    Standard Federal regions means the 10 standard Federal regions 
established by Office of Management and Budget Circular A-105, entitled 
``Standard Federal Regions.''
    State means any of the several States of the United States, the 
District of Columbia, the Commonwealth of Puerto Rico, and any territory 
or possession of the United States.
    State agency means an agency or instrumentality of a State 
government.
    State government means the government of a State, or an interstate 
organization.
    Support means financial support or award under the program by 
grants, cooperative agreements or contracts.
    Tribal organization means the recognized governing body of an Indian 
tribe, or any legally established organization of Native Americans which 
is controlled, sanctioned, or chartered by such governing body.



Sec.  470.10  Establishment of program.

    There is established, under direction of the Assistant Secretary for 
Conservation and Solar Energy of DOE, an appropriate technology small 
grants program for the purpose of encouraging development and 
demonstration of, and the dissemination of information with respect to, 
energy-related systems and supporting technologies appropriate to--
    (a) The needs of local communities and the enhancement of community 
self-reliance through the use of available resources;
    (b) The use of renewable resources and the conservation of non-
renewable resources;
    (c) The use of existing technologies applied to novel situations and 
uses;
    (d) Applications which are energy conserving, environmentally sound, 
small scale and low cost; and
    (e) Applications which demonstrate simplicity of installation, 
operation and maintenance.



Sec.  470.11  Eligibility requirements.

    (a) Support under this part may be made to individuals, local non-
profit organizations and institutions. State and local agencies, Indian 
tribes and small businesses.
    (b) The aggregate amount of support made available to any 
participant in the program, including affiliates, shall not exceed 
$50,000 during any 2-year period. This limitation applies only to 
support for projects and not to funds received by participants from DOE 
for other purposes, such as performance of services.
    (c) Projects which shall be considered for support are those which 
carry out the purposes of the program as expressed in Sec.  470.10 and 
which are within the following categories--
    (1) Idea development, i.e., the development of an idea or concept or 
an investigative finding in areas ranging from development of new 
concepts of energy sources to the utilization of old procedures or 
systems for a new application;
    (2) Device development, i.e., the systematic use and practical 
application of investigative findings and theories of a scientific or 
technical nature toward the production of, or improvements in, useful 
products to meet specific performance requirements but exclusive of 
manufacturing and production engineering. The dominant characteristic is 
that the effort be pointed toward specific energy problem areas to 
develop and evaluate the feasibility and practicability of proposed 
solutions and determine their parameters. Device development includes 
studies, investigations, initial hardware development and ultimately 
development of hardware, systems, or other means for experimental or 
operational test; or
    (3) Demonstration, i.e., the testing of a system or technique under 
operation conditions to show that commercial application is technically, 
economically and environmentally feasible.
    (d) Support for each category in paragraph (c) of this section shall 
not, for a

[[Page 1202]]

single participant in the program, including affiliates, exceed the 
following limits for any project--
    (1) For idea development, $10,000;
    (2) For device development, $50,000; and
    (3) For demonstration, $50,000.
    (4) A participant may receive under a subsequent program 
solicitation--
    (i) Additional support for a funded project or;
    (ii) Initial support for a new project, subject to the support 
limits set forth in paragraphs (b) and (d) of this section.



Sec.  470.12  Management.

    (a) The program shall be managed by a National Program Director 
within the Office of the Assistant Secretary for Conservation and Solar 
Energy of DOE.
    (b) The program shall be implemented regionally, based on the 10 
standard Federal regions or combinations thereof, to insure substantial 
consideration of the needs, resources, and special circumstances of 
local communities. Regions may be combined provided the requirements of 
Office of Management and Budget Circular A-106 entitled ``Standard 
Federal Regulations'' are met. Regional Program Managers shall design 
and manage the regional programs as directed by the National Program 
Director and shall consult, as appropriate, with State and local 
officials, the appropriate technology community and other interested 
parties.



Sec.  470.13  Program solicitation.

    (a) The Regional Program Managers shall be responsible for the 
preparation of program solicitations which solicit proposals for support 
under the program pursuant to simplified application procedures. 
Projects may be supported under the program only if they have 
successfully completed under a program solicitation.
    (b) Each program solicitation shall include--
    (1) A description of the program;
    (2) The eligibility requirements;
    (3) A time schedule for submission of, and action on, proposals;
    (4) A simple application form for submitting a proposal for support 
under the program, together with instructions for completing the 
application form;
    (5) Evaluation criteria, along with a narrative description of their 
relative importance;
    (6) An explanation of the evaluation and selection procedures, 
including a notice to proposers that if the proposer expressly indicates 
that only Government evaluation is authorized, DOE may be unable to give 
full consideration to the proposal.
    (7) Other applicable information, terms and conditions, including 
the desired budget format;
    (8) Place for, and manner of, submission;
    (9) A unique number for identification purposes;
    (10) A statement notifying potential proposers that an announcement 
does not commit DOE to pay any proposal perparation costs and that DOE 
reserves the right to select for support any, all, or none of the 
proposals received in response to a solicitation;
    (11) A late proposal provision;
    (12) A statement notifying proposers how to identify information in 
the proposal which the proposer does not want disclosed for purposes 
other than the evaluation of the proposal.
    (13) A statement notifying proposers that all information contained 
in the proposal will be handled in accordance with the policies and 
procedures set forth in DOE-AR and DOE-PR, as applicable, and disclosed, 
if appropriate, in accordance with 10 CFR part 1004 entitled ``Freedom 
of Information.''
    (14) A statement notifying proposers of their right to request a 
debriefing pursuant to the procedures set forth in Sec.  470.18; and
    (15) A statement notifying proposers of their right to request a 
waiver of DOE's title to inventions made under the program.
    (c) Each program solicitation shall be synopsized in the Commerce 
Business Daily prior to or concurrent with release. The program 
solicitation also shall be announced to appropriate newspapers, trade 
and technical publications, and State and local governments, and shall 
be circulated directly to interested individuals, entities, and

[[Page 1203]]

associations thereof, to the maximum extent feasible.



Sec.  470.14  Evaluation and selection.

    (a) Prior to making a comprehensive evaluation of a proposal, the 
receiving office shall determine that it contains sufficient technical, 
cost, and other information to enable comprehensive evaluation and that 
it has been properly signed. If the proposal does not meet these 
requirements, a prompt reply shall be sent to the proposer, indicating 
the reason(s) for the proposal not being selected for support under the 
program solicitation. A proposer may correct any minor informality or 
irregularity or apparent clerical mistake prior to the entering into of 
grants, contracts, or cooperative agreements. A minor informality or 
irregularity is one which is merely a matter of form and not of 
substance or pertains to some immaterial or inconsequential defect or 
variation from the exact requirements of the program announcement.
    (b)(1) The Regional Program Manager shall select a number of 
technical evaluation reviewers representing several disciplines to 
ensure adequate technical review of proposals.
    (2) After receiving nominations from each State or combinations of 
States within the Region, the Program Manager shall select a number of 
State reviewers for each State or combinations of States, respectively. 
The nominations and selections of State reviewers shall take into 
consideration representation by persons from a variety of backgrounds, 
in order that the reviewers are able to evaluate proposals of potential 
merit in various fields and from various types of proposers.
    (3) The Regional Program Manager or designee shall provide proposals 
to the technical evaluation and State reviewers and shall provide their 
findings and comments to the selection panel established pursuant to 
paragraph (3) of this section.
    (4) In carrying out the responsibilities set forth in paragraphs (b) 
(1), (2) and (3) of this section, the Regional Program Manager (i) shall 
determine the number of technical evaluation and State reviewers who 
shall review each proposal; (ii) shall determine the sequence of the 
technical and State review; (iii) may designate a person to serve as 
both a technical and State reviewer, if appropriate to the needs of the 
program in the Region. A decription of the Program Manager's 
determinations under this paragraph shall be included in the Program 
Solicitation pursuant to Sec.  470.13(b)(6).
    (c) Each technical evaluation reviewer shall evaluate those 
proposals which he or she receives from the Regional Program Manager or 
designee and shall provide his or her findings to the Regional Program 
Manager or designee. In addition to the general criteria underlying the 
establishment of the program as set forth in Sec.  470.10, the major 
criteria to be considered by each technical evaluation reviewer shall 
include--
    (1) Whether the proposal is technically feasible, including a 
determination as to whether the proposed energy savings or energy 
production can be technically achieved;
    (2) Whether the results being proposed are capable of being 
measured;
    (3) Whether the proposal has any potential environmental, health and 
safety impacts; and
    (4) From a technical standpoint, whether the proposal can be carried 
out within the funds being requested.
    (d) Each State reviewer shall evaluate those proposals which he or 
she receives from the Program Manager or designee and shall provide his 
or her findings and comments to the Program Manager or designee. In 
addition to the general criteria underlying establishment of the program 
as set forth in Sec.  470.10, the criteria to be considered by each 
State reviewer shall include--
    (1) The potential impact of the proposal on the energy needs and 
requirements of the community or region;
    (2) The energy resource involved and its importance or availability 
to the community or region;
    (3) The expected energy savings or production that will result from 
the proposal and the significance of those savings or production to the 
energy requirements of the community or region;
    (4) The institutional barriers that may substantially affect the 
proposal

[[Page 1204]]

and the potential of the proposal to deal with those barriers;
    (5) The likelihood of commercialization or utilization of the 
technology, process, or items within the proposal and extent of such 
commercialization/utilization;
    (6) The innovative nature of the proposal;
    (7) Any potential environmental, health and safety impacts of the 
proposal upon the community or region;
    (8) The extent to which work beyond the funded project period might 
be required;
    (9) The extent to which local resources, material, and manpower will 
be utilized; and
    (10) The adequacy of the business aspects of the proposal, including 
the reasonableness of the proposer's budget for carrying out the 
proposal.
    (e) A selection panel composed of DOE personnel appointed by the 
Regional Program Manager shall, taking into account the findings and 
comments of the technical evaluation and State reviewers, evaluate and 
rank the proposals in accordance with the criteria stated in the program 
solicitation.
    (f) For each Region, a DOE selection official shall select proposals 
for support from the ranking established by the selection panel, taking 
into account the following program policy factors in order to determine 
the mix of proposed projects which will best further specific program 
goals--
    (1) Regional distribution, including geography, population, and 
climate;
    (2) Project type distribution, including a diversity of methods, 
approaches, and technologies;
    (3) Diversity of participants; and
    (4) The best overall use of the funds available.



Sec.  470.15  Allocation of funds.

    (a) DOE shall annually allocate fiscal year funds available for 
support among the 10 standard Federal Regions, according to the 
following formula;
    (1) Two-thirds to be allocated according to population; and
    (2) One-third to be allocated according to the number of proposals 
received, per hundred thousand of population of the Region, which meet 
the requirements set forth in Sec.  470.14(a).
    (b) The minimum annual level of support for projects for each State 
within a Region shall be 10 percent of the fiscal year funds allocated 
to the Region, divided by the number of States in the Region.
    (c) For the purposes of this section, population shall be determined 
by the most current complete national series, as published by the United 
States Bureau of the Census in Current Population Reports, P-25, P-26, 
or related series, except where data from the decennial census conducted 
by the Bureau of the Census is more current.



Sec.  470.16  Cost sharing and funds from other sources.

    Proposers are encouraged to offer to share in the costs of their 
proposed projects or to arrange that other entities provide cost sharing 
on their behalf. Regional Program Managers, with the consent of the 
proposer, may work with States, local governments or other entities to 
obtain supplemental funding.



Sec.  470.17  General requirements.

    (a) Except where this part provides otherwise, the submission, 
evaluation and selection for support of proposals under the program and 
the entering into and administration of grants, cooperative agreements, 
and contracts under the program, shall be governed by the provisions of 
DOE-AR and DOE-PR are applicable, such other procedures applicable to 
grants, cooperative agreements, and contracts under the program as DOE 
may from time to time prescribe, and any Federal requirements applicable 
to grants, cooperative agreements, and contracts under the program.
    (b) Each grant, cooperative agreement or contract under this part 
shall require that a recipient of support under the program shall submit 
a full written report of activities supported in whole or in part by 
Federal funds made available under the program and shall contain any 
additional report provisions and other provisions dealing with records, 
allowable expenses, accounting practices, publication and

[[Page 1205]]

publicity, copyrights, patents, discrimination, conflict of interest, 
insurance, safety, changes, resolution of disputes and other standard 
and/or relevant support agreements requirements required by, or 
appropriate to, the needs of the program.



Sec.  470.18  Debriefing.

    Upon written request, unsuccessful proposers will be accorded 
debriefings. Such debriefings must be requested within 30 working days 
of notification of elimination from consideration. Debriefings will be 
provided at the earliest feasible time as determined by the Regional 
Program Manager.



Sec.  470.20  Dissemination of information.

    DOE shall disseminate to the public, in an appropriate manner, 
information of the nature, usage and availability of the energy-related 
systems and supporting technologies developed or demonstrated under the 
program. In addition, DOE shall maintain and make available to 
recipients of support under the program current information on public 
and private sources of possible assistance for the further development 
and commercialization of their projects.



PART 473_AUTOMOTIVE PROPULSION RESEARCH AND DEVELOPMENT--Table of Contents



 Review and Certification of Grants, Cooperative Agreements, Contracts, 
                              and Projects

Sec.
473.1 Purpose and scope.
473.2 Definitions.
473.10 Required information from applicant.
473.11 Submission of applicant's information.
473.20 Public notice and opportunity to object.
473.21 Supplemental information and rebuttal.
473.22 Initial review by manager.
473.23 Interagency review panel.
473.24 Final action and certification by manager.
473.25 Reviewability of certification.
473.30 Standards and criteria.

    Authority: Federal Energy Administration Act of 1978--Civilian 
Applications, Pub. L. 95-238; Department of Energy Organization Act, 
Pub. L. 95-91.

    Source: 43 FR 55230, Nov. 24, 1978, unless otherwise noted.

 Review and Certification of Grants, Cooperative Agreements, Contracts, 
                              and Projects



Sec.  473.1  Purpose and scope.

    These regulations implement section 304(f) of the Federal Energy 
Administration Act of 1978--Civilian Applications, and apply to each new 
contract, grant, cooperative agreement, Department of Energy project, or 
other agency project funded or to be funded under the authority of that 
Act. 15 U.S.C. 2703(f) (1970). These regulations do not apply to 
subcontractors, or to contracts, grants, cooperative agreements, 
Department of Energy projects, or other agency projects entered into, 
made, or formally approved and initiated prior to February 25, 1978, or 
with respect to any renewal or extension thereof. Insofar as grants, 
cooperative agreements, and contracts are concerned, these regulations 
provide procedures and requirements that are in addition to those 
generally applicable under the assistance and procurement regulations of 
the Federal agency funding research and development under the Act.



Sec.  473.2  Definitions.

    For purpose of these regulations--
    Act means the Federal Energy Administration Act of 1978--Civilian 
Applications. Pub. L. 95-238, 92 Stat. 47.
    Advanced automobile propulsion system means an energy conversion 
system, including engine and drivetrain, which utilizes advanced 
technology and is suitable for use in an advanced automobile.
    Agency project means research and development under the Act by 
employees of a Federal agency furnishing assistance at the request of 
the DOE.
    Annual funding period means the Federal fiscal year during which a 
grant, cooperative agreement, or contract is funded by an appropriation 
under the Act.
    Applicant means any private laboratory, university, nonprofit 
organization, industrial organization, private agency, institution, 
organization, corporation, partnership, individual, or

[[Page 1206]]

public agency other than a Federal agency.
    DOE project means research and development under the Act by 
employees of the DOE.
    Federal agency means an executive agency as defined by 5 U.S.C. 105 
(1970).
    Manager means the Federal program official who requests grant 
agreements, cooperative agreements, or contracts to be negotiated or who 
authorizes a DOE or agency project to begin.
    Notice of availability means a notice published in the Commerce 
Business Daily advertising the availability of a formal solicitation 
document to be issued for the purpose of inviting and setting guidelines 
for submission of proposals for research and development grants, 
cooperative agreements, or contracts.
    Research and development means activities constituting a project to 
create an advanced automobile propulsion system and does not mean 
activities involving technology transfer to mass production, evaluative 
testing, preliminary planning for a DOE or an agency project, or program 
administration and management.
    Solicitation means a formal, written request for proposals to 
perform research and development under a grant, cooperative agreement, 
or contract, typically including evaluation criteria and a statement of 
the work to be done.



Sec.  473.10  Required information from applicant.

    In accordance with applicable procedures of Sec.  473.11 any 
applicant for a grant, cooperative agreement, or contract under the Act 
to support research and development activities of an advanced automobile 
propulsion system shall--
    (a) State whether the activities will initiate or continue research 
and development of an advanced automobile propulsion system;
    (b) State, insofar as the applicant has information, whether and to 
what extent the activities to be supported are technically the same as 
activities conducted previously or to be conducted during the annual 
funding period by any person for research and development of a 
substantially similar advanced automobile propulsion system;
    (c) Justify research and development activities on an advanced 
automobile propulsion system abandoned by any person because of a lack 
of mass production potential by presenting information showing a 
significant intervening technological advance, promising conceptual 
innovation, or other special consideration;
    (d) Provide--
    (1) An assurance that the amount of funds to be expended for 
research and development of advanced automobile propulsion systems 
during the initial annual funding period will exceed the amount of funds 
expended, if any, during the previous year for the same purpose by at 
least the amount of the grant, cooperative agreement, or contract being 
sought; and
    (2) An assurance that the level of research and development effort 
on advanced automobile propulsion systems in the initial annual funding 
period will not be decreased in future annual funding periods.
    (e) Provide to the extent possible--
    (1) An assurance that the time period for completing research and 
development of the advanced automobile propulsion is likely to be 
shorter as a result of a grant, cooperative agreement, or contract; and
    (2) The estimated delay, if any, which is likely to occur if the 
application for a grant, cooperative agreement, or contract is denied.



Sec.  473.11  Submission of applicant's information.

    (a) An applicant submitting an unsolicited proposal to conduct 
research and development to be funded by a grant, cooperative agreement, 
or contract under the Act shall include the information required under 
Sec.  473.10 in the unsolicited proposal document filed under the 
assistance or procurement regulations of the DOE or other Federal agency 
which funds the proposed research and development under the Act.
    (b) In responding to a solicitation for a proposal to conduct 
research and development funded by a grant, cooperative agreement, or 
contract under the

[[Page 1207]]

Act, the applicant shall include the information required under Sec.  
473.10 in the proposal.
    (c) Information submitted under Sec.  473.10 of these regulations 
shall be certified in writing as complete and accurate by the applicant, 
and if the applicant is not an individual, the chief executive officer 
of the applicant or his authorized designee shall sign the 
certification.



Sec.  473.20  Public notice and opportunity to object.

    (a) In compliance with paragraph (b) of this section and unless 
provisions of paragraph (c) of this section apply, the manager shall 
cause to be published in the Commerce Business Daily a statement 
describing the unsolicited proposal, solicitation, DOE project, or 
agency project, as appropriate, inviting any interested person to submit 
a written objection, with supporting information at an appropriate 
address on or before 30 days from the date of publication, if the person 
believes that the research and development to be performed does not 
comply with standards and criteria of Sec.  473.30.
    (b) Except as paragraph (c) of this section applies, the manager 
shall comply with the requirements of paragraph (a) of this section--
    (1) Upon receipt of an unsolicited proposal from an applicant;
    (2) In any notice of availability of a solicitation;
    (3) Prior to beginning a DOE project; or
    (4) Prior to beginning an agency project.
    (c) Without publishing a notice under paragraph (a) of this section, 
the manager may reject an unsolicited proposal that does not comply with 
these regulations or any other generally applicable requirements.



Sec.  473.21  Supplemental information and rebuttal.

    The manager may request additional information from an applicant or 
any interested person who files an objection under Sec.  473.20.



Sec.  473.22  Initial review by manager.

    (a) Upon expiration of the time for filing information under these 
regulations, the manager shall--
    (1) Review the proposed research and development to be performed 
under grant, under cooperative agreement, under contract, as a DOE 
project, or as an agency project and any other pertinent information 
received under these regulations or otherwise available; and
    (2) Initially determine whether the research and development 
reviewed under paragraph (a)(1) of this section complies with the 
standards and criteria of Sec.  473.30.
    (b) A manager who makes a negative determination under paragraph 
(a)(2) of this section shall inform the applicant and any interested 
person who objected of the decision in writing with a brief statement of 
supporting reasons.
    (c) A manager who initially determines that research and development 
reviewed under this section complies with the standards and criteria of 
Sec.  473.30 shall cause an interagency review panel to be convened 
under Sec.  473.23.



Sec.  473.23  Interagency review panel.

    (a) The interagency review panel shall consist of--
    (1) A head designated by the Federal agency that employs the 
manager;
    (2) A representative of the DOE if the manager is not an employee of 
the DOE; and
    (3) A representative of any other Federal agency deemed appropriate 
by the Federal agency that employs the manager.
    (b) The interagency review panel shall--
    (1) Review the research and development to be performed and consider 
the information presented by the applicant, in the case of a grant, 
cooperative agreement, or contract, and by any interested person who 
filed a statement of objection;
    (2) Make a recommendation with a supporting statement of findings to 
the manager as to whether the research and development to be performed 
complies with the standards and criteria of Sec.  473.30; and

[[Page 1208]]

    (3) Operate by majority vote with the head of the panel casting the 
decisive vote in the event of a tie.



Sec.  473.24  Final action and certification by manager.

    (a) Upon consideration of the recommendation of the interagency 
review panel and other pertinent information, the manager--
    (1) Shall determine whether the research and development to be 
performed complies with the standards and criteria of Sec.  473.30;
    (2) Shall obtain the concurrence of the DOE if the manager is not an 
employee of the DOE;
    (3) Shall, in the event of a negative determination under this 
section, advise the applicant, in the case of a grant, cooperative 
agreement, or contract, and any interested person who filed a statement 
of objection; and
    (4) Shall, in the event of an affirmative determination under this 
section, prepare a certification--
    (i) Explaining the determination;
    (ii) Discussing any allegedly related or comparable industrial 
research and development considered and deemed to be an inadequate basis 
for not certifying the grant or contract;
    (iii) Discussing issues regarding cost sharing and patent rights 
related to the standards and criteria of Sec.  473.30 of these 
regulations; and
    (iv) Discussing any other relevant issue.
    (b) After complying with paragraph (a) of this section, the manager 
shall sign the certification and distribute copies to the applicant, if 
any, and any interested person who filed a statement of objections--
    (1) Immediately in the case of a DOE or agency project; and
    (2) After the agreement has been negotiated in the case of a grant, 
cooperative agreement, or contract.



Sec.  473.25  Reviewability of certification.

    Any certification issued under these rules is--
    (a) Subject to disclosure under 5 U.S.C. 552 (1970) and section 17 
of the Federal Nonnuclear Energy Research and Development Act of 1974, 
as amended, 42 U.S.C. 5918 (1970);
    (b) Subject neither to judicial review nor to the provisions of 5 
U.S.C. 551-559 (1970), except as provided under paragraph (a) of this 
section; and
    (c) Available to the Committee on Science and Technology of the 
House of Representatives and the Committee on Energy and Natural 
Resources of the Senate.



Sec.  473.30  Standards and criteria.

    Research and development to be performed under a grant, under a 
cooperative agreement, under a contract, as a DOE project, or as an 
agency project under the Act may be certified under these regulations 
only if the research and development to be conducted--
    (a) Supplements the automotive propulsion system research and 
development efforts of industry or any other private researcher;
    (b) Is not duplicative of efforts previously abandoned by private 
researchers unless there has been an intervening technological advance, 
promising conceptual innovation, or justified by other special 
consideration;
    (c) Would not be performed during the annual funding period but for 
the availability of the Federal funding being sought;
    (d) Is likely to produce an advanced automobile propulsion system 
suitable for steps toward technology transfer to mass production in a 
shorter time period than would otherwise occur;
    (e) Is not technologically the same as efforts by any person 
conducted previously or to be conducted during the annual funding period 
regarding a substantially similar advanced automobile propulsion system; 
and
    (f) Is not likely to result in a decrease in the level of private 
resources expended on advanced automotive research and development by 
substituting Federal funds without justification.

[[Page 1209]]



PART 474_ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, 
AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION--
Table of Contents



Sec.
474.1 Purpose and scope.
474.2 Definitions.
474.3 Petroleum-equivalent fuel economy calculation.
474.4 Test procedures.
474.5 Review and update.

Appendix to Part 474--Sample Petroleum-Equivalent Fuel Economy 
          Calculations

    Authority: 49 U.S.C. 32901 et seq.

    Source: 65 FR 36991, June 12, 2000, unless otherwise noted.



Sec.  474.1  Purpose and Scope.

    This part contains procedures for calculating a value for the 
petroleum-equivalent fuel economy of electric vehicles, as required by 
49 U.S.C. 32904(a)(2). The petroleum-equivalent fuel economy value is 
intended to be used by the Environmental Protection Agency in 
calculating corporate average fuel economy values pursuant to 
regulations at 40 CFR Part 600--Fuel Economy of Motor Vehicles.



Sec.  474.2  Definitions.

    For the purposes of this part, the term:
    Combined energy consumption value means the weighted average of the 
Urban Dynamometer Driving Schedule and the Highway Fuel Economy Driving 
Schedule energy consumption values (weighted 55/45 percent, 
respectively), as determined by the Environmental Protection Agency in 
accordance with 40 CFR parts 86 and 600.
    Electric vehicle means a vehicle that is powered by an electric 
motor drawing current from rechargeable storage batteries or other 
portable electrical energy storage devices, provided that:
    (1) Recharge energy must be drawn from a source off the vehicle, 
such as residential electric service; and
    (2) The vehicle must comply with all provisions of the Zero Emission 
Vehicle definition found in 40 CFR 88.104-94(g).
    Highway Fuel Economy Driving Schedule energy consumption value means 
the average number of watt-hours of electrical energy required for an 
electric vehicle to travel one mile of the Highway Fuel Economy Driving 
Schedule, as determined by the Environmental Protection Agency.
    Petroleum equivalency factor means the value specified in Sec.  
474.3(b) of this part, which incorporates the parameters listed in 49 
U.S.C. 32904(a)(2)(B) and is used to calculate petroleum-equivalent fuel 
economy.
    Petroleum-equivalent fuel economy means the value, expressed in 
miles per gallon, that is calculated for an electric vehicle in 
accordance with Sec.  474.3(a) of this part, and reported to the 
Administrator of the Environmental Protection Agency for use in 
determining the vehicle manufacturer's corporate average fuel economy.
    Petroleum-powered accessory means a vehicle accessory (e.g., a cabin 
heater, defroster, and/or air conditioner) that:
    (1) Uses gasoline or diesel fuel as its primary energy source; and
    (2) Meets the requirements for fuel, operation, and emissions in 40 
CFR part 88.104-94(g).
    Urban Dynamometer Driving Schedule energy consumption value means 
the average number of Watt-hours of electrical energy required for an 
electric vehicle to travel one mile of the Urban Dynamometer Driving 
Schedule, as determined by the Environmental Protection Agency.



Sec.  474.3  Petroleum-equivalent fuel economy calculation.

    (a) The petroleum-equivalent fuel economy for an electric vehicle is 
calculated as follows:
    (1) Determine the electric vehicle's Urban Dynamometer Driving 
Schedule energy consumption value and the Highway Fuel Economy Driving 
Schedule energy consumption value in units of Watt-hours per mile;
    (2) Determine the combined energy consumption value by averaging the 
Urban Dynamometer Driving Schedule energy consumption value and the 
Highway Fuel Economy Driving Schedule energy consumption value using a 
weighting of 55 percent urban/45 percent highway; and

[[Page 1210]]

    (3) Calculate the petroleum-equivalent fuel economy by dividing the 
appropriate petroleum-equivalency factor (depending on whether any 
petroleum-powered accessories are installed; see paragraph (b) of this 
section) by the combined energy consumption value, and round to the 
nearest 0.01 miles per gallon.
    (b) The petroleum-equivalency factors for electric vehicles are as 
follows:
    (1) If the electric vehicle does not have any petroleum-powered 
accessories installed, the value of the petroleum equivalency factor is 
82,049 Watt-hours per gallon.
    (2) If the electric vehicle has any petroleum-powered accessories 
installed, the value of the petroleum-equivalency factor is 73,844 Watt-
hours per gallon.



Sec.  474.4  Test procedures.

    (a) The electric vehicle energy consumption values used in the 
calculation of petroleum-equivalent fuel economy under Sec.  474.3 of 
this part will be determined by the Environmental Protection Agency 
using the Highway Fuel Economy Driving Schedule and Urban Dynamometer 
Driving Schedule test cycles at 40 CFR parts 86 and 600.
    (b) The ``Special Test Procedures'' provisions of 40 CFR 86.090-27 
may be used to accommodate any special test procedures required for 
testing the energy consumption of electric vehicles.



Sec.  474.5  Review and Update

    The Department will review part 474 five years after the date of 
publication as a final rule to determine whether any updates and/or 
revisions are necessary. DOE will publish a notice in the Federal 
Register soliciting stakeholder input in this review. The Department 
will publish the findings of the review and any resulting adjustments to 
part 474 in the Federal Register.



  Sec. Appendix to Part 474--Sample Petroleum-Equivalent Fuel Economy 
                              Calculations

    Example 1: An electric vehicle is tested in accordance with 
Environmental Protection Agency procedures and is found to have an Urban 
Dynamometer Driving Schedule energy consumption value of 265 Watt-hours 
per mile and a Highway Fuel Economy Driving Schedule energy consumption 
value of 220 Watt-hours per mile. The vehicle is not equipped with any 
petroleum-powered accessories. The combined electrical energy 
consumption value is determined by averaging the Urban Dynamometer 
Driving Schedule energy consumption value and the Highway Fuel Economy 
Driving Schedule energy consumption value using weighting factors of 55 
percent urban, and 45 percent highway:

combined electrical energy consumption value = (0.55 * urban) + (0.45 * 
          highway) = (0.55 * 265) + (0.45 * 220) = 244.75 Wh/mile

    Since the vehicle does not have any petroleum-powered accessories 
installed, the value of the petroleum equivalency factor is 82,049 Watt-
hours per gallon, and the petroleum-equivalent fuel economy is:

(82,049 Wh/gal) (244.75 Wh/mile) = 335.24 mpg
    Example 2: The vehicle from Example 1 is equipped with an optional 
diesel-fired cabin heater/defroster. For the purposes of this example, 
it is assumed that the electrical efficiency of the vehicle is 
unaffected.
    Since the vehicle has a petroleum-powered accessory installed, the 
value of the petroleum equivalency factor is 73,844 Watt-hours per 
gallon, and the petroleum-equivalent fuel economy is:

(73,844 Wh/gal) (244.75 Wh/mile) = 301.71 mpg



PART 490_ALTERNATIVE FUEL TRANSPORTATION PROGRAM--Table of Contents



                      Subpart A_General Provisions

Sec.
490.1 Purpose and scope.
490.2 Definitions.
490.3 Excluded vehicles.
490.4 General information inquiries.
490.5 Requests for an interpretive ruling.
490.6 Petitions for generally applicable rulemaking.
490.7 Relationship to other law.
490.8 Replacement fuel production goal.

Appendix A to Subpart A of Part 490--Metropolitan Statistical Areas/
          Consolidated Metropolitan Statistical Areas with 1980 
          Populations of 250,000 or More

Subpart B [Reserved]

                 Subpart C_Mandatory State Fleet Program

490.200 Purpose and scope.
490.201 Alternative fueled vehicle acquisition mandate schedule.
490.202 Acquisitions satisfying the mandate.
490.203 Light Duty Alternative Fueled Vehicle plan.
490.204 Process for granting exemptions.
490.205 Reporting requirements.

[[Page 1211]]

490.206 Violations.

     Subpart D_Alternative Fuel Provider Vehicle Acquisition Mandate

490.300 Purpose and scope.
490.301 Definitions.
490.302 Vehicle acquisition mandate schedule.
490.303 Who must comply.
490.304 Which new light duty motor vehicles are covered.
490.305 Acquisitions satisfying the mandate.
490.306 Vehicle operation requirements.
490.307 Process for granting exemptions.
490.308 Annual reporting requirements.
490.309 Violations.

Subpart E [Reserved]

           Subpart F_Alternative Fueled Vehicle Credit Program

490.500 Purpose and scope.
490.501 Definitions.
490.502 Applicability.
490.503 Creditable actions.
490.504 Credit allocation.
490.505 Use of alternative fueled vehicle credits.
490.506 Credit accounts.
490.507 Alternative fueled vehicle credit transfers.
490.508 Credit activity reporting requirements.

                Subpart G_Investigations and Enforcement

490.600 Purpose and scope.
490.601 Powers of the Secretary.
490.602 Special orders.
490.603 Prohibited acts.
490.604 Penalties and fines.
490.605 Statement of enforcement policy.
490.606 Proposed assessments and orders.
490.607 Appeals.

                   Subpart H_Biodiesel Fuel Use Credit

490.701 Purpose and scope.
490.702 Definitions.
490.703 Biodiesel fuel use credit allocation.
490.704 Procedures and documentation.
490.705 Use of credits.
490.706 Procedure for modifying the biodiesel component percentage.
490.707 Increasing the qualifying volume of the biodiesel component.
490.708 Violations.

                    Subpart I_Alternative Compliance

490.801 Purpose and scope.
490.802 Eligibility for alternative compliance waiver.
490.803 Waiver requirements.
490.804 Eligible reductions in petroleum consumption.
490.805 Application for waiver.
490.806 Action on an application for waiver.
490.807 Reporting requirement.
490.808 Use of credits to offset petroleum reduction shortfall.
490.809 Violations.
490.810 Record retention.

    Authority: 42 U.S.C. 7191 et seq.; 42 U.S.C. 13201, 13211, 13220, 
13251 et seq; 28 U.S.C. 2461 note.

    Source: 61 FR 10653, Mar. 14, 1996, unless otherwise noted.



                      Subpart A_General Provisions



Sec.  490.1  Purpose and Scope.

    (a) The provisions of this part implement the alternative fuel 
transportation program for State government and alternative fuel 
provider fleets under titles III, IV, and V of the Energy Policy Act of 
1992 (Pub. L. 102-486).
    (b) The provisions of this subpart cover:
    (1) The definitions applicable throughout this part;
    (2) Procedures to obtain an interpretive ruling and to petition for 
a generally applicable rule to amend this part; and
    (3) The goal of the replacement fuel supply and demand program 
established under section 502(a) of the Act (42 U.S.C. 13252(a)).

[61 FR 10653, Mar. 14, 1996, as amended at 72 FR 12060, Mar. 15, 2007; 
79 FR 15902, Mar. 21, 2014]



Sec.  490.2  Definitions.

    The following definitions apply to this part--
    Acquire means to take into possession or control.
    Act means the Energy Policy Act of 1992 (Pub. L. 102-486) and any 
amendments thereof.
    After-Market Converted Vehicle means an Original Equipment 
Manufacturer vehicle that is reconfigured by a conversion company, which 
is not under contract to the Original Equipment Manufacturer, to operate 
on an alternative fuel and whose conversion kit components are under 
warranty of the conversion company.

[[Page 1212]]

    Alternative Fuel means methanol, denatured ethanol, and other 
alcohols; mixtures containing 85 percent or more by volume of methanol, 
denatured ethanol, and other alcohols with gasoline or other fuels; 
natural gas, including liquid fuels domestically produced from natural 
gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels 
(other than alcohol) derived from biological materials (including neat 
biodiesel); three P-series fuels (specifically known as Pure Regular, 
Pure Premium and Pure Cold Weather) as described by United States Patent 
number 5,697,987, dated December 16, 1997, and containing at least 60 
percent non-petroleum energy content derived from methyltetrahydrofuran, 
which must be manufactured solely from biological materials, and 
ethanol, which must be manufactured solely from biological materials; 
and electricity (including electricity from solar energy).
    Alternative Fueled Vehicle means a dedicated vehicle or a dual 
fueled vehicle, as those terms are defined in this section.
    Assistant Secretary means the Assistant Secretary for Energy 
Efficiency and Renewable Energy or any other DOE official to whom the 
Assistant Secretary's duties under this part may be redelegated by the 
Secretary.
    Automobile means a 4-wheeled vehicle that is propelled by 
conventional fuel, or by alternative fuel, manufactured primarily for 
use on public streets, roads, and highways and having a gross vehicle 
weight rating of less than 10,000 pounds, except:
    (1) A vehicle operated only on a rail line;
    (2) A vehicle manufactured in different stages by two or more 
original equipment manufacturers, if no intermediate or final-stage 
original equipment manufacturer of that vehicle manufactures more than 
10,000 multi-stage vehicles per year; or
    (3) A work truck, as that term is defined in this section.
    Capable of Being Centrally Fueled means that a vehicle can be fueled 
at least 75 percent of the time at a location that is owned, operated, 
or controlled by the fleet or covered person, or at a location that is 
under contract with the fleet or covered person for fueling purposes.
    Centrally Fueled means that a vehicle is fueled at least 75 percent 
of the time at a location that is owned, operated, or controlled by the 
fleet or covered person, or is under contract with the fleet or covered 
person for refueling purposes.
    Control--
    (1) When it is used to determine whether one person controls another 
or whether two persons are under common control, means any one or a 
combination of the following:
    (i) A third person or firm has equity ownership of 51 percent or 
more in each of two firms; or
    (ii) Two or more firms have common corporate officers, in whole or 
in substantial part, who are responsible for the day-to-day operation of 
the companies; or
    (iii) One person or firm leases, operates, or supervises 51 percent 
or more of the equipment and/or facilities of another person or firm; 
owns 51 percent or more of the equipment and/or facilities of another 
person or firm; or has equity ownership of 51 percent or more of another 
person or firm.
    (2) When it is used to refer to the management of vehicles, means a 
person has the authority to decide who can operate a particular vehicle, 
and the purposes for which the vehicle can be operated.
    Covered Person means a person that owns, operates, leases, or 
otherwise controls--
    (1) A fleet, as defined by this section, that contains at least 20 
light duty motor vehicles that are centrally fueled or capable of being 
centrally fueled, and are used primarily within a metropolitan 
statistical area or a consolidated metropolitan statistical area, as 
established by the Bureau of the Census, with a 1980 population of 
250,000 or more (as set forth in appendix A to this subpart) or in a 
Federal Register notice; and
    (2) At least 50 light duty motor vehicles within the United States.
    Dealer Demonstration Vehicle means any vehicle that is operated by a 
motor vehicle dealer solely for the purpose of promoting motor vehicle 
sales, either

[[Page 1213]]

on the sales lot or through other marketing or sales promotions, or for 
permitting potential purchasers to drive the vehicle for pre-purchase or 
pre-lease evaluation.
    Dedicated Vehicle means--
    (1) An automobile that operates solely on one or more alternative 
fuels; or
    (2) A motor vehicle, other than an automobile, that operates solely 
on one or more alternative fuels.
    DOE means the Department of Energy.
    Dual Fueled Vehicle means--
    (1) An automobile that meets the criteria for a dual fueled 
automobile as set forth in 49 U.S.C. 32901(a)(9); or
    (2) A motor vehicle, other than an automobile, that is capable of 
operating on alternative fuel and on gasoline or diesel.
    Emergency Motor Vehicle means any vehicle that is legally authorized 
by a government authority to exceed the speed limit to transport people 
and equipment to and from situations in which speed is required to save 
lives or property, such as a rescue vehicle, fire truck or ambulance.
    Fleet means a group of 20 or more light duty motor vehicles, 
excluding certain categories of vehicles as provided by Sec.  490.3, 
used primarily in a metropolitan statistical area or consolidated 
metropolitan statistical area, as established by the Bureau of the 
Census as of December 31, 1992, with a 1980 Census population of more 
than 250,000 (listed in Appendix A to this subpart), that are centrally 
fueled or capable of being centrally fueled, and are owned, operated, 
leased, or otherwise controlled--
    (1) By a person who owns, operates, leases, or otherwise controls 50 
or more light duty motor vehicles within the United States and its 
possessions and territories;
    (2) By any person who controls such person;
    (3) By any person controlled by such person; or
    (4) By any person under common control with such person.
    Law Enforcement Motor Vehicle means any vehicle which is primarily 
operated by a civilian or military police officer or sheriff, or by 
personnel of the Federal Bureau of Investigation, the Drug Enforcement 
Administration, or other enforcement agencies of the Federal government, 
or by State highway patrols, municipal law enforcement, or other similar 
enforcement agencies, and which is used for the purpose of law 
enforcement activities including, but not limited to, chase, 
apprehension, and surveillance of people engaged in or potentially 
engaged in unlawful activities.
    Lease means the use and control of a motor vehicle for 
transportation purposes pursuant to a rental contract or similar 
arrangement with a term of 120 days or more.
    Light Duty Motor Vehicle means a light duty truck or light duty 
vehicle, as such terms are defined under section 216(7) of the Clean Air 
Act (42 U.S.C. Sec.  7550(7)), having a gross vehicle weight rating of 
8,500 pounds or less, before any after-market conversion to alternative 
fuel operation.
    Model Year means the period from September 1 of the previous 
calendar year through August 31.
    Motor Vehicle means a self-propelled vehicle, other than a non-road 
vehicle, designed for transporting persons or property on a street or 
highway.
    Non-road Vehicle means a vehicle not licensed for on-road use, 
including such vehicles used principally for industrial, farming or 
commercial use, for rail transportation, at an airport, or for marine 
purposes.
    Original Equipment Manufacturer means a manufacturer that provides 
the original design and materials for assembly and manufacture of its 
product.
    Original Equipment Manufacturer Vehicle means a vehicle engineered, 
designed, produced and warranted by an Original Equipment Manufacturer.
    Person means any individual, partnership, corporation, voluntary 
association, joint stock company, business trust, Governmental entity, 
or other legal entity in the United States except United States 
Government entities.
    State means any of the 50 States, the District of Columbia, the 
Commonwealth of Puerto Rico, and any other territory or possession of 
the United States.

[[Page 1214]]

    Used Primarily, as utilized in the definition of ``fleet,'' means 
that a majority of a vehicle's total annual miles are accumulated within 
a covered metropolitan or consolidated metropolitan statistical area.
    Work Truck means a vehicle having a gross vehicle weight rating of 
more than 8,500 and less than or equal to 10,000 pounds that is not a 
medium-duty passenger vehicle as that term is defined in 40 CFR 86.1803-
01.

[61 FR 10653, Mar. 14, 1996, as amended at 64 FR 26829, May 17, 1999; 79 
FR 15902, Mar. 21, 2014]



Sec.  490.3  Excluded vehicles.

    When counting light duty motor vehicles to determine under this part 
whether a person has a fleet or to calculate alternative fueled vehicle 
acquisition requirements, the following vehicles are excluded--
    (a) Motor vehicles held for lease or rental to the general public, 
including vehicles that are owned or controlled primarily for the 
purpose of short-term rental or extended-term leasing, without a driver, 
pursuant to a contract;
    (b) Motor vehicles held for sale by motor vehicle dealers, including 
demonstration motor vehicles;
    (c) Motor vehicles used for motor vehicle manufacturer product 
evaluations or tests, including but not limited to, light duty motor 
vehicles owned or held by a university research department, independent 
testing laboratory, or other such evaluation facility, solely for the 
purpose of evaluating the performance of such vehicle for engineering, 
research and development or quality control reasons;
    (d) Law enforcement vehicles;
    (e) Emergency motor vehicles, including vehicles directly used in 
the emergency repair of transmission lines and in the restoration of 
electricity service following power outages, as determined by DOE;
    (f) Motor vehicles acquired and used for purposes that the Secretary 
of Defense has certified to DOE must be exempt for national security 
reasons;
    (g) Nonroad vehicles; and
    (h) Motor vehicles which, when not in use, are normally parked at 
the personal residences of the individuals that usually operate them, 
rather than at a central refueling, maintenance, or business location.

[61 FR 10653, Mar. 14, 1996, as amended at 79 FR 15903, Mar. 21, 2014]



Sec.  490.4  General information inquiries.

    DOE responses to inquiries with regard to the provisions of this 
part that are not filed in compliance with Sec. Sec.  490.5 or 490.6 of 
this part constitute general information and the responses provided 
shall not be binding on DOE.



Sec.  490.5  Requests for an interpretive ruling.

    (a) Right to file. Any person who is or may be subject to this part 
shall have the right to file a request for an interpretive ruling on a 
question with regard to how the regulations apply to particular facts 
and circumstances.
    (b) How to file. A request for an interpretive ruling shall be 
filed--
    (1) With the Assistant Secretary;
    (2) In an envelope labeled ``Request for Interpretive Ruling under 
10 CFR part 490;'' and
    (3) By messenger or mail at the Office of Energy Efficiency and 
Renewable Energy, EE-33, U.S. Department of Energy, 1000 Independence 
Avenue, S.W., Washington, D.C. 20585 or at such other address as DOE may 
provide by notice in the Federal Register.
    (c) Content of request for interpretive ruling. At a minimum, a 
request under this section shall--
    (1) Be in writing;
    (2) Be labeled ``Request for Interpretive Ruling Under 10 CFR Part 
490;''
    (3) Identify the name, address, telephone number, and any designated 
representative of the person requesting the interpretive ruling;
    (4) State the facts and circumstances relevant to the request;
    (5) Be accompanied by copies of relevant supporting documents, if 
any;
    (6) Specifically identify the pertinent regulations and the related 
question on which an interpretive ruling is sought with regard to the 
relevant facts and circumstances; and
    (7) Contain any arguments in support of the terms of an 
interpretation the requester is seeking.

[[Page 1215]]

    (d) Public comment. DOE may give public notice of any request for an 
interpretive ruling and invite public comment.
    (e) Opportunity to respond to public comment. DOE may provide an 
opportunity for any person who requested an interpretive ruling to 
respond to public comments.
    (f) Other sources of information. DOE may--
    (1) Conduct an investigation of any statement in a request;
    (2) Consider any other source of information in evaluating a request 
for an interpretive ruling; and
    (3) Rely on previously issued interpretive rulings dealing with the 
same or a related issue.
    (g) Informal conference. DOE, on its own initiative, may convene an 
informal conference with the person requesting an interpretive ruling.
    (h) Effect of an interpretive ruling. The authority of an 
interpretive ruling shall be limited to the person requesting such 
ruling and shall depend on the accuracy and completeness of the facts 
and circumstances on which the interpretive ruling is based. An 
interpretive ruling by the Assistant Secretary shall be final for DOE.
    (i) Reliance on an interpretive ruling. No person who obtains an 
interpretive ruling under this section shall be subject to an 
enforcement action for civil penalties or criminal fines for actions 
reasonably taken in reliance thereon, but a person may not act in 
reliance on an interpretive ruling that is administratively rescinded or 
modified, judicially invalidated, or its prospective effect is overruled 
by statute or regulation.
    (j) Denials of requests for an interpretive ruling. DOE shall deny a 
request for an interpretive ruling if DOE determines that--
    (1) There is insufficient information upon which to base an 
interpretive ruling;
    (2) The questions posed should be treated in a general notice of 
proposed rulemaking under 42 U.S.C. 7191 and 5 U.S.C. 553;
    (3) There is an adequate procedure elsewhere in this part for 
addressing the question posed such as a petition for exemption; or
    (4) For other good cause.
    (k) Public file. DOE may file a copy of an interpretive ruling in a 
public file labeled ``Interpretive Rulings Under 10 CFR Part 490'' which 
shall be available during normal business hours for public inspection at 
the DOE Freedom of Information Reading Room at 1000 Independence Avenue, 
SW, Washington, DC 20585, or at such other addresses as DOE may announce 
in a Federal Register notice.



Sec.  490.6  Petitions for generally applicable rulemaking.

    (a) Right to file. Pursuant to 42 U.S.C. 7191 and 5 U.S.C. 553(e), 
any person may file a petition for generally applicable rulemaking under 
titles III, IV, and V of the Act with the DOE General Counsel.
    (b) How to file. A petition for generally applicable rulemaking 
under this section shall be filed by mail or messenger in an envelope 
addressed to the Office of General Counsel, GC-1, U.S. Department of 
Energy, 1000 Independence Avenue, SW., Washington, DC 20585.
    (c) Content of rulemaking petitions. A petition under this section 
must--
    (1) Be labeled ``Petition for Rulemaking Under 10 CFR Part 490'';
    (2) Describe with particularity the terms of the rule being sought;
    (3) Identify the provisions of law that direct, authorize, or affect 
the issuance of the rules being sought; and
    (4) Explain why DOE should not choose to make policy by precedent 
through interpretive rulings, petitions for exemption, or other 
adjudications.
    (d) Determination upon rulemaking petitions. After considering the 
petition and other information deemed to be appropriate, DOE may grant 
the petition and issue an appropriate rulemaking notice, or deny the 
petition because the rule being sought--
    (1) Would be inconsistent with statutory law;
    (2) Would establish a generally applicable policy in an area that 
should be left to case-by-case determinations;
    (3) Would establish a policy inconsistent with the underlying 
statutory purposes; or
    (4) For other good cause.

[[Page 1216]]



Sec.  490.7  Relationship to other law.

    (a) Nothing in this part shall be construed to require or authorize 
sale of, or conversion to, light duty alternative fueled motor vehicles 
in violation of applicable regulations of any Federal, State or local 
government agency.
    (b) Nothing in this part shall be construed to require or authorize 
the use of a motor fuel in violation of applicable regulations of any 
Federal, State, or local government agency.



Sec.  490.8  Replacement fuel production goal.

    The goal of the replacement fuel supply and demand program 
established by section 502(b)(2) of the Act (42 U.S.C. 13252(b)(2)) and 
revised by DOE pursuant to section 504(b) of the Act (42 U.S.C. 
13254(b)) is to achieve a production capacity of replacement fuels 
sufficient to replace, on an energy equivalent basis, at least 30 
percent of motor fuel consumption in the United States by the year 2030.

[72 FR 12060, Mar. 15, 2007]



   Sec. Appendix A to Subpart A of Part 490--Metropolitan Statistical 
Areas/Consolidated Metropolitan Statistical Areas With 1980 Populations 
                           of 250,000 or more

Albany-Schenectady-Troy MSA NY
Albuquerque MSA NM
Allentown-Bethlehem-Easton MSA PA
Appleton-Oshkosh-Neenah MSA WI
Atlanta MSA GA
Augusta-Aiken MSA GA-SC
Austin-San Marcos MSA TX
Bakersfield MSA CA
Baton Rouge MSA LA
Beaumont-Port Arthur MSA TX
Binghamton MSA NY
Birmingham MSA AL
Boise City MSA ID
Boston-Worcester-Lawrence CMSA MA-NH-ME-CT
Buffalo-Niagara Falls MSA NY
Canton-Massillon MSA OH
Charleston MSA SC
Charleston MSA WV
Charlotte-Gastonia-Rock Hill MSA NC-SC
Chattanooga MSA TN-GA
Chicago-Gary-Kenosha CMSA IL-IN-WI
Cincinnati-Hamilton CMSA OH-KY-IN
Cleveland-Akron CMSA OH
Colorado Springs MSA CO
Columbia MSA SC
Columbus MSA OH
Columbus MSA GA-AL
Corpus Christi MSA TX
Dallas-Fort Worth CMSA TX
Davenport-Moline-Rock Island MSA IA-IL
Dayton-Springfield MSA OH
Daytona Beach MSA FL
Denver-Boulder-Greeley CMSA CO
Des Moines MSA IA
Detroit-Ann Arbor-Flint CMSA MI
Duluth MSA MN-WI
El Paso MSA TX
Erie MSA PA
Eugene-Springfield MSA OR
Evansville-Henderson MSA IN-KY
Fort Wayne MSA IN
Fresno MSA CA
Grand Rapids-Muskegon-Holland MSA MI
Greensboro-Winston Salem-High Point MSA NC
Greenville-Spartanburg-Anderson MSA SC
Harrisburg-Lebanon-Carlisle MSA PA
Hartford MSA CT
Hickory-Morganton MSA NC
Honolulu MSA HI
Houston-Galveston-Brazoria CMSA TX
Huntington-Ashland MSA WV-KY-OH
Indianapolis MSA IN
Jackson MSA MS
Jacksonville MSA FL
Johnson City-Kingsport-Bristol MSA TN-VA
Johnstown MSA PA
Kalamazoo-Battle Creek MSA MI
Kansas City MSA MO-KS
Knoxville MSA TN
Lakeland-Winter Haven MSA FL
Lancaster MSA PA
Lansing-East Lansing MSA MI
Las Vegas MSA NV-AZ
Lexington MSA KY
Little Rock-N. Little Rock MSA AR
Los Angeles-Riverside-Orange County CMSA CA
Louisville MSA KY-IN
Macon MSA GA
Madison MSA WI
McAllen-Edinburg-Mission MSA TX
Melbourne-Titusville-Palm Bay MSA FL
Memphis MSA TN-AR-MS
Miami-Fort Lauderdale CMSA FL
Milwaukee-Racine CMSA WI
Minneapolis-St. Paul MSA MN-WI
Mobile MSA AL
Modesto MSA CA
Montgomery MSA AL
Nashville MSA TN
New London-Norwich MSA CT-RI
New Orleans MSA LA
New York-N. New Jersey-Long Island CMSA NY-NJ-CT-PA
Norfolk-Virginia Beach-Newport News MSA VA-NC
Oklahoma City MSA OK
Omaha MSA NE-IA
Orlando MSA FL
Pensacola MSA FL
Peoria-Pekin MSA IL
Philadelphia-Wilmington-Atlantic City CMSA PA-NJ DE-MD

[[Page 1217]]

Phoenix-Mesa MSA AZ
Pittsburgh MSA PA
Portland-Salem CMSA OR-WA
Providence-Fall River-Warwick MSA RI-MA
Raleigh-Durham-Chapel Hill MSA NC
Reading MSA PA
Richmond-Petersburg MSA VA
Rochester MSA NY
Rockford MSA IL
Sacramento-Yolo CMSA CA
Saginaw-Bay City-Midland MSA MI
St. Louis MSA MO-IL
Salinas MSA CA
Salt Lake City-Ogden MSA UT
San Antonio MSA TX
San Diego MSA CA
San Francisco-Oakland-San Jose CMSA CA
San Juan MSA PR
Santa Barbara-Santa Maria-Lompoc MSA CA
Scranton-Wilkes Barre-Hazleton MSA PA
Seattle-Tacoma-Bremerton CMSA WA
Shreveport-Bossier City MSA LA
Spokane MSA WA
Springfield MSA MA
Stockton-Lodi MSA CA
Syracuse MSA NY
Tampa-St. Petersburg-Clearwater MSA FL
Toledo MSA OH
Tucson MSA AZ
Tulsa MSA OK
Utica-Rome MSA NY
Washington-Baltimore CMSA DC-MD-VA-WV
West Palm Beach-Boca Raton MSA FL
Wichita MSA KS
York MSA PA
Youngstown-Warren MSA OH

Subpart B [Reserved]



                 Subpart C_Mandatory State Fleet Program



Sec.  490.200  Purpose and scope.

    This subpart sets forth rules implementing the provisions of Section 
507(o) of the Act which requires, subject to some exemptions, that 
certain percentages of new light duty motor vehicles acquired for State 
fleets be alternative fueled vehicles.



Sec.  490.201  Alternative fueled vehicle acquisition mandate schedule.

    (a) Except as otherwise provided in this part, of the new light duty 
motor vehicles acquired annually for State government fleets, including 
agencies thereof but excluding municipal fleets, the following 
percentages shall be alternative fueled vehicles for the following model 
years;
    (1) 10 percent for model year 1997;
    (2) 15 percent for model year 1998;
    (3) 25 percent for model year 1999;
    (4) 50 percent for model year 2000; and
    (5) 75 percent for model year 2001 and thereafter.
    (b) Each State shall calculate its alternative fueled vehicle 
acquisition requirements for the State government fleets, including 
agencies thereof, by applying the alternative fueled vehicle acquisition 
percentages for each model year to the total number of new light duty 
motor vehicles to be acquired during that model year for those fleets.
    (c) If the calculation performed under paragraph (b) of this section 
produces a number that requires the acquisition of a partial vehicle, an 
adjustment to the acquisition number will be made by rounding the number 
of vehicles down the next whole number if the fraction is less than one 
half and by rounding the number of vehicles up to the next whole number 
if the fraction is equal to or greater than one half.
    (d) A State fleet that first becomes subject to this part after 
model year 1997 shall acquire alternative fueled vehicles in the next 
model year at the percentage applicable to that model year according to 
the schedule in paragraph (a) of this section, unless the State is 
granted an exemption or reduction of the acquisition percentage pursuant 
to the procedures and criteria in section 490.204.



Sec.  490.202  Acquisitions satisfying the mandate.

    The following actions within a model year qualify as acquisitions 
for the purpose of compliance with the requirements of section 490.201 
of this part:
    (a) The purchase or lease of an Original Equipment Manufacturer 
light duty vehicle (regardless of the model year of manufacture) that is 
an alternative fueled vehicle and that was not previously under the 
control of the State or State agency;
    (b) The purchase or lease of an after-market converted light duty 
vehicle (regardless of model year of manufacture), that was not 
previously under control of the State or State agency;
    (c) The conversion of a newly purchased or leased light duty vehicle 
to

[[Page 1218]]

operate on alternative fuels within four months after the vehicle is 
acquired for a State fleet; and
    (d) The application of alternative fueled vehicle credits allocated 
under subpart F of this part.

[61 FR 10653, Mar. 14, 1996, as amended at 79 FR 15903, Mar. 21, 2014]



Sec.  490.203  Light Duty Alternative Fueled Vehicle Plan.

    (a) General Provisions. (1) In lieu of meeting its requirements 
under section 490.201 exclusively with acquisitions for State fleets, a 
State may follow a Light Duty Alternative Fueled Vehicle Plan that has 
been approved by DOE under this section.
    (2) Any Light Duty Alternative Fueled Vehicle Plan must provide for 
voluntary acquisitions or conversions, or combinations thereof, by 
State, local, and private fleets that equal or exceed the State's 
alternative fuel vehicle acquisition requirement under section 490.201.
    (3) Any acquisitions of light duty alternative fueled vehicles by 
participants in the State plan may be included for purposes of 
compliance, irrespective of whether the vehicles are in excluded 
categories set forth in section 490.3 of this part.
    (4) Except as provided in paragraph (h) of this section or except 
for a fleet exempt under section 490.204, a State that does not have an 
approved plan in effect under this section is subject to the State fleet 
acquisition percentage requirements of section 490.201.
    (5) If a significant commitment under an approved plan is not met by 
a participant of a plan, the State shall meet its percentage 
requirements under section 490.201 or submit to DOE an amendment to the 
plan for DOE approval.
    (b) Required elements of a plan. Each plan must include the 
following elements:
    (1) Certification by the Governor, or the Governor's designee, that 
the plan meets the requirements of this subpart;
    (2) Identification of State, local and private fleets that will 
participate in the plan;
    (3) Number of new alternative fueled vehicles to be acquired by each 
plan participant;
    (4) A written statement from each plan participant to assure 
commitment;
    (5) A statement of contingency measures by the State to offset any 
failure to fulfill significant commitments by plan participants, in 
order to meet the requirements of section 490.201;
    (6) A provision by the State to monitor and verify implementation of 
the plan;
    (7) A provision certifying that all acquisitions and conversions 
under the plan are voluntary and will meet the requirements of Sec.  247 
of the Clean Air Act, as amended (42 U.S.C. 7587) and all applicable 
safety requirements.
    (c) When to submit plan. (1) For model year 1997, a State shall 
submit its plan on or before March 14, 1997.
    (2) Beginning with model year 1998, a State shall submit its plan to 
DOE no later than June 1 prior to the first model year covered by such 
plan.
    (d) Review and approval. DOE shall review and approve a plan which 
meets the requirements of this subpart within 60 days of the date of 
receipt of the plan by DOE at the address in paragraph (g)(1) of this 
section.
    (e) Disapproval of plans. If DOE disapproves or requests a State to 
submit additional information, the State may revise and resubmit the 
plan to DOE within a reasonable time.
    (f) How a State may modify an approved plan. If a State determines 
that it cannot successfully implement its plan, it may submit to DOE for 
approval, at any time, the proposed modifications with adequate 
justifications.
    (g) Where to submit plans. (1) A State shall submit to DOE an 
original and two copies of the plan and shall be addressed to the U.S. 
Department of Energy, Office of Energy Efficiency and Renewable Energy, 
EE-33, 1000 Independence Ave., SW., Washington, DC 20585, or to such 
other address as DOE may announce in a Federal Register notice.
    (2) Any requests for modifications shall also be sent to the address 
in paragraph (g)(1) of this section.
    (h) MY 1997 Exemption. (1) On or after September 1, 1996, a State 
shall be deemed automatically exempt from section 490.201 (a)(1) until 
DOE makes a

[[Page 1219]]

final determination on a timely application to approve a plan for model 
year 1997 under this section if the State:
    (i) Has submitted the application; or
    (ii) Has sent a written notice to the Assistant Secretary, at the 
address under paragraph (g)(1) of this section, that it will file such 
an application on or before March 14, 1997.
    (2) During the period of an automatic exemption under this 
paragraph, a State may procure light duty motor vehicles in accordance 
with its normal procurement policies.



Sec.  490.204  Process for granting exemptions.

    (a) To obtain an exemption, in whole or in part, from the vehicle 
acquisition mandate in section 490.201 of this part, a State shall 
submit to DOE a written request for exemption, along with supporting 
documentation which must demonstrate that--
    (1) Alternative fuels that meet the normal requirements and 
practices of the principal business of the State fleet are not available 
from fueling sites that would permit central fueling of fleet vehicles 
in the area in which the vehicles are to be operated; or
    (2) Alternative fueled vehicles that meet the normal requirements 
and practices of the principal business of the State fleet are not 
available for purchase or lease commercially on reasonable terms and 
conditions in the State; or
    (3) The application of such requirements would pose an unreasonable 
financial hardship.
    (b) Requests for exemption must be accompanied by supporting 
documentation, must be submitted no earlier than September 1 following 
the model year for which the exemption is sought and no later than 
January 31 following the model year for which the exemption is sought, 
and will only be considered following submission of the annual report 
under Sec.  490.205.
    (c) Exemptions are granted for one model year only, and they may be 
renewed annually, if supporting documentation is provided.
    (d) Exemptions may be granted in whole or in part. When granting an 
exemption in part, DOE may, depending upon the circumstances, completely 
relieve a State from complying with a portion of the vehicle acquisition 
requirements for a model year, or it may require a State to acquire all 
or some of the exempted vehicles in future model years.
    (e) If a State is seeking an exemption under--
    (1) Paragraph (a)(1) of this section, the types of documentation 
that are to accompany the request must include, but are not limited to, 
maps of vehicle operation zones and maps of locations providing 
alternative fuel; or
    (2) Paragraph (a)(2) of this section, the types of documentation 
that are to accompany the request must include, but are not limited to, 
alternative fueled vehicle purchase or lease requests, a listing of 
vehicles that meet the normal practices and requirements of the State 
fleet, and any other documentation that exhibits good faith efforts to 
acquire alternative fueled vehicles; or
    (3) Paragraph (a)(3) of this section, it must submit a statement 
identifying what portion of the alternative fueled vehicle acquisition 
requirement should be subject to the exemption and describing the 
specific nature of the financial hardship that precludes compliance.
    (f) Requests for exemption shall be addressed to the U.S. Department 
of Energy, Office of Energy Efficiency and Renewable Energy, EE-33, 1000 
Independence Ave., SW., Washington, DC 20585, or to such other address 
as DOE may announce in a Federal Register notice.
    (g) If DOE, in response to a request for exemption, seeks 
clarification or additional information from the State, such 
clarification or additional information must be submitted to DOE in 
accordance with paragraph (f) of this section within 30 days of DOE's 
inquiry. In the event a State does not comply with this timeframe, DOE 
will proceed under paragraph (h) of this section based on the 
documentation provided to date.
    (h) The Assistant Secretary shall provide to the State, within 45 
days of receipt of a request that complies with this section, a written 
determination as to whether the State's request has been granted or 
denied.

[[Page 1220]]

    (i) If the Assistant Secretary denies an exemption, in whole or in 
part, and the State wishes to exhaust administrative remedies, the State 
must appeal within 30 days of the date of the determination, pursuant to 
10 CFR part 1003, subpart C, to the Office of Hearings and Appeals, U.S. 
Department of Energy, 1000 Independence Ave., SW., Washington, DC 20585. 
The Assistant Secretary's determination shall be stayed during the 
pendency of an appeal under this paragraph.

[61 FR 10653, Mar. 14, 1996, as amended at 79 FR 15903, Mar. 21, 2014]



Sec.  490.205  Reporting requirements.

    (a) Any State subject to the requirements of this subpart must file 
an annual report for each State fleet on or before the December 31 after 
the close of the model year, beginning with model year 1997. The State 
annual report may consist of a single State report or separately 
prepared State agency reports.
    (b) The report shall include the following information:
    (1) Number of new light duty motor vehicles acquired for the fleet 
by a State during the model year;
    (2) Number of new light duty alternative fueled vehicles that are 
required to be acquired during the model year;
    (3) Number of new light duty alternative fueled vehicle acquisitions 
by the State during the model year;
    (4) Number of alternative fueled vehicle credits applied towards 
acquisition requirements pursuant to Sec.  490.505;
    (5) For each new light duty alternative fueled vehicle acquisition--
    (i) Vehicle make and model;
    (ii) Model year;
    (iii) Vehicle identification number;
    (iv) An indication of whether the vehicle is a dedicated vehicle or 
a dual fueled vehicle;
    (v) Type(s) of alternative fuel on which the vehicle is capable of 
operating;
    (vi) Acquisition date; and
    (vii) If the annual report shows that the State fleet did not 
satisfy its alternative fueled vehicle acquisition mandate, an 
indication of whether the fleet intends to submit a request for 
exemption under Sec.  490.204; and
    (6) Number of light duty alternative fueled vehicles acquired by 
municipal and private fleets during the model year under an approved 
Light Duty Alternative Fueled Vehicle Plan (if applicable).
    (c) If banked alternative fueled vehicle credits are applied towards 
a State's alternative fueled vehicle acquisition requirements pursuant 
to Sec.  490.505, or if allocation of alternative fueled vehicle credits 
is sought under subpart F of this part, then a credit activity report, 
as described in Sec.  490.508, must be included with the annual report 
submitted under this section.
    (d) Records shall be maintained and retained for a period of three 
years.
    (e) All reports, marked ``Annual Report,'' shall be sent to the 
Office of Energy Efficiency and Renewable Energy, U.S. Department of 
Energy, EE-33, 1000 Independence Ave., SW., Washington, DC, 20585, or 
such other address as DOE may provide by notice in the Federal Register.

[61 FR 10653, Mar. 14, 1996, as amended at 79 FR 15903, Mar. 21, 2014]



Sec.  490.206  Violations.

    Violations of this subpart are subject to investigation and 
enforcement under subpart G of this part.



     Subpart D_Alternative Fuel Provider Vehicle Acquisition Mandate



Sec.  490.300  Purpose and Scope.

    This subpart implements section 501 of the Act, which requires, 
subject to some exemptions, that certain annual percentages of new light 
duty motor vehicles acquired by alternative fuel providers must be 
alternative fueled vehicles.



Sec.  490.301  Definitions.

    In addition to the definitions found in section 490.2, the following 
definitions apply to this subpart--
    Affiliate means a person that, directly or indirectly, controls, is 
controlled by, or is under common ownership or control of a person 
subject to vehicle acquisition requirements in this part.

[[Page 1221]]

    Alternative Fuels Business means activities undertaken to derive 
revenue from--
    (1) Producing, storing, refining, processing, transporting, 
distributing, importing, or selling at wholesale or retail any 
alternative fuel other than electricity; or
    (2) Generating, transmitting, importing, or selling at wholesale or 
retail electricity.
    Business Unit means a semi-autonomous major grouping of activities 
for administrative purposes and organizational structure within a 
business entity and that is controlled by or under control of a person 
subject to vehicle acquisition requirements in this part.
    Division means a major administrative unit of an enterprise 
comprising at least several enterprise units or constituting a complete 
integrated unit for a specific purpose and that is controlled by or 
under control of a person subject to vehicle acquisition requirements in 
this part.
    Normal Requirements and Practices means the operating business 
practices and required conditions under which the principal business of 
a person subject to vehicle acquisition requirements in this part 
operates.
    Principal Business means the sales-related activity that produces 
the greatest gross revenue.
    Substantial Portion means that at least 30 percent of the annual 
gross revenue of a covered person is derived from the sale of 
alternative fuels.
    Substantially Engaged means that a covered person, or affiliate, 
division, or other business unit thereof, regularly derives more than a 
negligible amount of sales-related gross revenue from an alternative 
fuels business.



Sec.  490.302  Vehicle acquisition mandate schedule.

    (a) Except as provided in section 490.304 of this part, of the light 
duty motor vehicles newly acquired by a covered person described in 
section 490.303 of this part, the following percentages shall be 
alternative fueled vehicles for the following model years:
    (1) 30 percent for model year 1997.
    (2) 50 percent for model year 1998.
    (3) 70 percent for model year 1999.
    (4) 90 percent for model year 2000 and thereafter.
    (b) Except as provided in section 490.304 of this part, this 
acquisition schedule applies to all light duty motor vehicles that a 
covered person newly acquires for use within the United States.
    (c) If, when the mandated acquisition percentage of alternative fuel 
vehicles is applied to the number of new light duty motor vehicles to be 
acquired by a covered person subject to this subpart, a number results 
that requires the acquisition of a partial vehicle, an adjustment will 
be made to the required acquisition number by rounding down to the next 
whole number if the fraction is less than one half and by rounding up 
the number of vehicles to the next whole number if the fraction is equal 
to or greater than one half.
    (d) Only acquisitions satisfying the mandate, as defined by section 
490.305, count toward compliance with the acquisition schedule in 
paragraph (a) of this section.
    (e) A covered person that is first subject to the acquisition 
requirements of this part after model year 1997 shall acquire 
alternative fueled vehicles in the next model year at the percentage 
applicable to that model year, according to the schedule in paragraph 
(a) of this section, unless the covered person is granted an exemption 
or reduction of the acquisition percentage pursuant to the procedures 
and criteria in section 490.307.

[61 FR 10653, Mar. 14, 1996, as amended at 79 FR 15903, Mar. 21, 2014]



Sec.  490.303  Who must comply.

    (a) Except as provided by paragraph (b) of this section, a covered 
person must comply with the requirements of this subpart if that person 
is--
    (1) A covered person whose principal business is producing, storing, 
refining, processing, transporting, distributing, importing or selling 
at wholesale or retail any alternative fuel other than electricity; or
    (2) A covered person whose principal business is generating, 
transmitting, importing, or selling, at wholesale or retail, 
electricity; or
    (3) A covered person--

[[Page 1222]]

    (i) Who produces, imports, or produces and imports in combination, 
an average of 50,000 barrels per day or more of petroleum; and
    (ii) A substantial portion of whose business is producing 
alternative fuels.
    (b) This subpart does not apply to a covered person or affiliate, 
division, or other business unit of such person whose principal business 
is--
    (1) transforming alternative fuels into a product that is not an 
alternative fuel; or
    (2) consuming alternative fuels as a feedstock or fuel in the 
manufacture of a product that is not an alternative fuel.



Sec.  490.304  Which new light duty motor vehicles are covered.

    (a) General rule. Except as provided in paragraph (b) of this 
section, the vehicle acquisition mandate schedule in section 490.302 of 
this part applies to all light duty motor vehicles newly acquired for 
use within the United States by a covered person described in section 
490.303 of this part.
    (b) Exception. If a covered person has more than one affiliate, 
division, or other business unit, then section 490.302 of this part only 
applies to light duty motor vehicles newly acquired by an affiliate, 
division, or other such business unit which is substantially engaged in 
the alternative fuels business.



Sec.  490.305  Acquisitions satisfying the mandate.

    The following actions within the model year qualify as acquisitions 
for the purpose of compliance with the requirements of section 490.302 
of this part--
    (a) The purchase or lease of an Original Equipment Manufacturer 
light duty vehicle (regardless of the model year of manufacture) that is 
an alternative fueled vehicle and that was not previously under the 
control of the covered person;
    (b) The purchase or lease of an after-market converted light duty 
vehicle (regardless of the model year of manufacture), that was not 
previously under the control of the covered person; and
    (c) The conversion of a newly purchased or leased light duty vehicle 
to operate on alternative fuels within four months after the vehicle is 
acquired by a covered person; and
    (d) The application of alternative fueled vehicle credits allocated 
under subpart F of this part.

[61 FR 10653, Mar. 14, 1996, as amended at 79 FR 15903, Mar. 21, 2014]



Sec.  490.306  Vehicle operation requirements.

    The alternative fueled vehicles acquired pursuant to section 490.302 
of this part shall be operated solely on alternative fuels, except when 
these vehicles are operating in an area where the appropriate 
alternative fuel is unavailable.



Sec.  490.307  Process for granting exemptions.

    (a)(1) To obtain an exemption from the vehicle acquisition mandate 
in this subpart, a covered person, or its affiliate, division, or 
business unit which is subject to section 490.302 of this part, shall 
submit a written request for exemption to the Office of Energy 
Efficiency and Renewable Energy, U.S. Department of Energy, EE-33, 1000 
Independence Ave., SW., Washington, DC 20585, or such other address as 
DOE may publish in the Federal Register, along with the supporting 
documentation required by this section.
    (2) Requests for exemption must be accompanied by supporting 
documentation, must be submitted no earlier than September 1 following 
the model year for which the exemption is sought and no later than 
January 31 following the model year for which the exemption is sought, 
and will only be considered following submission of the annual report 
under Sec.  490.308.
    (b) A covered person requesting an exemption must demonstrate that--
    (1) Alternative fuels that meet the normal requirements and 
practices of the principal business of the covered person are not 
available from fueling sites that would permit central fueling of that 
person's vehicles in the area in which the vehicles are to be operated; 
or
    (2) Alternative fueled vehicles that meet the normal requirements 
and practices of the principal business of the covered person are not 
available for

[[Page 1223]]

purchase or lease commercially on reasonable terms and conditions in any 
State included in a MSA/CMSA that the vehicles are operated in.
    (c) Documentation. (1) Except as provided in paragraph (c) (2) of 
this section, if a covered person is seeking an exemption under 
paragraph (b)(1) of this section, the types of documentation that are to 
accompany the request include, but are not limited to, maps of vehicle 
operation zones and maps of locations providing alternative fuel.
    (2) If a covered person seeking an exemption under paragraph (b)(1) 
of this section operates light duty vehicles outside of the areas listed 
in appendix A of subpart A, and central fueling of those vehicles does 
not meet the normal requirements and practices of that person's 
business, then that covered person shall only be required to justify in 
a written request why central fueling is incompatible with its business.
    (3) If a covered person is seeking an exemption under paragraph 
(b)(2) of this section, the types of documentation that are to accompany 
the request include, but are not limited to, alternative fueled vehicle 
purchase or lease requests, a listing of vehicles that meet the normal 
practices and requirements of the covered person and any other 
documentation that exhibits good faith efforts to acquire alternative 
fueled vehicles.
    (4) If DOE, in response to a request for exemption, seeks 
clarification or additional information from the covered person, such 
clarification or additional information must be submitted to DOE in 
accordance with paragraph (a) of this section within 30 days of DOE's 
inquiry. In the event a covered person does not comply with this 
timeframe, DOE will proceed under paragraph (f) of this section based on 
the documentation provided to date.
    (d) Exemptions are granted for one model year only and may be 
renewed annually, if supporting documentation is provided.
    (e) Exemptions may be granted in whole or in part. When granting an 
exemption in part, DOE may, depending upon the circumstances, completely 
relieve a covered person from complying with a portion of the vehicle 
acquisition requirements for a model year, or it may require a covered 
person to acquire all or some of the exempted vehicles in future model 
years.
    (f) The Assistant Secretary shall provide to the covered person 
within 45 days after receipt of a request that complies with this 
section, a written determination as to whether the covered person's 
request has been granted or denied.
    (g) If a covered person is denied an exemption, that covered person 
may file an appeal within 30 days of the date of determination, pursuant 
to 10 CFR part 1003, subpart C, with the Office of Hearings and Appeals, 
U.S. Department of Energy, 1000 Independence Ave, SW, Washington, DC 
20585. The Assistant Secretary's determination shall be stayed during 
the pendency of an appeal under this paragraph.

[61 FR 10653, Mar. 14, 1996. Redesignated and amended at 79 FR 15904, 
Mar. 21, 2014]



Sec.  490.308  Annual reporting requirements.

    (a) If a person is required to comply with the vehicle acquisition 
schedule in section 490.302, that person shall file an annual report 
under this section, on a form obtainable from DOE, with the Office of 
Energy Efficiency and Renewable Energy, U.S. Department of Energy, EE-
33, 1000 Independence Ave., SW., Washington, DC 20585, or such other 
address as DOE may publish in the Federal Register, on or before the 
December 31 after the close of the applicable model year.
    (b) This report shall include the following information--
    (1) Number of new light duty motor vehicles acquired by the covered 
person in the United States during the model year;
    (2) Number of new light duty alternative fueled vehicles that are 
required to be acquired during the model year;
    (3) Number of new light duty alternative fueled vehicle acquisitions 
in the United States during the model year;
    (4) Number of alternative fueled vehicle credits applied towards 
acquisition requirements pursuant to Sec.  490.505;
    (5) For each new light duty alternative fueled vehicle acquisition--
    (i) Vehicle make and model;
    (ii) Model year;

[[Page 1224]]

    (iii) Vehicle Identification Number;
    (iv) An indication of whether the vehicle is a dedicated vehicle or 
a dual fueled vehicle;
    (v) Type(s) of alternative fuel on which the vehicle is capable of 
operating;
    (vi) Acquisition date; and
    (vii) If the annual report shows that the covered person did not 
satisfy its alternative fueled vehicle acquisition mandate, an 
indication of whether the covered person intends to submit a request for 
exemption under Sec.  490.307.
    (c) If banked alternative fueled vehicle credits are applied towards 
a covered person's alternative fueled vehicle acquisition requirements 
pursuant to Sec.  490.505, or if allocation of alternative fueled 
vehicle credits is sought under subpart F of this part, then a credit 
activity report, as described in Sec.  490.508, must be included with 
the annual report submitted under this section.
    (d) Records shall be maintained and retained for a period of three 
years.

[61 FR 10653, Mar. 14, 1996. Redesignated and amended at 79 FR 15904, 
Mar. 21, 2014]



Sec.  490.309  Violations.

    Violations of this subpart are subject to investigation and 
enforcement under subpart G of this part.

[61 FR 10653, Mar. 14, 1996. Redesignated at 79 FR 15904, Mar. 21, 2014]

Subpart E [Reserved]



           Subpart F_Alternative Fueled Vehicle Credit Program



Sec.  490.500  Purpose and scope.

    This subpart implements the statutory requirements of section 508 of 
the Act, which provides for the allocation of credits to fleets or 
covered persons that:
    (a) Acquire alternative fueled vehicles in excess of the number they 
are required to acquire under this part or obtain alternative fueled 
vehicles before the model year when they are required to do so under 
this part;
    (b) Acquire certain other vehicles as identified in this subpart; or
    (c) Invest in qualified alternative fuel infrastructure or non-road 
equipment or an emerging technology.

[79 FR 15904, Mar. 21, 2014]



Sec.  490.501  Definitions.

    In addition to the definitions found in Sec.  490.2, the following 
definitions apply to this subpart:
    Alternative Fuel Infrastructure means property that is for:
    (1) The storage and dispensing of an alternative fuel into the fuel 
tank of a motor vehicle propelled by such fuel; or
    (2) The recharging of motor vehicles or neighborhood electric 
vehicles propelled by electricity.
    Alternative Fuel Non-road Equipment means mobile, non-road equipment 
that operates on alternative fuel (including but not limited to 
forklifts, tractors, bulldozers, backhoes, front-end loaders, and 
rollers/compactors).
    Emerging Technology means a pre-production or pre-commercially 
available version of a fuel cell electric vehicle, hybrid electric 
vehicle, medium- or heavy-duty electric vehicle, medium- or heavy-duty 
fuel cell electric vehicle, neighborhood electric vehicle, or plug-in 
electric drive vehicle, as such vehicles are defined in this section.
    Fuel Cell Electric Vehicle means a motor vehicle or non-road vehicle 
that uses a fuel cell, as that term is defined in section 803 of the 
Spark M. Matsunaga Hydrogen Act of 2005 (42 U.S.C. 16152(1)).
    Hybrid Electric Vehicle means a new qualified hybrid motor vehicle 
as defined in section 30B(d)(3) of the Internal Revenue Code of 1986 (26 
U.S.C. 30B(d)(3)).
    Medium- or Heavy-Duty Electric Vehicle means an electric, hybrid 
electric, or plug-in hybrid electric vehicle with a gross vehicle weight 
rating of more than 8,500 pounds.
    Medium- or Heavy-Duty Fuel Cell Electric Vehicle means a fuel cell 
electric vehicle with a gross vehicle weight rating of more than 8,500 
pounds.
    Neighborhood Electric Vehicle means a 4-wheeled on-road or non-road 
vehicle that--
    (1) Has a top attainable speed in 1 mile of more than 20 mph and not 
more

[[Page 1225]]

than 25 mph on a paved level surface; and
    (2) Is propelled by an electric motor and an on-board, rechargeable 
energy storage system that is rechargeable using an off-board source of 
electricity.
    Plug-in Electric Drive Vehicle means a vehicle that--
    (1) Draws motive power from a battery with a capacity of at least 4 
kilowatt-hours;
    (2) Can be recharged from an external source of electricity for 
motive power;
    (3) Is a light-, medium-, or heavy-duty motor vehicle or non-road 
vehicle, as those terms are defined in section 216 of the Clean Air Act 
(42 U.S.C. 7550); and
    (4) In the case of a plug-in hybrid electric vehicle, also includes 
an on-board method of charging the energy storage system and/or 
providing motive power.

[79 FR 15904, Mar. 21, 2014]



Sec.  490.502  Applicability.

    This subpart applies to all fleets and covered persons that are 
required to acquire alternative fueled vehicles by this part.

[79 FR 15904, Mar. 21, 2014]



Sec.  490.503  Creditable actions.

    A fleet or covered person becomes entitled to alternative fueled 
vehicle credits, at the allocation levels specified in Sec.  490.504, 
by:
    (a)(1) Acquiring light duty alternative fueled vehicles, including 
those in excluded categories under Sec.  490.3, in excess of the number 
of light duty alternative fueled vehicles that the fleet or covered 
person is required to acquire under Sec.  490.201 or Sec.  490.302;
    (2) Acquiring alternative fueled vehicles, including those in 
excluded categories under Sec.  490.3, with a gross vehicle weight 
rating of more than 8,500 pounds, in excess of the number of light duty 
alternative fueled vehicles that the fleet or covered person is required 
to acquire under Sec.  490.201 or Sec.  490.302;
    (3) Acquiring in model year 2014 or in any model year thereafter, 
any of the following vehicles in excess of the number of light duty 
alternative fueled vehicles that the fleet or covered person is required 
to acquire under Sec.  490.201 or Sec.  490.302:
    (i) Medium- or heavy-duty fuel cell electric vehicles that are not 
alternative fueled vehicles; or
    (ii) Medium- or heavy-duty electric vehicles that are not 
alternative fueled vehicles;
    (b) Acquiring alternative fueled vehicles, including those in 
excluded categories under Sec.  490.3 and those with a gross vehicle 
weight rating of more than 8,500 pounds, in model years before the model 
year when that fleet or covered person is first required to acquire 
light duty alternative fueled vehicles under Sec.  490.201 or Sec.  
490.302;
    (c) Investing, during a model year that is model year 2014 or 
thereafter and is also a model year in which requirements under this 
part apply to the fleet or covered person, at least $25,000 in 
alternative fuel infrastructure or alternative fuel non-road equipment, 
or at least $50,000 in an emerging technology, provided that:
    (1) The emerging technology, alternative fuel infrastructure, or 
alternative fuel non-road equipment is put into operation during the 
year in which the fleet or covered person has applied for credits;
    (2) In the case of an emerging technology, the amount invested by 
the fleet or covered person is not the basis for credit under paragraphs 
(a), (b), or (d) of this section; and
    (3) In the case of alternative fuel non-road equipment, the 
equipment is being operated on alternative fuel, within the constraints 
of best practices and seasonal fuel availability; or
    (d) Acquiring, during a model year that is model year 2014 or 
thereafter and is also a model year in which requirements under this 
part apply to the fleet or covered person, any of the following 
vehicles, including those in excluded categories under Sec.  490.3:
    (1) A hybrid electric vehicle that is a light duty motor vehicle, 
but that is not an alternative fueled vehicle;
    (2) A plug-in electric drive vehicle that is a light duty motor 
vehicle, but that is not an alternative fueled vehicle;
    (3) A fuel cell electric vehicle that is a light duty motor vehicle, 
but that is not an alternative fueled vehicle; or

[[Page 1226]]

    (4) A neighborhood electric vehicle.
    (e) For purposes of this subpart, a fleet or covered person that 
acquired a motor vehicle on or after October 24, 1992, and converted it 
to an alternative fueled vehicle before April 15, 1996, shall be 
entitled to a credit for that vehicle notwithstanding the time limit on 
conversions established by Sec. Sec.  490.202(c) and 490.305(c).

[79 FR 15905, Mar. 21, 2014]



Sec.  490.504  Credit allocation.

    (a) Based on annual credit activity report information, as described 
in Sec.  490.508, DOE shall allocate:
    (1) One alternative fueled vehicle credit for each alternative 
fueled vehicle, regardless of the vehicle's gross vehicle weight rating, 
that a fleet or covered person acquires in excess of the number of light 
duty alternative fueled vehicles that the fleet or covered person is 
required to acquire under Sec.  490.201 or Sec.  490.302; and
    (2) One-half of an alternative fueled vehicle credit for each 
medium- or heavy-duty fuel cell electric vehicle that is not an 
alternative fueled vehicle and each medium- or heavy-duty electric 
vehicle that is not an alternative fueled vehicle, either or both of 
which a fleet or covered person acquires in excess of the number of 
light duty alternative fueled vehicles that the fleet or covered person 
is required to acquire under Sec.  490.201 or Sec.  490.302.
    (b) If an alternative fueled vehicle, regardless of the vehicle's 
gross vehicle weight rating, is acquired by a fleet or covered person in 
a model year before the first model year that the fleet or covered 
person is required to acquire light duty alternative fueled vehicles by 
this part, as reported in the annual credit activity report, DOE shall 
allocate one credit per alternative fueled vehicle for each year the 
alternative fueled vehicle is acquired before the model year when 
acquisition requirements apply.
    (c) DOE shall allocate credits to fleets and covered persons under 
paragraph (b) of this section only for alternative fueled vehicles 
acquired on or after October 24, 1992.
    (d) Based on annual credit activity report information, as described 
in Sec.  490.508, DOE shall allocate alternative fueled vehicle credit 
in the amount set forth below for the associated creditable actions that 
a fleet or covered person undertakes as described in Sec.  490.503(d):
    (1) A hybrid electric vehicle that is a light duty motor vehicle, 
but that is not an alternative fueled vehicle--\1/2\ credit;
    (2) A plug-in electric drive vehicle that is a light duty motor 
vehicle, but that is not an alternative fueled vehicle--\1/2\ credit;
    (3) A fuel cell electric vehicle that is a light duty motor vehicle, 
but that is not an alternative fueled vehicle--\1/2\ credit; and
    (4) A neighborhood electric vehicle--\1/4\ credit.
    (e) Based on annual credit activity report information, as described 
in Sec.  490.508, DOE shall allocate one alternative fueled vehicle 
credit for every $25,000 that a fleet or covered person invests, as 
described in Sec.  490.503(c), in:
    (1) Alternative fuel infrastructure that is:
    (i) Publicly accessible, provided that the maximum number of credits 
under this paragraph shall not exceed ten for the model year and the 
alternative fuel infrastructure became operational in the same model 
year, and provided further that the total number of credits allocated 
under this paragraph (e)(1)(i) and paragraph (e)(1)(ii) of this section 
do not exceed ten in a given model year; or
    (ii) Not publicly accessible, provided that the maximum number of 
credits under this paragraph shall not exceed five for the model year 
and the alternative fuel infrastructure became operational in the same 
model year, and provided further that the total number of credits 
allocated under this paragraph (e)(1)(ii) and paragraph (e)(1)(i) of 
this section do not exceed ten in a given model year; or
    (2) Alternative fuel non-road equipment, provided that the maximum 
number of credits under this paragraph (e)(2) shall not exceed five for 
the model year, and provided further that the equipment is being 
operated on alternative fuel.
    (f) Based on annual credit activity report information, as described 
in

[[Page 1227]]

Sec.  490.508 of this subpart, DOE shall allocate two alternative fueled 
vehicle credits for the first $50,000, and one alternative fueled 
vehicle credit for every $25,000 thereafter, that a fleet or covered 
person invests, as described in Sec.  490.503(c), in emerging 
technology, provided that the maximum number of credits under this 
paragraph (f) shall not exceed five for the model year, and provided 
further that the amount for which credit is allocated under this 
paragraph has not been the basis for credit allocation under paragraphs 
(a), (b), or (d) of this section.
    (g) A fleet or covered person may aggregate the amount of money 
invested in alternative fuel infrastructure, alternative fuel non-road 
equipment, and emerging technology such that funds from multiple 
categories may be used to achieve the applicable threshold for the 
purpose of earning an alternative fueled vehicle credit, so long as no 
funds are aggregated from a category for which the fleet has already 
been allocated the maximum number of credits allowed for that category, 
as set forth in paragraphs (e) and (f) of this section.

[79 FR 15905, Mar. 21, 2014]



Sec.  490.505  Use of alternative fueled vehicle credits.

    At the request of a fleet or covered person in an annual report 
under subpart C or D of this part, DOE shall treat each banked 
alternative fueled vehicle credit as the acquisition of an alternative 
fueled vehicle that the fleet or covered person is required to acquire 
under this part. Each full credit shall count as the acquisition of one 
alternative fueled vehicle in the model year for which the fleet or 
covered person requests that the credit be applied.

[79 FR 15906, Mar. 21, 2014]



Sec.  490.506  Credit accounts.

    (a) DOE shall establish a credit account for each fleet or covered 
person that obtains an alternative fueled vehicle credit.
    (b) DOE shall send to each fleet and covered person an annual credit 
account balance statement after the receipt of its credit activity 
report under Sec.  490.508.

[79 FR 15906, Mar. 21, 2014]



Sec.  490.507  Alternative fueled vehicle credit transfers.

    (a) Any fleet or covered person that is required to acquire 
alternative fueled vehicles may transfer an alternative fueled vehicle 
credit to--
    (1) A fleet that is required to acquire alternative fueled vehicles; 
or
    (2) A covered person subject to the requirements of this part, if 
the transferor provides certification to the covered person that the 
credit represents a vehicle that operates solely on alternative fuel.
    (b) Proof of credit transfer may be on a form provided by DOE, or 
otherwise in writing, and must include dated signatures of the 
transferor and transferee. The proof should be received by DOE within 30 
days of the transfer date at the Office of Energy Efficiency and 
Renewable Energy, U.S. Department of Energy, EE-2G, 1000 Independence 
Avenue SW, Washington, DC 20585-0121, or such other address as DOE 
publishes on its Web site or in the Federal Register.

[79 FR 15906, Mar. 21, 2014]



Sec.  490.508  Credit activity reporting requirements.

    (a) A fleet or covered person that either applied one or more banked 
credits towards its alternative fueled vehicle acquisition requirements 
pursuant to Sec.  490.505, seeks the allocation of alternative fueled 
vehicle credits under this subpart, or participated in a credit transfer 
under Sec.  490.507 must include a credit activity report with its 
annual report submitted under subpart C or D of this part.
    (b) The credit activity report must include the following 
information:
    (1) Number of alternative fueled vehicle credits applied towards 
acquisition requirements pursuant to Sec.  490.505;
    (2) Number of alternative fueled vehicle credits requested for:
    (i) Light duty alternative fueled vehicles acquired in excess of the 
required acquisition number;
    (ii) Alternative fueled vehicles with a gross vehicle weight rating 
of more

[[Page 1228]]

than 8,500 pounds acquired in excess of the required acquisition number;
    (iii) Medium- or heavy-duty fuel cell electric vehicles that are not 
alternative fueled vehicles, acquired in excess of the required 
acquisition number;
    (iv) Medium- or heavy-duty electric vehicles that are not 
alternative fueled vehicles, acquired in excess of the required 
acquisition number;
    (v) Light duty alternative fueled vehicles acquired in model years 
before the first model year the fleet or covered person is required to 
acquire light duty alternative fueled vehicles by this part;
    (vi) Alternative fueled vehicles with a gross vehicle weight rating 
of more than 8,500 pounds acquired in model years before the first model 
year the fleet or covered person is required to acquire light duty 
alternative fueled vehicles by this part;
    (vii) The acquisition of light duty hybrid electric vehicles that 
are not alternative fueled vehicles;
    (viii) The acquisition of light duty plug-in electric drive vehicles 
that are not alternative fueled vehicles;
    (ix) The acquisition of light duty fuel cell electric vehicles that 
are not alternative fueled vehicles; and
    (x) The acquisition of neighborhood electric vehicles.
    (3) Number of alternative fueled vehicle credits, in whole number 
values, requested for each of the following:
    (i) Investment in alternative fuel infrastructure;
    (ii) Investment in alternative fuel non-road equipment; and
    (iii) Investment in an emerging technology.
    (4) For each vehicle that is not an alternative fueled vehicle and 
for which credit is requested under paragraphs (b)(2)(iii), (iv), (vii), 
(viii), (ix), or (x) of this section:
    (i) Vehicle make and model;
    (ii) Model year;
    (iii) Vehicle Identification Number; and
    (iv) Acquisition date.
    (5) For investment in alternative fuel infrastructure, supporting 
documentation and a written statement, certified by a responsible 
official of the fleet or covered person, indicating or providing:
    (i) The model year or period in which the investment was made;
    (ii) The amount of money invested by the fleet or covered person and 
to whom the money was provided;
    (iii) The physical location(s) (address and zip code) and a detailed 
description of the alternative fuel infrastructure, including the name 
and address of the construction/installation company (where 
appropriate), whether the infrastructure is publicly accessible, and the 
type(s) of alternative fuel offered; and
    (iv) The date on which the alternative fuel infrastructure became 
operational.
    (6) For investment in alternative fuel non-road equipment, 
supporting documentation and a written statement, certified by a 
responsible official of the fleet or covered person, indicating or 
providing:
    (i) The model year or period in which the investment was made;
    (ii) The amount of money invested by the fleet or covered person and 
to whom the money was provided; and
    (iii) A detailed description of the alternative fuel non-road 
equipment, including the name and address of the manufacturer, the 
type(s) of alternative fuel on which the equipment is capable of being 
operated, a certification that the equipment is being operated on that 
alternative fuel, the date on which the fleet or covered person 
purchased the equipment, and the date on which it was put into 
operation.
    (7) For investment in an emerging technology, supporting 
documentation and a written statement, certified by a responsible 
official of the fleet or covered person, indicating or providing:
    (i) The model year or period in which the investment was made;
    (ii) The amount of money invested by the fleet or covered person and 
to whom the money was provided;
    (iii) A certification that the emerging technology's acquisition is 
not included as a new light duty alternative fueled vehicle acquisition 
in the fleet or covered person's annual report;

[[Page 1229]]

    (iv) A certification that the emerging technology's acquisition is 
not included in paragraph (b)(2) of this section and the amount invested 
is not included in the amounts submitted under paragraph (b)(5)(ii) or 
(b)(6)(ii) of this section; and
    (v) A detailed description of the emerging technology, including the 
name and address of the manufacturer, the date on which the fleet or 
covered person purchased the emerging technology, and the date on which 
it was put it into operation.
    (8) The total number of alternative fueled vehicle credits requested 
by the fleet or covered person, calculated by adding the two subtotals 
under paragraphs (b)(2) and (b)(3) of this section and then rounding the 
aggregate figure to the nearest whole number; in rounding to the nearest 
whole number, any fraction equal to or greater than one half shall be 
rounded up and any fraction less than one half shall be rounded down.
    (9) Purchases of alternative fueled vehicle credits:
    (i) Credit source; and
    (ii) Date of purchase;
    (10) Sales of alternative fueled vehicle credits:
    (i) Credit purchaser; and
    (ii) Date of sale.

[79 FR 15906, Mar. 21, 2014]



                Subpart G_Investigations and Enforcement



Sec.  490.600  Purpose and scope.

    This subpart sets forth the rules applicable to investigations under 
titles III, IV, V, and VI of the Act and to enforcement of sections 501, 
503(b), 507, 508, or 514 of the Act, or any regulation issued under such 
sections.

[72 FR 12964, Mar. 20, 2007]



Sec.  490.601  Powers of the Secretary.

    For the purpose of carrying out titles III, IV, V, and VI of the 
Act, DOE may hold such hearings, take such testimony, sit and act at 
such times and places, administer such oaths, and require by subpena the 
attendance and testimony of such witnesses and the production of such 
books, papers, correspondence, memoranda, contracts, agreements, or 
other records as the Secretary of Transportation is authorized to do 
under section 505(b)(1) of the Motor Vehicle Information and Cost 
Savings Act (15 U.S.C. 2005(b)(1)).



Sec.  490.602  Special orders.

    (a) DOE may require by general or special orders that any person--
    (1) File, in such form as DOE may prescribe, reports or answers in 
writing to specific questions relating to any function of DOE under this 
part; and
    (2) Provide DOE access to (and for the purpose of examination, the 
right to copy) any documentary evidence of such person which is relevant 
to any function of DOE under this part.
    (b) File under oath any reports and answers provided under this 
section or as otherwise prescribed by DOE, and file such reports and 
answers with DOE within such reasonable time and at such place as DOE 
may prescribe.



Sec.  490.603  Prohibited acts.

    It is unlawful for any person to violate any provision of sections 
501, 503(b), 507, 514 of the Act, or any regulations issued under such 
sections.

[72 FR 12964, Mar. 20, 2007]



Sec.  490.604  Penalties and Fines.

    (a) Civil penalties. Whoever violates Sec.  490.603 shall be subject 
to a civil penalty of not more than $9,073 for each violation.
    (b) Willful violations. Whoever willfully violates section 490.603 
of this part shall pay a criminal fine of not more than $10,000 for each 
violation.
    (c) Repeated violations. Any person who knowingly and willfully 
violates section 490.603 of this part, after having been subjected to a 
civil penalty for a prior violation of section 490.603 shall pay a 
criminal fine of not more than $50,000 for each violation.

[61 FR 10653, Mar. 14, 1996, as amended at 62 FR 46183, Sept. 2, 1997; 
74 FR 66032, Dec. 14, 2009; 79 FR 19, Jan. 2, 2014; 81 FR 41794, June 
28, 2016; 81 FR 96351, Dec. 30, 2016; 83 FR 1291, Jan. 11, 2018; 83 FR 
66083, Dec. 26, 2018; 85 FR 830, Jan. 8, 2020]



Sec.  490.605  Statement of enforcement policy.

    DOE may agree not to commence an enforcement proceeding, or may 
agree

[[Page 1230]]

to settle an enforcement proceeding, if the person agrees to come into 
compliance in a manner satisfactory to DOE. DOE normally will not 
commence an enforcement action against a person subject to the 
acquisition requirements of this part without giving that person notice 
of its intent to enforce 90 days before the beginning of an enforcement 
proceeding.



Sec.  490.606  Proposed assessments and orders.

    DOE may issue a proposed assessment of, and order to pay, a civil 
penalty in a written statement setting forth supporting findings of 
violation of the Act or a relevant regulation of this part. The proposed 
assessment and order shall be served on the person named therein by 
certified mail, return-receipt requested, and shall become final for DOE 
if not timely appealed pursuant to section 490.607 of this part.



Sec.  490.607  Appeals.

    (a) In order to exhaust administrative remedies, on or before 30 
days from the date of issuance of a proposed assessment and order to 
pay, a person must appeal a proposed assessment and order to the Office 
of Hearings and Appeals, U.S. Department of Energy, 1000 Independence 
Avenue, SW., Washington, DC 20585.
    (b) Proceedings in the Office of Hearings and Appeals shall be 
subject to subpart F of 10 CFR part 1003 except that--
    (1) Appellant shall have the ultimate burden of persuasion;
    (2) Appellant shall have right to a trial-type hearing on contested 
issues of fact only if the hearing officer concludes that cross 
examination will materially assist in determining facts in addition to 
evidence available in documentary form; and
    (3) The Office of Hearings and Appeals may issue such orders as it 
may deem appropriate on all other procedural matters.
    (c) The determination of the Office of Hearings and Appeals shall be 
final for DOE.



                   Subpart H_Biodiesel Fuel Use Credit

    Source: 64 FR 27174, May 19, 1999, unless otherwise noted.



Sec.  490.701  Purpose and scope.

    (a) This subpart implements provisions of the Energy Conservation 
Reauthorization Act of 1998 (Pub. L. 105-388) that require, subject to 
some limitations, the allocation of credit to a fleet or covered person 
under Titles III and V of the Energy Policy Act of 1992 for the purchase 
of a qualifying volume of the biodiesel component of a fuel containing 
at least 20 percent biodiesel by volume.
    (b) Fleets and covered persons may use these credits to meet, in 
part, their mandated alternative fueled vehicle acquisition 
requirements.



Sec.  490.702  Definitions.

    In addition to the definitions found in Sec.  490.2, the following 
definitions apply to this subpart--
    Biodiesel means a diesel fuel substitute produced from nonpetroleum 
renewable resources that meets the registration requirements for fuels 
and fuel additives established by the Environmental Protection Agency 
under section 211 of the Clean Air Act; and
    Qualifying volume means--
    (1) 450 gallons; or
    (2) If DOE determines by rule that the average annual alternative 
fuel use in light duty vehicles by fleets and covered persons exceeds 
450 gallons or gallon equivalents, the amount of such average annual 
alternative fuel use.



Sec.  490.703  Biodiesel fuel use credit allocation.

    (a) DOE shall allocate to a fleet or covered person one credit for 
each qualifying volume of the biodiesel component of a fuel that 
contains at least 20 percent biodiesel by volume if:
    (1) Each qualifying volume of the biodiesel component of a fuel was 
purchased after November 13, 1998;
    (2) The biodiesel component of fuel is used in vehicles owned or 
operated by the fleet or covered person; and
    (3) The biodiesel component of the fuel is used in vehicles weighing 
more

[[Page 1231]]

than 8,500 pounds gross vehicle weight rating.
    (b) No credit shall be allocated under this subpart for a purchase 
of the biodiesel component of a fuel if the fuel is:
    (1) For use in alternative fueled vehicles which have been used to 
satisfy the alternative fueled vehicle acquisition requirements under 
Titles III and V of the Energy Policy Act of 1992; or
    (2) Required by Federal or State law.

[64 FR 27174, May 19, 1999, as amended at 66 FR 2210, Jan. 11, 2001]



Sec.  490.704  Procedures and documentation.

    (a) To receive a credit under this subpart, the fleet or covered 
person shall submit its request, on a form obtained from DOE, to the 
Office of Energy Efficiency and Renewable Energy, U. S. Department of 
Energy, EE-34, 1000 Independence Ave. SW., Washington, DC 20585, or such 
other address as DOE may publish in the Federal Register, along with the 
documentation required by paragraph (b) of this section.
    (b) Each request for a credit under this subpart must be submitted 
on or before the December 31 after the close of the applicable model 
year and must include written documentation stating the quantity of 
biodiesel purchased, for the given model year, for use in vehicles 
weighing in excess of 8,500 lbs. gross vehicle weight;
    (c) A fleet or covered person submitting a request for a credit 
under this subpart must maintain and retain purchase records verifying 
information in the request for a period of three years from December 31 
immediately after the close of the model year for which the request is 
submitted.



Sec.  490.705  Use of credits.

    (a) At the request of a fleet or covered person allocated a credit 
under this subpart, DOE shall, for the model year in which the purchase 
of a qualifying volume is made, treat that purchase as the acquisition 
of one alternative fueled vehicle the fleet or covered person is 
required to acquire under titles III and V of the Energy Policy Act of 
1992.
    (b) Except as provided in paragraph (c) of this section, credits 
allocated under this subpart may not be used to satisfy more than 50 
percent of the alternative fueled vehicle requirements of a fleet or 
covered person under titles III and V of the Energy Policy Act of 1992.
    (c) A fleet or covered person that is a biodiesel alternative fuel 
provider described in section 490.303 of this part may use its credits 
allocated under this subpart to satisfy all of its alternative fueled 
vehicle requirements under section 490.302.
    (d) A fleet or covered person may not trade or bank biodiesel fuel 
credits.

[64 FR 27174, May 19, 1999, as amended at 66 FR 2210, Jan. 11, 2001]



Sec.  490.706  Procedure for modifying the biodiesel component percentage.

    (a) DOE may, by rule, lower the 20 percent biodiesel volume 
requirement of this subpart for reasons related to cold start, safety, 
or vehicle function considerations.
    (b) Any person may use the procedures in section 490.6 of this part 
to petition DOE for a rulemaking to lower the biodiesel volume 
percentage. A petitioner should include any data or information that it 
wants DOE to consider in deciding whether or not to begin a rulemaking.



Sec.  490.707  Increasing the qualifying volume of the biodiesel component.

    DOE may increase the qualifying volume of the biodiesel component of 
fuel for purposes of allocation of credits under this subpart only after 
it:
    (a) Collects data establishing that the average annual alternative 
fuel use in light duty vehicles by fleets and covered persons exceeds 
450 gallons or gallon equivalents; and
    (b) Conducts a rulemaking to amend the provisions of this subpart to 
change the qualifying volume to the average annual alternative fuel use.



Sec.  490.708  Violations.

    Violations of this subpart are subject to investigation and 
enforcement under subpart G of this part.

[[Page 1232]]



                    Subpart I_Alternative Compliance

    Source: 72 FR 12964, Mar. 20, 2007, unless otherwise noted.



Sec.  490.801  Purpose and scope.

    This subpart implements section 514 of the Act (42 U.S.C. 13263a) 
which permits States and alternative fuel providers to petition for 
alternative compliance waivers from the alternative fueled vehicle 
acquisition requirements in subparts C and D of this part, respectively.



Sec.  490.802  Eligibility for alternative compliance waiver.

    Any State subject to subpart C of this part and any covered person 
subject to subpart D of this part may apply to DOE for a waiver from the 
applicable alternative fueled vehicle acquisition requirements.



Sec.  490.803  Waiver requirements.

    DOE grants a State or covered person a waiver:
    (a) If DOE determines that the State or covered person will achieve 
a reduction in petroleum consumption, through eligible reductions as 
specified in Sec.  490.804 of this subpart, equal to the amount of 
alternative fuel used if the following vehicles were operated 100 
percent of the time on alternative fuel during the model year for which 
a waiver is requested:
    (1) Previously required alternative fueled vehicles in the fleet's 
inventory at the start of the model year for which a waiver is 
requested;
    (2) Alternative fueled vehicles that the State or covered person 
would have been required to acquire in the model year for which a waiver 
is requested, and in previous model years in which a waiver was granted, 
absent any waivers;
    (b) The State or covered person is in compliance with all applicable 
vehicle emission standards established by the Administrator of the 
Environmental Protection Agency under the Clean Air Act (42 U.S.C. 7401 
et seq.); and
    (c) The State or covered person is in compliance with all applicable 
requirements of this subpart.



Sec.  490.804  Eligible reductions in petroleum consumption.

    (a) Motor vehicles. Demonstrated reductions in petroleum consumption 
during the model year for which a waiver is requested that are 
attributable to motor vehicles owned, operated, leased or otherwise 
under the control of a State or covered person are applicable towards 
the petroleum fuel reduction required in Sec.  490.803(a) of this 
subpart.
    (b) Qualified nonroad vehicles. Demonstrated reductions in petroleum 
consumption during the model year for which a waiver is requested that 
are attributable to nonroad vehicles owned, operated, leased or 
otherwise under the control of a State or covered person acquired during 
waiver years are applicable towards the petroleum fuel reduction 
required in Sec.  490.803(a) of this subpart:
    (1) If acquisition of the nonroad vehicles leads directly to the 
establishment or upgrading of refueling or recharging infrastructure 
during a waiver year that would also allow for increased petroleum 
replacement by serving the fleet's on-road light-duty vehicles; and
    (2) To the extent that additional reductions attributable to motor 
vehicles are not reasonably available.
    (c) Rollover of excess petroleum reductions. (1) Upon approval by 
DOE, petroleum fuel use reductions achieved by a fleet in excess of the 
amount required for alternative compliance in a previous model year may 
be applied towards the petroleum fuel use reduction requirement under 
Sec.  490.803(a) in a model year for which a waiver is granted and for 
which the fleet experiences a shortfall.
    (2)(i) A fleet seeking to roll over for future use the petroleum 
fuel use reductions that it achieved in excess of the amount required 
for alternative compliance in a particular model year must make a 
written request to DOE as part of the fleet's annual report required 
under Sec.  490.807 for the model year in which the excess reductions 
were achieved.
    (ii) Following receipt of a request under paragraph (c)(2)(i) of 
this section, DOE will notify the requesting fleet of the amount of 
excess petroleum

[[Page 1233]]

fuel use reductions that DOE has approved for rollover and potential 
application towards the petroleum fuel use reduction requirement in a 
future model year.
    (iii) A fleet seeking to apply excess petroleum fuel use reductions 
rolled over pursuant to paragraph (c)(2)(ii) of this section in a model 
year for which a waiver is granted and for which the fleet experiences a 
shortfall in achieving the petroleum fuel use reduction requirement 
under Sec.  490.803(a) must make a written request to DOE as part of the 
fleet's annual report required under Sec.  490.807. The written request 
must specify the amount of the rollover reductions (in GGE) the fleet 
wishes to have applied and the total balance of rollover reductions (in 
GGE) the fleet possesses.
    (3)(i) In considering a written request to apply rollover reductions 
under paragraph (c)(2)(iii) of this section, DOE may seek from the fleet 
additional information about the fleet and its operations.
    (ii) Upon approving a request to apply rollover reductions, DOE will 
apply the approved rollover reductions only to the extent that other 
reductions in petroleum consumption through any of the means set forth 
in paragraphs (a) and (b) of this section were not reasonably 
achievable.
    (4) Excess petroleum reductions are not tradable.
    (d) Ineligible reductions. The petroleum reduction plan required by 
paragraph (c)(4) of this section must not include reductions in 
petroleum attributable to incentives for third parties to reduce their 
petroleum use, petroleum reductions that are not transportation-related, 
or petroleum reductions attributable to non-qualified nonroad vehicles.

[72 FR 12964, Mar. 20, 2007, as amended at 79 FR 15907, Mar. 21, 2014]



Sec.  490.805  Application for waiver.

    (a) A State or covered person must apply for a waiver applicable to 
an entire fleet for a full model year in accordance with the deadlines 
specified in paragraph (b) of this section. DOE will not grant a waiver 
for less than an entire fleet or less than a full model year.
    (b)(1) A State or covered person must register a preliminary intent 
to apply for a waiver by March 31 prior to the model year for which a 
waiver is sought.
    (2) A complete waiver application must be received by DOE no later 
than July 31 prior to the model year for which a waiver is sought.
    (c) A waiver application must include verifiable data that is 
sufficient to enable DOE to determine whether the State or covered 
person is likely to achieve the amount of petroleum reduction required 
for alternative compliance and whether the fleet is in compliance with 
Clean Air Act vehicle emission standards. At a minimum, the State entity 
or covered person must provide DOE with the following information:
    (1) The model year for which the waiver is requested;
    (2) The total number of required alternative fueled vehicle 
acquisitions in the fleet including:
    (i) The number of alternative fueled vehicle acquisitions that the 
State or covered person would, without a waiver, be required to acquire 
during the model year for which the waiver is requested;
    (ii) The number of alternative fueled vehicle acquisitions that the 
State or covered person would, without a waiver, have been required to 
acquire during the model years for which waivers were previously 
granted;
    (iii) The number of required alternative fueled vehicles existing in 
the fleet that were acquired during years in which no waiver was in 
force; and excluding
    (iv) Any required alternative fuel vehicles acquired during a waiver 
or non-waiver year or light-duty vehicles acquired in lieu of 
alternative fuels vehicles during a waiver year that are to be retired 
before the beginning of the waiver year;
    (3) The anticipated amount of gasoline and diesel and alternative 
fuel (calculated in gasoline gallon equivalents (gge)) to be used by the 
covered light-duty vehicles in the fleet for the waiver year including 
an estimate of per vehicle average fuel use in these vehicles;

[[Page 1234]]

    (4) A petroleum reduction plan as described in paragraph (d) of this 
section; and
    (5) Documents, or a certification by a responsible official of the 
State or covered person, demonstrating that the fleet is in compliance 
with all applicable vehicle emission standards established by the 
Administrator of the Environmental Protection Agency under the Clean Air 
Act.
    (d) The petroleum reduction plan required by paragraph (c)(4) of 
this section must contain a documented explanation as to how the State 
or covered person will meet the reduction in petroleum consumption 
required by Sec.  490.803(a) of this subpart.
    (1) The planned actions must:
    (i) Be verifiable;
    (ii) Demonstrate a reduction in petroleum use by motor vehicles or 
qualified nonroad vehicles owned, operated, leased or otherwise 
controlled by the State or covered person;
    (iii) Provide for a net reduction in petroleum consumption as 
specified in Sec.  490.803(a) of this subpart.
    (2) The documentation for the plan may include, but is not limited 
to, published data on fuel efficiency, Government data, letters from 
manufacturers, and data on actual usage.
    (e) A State or covered person must send its report, and two copies, 
to DOE on official company or agency letterhead, and the report must be 
signed by a responsible company or agency official. Send to: Regulatory 
Manager, Alternative Fuel Transportation Program, FreedomCAR and Vehicle 
Technologies Program, EE-2G/Forrestal Building, U.S. Department of 
Energy, 1000 Independence Avenue, SW., Washington, DC 20585.

[72 FR 12964, Mar. 20, 2007, as amended at 79 FR 15907, Mar. 21, 2014]



Sec.  490.806  Action on an application for waiver.

    (a) DOE grants or denies a complete waiver application within 45 
business days after receipt of a complete application.
    (b) If DOE determines that an application is not complete in that 
sufficient information is not provided for DOE to make a determination, 
DOE notifies the State or covered person of the information that must be 
submitted to complete the application.
    (c) If DOE denies a waiver, and the State or covered person wishes 
to exhaust administrative remedies, the State or covered person must 
appeal within 30 days of the date of the determination, pursuant to 10 
CFR part 1003, subpart C, to the Office of Hearings and Appeals, U.S. 
Department of Energy, 1000 Independence Ave., SW., Washington, DC 20585. 
DOE's determination shall be stayed during the pendency of an appeal 
under this paragraph.



Sec.  490.807  Reporting requirement.

    (a) By December 31 following a model year for which an alternative 
compliance waiver is granted, a State or covered person must submit a 
report to DOE that includes:
    (1) A statement certifying:
    (i) The total number of petroleum gallons and/or alternative fuel 
gge used by the fleet during the waiver year in its covered light-duty 
vehicles; and
    (ii) The amount of petroleum motor fuel reduced by the fleet in the 
waiver year through alternative compliance.
    (b) A State or covered person must send its report to DOE on 
official company or agency letterhead, and the report must be signed by 
a responsible company or agency official. Send to: Regulatory Manager, 
Alternative Fuel Transportation Program, FreedomCAR and Vehicle 
Technologies Program, EE-2G/Forrestal Building, U.S. Department of 
Energy, 1000 Independence Avenue, SW., Washington, DC 20585.



Sec.  490.808  Use of credits to offset petroleum reduction shortfall.

    (a) If a State or covered person granted a waiver under this subpart 
wants to use alternative fueled vehicle credits purchased or earned 
pursuant to subpart F of this part to offset any shortfall in meeting 
the petroleum reduction required under Sec.  490.803(a) of this subpart, 
it must make a written request to DOE.
    (1) The State or covered person must provide details about the 
particular circumstances that led to the shortfall and provide 
documentation that shows a good faith effort to meet the requirements.

[[Page 1235]]

    (2) DOE may request that a State or covered person supply additional 
information about the fleet and its operations if DOE deems such 
information necessary for a decision on the request.
    (b) If DOE grants the request, it notifies the State or covered 
person of the credit amount required to offset the shortfall. DOE 
derives the credit amount using the fleet's fuel use per vehicle data.
    (c) DOE gives the State entity or covered person until March 31 
following the model year for which the waiver is granted, to acquire the 
number of credits required for compliance with this subpart.



Sec.  490.809  Violations.

    If a State or covered person that received a waiver under this 
subpart fails to comply with the petroleum motor fuel reduction or 
reporting requirements of this subpart, DOE will revoke the waiver and 
may impose on the State or covered person a penalty under subpart G of 
this part. A State or covered person whose waiver has been revoked by 
DOE is precluded from requesting an exemption under Sec.  490.204 or 
Sec.  490.307 from the vehicle acquisition mandate for the model year of 
the revoked waiver.

[79 FR 15907, Mar. 21, 2014]



Sec.  490.810  Record retention.

    A State or covered person that receives a waiver under this subpart 
must retain documentation pertaining to its waiver application and 
alternative compliance, including petroleum fuel reduction by its fleet, 
for a period of three years following the model year for which the 
waiver is granted.

                        PARTS 491	499 [RESERVED]

[[Page 1237]]



                              FINDING AIDS




  --------------------------------------------------------------------

  A list of CFR titles, subtitles, chapters, subchapters and parts and 
an alphabetical list of agencies publishing in the CFR are included in 
the CFR Index and Finding Aids volume to the Code of Federal Regulations 
which is published separately and revised annually.

  Table of CFR Titles and Chapters
  Alphabetical List of Agencies Appearing in the CFR
  List of CFR Sections Affected

[[Page 1239]]



                    Table of CFR Titles and Chapters




                     (Revised as of January 1, 2021)

                      Title 1--General Provisions

         I  Administrative Committee of the Federal Register 
                (Parts 1--49)
        II  Office of the Federal Register (Parts 50--299)
       III  Administrative Conference of the United States (Parts 
                300--399)
        IV  Miscellaneous Agencies (Parts 400--599)
        VI  National Capital Planning Commission (Parts 600--699)

                    Title 2--Grants and Agreements

            Subtitle A--Office of Management and Budget Guidance 
                for Grants and Agreements
         I  Office of Management and Budget Governmentwide 
                Guidance for Grants and Agreements (Parts 2--199)
        II  Office of Management and Budget Guidance (Parts 200--
                299)
            Subtitle B--Federal Agency Regulations for Grants and 
                Agreements
       III  Department of Health and Human Services (Parts 300--
                399)
        IV  Department of Agriculture (Parts 400--499)
        VI  Department of State (Parts 600--699)
       VII  Agency for International Development (Parts 700--799)
      VIII  Department of Veterans Affairs (Parts 800--899)
        IX  Department of Energy (Parts 900--999)
         X  Department of the Treasury (Parts 1000--1099)
        XI  Department of Defense (Parts 1100--1199)
       XII  Department of Transportation (Parts 1200--1299)
      XIII  Department of Commerce (Parts 1300--1399)
       XIV  Department of the Interior (Parts 1400--1499)
        XV  Environmental Protection Agency (Parts 1500--1599)
     XVIII  National Aeronautics and Space Administration (Parts 
                1800--1899)
        XX  United States Nuclear Regulatory Commission (Parts 
                2000--2099)
      XXII  Corporation for National and Community Service (Parts 
                2200--2299)
     XXIII  Social Security Administration (Parts 2300--2399)
      XXIV  Department of Housing and Urban Development (Parts 
                2400--2499)
       XXV  National Science Foundation (Parts 2500--2599)
      XXVI  National Archives and Records Administration (Parts 
                2600--2699)

[[Page 1240]]

     XXVII  Small Business Administration (Parts 2700--2799)
    XXVIII  Department of Justice (Parts 2800--2899)
      XXIX  Department of Labor (Parts 2900--2999)
       XXX  Department of Homeland Security (Parts 3000--3099)
      XXXI  Institute of Museum and Library Services (Parts 3100--
                3199)
     XXXII  National Endowment for the Arts (Parts 3200--3299)
    XXXIII  National Endowment for the Humanities (Parts 3300--
                3399)
     XXXIV  Department of Education (Parts 3400--3499)
      XXXV  Export-Import Bank of the United States (Parts 3500--
                3599)
     XXXVI  Office of National Drug Control Policy, Executive 
                Office of the President (Parts 3600--3699)
    XXXVII  Peace Corps (Parts 3700--3799)
     LVIII  Election Assistance Commission (Parts 5800--5899)
       LIX  Gulf Coast Ecosystem Restoration Council (Parts 5900--
                5999)

                        Title 3--The President

         I  Executive Office of the President (Parts 100--199)

                           Title 4--Accounts

         I  Government Accountability Office (Parts 1--199)

                   Title 5--Administrative Personnel

         I  Office of Personnel Management (Parts 1--1199)
        II  Merit Systems Protection Board (Parts 1200--1299)
       III  Office of Management and Budget (Parts 1300--1399)
        IV  Office of Personnel Management and Office of the 
                Director of National Intelligence (Parts 1400--
                1499)
         V  The International Organizations Employees Loyalty 
                Board (Parts 1500--1599)
        VI  Federal Retirement Thrift Investment Board (Parts 
                1600--1699)
      VIII  Office of Special Counsel (Parts 1800--1899)
        IX  Appalachian Regional Commission (Parts 1900--1999)
        XI  Armed Forces Retirement Home (Parts 2100--2199)
       XIV  Federal Labor Relations Authority, General Counsel of 
                the Federal Labor Relations Authority and Federal 
                Service Impasses Panel (Parts 2400--2499)
       XVI  Office of Government Ethics (Parts 2600--2699)
       XXI  Department of the Treasury (Parts 3100--3199)
      XXII  Federal Deposit Insurance Corporation (Parts 3200--
                3299)
     XXIII  Department of Energy (Parts 3300--3399)
      XXIV  Federal Energy Regulatory Commission (Parts 3400--
                3499)
       XXV  Department of the Interior (Parts 3500--3599)
      XXVI  Department of Defense (Parts 3600--3699)

[[Page 1241]]

    XXVIII  Department of Justice (Parts 3800--3899)
      XXIX  Federal Communications Commission (Parts 3900--3999)
       XXX  Farm Credit System Insurance Corporation (Parts 4000--
                4099)
      XXXI  Farm Credit Administration (Parts 4100--4199)
    XXXIII  U.S. International Development Finance Corporation 
                (Parts 4300--4399)
     XXXIV  Securities and Exchange Commission (Parts 4400--4499)
      XXXV  Office of Personnel Management (Parts 4500--4599)
     XXXVI  Department of Homeland Security (Parts 4600--4699)
    XXXVII  Federal Election Commission (Parts 4700--4799)
        XL  Interstate Commerce Commission (Parts 5000--5099)
       XLI  Commodity Futures Trading Commission (Parts 5100--
                5199)
      XLII  Department of Labor (Parts 5200--5299)
     XLIII  National Science Foundation (Parts 5300--5399)
       XLV  Department of Health and Human Services (Parts 5500--
                5599)
      XLVI  Postal Rate Commission (Parts 5600--5699)
     XLVII  Federal Trade Commission (Parts 5700--5799)
    XLVIII  Nuclear Regulatory Commission (Parts 5800--5899)
      XLIX  Federal Labor Relations Authority (Parts 5900--5999)
         L  Department of Transportation (Parts 6000--6099)
       LII  Export-Import Bank of the United States (Parts 6200--
                6299)
      LIII  Department of Education (Parts 6300--6399)
       LIV  Environmental Protection Agency (Parts 6400--6499)
        LV  National Endowment for the Arts (Parts 6500--6599)
       LVI  National Endowment for the Humanities (Parts 6600--
                6699)
      LVII  General Services Administration (Parts 6700--6799)
     LVIII  Board of Governors of the Federal Reserve System 
                (Parts 6800--6899)
       LIX  National Aeronautics and Space Administration (Parts 
                6900--6999)
        LX  United States Postal Service (Parts 7000--7099)
       LXI  National Labor Relations Board (Parts 7100--7199)
      LXII  Equal Employment Opportunity Commission (Parts 7200--
                7299)
     LXIII  Inter-American Foundation (Parts 7300--7399)
      LXIV  Merit Systems Protection Board (Parts 7400--7499)
       LXV  Department of Housing and Urban Development (Parts 
                7500--7599)
      LXVI  National Archives and Records Administration (Parts 
                7600--7699)
     LXVII  Institute of Museum and Library Services (Parts 7700--
                7799)
    LXVIII  Commission on Civil Rights (Parts 7800--7899)
      LXIX  Tennessee Valley Authority (Parts 7900--7999)
       LXX  Court Services and Offender Supervision Agency for the 
                District of Columbia (Parts 8000--8099)
      LXXI  Consumer Product Safety Commission (Parts 8100--8199)
    LXXIII  Department of Agriculture (Parts 8300--8399)

[[Page 1242]]

     LXXIV  Federal Mine Safety and Health Review Commission 
                (Parts 8400--8499)
     LXXVI  Federal Retirement Thrift Investment Board (Parts 
                8600--8699)
    LXXVII  Office of Management and Budget (Parts 8700--8799)
      LXXX  Federal Housing Finance Agency (Parts 9000--9099)
   LXXXIII  Special Inspector General for Afghanistan 
                Reconstruction (Parts 9300--9399)
    LXXXIV  Bureau of Consumer Financial Protection (Parts 9400--
                9499)
    LXXXVI  National Credit Union Administration (Parts 9600--
                9699)
     XCVII  Department of Homeland Security Human Resources 
                Management System (Department of Homeland 
                Security--Office of Personnel Management) (Parts 
                9700--9799)
    XCVIII  Council of the Inspectors General on Integrity and 
                Efficiency (Parts 9800--9899)
      XCIX  Military Compensation and Retirement Modernization 
                Commission (Parts 9900--9999)
         C  National Council on Disability (Parts 10000--10049)
        CI  National Mediation Board (Part 10101)

                      Title 6--Domestic Security

         I  Department of Homeland Security, Office of the 
                Secretary (Parts 1--199)
         X  Privacy and Civil Liberties Oversight Board (Parts 
                1000--1099)

                         Title 7--Agriculture

            Subtitle A--Office of the Secretary of Agriculture 
                (Parts 0--26)
            Subtitle B--Regulations of the Department of 
                Agriculture
         I  Agricultural Marketing Service (Standards, 
                Inspections, Marketing Practices), Department of 
                Agriculture (Parts 27--209)
        II  Food and Nutrition Service, Department of Agriculture 
                (Parts 210--299)
       III  Animal and Plant Health Inspection Service, Department 
                of Agriculture (Parts 300--399)
        IV  Federal Crop Insurance Corporation, Department of 
                Agriculture (Parts 400--499)
         V  Agricultural Research Service, Department of 
                Agriculture (Parts 500--599)
        VI  Natural Resources Conservation Service, Department of 
                Agriculture (Parts 600--699)
       VII  Farm Service Agency, Department of Agriculture (Parts 
                700--799)
      VIII  Agricultural Marketing Service (Federal Grain 
                Inspection Service, Fair Trade Practices Program), 
                Department of Agriculture (Parts 800--899)

[[Page 1243]]

        IX  Agricultural Marketing Service (Marketing Agreements 
                and Orders; Fruits, Vegetables, Nuts), Department 
                of Agriculture (Parts 900--999)
         X  Agricultural Marketing Service (Marketing Agreements 
                and Orders; Milk), Department of Agriculture 
                (Parts 1000--1199)
        XI  Agricultural Marketing Service (Marketing Agreements 
                and Orders; Miscellaneous Commodities), Department 
                of Agriculture (Parts 1200--1299)
       XIV  Commodity Credit Corporation, Department of 
                Agriculture (Parts 1400--1499)
        XV  Foreign Agricultural Service, Department of 
                Agriculture (Parts 1500--1599)
       XVI  [Reserved]
      XVII  Rural Utilities Service, Department of Agriculture 
                (Parts 1700--1799)
     XVIII  Rural Housing Service, Rural Business-Cooperative 
                Service, Rural Utilities Service, and Farm Service 
                Agency, Department of Agriculture (Parts 1800--
                2099)
        XX  [Reserved]
       XXV  Office of Advocacy and Outreach, Department of 
                Agriculture (Parts 2500--2599)
      XXVI  Office of Inspector General, Department of Agriculture 
                (Parts 2600--2699)
     XXVII  Office of Information Resources Management, Department 
                of Agriculture (Parts 2700--2799)
    XXVIII  Office of Operations, Department of Agriculture (Parts 
                2800--2899)
      XXIX  Office of Energy Policy and New Uses, Department of 
                Agriculture (Parts 2900--2999)
       XXX  Office of the Chief Financial Officer, Department of 
                Agriculture (Parts 3000--3099)
      XXXI  Office of Environmental Quality, Department of 
                Agriculture (Parts 3100--3199)
     XXXII  Office of Procurement and Property Management, 
                Department of Agriculture (Parts 3200--3299)
    XXXIII  Office of Transportation, Department of Agriculture 
                (Parts 3300--3399)
     XXXIV  National Institute of Food and Agriculture (Parts 
                3400--3499)
      XXXV  Rural Housing Service, Department of Agriculture 
                (Parts 3500--3599)
     XXXVI  National Agricultural Statistics Service, Department 
                of Agriculture (Parts 3600--3699)
    XXXVII  Economic Research Service, Department of Agriculture 
                (Parts 3700--3799)
   XXXVIII  World Agricultural Outlook Board, Department of 
                Agriculture (Parts 3800--3899)
       XLI  [Reserved]
      XLII  Rural Business-Cooperative Service and Rural Utilities 
                Service, Department of Agriculture (Parts 4200--
                4299)

[[Page 1244]]

         L  Rural Business-Cooperative Service, Rural Housing 
                Service, and Rural Utilities Service, Department 
                of Agriculture (Parts 5001--5099)

                    Title 8--Aliens and Nationality

         I  Department of Homeland Security (Parts 1--499)
         V  Executive Office for Immigration Review, Department of 
                Justice (Parts 1000--1399)

                 Title 9--Animals and Animal Products

         I  Animal and Plant Health Inspection Service, Department 
                of Agriculture (Parts 1--199)
        II  Agricultural Marketing Service (Federal Grain 
                Inspection Service, Fair Trade Practices Program), 
                Department of Agriculture (Parts 200--299)
       III  Food Safety and Inspection Service, Department of 
                Agriculture (Parts 300--599)

                           Title 10--Energy

         I  Nuclear Regulatory Commission (Parts 0--199)
        II  Department of Energy (Parts 200--699)
       III  Department of Energy (Parts 700--999)
         X  Department of Energy (General Provisions) (Parts 
                1000--1099)
      XIII  Nuclear Waste Technical Review Board (Parts 1300--
                1399)
      XVII  Defense Nuclear Facilities Safety Board (Parts 1700--
                1799)
     XVIII  Northeast Interstate Low-Level Radioactive Waste 
                Commission (Parts 1800--1899)

                      Title 11--Federal Elections

         I  Federal Election Commission (Parts 1--9099)
        II  Election Assistance Commission (Parts 9400--9499)

                      Title 12--Banks and Banking

         I  Comptroller of the Currency, Department of the 
                Treasury (Parts 1--199)
        II  Federal Reserve System (Parts 200--299)
       III  Federal Deposit Insurance Corporation (Parts 300--399)
        IV  Export-Import Bank of the United States (Parts 400--
                499)
         V  (Parts 500--599) [Reserved]
        VI  Farm Credit Administration (Parts 600--699)
       VII  National Credit Union Administration (Parts 700--799)
      VIII  Federal Financing Bank (Parts 800--899)
        IX  (Parts 900--999) [Reserved]

[[Page 1245]]

         X  Bureau of Consumer Financial Protection (Parts 1000--
                1099)
        XI  Federal Financial Institutions Examination Council 
                (Parts 1100--1199)
       XII  Federal Housing Finance Agency (Parts 1200--1299)
      XIII  Financial Stability Oversight Council (Parts 1300--
                1399)
       XIV  Farm Credit System Insurance Corporation (Parts 1400--
                1499)
        XV  Department of the Treasury (Parts 1500--1599)
       XVI  Office of Financial Research (Parts 1600--1699)
      XVII  Office of Federal Housing Enterprise Oversight, 
                Department of Housing and Urban Development (Parts 
                1700--1799)
     XVIII  Community Development Financial Institutions Fund, 
                Department of the Treasury (Parts 1800--1899)

               Title 13--Business Credit and Assistance

         I  Small Business Administration (Parts 1--199)
       III  Economic Development Administration, Department of 
                Commerce (Parts 300--399)
        IV  Emergency Steel Guarantee Loan Board (Parts 400--499)
         V  Emergency Oil and Gas Guaranteed Loan Board (Parts 
                500--599)

                    Title 14--Aeronautics and Space

         I  Federal Aviation Administration, Department of 
                Transportation (Parts 1--199)
        II  Office of the Secretary, Department of Transportation 
                (Aviation Proceedings) (Parts 200--399)
       III  Commercial Space Transportation, Federal Aviation 
                Administration, Department of Transportation 
                (Parts 400--1199)
         V  National Aeronautics and Space Administration (Parts 
                1200--1299)
        VI  Air Transportation System Stabilization (Parts 1300--
                1399)

                 Title 15--Commerce and Foreign Trade

            Subtitle A--Office of the Secretary of Commerce (Parts 
                0--29)
            Subtitle B--Regulations Relating to Commerce and 
                Foreign Trade
         I  Bureau of the Census, Department of Commerce (Parts 
                30--199)
        II  National Institute of Standards and Technology, 
                Department of Commerce (Parts 200--299)
       III  International Trade Administration, Department of 
                Commerce (Parts 300--399)
        IV  Foreign-Trade Zones Board, Department of Commerce 
                (Parts 400--499)
       VII  Bureau of Industry and Security, Department of 
                Commerce (Parts 700--799)

[[Page 1246]]

      VIII  Bureau of Economic Analysis, Department of Commerce 
                (Parts 800--899)
        IX  National Oceanic and Atmospheric Administration, 
                Department of Commerce (Parts 900--999)
        XI  National Technical Information Service, Department of 
                Commerce (Parts 1100--1199)
      XIII  East-West Foreign Trade Board (Parts 1300--1399)
       XIV  Minority Business Development Agency (Parts 1400--
                1499)
            Subtitle C--Regulations Relating to Foreign Trade 
                Agreements
        XX  Office of the United States Trade Representative 
                (Parts 2000--2099)
            Subtitle D--Regulations Relating to Telecommunications 
                and Information
     XXIII  National Telecommunications and Information 
                Administration, Department of Commerce (Parts 
                2300--2399) [Reserved]

                    Title 16--Commercial Practices

         I  Federal Trade Commission (Parts 0--999)
        II  Consumer Product Safety Commission (Parts 1000--1799)

             Title 17--Commodity and Securities Exchanges

         I  Commodity Futures Trading Commission (Parts 1--199)
        II  Securities and Exchange Commission (Parts 200--399)
        IV  Department of the Treasury (Parts 400--499)

          Title 18--Conservation of Power and Water Resources

         I  Federal Energy Regulatory Commission, Department of 
                Energy (Parts 1--399)
       III  Delaware River Basin Commission (Parts 400--499)
        VI  Water Resources Council (Parts 700--799)
      VIII  Susquehanna River Basin Commission (Parts 800--899)
      XIII  Tennessee Valley Authority (Parts 1300--1399)

                       Title 19--Customs Duties

         I  U.S. Customs and Border Protection, Department of 
                Homeland Security; Department of the Treasury 
                (Parts 0--199)
        II  United States International Trade Commission (Parts 
                200--299)
       III  International Trade Administration, Department of 
                Commerce (Parts 300--399)
        IV  U.S. Immigration and Customs Enforcement, Department 
                of Homeland Security (Parts 400--599) [Reserved]

[[Page 1247]]

                     Title 20--Employees' Benefits

         I  Office of Workers' Compensation Programs, Department 
                of Labor (Parts 1--199)
        II  Railroad Retirement Board (Parts 200--399)
       III  Social Security Administration (Parts 400--499)
        IV  Employees' Compensation Appeals Board, Department of 
                Labor (Parts 500--599)
         V  Employment and Training Administration, Department of 
                Labor (Parts 600--699)
        VI  Office of Workers' Compensation Programs, Department 
                of Labor (Parts 700--799)
       VII  Benefits Review Board, Department of Labor (Parts 
                800--899)
      VIII  Joint Board for the Enrollment of Actuaries (Parts 
                900--999)
        IX  Office of the Assistant Secretary for Veterans' 
                Employment and Training Service, Department of 
                Labor (Parts 1000--1099)

                       Title 21--Food and Drugs

         I  Food and Drug Administration, Department of Health and 
                Human Services (Parts 1--1299)
        II  Drug Enforcement Administration, Department of Justice 
                (Parts 1300--1399)
       III  Office of National Drug Control Policy (Parts 1400--
                1499)

                      Title 22--Foreign Relations

         I  Department of State (Parts 1--199)
        II  Agency for International Development (Parts 200--299)
       III  Peace Corps (Parts 300--399)
        IV  International Joint Commission, United States and 
                Canada (Parts 400--499)
         V  Broadcasting Board of Governors (Parts 500--599)
       VII  Overseas Private Investment Corporation (Parts 700--
                799)
        IX  Foreign Service Grievance Board (Parts 900--999)
         X  Inter-American Foundation (Parts 1000--1099)
        XI  International Boundary and Water Commission, United 
                States and Mexico, United States Section (Parts 
                1100--1199)
       XII  United States International Development Cooperation 
                Agency (Parts 1200--1299)
      XIII  Millennium Challenge Corporation (Parts 1300--1399)
       XIV  Foreign Service Labor Relations Board; Federal Labor 
                Relations Authority; General Counsel of the 
                Federal Labor Relations Authority; and the Foreign 
                Service Impasse Disputes Panel (Parts 1400--1499)
        XV  African Development Foundation (Parts 1500--1599)
       XVI  Japan-United States Friendship Commission (Parts 
                1600--1699)
      XVII  United States Institute of Peace (Parts 1700--1799)

[[Page 1248]]

                          Title 23--Highways

         I  Federal Highway Administration, Department of 
                Transportation (Parts 1--999)
        II  National Highway Traffic Safety Administration and 
                Federal Highway Administration, Department of 
                Transportation (Parts 1200--1299)
       III  National Highway Traffic Safety Administration, 
                Department of Transportation (Parts 1300--1399)

                Title 24--Housing and Urban Development

            Subtitle A--Office of the Secretary, Department of 
                Housing and Urban Development (Parts 0--99)
            Subtitle B--Regulations Relating to Housing and Urban 
                Development
         I  Office of Assistant Secretary for Equal Opportunity, 
                Department of Housing and Urban Development (Parts 
                100--199)
        II  Office of Assistant Secretary for Housing-Federal 
                Housing Commissioner, Department of Housing and 
                Urban Development (Parts 200--299)
       III  Government National Mortgage Association, Department 
                of Housing and Urban Development (Parts 300--399)
        IV  Office of Housing and Office of Multifamily Housing 
                Assistance Restructuring, Department of Housing 
                and Urban Development (Parts 400--499)
         V  Office of Assistant Secretary for Community Planning 
                and Development, Department of Housing and Urban 
                Development (Parts 500--599)
        VI  Office of Assistant Secretary for Community Planning 
                and Development, Department of Housing and Urban 
                Development (Parts 600--699) [Reserved]
       VII  Office of the Secretary, Department of Housing and 
                Urban Development (Housing Assistance Programs and 
                Public and Indian Housing Programs) (Parts 700--
                799)
      VIII  Office of the Assistant Secretary for Housing--Federal 
                Housing Commissioner, Department of Housing and 
                Urban Development (Section 8 Housing Assistance 
                Programs, Section 202 Direct Loan Program, Section 
                202 Supportive Housing for the Elderly Program and 
                Section 811 Supportive Housing for Persons With 
                Disabilities Program) (Parts 800--899)
        IX  Office of Assistant Secretary for Public and Indian 
                Housing, Department of Housing and Urban 
                Development (Parts 900--1699)
       XII  Office of Inspector General, Department of Housing and 
                Urban Development (Parts 2000--2099)
        XV  Emergency Mortgage Insurance and Loan Programs, 
                Department of Housing and Urban Development (Parts 
                2700--2799) [Reserved]
        XX  Office of Assistant Secretary for Housing--Federal 
                Housing Commissioner, Department of Housing and 
                Urban Development (Parts 3200--3899)
      XXIV  Board of Directors of the HOPE for Homeowners Program 
                (Parts 4000--4099) [Reserved]
       XXV  Neighborhood Reinvestment Corporation (Parts 4100--
                4199)

[[Page 1249]]

                           Title 25--Indians

         I  Bureau of Indian Affairs, Department of the Interior 
                (Parts 1--299)
        II  Indian Arts and Crafts Board, Department of the 
                Interior (Parts 300--399)
       III  National Indian Gaming Commission, Department of the 
                Interior (Parts 500--599)
        IV  Office of Navajo and Hopi Indian Relocation (Parts 
                700--899)
         V  Bureau of Indian Affairs, Department of the Interior, 
                and Indian Health Service, Department of Health 
                and Human Services (Part 900--999)
        VI  Office of the Assistant Secretary, Indian Affairs, 
                Department of the Interior (Parts 1000--1199)
       VII  Office of the Special Trustee for American Indians, 
                Department of the Interior (Parts 1200--1299)

                      Title 26--Internal Revenue

         I  Internal Revenue Service, Department of the Treasury 
                (Parts 1--End)

           Title 27--Alcohol, Tobacco Products and Firearms

         I  Alcohol and Tobacco Tax and Trade Bureau, Department 
                of the Treasury (Parts 1--399)
        II  Bureau of Alcohol, Tobacco, Firearms, and Explosives, 
                Department of Justice (Parts 400--799)

                   Title 28--Judicial Administration

         I  Department of Justice (Parts 0--299)
       III  Federal Prison Industries, Inc., Department of Justice 
                (Parts 300--399)
         V  Bureau of Prisons, Department of Justice (Parts 500--
                599)
        VI  Offices of Independent Counsel, Department of Justice 
                (Parts 600--699)
       VII  Office of Independent Counsel (Parts 700--799)
      VIII  Court Services and Offender Supervision Agency for the 
                District of Columbia (Parts 800--899)
        IX  National Crime Prevention and Privacy Compact Council 
                (Parts 900--999)
        XI  Department of Justice and Department of State (Parts 
                1100--1199)

                            Title 29--Labor

            Subtitle A--Office of the Secretary of Labor (Parts 
                0--99)
            Subtitle B--Regulations Relating to Labor
         I  National Labor Relations Board (Parts 100--199)

[[Page 1250]]

        II  Office of Labor-Management Standards, Department of 
                Labor (Parts 200--299)
       III  National Railroad Adjustment Board (Parts 300--399)
        IV  Office of Labor-Management Standards, Department of 
                Labor (Parts 400--499)
         V  Wage and Hour Division, Department of Labor (Parts 
                500--899)
        IX  Construction Industry Collective Bargaining Commission 
                (Parts 900--999)
         X  National Mediation Board (Parts 1200--1299)
       XII  Federal Mediation and Conciliation Service (Parts 
                1400--1499)
       XIV  Equal Employment Opportunity Commission (Parts 1600--
                1699)
      XVII  Occupational Safety and Health Administration, 
                Department of Labor (Parts 1900--1999)
        XX  Occupational Safety and Health Review Commission 
                (Parts 2200--2499)
       XXV  Employee Benefits Security Administration, Department 
                of Labor (Parts 2500--2599)
     XXVII  Federal Mine Safety and Health Review Commission 
                (Parts 2700--2799)
        XL  Pension Benefit Guaranty Corporation (Parts 4000--
                4999)

                      Title 30--Mineral Resources

         I  Mine Safety and Health Administration, Department of 
                Labor (Parts 1--199)
        II  Bureau of Safety and Environmental Enforcement, 
                Department of the Interior (Parts 200--299)
        IV  Geological Survey, Department of the Interior (Parts 
                400--499)
         V  Bureau of Ocean Energy Management, Department of the 
                Interior (Parts 500--599)
       VII  Office of Surface Mining Reclamation and Enforcement, 
                Department of the Interior (Parts 700--999)
       XII  Office of Natural Resources Revenue, Department of the 
                Interior (Parts 1200--1299)

                 Title 31--Money and Finance: Treasury

            Subtitle A--Office of the Secretary of the Treasury 
                (Parts 0--50)
            Subtitle B--Regulations Relating to Money and Finance
         I  Monetary Offices, Department of the Treasury (Parts 
                51--199)
        II  Fiscal Service, Department of the Treasury (Parts 
                200--399)
        IV  Secret Service, Department of the Treasury (Parts 
                400--499)
         V  Office of Foreign Assets Control, Department of the 
                Treasury (Parts 500--599)
        VI  Bureau of Engraving and Printing, Department of the 
                Treasury (Parts 600--699)
       VII  Federal Law Enforcement Training Center, Department of 
                the Treasury (Parts 700--799)

[[Page 1251]]

      VIII  Office of Investment Security, Department of the 
                Treasury (Parts 800--899)
        IX  Federal Claims Collection Standards (Department of the 
                Treasury--Department of Justice) (Parts 900--999)
         X  Financial Crimes Enforcement Network, Department of 
                the Treasury (Parts 1000--1099)

                      Title 32--National Defense

            Subtitle A--Department of Defense
         I  Office of the Secretary of Defense (Parts 1--399)
         V  Department of the Army (Parts 400--699)
        VI  Department of the Navy (Parts 700--799)
       VII  Department of the Air Force (Parts 800--1099)
            Subtitle B--Other Regulations Relating to National 
                Defense
       XII  Department of Defense, Defense Logistics Agency (Parts 
                1200--1299)
       XVI  Selective Service System (Parts 1600--1699)
      XVII  Office of the Director of National Intelligence (Parts 
                1700--1799)
     XVIII  National Counterintelligence Center (Parts 1800--1899)
       XIX  Central Intelligence Agency (Parts 1900--1999)
        XX  Information Security Oversight Office, National 
                Archives and Records Administration (Parts 2000--
                2099)
       XXI  National Security Council (Parts 2100--2199)
      XXIV  Office of Science and Technology Policy (Parts 2400--
                2499)
     XXVII  Office for Micronesian Status Negotiations (Parts 
                2700--2799)
    XXVIII  Office of the Vice President of the United States 
                (Parts 2800--2899)

               Title 33--Navigation and Navigable Waters

         I  Coast Guard, Department of Homeland Security (Parts 
                1--199)
        II  Corps of Engineers, Department of the Army, Department 
                of Defense (Parts 200--399)
        IV  Saint Lawrence Seaway Development Corporation, 
                Department of Transportation (Parts 400--499)

                          Title 34--Education

            Subtitle A--Office of the Secretary, Department of 
                Education (Parts 1--99)
            Subtitle B--Regulations of the Offices of the 
                Department of Education
         I  Office for Civil Rights, Department of Education 
                (Parts 100--199)
        II  Office of Elementary and Secondary Education, 
                Department of Education (Parts 200--299)

[[Page 1252]]

       III  Office of Special Education and Rehabilitative 
                Services, Department of Education (Parts 300--399)
        IV  Office of Career, Technical, and Adult Education, 
                Department of Education (Parts 400--499)
         V  Office of Bilingual Education and Minority Languages 
                Affairs, Department of Education (Parts 500--599) 
                [Reserved]
        VI  Office of Postsecondary Education, Department of 
                Education (Parts 600--699)
       VII  Office of Educational Research and Improvement, 
                Department of Education (Parts 700--799) 
                [Reserved]
            Subtitle C--Regulations Relating to Education
        XI  (Parts 1100--1199) [Reserved]
       XII  National Council on Disability (Parts 1200--1299)

                          Title 35 [Reserved]

             Title 36--Parks, Forests, and Public Property

         I  National Park Service, Department of the Interior 
                (Parts 1--199)
        II  Forest Service, Department of Agriculture (Parts 200--
                299)
       III  Corps of Engineers, Department of the Army (Parts 
                300--399)
        IV  American Battle Monuments Commission (Parts 400--499)
         V  Smithsonian Institution (Parts 500--599)
        VI  [Reserved]
       VII  Library of Congress (Parts 700--799)
      VIII  Advisory Council on Historic Preservation (Parts 800--
                899)
        IX  Pennsylvania Avenue Development Corporation (Parts 
                900--999)
         X  Presidio Trust (Parts 1000--1099)
        XI  Architectural and Transportation Barriers Compliance 
                Board (Parts 1100--1199)
       XII  National Archives and Records Administration (Parts 
                1200--1299)
        XV  Oklahoma City National Memorial Trust (Parts 1500--
                1599)
       XVI  Morris K. Udall Scholarship and Excellence in National 
                Environmental Policy Foundation (Parts 1600--1699)

             Title 37--Patents, Trademarks, and Copyrights

         I  United States Patent and Trademark Office, Department 
                of Commerce (Parts 1--199)
        II  U.S. Copyright Office, Library of Congress (Parts 
                200--299)
       III  Copyright Royalty Board, Library of Congress (Parts 
                300--399)
        IV  National Institute of Standards and Technology, 
                Department of Commerce (Parts 400--599)

[[Page 1253]]

           Title 38--Pensions, Bonuses, and Veterans' Relief

         I  Department of Veterans Affairs (Parts 0--199)
        II  Armed Forces Retirement Home (Parts 200--299)

                       Title 39--Postal Service

         I  United States Postal Service (Parts 1--999)
       III  Postal Regulatory Commission (Parts 3000--3099)

                  Title 40--Protection of Environment

         I  Environmental Protection Agency (Parts 1--1099)
        IV  Environmental Protection Agency and Department of 
                Justice (Parts 1400--1499)
         V  Council on Environmental Quality (Parts 1500--1599)
        VI  Chemical Safety and Hazard Investigation Board (Parts 
                1600--1699)
       VII  Environmental Protection Agency and Department of 
                Defense; Uniform National Discharge Standards for 
                Vessels of the Armed Forces (Parts 1700--1799)
      VIII  Gulf Coast Ecosystem Restoration Council (Parts 1800--
                1899)

          Title 41--Public Contracts and Property Management

            Subtitle A--Federal Procurement Regulations System 
                [Note]
            Subtitle B--Other Provisions Relating to Public 
                Contracts
        50  Public Contracts, Department of Labor (Parts 50-1--50-
                999)
        51  Committee for Purchase From People Who Are Blind or 
                Severely Disabled (Parts 51-1--51-99)
        60  Office of Federal Contract Compliance Programs, Equal 
                Employment Opportunity, Department of Labor (Parts 
                60-1--60-999)
        61  Office of the Assistant Secretary for Veterans' 
                Employment and Training Service, Department of 
                Labor (Parts 61-1--61-999)
   62--100  [Reserved]
            Subtitle C--Federal Property Management Regulations 
                System
       101  Federal Property Management Regulations (Parts 101-1--
                101-99)
       102  Federal Management Regulation (Parts 102-1--102-299)
  103--104  (Parts 103-001--104-099) [Reserved]
       105  General Services Administration (Parts 105-1--105-999)
       109  Department of Energy Property Management Regulations 
                (Parts 109-1--109-99)
       114  Department of the Interior (Parts 114-1--114-99)
       115  Environmental Protection Agency (Parts 115-1--115-99)
       128  Department of Justice (Parts 128-1--128-99)
  129--200  [Reserved]
            Subtitle D--Other Provisions Relating to Property 
                Management [Reserved]

[[Page 1254]]

            Subtitle E--Federal Information Resources Management 
                Regulations System [Reserved]
            Subtitle F--Federal Travel Regulation System
       300  General (Parts 300-1--300-99)
       301  Temporary Duty (TDY) Travel Allowances (Parts 301-1--
                301-99)
       302  Relocation Allowances (Parts 302-1--302-99)
       303  Payment of Expenses Connected with the Death of 
                Certain Employees (Part 303-1--303-99)
       304  Payment of Travel Expenses from a Non-Federal Source 
                (Parts 304-1--304-99)

                        Title 42--Public Health

         I  Public Health Service, Department of Health and Human 
                Services (Parts 1--199)
   II--III  [Reserved]
        IV  Centers for Medicare & Medicaid Services, Department 
                of Health and Human Services (Parts 400--699)
         V  Office of Inspector General-Health Care, Department of 
                Health and Human Services (Parts 1000--1099)

                   Title 43--Public Lands: Interior

            Subtitle A--Office of the Secretary of the Interior 
                (Parts 1--199)
            Subtitle B--Regulations Relating to Public Lands
         I  Bureau of Reclamation, Department of the Interior 
                (Parts 400--999)
        II  Bureau of Land Management, Department of the Interior 
                (Parts 1000--9999)
       III  Utah Reclamation Mitigation and Conservation 
                Commission (Parts 10000--10099)

             Title 44--Emergency Management and Assistance

         I  Federal Emergency Management Agency, Department of 
                Homeland Security (Parts 0--399)
        IV  Department of Commerce and Department of 
                Transportation (Parts 400--499)

                       Title 45--Public Welfare

            Subtitle A--Department of Health and Human Services 
                (Parts 1--199)
            Subtitle B--Regulations Relating to Public Welfare
        II  Office of Family Assistance (Assistance Programs), 
                Administration for Children and Families, 
                Department of Health and Human Services (Parts 
                200--299)

[[Page 1255]]

       III  Office of Child Support Enforcement (Child Support 
                Enforcement Program), Administration for Children 
                and Families, Department of Health and Human 
                Services (Parts 300--399)
        IV  Office of Refugee Resettlement, Administration for 
                Children and Families, Department of Health and 
                Human Services (Parts 400--499)
         V  Foreign Claims Settlement Commission of the United 
                States, Department of Justice (Parts 500--599)
        VI  National Science Foundation (Parts 600--699)
       VII  Commission on Civil Rights (Parts 700--799)
      VIII  Office of Personnel Management (Parts 800--899)
        IX  Denali Commission (Parts 900--999)
         X  Office of Community Services, Administration for 
                Children and Families, Department of Health and 
                Human Services (Parts 1000--1099)
        XI  National Foundation on the Arts and the Humanities 
                (Parts 1100--1199)
       XII  Corporation for National and Community Service (Parts 
                1200--1299)
      XIII  Administration for Children and Families, Department 
                of Health and Human Services (Parts 1300--1399)
       XVI  Legal Services Corporation (Parts 1600--1699)
      XVII  National Commission on Libraries and Information 
                Science (Parts 1700--1799)
     XVIII  Harry S. Truman Scholarship Foundation (Parts 1800--
                1899)
       XXI  Commission of Fine Arts (Parts 2100--2199)
     XXIII  Arctic Research Commission (Parts 2300--2399)
      XXIV  James Madison Memorial Fellowship Foundation (Parts 
                2400--2499)
       XXV  Corporation for National and Community Service (Parts 
                2500--2599)

                          Title 46--Shipping

         I  Coast Guard, Department of Homeland Security (Parts 
                1--199)
        II  Maritime Administration, Department of Transportation 
                (Parts 200--399)
       III  Coast Guard (Great Lakes Pilotage), Department of 
                Homeland Security (Parts 400--499)
        IV  Federal Maritime Commission (Parts 500--599)

                      Title 47--Telecommunication

         I  Federal Communications Commission (Parts 0--199)
        II  Office of Science and Technology Policy and National 
                Security Council (Parts 200--299)
       III  National Telecommunications and Information 
                Administration, Department of Commerce (Parts 
                300--399)

[[Page 1256]]

        IV  National Telecommunications and Information 
                Administration, Department of Commerce, and 
                National Highway Traffic Safety Administration, 
                Department of Transportation (Parts 400--499)
         V  The First Responder Network Authority (Parts 500--599)

           Title 48--Federal Acquisition Regulations System

         1  Federal Acquisition Regulation (Parts 1--99)
         2  Defense Acquisition Regulations System, Department of 
                Defense (Parts 200--299)
         3  Department of Health and Human Services (Parts 300--
                399)
         4  Department of Agriculture (Parts 400--499)
         5  General Services Administration (Parts 500--599)
         6  Department of State (Parts 600--699)
         7  Agency for International Development (Parts 700--799)
         8  Department of Veterans Affairs (Parts 800--899)
         9  Department of Energy (Parts 900--999)
        10  Department of the Treasury (Parts 1000--1099)
        12  Department of Transportation (Parts 1200--1299)
        13  Department of Commerce (Parts 1300--1399)
        14  Department of the Interior (Parts 1400--1499)
        15  Environmental Protection Agency (Parts 1500--1599)
        16  Office of Personnel Management, Federal Employees 
                Health Benefits Acquisition Regulation (Parts 
                1600--1699)
        17  Office of Personnel Management (Parts 1700--1799)
        18  National Aeronautics and Space Administration (Parts 
                1800--1899)
        19  Broadcasting Board of Governors (Parts 1900--1999)
        20  Nuclear Regulatory Commission (Parts 2000--2099)
        21  Office of Personnel Management, Federal Employees 
                Group Life Insurance Federal Acquisition 
                Regulation (Parts 2100--2199)
        23  Social Security Administration (Parts 2300--2399)
        24  Department of Housing and Urban Development (Parts 
                2400--2499)
        25  National Science Foundation (Parts 2500--2599)
        28  Department of Justice (Parts 2800--2899)
        29  Department of Labor (Parts 2900--2999)
        30  Department of Homeland Security, Homeland Security 
                Acquisition Regulation (HSAR) (Parts 3000--3099)
        34  Department of Education Acquisition Regulation (Parts 
                3400--3499)
        51  Department of the Army Acquisition Regulations (Parts 
                5100--5199) [Reserved]
        52  Department of the Navy Acquisition Regulations (Parts 
                5200--5299)
        53  Department of the Air Force Federal Acquisition 
                Regulation Supplement (Parts 5300--5399) 
                [Reserved]

[[Page 1257]]

        54  Defense Logistics Agency, Department of Defense (Parts 
                5400--5499)
        57  African Development Foundation (Parts 5700--5799)
        61  Civilian Board of Contract Appeals, General Services 
                Administration (Parts 6100--6199)
        99  Cost Accounting Standards Board, Office of Federal 
                Procurement Policy, Office of Management and 
                Budget (Parts 9900--9999)

                       Title 49--Transportation

            Subtitle A--Office of the Secretary of Transportation 
                (Parts 1--99)
            Subtitle B--Other Regulations Relating to 
                Transportation
         I  Pipeline and Hazardous Materials Safety 
                Administration, Department of Transportation 
                (Parts 100--199)
        II  Federal Railroad Administration, Department of 
                Transportation (Parts 200--299)
       III  Federal Motor Carrier Safety Administration, 
                Department of Transportation (Parts 300--399)
        IV  Coast Guard, Department of Homeland Security (Parts 
                400--499)
         V  National Highway Traffic Safety Administration, 
                Department of Transportation (Parts 500--599)
        VI  Federal Transit Administration, Department of 
                Transportation (Parts 600--699)
       VII  National Railroad Passenger Corporation (AMTRAK) 
                (Parts 700--799)
      VIII  National Transportation Safety Board (Parts 800--999)
         X  Surface Transportation Board (Parts 1000--1399)
        XI  Research and Innovative Technology Administration, 
                Department of Transportation (Parts 1400--1499) 
                [Reserved]
       XII  Transportation Security Administration, Department of 
                Homeland Security (Parts 1500--1699)

                   Title 50--Wildlife and Fisheries

         I  United States Fish and Wildlife Service, Department of 
                the Interior (Parts 1--199)
        II  National Marine Fisheries Service, National Oceanic 
                and Atmospheric Administration, Department of 
                Commerce (Parts 200--299)
       III  International Fishing and Related Activities (Parts 
                300--399)
        IV  Joint Regulations (United States Fish and Wildlife 
                Service, Department of the Interior and National 
                Marine Fisheries Service, National Oceanic and 
                Atmospheric Administration, Department of 
                Commerce); Endangered Species Committee 
                Regulations (Parts 400--499)
         V  Marine Mammal Commission (Parts 500--599)

[[Page 1258]]

        VI  Fishery Conservation and Management, National Oceanic 
                and Atmospheric Administration, Department of 
                Commerce (Parts 600--699)

[[Page 1259]]





           Alphabetical List of Agencies Appearing in the CFR




                     (Revised as of January 1, 2021)

                                                  CFR Title, Subtitle or 
                     Agency                               Chapter

Administrative Conference of the United States    1, III
Advisory Council on Historic Preservation         36, VIII
Advocacy and Outreach, Office of                  7, XXV
Afghanistan Reconstruction, Special Inspector     5, LXXXIII
     General for
African Development Foundation                    22, XV
  Federal Acquisition Regulation                  48, 57
Agency for International Development              2, VII; 22, II
  Federal Acquisition Regulation                  48, 7
Agricultural Marketing Service                    7, I, VIII, IX, X, XI; 9, 
                                                  II
Agricultural Research Service                     7, V
Agriculture, Department of                        2, IV; 5, LXXIII
  Advocacy and Outreach, Office of                7, XXV
  Agricultural Marketing Service                  7, I, VIII, IX, X, XI; 9, 
                                                  II
  Agricultural Research Service                   7, V
  Animal and Plant Health Inspection Service      7, III; 9, I
  Chief Financial Officer, Office of              7, XXX
  Commodity Credit Corporation                    7, XIV
  Economic Research Service                       7, XXXVII
  Energy Policy and New Uses, Office of           2, IX; 7, XXIX
  Environmental Quality, Office of                7, XXXI
  Farm Service Agency                             7, VII, XVIII
  Federal Acquisition Regulation                  48, 4
  Federal Crop Insurance Corporation              7, IV
  Food and Nutrition Service                      7, II
  Food Safety and Inspection Service              9, III
  Foreign Agricultural Service                    7, XV
  Forest Service                                  36, II
  Information Resources Management, Office of     7, XXVII
  Inspector General, Office of                    7, XXVI
  National Agricultural Library                   7, XLI
  National Agricultural Statistics Service        7, XXXVI
  National Institute of Food and Agriculture      7, XXXIV
  Natural Resources Conservation Service          7, VI
  Operations, Office of                           7, XXVIII
  Procurement and Property Management, Office of  7, XXXII
  Rural Business-Cooperative Service              7, XVIII, XLII
  Rural Development Administration                7, XLII
  Rural Housing Service                           7, XVIII, XXXV
  Rural Utilities Service                         7, XVII, XVIII, XLII
  Secretary of Agriculture, Office of             7, Subtitle A
  Transportation, Office of                       7, XXXIII
  World Agricultural Outlook Board                7, XXXVIII
Air Force, Department of                          32, VII
  Federal Acquisition Regulation Supplement       48, 53
Air Transportation Stabilization Board            14, VI
Alcohol and Tobacco Tax and Trade Bureau          27, I
Alcohol, Tobacco, Firearms, and Explosives,       27, II
     Bureau of
AMTRAK                                            49, VII
American Battle Monuments Commission              36, IV
American Indians, Office of the Special Trustee   25, VII
Animal and Plant Health Inspection Service        7, III; 9, I
Appalachian Regional Commission                   5, IX
Architectural and Transportation Barriers         36, XI
   Compliance Board
[[Page 1260]]

Arctic Research Commission                        45, XXIII
Armed Forces Retirement Home                      5, XI; 38, II
Army, Department of                               32, V
  Engineers, Corps of                             33, II; 36, III
  Federal Acquisition Regulation                  48, 51
Benefits Review Board                             20, VII
Bilingual Education and Minority Languages        34, V
     Affairs, Office of
Blind or Severely Disabled, Committee for         41, 51
     Purchase from People Who Are
Broadcasting Board of Governors                   22, V
  Federal Acquisition Regulation                  48, 19
Career, Technical, and Adult Education, Office    34, IV
     of
Census Bureau                                     15, I
Centers for Medicare & Medicaid Services          42, IV
Central Intelligence Agency                       32, XIX
Chemical Safety and Hazard Investigation Board    40, VI
Chief Financial Officer, Office of                7, XXX
Child Support Enforcement, Office of              45, III
Children and Families, Administration for         45, II, III, IV, X, XIII
Civil Rights, Commission on                       5, LXVIII; 45, VII
Civil Rights, Office for                          34, I
Coast Guard                                       33, I; 46, I; 49, IV
Coast Guard (Great Lakes Pilotage)                46, III
Commerce, Department of                           2, XIII; 44, IV; 50, VI
  Census Bureau                                   15, I
  Economic Analysis, Bureau of                    15, VIII
  Economic Development Administration             13, III
  Emergency Management and Assistance             44, IV
  Federal Acquisition Regulation                  48, 13
  Foreign-Trade Zones Board                       15, IV
  Industry and Security, Bureau of                15, VII
  International Trade Administration              15, III; 19, III
  National Institute of Standards and Technology  15, II; 37, IV
  National Marine Fisheries Service               50, II, IV
  National Oceanic and Atmospheric                15, IX; 50, II, III, IV, 
       Administration                             VI
  National Technical Information Service          15, XI
  National Telecommunications and Information     15, XXIII; 47, III, IV
       Administration
  National Weather Service                        15, IX
  Patent and Trademark Office, United States      37, I
  Secretary of Commerce, Office of                15, Subtitle A
Commercial Space Transportation                   14, III
Commodity Credit Corporation                      7, XIV
Commodity Futures Trading Commission              5, XLI; 17, I
Community Planning and Development, Office of     24, V, VI
     Assistant Secretary for
Community Services, Office of                     45, X
Comptroller of the Currency                       12, I
Construction Industry Collective Bargaining       29, IX
     Commission
Consumer Financial Protection Bureau              5, LXXXIV; 12, X
Consumer Product Safety Commission                5, LXXI; 16, II
Copyright Royalty Board                           37, III
Corporation for National and Community Service    2, XXII; 45, XII, XXV
Cost Accounting Standards Board                   48, 99
Council on Environmental Quality                  40, V
Council of the Inspectors General on Integrity    5, XCVIII
     and Efficiency
Court Services and Offender Supervision Agency    5, LXX; 28, VIII
     for the District of Columbia
Customs and Border Protection                     19, I
Defense, Department of                            2, XI; 5, XXVI; 32, 
                                                  Subtitle A; 40, VII
  Advanced Research Projects Agency               32, I
  Air Force Department                            32, VII
  Army Department                                 32, V; 33, II; 36, III; 
                                                  48, 51
  Defense Acquisition Regulations System          48, 2
  Defense Intelligence Agency                     32, I

[[Page 1261]]

  Defense Logistics Agency                        32, I, XII; 48, 54
  Engineers, Corps of                             33, II; 36, III
  National Imagery and Mapping Agency             32, I
  Navy, Department of                             32, VI; 48, 52
  Secretary of Defense, Office of                 2, XI; 32, I
Defense Contract Audit Agency                     32, I
Defense Intelligence Agency                       32, I
Defense Logistics Agency                          32, XII; 48, 54
Defense Nuclear Facilities Safety Board           10, XVII
Delaware River Basin Commission                   18, III
Denali Commission                                 45, IX
Disability, National Council on                   5, C; 34, XII
District of Columbia, Court Services and          5, LXX; 28, VIII
     Offender Supervision Agency for the
Drug Enforcement Administration                   21, II
East-West Foreign Trade Board                     15, XIII
Economic Analysis, Bureau of                      15, VIII
Economic Development Administration               13, III
Economic Research Service                         7, XXXVII
Education, Department of                          2, XXXIV; 5, LIII
  Bilingual Education and Minority Languages      34, V
       Affairs, Office of
  Career, Technical, and Adult Education, Office  34, IV
       of
  Civil Rights, Office for                        34, I
  Educational Research and Improvement, Office    34, VII
       of
  Elementary and Secondary Education, Office of   34, II
  Federal Acquisition Regulation                  48, 34
  Postsecondary Education, Office of              34, VI
  Secretary of Education, Office of               34, Subtitle A
  Special Education and Rehabilitative Services,  34, III
       Office of
Educational Research and Improvement, Office of   34, VII
Election Assistance Commission                    2, LVIII; 11, II
Elementary and Secondary Education, Office of     34, II
Emergency Oil and Gas Guaranteed Loan Board       13, V
Emergency Steel Guarantee Loan Board              13, IV
Employee Benefits Security Administration         29, XXV
Employees' Compensation Appeals Board             20, IV
Employees Loyalty Board                           5, V
Employment and Training Administration            20, V
Employment Policy, National Commission for        1, IV
Employment Standards Administration               20, VI
Endangered Species Committee                      50, IV
Energy, Department of                             2, IX; 5, XXIII; 10, II, 
                                                  III, X
  Federal Acquisition Regulation                  48, 9
  Federal Energy Regulatory Commission            5, XXIV; 18, I
  Property Management Regulations                 41, 109
Energy, Office of                                 7, XXIX
Engineers, Corps of                               33, II; 36, III
Engraving and Printing, Bureau of                 31, VI
Environmental Protection Agency                   2, XV; 5, LIV; 40, I, IV, 
                                                  VII
  Federal Acquisition Regulation                  48, 15
  Property Management Regulations                 41, 115
Environmental Quality, Office of                  7, XXXI
Equal Employment Opportunity Commission           5, LXII; 29, XIV
Equal Opportunity, Office of Assistant Secretary  24, I
     for
Executive Office of the President                 3, I
  Environmental Quality, Council on               40, V
  Management and Budget, Office of                2, Subtitle A; 5, III, 
                                                  LXXVII; 14, VI; 48, 99
  National Drug Control Policy, Office of         2, XXXVI; 21, III
  National Security Council                       32, XXI; 47, II
  Presidential Documents                          3
  Science and Technology Policy, Office of        32, XXIV; 47, II
  Trade Representative, Office of the United      15, XX
       States
Export-Import Bank of the United States           2, XXXV; 5, LII; 12, IV

[[Page 1262]]

Family Assistance, Office of                      45, II
Farm Credit Administration                        5, XXXI; 12, VI
Farm Credit System Insurance Corporation          5, XXX; 12, XIV
Farm Service Agency                               7, VII, XVIII
Federal Acquisition Regulation                    48, 1
Federal Aviation Administration                   14, I
  Commercial Space Transportation                 14, III
Federal Claims Collection Standards               31, IX
Federal Communications Commission                 5, XXIX; 47, I
Federal Contract Compliance Programs, Office of   41, 60
Federal Crop Insurance Corporation                7, IV
Federal Deposit Insurance Corporation             5, XXII; 12, III
Federal Election Commission                       5, XXXVII; 11, I
Federal Emergency Management Agency               44, I
Federal Employees Group Life Insurance Federal    48, 21
     Acquisition Regulation
Federal Employees Health Benefits Acquisition     48, 16
     Regulation
Federal Energy Regulatory Commission              5, XXIV; 18, I
Federal Financial Institutions Examination        12, XI
     Council
Federal Financing Bank                            12, VIII
Federal Highway Administration                    23, I, II
Federal Home Loan Mortgage Corporation            1, IV
Federal Housing Enterprise Oversight Office       12, XVII
Federal Housing Finance Agency                    5, LXXX; 12, XII
Federal Labor Relations Authority                 5, XIV, XLIX; 22, XIV
Federal Law Enforcement Training Center           31, VII
Federal Management Regulation                     41, 102
Federal Maritime Commission                       46, IV
Federal Mediation and Conciliation Service        29, XII
Federal Mine Safety and Health Review Commission  5, LXXIV; 29, XXVII
Federal Motor Carrier Safety Administration       49, III
Federal Prison Industries, Inc.                   28, III
Federal Procurement Policy Office                 48, 99
Federal Property Management Regulations           41, 101
Federal Railroad Administration                   49, II
Federal Register, Administrative Committee of     1, I
Federal Register, Office of                       1, II
Federal Reserve System                            12, II
  Board of Governors                              5, LVIII
Federal Retirement Thrift Investment Board        5, VI, LXXVI
Federal Service Impasses Panel                    5, XIV
Federal Trade Commission                          5, XLVII; 16, I
Federal Transit Administration                    49, VI
Federal Travel Regulation System                  41, Subtitle F
Financial Crimes Enforcement Network              31, X
Financial Research Office                         12, XVI
Financial Stability Oversight Council             12, XIII
Fine Arts, Commission of                          45, XXI
Fiscal Service                                    31, II
Fish and Wildlife Service, United States          50, I, IV
Food and Drug Administration                      21, I
Food and Nutrition Service                        7, II
Food Safety and Inspection Service                9, III
Foreign Agricultural Service                      7, XV
Foreign Assets Control, Office of                 31, V
Foreign Claims Settlement Commission of the       45, V
     United States
Foreign Service Grievance Board                   22, IX
Foreign Service Impasse Disputes Panel            22, XIV
Foreign Service Labor Relations Board             22, XIV
Foreign-Trade Zones Board                         15, IV
Forest Service                                    36, II
General Services Administration                   5, LVII; 41, 105
  Contract Appeals, Board of                      48, 61
  Federal Acquisition Regulation                  48, 5
  Federal Management Regulation                   41, 102
  Federal Property Management Regulations         41, 101
  Federal Travel Regulation System                41, Subtitle F

[[Page 1263]]

  General                                         41, 300
  Payment From a Non-Federal Source for Travel    41, 304
       Expenses
  Payment of Expenses Connected With the Death    41, 303
       of Certain Employees
  Relocation Allowances                           41, 302
  Temporary Duty (TDY) Travel Allowances          41, 301
Geological Survey                                 30, IV
Government Accountability Office                  4, I
Government Ethics, Office of                      5, XVI
Government National Mortgage Association          24, III
Grain Inspection, Packers and Stockyards          7, VIII; 9, II
     Administration
Gulf Coast Ecosystem Restoration Council          2, LIX; 40, VIII
Harry S. Truman Scholarship Foundation            45, XVIII
Health and Human Services, Department of          2, III; 5, XLV; 45, 
                                                  Subtitle A
  Centers for Medicare & Medicaid Services        42, IV
  Child Support Enforcement, Office of            45, III
  Children and Families, Administration for       45, II, III, IV, X, XIII
  Community Services, Office of                   45, X
  Family Assistance, Office of                    45, II
  Federal Acquisition Regulation                  48, 3
  Food and Drug Administration                    21, I
  Indian Health Service                           25, V
  Inspector General (Health Care), Office of      42, V
  Public Health Service                           42, I
  Refugee Resettlement, Office of                 45, IV
Homeland Security, Department of                  2, XXX; 5, XXXVI; 6, I; 8, 
                                                  I
  Coast Guard                                     33, I; 46, I; 49, IV
  Coast Guard (Great Lakes Pilotage)              46, III
  Customs and Border Protection                   19, I
  Federal Emergency Management Agency             44, I
  Human Resources Management and Labor Relations  5, XCVII
       Systems
  Immigration and Customs Enforcement Bureau      19, IV
  Transportation Security Administration          49, XII
HOPE for Homeowners Program, Board of Directors   24, XXIV
     of
Housing, Office of, and Multifamily Housing       24, IV
     Assistance Restructuring, Office of
Housing and Urban Development, Department of      2, XXIV; 5, LXV; 24, 
                                                  Subtitle B
  Community Planning and Development, Office of   24, V, VI
       Assistant Secretary for
  Equal Opportunity, Office of Assistant          24, I
       Secretary for
  Federal Acquisition Regulation                  48, 24
  Federal Housing Enterprise Oversight, Office    12, XVII
       of
  Government National Mortgage Association        24, III
  Housing--Federal Housing Commissioner, Office   24, II, VIII, X, XX
       of Assistant Secretary for
  Housing, Office of, and Multifamily Housing     24, IV
       Assistance Restructuring, Office of
  Inspector General, Office of                    24, XII
  Public and Indian Housing, Office of Assistant  24, IX
       Secretary for
  Secretary, Office of                            24, Subtitle A, VII
Housing--Federal Housing Commissioner, Office of  24, II, VIII, X, XX
     Assistant Secretary for
Housing, Office of, and Multifamily Housing       24, IV
     Assistance Restructuring, Office of
Immigration and Customs Enforcement Bureau        19, IV
Immigration Review, Executive Office for          8, V
Independent Counsel, Office of                    28, VII
Independent Counsel, Offices of                   28, VI
Indian Affairs, Bureau of                         25, I, V
Indian Affairs, Office of the Assistant           25, VI
     Secretary
Indian Arts and Crafts Board                      25, II
Indian Health Service                             25, V
Industry and Security, Bureau of                  15, VII

[[Page 1264]]

Information Resources Management, Office of       7, XXVII
Information Security Oversight Office, National   32, XX
     Archives and Records Administration
Inspector General
  Agriculture Department                          7, XXVI
  Health and Human Services Department            42, V
  Housing and Urban Development Department        24, XII, XV
Institute of Peace, United States                 22, XVII
Inter-American Foundation                         5, LXIII; 22, X
Interior, Department of                           2, XIV
  American Indians, Office of the Special         25, VII
       Trustee
  Endangered Species Committee                    50, IV
  Federal Acquisition Regulation                  48, 14
  Federal Property Management Regulations System  41, 114
  Fish and Wildlife Service, United States        50, I, IV
  Geological Survey                               30, IV
  Indian Affairs, Bureau of                       25, I, V
  Indian Affairs, Office of the Assistant         25, VI
       Secretary
  Indian Arts and Crafts Board                    25, II
  Land Management, Bureau of                      43, II
  National Indian Gaming Commission               25, III
  National Park Service                           36, I
  Natural Resource Revenue, Office of             30, XII
  Ocean Energy Management, Bureau of              30, V
  Reclamation, Bureau of                          43, I
  Safety and Enforcement Bureau, Bureau of        30, II
  Secretary of the Interior, Office of            2, XIV; 43, Subtitle A
  Surface Mining Reclamation and Enforcement,     30, VII
       Office of
Internal Revenue Service                          26, I
International Boundary and Water Commission,      22, XI
     United States and Mexico, United States 
     Section
International Development, United States Agency   22, II
     for
  Federal Acquisition Regulation                  48, 7
International Development Cooperation Agency,     22, XII
     United States
International Development Finance Corporation,    5, XXXIII; 22, VII
     U.S.
International Joint Commission, United States     22, IV
     and Canada
International Organizations Employees Loyalty     5, V
     Board
International Trade Administration                15, III; 19, III
International Trade Commission, United States     19, II
Interstate Commerce Commission                    5, XL
Investment Security, Office of                    31, VIII
James Madison Memorial Fellowship Foundation      45, XXIV
Japan-United States Friendship Commission         22, XVI
Joint Board for the Enrollment of Actuaries       20, VIII
Justice, Department of                            2, XXVIII; 5, XXVIII; 28, 
                                                  I, XI; 40, IV
  Alcohol, Tobacco, Firearms, and Explosives,     27, II
       Bureau of
  Drug Enforcement Administration                 21, II
  Federal Acquisition Regulation                  48, 28
  Federal Claims Collection Standards             31, IX
  Federal Prison Industries, Inc.                 28, III
  Foreign Claims Settlement Commission of the     45, V
       United States
  Immigration Review, Executive Office for        8, V
  Independent Counsel, Offices of                 28, VI
  Prisons, Bureau of                              28, V
  Property Management Regulations                 41, 128
Labor, Department of                              2, XXIX; 5, XLII
  Benefits Review Board                           20, VII
  Employee Benefits Security Administration       29, XXV
  Employees' Compensation Appeals Board           20, IV
  Employment Standards Administration             20, VI
  Employment and Training Administration          20, V
  Federal Acquisition Regulation                  48, 29
  Federal Contract Compliance Programs, Office    41, 60
       of
  Federal Procurement Regulations System          41, 50

[[Page 1265]]

  Labor-Management Standards, Office of           29, II, IV
  Mine Safety and Health Administration           30, I
  Occupational Safety and Health Administration   29, XVII
  Public Contracts                                41, 50
  Secretary of Labor, Office of                   29, Subtitle A
  Veterans' Employment and Training Service,      41, 61; 20, IX
       Office of the Assistant Secretary for
  Wage and Hour Division                          29, V
  Workers' Compensation Programs, Office of       20, I, VI
Labor-Management Standards, Office of             29, II, IV
Land Management, Bureau of                        43, II
Legal Services Corporation                        45, XVI
Libraries and Information Science, National       45, XVII
     Commission on
Library of Congress                               36, VII
  Copyright Royalty Board                         37, III
  U.S. Copyright Office                           37, II
Management and Budget, Office of                  5, III, LXXVII; 14, VI; 
                                                  48, 99
Marine Mammal Commission                          50, V
Maritime Administration                           46, II
Merit Systems Protection Board                    5, II, LXIV
Micronesian Status Negotiations, Office for       32, XXVII
Military Compensation and Retirement              5, XCIX
     Modernization Commission
Millennium Challenge Corporation                  22, XIII
Mine Safety and Health Administration             30, I
Minority Business Development Agency              15, XIV
Miscellaneous Agencies                            1, IV
Monetary Offices                                  31, I
Morris K. Udall Scholarship and Excellence in     36, XVI
     National Environmental Policy Foundation
Museum and Library Services, Institute of         2, XXXI
National Aeronautics and Space Administration     2, XVIII; 5, LIX; 14, V
  Federal Acquisition Regulation                  48, 18
National Agricultural Library                     7, XLI
National Agricultural Statistics Service          7, XXXVI
National and Community Service, Corporation for   2, XXII; 45, XII, XXV
National Archives and Records Administration      2, XXVI; 5, LXVI; 36, XII
  Information Security Oversight Office           32, XX
National Capital Planning Commission              1, IV, VI
National Counterintelligence Center               32, XVIII
National Credit Union Administration              5, LXXXVI; 12, VII
National Crime Prevention and Privacy Compact     28, IX
     Council
National Drug Control Policy, Office of           2, XXXVI; 21, III
National Endowment for the Arts                   2, XXXII
National Endowment for the Humanities             2, XXXIII
National Foundation on the Arts and the           45, XI
     Humanities
National Geospatial-Intelligence Agency           32, I
National Highway Traffic Safety Administration    23, II, III; 47, VI; 49, V
National Imagery and Mapping Agency               32, I
National Indian Gaming Commission                 25, III
National Institute of Food and Agriculture        7, XXXIV
National Institute of Standards and Technology    15, II; 37, IV
National Intelligence, Office of Director of      5, IV; 32, XVII
National Labor Relations Board                    5, LXI; 29, I
National Marine Fisheries Service                 50, II, IV
National Mediation Board                          5, CI; 29, X
National Oceanic and Atmospheric Administration   15, IX; 50, II, III, IV, 
                                                  VI
National Park Service                             36, I
National Railroad Adjustment Board                29, III
National Railroad Passenger Corporation (AMTRAK)  49, VII
National Science Foundation                       2, XXV; 5, XLIII; 45, VI
  Federal Acquisition Regulation                  48, 25
National Security Council                         32, XXI; 47, II
National Security Council and Office of Science   47, II
   and Technology Policy
[[Page 1266]]

National Technical Information Service            15, XI
National Telecommunications and Information       15, XXIII; 47, III, IV, V
     Administration
National Transportation Safety Board              49, VIII
Natural Resource Revenue, Office of               30, XII
Natural Resources Conservation Service            7, VI
Navajo and Hopi Indian Relocation, Office of      25, IV
Navy, Department of                               32, VI
  Federal Acquisition Regulation                  48, 52
Neighborhood Reinvestment Corporation             24, XXV
Northeast Interstate Low-Level Radioactive Waste  10, XVIII
     Commission
Nuclear Regulatory Commission                     2, XX; 5, XLVIII; 10, I
  Federal Acquisition Regulation                  48, 20
Occupational Safety and Health Administration     29, XVII
Occupational Safety and Health Review Commission  29, XX
Ocean Energy Management, Bureau of                30, V
Oklahoma City National Memorial Trust             36, XV
Operations Office                                 7, XXVIII
Patent and Trademark Office, United States        37, I
Payment From a Non-Federal Source for Travel      41, 304
     Expenses
Payment of Expenses Connected With the Death of   41, 303
     Certain Employees
Peace Corps                                       2, XXXVII; 22, III
Pennsylvania Avenue Development Corporation       36, IX
Pension Benefit Guaranty Corporation              29, XL
Personnel Management, Office of                   5, I, IV, XXXV; 45, VIII
  Federal Acquisition Regulation                  48, 17
  Federal Employees Group Life Insurance Federal  48, 21
       Acquisition Regulation
  Federal Employees Health Benefits Acquisition   48, 16
       Regulation
  Human Resources Management and Labor Relations  5, XCVII
       Systems, Department of Homeland Security
Pipeline and Hazardous Materials Safety           49, I
     Administration
Postal Regulatory Commission                      5, XLVI; 39, III
Postal Service, United States                     5, LX; 39, I
Postsecondary Education, Office of                34, VI
President's Commission on White House             1, IV
     Fellowships
Presidential Documents                            3
Presidio Trust                                    36, X
Prisons, Bureau of                                28, V
Privacy and Civil Liberties Oversight Board       6, X
Procurement and Property Management, Office of    7, XXXII
Public and Indian Housing, Office of Assistant    24, IX
     Secretary for
Public Contracts, Department of Labor             41, 50
Public Health Service                             42, I
Railroad Retirement Board                         20, II
Reclamation, Bureau of                            43, I
Refugee Resettlement, Office of                   45, IV
Relocation Allowances                             41, 302
Research and Innovative Technology                49, XI
     Administration
Rural Business-Cooperative Service                7, XVIII, XLII
Rural Development Administration                  7, XLII
Rural Housing Service                             7, XVIII, XXXV
Rural Utilities Service                           7, XVII, XVIII, XLII
Safety and Environmental Enforcement, Bureau of   30, II
Saint Lawrence Seaway Development Corporation     33, IV
Science and Technology Policy, Office of          32, XXIV
Science and Technology Policy, Office of, and     47, II
     National Security Council
Secret Service                                    31, IV
Securities and Exchange Commission                5, XXXIV; 17, II
Selective Service System                          32, XVI
Small Business Administration                     2, XXVII; 13, I
Smithsonian Institution                           36, V
Social Security Administration                    2, XXIII; 20, III; 48, 23
Soldiers' and Airmen's Home, United States        5, XI

[[Page 1267]]

Special Counsel, Office of                        5, VIII
Special Education and Rehabilitative Services,    34, III
     Office of
State, Department of                              2, VI; 22, I; 28, XI
  Federal Acquisition Regulation                  48, 6
Surface Mining Reclamation and Enforcement,       30, VII
     Office of
Surface Transportation Board                      49, X
Susquehanna River Basin Commission                18, VIII
Tennessee Valley Authority                        5, LXIX; 18, XIII
Trade Representative, United States, Office of    15, XX
Transportation, Department of                     2, XII; 5, L
  Commercial Space Transportation                 14, III
  Emergency Management and Assistance             44, IV
  Federal Acquisition Regulation                  48, 12
  Federal Aviation Administration                 14, I
  Federal Highway Administration                  23, I, II
  Federal Motor Carrier Safety Administration     49, III
  Federal Railroad Administration                 49, II
  Federal Transit Administration                  49, VI
  Maritime Administration                         46, II
  National Highway Traffic Safety Administration  23, II, III; 47, IV; 49, V
  Pipeline and Hazardous Materials Safety         49, I
       Administration
  Saint Lawrence Seaway Development Corporation   33, IV
  Secretary of Transportation, Office of          14, II; 49, Subtitle A
  Transportation Statistics Bureau                49, XI
Transportation, Office of                         7, XXXIII
Transportation Security Administration            49, XII
Transportation Statistics Bureau                  49, XI
Travel Allowances, Temporary Duty (TDY)           41, 301
Treasury, Department of the                       2, X; 5, XXI; 12, XV; 17, 
                                                  IV; 31, IX
  Alcohol and Tobacco Tax and Trade Bureau        27, I
  Community Development Financial Institutions    12, XVIII
       Fund
  Comptroller of the Currency                     12, I
  Customs and Border Protection                   19, I
  Engraving and Printing, Bureau of               31, VI
  Federal Acquisition Regulation                  48, 10
  Federal Claims Collection Standards             31, IX
  Federal Law Enforcement Training Center         31, VII
  Financial Crimes Enforcement Network            31, X
  Fiscal Service                                  31, II
  Foreign Assets Control, Office of               31, V
  Internal Revenue Service                        26, I
  Investment Security, Office of                  31, VIII
  Monetary Offices                                31, I
  Secret Service                                  31, IV
  Secretary of the Treasury, Office of            31, Subtitle A
Truman, Harry S. Scholarship Foundation           45, XVIII
United States and Canada, International Joint     22, IV
     Commission
United States and Mexico, International Boundary  22, XI
     and Water Commission, United States Section
U.S. Copyright Office                             37, II
Utah Reclamation Mitigation and Conservation      43, III
     Commission
Veterans Affairs, Department of                   2, VIII; 38, I
  Federal Acquisition Regulation                  48, 8
Veterans' Employment and Training Service,        41, 61; 20, IX
     Office of the Assistant Secretary for
Vice President of the United States, Office of    32, XXVIII
Wage and Hour Division                            29, V
Water Resources Council                           18, VI
Workers' Compensation Programs, Office of         20, I, VII
World Agricultural Outlook Board                  7, XXXVIII

[[Page 1269]]



List of CFR Sections Affected



All changes in this volume of the Code of Federal Regulations (CFR) that 
were made by documents published in the Federal Register since January 
1, 2016 are enumerated in the following list. Entries indicate the 
nature of the changes effected. Page numbers refer to Federal Register 
pages. The user should consult the entries for chapters, parts and 
subparts as well as sections for revisions.
For changes to this volume of the CFR prior to this listing, consult the 
annual edition of the monthly List of CFR Sections Affected (LSA). The 
LSA is available at www.govinfo.gov. For changes to this volume of the 
CFR prior to 2001, see the ``List of CFR Sections Affected, 1949-1963, 
1964-1972, 1973-1985, and 1986-2000'' published in 11 separate volumes. 
The ``List of CFR Sections Affected 1986-2000'' is available at 
www.govinfo.gov.

                                  2016

10 CFR
                                                                   81 FR
                                                                    Page
Chapter II
207.7 (c)(1) amended; interim......................................41793
    (c)(1) amended.................................................96351
218.42 (b)(1) revised; interim.....................................41793
    (b)(1) revised.................................................96351
429 Authority citation revised.....................................41794
429.2 (a) revised...................................................4144
429.4 (b)(3) added.................................................35264
    (c)(2) added...................................................79249
    Regulation at 81 FR 79249 withdrawn............................88098
    (c)(2) added; eff. 1-9-17......................................89303
    (b)(1) removed; (b)(2) and (3) redesignated as new (b)(1) and 
(2); eff. 1-12-17..................................................90118
429.11 (a) and (b) amended..........................................4144
    (b) revised....................................................79249
    Regulation at 81 FR 79249 withdrawn............................88098
    (b) revised; eff.1-9-17........................................89303
429.12 (b)(13) and (d) revised......................................4430
    (b)(8) and (12) revised........................................37049
    (f) revised.............................................43425, 59415
    (d) table amended..............................................46789
    (b)(6) revised; eff. 1-27-17...................................95798
429.14 Heading and (a)(3) revised; (c) and (d) added; stayed in 
        part indefinitely..........................................46789
429.16 Revised.....................................................37049
    (a)(1), (d)(1), (2) and (e)(4) amended; (e)(4)(viii) removed 
                                                                   55112
429.17 Revised.....................................................96232
    Revised; eff. 12-29-17.........................................96235
429.18 (a)(2)(vii) and (b)(4) added.................................2646
429.19 (b)(3) revised; eff. 1-12-17................................90118
429.23 Heading and (a) revised; eff. 1-17-17.......................91445
429.26 (a)(2)(ii) introductory text and (b)(2) revised; (c) added 
                                                                   25600
429.27 (b)(2)(i), (ii) and (iii) revised...........................72503
429.32 (a) revised.................................................48639
429.33 (a)(3) introductory text revised..............................632
    (a)(2)(ii), (3)(i)(D) and (F) added............................43425
429.35 Revised.....................................................59415
429.36 (a)(5) and (6) added; (b)(2) revised........................38395
429.37 (b)(3) and (c) added........................................30163
429.39 Revised.....................................................31840
    Revised; eff. 1-11-17..........................................89821
429.44 (d) redesignated as (e); (b), (c) and new (e) revised.......79318
    (d) added......................................................96236
    (d)(2) revised; eff. 12-29-17..................................96236
429.51 (b) revised..................................................4801
429.52 (a)(3) added.................................................1112
429.53 Revised; eff. 1-27-17.......................................95798
429.56 Added.......................................................43425
429.57 Added.......................................................72503
429.59 Added........................................................4144
    (b) and (c) added...............................................4430

[[Page 1270]]

429.60 (a) introductory text, (1)(i) and (b)(2) revised; (a)(3), 
        (4), (b)(3)(iii) and (5) added.............................79249
    Regulation at 81 FR 79249 withdrawn............................88098
    (a) introductory text, (1)(i) and (b)(2) revised; (a)(3), (4), 
(b)(3)(iii) and (5) added; eff. 1-9-17.............................89303
429.61 Added.......................................................46790
429.62 Added.......................................................35264
429.70 (a) amended..................................................4145
    (e) revised....................................................37054
    (c)(2)(iii)(D) added...........................................79250
    Regulation at 81 FR 79250 withdrawn............................88098
    (c)(2)(iii)(D) added; eff, 1-9-17..............................89304
429.71 (d) added....................................................4145
429.72 (a) amended..................................................4145
    (d) added......................................................46790
    (e) added......................................................79320
429.102 (a)(1) amended..............................................4145
    (c) added......................................................45402
429.110 (e)(1)(iv), (v) and (vi) redesignated as (e)(1)(v), (vi) 
        and (vii); new (e)(1)(iv) added.............................4145
    (e) revised....................................................31841
    (a)(3) revised; (c)(1)(iii) added..............................79250
    Regulation at 81 FR 79250 withdrawn............................88098
    (a)(3) revised; (c)(1)(iii) added; eff. 1-9-17.................89304
    (e)(6), (7) and (8) revised; (e)(9) added; eff. 1-11-17........89822
    (e)(2) revised; eff. 1-27-17...................................95800
429.120 Amended.............................................41794, 96351
429.134 (g) added...................................................1112
    (h) added.................................................2646, 4145
    (i) correctly added............................................15426
    (j) added......................................................24009
    (k) added......................................................37055
    (f) revised....................................................38395
    (b)(1)(ii)(B) revised; (l) added...............................46791
    (m) added......................................................79250
    (n) added......................................................79320
    Regulation at 81 FR 79250 withdrawn............................88098
    (m) added; eff. 1-9-17.........................................89304
    (o) added; eff. 1-11-17........................................89822
    (q) added; eff. 1-27-17........................................95800
    (d)(2) revised.................................................96236
429.140 Undesignated center heading and section added..............45402
429.142 Added......................................................45402
429.144 Added......................................................45402
429.146 Added......................................................45403
429.148 Added......................................................45403
429.150 Added......................................................45403
429.152 Added......................................................45403
429.154 Added......................................................45403
429.156 Added......................................................45403
429.158 Added......................................................45404
429.100--429.158 (Subpart C) Appendix D added; eff. 1-11-17........89822
430 Technical correction............................................4574
    Policy statement...............................................71325
430.2 Amended.....2647, 31841, 35264, 37055, 43426, 45404, 46791, 48639, 
                                                            59417, 79320
    Amended; eff. 1-17-17..........................................91445
430.3 (g)(11) revised; (j)(2) added.................................2647
    (e)(7) amended; (p)(2), (3) and (4) redesignated as (p)(3), 
(4) and (5); new (p)(2) added......................................25600
    (p)(5) amended.................................................31841
    (g)(4) and (p)(5) amended; (i)(8) redesignated as (i)(9); new 
(i)(8) added.......................................................35264
    (g)(3), (10) removed; (g)(4), (7), (8) and (9) redesignated as 
new (g)(3), (8), (9) and (10); (b)(2), (c)(3), new (g)(4), (7) 
added; (c)(1), (g)(2), new (8), new (9), new (10) and (13) 
revised; (g)(5) amended............................................37056
    (o)(9) and (p)(5) amended; (o)(10), (11) and (12) amended......43426
    (i)(5) removed; (i)(6), (7) and (8) redesignated as new 
(i)(5), (6) and (7)................................................46792
    (b)(3) and (p)(6) added........................................48639
    (e)(8) through (19) and (o)(7) through (12) redesignated as 
(e)(9) through (20) and (o)(8), (10) and (13) through (16); new 
(e)(8), new (o)(7), (9), (11), (12) and (p)(7) added; (l)(1) and 
(2) amended; (v) removed...........................................59417
    (p)(5) corrected...............................................61983
    (o)(3) through (16), (p)(6) and (7) redesignated as (o)(4), 
(5), (7), (9) through (16), (18), (19), (20), (p)(7) and (8); new 
(o)(3), (6), (8), (17) and new (p)(6) added........................72504
    (e)(17) through (20) and (p)(3) through (8) redesignated as 
(e)(18) through (21) and (p)(4) through (9); new (e)(17) and new 
(p)(3) added; eff. 1-11-17.........................................89822
    (i)(2) removed; (i)(3) through (9) redesignated as new (i)(2) 
through (8); eff. 1-12-17..........................................90119

[[Page 1271]]

    (i)(6) and (8) removed; (i)(7), (9) and (l) through (u) 
redesignated as new (i)(6), (7) and (m) through (v); new (l) 
added; eff. 1-17-17................................................91446
430.5 Added........................................................27005
    Revised........................................................57757
430.23 (x)(2) introductory text revised..............................632
    (n)(2) revised..................................................2647
    (i)(3) correctly revised........................................7965
    (aa) revised...................................................31841
    (dd) added.....................................................35264
    (m) revised....................................................37057
    (x)(1)(ii), (2)(iv) and (ee) added.............................43426
    (a) and (b) revised; (dd) added................................46792
    (dd) correctly designated as (ff)..............................49869
    (w) revised....................................................48639
    (y) revised....................................................59418
    (gg) added.....................................................72504
    (aa) revised; eff. 1-11-17.....................................89822
    (c) revised; eff. 1-12-17......................................90119
    (i) revised; eff. 1-17-17......................................91446
    (e) revised....................................................96237
    (e) revised; eff. 12-29-17.....................................96237
430.25 Revised.......................................43427, 59418, 72504
430.21--430.27 (Subpart B) Appendix N revised.......................2647
    Appendix Q amended.............................................25600
    Appendix Y amended.............................................31842
    Appendix CC added..............................................35265
    Appendix M revised.............................................37058
    Appendix Y corrected...........................................42235
    Appendix BB added..............................................43427
    Appendix A amended.............................................46795
    Appendix A1 removed; Appendix B amended........................46803
    Appendix B1 removed............................................46805
    Appendix U added...............................................48640
    Appendix U correctly revised...................................54721
    Appendix M amended......................................55112, 55115
    Appendix W revised.............................................59418
    Appendix CC amended............................................70923
    Appendix DD added..............................................72504
    Appendix Y amended; eff. 1-11-17...............................89822
    Appendix C removed; Appendix C1 amended; eff. 1-12-17..........90120
    Appendix I revised; eff. 1-17-17...............................91447
430.32 (s)(2) introductory text, (3) introductory text and (4) 
        revised; (s)(5) added........................................632
    (e)(2)(ii) introductory text amended; (e)(2)(iii) and (iv) 
redesignated as (e)(2)(iv) and (v); new (e)(2)(iii) added...........2416
    (w)(2) revised.................................................30163
    (z) added......................................................38336
    (v)(3) added...................................................38396
    (c) revised....................................................45404
    (v)(1) correctly removed; (v)(2) and (3) correctly 
redesignated as new (v)(1) and (2); new (v)(2) correctly revised 
                                                                   56471
    (u) revised....................................................59420
    (aa) added; eff. 2-27-17.......................................75262
    (f)(1) introductory text and (2) removed; (f)(3) redesignated 
as new (f)(1); eff. 1-12-17........................................90120
    (d) revised....................................................96237
431 Authority citation revised.....................................41794
    Policy statement...............................................94234
431.3 Added........................................................27006
    Revised........................................................57758
431.77 Revised......................................................2528
    Regulation at 81 FR 2528 confirmed.............................32628
431.82 Amended.....................................................79251
    Regulation at 81 FR 79251 withdrawn............................88098
    Amended; eff. 1-9-17...........................................89304
431.85 (b) revised.................................................79251
    Regulation at 81 FR 79251 withdrawn............................88098
    (b) revised; eff. 1-9-17.......................................89305
431.86 Revised.....................................................79251
    Regulation at 81 FR 79251 withdrawn............................88098
    Revised; eff. 1-9-17...........................................89305
431.87 Revised.....................................................79252
    Regulation at 81 FR 79252 withdrawn............................88098
    Revised; eff. 1-9-17...........................................89306
431.81--431.87 (Subpart E) Appendix A added........................79253
    Regulation at 81 FR 79253 withdrawn............................88098
    Appendix A added; eff. 1-9-17..................................89306
431.92 Amended......................................................2529
    Regulation at 81 FR 2528 confirmed.............................32628
431.97 Tables 5 through 11 redesignated as Tables 7 through 13; 
        (b) and (c) introductory text revised; (d)(1) introductory 
        text, (2) introductory text and (3) introductory text 
        amended.....................................................2529
    Regulation at 81 FR 2529 confirmed.............................32628

[[Page 1272]]

    (b) Table 1, Table 2, Table 6, (c) Table 7, (d)(1), (2) and 
(3) amended; (c) introductory text revised.........................53907
431.102 Heading revised; amended...................................79321
431.104 Removed....................................................79322
431.105 (b) revised; (c) and (d) added.............................79322
431.106 Revised....................................................79322
431.107 Removed....................................................79323
431.110 Revised....................................................96238
431.101--431.110 (Subpart G) Appendix A added......................79323
    Appendix B added...............................................79328
    Appendix C added...............................................79332
    Appendix D added...............................................79340
    Appendix E added...............................................79346
431.154 Revised....................................................20529
431.156 (a) removed; (b) and (c) redesignated as new (a) and (b) 
                                                                   20529
431.266 Revised.....................................................4801
431.292 Amended.....................................................1112
431.293 (c) added...................................................1113
431.296 Revised.....................................................1113
431.302 Amended; eff. 1-27-17......................................95801
431.303 (a) and (b)(1) revised; (c) and (d) redesignated as (d) 
        and (e); (b)(2) and new (c) added; new (d)(1) amended; 
        eff. 1-27-17...............................................95802
431.304 (b) revised; (c) removed; eff. 1-27-17.....................95802
431.305 Added; eff. 1-27-17........................................95802
431.301--431.306 (Subpart R) Appendix A amended; Appendices B and 
        C added; eff. 1-27-17......................................95803
431.341--431.342 (Subpart T) Added.................................79998
431.382 (b) revised; interim.......................................41794
    (b) revised....................................................96351
431.461--431.464 (Subpart Y) Added..................................4145
431.465 Added.......................................................4431
431.466 Added.......................................................4432
490 Authority citation revised.....................................41794
490.604 (a) revised; interim.......................................41794
    (a) revised....................................................96351

                                  2017

10 CFR
                                                                   82 FR
                                                                    Page
Chapter II
Chapter II Policy statement........................................50491
429 Technical correction...........................................15457
429.2 (a) revised...................................................1099
    Regulation at 82 FR 1099 eff. date delayed to 3-21-17...........8985
    Regulation at 82 FR 1099 eff. date further delayed to 7-3-17 
                                                                   14426
    Regulation at 82 FR 1099 comment period extended...............31890
429.4 (d) redesignated as (e); new (d) and (f) added...............36917
429.11 (a) revised..................................................1468
    Regulation at 82 FR 1468 eff. date delayed to 3-21-17...........8985
    Regulation at 82 FR 1468 eff. date further delayed to 7-3-17 
                                                                   14425
429.12 Regulation at 81 FR 95798 eff. date delayed to 3-21-17.......8805
    Regulation at 81 FR 95798 eff. date further delayed to 6-26-17
                                                                   14426
429.16 (a)(3) and (4) redesignated as (a)(4) and (5); new (a)(3) 
        added; (a)(1), new (4)(i), (b)(2)(i), (3) introductory 
        text, (ii), (iii), (c)(1)(i)(B), (2), (3), (d)(2), (3), 
        (4), (e)(2), (3), (4), (f) introductory text, (1), (2), 
        (4) and (5) revised; (b)(3)(iv) removed.....................1468
    Regulation at 82 FR 1468 eff. date delayed to 3-21-17...........8985
    Regulation at 82 FR 1468 eff. date further delayed to 7-3-17 
                                                                   14425
    (a)(3)(i) stayed in part indefinitely..........................32227
429.53 Regulation at 81 FR 95798 eff. date delayed to 3-21-17.......8805
    Regulation at 81 FR 95798 eff. date further delayed to 6-26-17
                                                                   14426
429.59 (a)(1)(ii) and (c) revised; (a)(2), (b)(2)(iv), (v) and 
        (b)(3)(iv) added...........................................36918
429.63 Added........................................................1099
    Regulation at 82 FR 1099 eff. date delayed to 3-21-17...........8985
    Regulation at 82 FR 1099 eff. date further delayed to 7-3-17 
                                                                   14426
    Regulation at 82 FR 1099 comment period extended...............31890
429.70 (h) added....................................................1100
    (e)(1), (2)(i) and (5)(iv) revised..............................1475
    Regulations at 82 FR 1100 and 1475 eff. date delayed to 3-21-
17..................................................................8985
    Regulation at 82 FR 1475 eff. date further delayed to 7-3-17 
                                                                   14425

[[Page 1273]]

    Regulations at 82 FR 1100 and 1475 eff. date further delayed 
to 7-3-17..........................................................14426
    Regulation at 82 FR 1100 comment period extended...............31890
429.110 Regulation at 81 FR 95800 eff. date delayed to 3-21-17......8805
    Regulation at 81 FR 95800 eff. date further delayed to 6-26-17
                                                                   14426
    (e)(1) and (5) revised.........................................36918
429.134 (p) added...................................................1101
    Regulation at 81 FR 95800 eff. date delayed to 3-21-17..........8805
    Regulation at 82 FR 1101 eff. date delayed to 3-21-17...........8985
    Regulation at 81 FR 95800 eff. date further delayed to 6-26-17
                                                                   14426
    Regulation at 82 FR 1101 eff. date further delayed to 7-3-17 
                                                                   14426
    Regulation at 82 FR 1101 comment period extended...............31890
    (i) revised....................................................36919
430 Technical correction...........................................15457
430.2 Amended.......................................................1475
    Amended; eff. 1-1-20......................................7321, 7333
    Regulation at 82 FR 1475 eff. date delayed to 3-21-17...........8985
    Regulation at 82 FR 1475 eff. date further delayed to 7-3-17 
                                                                   14425
430.3 (b)(2) introductory text, (c)(1) introductory text, (3) 
        introductory text, (g)(2) introductory text, (4) 
        introductory text, (7) introductory text, (8) introductory 
        text, (9) introductory text, (10) introductory text and 
        (13) amended................................................1475
    Regulation at 82 FR 1475 eff. date delayed to 3-21-17...........8985
    Regulation at 82 FR 1475 eff. date further delayed to 7-3-17 
                                                                   14425
    (s)(1) amended; eff. 1-25-18...................................60851
430.21--430.27 (Subpart B) Appendix M revised.......................1476
    Appendix M1 added...............................................1533
    Regulation at 82 FR 1476 and 1533 eff. date delayed to 3-21-17
                                                                    8985
    Regulation at 82 FR 1476 and 1533 eff. date further delayed to 
7-3-17.............................................................14425
430.23 (m) revised..................................................1475
    Regulation at 82 FR 1475 eff. date delayed to 3-21-17...........8985
    Regulation at 82 FR 1475 eff. date further delayed to 7-3-17 
                                                                   14425
430.32 (c)(1), (2) and (3) revised; (c)(5) and (6) added............1857
    (s)(2) through (5) redesignated as (s)(3) through (6); new 
(s)(2) added........................................................6886
    Regulation at 82 FR 6886 eff. date delayed to 3-21-17...........8806
    Regulation at 82 FR 6886 eff. date further delayed to 9-30-17 
                                                                   14427
    Regulation at 82 FR 6886 confirmed.............................23723
    Regulation at 82 FR 1857 eff. date confirmed...................24211
    Regulation at 81 FR 75262 eff. date confirmed..................24214
    (bb) added; eff. 1-25-18.......................................60851
431.301--431.306 (Subpart R) Regulation at 81 FR 95803 eff. date 
        delayed to 3-21-17..........................................8805
    Regulation at 81 FR 95803 eff. date further delayed to 6-26-17
                                                                   14426
431.302 Regulation at 81 FR 95801 eff. date delayed to 3-21-17......8805
    Regulation at 81 FR 95801 eff. date further delayed to 6-26-17
                                                                   14426
431.303 Regulation at 81 FR 95802 eff. date delayed to 3-21-17......8805
    Regulation at 81 FR 95802 eff. date further delayed to 6-26-17
                                                                   14426
431.304 Regulation at 81 FR 95802 eff. date delayed to 3-21-17......8805
    Regulation at 81 FR 95802 eff. date further delayed to 6-26-17
                                                                   14426
431.305 Regulation at 81 FR 95802 eff. date delayed to 3-21-17......8805
    Regulation at 81 FR 95802 eff. date further delayed to 6-26-17
                                                                   14426
431.306 (e) revised................................................31885
    431.341--431.346 (Subpart T) Regulation at 82 FR 1102 eff. 
date delayed to 3-21-17.............................................8985
    Regulation at 82 FR 1102 eff. date further delayed to 7-3-17 
                                                                   14426
431.342 Revised.....................................................1101
    Regulation at 82 FR 1101 eff. date delayed to 3-21-17...........8985
    Regulation at 82 FR 1101 eff. date further delayed to 7-3-17 
                                                                   14426

[[Page 1274]]

    Regulation at 82 FR 1101 comment period extended...............31890
431.343 Added.......................................................1102
    Regulation at 82 FR 1102 eff. date delayed to 3-21-17...........8985
    Regulation at 82 FR 1102 eff. date further delayed to 7-3-17 
                                                                   14426
    Regulation at 82 FR 1102 comment period extended...............31890
431.344 Added.......................................................1102
    Regulation at 82 FR 1102 eff. date delayed to 3-21-17...........8985
    Regulation at 82 FR 1102 eff. date further delayed to 7-3-17 
                                                                   14426
    Regulation at 82 FR 1102 comment period extended...............31890
431.345 Regulation at 82 FR 1102 comment period extended...........31890
431.346 Regulation at 82 FR 1102 comment period extended...........31890
431.341--431.346 (Subpart T) Appendix A added.......................1102
431.462 Amended.....................................................5742
    Regulation at 82 FR 5742 eff. date confirmed...................24218
    Introductory text revised; section amended.....................36920
431.463 (a) revised; (b) through (e) redesignated as (c) through 
        (f) and (h); new (b), (d)(4), (e), (g) and (h)(2) added....36922
431.464 Revised....................................................36923
431.465 (e) through (h) added.......................................5742
    Regulation at 82 FR 5742 eff. date confirmed...................24218
431.466 Revised....................................................36923
431.461--431.466 (Subpart Y) Appendix A amended; Appendices B and 
        C added....................................................36924
431 Appendix A Regulation at 82 FR 1102 comment period extended....31890
435.2 Amended.......................................................2867
    Regulation at 82 FR 2867 eff. date delayed to 3-21-17...........9343
    Regulation at 82 FR 2867 eff. date further date delayed to 9-
30-17..............................................................14427
435.3 (b) revised...................................................2867
    Regulation at 82 FR 2867 eff. date delayed to 3-21-17...........9343
    Regulation at 82 FR 2867 eff. date further delayed to 9-30-17 
                                                                   14427
435.4 (a)(2) introductory text and (b) revised; (a)(3) added........2867
    Regulation at 82 FR 2867 eff. date delayed to 3-21-17...........9343
    Regulation at 82 FR 2867 eff. date further delayed to 9-30-17 
                                                                   14427
435.5 Revised.......................................................2868
    Regulation at 82 FR 2868 eff. date delayed to 3-21-17...........9343
    Regulation at 82 FR 2868 eff. date further delayed to 9-30-17 
                                                                   14427

                                  2018

10 CFR
                                                                   83 FR
                                                                    Page
Chapter II
205.300--205.379 (Subpart W) Heading revised........................1180
205.379 Undesignated center heading after section added.............1180
205.380 Added.......................................................1180
205.381 Added.......................................................1180
205.382 Added.......................................................1180
205.383 Added.......................................................1180
205.384 Added.......................................................1180
205.385 Added.......................................................1180
205.386 Added.......................................................1180
205.387 Added.......................................................1180
205.388 Added.......................................................1180
205.389 Added.......................................................1180
205.390 Added.......................................................1180
205.391 Added.......................................................1180
207.7 (c)(1) amended.........................................1291, 66082
218.42 (b)(1) revised........................................1291, 66083
429.16 Regulation at 82 FR 1468 reinstated.........................39873
429.120 Amended..............................................1291, 66083
430.21--430.27 (Subpart B) Appendix BB amended.....................47812
430.32 (s)(3) through (6) amended..................................22589
431.382 (b) revised..........................................1291, 66083
490.604 (a) revised..........................................1291, 66083

                                  2019

10 CFR
                                                                   84 FR
                                                                    Page
Chapter II
429.33 (a)(2)(v) and (3) amended....................................8413
429.37 (b)(2)(iv) revised............................................442
430 Determination..................................................71626
430.2 Amended........................................................442
430.2 Regulations at 82 FR 7321 and 82 FR 7333 withdrawn...........46676
430.3 (i) revised; (q) and (p) redesignated as (p) and (q)..........5347

[[Page 1275]]

430.23 (x)(2) introductory text amended.............................8413
430.32 (w)(1)(i) and (5) introductory text revised...................442
430.32 (y) Table 1 amended..........................................2436
430.32 (s)(3)(i) introductory text and (ii) amended.................8413

                                  2020

10 CFR
                                                                   85 FR
                                                                    Page
Chapter II
205.383 (a) introductory text amended...............................3232
205.300--205.379 (Subpart W) Authority citation revised.............3232
207.7 (c)(1) amended.................................................829
216 Authority citation revised.....................................31669
216.2 (h) amended..................................................31669
216.3 (a) amended..................................................31669
216.8 Amended......................................................31669
217 Authority citation revised.....................................31670
217.40 (a) and (c) amended.........................................31670
217.72 (b) amended.................................................31670
217.80 (a), (c), and (d) amended...................................31670
217.81 (a), (b)(1), (2), and (d) through (h) amended...............31670
217.93 Revised.....................................................31670
218.42 (b)(1) revised................................................830
429 Order...........................................................1378
429.12 (b)(13) and (d) table amended................................1446
429.12 (b)(13) revised..............................................1591
429.26 (a)(2)(i) introductory text, (b)(2), and (c) revised; 
        (a)(2)(iii) added..........................................56493
429.62 (b) added....................................................1446
429.63 (b) added....................................................1591
429.71 (e) added....................................................1591
429.120 Amended......................................................830
429.134 (r) added...................................................1446
430 Order...........................................................1378
430 Policy statement...............................................81557
430.2 Amended......................................................56493
430.2 Amended; eff. 1-15-21........................................81359
430.3 (l) removed; (m) through (v) redesignated as new (l) through 
        (u)........................................................50766
430.3 (e)(5) through (7) amended; (e)(17) through (21) 
        redesignated as (e)(22) through (26); (e)(6) through (16) 
        redesignated as (e)(7), (9), (10), (12), (13), (14), (15), 
        (16), (17), (19), and (20) respectively; (e)(6), (8), 
        (11), new (18), new (21), and Note 1 added; (a), new 
        (e)(15), new (16), new (19), and (o)(2) revised; new 
        (e)(17), and (o)(6) amended................................56493
430.3 (i)(2) amended...............................................68741
430.3 Second (c)(3)(ii), (c)(3)(iii) through (v) and (q) through 
        (u) redesignated as new (c)(3)(iii), (c)(3)(iv) through 
        (vi), and (r) through (v); new (q) added; eff. 1-15-21.....81359
430.23 (i) revised.................................................50766
430.23 (q) revised.................................................56494
430.27 (e)(1), (h), and (i)(1) revised; eff. 1-11-21...............79820
430.21--430.27 (Subpart B) Correction: Appendix CC amended.........21746
430.21--430.27 (Subpart B) Appendix I revised......................50766
430.21--430.27 (Subpart B) Appendix Q revised......................56494
430.31--430.35 (Subpart C) Appendix A revised................8703, 50944
430.32 (cc) added...................................................1446
430.32 (z)(3) added.................................................1503
430.32 Correction: (z)(3) table revised.............................3232
430.32 (f) revised.................................................68741
430.32 (g)(4) and (h)(3) revised; eff. 1-15-21.....................81375
431 Order...........................................................1378
431.4 Added.........................................................8711
431.87 Revised......................................................1681
431.342 Amended.....................................................1591
431.345 Added.......................................................1591
431.382 (b) revised..................................................830
431.401 (e)(1), (h), and (i)(1) revised; eff. 1-11-21..............79820
490.604 (a) revised..................................................830


                                  [all]