§ 430.23 Test procedures for the measurement of energy and water consumption.

When the test procedures of this section call for rounding off of test results, and the results fall equally between two values of the nearest dollar, kilowatt-hour, or other specified nearest value, the result shall be rounded up to the nearest higher value.

(a) Refrigerators and refrigerator-freezers. (1) The estimated annual operating cost for models without an anti-sweat heater switch shall be the product of the following three factors, with the resulting product then being rounded to the nearest dollar per year:

(i) The representative average-use cycle of 365 cycles per year;

(ii) The average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to section 6.2 of appendix A of this subpart; and

(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary.

(2) The estimated annual operating cost for models with an anti-sweat heater switch shall be the product of the following three factors, with the resulting product then being rounded to the nearest dollar per year:

(i) The representative average-use cycle of 365 cycles per year;

(ii) Half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat heater switch.
switch in the position set at the factory just before shipping, each in kilowatt-hours per cycle, determined according to section 6.2 of appendix A of this subpart; and

(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary.

(3) The estimated annual operating cost for any other specified cycle type shall be the product of the following three factors, the resulting product then being rounded to the nearest dollar per year:

(i) The representative average-use cycle of 365 cycles per year;

(ii) The average per-cycle energy consumption for the specified cycle type, determined according to section 6.2 of appendix A of this subpart; and

(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary.

(4) The estimated annual operating cost for any other specified cycle type shall be the product of the following three factors, the resulting product then being rounded to the nearest dollar per year:

(i) The representative average-use cycle of 365 cycles per year;

(ii) The average per-cycle energy consumption for the specified cycle type, determined according to section 6.2 of appendix A of this subpart; and

(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary.

(5) The energy factor, expressed in cubic feet per kilowatt-hour per cycle, shall be:

(i) For models without an anti-sweat heater switch, the quotient of:

(A) The adjusted total volume in cubic feet, determined according to section 6.1 of appendix A of this subpart, divided by—

(B) The average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to section 6.2 of appendix A of this subpart, the resulting quotient then being rounded to the second decimal place; and

(ii) For models having an anti-sweat heater switch, the quotient of:

(A) The adjusted total volume in cubic feet, determined according to section 6.1 of appendix A of this subpart, divided by—

(B) Half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat heater switch in the position set at the factory just before shipping, each in kilowatt-hours per cycle, determined according to section 6.2 of appendix A of this subpart, the resulting quotient then being rounded to the second decimal place.

(6) Other useful measures of energy consumption shall be those measures of energy consumption that the Secretary determines are likely to assist consumers in making purchasing decisions which are derived from the application of appendix A of this subpart.

(7) The following principles of interpretation shall be applied to the test procedure. The intent of the energy test procedure is to simulate typical room conditions (72 °F (22.2 °C)) with door openings, by testing at 90 °F (32.2 °C) without door openings. Except for operating characteristics that are affected by ambient temperature (for example, compressor percent run time), the unit, when tested under this test procedure, shall operate in a manner equivalent to the unit’s operation while in typical room conditions.

(i) The energy used by the unit shall be calculated when a calculation is provided by the test procedure. Energy consuming components that operate in typical room conditions (including as a result of door openings, or a function of humidity), and that are not excluded by this test procedure, shall operate in an equivalent manner during energy testing under this test procedure, or be accounted for by all calculations as provided for in the test procedure. Examples:
(A) Energy saving features that are designed to operate when there are no door openings for long periods of time shall not be functional during the energy test.

(B) The defrost heater shall neither function nor turn off differently during the energy test than it would when in typical room conditions. Also, the product shall not recover differently during the defrost recovery period than it would in typical room conditions.

(C) Electric heaters that would normally operate at typical room conditions with door openings shall also operate during the energy test.

(D) Energy used during adaptive defrost shall continue to be measured and adjusted per the calculation provided in this test procedure.

(ii) DOE recognizes that there may be situations that the test procedures do not completely address. In such cases, a manufacturer must obtain a waiver in accordance with the relevant provisions of 10 CFR part 430 if:

(A) A product contains energy consuming components that operate differently during the prescribed testing than they would during representative average consumer use; and

(B) Applying the prescribed test to that product would evaluate it in a manner that is unrepresentative of its true energy consumption (thereby providing materially inaccurate comparative data).

(b) Freezers. (1) The estimated annual operating cost for freezers without an anti-sweat heater switch shall be the product of the following three factors, with the resulting product then being rounded to the nearest dollar per year:

(i) The representative average-use cycle of 365 cycles per year;

(ii) The average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to section 6.2 of appendix B of this subpart; and

(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary.

(2) The estimated annual operating cost for freezers with an anti-sweat heater switch shall be the product of the following three factors, with the resulting product then being rounded to the nearest dollar per year:

(i) The representative average-use cycle of 365 cycles per year;

(ii) Half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat heater switch in the position set at the factory just before shipping, each in kilowatt-hours per cycle, determined according to section 6.2 of appendix B of this subpart; and

(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary.

(3) The estimated annual operating cost for any other specified cycle type for freezers shall be the product of the following three factors, with the resulting product then being rounded to the nearest dollar per year:

(i) The representative average-use cycle of 365 cycles per year;

(ii) The average per-cycle energy consumption for the specified cycle type, determined according to section 6.2 of appendix B of this subpart; and

(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary.

(4) The energy factor for freezers, expressed in cubic feet per kilowatt-hour per cycle, shall be:

(i) For freezers not having an anti-sweat heater switch, the quotient of:

(A) The adjusted net refrigerated volume in cubic feet, determined according to section 6.1 of appendix B of this subpart, divided by—

(B) The average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to section 6.2 of appendix B of this subpart; and

(ii) For freezers having an anti-sweat heater switch, the quotient of:

(A) The adjusted net refrigerated volume in cubic feet, determined according to section 6.1 of appendix B of this subpart, divided by—

(B) Half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat heater switch in the position set at the factory just before shipping, each in kilowatt-hours per cycle, determined according to section 6.2 of appendix B of this subpart; and

(ii) The average per-cycle energy consumption for the specified cycle type, determined according to section 6.2 of appendix B of this subpart; and

(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary.
cycle energy consumption for a test cycle type with the anti-sweat heater switch in the position set at the factory just before shipping, each in kilowatt-hours per cycle, determined according to section 6.2 of appendix B of this subpart, with the resulting quotient then being rounded to the second decimal place.

(5) The annual energy use of all freezers, expressed in kilowatt-hours per year, shall be the following, rounded to the nearest kilowatt-hour per year:

(i) For freezers not having an anti-sweat heater switch, the representative average use cycle of 365 cycles per year multiplied by the average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to section 6.2 of appendix B of this subpart; and

(ii) For freezers having an anti-sweat heater switch, the representative average use cycle of 365 cycles per year multiplied by half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat heater switch in the position set at the factory just before shipping, each in kilowatt-hours per cycle, determined according to section 6.2 of appendix B of this subpart.

(6) Other useful measures of energy consumption for freezers shall be those measures the Secretary determines are likely to assist consumers in making purchasing decisions and are derived from the application of appendix B of this subpart.

(7) The following principles of interpretation shall be applied to the test procedure. The intent of the energy test procedure is to simulate typical room conditions (72 °F (22.2 °C)) with door openings by testing at 90 °F (32.2 °C) without door openings. Except for operating characteristics that are affected by ambient temperature (for example, compressor percent run time), the unit, when tested under this test procedure, shall operate in a manner equivalent to the unit’s operation while in typical room conditions.

(i) The energy used by the unit shall be calculated when a calculation is provided by the test procedure. Energy consuming components that operate in typical room conditions (including as a result of door openings, or a function of humidity), and that are not excluded by this test procedure, shall operate in an equivalent manner during energy testing under this test procedure, or be accounted for by all calculations as provided for in the test procedure. Examples:

(A) Energy saving features that are designed to operate when there are no door openings for long periods of time shall not be functional during the energy test.

(B) The defrost heater shall neither function nor turn off differently during the energy test than it would when in typical room conditions. Also, the product shall not recover differently during the defrost recovery period than it would in typical room conditions.

(C) Electric heaters that would normally operate at typical room conditions with door openings shall also operate during the energy test.

(D) Energy used during adaptive defrost shall continue to be measured and adjusted per the calculation provided for in this test procedure.

(ii) DOE recognizes that there may be situations that the test procedures do not completely address. In such cases, a manufacturer must obtain a waiver in accordance with the relevant provisions of this part if:

(A) A product contains energy consuming components that operate differently during the prescribed testing than they would during representative average consumer use; and

(B) Applying the prescribed test to that product would evaluate it in a manner that is unrepresentative of its true energy consumption (thereby providing materially inaccurate comparative data).

(c) Dishwashers. (1) The Estimated Annual Operating Cost (EAOC) for dishwashers must be rounded to the nearest dollar per year and is defined as follows:

(i) When cold water (50 °F) is used,

(A) For dishwashers having a truncated normal cycle as defined in section 1.22 of appendix C1 to this subpart, EAOC = (D_e × E_{TLP}) + (D_e × N × (M + M_{WS} + E_{F} - (E_{D}/2))).
Department of Energy

§ 430.23

(B) For dishwashers not having a truncated normal cycle, \(EAOC = (D_e \times E_{TLP}) + (D_e \times N \times (M + M_{WS} + E_F)) \).

Where,

\(D_e \) = the representative average unit cost of electrical energy, in dollars per kilowatt-hour, as provided by the Secretary,

\(E_{TLP} \) = the annual combined low-power mode energy consumption in kilowatt-hours per year and determined according to section 5.7 of appendix C1 to this subpart,

\(N \) = the representative average dishwasher use of 215 cycles per year,

\(M \) = the machine energy consumption per cycle for the normal cycle, as defined in section 1.12 of appendix C1 to this subpart, in kilowatt-hours and determined according to section 5.1.1 of appendix C1 to this subpart for non-soil-sensing dishwashers and section 5.1.2 of appendix C1 to this subpart for soil-sensing dishwashers.

\(M_{WS} \) = the machine energy consumption per cycle for water softener regeneration, in kilowatt-hours and determined according to section 5.3 of appendix C1 to this subpart.

(ii) When electrically-heated water (120 °F or 140 °F) is used,

(A) For dishwashers having a truncated normal cycle as defined in section 1.22 of appendix C1 to this subpart, \(EAOC = (D_e \times E_{TLP}) + (D_e \times N \times (M + M_{WS} + E_F - (E_{D_o}/2))) + (D_e \times N \times (W + WS)) \).

(B) For dishwashers not having a truncated normal cycle, \(EAOC = (D_e \times E_{TLP}) + (D_e \times N \times (M + M_{WS} + E_F)) + (D_e \times N \times (W + WS)) \).

Where,

\(D_e \), \(E_{TLP} \), \(N \), \(M \), \(M_{WS} \), \(E_F \), and \(E_0 \) are defined in paragraph (c)(1)(i) of this section,

\(W \) = the water energy consumption per cycle for the normal cycle, as defined in section 1.12 of appendix C1 to this subpart, in kilowatts and determined according to section 5.2 of appendix C1 to this subpart, according to section 5.3 of appendix C1 to this subpart.

(iii) When gas-heated or oil-heated water is used,

(A) For dishwashers having a truncated normal cycle as defined in section 1.22 of appendix C1 to this subpart, \(EAOC = (D_e \times E_{TLP}) + (D_e \times N \times (M + M_{WS} + E_F - (E_{D_o}/2))) + (D_e \times N \times (W_e + WS_{WS})) \).

(B) For dishwashers not having a truncated normal cycle, \(EAOC = (D_e \times E_{TLP}) + (D_e \times N \times (M + M_{WS} + E_F)) + (D_e \times N \times (W_e + WS_{WS})) \).

Where,

\(D_e \), \(E_{TLP} \), \(N \), \(M \), \(M_{WS} \), \(E_F \), \(E_0 \), and \(E_{D_o} \) are defined in paragraph (c)(1)(i) of this section,

\(W_e \) = the water softener regeneration water energy consumption per cycle in kilowatt-hours and determined according to section 5.6.1.1 of appendix C1 to this subpart for dishwashers that operate with a nominal 140 °F inlet water temperature and section 5.6.1.2 of appendix C1 to this subpart for dishwashers that operate with a nominal 140 °F inlet water temperature and section 5.6.2.1 of appendix C1 to this subpart for dishwashers that operate with a nominal inlet water temperature of 120 °F, and

\(WS_{WS} \) = the water softener regeneration energy consumption per cycle in Btu per year must be rounded to the nearest kilowatt-hour per year and is defined as follows:

(i) For dishwashers having a truncated normal cycle as defined in section 1.22 of appendix C1 to this subpart, \(EAEU = (M + M_{WS} + E_F - (E_{D_o}/2)) + W + WS_{WS} \).

Where,

\(M \), \(M_{WS} \), \(E_F \), \(E_0 \), and \(E_{D_o} \) are defined in paragraph (c)(1)(i) of this section, and \(W \) and
§ 430.23

W_{WS} are defined in paragraph (c)(1)(ii) of this section.

(ii) For dishwashers not having a truncated normal cycle:

\[E_{AEU} = (M + M_{WS} + E_F + W + W_{WS}) \times N + E_{TLP} \]

Where,

M, M_{WS}, N, E_F, and E_{TLP} are defined in paragraph (c)(1)(i) of this section, and W and W_{WS} are defined in paragraph (c)(1)(ii) of this section.

(3) The sum of the water consumption, V, and the water consumption during water softener regeneration, V_{WS}, expressed in gallons per cycle and defined in section 5.4 of appendix C1 to this subpart, must be rounded to one decimal place.

(4) Other useful measures of energy consumption for dishwashers are those which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix C1 to this subpart.

(d) Clothes dryers. (1) The estimated annual operating cost for clothes dryers shall be—

(i) For an electric clothes dryer, the product of the following three factors:

(A) The representative average-use cycle of 283 cycles per year,

(B) The per-cycle combined total energy consumption in kilowatt-hours per-cycle, determined according to 4.6 of appendix D1 to this subpart, and

(C) The representative average unit cost of electrical energy in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year plus,

(ii) For a gas clothes dryer, the product of the representative average-use cycle of 283 cycles per year times the sum of:

(A) The product of the per-cycle gas dryer electric energy consumption in kilowatt-hours per cycle, determined according to 4.2 of appendix D1 to this subpart, times the representative average unit cost of electrical energy in dollars per kilowatt-hour as provided by the Secretary plus,

(B) The product of the per-cycle gas dryer gas energy consumption, in Btus per cycle, determined according to 4.3 of appendix D1 to this subpart, times the representative average unit cost for natural gas or propane, as appropriate, in dollars per Btu as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year plus,

(C) The product of the per-cycle standby mode and off mode energy consumption in kilowatt-hours per cycle, determined according to 4.5 of appendix D1 to this subpart, times the representative average unit cost of electrical energy in dollars per kilowatt-hour as provided by the Secretary.

(2) The energy factor, expressed in pounds of clothes per kilowatt-hour, for clothes dryers shall be either the quotient of a 3-pound bone-dry test load for compact dryers, as defined by 2.7.1 of appendix D to this subpart before the date that appendix D1 becomes mandatory, or the quotient of a 7-pound bone-dry test load for standard dryers, as defined by 2.7.2 of appendix D to this subpart before the date that appendix D1 becomes mandatory, as applicable, divided by the clothes dryer energy consumption per cycle, as determined according to 4.1 for electric clothes dryers and 4.6 for gas clothes dryers of appendix D to this subpart before the date that appendix D1 becomes mandatory, the resulting quotient then being rounded off to the nearest hundredth (.01). Upon the date that appendix D1 to this subpart becomes mandatory, the energy factor is determined in accordance with 4.7 of appendix D1, the result then being rounded off to the nearest hundredth (.01).

(3) Upon the date that appendix D1 to this subpart becomes mandatory, the combined energy factor is determined in accordance with 4.8 of appendix D1, the result then being rounded off to the nearest hundredth (.01).

(4) Other useful measures of energy consumption for clothes dryers shall be those measures of energy consumption for clothes dryers which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix D to this subpart before the date that appendix D1 becomes mandatory and appendix D1 upon the date that appendix D1 to this subpart becomes mandatory.
(e) Water heaters. (1) The estimated annual operating cost is calculated as:
 (i) For a gas-fired or oil-fired water heater, the sum of: The product of the annual gas or oil energy consumption, determined according to section 6.3.9 or 6.4.6 of appendix E of this subpart, times the representative average unit cost of gas or oil, as appropriate, in dollars per Btu as provided by the Secretary; plus the product of the annual electric energy consumption, determined according to section 6.3.8 or 6.4.5 of appendix E of this subpart, times the representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary. Round the resulting sum to the nearest dollar per year.
 (ii) For an electric water heater, the product of the annual energy consumption, determined according to section 6.3.7 or 6.4.4 of appendix E of this subpart, times the representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary. Round the resulting product to the nearest dollar per year.

(2) For an individual unit, determine the tested uniform energy factor in accordance with section 6.3.6 or 6.4.3 of appendix E of this subpart, and round the value to the nearest 0.01.

(f) Room air conditioners. (1) The estimated annual operating cost for room air conditioners, expressed in dollars per year, shall be determined by multiplying the following three factors:
 (i) The combined annual energy consumption for room air conditioners, expressed in kilowatt-hours per year, as determined in accordance with paragraph (f)(4) of this section, and
 (ii) A representative average unit cost of electrical energy in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(2) The energy efficiency ratio for room air conditioners, expressed in Btus per watt-hour, shall be the quotient of:
 (i) The cooling capacity in Btus per hour as determined in accordance with 5.1 of appendix F to this subpart multiplied by the representative average-use cycle of 750 hours of compressor operation per year, divided by
 (ii) The combined annual energy consumption as determined in accordance with paragraph (f)(4) of this section multiplied by a conversion factor of 1,000 to convert kilowatt-hours to watt-hours, the resulting quotient then being rounded off to the nearest 0.1 Btu per watt-hour.

(3) The average annual energy consumption for room air conditioners, expressed in kilowatt-hours per year, shall be determined by multiplying together the following two factors:
 (i) Electrical input power in kilowatts as determined in accordance with 5.2 of appendix F to this subpart, and
 (ii) The representative average-use cycle of 750 hours of compressor operation per year, the resulting product then being rounded off to the nearest kilowatt-hour per year.

(4) The combined annual energy consumption for room air conditioners, expressed in kilowatt-hours per year, shall be the sum of:
 (i) The average annual energy consumption as determined in accordance with paragraph (f)(4) of this section, and
 (ii) The standby mode and off mode energy consumption, as determined in accordance with 5.3 of appendix F to this subpart, the resulting sum then being rounded off to the nearest kilowatt-hour per year.

(5) The combined energy efficiency ratio for room air conditioners, expressed in Btu's per watt-hour, shall be the quotient of:
 (i) The cooling capacity in Btus per hour as determined in accordance with 5.1 of appendix F to this subpart multiplied by the representative average-use cycle of 750 hours of compressor operation per year, divided by
 (ii) The combined annual energy consumption as determined in accordance with paragraph (f)(4) of this section multiplied by a conversion factor of 1,000 to convert kilowatt-hours to watt-hours, the resulting quotient then being rounded off to the nearest 0.1 Btu per watt-hour.

(g) Unvented home heating equipment. (1) The estimated annual operating cost for primary electric heaters, shall be the product of: (i) The average annual electric energy consumption in kilowatt-hours per year, determined according to section 3.1 of appendix G of this subpart and (ii) the representative average unit cost in dollars per
kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting product then being rounded off to the nearest dollar per year.

(2) The estimated regional annual operating cost for primary electric heaters, shall be the product of: (i) The regional annual electric energy consumption in kilowatt-hours per year for primary heaters determined according to section 3.2 of appendix G of this subpart and (ii) the representative average unit cost in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting product then being rounded off to the nearest dollar per year.

(3) The estimated operating cost per million Btu output shall be:

(i) For primary and supplementary electric heaters and unvented gas and oil heaters without an auxiliary electric system, the product of: (A) One million; and (B) the representative unit cost in dollars per Btu for natural gas, propane, or oil, as provided pursuant to section 323(b)(2) of the Act as appropriate, or the quotient of the representative unit cost in dollars per kilowatt-hour, as provided pursuant to section 323(b)(2) of the Act, divided by 3,412 Btu per kilowatt hour, the resulting product then being rounded off to the nearest 0.01 dollar per million Btu output; and

(ii) For unvented gas and oil heaters with an auxiliary electric system, the product of: (A) The quotient of one million divided by the rated output in Btu's per hour as determined in 3.4 of appendix G of this subpart; and (B) the sum of: (1) The product of the maximum fuel input in Btu's per hour as determined in 2.2 of this appendix times the representative unit cost in dollars per Btu for natural gas, propane, or oil, as appropriate, as provided pursuant to section 323(b)(2) of the Act, plus (2) the product of the maximum auxiliary electric power in kilowatts as determined in 2.1 of appendix G of this subpart times the representative unit cost in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting quantity shall be rounded off to the nearest 0.01 dollar per million Btu output.

(4) The rated output for unvented heaters is the rated output as determined according to either sections 3.3 or 3.4 of appendix G of this subpart, as appropriate, with the result being rounded to the nearest 100 Btu per hour.

(5) Other useful measures of energy consumption for unvented home heating equipment shall be those measures of energy consumption for unvented home heating equipment which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix G of this subpart.

(h) Television sets. The power consumption of a television set, expressed in watts, including on mode, standby mode, and off mode power consumption values, shall be measured in accordance with sections 7.1, 7.3, and 7.4 of appendix H of this subpart respectively. The annual energy consumption, expressed in kilowatt-hours per year, shall be measured in accordance with section 8 of appendix H of this subpart.

(i) Cooking products. (1) Determine the integrated annual electrical energy consumption for conventional electric cooking tops, including any integrated annual electrical energy consumption for combined cooking products according to sections 4.1.2.2.2 and 4.2.2.2 of appendix I to this subpart. For conventional gas cooking tops, the integrated annual electrical energy consumption shall be equal to the sum of the conventional cooking top annual electrical energy consumption, E_{CCE}, as defined in section 4.1.2.2.2 or 4.2.2.2 of appendix I to this subpart, and the conventional cooking top annual combined low-power mode energy consumption, E_{CCTLP}, as defined in section 4.2.2.2 of appendix I to this subpart.

(2) Determine the annual gas energy consumption for conventional gas cooking tops according to section 4.1.2.2.1 of appendix I to this subpart.

(3) Determine the integrated annual energy consumption for conventional cooking tops according to sections
4.1.2.1.2, 4.1.2.2.2, 4.2.2.1, and 4.2.2.2, respectively, of appendix I to this subpart. Round the integrated annual energy consumption to one significant digit.

(4) The estimated annual operating cost corresponding to the energy consumption of a conventional cooking top, shall be the sum of the following products:
 (i) The integrated annual electrical energy consumption for any electric energy usage, in kilowatt-hours (kWh) per year, as determined in accordance with paragraph (i)(1) of this section, times the representative average unit cost for electricity, in dollars per kWh, as provided pursuant to section 323(b)(2) of the Act; plus
 (ii) The total annual gas energy consumption for any natural gas usage, in British thermal units (Btu) per year, as determined in accordance with paragraph (i)(2) of this section, times the representative average unit cost for natural gas, in dollars per Btu, as provided pursuant to section 323(b)(2) of the Act; plus
 (iii) The total annual gas energy consumption for any propane usage, in Btu per year, as determined in accordance with paragraph (i)(2) of this section, times the representative average unit cost for propane, in dollars per Btu, as provided pursuant to section 323(b)(2) of the Act.

(5) Determine the standby power for microwave ovens, excluding any microwave oven component of a combined cooking product, according to section 3.2.3 of appendix I to this subpart. Round standby power to the nearest 0.1 watt.

(6) For convertible cooking appliances, there shall be—
 (i) An estimated annual operating cost and an integrated annual energy consumption which represent values for the operation of the appliance with natural gas; and
 (ii) An estimated annual operating cost and an integrated annual energy consumption which represent values for the operation of the appliance with LP-gas.

(7) Determine the estimated annual operating cost for convertible cooking appliances that represents natural gas usage, as described in paragraph (i)(6)(i) of this section, according to paragraph (i)(4) of this section, using the total annual gas energy consumption for natural gas times the representative average unit cost for natural gas.

(8) Determine the estimated annual operating cost for convertible cooking appliances that represents LP-gas usage, as described in paragraph (i)(6)(ii) of this section, according to paragraph (i)(4) of this section, using the representative average unit cost for propane times the total annual energy consumption of the test gas, either propane or natural gas.

(9) Determine the integrated annual energy consumption for convertible cooking appliances that represents natural gas usage, as described in paragraph (i)(6)(i) of this section, according to paragraph (i)(3) of this section, when the appliance is tested with natural gas.

(10) Determine the integrated annual energy consumption for convertible cooking appliances that represents LP-gas usage, as described in paragraph (i)(6)(ii) of this section, according to paragraph (i)(3) of this section, when the appliance is tested with either natural gas or propane.

(11) Other useful measures of energy consumption for conventional cooking tops shall be the measures of energy consumption that the Secretary determines are likely to assist consumers in making purchasing decisions and that are derived from the application of appendix I to this subpart.

(j) Clothes washers. (1) The estimated annual operating cost for automatic and semi-automatic clothes washers must be rounded off to the nearest dollar per year and is defined as follows:
 (A) When electrically heated water is used,
 \[N_1 \times E_{\text{TE1}} \times C_{\text{KWH}} \]
 Where:
 \(N_1 \) = the representative average residential clothes washer use of 392 cycles per year according to appendix J1.
 \(E_{\text{TE1}} \) = the total per-cycle energy consumption when electrically heated water is used, in kilowatt-hours per cycle, determined according to section 4.1.7 of appendix J1, and
C_{KWH} = the representative average unit cost, in dollars per kilowatt-hour, as provided by the Secretary.

(B) When gas-heated or oil-heated water is used,

\[
(N_1 \times ((M_{E1} \times C_{KWH}) + (H_{E1} \times C_{BTU})))
\]

Where:
- \(N_1\) and \(C_{KWH}\) are defined in paragraph (j)(1)(i)(A) of this section,
- \(M_{E1} = \) the total weighted per-cycle machine electrical energy consumption, in kilowatt-hours per cycle, determined according to section 4.1.6 of appendix J1,
- \(H_{E1} = \) the total per-cycle hot water energy consumption using gas-heated or oil-heated water, in Btu per cycle, determined according to section 4.1.4 of appendix J1, and
- \(C_{BTU} = \) the representative average unit cost, in dollars per Btu for oil or gas, as appropriate, as provided by the Secretary.

(i) When using appendix J2 (see the note at the beginning of appendix J2),

(A) When electrically heated water is used,

\[
(N_2 \times (E_{TE2} + E_{TSO}) \times C_{KWH})
\]

Where:
- \(N_2\) = the representative average residential clothes washer use of 295 cycles per year according to appendix J2,
- \(E_{TE2} = \) the total per-cycle energy consumption when electrically heated water is used, in kilowatt-hours per cycle, determined according to section 4.1.7 of appendix J2,
- \(E_{TSO} = \) the per-cycle combined low-power mode energy consumption, in kilowatt-hours per cycle, determined according to section 4.1.6 of appendix J2, and
- \(C_{KWH} = \) the representative average unit cost, in dollars per kilowatt-hour, as provided by the Secretary.

(B) When gas-heated or oil-heated water is used,

\[
(N_2 \times ((M_{E2} \times C_{KWH}) + (H_{E2} \times C_{BTU})))
\]

Where:
- \(N_2\) and \(E_{TSO}\) are defined in (j)(1)(i)(A) of this section,
- \(M_{E2} = \) the total weighted per-cycle machine electrical energy consumption, in kilowatt-hours per cycle, determined according to section 4.1.6 of appendix J2,
- \(C_{KWH} = \) the representative average unit cost, in dollars per kilowatt-hour, as provided by the Secretary,
- \(H_{E2} = \) the total per-cycle hot water energy consumption using gas-heated or oil-heated water, in Btu per cycle, determined according to section 4.1.4 of appendix J2,
- \(C_{BTU} = \) the representative average unit cost, in dollars per Btu for oil or gas, as appropriate, as provided by the Secretary.

(2)(i) The modified energy factor for automatic and semi-automatic clothes washers is determined according to section 4.4 of appendix J1 (when using appendix J1) and section 4.5 of appendix J2 (when using appendix J2). The result shall be rounded off to the nearest 0.01 cubic foot per kilowatt-hour per cycle.

(ii) The integrated modified energy factor for automatic and semi-automatic clothes washers is determined according to section 4.6 of appendix J2 (when using appendix J2). The result shall be rounded off to the nearest 0.01 cubic foot per kilowatt-hour per cycle.

(3) The annual water consumption of a clothes washer must be determined as:

(i) When using appendix J1, the product of the representative average-use of 392 cycles per year and the total weighted per-cycle water consumption in gallons per cycle determined according to section 4.2.2 of appendix J1.

(ii) When using appendix J2, the product of the representative average-use of 295 cycles per year and the total weighted per-cycle water consumption for all wash cycles, in gallons per cycle, determined according to section 4.2.11 of appendix J2.

(4)(i) The water factor must be determined according to section 4.2.3 of appendix J1 (when using appendix J1) or section 4.2.12 of appendix J2 (when using appendix J2), with the result rounded to the nearest 0.1 gallons per cycle per cubic foot.

(ii) The integrated water factor must be determined according to section 4.2.13 of appendix J2, with the result rounded to the nearest 0.1 gallons per cycle per cubic foot.

(5) Other useful measures of energy consumption for automatic or semi-automatic clothes washers shall be those measures of energy consumption that the Secretary determines are likely to assist consumers in making purchasing decisions and that are derived from the application of appendix J1 or appendix J2, as appropriate.

(k)–(l) [Reserved]

(m) Central air conditioners and heat pumps. See the note at the beginning of appendix M and M1 to determine the
appropriate test method. Determine all values discussed in this section using a single appendix.

(1) Determine cooling capacity from the steady-state wet-coil test (A or A₂ Test), as described in section 3.2 of appendix M or M1 to this subpart, and rounded off to the nearest:

(i) To the nearest 50 Btu/h if cooling capacity is less than 20,000 Btu/h;
(ii) To the nearest 100 Btu/h if cooling capacity is greater than or equal to 20,000 Btu/h but less than 38,000 Btu/h; and
(iii) To the nearest 250 Btu/h if cooling capacity is greater than or equal to 38,000 Btu/h and less than 65,000 Btu/h.

(2) Determine seasonal energy efficiency ratio (SEER) as described in section 4.1 of appendix M to this subpart or seasonal energy efficiency ratio 2 (SEER2) as described in section 4.1 of appendix M1 to this subpart, and round off to the nearest 0.025 Btu/W-h.

(3) Determine energy efficiency ratio (EER) as described in section 4.6 of appendix M or M1 to this subpart, and round off to the nearest 0.025 Btu/W-h. The EER from the A or A₂ test, whichever applies, when tested in accordance with appendix M1 to this subpart, is referred to as EER2.

(4) Determine heating seasonal performance factors (HSPF) as described in section 4.2 of appendix M to this subpart or heating seasonal performance factors 2 (HSPF2) as described in section 4.2 of appendix M1 to this subpart, and round off to the nearest 0.025 Btu/W-h.

(5) Determine average off mode power consumption as described in section 4.3 of appendix M or M1 to this subpart, and round off to the nearest 0.5 W.

(6) Determine all other measures of energy efficiency or consumption or other useful measures of performance using appendix M or M1 of this subpart.

(n) Furnaces. (1) The estimated annual operating cost for furnaces is the sum of:

(i) The product of the average annual fuel energy consumption, in Btu’s per year for gas or oil furnaces or in kilowatt-hours per year for electric furnaces, determined according to section 10.5.1 or 10.5.3 of appendix N of this subpart, respectively, and the representative average unit cost in dollars per Btu for gas or oil, or dollars per kilowatt-hour for electric, as appropriate, as provided pursuant to section 323(b)(2) of the Act, plus (ii) the product of the average annual auxiliary electric energy consumption in kilowatt-hours per year determined according to section 10.2.3 of appendix N of this subpart, and the representative average unit cost in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting sum then being rounded off to the nearest dollar per year. (For furnaces which operate with variable inputs, an estimated annual operating cost is to be calculated for each degree of oversizing specified in section 10 of appendix N of this subpart.)

(2) The annual fuel utilization efficiency for furnaces, expressed in percent, is the ratio of the annual fuel output of useful energy delivered to the heated space to the annual fuel energy input to the furnace determined according to section 10.1 of appendix N of this subpart for gas and oil furnaces and determined in accordance with section 11.1 of the American National Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ANSI/ASHRAE) Standard 103–1993 (incorporated by reference, see § 430.3) for electric furnaces. Truncate the annual fuel utilization efficiency to one-tenth of a percentage point.

(3) The estimated regional annual operating cost for furnaces is the sum of:

(i) The product of the regional annual fuel energy consumption in Btu’s per year for gas or oil furnaces or in kilowatt-hours per year for electric furnaces, determined according to section 10.5.1 or 10.5.3 of appendix N of this subpart, respectively, and the representative average unit cost in dollars per Btu for gas or oil, or dollars per kilowatt-hour for electric, as appropriate, as provided pursuant to section 323(b)(2) of the Act, plus (ii) the product of the regional annual auxiliary electrical energy consumption in kilowatt-hours per year, determined according to section 10.5.2 of appendix N of this subpart, and the representative average unit cost in dollars per Btu for gas or oil, or dollars per kilowatt-hour for electric, as appropriate, as provided pursuant to section 323(b)(2) of the Act, the resulting
sum then being rounded off to the nearest dollar per year.

(4) The energy factor for furnaces, expressed in percent, is the ratio of annual fuel output of useful energy delivered to the heated space to the total annual energy input to the furnace determined according to section 10.4 of appendix N of this subpart.

(5) The average standby mode and off mode electrical power consumption for furnaces shall be determined according to section 8.6 of appendix N of this subpart. Round the average standby mode and off mode electrical power consumption to the nearest watt.

(6) Other useful measures of energy consumption for furnaces shall be those measures of energy consumption which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix N of this subpart.

(o) Vented home heating equipment. (1) When determining the annual fuel utilization efficiency (AFUE) of vented home heating equipment (see the note at the beginning of appendix O), expressed in percent (%), calculate AFUE in accordance with section 4.1.17 of appendix O of this subpart for vented heaters without either manual controls or thermal stack dampers; in accordance with section 4.2.6 of appendix O of this subpart for vented heaters equipped with manual controls; or in accordance with section 4.3.7 of appendix O of this subpart for vented heaters equipped with thermal stack dampers.

(2) When estimating the annual operating cost for vented home heating equipment, calculate the sum of:

 (i) The product of the average annual fossil fuel energy consumption, in Btus per year for natural gas, propane, or oil fueled vented home heating equipment, determined according to section 4.6.2 of appendix O of this subpart, and the representative average unit cost in dollars per Btu for natural gas, propane, or oil, as appropriate, as provided pursuant to section 323(b)(2) of the Act; plus

 (ii) The product of the maximum auxiliary electric power in kilowatts as determined in section 3.1.3 of appendix O of this subpart times the quantity 3.412; and

 (p) Pool heaters. (1) Determine the thermal efficiency (E_d) of a pool heater expressed as a percent (%) in accordance with section 5.1 of appendix P to this subpart.

 (2) Determine the integrated thermal efficiency (TE_d) of a pool heater expressed as a percent (%) in accordance with section 5.4 of appendix P to this subpart.

 (3) When estimating the annual operating cost of pool heaters, calculate the sum of:

 (i) The product of the average annual fossil fuel energy consumption, in Btus per year, determined according to section 5.2 of appendix P to this subpart, and the representative average unit cost in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act. Round the resulting sum to the nearest dollar per year.
cost in dollars per Btu for natural gas or oil, as appropriate, as provided pursuant to section 323(b)(2) of the Act; plus

(ii) The product of the average annual electrical energy consumption in kilowatt-hours per year determined according to section 5.3 of appendix P to this subpart and converted to kilowatt-hours using a conversion factor of 3412 Btus = 1 kilowatt-hour, and the representative average unit cost in dollars per kilowatt-hours as provided pursuant to section 323(b)(2) of the Act. Round the resulting sum to the nearest dollar per year.

(q) Fluorescent Lamp Ballasts. (1) Calculate the estimated annual energy consumption (EAEC) for fluorescent lamp ballasts, expressed in kilowatt-hours per year, by multiplying together the following values: (i) The input power in kilowatts measured in accordance with section 2.5.1.6 of appendix Q to this part; and (ii) The representative average use cycle of 1,000 hours per year. Round the resulting product to the nearest kilowatt-hour per year.

(2) Calculate ballast luminous efficiency (BLE) using section 2.6.1 of appendix Q to this subpart.

(3) Calculate the estimated annual operating cost (EAOC) for fluorescent lamp ballasts, expressed in dollars per year, by multiplying together the following values: (i) The representative average unit energy cost of electricity in dollars per kilowatt-hour as provided by the Secretary, (ii) The representative average use cycle of 1,000 hours per year, and (iii) The input power in kilowatts measured in accordance with section 2.5.1.6 of appendix Q to this part. Round the resulting product to the nearest dollar per year.

(r) General service fluorescent lamps, general service incandescent lamps, and incandescent reflector lamps. (1) The estimated annual energy consumption for general service fluorescent lamps, general service incandescent lamps, and incandescent reflector lamps, expressed in kilowatt-hours per year, shall be the product of the input power in kilowatts as determined in accordance with section 4 of appendix R to this subpart and an average annual use specified by the manufacturer, with the resulting product rounded off to the nearest kilowatt-hour per year. Manufacturers must provide a clear and accurate description of the assumptions used for the estimated annual energy consumption.

(2) The lamp efficacy for general service fluorescent lamps shall be equal to the average lumen output divided by the average lamp wattage as determined in section 4 of appendix R of this subpart, with the resulting quotient rounded off to the nearest tenth of a lumen per watt.

(3) The lamp efficacy for general service incandescent lamps shall be equal to the average lumen output divided by the average lamp wattage as determined in section 4 of appendix R of this subpart, with the resulting quotient rounded off to the nearest tenth of a lumen per watt.

(4) The lamp efficacy for incandescent reflector lamps shall be equal to the average lumen output divided by the average lamp wattage as determined in section 4 of appendix R of this subpart, with the resulting quotient rounded off to the nearest tenth of a lumen per watt.

(5) The color rendering index of a general service fluorescent lamp shall be tested and determined in accordance with section 4.4 of appendix R of this subpart and rounded off to the nearest unit.

(6) The rated lifetime for general service incandescent lamps shall be measured in accordance with test procedures described in section 4.2 of Appendix R of this chapter. A lamp shall be compliant with standards if greater than 50 percent of the sample size specified in §429.27 meets the minimum rated lifetime as specified by energy conservations standards for general service incandescent lamps.

(s) Faucets. The maximum permissible water use allowed for lavatory faucets, lavatory replacement aerators, kitchen faucets, and kitchen replacement aerators, expressed in gallons and liters per minute (gpm and L/min), shall be measured in accordance to section 2(a) of appendix S of this subpart. The maximum permissible water use allowed for metering faucets, expressed
§ 430.23

in gallons and liters per cycle (gal/cycle and L/cycle), shall be measured in accordance to section 2(a) of appendix S of this subpart.

(t) Showerheads. The maximum permissible water use allowed for showerheads, expressed in gallons and liters per minute (gpm and L/min), shall be measured in accordance to section 2(b) of appendix S of this subpart.

(u) Water closets. The maximum permissible water use allowed for water closets, expressed in gallons and liters per flush (gpf and Lpf), shall be measured in accordance to section 3(a) of appendix T of this subpart.

(v) Urinals. The maximum permissible water use allowed for urinals, expressed in gallons and liters per flush (gpf and Lpf), shall be measured in accordance to section 3(b) of appendix T of this subpart.

(w) Ceiling fans. Measure the efficiency of a ceiling fan, expressed in cubic feet per minute per watt (CFM/W), in accordance with appendix U to this subpart.

(x) Ceiling fan light kits. (1) For each ceiling fan light kit that is required to comply with the energy conservation standards as of January 1, 2007:

(i) For a ceiling fan light kit with medium screw base sockets that is packaged with compact fluorescent lamps, measure lamp efficacy, lumen maintenance at 1,000 hours, lumen maintenance at 40 percent of lifetime, rapid cycle stress test, and time to failure in accordance with paragraph (y) of this section.

(ii) For a ceiling fan light kit packaged with general service fluorescent lamps, measure lamp efficacy in accordance with paragraph (r) of this section for each lamp basic model.

(iii) For a ceiling fan light kit packaged with incandescent lamps, measure lamp efficacy in accordance with paragraph (r) of this section for each lamp basic model.

(iv) For a ceiling fan light kit packaged with integrated LED lamps, measure lamp efficacy in accordance with paragraph (ee) of this section for each lamp basic model.

(v) For a ceiling fan light kit packaged with other fluorescent lamps (not compact fluorescent lamps or general service fluorescent lamps), packaged with other SSL products (not integrated LED lamps) or with integrated SSL circuitry, measure efficacy in accordance with section 3 of appendix V1 of this subpart for each lamp basic model or integrated SSL basic model.

(y) Compact fluorescent lamps. (1) Measure initial lumen output, input power, initial lamp efficacy, lumen maintenance at 1,000 hours, lumen maintenance at 40 percent of lifetime of a compact fluorescent lamp (as defined in 10 CFR 430.2), color rendering index (CRI), correlated color temperature (CCT), power factor, start time, standby mode energy consumption, and time to failure in accordance with appendix W of this subpart.

(2) Conduct the rapid cycle stress test in accordance with section 3.3 of appendix W of this subpart.

(2) Dehumidifiers. When using appendix X, determine the capacity, expressed in pints per day (pints/day), and the energy factor, expressed in liters per kilowatt hour (L/kWh), in accordance with section 4.1 of appendix X of this subpart. When using appendix X1, determine the capacity, expressed in pints/day, according to section 5.2 of appendix X1 to this subpart; determine
the integrated energy factor, expressed in L/kWh, according to section 5.4 of appendix X1 to this subpart; and determine the case volume, expressed in cubic feet, for whole-home dehumidifiers in accordance with section 5.7 of appendix X1 of this subpart.

(aa) Battery Chargers. (1) Measure the maintenance mode power, standby power, off mode power, battery discharge energy, 24-hour energy consumption and measured duration of the charge and maintenance mode test for a battery charger other than uninterruptible power supplies in accordance with appendix Y to this subpart.

(2) Calculate the unit energy consumption of a battery charger other than uninterruptible power supplies in accordance with appendix Y to this subpart.

(3) Calculate the average load adjusted efficiency of an uninterruptible power supply in accordance with appendix Y to this subpart.

(bb) External Power Supplies. The energy consumption of an external power supply, including active-mode efficiency expressed as a percentage and the no-load, off, and standby mode energy consumption levels expressed in watts, shall be measured in accordance with section 4 of appendix Z of this subpart.

(cc) Furnace Fans. The energy consumption of a single unit of a furnace fan basic model expressed in watts per 1000 cubic feet per minute (cfm) to the nearest integer shall be calculated in accordance with Appendix AA of this subpart.

(dd) Portable air conditioners. (1) For single-duct and dual-duct portable air conditioners, measure the seasonally adjusted cooling capacity, expressed in British thermal units per hour (Btu/h), and the combined energy efficiency ratio, expressed in British thermal units per watt-hour (Btu/Wh) in accordance with appendix CC of this subpart.

(2) Determine the estimated annual operating cost for portable air conditioners, expressed in dollars per year, by multiplying the following two factors:

(i) For dual-duct portable air conditioners, the sum of AECSD multiplied by 0.2, AEC83 multiplied by 0.8, and AECT as measured in accordance with section 5.3 of appendix CC of this subpart; or for single-duct portable air conditioners, the sum of AECSD and AECT as measured in accordance with section 5.3 of appendix CC of this subpart; and

(ii) A representative average unit cost of electrical energy in dollars per kilowatt-hour as provided by the Secretary.

(iii) Round the resulting product to the nearest dollar per year.

(ee) Integrated light-emitting diode lamp. (1) The input power of an integrated light-emitting diode lamp must be measured in accordance with section 3 of appendix BB of this subpart.

(2) The lumen output of an integrated light-emitting diode lamp must be measured in accordance with section 3 of appendix BB of this subpart.

(3) The lamp efficacy of an integrated light-emitting diode lamp must be calculated in accordance with section 3 of appendix BB of this subpart.

(4) The correlated color temperature of an integrated light-emitting diode lamp must be measured in accordance with section 3 of appendix BB of this subpart.

(5) The color rendering index of an integrated light-emitting diode lamp must be measured in accordance with section 3 of appendix BB of this subpart.

(6) The power factor of an integrated light-emitting diode lamp must be measured in accordance with section 3 of appendix BB of this subpart.

(7) The time to failure of an integrated light-emitting diode lamp must be measured in accordance with section 4 of appendix BB of this subpart.

(8) The standby mode power must be measured in accordance with section 5 of appendix BB of this subpart.

(ff) Coolers and combination cooler refrigeration products. (1) The estimated annual operating cost for models without an anti-sweat heater switch shall be the product of the following three factors, with the resulting product then being rounded to the nearest dollar per year:

(i) The representative average-use cycle of 365 cycles per year;
(ii) The average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to section 6.2 of appendix A of this subpart; and

(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary.

(2) The estimated annual operating cost for models with an anti-sweat heater switch shall be the product of the following three factors, with the resulting product then being rounded to the nearest dollar per year:

(i) The representative average-use cycle of 365 cycles per year;

(ii) Half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat heater switch in the position set at the factory just before shipping, each in kilowatt-hours per cycle, determined according to section 6.2 of appendix A of this subpart; and

(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary.

(3) The estimated annual operating cost for any other specified cycle type shall be the product of the following three factors, with the resulting product then being rounded to the nearest dollar per year:

(i) The representative average-use cycle of 365 cycles per year;

(ii) The average per-cycle energy consumption for the specified cycle type, determined according to section 6.2 of appendix A of this subpart; and

(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary.

(4) The energy factor, expressed in cubic feet per kilowatt-hour per cycle, shall be:

(i) For models without an anti-sweat heater switch, the quotient of:

(A) The adjusted total volume in cubic feet, determined according to section 6.1 of appendix A of this subpart, divided by—

(B) The average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to section 6.2 of appendix A of this subpart, with the resulting quotient then being rounded to the second decimal place; and

(ii) For models having an anti-sweat heater switch, the quotient of:

(A) The adjusted total volume in cubic feet, determined according to section 6.1 of appendix A of this subpart, divided by—

(B) Half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat heater switch in the position set at the factory just before shipping, each in kilowatt-hours per cycle, determined according to section 6.2 of appendix A of this subpart, with the resulting quotient then being rounded to the second decimal place.

(5) The annual energy use, expressed in kilowatt-hours per year, shall be the following, rounded to the nearest kilowatt-hour per year:

(i) For models without an anti-sweat heater switch, the representative average use cycle of 365 cycles per year multiplied by the average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to section 6.2 of appendix A of this subpart; and

(ii) For models having an anti-sweat heater switch, the representative average use cycle of 365 cycles per year multiplied by half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat heater switch in the position set at the factory just before shipping, each in kilowatt-hours per cycle, determined according to section 6.2 of appendix A of this subpart.

(6) Other useful measures of energy consumption shall be those measures of energy consumption that the Secretary determines are likely to assist consumers in making purchasing decisions which are derived from the application of appendix A of this subpart.

(7) The following principles of interpretation shall be applied to the test procedure. The intent of the energy test procedure is to simulate operation in typical room conditions (72 °F (22.2
Department of Energy

§ 430.25 Laboratory Accreditation Program.

The testing for general service fluorescent lamps, general service incandescent lamps (with the exception of lifetime testing), general service lamps (with the exception of applicable lifetime testing), incandescent reflector lamps, compact fluorescent lamps, and fluorescent lamp ballasts, and integrated light-emitting diode lamps must be conducted by test laboratories accredited by an Accreditation Body that is a signatory member to the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement (MRA). A manufacturer's