to the general method described in ASTM E260–73, 91, or 96, E168–67, 77, or 92, or E169–63, 77, or 93 (incorporated by reference as specified in § 60.17) shall be used.

(3)(i) An owner or operator may use engineering judgment rather than procedures in paragraph (b)(2) of this section to demonstrate that the percent content exceeds 50 percent by volume, provided the engineering judgment demonstrates that the content clearly exceeds 50 percent by volume. When an owner or operator and the Administrator do not agree on whether a piece of equipment is in hydrogen service, however, the procedures in paragraph (b)(2) of this section shall be used to resolve the disagreement.

(ii) If an owner or operator determines that a piece of equipment is in hydrogen service, the determination can be revised only after following the procedures in paragraph (b)(2).

(c) Any existing reciprocating compressor that becomes an affected facility under provisions of § 60.14 or § 60.15 is exempt from § 60.482–3a(a), (b), (c), (d), (e), and (h) provided the owner or operator demonstrates that recasting the distance piece or replacing the compressor are the only options available to bring the compressor into compliance with the provisions of § 60.482–3a(a), (b), (c), (d), (e), and (h).

(d) An owner or operator may use the following provision in addition to § 60.485a(e): Equipment is in light liquid service if the percent evaporated is greater than 10 percent at 150 °C as determined by ASTM Method D86–78, 82, 90, 93, 95, or 96 (incorporated by reference as specified in § 60.17).

(e) Pumps in light liquid service and valves in gas/vapor and light liquid service within a process unit that is located in the Alaskan North Slope are exempt from the requirements of §§ 60.482–2a and 60.482–7a.

(f) Open-ended valves or lines containing asphalt as defined in § 60.591a are exempt from the requirements of § 60.482–6a through (c).

(g) Connectors in gas/vapor or light liquid service are exempt from the requirements in § 60.482–11a, provided the owner or operator complies with § 60.482–8a for all connectors, not just those in heavy liquid service.

§ 60.600 Applicability and designation of affected facility.

(a) Except as provided in paragraph (b) of this section, the affected facility to which the provisions of this subpart apply is each solvent-spun synthetic fiber process that produces more than 500 Mg (551 ton) of fiber per year.

(b) The provisions of this subpart do not apply to any facility that uses the reaction spinning process to produce spandex fiber or the viscose process to produce rayon fiber.

(c) The provisions of this subpart apply to each facility as identified in paragraph (a) of this section and that commences construction or reconstruction after November 23, 1982. The provisions of this subpart do not apply to facilities that commence modification but not reconstruction after November 23, 1982.

§ 60.601 Definitions.

All terms that are used in this subpart and are not defined below are given the same meaning as in the Act and in subpart A of this part.

Acrylic fiber means a manufactured synthetic fiber in which the fiber-forming substance is any long-chain synthetic polymer composed of at least 85 percent by weight of acrylonitrile units.

Makeup solvent means the solvent introduced into the affected facility that compensates for solvent lost from the affected facility during the manufacturing process.

Nongaseous losses means the solvent that is not volatilized during fiber production, and that escapes the process and is unavailable for recovery, or is in a form or concentration unsuitable for economical recovery.

Polymer means any of the natural or synthetic compounds of usually high molecular weight that consist of many
repeated links, each link being a relatively light and simple molecule.

Precipitation bath means the water, solvent, or other chemical bath into which the polymer or prepolymer (partially reacted material) solution is extruded, and that causes physical or chemical changes to occur in the extruded solution to result in a semihardened polymeric fiber.

Rayon fiber means a manufactured fiber composed of regenerated cellulose, as well as manufactured fibers composed of regenerated cellulose in which substituents have replaced not more than 15 percent of the hydrogens of the hydroxyl groups.

Reaction spinning process means the fiber-forming process where a prepolymer is extruded into a fluid medium and solidification takes place by chemical reaction to form the final polymeric material.

Recovered solvent means the solvent captured from liquid and gaseous process streams that is concentrated in a control device and that may be purified for reuse.

Solvent feed means the solvent introduced into the spinning solution preparation system or precipitation bath. This feed stream includes the combination of recovered solvent and makeup solvent.

Solvent inventory variation means the normal changes in the total amount of solvent contained in the affected facility.

Solvent recovery system means the equipment associated with capture, transportation, collection, concentration, and purification of organic solvents. It may include enclosures, hoods, ducting, piping, scrubbers, condensers, carbon adsorbers, distillation equipment, and associated storage vessels.

Spandex fiber means a manufactured fiber in which the fiber-forming substance is a long chain synthetic polymer comprised of at least 85 percent of a segmented polyurethane.

Spinning solution means the mixture of polymer, prepolymer, or copolymer and additives dissolved in solvent. The solution is prepared at a viscosity and solvent-to-polymer ratio that is suitable for extrusion into fibers.

Spinning solution preparation system means the equipment used to prepare spinning solutions; the system includes equipment for mixing, filtering, blending, and storage of the spinning solutions.

Synthetic fiber means any fiber composed partially or entirely of materials made by chemical synthesis, or made partially or entirely from chemically-modified naturally-occurring materials.

Viscose process means the fiber forming process where cellulose and concentrated caustic soda are reacted to form soda or alkali cellulose. This reacts with carbon disulfide to form sodium cellulose xanthate, which is then dissolved in a solution of caustic soda. After ripening, the solution is spun into an acid coagulating bath. This precipitates the cellulose in the form of a regenerated cellulose filament.

§ 60.602 Standard for volatile organic compounds.

On and after the date on which the initial performance test required to be conducted by §60.8 is completed, no owner or operator subject to the provisions of this subpart shall cause the discharge into the atmosphere from any affected facility that produces acrylic fibers, VOC emissions that exceed 10 kg/Mg (20 lb/ton) solvent feed to the spinning solution preparation system or precipitation bath. VOC emissions from affected facilities that produce both acrylic and nonacrylic fiber types shall not exceed 10 kg/Mg (20 lb/ton) solvent feed. VOC emissions from affected facilities that produce
only nonacrylic fiber types shall not exceed 17 kg/Mg (34 lb/ton) solvent feed. Compliance with the emission limitations is determined on a 6-month rolling average basis as described in §60.603.

§60.603 Performance test and compliance provisions.

(a) Section 60.8(f) does not apply to the performance test procedures required by this subpart.

(b) Each owner or operator of an affected facility shall determine compliance with the applicable standard in §60.602(a) by determining and recording monthly the VOC emissions per unit mass solvent feed from each affected facility for the current and preceding 5 consecutive calendar months and using these values to calculate the 6-month average emissions. Each calculation is considered a performance test. The owner or operator of an affected facility shall use the following procedure to determine VOC emissions for each calendar month:

(1) Install, calibrate, maintain, and operate monitoring devices that continuously measure and permanently record for each calendar month the amount of makeup solvent and solvent feed. These values shall be used in calculating VOC emissions according to paragraph (b)(2) of this section. All monitoring devices, meters, and peripheral equipment shall be calibrated and any error recorded. Total compounded error of the flow measuring and recording devices shall not exceed 1 percent accuracy over the operating range. As an alternative to measuring solvent feed, the owner or operator may:

(i) Measure the amount of recovered solvent returned to the solvent feed storage tanks, and use the following equation to determine the amount of solvent feed:

\[
\text{Solvent Feed} = \sum_{i=1}^{n} \left(\frac{S_{w}}{S_{w} + S_{p}} D \right)
\]

where subscript “i” denotes each particular spinning solution used during the test period; values of “n” vary from one to the total number of spinning solutions, “n,” used during the calendar month.

(ii) Measure and record the amount of polymer introduced into the affected facility and the solvent-to-polymer ratio of the spinning solutions, and use the following equation to determine the amount of solvent feed:

\[
E = \frac{M_{w}}{S_{w}} - N - I \quad \text{and} \quad M_{w} = M_{v} S_{p} D
\]

\[
S_{w} = -\frac{S_{v} - S_{p}}{K}
\]

\[
I = \frac{I_{E} - I_{S}}{S_{w}}
\]

where all values are for the calendar month only and where

\[
E = \text{VOC Emissions, in kg/Mg (lb/ton) solvent;}
\]

\[
S_{v} = \text{Measured or calculated volume of solvent feed, in liters (gallons);}
\]

\[
S_{w} = \text{Weight of solvent feed, in Mg (ton);}
\]

\[
M_{v} = \text{Measured volume of makeup solvent, in liters (gallons);}
\]

\[
M_{w} = \text{Weight of makeup, in kg (lb);}
\]

\[
N = \text{Allowance for nongaseous losses, 13 kg/Mg (26 lb/ton) solvent feed;}
\]

\[
S_{p} = \text{Fraction of measured volume that is actual solvent (excludes water);}
\]

\[
D = \text{Density of the solvent, in kg/liter (lb/gallon);}
\]

\[
K = \text{Conversion factor, 1,000 kg/Mg (2,000 lb/ton);}
\]

\[
I = \text{Allowance for solvent inventory variation or changes in the amount of solvent contained in the affected facility, in kg/Mg (lb/ton) solvent feed may be positive or negative;}
\]

\[
I_{E} = \text{Amount of solvent contained in the affected facility at the beginning of the test period, as determined by the owner or operator, in kg (lb);}
\]

\[
I_{S} = \text{Amount of solvent contained in the affected facility at the close of the test period, as determined by the owner or operator, in kg (lb).}
\]

(3) N, as used in the equation in paragraph (b)(2) of this section, equals 13 kg/Mg (26 lb/ton) solvent feed to the spinning solution preparation system and precipitation bath. This value shall be used in all cases unless an owner or
Environmental Protection Agency

§ 60.610

Subpart III—Standards of Performance for Volatile Organic Compound (VOC) Emissions From the Synthetic Organic Chemical Manufacturing Industry (SOCMI) Air Oxidation Unit Processes

SOURCE: 55 FR 26922, June 29, 1990, unless otherwise noted.

§ 60.610 Applicability and designation of affected facility.

(a) The provisions of this subpart apply to each affected facility designated in paragraph (b) of this section that produces any of the chemicals listed in §60.617 as a product, co-product, by-product, or intermediate, except as provided in paragraph (c) of this section.

(b) The affected facility is any of the following for which construction, modification, or reconstruction commenced after October 21, 1983:

(1) Each air oxidation reactor not discharging its vent stream into a recovery system.

(2) Each combination of an air oxidation reactor and the recovery system into which its vent stream is discharged.

(3) Each combination of two or more air oxidation reactors and the common recovery system into which their vent streams are discharged.

(c) Each affected facility that has a total resource effectiveness (TRE) index value greater than 4.0 is exempt from all provisions of this subpart except for §§60.612, 60.614(f), 60.615(h), and 60.615(l).

(d) Alternative means of compliance—

(1) Option to comply with part 65. Owners or operators of process vents that are subject to this subpart may choose to comply with the provisions of 40 CFR part 65, subpart D, to satisfy the requirements of §§60.612 through 60.615 and 60.618. The provisions of 40 CFR part 65 are provided in 40 CFR 65.1.

(2) Part 60, subpart A. Owners or operators who choose to comply with 40