(2) Method 5 shall be used to determine the particulate matter concentration (c_s) and volumetric flow rate (Q_{sd}) of the effluent gas. The sampling time and sample volume for each run shall be at least 60 minutes and 1.50 dscm (53 dscf).

(3) Direct measurement using product weigh scales, or the result of computations using a material balance, shall be used to determine the rate (P) of the ammonium sulfate production. If production rate is determined by material balance, the following equations shall be used:

(i) For synthetic and coke oven by-product ammonium sulfate plants:

$$P = ABCK^{\frac{1}{4}}$$

where:

$A =$ sulfuric acid flow rate to the reactor/crystallizer averaged over the time-period taken to conduct the run, liter/min.

$B =$ acid density (a function of acid strength and temperature), g/cc.

$C =$ acid strength, decimal fraction.

$K^{\frac{1}{4}} =$ conversion factor, 0.0808 (Mg-min-cc)/(g-hr-liter) [0.0891 (ton-min-cc)/(g-hr-liter)].

(ii) For caprolactam by-product ammonium sulfate plants:

$$P = DEFK'$$

where:

$D =$ total combined feed stream flow rate to the ammonium crystallizer before the point where any recycle streams enter the stream averaged over the time-period taken to conduct the test run, liter/min.

$E =$ density of the process stream solution, g/liter.

$F =$ percent mass of ammonium sulfate in the process solution, decimal fraction.

$K' =$ conversion factor, 6.0×10^{-5} (Mg-min) / (g-hr) [6.614 $\times 10^{-5}$ (ton-min) / (g-hr)].

(4) Method 9 and the procedures in §60.11 shall be used to determine the opacity.

Subpart QQ—Standards of Performance for the Graphic Arts Industry: Publication Rotogravure Printing

Source: 47 FR 50649, Nov. 8, 1982, unless otherwise noted.
and folding the printed web, where the following saleable paper products are printed:

- Catalogues, including mail order and premium.
- Direct mail advertisements, including circulars, letters, pamphlets, cards, and printed envelopes.
- Display advertisements, including general posters, outdoor advertisements, car cards, window posters; counter and floor displays; point-of-order, and other printed display material.
- Magazines.
- Miscellaneous advertisements, including brochures, pamphlets, catalogue sheets, circular folders, announcements, package inserts, book jackets, market circulars, magazine inserts, and shopping news.
- Newspapers, magazine and comic supplements for newspapers, and preprinted newspaper inserts, including hi-fi and spectacolor rolls and sections.
- Periodicals, and Telephone and other directories, including business reference services.

Raw ink means all purchased ink.

Related coatings means all non-ink purchased liquids and liquid-solid mixtures containing VOC solvent, usually referred to as extenders or varnishes, that are used at publication rotogravure printing presses.

Rotogravure printing unit means any device designed to print one color ink on one side of a continuous web or substrate using a gravure cylinder.

Solvent-borne ink systems means ink and related coating mixtures whose volatile portion consists of a mixture of VOC solvent and more than five weight percent water, as applied to the gravure cylinder.

Solvent recovery system means an air pollution control system by which VOC solvent vapors in air or other gases are captured and directed through a condenser(s) or a vessel(s) containing beds of activated carbon or other adsorbents. For the condensation method, the solvent is recovered directly from the condenser. For the adsorption method, the vapors are adsorbed, then desorbed by steam or other media, and finally condensed and recovered.

VOC means volatile organic compound.

VOC solvent means an organic liquid or liquid mixture consisting of VOC components.

Waterborne ink systems means ink and related coating mixtures whose volatile portion consists of a mixture of VOC solvent and more than five weight percent water, as applied to the gravure cylinder.

(b) Symbols used in this subpart are defined as follows:

\[D_{\text{VOC}} = \text{the density at the base temperature of VOC solvent used or recovered during one performance averaging period.} \]

\[D_{\text{w}} = \text{the density of each color of raw ink and each related coating (i) used at the subject facility (or facilities), at the coating temperature when the volume of coating used is measured.} \]

\[D_{\text{m}} = \text{the density of each VOC solvent (i) added to the ink for dilution at the subject facility (or facilities), at the solvent temperature when the volume of coating used is measured.} \]

\[D_{\text{u}} = \text{the density of each VOC solvent (i) used as a cleaning agent at the subject facility (or facilities), at the solvent temperature when the volume of cleaning solvent used is measured.} \]

\[D_{\text{w}} = \text{the density of each quantity of water (i) added to the subject facility (or facilities) for dilution of waterborne ink systems at the water temperature when the volume of dilution water used is measured.} \]

\[D_{\text{m}} = \text{the density of each quantity of VOC solvent and miscellaneous solvent-borne waste inks and waste VOC solvents (i) recovered from the subject facility (or facilities), at the solvent temperature when the volume of solvent recovered is measured.} \]

\[D_{\text{u}} = \text{the density of the VOC solvent contained in each raw ink and related coating (i) used at the subject facility (or facilities), at the coating temperature when the volume of coating used is measured.} \]

\[D_{\text{w}} = \text{the density of the water contained in each waterborne raw ink and related coating (i) used at the subject facility (or facilities), at the coating temperature when the volume of coating used is measured.} \]

\[L_{\text{VOC}} = \text{the measured liquid volume of each color of raw ink and each related coating (i) used at the facility of a corresponding VOC content, } V_{\text{VOC}} \text{ or } W_{\text{VOC}} \text{ with a VOC density, } D_{\text{w}}, \text{ and a coating density, } D_{\text{u}}. \]

\[L_{\text{w}} = \text{the measured liquid volume of each VOC solvent (i) with corresponding density, } D_{\text{w}} \text{, added to dilute the ink used at the subject facility (or facilities).} \]

\[M_{\text{VOC}} = \text{the mass, determined by direct weighing, of each color of raw ink and each related coating (i) used at the subject facility (or facilities).} \]
§ 60.432 Standard for volatile organic compounds.

(c) The following subscripts are used in this subpart with the above symbols to denote the applicable facility:

\(a \) = affected facility.

\(b \) = both affected and existing facilities controlled in common by the same air pollution control equipment.

\(e \) = existing facility.

\(f \) = all affected and existing facilities located within the same plant boundary.

§ 60.432 Standard for volatile organic compounds.

During the period of the performance test required to be conducted by §60.8 and after the date required for completion of the test, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility VOC equal to more than 16 percent of the total mass of VOC solvent and water used at that facility during any one performance averaging period. The water used includes only that water contained in the waterborne raw inks and related coatings and the water added for dilution with waterborne ink systems.

§ 60.433 Performance test and compliance provisions.

(a) The owner or operator of any affected facility (or facilities) shall conduct performance tests in accordance with §60.8, under the following conditions:

(1) The performance averaging period for each test is 30 consecutive calendar days and not an average of three separate runs as prescribed under §60.8(f).

(2) Except as provided under paragraphs (f) and (g) of this section, if affected facilities routinely share the same raw ink storage/handling system with existing facilities, then temporary measurement procedures for segregating the raw inks, related coatings, VOC solvent, and water used at the affected facilities must be employed during the test. For this case, an overall emission percentage for the combined facilities as well as for only the affected facilities must be calculated during the test.

(3) For the purpose of measuring bulk storage tank quantities of each color of...
raw ink and each related coating used, the owner or operator of any affected facility shall install, calibrate, maintain, and continuously operate during the test one or more:

(i) Non-resettable totalizer metering device(s) for indicating the cumulative liquid volumes used at each affected facility; or

(ii) Segregated storage tanks for each affected facility to allow determination of the liquid quantities used by measuring devices other than the press meters required under item (i) of this article; or

(iii) Storage tanks to serve more than one facility with the liquid quantities used determined by measuring devices other than press meters, if facilities are combined as described under paragraph (d), (f), or (g) of this section.

(4) The owner or operator may choose to install an automatic temperature compensator with any liquid metering device used to measure the raw inks, related coatings, water, or VOC solvent used, or VOC solvent recovered.

(5) Records of the measured amounts used at the affected facility and the liquid temperature at which the amounts were measured are maintained for each shipment of all purchased material on at least a weekly basis for:

(i) The raw inks and related coatings used;

(ii) The VOC and water content of each raw ink and related coating used as determined according to §60.435;

(iii) The VOC solvent and water added to the inks used;

(iv) The VOC solvent used as a cleaning agent; and

(v) The VOC solvent recovered.

(6) The density variations with temperature of the raw inks, related coatings, VOC solvents used, and VOC solvent recovered are determined by the methods stipulated in §60.435(d).

(7) The calculated emission percentage may be reported as rounded-off to the nearest whole number.

(8) Printing press startups and shutdowns are not included in the exemption provisions under §60.8(c). Frequent periods of press startups and shutdowns are normal operations and constitute representative conditions for the purpose of a performance test.

(b) If an affected facility uses waterborne ink systems or a combination of waterborne and solvent-borne ink systems with a solvent recovery system, compliance is determined by the following procedures, except as provided in paragraphs (d), (e), (f), and (g) of this section:

(1) The mass of VOC in the solventborne and waterborne raw inks and related coatings used is determined by the following equation:

\[
(M_o)_a = \sum_{i=1}^{k} (M_{oi})_a (W_{oi})_a + \sum_{i=1}^{m} (L_{ci})_a (D_{ci})_a (W_{oi})_a + \sum_{i=1}^{n} (L_{ci})_a (V_{oi})_a (D_{oi})_a
\]

where:

- \(k\) is the total number of raw inks and related coatings measured as used in direct mass quantities with different amounts of VOC content.
- \(m\) is the total number of raw inks and related coatings measured as used by volume with different amounts of VOC content or different densities.
- \(n\) is the total number of raw inks and related coatings measured as used by volume with different amounts of VOC content or different VOC solvent densities.

(2) The total mass of VOC used is determined by the following equation:

\[
(M_1)_a = (M_p)_a + \sum_{i=1}^{m} (L_{di})_a (D_{di})_a + (M_d)_a + \sum_{i=1}^{n} (L_{gi})_a (D_{gi})_a + (M_g)_a
\]

where “\(m\)” and “\(n\)” are the respective total numbers of VOC dilution and cleaning solvents measured as used by volume with different densities.

(3) The mass of water in the waterborne raw inks and related coatings used is determined by the following equation:
\[(M_w)_a = \sum_{i=1}^{k} (M_{ci})_a (W_{wi})_a + \sum_{i=1}^{m} (L_{ci})_a (D_{ci})_a (W_{wi})_a + \sum_{i=1}^{n} (L_{ci})_a (V_{wi})_a (D_{wi})_a\]

where:
- \(k\) is the total number of raw inks and related coatings measured as used in direct mass quantities with different amounts of water content.
- \(m\) is the total number of raw inks and related coatings measured as used by volume with different amounts of water content or different densities.
- \(n\) is the total number of raw inks and related coatings measured as used by volume with different amounts of water content or different water densities.

(4) The total mass of water used is determined by the following equation:

\[(M_w)_a = (M_{w})_a + \sum_{i=1}^{k} (L_{ci})_a (D_{ci})_a (W_{wi})_a\]

where "m" is the total number of water dilution additions measured as used by volume with different densities.

(5) The total mass of VOC solvent recovered is determined by the following equation:

\[(M_v)_a = (M_{v})_a + \sum_{i=1}^{k} (L_{mi})_a (D_{mi})_a\]

where "k" if the total number of VOC solvents, miscellaneous solvent-borne waste inks, and waste VOC solvents measured as recovered by volume with different densities.

(6) The average VOC emission percentage for the affected facility is determined by the following equation:

\[P_a = \left(\frac{[M_{v}]-[M_{w}]}{[M_{v}]+[M_{w}]} \right) \times 100\]

(c) If an affected facility controlled by a solvent recovery system uses only solvent-borne ink systems, the owner or operator may choose to determine compliance on a direct mass or a density-corrected liquid volume basis. Except as provided in paragraphs (d), (e), (f), and (g) of this section, compliance is determined as follows:

(1) On a direct mass basis, compliance is determined according to paragraph (b) of this section, except that the water term, \(M_w\), does not apply.

(2) On a density-corrected liquid volume basis, compliance is determined by the following procedures:

(i) A base temperature corresponding to that for the largest individual amount of VOC solvent used or recovered from the affected facility, or other reference temperature, is chosen by the owner or operator.

(ii) The corrected liquid volume of VOC in the raw inks and related coatings used is determined by the following equation:

\[\left(L_{o} \right)_a = \sum_{i=1}^{k} \left(\frac{(M_{ci})_a (W_{oi})_a}{D_B} \right) + \sum_{i=1}^{m} \left(\frac{(L_{ci})_a (D_{ci})_a (W_{oi})_a}{D_B} \right) + \sum_{i=1}^{n} \left(\frac{(L_{ci})_a (V_{oi})_a (D_{oi})_a}{D_B} \right)\]

where:
- \(k\) is the total number of raw inks and related coatings measured as used in direct mass quantities with different amounts of VOC content.
- \(m\) is the total number of raw inks and related coatings measured as used by volume with different amounts of VOC content or different densities.
- \(n\) is the total number of raw inks and related coatings measured as used by volume with different amounts of VOC content or different VOC solvent densities.

(iii) The total corrected liquid volume of VOC used is determined by the following equation:

\[\left(L_{t} \right)_a = \left(L_{o} \right)_a + \sum_{i=1}^{m} \left(\frac{(L_{di})_a (D_{di})_a}{D_B} + \frac{(M_{g})_a}{D_B} \right) + \sum_{i=1}^{n} \left(\frac{(L_{gi})_a (D_{gi})_a}{D_B} + \frac{(M_{g})_a}{D_B} \right)\]

where "m" and "n" are the respective total numbers of VOC dilution and cleaning solvents measured as used by volume with different densities.
Environmental Protection Agency § 60.433

(iv) The total corrected liquid volume of VOC solvent recovered is determined by the following equation:

\[P_c = \frac{(L_t)_k - (L_t)_e}{(L_t)_e} \times 100 \]

where “k” is the total number of VOC solvents, miscellaneous solvent-borne waste inks, and waste VOC solvents measured as recovered by volume with different densities.

(v) The average VOC emission percentage for the affected facility is determined by the following equation:

\[P_a = \frac{(L_t)_a - (L_t)_a}{(L_t)_a} \times 100 \]

(d) If two or more affected facilities are controlled by the same solvent recovery system, compliance is determined by the procedures specified in paragraph (b) or (c) of this section, whichever applies, except that (Lₜₐ), (Mₜₐ), (Mₐₜ), and (Mᵥₐₜ), are the collective amounts of VOC solvent and water corresponding to all the affected facilities controlled by that solvent recovery system. The average VOC emission percentage for each of the affected facilities controlled by that same solvent recovery system is assumed to be equal.

(e) Except as provided under paragraph (f) of this section, if an existing facility (or facilities) uses a combination of waterborne and solvent-borne ink systems, the average VOC emission percentage must be determined on a direct mass basis according to paragraph (b) or (d) of this section, whichever applies, with the following equation:

\[P_e = \frac{(M_t)_k - (M_t)_e}{(M_t)_e} \times 100 \]

where the water and VOC solvent amounts pertain to only existing facilities.

(2) During the emission test, the affected facilities are subject to the standard stated in §60.432.

(3) The emission test is conducted over a 30 consecutive calendar day averaging period according to the conditions stipulated in paragraphs (a)(1) through (a)(5) of this section, except that the conditions pertain to only existing facilities instead of affected facilities.

(4) The owner or operator of the existing facility (or facilities) shall provide the Administrator at least 30 days prior notice of the emission test to afford the Administrator the opportunity to have an observer present.

(5) The emission percentage for the existing facility (or facilities) during the emission test is determined by one of the following procedures:

(i) If the existing facility (or facilities) uses only solvent-borne ink systems, the owner or operator may choose to determine the emission percentage either on a direct mass basis or a density-corrected liquid volume basis according to paragraph (c) or (d) of this section, whichever applies. On a direct mass basis, the average VOC emission percentage is determined by the equation presented in article (i) of this paragraph. On a density-corrected liquid volume basis, the average VOC emission percentage is determined by the following equation:

\[P_e = \frac{(L_t)_k - (L_t)_e}{(L_t)_e} \times 100 \]

where the VOC solvent amounts pertain to only existing facilities.

(ii) If the existing facility (or facilities) uses only solvent-borne ink systems, the owner or operator may choose to determine the emission percentage either on a direct mass basis or a density-corrected liquid volume basis according to paragraph (c) or (d) of this section, whichever applies. On a direct mass basis, the average VOC emission percentage is determined by the equation presented in article (i) of this paragraph. On a density-corrected liquid volume basis, the average VOC emission percentage is determined by the following equation:

\[P_e = \frac{(M_t)_k - (M_t)_e}{(M_t)_e} \times 100 \]

where the VOC solvent amounts pertain to only existing facilities.

(6) The owner or operator of the existing facility (or facilities) shall furnish the Administrator a written report of the results of the emission test.
(7) After completion of the separate emission test on the existing facility (or facilities), the owner or operator shall conduct performance test(s) on the combined facilities with the solvent recovery system handling VOC emissions from both the existing and affected facilities.

(8) During performance test(s), the emission percentage for the existing facility (or facilities), \(P_e\), is assumed to be equal to that determined in the latest emission test. The administrator may request additional emission tests if any physical or operational changes occur to any of the subject existing facilities.

(9) The emission percentage for the affected facility (or facilities) during performance test(s) with both existing and affected facilities connected to the solvent recovery system is determined by one of the following procedures:

(i) If any of the combined facilities uses both waterborne and solvent-borne ink systems, the average VOC emission percentage must be determined on a direct mass basis according to paragraph (b) or (d) of this section, whichever applies, with the following equation:

\[
P_e = \left(\frac{M_{rb} - M_{rb} - (P_e \times 100)}{M_{rb} + M_{rb}} \right) \times 100
\]

where \((M_{rb})\) and \((M_{rb})\) are the collective VOC solvent amounts pertaining to all the combined facilities.

(ii) If all of the combined facilities use only solvent-borne ink systems, the owner or operator may choose to determine performance of the affected facility (or facilities) either on a direct mass basis or a density-corrected liquid volume basis according to paragraph (c) or (d) of this section, whichever applies. On a direct mass basis, the average VOC emission percentage is determined by the equation presented in article (i) of this paragraph. On a density-corrected liquid volume basis, the average VOC emission percentage is determined by the following equation:

\[
P_e = \left(\frac{(L_{rb} - L_{rb})}{(L_{rb})} \right) \times 100
\]

(10) The owner or operator may choose to show compliance of the combined performance of existing and affected facilities controlled in common by the same solvent recovery system. A separate emission test for existing facilities is not required for this option. The combined performance is determined by one of the following procedures:

(i) If any of the combined facilities uses both waterborne and solvent-borne ink systems, the combined average VOC emission percentage must be determined on a direct mass basis according to paragraph (b) or (d) of this section, whichever applies, with the following equation:

\[
P_{MB} = \left(\frac{M_{rb} - (M_{rb} + (P_e \times 100))}{M_{rb} + (M_{rb})} \right) \times 100
\]

(2) If all of the combined facilities use only solvent-borne ink systems, the owner or operator may choose to determine performance either on a direct mass basis or a density-corrected liquid volume basis according to paragraph (c) or (d) of this section, whichever applies. On a direct mass basis, the average VOC emission percentage is determined by the equation presented in article (i) of this paragraph. On a density-corrected liquid volume basis, the average VOC emission percentage is determined by the following equation:

\[
P_e = \left(\frac{(L_{rb} - L_{rb})}{(L_{rb})} \right) \times 100
\]

(g) If all existing and affected facilities located within the same plant boundary use waterborne ink systems or solvent-borne ink systems with solvent recovery systems, the owner or operator may choose to show compliance on a plantwide basis for all the existing and affected facilities together. No separate emission tests on existing facilities and no temporary segregated liquid measurement procedures for affected facilities are required for this option. The plantwide performance is determined by one of the following procedures:
Environmental Protection Agency § 60.435

(1) If any of the facilities use waterborne ink systems, the total plant average VOC emission percentage must be determined on a direct mass basis according to paragraph (b) of this section with the following equation:

\[P_L = \frac{M_{tL} - M_{vL} - \left(\frac{P_{vL}}{100} \right) (M_{tL} + M_{vL})}{M_{tL} + M_{vL}} \times 100 \]

Where \((M_{tL})_f\) and \((M_{vL})_f\) are the collective VOC solvent and water amounts used at all the subject plant facilities during the performance test.

(2) If all of the plant facilities use only solvent-borne ink systems, the owner or operator may choose to determine performance either on a direct mass basis or a density-corrected liquid volume basis according to paragraph (c) of this section. On a direct mass basis, the total plant average VOC emission percentage is determined by the equation presented in article (i) of this paragraph. On a density-corrected liquid volume basis, the total plant average VOC emission percentage is determined by the following equation:

\[P_L = \frac{(L_{tL})_f - (L_{vL})_f - (L_{tL})_f - (L_{vL})_f}{(L_{tL})_f} \times 100 \]

Where \((L_{tL})_f\) is the collective VOC solvent amount used at all the subject plant facilities during the performance test.

§ 60.434 Monitoring of operations and recordkeeping.

(a) After completion of the performance test required under §60.8, the owner or operator of any affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems shall record the amount of solvent and water used, solvent recovered, and estimated emission percentage for each performance averaging period and shall maintain these records for 2 years. The emission percentage is estimated as follows:

(1) The performance averaging period for monitoring of proper operation and maintenance is a calendar month or 4 consecutive weeks, at the option of the owner or operator.

(2) If affected facilities share the same raw ink storage/handling system with existing facilities, solvent and water used, solvent recovered, and emission percentages for the combined facilities may be documented. Separate emission percentages for only the affected facilities are not required in this case. The combined emission percentage is compared to the overall average for the existing and affected facilities’ emission percentage determined during the most recent performance test.

(3) Except as provided in article (4) of this paragraph, temperatures and liquid densities determined during each performance averaging period may be used to calculate corrected volumes and mass quantities.

(4) The owner or operator may choose to measure temperatures for determination of actual liquid densities during each performance averaging period. A different base temperature may be used for each performance averaging period if desired by the owner or operator.

(5) The emission percentage is calculated according to the procedures under §60.433 (b) through (g), whichever applies, or by a comparable calculation which compares the total solvent recovered to the total solvent used at the affected facility.

§ 60.435 Test methods and procedures.

(a) The owner or operator of any affected facility using solvent-borne ink systems shall determine the VOC content of the raw inks and related coatings used at the affected facility by:

(1) Analysis using Method 24A of routine weekly samples of raw ink and related coatings in each respective storage tank; or

(2) Analysis using Method 24A of samples of each shipment of all purchased raw inks and related coatings; or

(3) Determination of the VOC content from the formulation data supplied by the ink manufacturer with each shipment of raw inks and related coatings used.

(b) The owner or operator of any affected facility using solvent-borne ink systems shall use the results of verification analyses by Method 24A to determine compliance when discrepancies with ink manufacturers’ formulation data occur.
(c) The owner or operator of any affected facility using waterborne ink systems shall determine the VOC and water content of raw inks and related coatings used at the affected facility by:

(1) Determination of the VOC and water content from the formulation data supplied by the ink manufacturer with each shipment of purchased raw inks and related coatings used; or

(2) Analysis of samples of each shipment of purchased raw inks and related coatings using a test method approved by the Administrator in accordance with § 60.8(b).

(d) The owner or operator of any affected facility shall determine the density of raw inks, related coatings, and VOC solvents by:

(1) Making a total of three determinations for each liquid sample at specified temperatures using the procedure outlined in ASTM D1475–60, 80, or 90, which is incorporated by reference. It is available from the American Society of Testing and Materials, 1916 Race Street, Philadelphia, Pennsylvania 19103. It is also available for inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. This incorporation by reference was approved by the Director of the Federal Register on November 8, 1982. This material is incorporated as it exists on the date of approval and a notice of any change in these materials will be published in the FEDERAL REGISTER. The temperature and density is recorded as the arithmetic average of the three determinations; or

(2) Using literature values, at specified temperatures, acceptable to the Administrator.

(e) If compliance is determined according to § 60.433(e), (f), or (g), the existing as well as affected facilities are subject to the requirements of paragraphs (a) through (d) of this section.

Subpart RR—Standards of Performance for Pressure Sensitive Tape and Label Surface Coating Operations

SOURCE: 48 FR 48375, Oct. 18, 1983, unless otherwise noted.

§ 60.440 Applicability and designation of affected facility.

(a) The affected facility to which the provisions of this subpart apply is each coating line used in the manufacture of pressure sensitive tape and label materials.

(b) Any affected facility which inputs to the coating process 45 Mg (50 tons) of VOC or less per 12 month period is not subject to the emission limits of § 60.442(a), however, the affected facility is subject to the requirements of all other applicable sections of this subpart. If the amount of VOC input exceeds 45 Mg (50 tons) per 12 month period, the coating line will become subject to § 60.442(a) and all other sections of this subpart.

(c) This subpart applies to any affected facility which begins construction, modification, or reconstruction after December 30, 1980.

§ 60.441 Definitions and symbols.

(a) Except as otherwise required by the context, terms used in this subpart are defined in the Act, in subpart A of this part, or in this section as follows:

Coating applicator means an apparatus used to apply a surface coating to a continuous web.

Coating line means any number or combination of adhesive, release, or precoat coating applicators, flashoff areas, and ovens which coat a continuous web, located between a web unwind station and a web rewind station, to produce pressure sensitive tape and label materials.

Coating solids applied means the solids content of the coated adhesive, release, or precoat as measured by Method 24.

Flashoff area means the portion of a coating line after the coating applicator and usually before the oven entrance.