SCHEDULE D.6—PERMANENT WAIVER FROM INTERIM CONTROLS TEST—Continued

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Discount factors</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XXXX</td>
</tr>
<tr>
<td>8. Present value of future cash flows</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XXXX</td>
</tr>
<tr>
<td>B. Net present value:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Horizon value</td>
<td>12</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>2. Discount factor</td>
<td>13</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>3. Present value of horizon value</td>
<td>14</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>4. Present value of future cash flows</td>
<td>15</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>5. Total present value</td>
<td>16</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>6. Current salvage value</td>
<td>17</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>7. Net present value</td>
<td>18</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
</tbody>
</table>

SCHEDULE D.7—HORIZON VALUE OF CASH FLOWS

<table>
<thead>
<tr>
<th>Line</th>
<th>Final forecast years</th>
<th>Horizon years</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Depreciation-free horizon value:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Net cash flow projections</td>
<td>01</td>
<td>..........</td>
<td>XXXX</td>
</tr>
<tr>
<td>2. Depreciation tax savings:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Depreciation and amortization</td>
<td>02</td>
<td>..........</td>
<td>XXXX</td>
</tr>
<tr>
<td>b. Marginal tax rate</td>
<td>03</td>
<td>..........</td>
<td>XXXX</td>
</tr>
<tr>
<td>c. Tax savings</td>
<td>04</td>
<td>..........</td>
<td>XXXX</td>
</tr>
<tr>
<td>3. Depreciation-free net cash flows:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Nominal dollar values</td>
<td>05</td>
<td>..........</td>
<td>XXXX</td>
</tr>
<tr>
<td>b. 1990 dollar values</td>
<td>06</td>
<td>..........</td>
<td>XXXX</td>
</tr>
<tr>
<td>c. Average</td>
<td>07</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>4. Horizon factor</td>
<td>08</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>5. Depreciation-free horizon value</td>
<td>09</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>B. Depreciation tax savings over the horizon period:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Depreciation and amortization</td>
<td>10</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>2. Marginal tax rate</td>
<td>11</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>3. Tax savings</td>
<td>12</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>4. Discount factors</td>
<td>13</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>5. Present value of tax savings</td>
<td>14</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>6. Total present value of tax savings</td>
<td>15</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>C. Horizon Value</td>
<td>16</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
</tbody>
</table>

PART 58—AMBIENT AIR QUALITY SURVEILLANCE

Subpart A—General Provisions

- 58.1 Definitions.
- 58.2 Purpose.
- 58.3 Applicability.

Subpart B—Monitoring Network

- 58.10 Annual monitoring network plan and periodic network assessment.
Environmental Protection Agency

Subpart D—Comparability of Ambient Data to the NAAQS

58.30 Special considerations for data comparisons to the NAAQS.

Subpart E [Reserved]

Subpart F—Air Quality Index Reporting

58.50 Index reporting.

Subpart G—Federal Monitoring

58.60 Federal monitoring.
58.61 Monitoring other pollutants.

APPENDIX A TO PART 58—QUALITY ASSURANCE REQUIREMENTS FOR STATE AND LOCAL AIR MONITORING STATIONS (SLAMS)

APPENDIX B TO PART 58 [RESERVED]

APPENDIX C TO PART 58—AMBIENT AIR QUALITY MONITORING METHODOLOGY

APPENDIX D TO PART 58—NETWORK DESIGN CRITERIA FOR AMBIENT AIR QUALITY MONITORING

APPENDIX E TO PART 58—PROBE AND MONITORING PATH SITING CRITERIA FOR AMBIENT AIR QUALITY MONITORING

APPENDIX F TO PART 58 [RESERVED]

APPENDIX G TO PART 58—UNIFORM AIR QUALITY INDEX (AQI) AND DAILY REPORTING

AUTHORITY: 42 U.S.C. 7403, 7405, 7410, 7414, 7601, 7611, 7614, and 7619.

SOURCE: 44 FR 27571, May 10, 1979; 59 FR 41628, Aug. 12, 1994, unless otherwise noted.

Subpart A—General Provisions

SOURCE: 71 FR 61296, Oct. 17, 2006, unless otherwise noted.

§ 58.1 Definitions.

As used in this part, all terms not defined herein have the meaning given them in the Act.

AADT means the annual average daily traffic.

Act means the Clean Air Act as amended (42 U.S.C. 7401, et seq.).

Additive and multiplicative bias means the linear regression intercept and slope of a linear plot fitted to corresponding candidate and reference method mean measurement data pairs.

Administrator means the Administrator of the Environmental Protection Agency (EPA) or his or her authorized representative.

Air Quality System (AQS) means EPA’s computerized system for storing and reporting of information relating to ambient air quality data.

Approved regional method (ARM) means a continuous PM2.5 method that has been approved specifically within a State or local air monitoring network for purposes of comparison to the NAAQS and to meet other monitoring objectives.

AQCR means air quality control region.

Area-wide means all monitors sited at neighborhood, urban, and regional scales, as well as those monitors sited at either micro- or middle-scale that are representative of many such locations in the same CBSA.

CO means carbon monoxide.

Combined statistical area (CSA) is defined by the U.S. Office of Management and Budget as a geographical area consisting of two or more adjacent Core Based Statistical Areas (CBSA) with employment interchange of at least 15 percent. Combination is automatic if the employment interchange is 25 percent and determined by local opinion if more than 15 but less than 25 percent (http://www.census.gov/population/estimates/metro-city/List6.txt).

Core-based statistical area (CBSA) is defined by the U.S. Office of Management and Budget, as a statistical geographic entity consisting of the county or counties associated with at least one urbanized area/urban cluster of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration. Metropolitan Statistical Areas (MSAs) and micropolitan statistical areas are the two categories of CBSA (metropolitan areas have populations greater than 50,000; and micropolitan areas have populations between 10,000 and 50,000).

In the case of very large cities where two or more CBSAs are combined, these larger areas are referred to as combined statistical areas (CSAs) (http://www.census.gov/population/estimates/metro-city/List1.txt).

Corrected concentration pertains to the result of an accuracy or precision assessment test of an open path analyzer in which a high-concentration test or audit standard gas contained in a short test cell is inserted into the optical measurement beam of the instrument. When the pollutant concentration measured by the analyzer in such
a test includes both the pollutant concentration in the test cell and the concentration in the atmosphere, the atmospheric pollutant concentration must be subtracted from the test measurement to obtain the corrected concentration test result. The corrected concentration is equal to the measured concentration minus the average of the atmospheric pollutant concentrations measured (without the test cell) immediately before and immediately after the test.

Design value means the calculated concentration according to the applicable appendix of part 50 of this chapter for the highest site in an attainment or nonattainment area.

EDO means environmental data operations.

Effective concentration pertains to testing an open path analyzer with a high-concentration calibration or audit standard gas contained in a short test cell inserted into the optical measurement beam of the instrument. Effective concentration is the equivalent ambient-level concentration that would produce the same spectral absorbance over the actual atmospheric monitoring path length as produced by the high-concentration gas in the short test cell. Quantitatively, effective concentration is equal to the actual concentration of the gas standard in the test cell multiplied by the ratio of the path length of the test cell to the actual atmospheric monitoring path length.

Federal equivalent method (FEM) means a method for measuring the concentration of an air pollutant in the ambient air that has been designated as an equivalent method in accordance with part 50 of this chapter; it does not include a method for which an equivalent method designation has been canceled in accordance with §53.11 or §53.16 of this chapter.

HNO₃ means nitric acid.

Local agency means any local government agency, other than the State agency, which is charged by a State with the responsibility for carrying out a portion of the plan.

Meteorological measurements means measurements of wind speed, wind direction, barometric pressure, temperature, relative humidity, solar radiation, ultraviolet radiation, and/or precipitation.

Metropolitan Statistical Area (MSA) means a CBSA associated with at least one urbanized area of 50,000 population or greater. The central county plus adjacent counties with a high degree of integration comprise the area.

Monitor means an instrument, sampler, analyzer, or other device that measures or assists in the measurement of atmospheric air pollutants and which is acceptable for use in ambient air surveillance under the applicable provisions of appendix C to this part.

Monitoring agency means a State or local agency responsible for meeting the requirements of this part.

Monitoring organization means a State, local, or other monitoring organization responsible for operating a monitoring site for which the quality assurance regulations apply.

Monitoring path for an open path analyzer means the actual path in space between two geographical locations over which the pollutant concentration is measured and averaged.

Monitoring path length of an open path analyzer means the length of the monitoring path in the atmosphere over which the average pollutant concentration measurement (path-averaged concentration) is determined. See also, optical measurement path length.

Monitoring planning area (MPA) means a contiguous geographic area with established, well defined boundaries, such as a CBSA, county or State, having a common area that is used for planning monitoring locations for PM₂.₅. An MPA may cross State boundaries, such as the Philadelphia PA–NJ MSA, and be further subdivided into community monitoring zones. MPAs are generally oriented toward CBSAs or CSAs with populations greater than
200,000, but for convenience, those portions of a State that are not associated with CBSAs can be considered as a single MPA.

NATTs means the national air toxics trends stations. This network provides hazardous air pollution ambient data.

NCore means the National Core multipollutant monitoring stations. Monitors at these sites are required to measure particles (PM$_{2.5}$, speciated PM$_{2.5}$, PM$_{10-2.5}$, O$_3$, SO$_2$, CO, nitrogen oxides (NO/NO$_2$/NO$_x$), Pb, and basic meteorology.

Near-road NO$_x$ Monitor means any NO$_x$ monitor meeting the specifications in 4.3.2 of appendix D and paragraphs 2, 4(d), 6.1, and 6.4 of appendix E of this part.

Network means all stations of a given type or types.

NH$_3$ means ammonia.

NO$_2$ means nitrogen dioxide. NO means nitrogen oxide. NO$_x$ means oxides of nitrogen and is defined as the sum of the concentrations of NO$_2$ and NO.

NO$_x$ means the sum of all total reactive nitrogen oxides, including NO, NO$_2$, and other nitrogen oxides referred to as NO$_2$.

O$_3$ means ozone.

Open path analyzer means an automated analytical method that measures the average atmospheric pollutant concentration in situ along one or more monitoring paths having a monitoring path length of 5 meters or more and that has been designated as a reference or equivalent method under the provisions of part 53 of this chapter.

Optical measurement path length means the actual length of the optical beam over which measurement of the pollutant is determined. The path-integrated pollutant concentration measured by the analyzer is divided by the optical measurement path length to determine the path-averaged concentration. Generally, the optical measurement path length is:

1. Equal to the monitoring path length for a (bistatic) system having a transmitter and a receiver at opposite ends of the monitoring path;
2. Equal to twice the monitoring path length for a (monostatic) system having a transmitter and receiver at one end of the monitoring path and a mirror or retroreflector at the other end;
3. Equal to some multiple of the monitoring path length for more complex systems having multiple passes of the measurement beam through the monitoring path.

PAMS means photochemical assessment monitoring stations.

Pb means lead.

Plan means an implementation plan approved or promulgated pursuant to section 110 of the Act.

PM means PM$_{10}$, PM$_{10C}$, PM$_{2.5}$, or particulate matter of unspecified size range.

PM$_{2.5}$ means particulate matter with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers as measured by a reference method based on appendix L of part 50 of this chapter and designated in accordance with part 53 of this chapter, by an equivalent method designated in accordance with part 53 of this chapter, or by an approved regional method designated in accordance with appendix C to this part.

PM$_{10}$ means particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers as measured by a reference method based on appendix J of part 50 of this chapter and designated in accordance with part 53 of this chapter or by an equivalent method designated in accordance with part 53 of this chapter.

PM$_{10C}$ means particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers as measured by a reference method based on appendix O of part 50 of this chapter and designated in accordance with part 53 of this chapter or by an equivalent method designated in accordance with part 53 of this chapter.

PM$_{10-2.5}$ means particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers and greater than a nominal 2.5 micrometers as measured by a reference method based on appendix O to part 50 of this chapter and designated in accordance with part 53 of this chapter or by an equivalent method designated in accordance with part 53 of this chapter.
Point analyzer means an automated analytical method that measures pollutant concentration in an ambient air sample extracted from the atmosphere at a specific inlet probe point and that has been designated as a reference or equivalent method in accordance with part 53 of this chapter.

Population-oriented monitoring (or sites) means residential areas, commercial areas, recreational areas, industrial areas where workers from more than one company are located, and other areas where a substantial number of people may spend a significant fraction of their day.

Primary quality assurance organization means a monitoring organization or other organization that is responsible for a set of stations that monitor the same pollutant and for which data quality assessments can be pooled. Each criteria pollutant sampler/monitor at a monitoring station in the SLAMS and SPM networks must be associated with one, and only one, primary quality assurance organization.

Probe means the actual inlet where an air sample is extracted from the atmosphere for delivery to a sampler or point analyzer for pollutant analysis.

PSD station means any station operated for the purpose of establishing the effect on air quality of the emissions from a proposed source for purposes of prevention of significant deterioration as required by §51.24(n) of this chapter.

Regional Administrator means the Administrator of one of the ten EPA Regional Offices or his or her authorized representative.

Reporting organization means an entity, such as a State, local, or Tribal monitoring agency, that collects and reports air quality data to EPA.

Site means a geographic location. One or more stations may be at the same site.

SLAMS means State or local air monitoring stations. The SLAMS make up the ambient air quality monitoring sites that are primarily needed for NAAQS comparisons, but may serve other data purposes. SLAMS exclude special purpose monitor (SPM) stations and include NCore, PAMS, and all other State or locally operated stations that have not been designated as SPM stations.

SO₂ means sulfur dioxide.

Special purpose monitor (SPM) station means a monitor included in an agency’s monitoring network that the agency has designated as a special purpose monitor station in its monitoring network plan and in the Air Quality System, and which the agency does not count when showing compliance with the minimum requirements of this subpart for the number and siting of monitors of various types.

State agency means the air pollution control agency primarily responsible for development and implementation of a plan under the Act.

State speciation site means a supplemental PM₂.₅ speciation station that is not part of the speciation trends network.

Station means a single monitor, or a group of monitors with a shared objective, located at a particular site.

STN station means a PM₂.₅ speciation station designated to be part of the speciation trends network. This network provides chemical species data of fine particulate.

Traceable means that a local standard has been compared and certified, either directly or via not more than one intermediate standard, to a National Institute of Standards and Technology (NIST)-certified primary standard such as a NIST-traceable Reference Material (NTRM) or a NIST-certified Gas Manufacturer’s Internal Standard (GMIS).

TSP (total suspended particulates) means particulate matter as measured by the method described in appendix B of part 50 of this chapter.

Urbanized area means an area with a minimum residential population of at least 50,000 people and which generally includes core census block groups or blocks that have a population density of at least 1,000 people per square mile and surrounding census blocks that have an overall density of at least 500 people per square mile. The Census Bureau notes that under certain conditions, less densely settled territory may be part of each Urbanized Area.

VOC means volatile organic compounds.

Environmental Protection Agency

§ 58.10 Annual monitoring network plan and periodic network assessment.

(a)(1) Beginning July 1, 2007, the State, or where applicable local, agen-

§ 58.2 Purpose.

(a) This part contains requirements for measuring ambient air quality and for reporting ambient air quality data and related information. The moni-
toring criteria pertain to the following areas:

(1) Quality assurance procedures for monitor operation and data handling.
(2) Methodology used in monitoring stations.
(3) Operating schedule.
(4) Siting parameters for instruments or instrument probes.
(5) Minimum ambient air quality monitoring network requirements used to provide support to the State implement-
tation plans (SIP), national air quality assessments, and policy deci-
sions. These minimums are described as part of the network design require-
ments, including minimum numbers and placement of monitors of each type.
(6) Air quality data reporting, and require-
ments for the daily reporting of an index of ambient air quality.
(b) The requirements pertaining to provisions for an air quality surveil-
ance system in the SIP are contained in this part.
(c) This part also acts to establish a national ambient air quality moni-
toring network for the purpose of providing timely air quality data upon which to base national assessments and policy decisions.

§ 58.3 Applicability.

This part applies to:

(a) State air pollution control agencies.
(b) Any local air pollution control agency to which the State has dele-
gated authority to operate a portion of the State’s SLAMS network.
(c) Owners or operators of proposed sources.

Subpart B—Monitoring Network

SOURCE: 71 FR 61298, Oct. 17, 2006, unless otherwise noted.
annual network plan required in paragraph (a)(1) of this section. The plan shall provide for the required source-oriented Pb monitoring sites for Pb sources emitting 1.0 tpy or greater to be operational by January 1, 2010. A plan for establishing source-oriented Pb monitoring sites in accordance with the requirements of appendix D to this part for Pb sources emitting equal to or greater than 0.50 tpy but less than 1.0 tpy shall be submitted to the EPA Regional Administrator no later than July 1, 2011. The plan shall provide for the required source-oriented Pb monitoring sites for Pb sources emitting equal to or greater than 0.50 tpy but less than 1.0 tpy to be operational by December 27, 2011.

(5)(i) A plan for establishing or identifying an area-wide NO\textsubscript{2} monitor, in accordance with the requirements of Appendix D, section 4.3.3 to this part, shall be submitted as part of the Annual Monitoring Network Plan to the EPA Regional Administrator by July 1, 2012. The plan shall provide for these required monitors to be operational by January 1, 2013.

(ii) A plan for establishing or identifying any NO\textsubscript{2} monitor intended to characterize vulnerable and susceptible populations, as required in Appendix D, section 4.3.4 to this part, shall be submitted as part of the Annual Monitoring Network Plan to the EPA Regional Administrator by January 1, 2013. The plan shall provide for these required monitors to be operational by January 1, 2013.

(iii) A plan for establishing a single near-road NO\textsubscript{2} monitor in CBSAs having 1,000,000 or more persons, in accordance with the requirements of Appendix D, section 4.3.2 to this part, shall be submitted as part of the Annual Monitoring Network Plan to the EPA Regional Administrator by January 1, 2013. The plan shall provide for these required monitors to be operational by January 1, 2013.

(iv) A plan for establishing a second near-road NO\textsubscript{2} monitor in any CBSA with a population of 2,500,000 or more persons, or a second monitor in any CBSA with a population of 500,000 or more persons that has one or more roadway segments with 250,000 or greater AADT counts, in accordance with the requirements of Appendix D, section 4.3.2 to this part, shall be submitted as part of the Annual Monitoring Network Plan to the EPA Regional Administrator by January 1, 2015.

(v) A plan for establishing a single near-road NO\textsubscript{2} monitor in all CBSAs having 500,000 or more persons, but less than 1,000,000, not already required by paragraph (a)(5)(iv) of this section, in accordance with the requirements of Appendix D, section 4.3.2 to this part, shall be submitted as part of the Annual Monitoring Network Plan to the EPA Regional Administrator by July 1, 2016. The plan shall provide for these monitors to be operational by January 1, 2017.

(6) A plan for establishing SO\textsubscript{2} monitoring sites in accordance with the requirements of appendix D to this part shall be submitted to the EPA Regional Administrator by July 1, 2011 as part of the annual network plan required in paragraph (a)(1). The plan shall provide for all required SO\textsubscript{2} monitoring sites to be operational by January 1, 2013.

(7) A plan for establishing CO monitoring sites in accordance with the requirements of appendix D to this part shall be submitted to the EPA Regional Administrator. Plans for required CO monitors shall be submitted at least six months prior to the date such monitors must be established as required by section 58.13.

(8)(i) A plan for establishing near-road PM\textsubscript{2.5} monitoring sites in CBSAs having 2.5 million or more persons, in accordance with the requirements of Appendix D to this part, shall be submitted as part of the annual monitoring network plan to the EPA Regional Administrator by January 1, 2014.

(ii) A plan for establishing near-road PM\textsubscript{2.5} monitoring sites in CBSAs having 1 million or more persons, but less than 2.5 million persons, in accordance with the requirements of appendix D to this part, shall be submitted as part of the annual monitoring network plan to the EPA Regional Administrator by January 1, 2015.
July 1, 2016. The plan shall provide for these required monitoring stations to be operational by January 1, 2017.

(b) The annual monitoring network plan must contain the following information for each existing and proposed site:

1. The AQS site identification number.
2. The location, including street address and geographical coordinates.
3. The sampling and analysis method(s) for each measured parameter.
4. The operating schedules for each monitor.
5. Any proposals to remove or move a monitoring station within a period of 18 months following plan submittal.
6. The monitoring objective and spatial scale of representativeness for each monitor as defined in appendix D to this part.
7. The identification of any sites that are suitable and sites that are not suitable for comparison against the annual PM$_{2.5}$ NAAQS as described in §58.30.
8. The MSA, CBSA, CSA or other area represented by the monitor.
9. The designation of any Pb monitors as either source-oriented or non-source-oriented according to Appendix D, section 4.3 of this part.
10. Any source-oriented monitors for which a waiver has been granted or proposed for the EPA Regional Administrator for the use of Pb-TSP monitoring as allowed for under paragraph 2.10 of Appendix C to 40 CFR part 58.
11. Any source-oriented or non-source-oriented site for which a waiver has been requested or granted by the EPA Regional Administrator for the use of Pb-PM$_{10}$ monitoring as allowed for under paragraph 4.9(a)(ii) of Appendix D to 40 CFR part 58.
12. The identification of required NO$_2$ monitors as near-road, area-wide, or vulnerable and susceptible population monitors in accordance with Appendix D, section 4.3 of this part.
13. The identification of any PM$_{2.5}$ FEMs and/or ARMs used in the monitoring agency’s network where the data are not of sufficient quality such that data are not to be compared to the NAAQS. For required SLAMS where the agency identifies that the PM$_{2.5}$ Class III FEM or ARM does not produce data of sufficient quality for comparison to the NAAQS, the monitoring agency must ensure that an operating FRM or filter-based FEM meeting the sample frequency requirements described in §58.12 or other Class III PM$_{2.5}$ FEM or ARM with data of sufficient quality is operating and reporting data to meet the network design criteria described in appendix D to this part.

(c) The annual monitoring network plan must document how state and local agencies provide for the review of changes to a PM$_{2.5}$ monitoring network that impact the location of a violating PM$_{2.5}$ monitor. The affected state or local agency must document the process for obtaining public comment and include any comments received through the public notification process within their submitted plan.

(d) The state, or where applicable local, agency shall perform and submit to the EPA Regional Administrator an assessment of the air quality surveillance system every 5 years to determine, at a minimum, if the network meets the monitoring objectives defined in appendix D to this part, whether new sites are needed, whether existing sites are no longer needed and can be terminated, and whether new technologies are appropriate for incorporation into the ambient air monitoring network. The network assessment must consider the ability of existing and proposed sites to support air quality characterization for areas with relatively high populations of susceptible individuals (e.g., children with asthma), and, for any sites that are being proposed for discontinuance, the effect on data users other than the agency itself, such as nearby states and tribes or health effects studies. The state, or where applicable local, agency must submit a copy of this 5-year assessment, along with a revised annual network plan, to the Regional Administrator. The assessments are due every five years beginning July 1, 2010.

(e) All proposed additions and discontinuations of SLAMS monitors in annual monitoring network plans...
and periodic network assessments are subject to approval according to §58.14.

§58.11 Network technical requirements.

(a)(1) State and local governments shall follow the applicable quality assurance criteria contained in appendix A to this part when operating the SLAMS networks.

(2) Beginning January 1, 2009, State and local governments shall follow the quality assurance criteria contained in appendix A to this part that apply to SPM sites when operating any SPM site which uses a FRM, FEM, or ARM and meets the requirements of appendix E to this part, unless the Regional Administrator approves an alternative to the requirements of appendix A with respect to such SPM sites because meeting those requirements would be physically and/or financially impractical due to physical conditions at the monitoring site and the requirements are not essential to achieving the intended data objectives of the SPM site. Alternatives to the requirements of appendix A may be approved for an SPM site as part of the approval of the annual monitoring plan, or separately.

(3) The owner or operator of an existing or a proposed source shall follow the quality assurance criteria in appendix A to this part that apply to PSD monitoring when operating a PSD site.

(b) State and local governments must follow the criteria in appendix C to this part to determine acceptable monitoring methods or instruments for use in SLAMS networks. Appendix C criteria are optional at SPM stations.

(c) State and local governments must follow the network design criteria contained in appendix D to this part in designing and maintaining the SLAMS stations. The final network design and all changes in design are subject to approval of the Regional Administrator. NCORE, STN, and PAMS network design and changes are also subject to approval of the Administrator. Changes in SPM stations do not require approvals, but a change in the designation of a monitoring site from SLAMS to SPM requires approval of the Regional Administrator.

(d) State and local governments shall follow the criteria contained in appendix E to this part for siting monitor inlets, paths or probes at SLAMS stations. Appendix E adherence is optional for SPM stations.

(e) State and local governments must assess data from Class III PM_{2.5} FEM and ARM monitors operated within their network using the performance criteria described in table C–4 to subpart C of part 53 of this chapter, for cases where the data are identified as not of sufficient comparability to a collocated FRM, and the monitoring agency requests that the FEM or ARM data should not be used in comparison to the NAAQS. These assessments are required in the monitoring agency’s annual monitoring network plan described in §58.10(b) for cases where the FEM or ARM is identified as not of sufficient comparability to a collocated FRM. For these collocated PM_{2.5} monitors the performance criteria apply with the following additional provisions:

1. The acceptable concentration range (Rj), μg/m^3 may include values down to 0 μg/m^3.

2. The minimum number of test sites shall be at least one; however, the number of test sites will generally include all locations within an agency’s network with collocated FRMs and FEMs or ARMs.

3. The minimum number of methods shall include at least one FRM and at least one FEM or ARM.

4. Since multiple FRMs and FEMs may not be present at each site, the precision statistic requirement does not apply, even if precision data are available.

5. All seasons must be covered with no more than thirty-six consecutive months of data in total aggregated together.

6. The key statistical metric to include in an assessment is the bias (both additive and multiplicative) of the PM_{2.5} continuous FEM(s) compared to
§ 58.12 Operating schedules.

State and local governments shall collect ambient air quality data at any SLAMS station on the following operational schedules:

(a) For continuous analyzers, consecutive hourly averages must be collected except during:
 (1) Periods of routine maintenance,
 (2) Periods of instrument calibration, or
 (3) Periods or monitoring seasons exempted by the Regional Administrator.

(b) For Pb manual methods, at least one 24-hour sample must be collected every 6 days except during periods or seasons exempted by the Regional Administrator.

(c) For PAMS VOC samplers, samples must be collected as specified in section 5 of appendix D to this part. Area-specific PAMS operating schedules must be included as part of the PAMS network description and must be approved by the Regional Administrator.

(d) For manual PM$_{10}$ samplers:
 (1)(i) Manual PM$_{10}$ samplers at required SLAMS stations without a collocated continuously operating PM$_{10}$ monitor must operate on at least a 1-in-3 day schedule.
 (ii) For SLAMS PM$_{10}$ sites with both manual and continuous PM$_{10}$ monitors operating, the monitoring agency may request approval for a reduction to 1-in-6 day PM$_{10}$ sampling or for seasonal sampling from the EPA Regional Administrator. The EPA Regional Administrator may grant sampling frequency reductions after consideration of factors, including but not limited to the historical PM$_{10}$ data quality assessments, the location of current PM$_{10}$ design value sites, and their regulatory data needs. Required SLAMS stations whose measurements determine the design value for their area and that are within plus or minus 10 percent of the NAAQS; and all required sites where one or more 24-hour values have exceeded the NAAQS each year for a consecutive period of at least 3 years are required to maintain at least a 1-in-3 day sampling frequency. A continuously operating FEM or ARM PM$_{2.5}$ monitor satisfies this requirement. (iii) Required SLAMS stations whose measurements determine the 24-hour design value for their area and whose data are within plus or minus 5 percent of the level of the 24-hour PM$_{2.5}$ NAAQS must have an FRM or FEM operate on a daily schedule if that area’s design value for the annual NAAQS is less than the level of the annual PM$_{2.5}$ standard. A continuously operating FEM or ARM PM$_{2.5}$ monitor satisfies this requirement unless it is identified in the monitoring agency’s annual monitoring network plan as not appropriate for comparison to the NAAQS.

(e) Manual PM$_{2.5}$ samplers at NCORE stations and required regional background and regional transport sites must operate on at least a 1-in-3 day sampling frequency.

(f) PM$_{2.5}$ speciation samplers at STN stations must operate on at least a 1-in-3 day sampling frequency.

(g) For PM$_{10}$ samplers, a 24-hour sample must be taken from midnight to midnight (local standard time) to ensure national consistency. The minimum monitoring schedule for the site in the area of expected maximum concentration shall be based on the relative level of that monitoring site concentration with respect to the 24-hour standard as illustrated in Figure 1. If the operating agency demonstrates by monitoring data that during certain periods of the year conditions preclude violation of the PM$_{10}$ 24-hour standard, the increased sampling frequency for those periods or seasons may be exempted by the Regional Administrator and permitted to revert back to once in six days. The minimum sampling schedule for all other sites in the area remains once every six days. No less frequently than as part of each 5-year network assessment, the most recent year of data must be considered to estimate the air quality status at the site near the area of maximum concentration. Statistical models such as analysis of concentration frequency distributions as described in “Guideline for the Interpretation of Ozone Air

§58.13

Quality Standards,” EPA–450/479–003, U.S. Environmental Protection Agency, Research Triangle Park, NC, January 1979, should be used. Adjustments to the monitoring schedule must be made on the basis of the 5-year network assessment. The site having the highest concentration in the most current year must be given first consideration when selecting the site for the more frequent sampling schedule. Other factors such as major change in sources of PM$_{10}$ emissions or in sampling site characteristics could influence the location of the expected maximum concentration site. Also, the use of the most recent 3 years of data might, in some cases, be justified in order to provide a more representative database from which to estimate current air quality status and to provide stability to the network. This multiyear consideration reduces the possibility of an anomalous year biasing a site selected for accelerated sampling. If the maximum concentration site based on the most current year is not selected for the more frequent operating schedule, documentation of the justification for selection of an alternative site must be submitted to the Regional Office for approval during the 5-year network assessment process. Minimum data completeness criteria, number of years of data and sampling frequency for judging attainment of the NAAQS are discussed in appendix K of part 50 of this chapter.

(f) For manual PM$_{10-2.5}$ samplers:
(1) Manual PM$_{10-2.5}$ samplers at NCore stations must operate on at least a 1-in-3 day schedule at sites without a collocated continuously operating federal equivalent PM$_{10-2.5}$ method that has been designated in accordance with part 53 of this chapter.
(2) [Reserved]

(g) For continuous SO$_2$ analyzers, the maximum 5-minute block average concentration of the twelve 5-minute blocks in each hour must be collected except as noted in §58.12 (a).

§58.13 Monitoring network completion.

(a) The network of NCore multi-pollutant sites must be physically established no later than January 1, 2011, and at that time, operating under all of the requirements of this part, including the requirements of appendices A, C, D, E, and G to this part. NCore sites
required to conduct Pb monitoring as required under 40 CFR part 58 appendix D paragraph 3(b), or approved alternative non-source-oriented Pb monitoring sites, shall begin Pb monitoring in accordance with all of the requirements of this part, including the requirements of appendices A, C, D, E, and G to this part no later than December 27, 2011.

(b) Notwithstanding specific dates included in this part, beginning January 1, 2008, when existing networks are not in conformance with the minimum number of required monitors specified in this part, additional required monitors must be identified in the next applicable annual monitoring network plan, with monitoring operation beginning by January 1 of the following year. To allow sufficient time to prepare and comment on Annual Monitoring Network Plans, only monitoring requirements effective 120 days prior to the required submission date of the plan (i.e., 120 days prior to July 1 of each year) shall be included in that year’s annual monitoring network plan.

(c) The NO$_2$ monitors required under Appendix D, section 4.3 of this part must be physically established and operating under all of the requirements of this part, including the requirements of appendices A, C, D, and E to this part, no later than:

(1) January 1, 2013, for area-wide NO$_2$ monitors required in Appendix D, section 4.3.3;

(2) January 1, 2013, for NO$_2$ monitors intended to characterize vulnerable and susceptible populations that are required in Appendix D, section 4.3.4;

(3) January 1, 2014, for an initial near-road NO$_2$ monitor in CBSAs having 1,000,000 million or more persons that is required in Appendix D, section 4.3.2;

(4) January 1, 2015, for a second near-road NO$_2$ monitor in CBSAs that have a population of 2,500,000 million or more persons or a second monitor in any CBSA with a population of 500,000 or more persons that has one or more roadway segments with 250,000 or greater AADT counts that is required in Appendix D, section 4.3.2;

(5) January 1, 2017, for a near-road NO$_2$ monitor in CBSAs having 500,000 or more persons, but less than 1,000,000, not already required by paragraph (c)(4) of this section, that is required in Appendix D, section 4.3.2.

(d) The network of SO$_2$ monitors must be physically established no later than January 1, 2013, and at that time, must be operating under all of the requirements of this part, including the requirements of appendices A, C, D, and E to this part.

(e) The CO monitors required under Appendix D, section 4.2 of this part must be physically established and operating under all of the requirements of this part, including the requirements of appendices A, C, D, and E to this part, no later than:

(1) January 1, 2015 for CO monitors in CBSAs having 2.5 million persons or more; or

(2) January 1, 2017 for other CO monitors.

(f) PM$_{2.5}$ monitors required in near-road environments as described in appendix D to this part, must be physically established and operating under all of the requirements of this part, including the requirements of appendices A, C, D, and E to this part, no later than:

(1) January 1, 2015 for PM$_{2.5}$ monitors in CBSAs having 2.5 million persons or more; or

(2) January 1, 2017 for PM$_{2.5}$ monitors in CBSAs having 1 million or more, but less than 2.5 million persons.

§ 58.14 System modification.

(a) The State, or where appropriate local, agency shall develop and implement a plan and schedule to modify the ambient air quality monitoring network that complies with the findings of the network assessments required every 5 years by §58.10(e). The State or local agency shall consult with the EPA Regional Administrator during the development of the schedule to modify the monitoring program, and shall make the plan and schedule available to the public for 30 days prior to...
submission to the EPA Regional Administrator. The final plan and schedule with respect to the SLAMS network are subject to the approval of the EPA Regional Administrator. Plans containing modifications to NCORE Stations or PAMS Stations shall be submitted to the Administrator. The Regional Administrator shall provide opportunity for public comment and shall approve or disapprove submitted plans and schedules within 120 days.

(b) Nothing in this section shall preclude the State, or where appropriate local, agency from making modifications to the SLAMS network for reasons other than those resulting from the periodic network assessments. These modifications must be reviewed and approved by the Regional Administrator. Each monitoring network may make or be required to make changes between the 5-year assessment periods, including for example, site relocations or the addition of PAMS networks in bumped-up ozone nonattainment areas. These modifications must address changes invoked by a new census and changes due to changing air quality levels. The State, or where appropriate local, agency shall provide written communication describing the network changes to the Regional Administrator for review and approval as these changes are identified.

(c) State, or where appropriate, local agency requests for SLAMS monitor station discontinuation, subject to the review of the Regional Administrator, will be approved if any of the following criteria are met and if the requirements of appendix D to this part, if any, continue to be met. Other requests for discontinuation may also be approved on a case-by-case basis if discontinuance does not compromise data collection needed for implementation of a NAAQS and if the requirements of appendix D to this part, if any, continue to be met.

(1) Any PM$_{2.5}$, O$_3$, CO, PM$_{10}$, SO$_2$, Pb, or NO$_2$ SLAMS monitor which has shown attainment during the previous five years, that has a probability of less than 10 percent of exceeding 80 percent of the applicable NAAQS during the next three years based on the levels, trends, and variability observed in the past, and which is not specifically required by an attainment plan or maintenance plan. In a nonattainment or maintenance area, if the most recent attainment or maintenance plan adopted by the State and approved by EPA contains a contingency measure to be triggered by an air quality concentration and the monitor to be discontinued is the only SLAMS monitor operating in the nonattainment or maintenance area, the monitor may not be discontinued.

(2) Any SLAMS monitor for CO, PM$_{10}$, SO$_2$, or NO$_2$ which has consistently measured lower concentrations than another monitor for the same pollutant in the same county (or portion of a county within a distinct attainment area, nonattainment area, or maintenance area, as applicable) during the previous five years, and which is not specifically required by an attainment plan or maintenance plan, if control measures scheduled to be implemented or discontinued during the next five years would apply to the areas around both monitors and have similar effects on measured concentrations, such that the retained monitor would remain the higher reading of the two monitors being compared.

(3) For any pollutant, any SLAMS monitor station in a county (or portion of a county within a distinct attainment, nonattainment, or maintenance area, as applicable) provided the monitor has not measured violations of the applicable NAAQS in the previous five years, and the approved SIP provides for a specific, reproducible approach to representing the air quality of the affected county in the absence of actual monitoring data.

(4) A PM$_{2.5}$ SLAMS monitor which EPA has determined cannot be compared to the relevant NAAQS because of the siting of the monitor, in accordance with §58.30.

(5) A SLAMS monitor that is designed to measure concentrations upwind of an urban area for purposes of characterizing transport into the area and that has not recorded violations of the relevant NAAQS in the previous five years, if discontinuation of the monitor is tied to start-up of another station also characterizing transport.

(6) A SLAMS monitor not eligible for removal under any of the criteria in
Environmental Protection Agency

§ 58.16 Data submittal and archiving requirements.

(a) The state, or where appropriate, local agency, shall report to the Administrator, via AQS all ambient air quality data and associated quality assurance data for SO$_2$; CO; O$_3$; NO; NOy; NO$_X$; Pb-TSP mass concentration; Pb-PM$_{10}$ mass concentration; PM$_{10}$ mass concentration; PM$_{2.5}$ mass concentration; for filter-based PM$_{2.5}$ FRM/FEM the field blank mass, sampler-generated average daily temperature, and sampler-generated average daily pressure; chemically speciated PM$_{2.5}$ mass concentration data; PM$_{10-2.5}$ mass concentration; meteorological data from NCore and PAMS sites; average daily temperature and average daily pressure for Pb sites if not already reported from sampler generated records; and metadata records and information specified by the AQS Data Coding Manual (http://www.epa.gov/ttn/airs/airsaqs/manuals/manuals.htm). The state, or where appropriate, local agency, may report site specific meteorological measurements generated by onsite equipment (meteorological instruments, or sampler generated) or measurements from the nearest airport reporting ambient pressure and temperature. Such air quality data and information must be submitted directly to the AQS via electronic transmission on the specified quarterly schedule described in paragraph (b) of this section.

(b) The specific quarterly reporting periods are January 1–March 31, April 1–June 30, July 1–September 30, and October 1–December 31. The data and information reported for each reporting period must contain all data and information gathered during the reporting period, and be received in the AQS within 90 days after the end of the
quarterly reporting period. For example, the data for the reporting period January 1–March 31 are due on or before June 30 of that year.

(c) Air quality data submitted for each reporting period must be edited, validated, and entered into the AQS (within the time limits specified in paragraph (b) of this section) pursuant to appropriate AQS procedures. The procedures for editing and validating data are described in the AQS Data Coding Manual and in each monitoring agency’s quality assurance project plan.

(d) The State shall report VOC and if collected, carbonyl, NH$_3$, and HNO$_3$ data, from PAMS sites to AQS within 6 months following the end of each quarterly reporting period listed in paragraph (b) of this section.

(e) The State shall also submit any portion or all of the SLAMS and SPM data to the appropriate Regional Administrator upon request.

(f) The state, or where applicable, local agency shall archive all PM$_{2.5}$, PM$_{10}$, and PM$_{10-2.5}$ filters from manual low-volume samplers (samplers having flow rates less than 200 liters/minute) from all SLAMS sites for a minimum period of 5 years after collection. These filters shall be made available for supplemental analyses, including destructive analyses if necessary, at the request of EPA or to provide information to state and local agencies on particulate matter composition. Other Federal agencies may request access to filters for purposes of supporting air quality management or community health—such as biological assay—through the applicable EPA Regional Administrator. The filters shall be archived according to procedures approved by the Administrator, which shall include cold storage of filters after post-sampling laboratory analyses for at least 12 months following field sampling. The EPA recommends that particulate matter filters be archived for longer periods, especially for key sites in making NAAQS-related decisions or for supporting health-related air pollution studies.

(g) Any State or, where applicable, local agency operating a continuous SO$_2$ analyzer shall report the maximum 5-minute SO$_2$ block average of the twelve 5-minute block averages in each hour, in addition to the hourly SO$_2$ average.

Subpart C—Special Purpose Monitors

SOURCE: 71 FR 61302, Oct. 17, 2006, unless otherwise noted.

§ 58.20 Special purpose monitors (SPM).

(a) An SPM is defined as any monitor included in an agency’s monitoring network that the agency has designated as a special purpose monitor in its annual monitoring network plan and in AQS, and which the agency does not count when showing compliance with the minimum requirements of this subpart for the number and siting of monitors of various types. Any SPM operated by an air monitoring agency must be included in the periodic assessments and annual monitoring network plan required by §58.10. The plan shall include a statement of purposes for each SPM monitor and evidence that operation of each monitor meets the requirements of appendix A or an approved alternative as provided by §58.11(a)(2) where applicable. The monitoring agency may designate a monitor as an SPM after January 1, 2007 only if it is a new monitor, i.e., a SLAMS monitor that is not included in the currently applicable monitoring plan or, for a monitor included in the monitoring plan prior to January 1, 2007, if the Regional Administrator has approved the discontinuation of the monitor as a SLAMS site.

(b) Any SPM data collected by an air monitoring agency using a Federal reference method (FRM), Federal equivalent method (FEM), or approved regional method (ARM) must meet the requirements of §58.11, §58.12, and appendix A to this part or an approved alternative to appendix A to this part. Compliance with appendix E to this part is optional but encouraged except when the monitoring agency’s data objectives are inconsistent with those requirements. Data collected at an SPM
using a FRM, FEM, or ARM meeting the requirements of appendix A must be submitted to AQS according to the requirements of §58.16. Data collected by other SPMs may be submitted. The monitoring agency must also submit to AQS an indication of whether each SPM reporting data to AQS meets the requirements of appendix A and E to this part.

(c) All data from an SPM using an FRM, FEM, or ARM which has operated for more than 24 months are eligible for comparison to the relevant NAAQS, subject to the conditions of §§58.11(e) and 58.30, unless the air monitoring agency demonstrates that the data came from a particular period during which the requirements of appendix A, appendix C, or appendix E to this part were not met, subject to review and EPA Regional Office approval as part of the annual monitoring network plan described in §58.10.

(d) If an SPM using an FRM, FEM, or ARM is discontinued within 24 months of start-up, the Administrator will not base a NAAQS violation determination for the PM$_{2.5}$ or ozone NAAQS solely on data from the SPM.

(e) If an SPM using an FRM, FEM, or ARM is discontinued within 24 months of start-up, the Administrator will not designate an area as nonattainment for the CO, SO$_2$, NO$_x$, or 24-hour PM$_{10}$ NAAQS solely on the basis of data from the SPM. Such data are eligible for use in determinations of whether a non-attainment area has attained one of these NAAQS.

(f) Prior approval from EPA is not required for discontinuance of an SPM.

Subpart D—Comparability of Ambient Data to the NAAQS

§ 58.30 Special considerations for data comparisons to the NAAQS.

(a) Comparability of PM$_{2.5}$ data. The primary and secondary annual and 24-hour PM$_{2.5}$ NAAQS are described in part 50 of this chapter. Monitors that follow the network technical requirements specified in §58.11 are eligible for comparison to the NAAQS subject to the additional requirements of this section. PM$_{2.5}$ measurement data from all eligible monitors are comparable to the 24-hour PM$_{2.5}$ NAAQS. PM$_{2.5}$ measurement data from all eligible monitors that are representative of area-wide air quality are comparable to the annual PM$_{2.5}$ NAAQS. Consistent with appendix D to this part, section 4.7.1, when micro- or middle-scale PM$_{2.5}$ monitoring sites collectively identify a larger region of localized high ambient PM$_{2.5}$ concentrations, such sites would be considered representative of an area-wide location and, therefore, eligible for comparison to the annual PM$_{2.5}$ NAAQS. PM$_{2.5}$ measurement data from monitors that are not representative of area-wide air quality but rather of relatively unique micro-scale, or localized hot spot, or unique middle-scale impact sites are not eligible for comparison to the annual PM$_{2.5}$ NAAQS. PM$_{2.5}$ measurement data from these monitors are eligible for comparison to the 24-hour PM$_{2.5}$ NAAQS. For example, if a micro- or middle-scale PM$_{2.5}$ monitoring site is adjacent to a unique dominating local PM$_{2.5}$ source, then the PM$_{2.5}$ measurement data from such a site would only be eligible for comparison to the 24-hour PM$_{2.5}$ NAAQS. Approval of sites that are suitable and sites that are not suitable for comparison with the annual PM$_{2.5}$ NAAQS is provided for as part of the annual monitoring network plan described in §58.10.

(b) [Reserved]

Subpart E [Reserved]

Subpart F—Air Quality Index Reporting

§ 58.50 Index reporting.

(a) The State or where applicable, local agency shall report to the general public on a daily basis through prominent notice an air quality index that complies with the requirements of appendix G to this part.
§ 58.60 [40 CFR Ch. I (7–1–15 Edition)]

(b) Reporting is required for all individual MSA with a population exceeding 350,000.

(c) The population of a MSA for purposes of index reporting is the most recent decennial U.S. census population.

[71 FR 61302, Oct. 17, 2006]

Subpart G—Federal Monitoring

§ 58.60 Federal monitoring.

The Administrator may locate and operate an ambient air monitoring site if the State or local agency fails to locate, or schedule to be located, during the initial network design process, or as a result of the 5-year network assessments required in §58.10, a SLAMS station at a site which is necessary in the judgment of the Regional Administrator to meet the objectives defined in appendix D to this part.

[71 FR 61303, Oct. 17, 2006]

§ 58.61 Monitoring other pollutants.

The Administrator may promulgate criteria similar to that referenced in subpart B of this part for monitoring a pollutant for which an NAAQS does not exist. Such an action would be taken whenever the Administrator determines that a nationwide monitoring program is necessary to monitor such a pollutant.

[71 FR 61303, Oct. 17, 2006]

APPENDIX A TO PART 58—QUALITY ASSURANCE REQUIREMENTS FOR SLAMS, SPMs AND PSD AIR MONITORING

1. General Information
2. Quality System Requirements
3. Measurement Quality Check Requirements
4. Calculations for Data Quality Assessments
5. Reporting Requirements
6. References

1. General Information.

(a) Each monitoring organization is required to implement a quality system that provides sufficient information to assess the quality of the monitoring data. The quality system must, at a minimum, include the specific requirements described in this appendix of this subpart. Failure to conduct or pass a required check or procedure, or a series of required checks or procedures, does not by itself invalidate data for regulatory decision making. Rather, monitoring agencies and EPA shall use the checks and procedures required in this appendix in combination with other data quality information, reports, and similar documents showing overall compliance with part 58. Accordingly, EPA and monitoring agencies shall use a “weight of evidence” approach when determining the suitability of data for regulatory decisions.

The EPA reserves the authority to use or not use monitoring data submitted by a monitoring organization when determining regulatory decisions based on the EPA’s assessment of the quality of the data. Generally, consensus built validation templates or validation criteria already approved in Quality Assurance Project Plans (QAPPs) should be used as the basis for the weight of evidence approach.

(b) This appendix specifies the minimum quality system requirements applicable to SLAMS air monitoring data and PSD data for the pollutants SO₂, NO₂, O₃, CO, Pb, PM₁₀, PM₁₀₋₂.₅ submitted to EPA. This appendix also applies to all SPM stations using FRM, FEM, or ARM methods which also meet the requirements of appendix E of this part, unless alternatives to this appendix for SPMs have been approved in accordance with §58.11(a)(2). Monitoring organizations are encouraged to develop and maintain quality systems more extensive than the required minimums. The permitting authority for PSD may require more frequent or more stringent requirements. Monitoring organizations may, based on their quality objectives, develop and maintain quality systems beyond the required minimum. Additional guidance for the requirements reflected in this appendix can be found in the “Quality Assurance Handbook for Air Pollution Measurement Systems”, Volume II (see reference 10 of this appendix) and at a national level in references 1, 2, and 3 of this appendix.

1.1 Similarities and Differences Between SLAMS and PSD Monitoring. In most cases, the quality assurance requirements for SLAMS, SPMs if applicable, and PSD are the same. Affected SPMs are subject to all the SLAMS requirements, even where not specifically stated in each section. Table A–1 of this appendix summarizes the major similarities and differences of the requirements for SLAMS and PSD. Both programs require:

(a) The development, documentation, and implementation of an approved quality system;

(b) The assessment of data quality;

(c) The use of reference, equivalent, or approved methods. The requirements of this appendix do not apply to a SPM that does not use a FRM, FEM, or ARM;

(d) The use of calibration standards traceable to NIST or other primary standard;

(e) Performance evaluations and systems.

260
1.1.1 The monitoring and quality assurance responsibilities for SLAMS are with the State or local agency, hereafter called the monitoring organization, whereas for PSD they are with the owner/operator seeking the permit. The monitoring duration for SLAMS is indefinite, whereas for PSD the duration is usually 12 months. Whereas the reporting period for precision and accuracy data is on an annual or calendar quarter basis for SLAMS, it is on a continuing sampler quarter basis for PSD, since the monitoring may not commence at the beginning of a calendar quarter.

1.1.2 The annual performance evaluations (described in section 3.2.2 of this appendix) for PSD must be conducted by personnel different from those who perform routine span checks and calibrations, whereas for SLAMS, it is the preferred but not the required condition. For PSD, the evaluation rate is 100 percent of the sites per reporting quarter whereas for SLAMS it is 25 percent of the sites or instruments quarterly. Monitoring for sulfur dioxide (SO₂) and nitrogen dioxide (NO₂) for PSD must be done with automated analyzers—the manual bubbler methods are not permitted.

1.1.3 The requirements for precision assessment for the automated methods are the same for both SLAMS and PSD. However, for manual methods, only one collocated site is required for PSD.

1.1.4 The precision, accuracy and bias data for PSD are reported separately for each sampler (site), whereas for SLAMS, the report may be by sampler (site), by primary quality assurance organization, or nationally, depending on the pollutant. SLAMS measurement quality checks and calibrations are reported to the AQS or to the permit-granting authority. The reporting requirements in this appendix shall be reported to AQS and are included in the data required for certification. The PSD network is required to implement the measurement quality checks and submit this information quarterly along with assessment information to the permit-granting authority.

1.2 Measurement Uncertainty. Measurement uncertainty is a term used to describe deviations from a true concentration or estimate that are related to the measurement process and not to spatial or temporal population attributes of the air being measured. Monitoring organizations must develop quality assurance project plans (QAPP) which describe how the organization intends to control measurement uncertainty to an appropriate level in order to achieve the objectives for which the data are collected. The process by which one determines the quality of data produced by a system to meet the monitoring objectives is sometimes referred to the Data Quality Objectives Process. Data quality indicators associated with measurement uncertainty include:

(a) Precision. A measurement of mutual agreement among individual measurements of the same property usually under prescribed similar conditions, expressed generally in terms of the standard deviation.

(b) Bias. The systematic or persistent distortion of a measurement process which causes errors in one direction.

(c) Accuracy. The degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (imprecision) and systematic error (bias) components which are due to sampling and analytical operations.

(d) Completeness. A measure of the amount of valid data obtained from a measurement system compared to the amount that was expected to be obtained under correct, normal conditions.

(e) Detectability. The low critical range value of a characteristic that a method specific procedure can reliably discern.

1.3 Measurement Quality Checks. The SLAMS measurement quality checks described in sections 3.2, 3.3 and 3.5 of this appendix shall be reported to AQS and are included in the data required for certification. The PSD network is required to implement the measurement quality checks and submit this information quarterly along with assessment information to the permit-granting authority.

1.4 Assessments and Reports. Periodic assessments and documentation of data quality are required to be reported to EPA or to the permit-granting authority (PSD). To provide national uniformity in this assessment and reporting of data quality for all networks, specific assessment and reporting procedures are prescribed in detail in sections 3.2, 4, and 5 of this appendix. On the other hand, the selection and extent of the quality assurance and quality control activities used by a monitoring organization depend on a number of local factors such as field and laboratory conditions, the objectives for monitoring, the level of data quality needed, the expertise of assigned personnel, the cost of control procedures, pollutant concentration levels, etc. Therefore, quality system requirements in section 2 of this appendix are specified in general terms to allow each monitoring organization to develop a quality system that is most efficient and effective for its own circumstances while achieving the data quality objectives required for the SLAMS sites.

2. QUALITY SYSTEM REQUIREMENTS

A quality system is the means by which an organization manages the quality of the monitoring information it produces in a systematic, organized manner. It provides a framework for planning, implementing, assessing and reporting work performed by an organization and for carrying out required
quality assurance and quality control activities.

2.1 Quality Management Plans and Quality Assurance Project Plans. All monitoring organizations must develop a quality system that is described and approved in quality management plans (QMP) and quality assurance project plans (QAPP) to ensure that the monitoring organization to adhere to the stated objectives. The quality assurance project plans (QAPP) to the recipient based on adequate data quality assurance procedures described and documented in the QMP. The QAPP must be reviewed during the systems audits described in section 2.5 of this appendix. Organizations that implement systematic planning processes for PSD or other monitoring will be the responsibility to conduct independent oversight and assure the implementation of the monitoring organization’s QMP. The quality assurance management function must have sufficient technical expertise and management authority to conduct independent oversight and assurance the implementation of the organization’s quality system relative to the ambient air quality monitoring program and should be organizationally independent of environmental data generation activities.

2.3 Data Quality Performance Requirements.

2.3.1 Data Quality Objectives. Data quality objectives (DQO) or the results of other systematic planning processes are statements that define the appropriate type of data to collect and specify the tolerable levels of potential decision errors that will be used as a basis for establishing the quality and quantity of data needed to support the objectives of the SLAMS stations. DQO will be developed by EPA to support the primary SLAMS objectives for each criteria pollutant. As they are developed they will be added to the regulation. DQO or the results of other systematic planning processes for PSD or other monitoring will be the responsibility of the monitoring organizations. The quality of the conclusions made from data interpretation can be affected by population uncertainty (spatial or temporal uncertainty) and measurement uncertainty (uncertainty associated with collecting, analyzing, reducing and reporting concentration data). This appendix focuses on assessing and controlling measurement uncertainty.

2.3.1.1 Measurement Uncertainty for Automated and Manual PM2.5 Methods. The goal for acceptable measurement uncertainty is defined as 10 percent coefficient of variation (CV) for total precision and plus or minus 10 percent for total bias.

2.3.1.2 Measurement Uncertainty for Automated Ozone Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the coefficient variation (CV) of 7 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 7 percent.

2.3.1.3 Measurement Uncertainty for PM10 Methods. The goal for acceptable
Environmental Protection Agency

measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the coefficient variation (CV) of 15 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.4 Measurement Uncertainty for Pb Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the coefficient variation (CV) of 20 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.5 Measurement Uncertainty for NOx. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the coefficient of variation (CV) of 15 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.6 Measurement Uncertainty for SO2. The goal for acceptable measurement uncertainty for precision is defined as an upper 90 percent confidence limit for the coefficient of variation (CV) of 10 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 10 percent.

2.4 National Performance Evaluation Programs. Monitoring plans or the QAPP shall provide for the implementation of a program of independent and adequate audits of all monitors providing data for SLAMS and PSD including the provision of adequate resources for such audit programs. A monitoring plan (or QAPP) which provides for monitoring organization participation in EPA’s National Performance Audit Program (NPAP) and the PM Performance Evaluation Program (PEP) program and which indicates the consent of the monitoring organization for EPA to apply an appropriate portion of the grant funds, which EPA would otherwise award to the monitoring organization for monitoring activities, will be deemed by EPA to meet this requirement. For clarification and to participate, monitoring organizations should contact either the appropriate EPA Regional Quality Assurance (QA) Coordinator at the appropriate EPA Regional Office location, or the NPAP Coordinator at the Air Quality Assurance Division, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency in Research Triangle Park, North Carolina.

2.5 Technical Systems Audit Program. Technical systems audits of each ambient air monitoring organization shall be conducted at least every 3 years by the appropriate EPA Regional Office and reported to the AQO. Systems audit programs are described in reference 10 of this appendix. For further instructions, monitoring organizations should contact the appropriate EPA Regional QA Coordinator.

2.6 Gaseous and Flow Rate Audit Standards.

2.6.1 Gaseous pollutant concentration standards (permeation devices or cylinders of compressed gas) used to obtain test concentrations for carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxide (NOx), and nitrogen dioxide (NO2) must be traceable to either a National Institute of Standards and Technology (NIST) Traceable Reference Material (NTRM) or a NIST-certified Gas Manufacturer’s Internal Standard (GMIS), certified in accordance with one of the procedures given in reference 4 of this appendix. Vendors advertising certification with the procedures provided in reference 4 of this appendix and distributing gasses as ”EPA Protocol Gas” must participate in the EPA Protocol Gas Verification Program or not use “EPA” in any form of advertising.

2.6.2 Test concentrations for ozone (O3) must be obtained in accordance with the ultra violet photometric calibration procedure specified in appendix D to part 50 of this chapter, or by means of a certified O3 transfer standard. Consult references 7 and 8 of this appendix for guidance on primary and transfer standards for O3.

2.6.3 Flow rate measurements must be made by a flow measuring instrument that is traceable to an authoritative volume or other applicable standard. Guidance for certifying some types of flowmeters is provided in reference 10 of this appendix.

2.7 Primary Requirements and Guidance. Requirements and guidance documents for developing the quality system are contained in references 1 through 10 of this appendix, which also contain many suggested procedures, checks, and control specifications. Reference 10 of this appendix describes specific guidance for the development of a quality system for SLAMS. Many specific quality control checks and specifications for methods are included in the respective reference methods described in part 50 of this chapter or in the respective equivalent method descriptions available from EPA (reference 6 of this appendix). Similarly, quality control procedures related to specifically designated reference and equivalent method analyzers are contained in the respective operation or instruction manuals associated with those analyzers.

3. MEASUREMENT QUALITY CHECK REQUIREMENTS

This section provides the requirements for primary quality assurance organizations (PQAOs) to perform the measurement quality checks that can be used to assess data quality. With the exception of the flow rate verifications (sections 3.2.3 and 3.3.2 of this appendix), data from these checks are required to be submitted to the AQO within the same time frame as routine ambient concentration data. Section 3.2 of this appendix describes checks of automated or continuous instruments while section 3.3 describe checks.
associated with manual sampling instruments. Other quality control samples are identified in the various references described earlier and can be used to control certain aspects of the measurement system.

3.1 Primary Quality Assurance Organization. A primary quality assurance organization is defined as a monitoring organization or a coordinated aggregation of such organizations that is responsible for a set of stations that monitors the same pollutant and for which data quality assessments can logically be pooled. Each criteria pollutant sampler/monitor at a monitoring station in the SLAMS network must be associated with one and only one, primary quality assurance organization.

3.1.1 Each primary quality assurance organization shall be defined such that measurement uncertainty among all stations in the organization can be expected to be reasonably homogeneous, as a result of common factors. Common factors that should be considered by monitoring organizations in defining primary quality assurance organizations include:

(a) Operation by a common team of field operators according to a common set of procedures;
(b) Use of a common QAPP or standard operating procedures;
(c) Common calibration facilities and standards;
(d) Oversight by a common quality assurance organization; and
(e) Support by a common management, laboratory or headquarters.

3.1.2 Primary quality assurance organizations are not necessarily related to the organization reporting data to the AQS. Monitoring organizations having difficulty in defining the primary quality assurance organizations or in assigning specific sites to primary quality assurance organizations should consult with the appropriate EPA Regional Office. All definitions of primary quality assurance organizations shall be subject to final approval by the appropriate EPA Regional Office during scheduled network reviews or systems audits.

3.2 Data quality assessment results shall be reported as specified in section 5 of this appendix.

3.2.1 Measurement Quality Checks of Automated Methods. Table A–2 of this appendix provides a summary of the types and frequency of the measurement quality checks that will be described in this section.

3.2.1.1 Except for certain CO analyzers described below, point analyzers must operate in their normal sampling mode during the QC check, and the test atmosphere must pass through all filters, scrubbers, conditioners and other components used during normal ambient sampling and as much of the ambient air inlet system as is practicable. If permitted by the associated operation or instruction manual, a CO point analyzer may be temporarily modified during the QC check to reduce vent or purge flows, or the test atmosphere may enter the analyzer at a point other than the normal sample inlet, provided that the analyzer’s response is not likely to be altered by these deviations from the normal operational mode. If a QC check is made in conjunction with a zero or span adjustment, it must be made prior to such zero or span adjustments.

3.2.1.2 Open path analyzers are tested by inserting a test cell containing a QC check gas concentration into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and as appropriate, reflecting devices should be used during the test and the normal monitoring configuration of the instrument should be altered as little as possible to accommodate the test cell for the test. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentration of the QC check gas in the test cell must be selected to produce an effective concentration in the range specified earlier in this section. Generally, the QC test
concentration measurement will be the sum of the atmospheric pollutant concentration and the QC test concentration. If so, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the QC test from the QC check gas concentration measurement. If the difference between these before and after measurements is greater than 20 percent of the effective concentration of the test gas, discard the test result and repeat the test. If possible, open path analyzers should be tested during periods when the atmospheric pollutant concentrations are relatively low and steady.

3.2.1.3 Report the audit concentration (effective concentration for open path analyzers) of the QC gas and the corresponding measured concentration (corrected concentration, if applicable, for open path analyzers) indicated by the analyzer. The percent differences between these concentrations are used to assess the precision and bias of the monitoring data as described in sections 4.1.2 (precision) and 4.1.3 (bias) of this appendix.

3.2.2 Annual performance evaluation for \(\text{SO}_2 \), \(\text{NO}_2 \), \(\text{O}_3 \), or \(\text{CO} \). Each calendar quarter (during which analyzers are operated), evaluate at least 25 percent of the SLAMS analyzers that monitor for \(\text{SO}_2 \), \(\text{NO}_2 \), \(\text{O}_3 \), or \(\text{CO} \) such that each analyzer is evaluated at least once per year. If there are fewer than four analyzers for a pollutant within a primary quality assurance organization, it is suggested to randomly evaluate one or more analyzers so that at least one analyzer for that pollutant is evaluated each calendar quarter. The evaluation should be conducted by a trained experienced technician other than the routine site operator.

3.2.2.1 (a) The evaluation is made by challenging the analyzer with audit gas standard of known concentration (effective concentration for open path analyzers) from at least three consecutive audit levels. The audit levels selected should represent or bracket 80 percent of ambient concentrations measured by the analyzer being evaluated:

(b) An additional 4th level is encouraged for those monitors that have the potential for exceeding the concentration ranges described by the initial three selected.

3.2.2.2 (a) \(\text{NO}_2 \) audit gas for chemiluminescence-type \(\text{NO}_2 \) analyzers must also contain at least 0.08 ppm NO. NO concentrations substantially higher than 0.08 ppm, as may occur when using some gas phase titration (GPT) techniques, may lead to evaluation errors in chemiluminescence analyzers due to inevitable minor NO-NO\(_x\) channel imbalance. Such errors may be atypical of routine monitoring errors to the extent that such NO concentrations exceed typical ambient NO concentrations at the site. These errors may be minimized by modifying the GPT technique to lower the NO concentrations remaining in the \(\text{NO}_2 \) audit gas to levels closer to typical ambient NO concentrations at the site.

(b) To evaluate SLAMS analyzers operating on ranges higher than 0 to 1.0 ppm for \(\text{SO}_2 \), \(\text{NO}_2 \), and \(\text{O}_3 \) or 0 to 50 ppm for \(\text{CO} \), use audit gases of appropriately higher concentration as approved by the appropriate EPA Regional Administrator or the Administrator's designee.

3.2.2.3 The standards from which audit gas test concentrations are obtained must meet the specifications of section 2.6 of this appendix. The gas standards and equipment used for evaluations must not be the same as the standards and equipment used for calibration or calibration span adjustments. For SLAMS sites, the auditor should not be the operator or analyst who conducts the routine monitoring, calibration, and analysis. For PSD sites the auditor must not be the operator or analyst who conducts the routine monitoring, calibration, and analysis.

3.2.2.4 For point analyzers, the evaluation shall be carried out by allowing the analyzer to analyze the audit gas test atmosphere in its normal sampling mode such that the test atmosphere passes through all filters, scrubbers, conditioners, and other sample inlet components used during normal ambient sampling and as much of the ambient air inlet system as is practicable. The exception provided in section 3.2.1 of this appendix for certain CO analyzers does not apply for evaluations.

<table>
<thead>
<tr>
<th>Audit level</th>
<th>Concentration range, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{O}_3)</td>
</tr>
<tr>
<td>1</td>
<td>0.02–0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.06–0.10</td>
</tr>
<tr>
<td>3</td>
<td>0.11–0.20</td>
</tr>
<tr>
<td>4</td>
<td>0.21–0.30</td>
</tr>
<tr>
<td>5</td>
<td>0.31–0.90</td>
</tr>
</tbody>
</table>
3.2.2.5 Open path analyzers are evaluated by inserting a test cell containing the various concentrations of audit gas into the optical path of the instrument. If possible, the normally used transmitter, receiver, and, as appropriate, reflecting devices should be used during the evaluation, and the normal monitoring configuration of the instrument should be utilized as little as possible to accommodate the test cell for the evaluation. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentrations of the audit gas in the test cell must be selected to produce effective concentrations in the evaluation level ranges specified in this section of this appendix. Generally, each evaluation concentration measurement result will be the sum of the atmospheric pollutant concentration and the evaluation test concentration. If so, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the evaluation test (or preferably before and after each evaluation concentration level) from the evaluation concentration measurement. If the difference between the before and after measurements is greater than 20 percent of the effective concentration of the test gas standard, discard the test result for that concentration level and repeat the test for that level. If possible, open path analyzers should be evaluated during periods when the ambient concentrations are relatively low and steady. Also, if the open path instrument is not installed in a permanent manner, the monitoring path length must be reverified to within plus or minus 3 percent to validate the evaluation, since the monitoring path length is critical to the determination of the effective concentration.

3.2.2.6 Report both the evaluation concentrations (effective concentrations for open path analyzers) of the audit gases and the corresponding measured concentration (corrected concentrations, if applicable, for open path analyzers) indicated or produced by the analyzer being tested. The percent differences between these concentrations are used to assess the quality of the monitoring data as described in section 4.1.4 of this appendix.

3.2.3 Flow Rate Verification for Particulate Matter. Every 6 months, audit the flow rate of the PM$_{10}$, PM$_{10-2.5}$ and PM$_{2.5}$ particulate analyzers. Where possible, EPA strongly encourages more frequent auditing. The audit is made by measuring the analyzer’s normal operating flow rate using a flow rate transfer standard certified in accordance with section 3.2.5 of this appendix (using flow rates in lieu of concentrations).

3.2.4 Semi-Annual Flow Rate Audit for Particulate Matter. Every 6 months, audit the flow rate of the PM$_{10}$, PM$_{10-2.5}$ and PM$_{2.5}$ particulate analyzers. Where possible, EPA strongly encourages more frequent auditing. The audit is made by measuring the analyzer’s normal operating flow rate using a flow rate transfer standard certified in accordance with section 3.2.5 of this appendix (using flow rates in lieu of concentrations). The percent differences between the flow rate used for auditing and measured flow rates are used to assess the bias of the monitoring data as described in section 4.2.3 of this appendix.

3.2.5 Collocated Sampling Procedures for PM$_{2.5}$. For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the audit monitor.

3.2.5.1 Each EPA designated Federal reference method (FRM) or Federal equivalent method (FEM) within a primary quality assurance organization must:

(a) Have 15 percent of the monitors collocated (values of 0.5 and greater round up); and

(b) Have at least 1 collocated monitor (if the total number of monitors is less than 3).

The first collocated monitor must be a designated FRM monitor.
3.2.5.2 In addition, monitors selected for collocation must also meet the following requirements:

(a) A primary monitor designated as an EPA FRM shall be collocated with an audit monitor having the same EPA FRM method designation.

(b) For each primary monitor model designated as an EPA FEM used by the PQAO, 50 percent of the monitors designated for collocation shall be collocated with an audit monitor having the same method designation and 50 percent of the monitors shall be collocated with an FRM audit monitor. If the primary quality assurance organization only has one FEM monitor, it shall be collocated with an FRM audit monitor. If there are an odd number of collocated monitors required, the additional monitor shall be an FRM audit monitor. An example of this procedure is found in Table A–3 of this appendix.

3.2.5.3 The collocated monitors should be deployed according to the following protocol:

(a) 80 percent of the collocated audit monitors should be deployed at sites with annual average or daily concentrations estimated to be within ±20 percent of the applicable NAAQS and the remainder at what the monitoring organizations designate as high value sites;

(b) If an organization has no sites with annual average or daily concentrations within ±20 percent of the annual NAAQS (or 24-hour NAAQS if that is affecting the area), 60 percent of the collocated audit monitors should be deployed at those sites with the annual mean concentrations (or 24-hour NAAQS if that is affecting the area) among the highest 25 percent for all sites in the network.

3.2.5.4 In determining the number of collocated sites required for PM_{10-2.5}, monitoring networks for visibility assessments should not be treated independently from networks for particulate matter, as the separate networks may share one or more common samplers. However, for Class 1 visibility areas, EPA will accept visibility aerosol mass measurement instead of a PM_{2.5} measurement if the latter measurement is unavailable. Any PM_{2.5} monitoring site which does not have a monitor which is an EPA FRM, FEM or ARM is not required to be included in the number of sites which are used to determine the number of collocated monitors.

3.2.5.5 For each PSD monitoring network, one site must be collocated. A site with the predicted highest 24-hour pollutant concentration must be selected.

3.2.5.6 The two collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the Regional Administrator for sites at a neighborhood or larger scale of representation. This waiver may be approved during the annual network plan approval process. Calibration, sampling, and analysis must be the same for all the collocated samplers in each agency’s network.

3.2.5.7 Sample the collocated audit monitor for SLAMS sites on a 12-day schedule; sample PSD sites on a 6-day schedule or every third day for PSD daily monitors. If a primary quality assurance organization has only one collocated monitor, higher sampling frequencies than the 12-day schedule may be needed in order to produce about 25 valid sample pairs a year. Report the measurements from both primary and collocated audit monitors at each collocated sampling site. The calculations for evaluating precision between the two collocated monitors are described in section 4.3.1 of this appendix.

3.2.6 Collocated Sampling Procedures for PM_{10-2.5}. For the PM_{10-2.5} network, all automated methods must be designated as Federal equivalent methods (FEMs). For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the audit monitor.

3.2.6.1 The EPA shall ensure that each EPA designated FEM within the national PM_{10-2.5} monitoring network must:

(a) Have 15 percent of the monitors collocated (values of 0.5 and greater round up); and

(b) Have at least 2 collocated monitors (if the total number of monitors is less than 10). The first collocated monitor must be a designated FRM monitor and the second must be a monitor of the same method designation. Both collocated FRM and FEM monitors can be located at the same site.

3.2.6.2 The Regional Administrator for the EPA Regions where the FEMs are implemented will select the sites for collocated monitoring. The site selection process shall consider giving priority to sites at primary quality assurance organizations or States with more than one PM_{10-2.5} site, sites considered important from a regional perspective, and sites needed for an appropriate distribution among rural and urban NCORE sites. Depending on the speed at which the PM_{10-2.5} network is deployed, the first sites implementing FEMs shall be required to perform collocation until there is a larger distribution of FEM monitors implemented in the network.

3.2.6.3 The two collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated monitor may be approved by the Regional Administrator for sites at a neighborhood or larger scale of representation. This waiver may be approved during the annual network plan approval process. Calibration, sampling, and analysis must be the same for all the collocated samplers in each agency’s network.

3.2.6.4 In determining the number of collocated monitors required for each site within the PM_{10-2.5} network, all collocated samplers must be deployed at sites with annual average or daily concentrations estimated to be within ±20 percent of the applicable NAAQS and the remainder at what the monitoring organizations designate as high value sites;
3.2.6.4 Sample the collocated audit monitor for SLAMS sites on a 12-day schedule. Report the measurements from both primary and collocated audit monitors at each collocated sampling site. The calculations for evaluating precision between the two collocated monitors are described in section 4.3.1 of this appendix.

3.2.7 PM$_{10-2.5}$ Performance Evaluation Program (PEP) Procedures. The PEP is an independent assessment used to estimate total measurement system bias. These evaluations will be performed under the PM Performance Evaluation Program (PEP) (section 2.4 of this appendix) or a comparable program. Performance evaluations will be performed on the SLAMS monitors annually within each primary quality assurance organization. For primary quality assurance organizations with less than or equal to five monitoring sites, five valid performance evaluation audits must be collected and reported each year. For primary quality assurance organizations with greater than five monitoring sites, eight valid performance evaluation audits must be collected and reported each year. A valid performance evaluation audit means that both the primary monitor and PEP audit concentrations are valid and above 3 μg/m3. Additionally, each year, every designated FRM or FEM within a primary quality assurance organization must:

1. Have each method designation evaluated each year; and,
2. Have all FRM or FEM samplers subject to a PEP audit at least once every six years; which equates to approximately 15 percent of the monitoring sites audited each year.

(b) Additional information concerning the Performance Evaluation Program is contained in reference 10 of this appendix. The calculations for evaluating bias between the primary monitor and the performance evaluation monitor for PM$_{10-2.5}$ are described in section 4.3.2 of this appendix.

3.2.8 PM$_{10-2.5}$ Performance Evaluation Program. For the PM$_{10-2.5}$ network, all automated methods will be designated as federal equivalent methods (FEMs). One performance evaluation audit, as described in section 3.2.7, must be performed at one PM$_{10-2.5}$ site in each primary quality assurance organization each year. The calculations for evaluating bias between the primary monitor(s) and the performance evaluation monitors for PM$_{10-2.5}$ are described in section 4.1.3 of this appendix.

3.3 Measurement Quality Checks of Manual Methods. Table A–2 of this appendix provides a summary of the types and frequency of the measurement quality checks that will be described in this section.

3.3.1 Collocated Sampling Procedures for PM$_{10}$. For each network of manual PM$_{10}$ methods, select 15 percent (or at least one) of the monitoring sites within the primary quality assurance organization for collocated sampling. For purposes of precision assessment, networks for measuring total suspended particulate (TSP) and PM$_{10}$ shall be considered separately from one another. However, PM$_{10}$ samplers used in the PM$_{10-2.5}$ network may be counted along with the PM$_{10}$ samplers in the PM$_{10}$ network as long as the PM$_{10}$ samplers in both networks are the same method designation. PM$_{10}$ and TSP sites having annual mean particulate matter concentrations among the highest 25 percent of the annual mean concentrations for all the sites in the network must be selected or, if such sites are impractical, alternative sites approved by the EPA Regional Administrator may be selected.

3.3.1.1 In determining the number of collocated sites required for PM$_{10}$, monitoring networks for lead (Pb) should be treated independently from networks for particulate matter (PM), even though the separate networks may share one or more common samplers. However, a single pair of samplers collocated at a common-sampler monitoring site that meets the requirements for both a collocated Pb site and a collocated PM site may serve as a collocated site for both networks.

3.3.1.2 The two collocated monitors must be within 4 meters of each other and at least two meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. Calibration, sampling, analysis and verification/validation procedures must be the same for both collocated samplers and the same as for all other samplers in the network.

3.3.1.3 For each pair of collocated samplers, designate one sampler as the primary sampler whose samples will be used to report air quality for the site, and designate the other as the audit sampler. Sample SLAMS sites on a 12-day schedule; sample PSD sites on a 6-day schedule or every third day for PSD daily samplers. If a primary quality assurance organization has only one collocated monitor, higher sampling frequencies than the 12-day schedule may be needed in order to produce approximately 25 valid sample pairs a year. Report the measurements from both samplers at each collocated sampling...
3.3.4 Pb Methods.

3.3.4.1 Flow Rates. For the Pb Reference Methods (40 CFR Part 50, appendix Q) and associated PEMs, the flow rates of the Pb samplers shall be verified and audited using the same procedures described in sections 3.3.2 and 3.3.3 of this appendix.

3.3.4.2 Pb Analysis Audits. Each calendar quarter or sampling quarter (PSQ), audit the Pb Reference Method analytical procedure using filters containing a known quantity of Pb. These audit filters are prepared by depositing a Pb solution on unexposed filters and allowing them to dry thoroughly. The audit samples must be prepared using batches of reagents different from those used to calibrate the Pb analytical equipment being audited. Prepare audit samples in the following concentration ranges:

<table>
<thead>
<tr>
<th>Range</th>
<th>Equivalent ambient Pb concentration, μg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30–100% of Pb NAAQS.</td>
</tr>
<tr>
<td>2</td>
<td>200–300% of Pb NAAQS.</td>
</tr>
</tbody>
</table>

(a) Audit samples must be extracted using the same extraction procedure used for exposed filters.

(b) Analyze three audit samples in each of the two ranges each quarter samples are analyzed. The audit sample analyses shall be distributed as much as possible over the entire calendar quarter.

(c) Report the audit concentrations (in μg Pb/filter or strip) and the corresponding measured Pb concentrations in the same process (in μg Pb/filter or strip) using AQS unit code 077. The percent differences between the concentrations are used to calculate analytical accuracy as described in section 4.1.3 of this appendix.

(d) The audits of an equivalent Pb method are conducted and assessed in the same manner as for the reference method. The flow auditing device and Pb analysis audit samples must be compatible with the specific requirements of the equivalent method.

3.3.5 Collocated Sampling. PQAO that have a combination of source and non-source-oriented sites (unless the only non-source-oriented site is an NCore site) will follow the procedures described in sections 3.3.1 of this appendix with the exception that the first collocated Pb site selected must be the site measuring the highest Pb concentrations in the network. If the site is impractical, alternative sites, approved by the EPA Regional Administrator, may be selected. If additional collocated sites are necessary, collocated sites may be chosen that reflect average ambient air Pb concentrations in the network. The collocated sampling requirements for PQAO that only have Pb monitoring at a non-source-oriented NCore site for sampling required under 40 CFR 58, Appendix D, paragraph 4.5(b) shall be implemented as described in section 3.2.6 of this appendix with the exception that the collocated monitor will be the same method designation as the primary monitor.

3.3.6 Collocated Sampling Procedures for PM$_{2.5}$. Follow the same procedure as described in section 3.2.5 of this appendix. PM$_{2.5}$ samplers used in the PM$_{10-2.5}$ network, may be counted along with the PM$_{2.5}$ samplers in the PM$_{2.5}$ network as long as the PM$_{2.5}$ samplers in both networks are the same method designation.

Environmental Protection Agency
Pt. 58, App. A
sites. All FRM method designations can be aggregated.

3.3.6.1 The EPA shall ensure that each designated FEM within the PM$_{10-2.5}$ monitoring network must:

(a) Have 15 percent of the monitors colocated (values of 0.5 and greater round up); and

(b) Have at least 2 colocated monitors (if the total number of monitors is less than 10).

The first colocated monitor must be a designated FRM monitor and the second must be a monitor of the same method designation. Both colocated FRM and FEM monitors can be located at the same site.

3.3.6.2 The Regional Administrator for the EPA Region where the FRM or FEMs are implemented will select the sites for colocated monitoring. The colocated site selection process shall consider sites at primary quality assurance organizations or States with more than one PM$_{10-2.5}$ site; primary quality assurance organizations already monitoring for PM$_{10}$ and PM$_{2.5}$ using FRMs or FEMs; and an appropriate distribution among rural and urban NCORE sites. Monitoring organizations implementing PM$_{10}$ samplers and PM$_{2.5}$ FRM samplers of the same method designation as the PM$_{10-2.5}$ FRM can include the PM$_{10-2.5}$ monitors in their respective PM$_{10}$ and PM$_{2.5}$ count. Follow the same procedures as described in sections 3.2.6.2 and 3.2.6.3 of this appendix.

3.3.7 PM$_{2.5}$ Performance Evaluation Program (PEP) Procedures. Follow the same procedure as described in section 3.2.7 of this appendix.

3.3.8 PM$_{10-2.5}$ Performance Evaluation Program (PEP) Procedures. One performance evaluation audit, as described in section 3.2.7 of this appendix must be performed at one PM$_{10-2.5}$ site in each primary quality assurance organization each year. Monitoring organizations implementing PM$_{2.5}$ FRM samplers of the same method designation in both the PM$_{2.5}$ and the PM$_{10-2.5}$ networks can include the PM$_{10-2.5}$ performance evaluation audit in their respective PM$_{2.5}$ performance evaluation count as long as the performance evaluation is conducted at the PM$_{10-2.5}$ site. The calculations for evaluating bias between the primary monitor(s) and the performance evaluation monitors for PM$_{10-2.5}$ are described in section 4.1.3 of this appendix.

4. CALCULATIONS FOR DATA QUALITY ASSESSMENT

(a) Calculations of measurement uncertainty are carried out by EPA according to the following procedures. Primary quality assurance organizations should report the data for all appropriate measurement quality checks as specified in this appendix even though they may elect to perform some or all of the calculations in this section on their own.

(b) The EPA will provide annual assessments of data quality aggregated by site and primary quality assurance organization for SO$_2$, NO$_2$, O$_3$ and CO and by primary quality assurance organization for PM$_{10}$, PM$_{2.5}$, PM$_{10-2.5}$ and Pb.

(c) At low concentrations, agreement between the measurements of colocated samplers, expressed as relative percent difference or percent difference, may be relatively poor. For this reason, colocated measurement pairs are selected for use in the precision and bias calculations only when both measurements are equal to or above the following limits:

1. TSP: 20 µg/m3.
2. Pb: 0.62 µg/m3.
3. PM$_{10}$ (Hi-Vol): 15 µg/m3.
4. PM$_{10}$ (Lo-Vol): 3 µg/m3.
5. PM$_{2.5}$ and PM$_{10-2.5}$: 3 µg/m3.

4.1 Statistics for the Assessment of QC Checks for SO$_2$, NO$_2$, O$_3$, and CO.

4.1.1 Percent Difference. All measurement quality checks start with a comparison of an audit concentration or value (flowrate) to the concentration/value measured by the analyzer and use percent difference as the comparison statistic as described in equation 1 of this section. For each single point check, calculate the percent difference, d_i, as follows:

$$d_i = \frac{m_{\text{audit}} - m_{\text{meas}}}{m_{\text{audit}}} \times 100$$

where, m_{meas} is the concentration indicated by the monitoring organization’s instrument and m_{audit} is the audit concentration of the standard used in the QC check being measured.

4.1.2 Precision Estimate. The precision estimate is used to assess the one-point QC checks for SO$_2$, NO$_2$, O$_3$, or CO described in section 3.2.1 of this appendix. The precision estimator is the coefficient of variation upper bound and is calculated using equation 2 of this section:

$$\text{CV} = \sqrt{\frac{n \cdot \sum_{i=1}^{n} d_i^2 - (\sum_{i=1}^{n} d_i)^2}{n(n-1)}} \cdot \sqrt{\frac{n-1}{X_{0.1,n-1}^2}}$$

where, $X_{0.1,n-1}$ is the 10th percentile of a chi-squared distribution with n-1 degrees of freedom.

4.1.3 Bias Estimate. The bias estimate is calculated using the one-point QC checks for SO$_2$, NO$_2$, O$_3$, or CO described in section 3.2.1.
Environmental Protection Agency

of this appendix and the performance evaluation program for PM$_{10-2.5}$ described in sections 3.2.8 and 3.3.8 of this appendix. The bias estimator is an upper bound on the mean absolute value of the percent differences as described in equation 3 of this section:

$$|AB| = AB + t_{0.95, n-1} \cdot \frac{AS}{\sqrt{n}}$$

where, n is the number of single point checks being aggregated, $t_{0.95, n-1}$ is the 95th percentile of a t-distribution with $n-1$ degrees of freedom; the quantity AB is the mean of the absolute values of the d_i's and is calculated using equation 4 of this section:

$$AB = \frac{1}{n} \cdot \sum_{i=1}^{n} |d_i|$$

and the quantity AS is the standard deviation of the absolute value of the d_i's and is calculated using equation 5 of this section:

$$AS = \sqrt{\frac{n \cdot \sum_{i=1}^{n} |d_i|^2 - \left(\sum_{i=1}^{n} |d_i| \right)^2}{n(n-1)}}$$

4.1.3.1 Assigning a sign (positive/negative) to the bias estimate. Since the bias statistic as calculated in equation 3 of this appendix uses absolute values, it does not have a tendency (negative or positive bias) associated with it. A sign will be designated by rank ordering the percent differences of the QC check samples from a given site for a particular assessment interval.

4.1.3.2 Calculate the 25th and 75th percentiles of the percent differences for each site. The absolute bias upper bound should be flagged as positive if both percentiles are positive and negative if both percentiles are negative. The absolute bias upper bound would not be flagged if the 25th and 75th percentiles are of different signs.

4.1.4 Validation of Bias Using the one-point QC Checks. The annual performance evaluations for SO$_2$, NO$_2$, O$_3$, or CO described in section 3.2.2 of this appendix are used to verify the results obtained from the one-point QC checks and to validate those results across a range of concentration levels. To quantify this annually at the site level and at the 3-year primary quality assurance organization level, probability limits will be calculated from the one-point QC checks using equations 6 and 7 of this appendix:

$$Upper \ Probability \ Limit = m + 1.96 \cdot S$$

$$Lower \ Probability \ Limit = m - 1.96 \cdot S$$

where, m is the mean (equation 8 of this appendix):

$$m = \frac{1}{k} \cdot \sum_{i=1}^{n} d_i$$

where, k is the total number of one point QC checks for the interval being evaluated and S is the standard deviation of the percent differences (equation 9 of this appendix) as follows:

$$S = \sqrt{\frac{k \cdot \sum_{i=1}^{n} d_i^2 - \left(\sum_{i=1}^{n} d_i \right)^2}{k(k-1)}}$$

4.1.5 Percent Difference. Percent differences for the performance evaluations, calculated using equation 1 of this appendix, can be compared to the probability intervals for the respective site or at the primary quality assurance organization level. Ninety-five percent of the individual percent differences (all audit concentration levels) for the performance evaluations should be captured within the probability intervals for the primary quality assurance organization.

4.2 Statistics for the Assessment of PM$_{10}$.

4.2.1 Precision Estimate from Collocated Samplers. Precision is estimated via duplicate measurements from collocated samplers of the same type. It is recommended that the precision be aggregated at the primary quality assurance organization level quarterly, annually, and at the 3-year level. The data pair would only be considered valid if both concentrations are greater than the minimum values specified in section 4(c) of this appendix. For each collocated data pair, calculate the relative percent difference, d_i, using equation 10 of this appendix:
4.2.2 Bias Estimate Using One-Point Flow Rate Verifications. For each one-point flow rate verification described in sections 3.2.3 and 3.3.2 of this appendix, calculate the percent difference in volume using equation 1 of this appendix where \(m e a s \) is the value indicated by the sampler's volume measurement and \(a u d i t \) is the actual volume indicated by the auditing flow meter. The absolute volume bias upper bound is then calculated using equation 3, where \(n \) is the number of flow rate audits being aggregated; \(t_{0.05, n–1} \) is the 95th percentile of a t-distribution with \(n–1 \) degrees of freedom, the quantity \(AB \) is the mean of the absolute values of the \(d_i \)'s and is calculated using equation 4 of this appendix, and the quantity \(A S \) is the standard deviation of the absolute values of the \(d_i \)'s and is calculated using equation 5 of this appendix.

4.2.3 Assessment Semi-Annual Flow Rate Audits. The flow rate audits described in sections 3.2.4 and 3.3.3 of this appendix are used to assess the results obtained from the one-point flow rate verifications and to provide an estimate of flow rate acceptability. For each flow rate audit, calculate the percent difference in volume using equation 1 of this appendix where \(m e a s \) is the value indicated by the sampler's volume measurement and \(a u d i t \) is the actual volume indicated by the auditing flow meter. To quantify this annually and at the 3-year primary quality assurance organization level, probability limits are calculated from the percent differences using equations 6 and 7 of this appendix.

\[
\text{Equation 10} \quad d_i = \frac{X_i - Y_i}{(X_i + Y_i)/2} \times 100
\]

where \(X_i \) is the concentration from the primary sampler and \(Y_i \) is the concentration from the audit sampler. The coefficient of variation upper bound is calculated using the equation 11 of this appendix:

\[
\text{Equation 11} \quad CV = \sqrt{\frac{n \cdot \sum_{i=1}^{n} d_i^2 - (\sum_{i=1}^{n} d_i)^2}{2n(n-1)}} \cdot \frac{n-1}{\chi^2_{0.05, n-1}}
\]

where, \(n \) is the number of valid data pairs being aggregated, and \(\chi^2_{0.05, n-1} \) is the 95th percentile of a chi-squared distribution with \(n–1 \) degrees of freedom. The factor of 2 in the denominator adjusts for the fact that each \(d_i \) is calculated from two values with error.

4.2.4 Percent Difference. Percent differences for the annual flow rate audit concentration, calculated using equation 1 of this appendix, can be compared to the probability intervals for the one-point flow rate verifications for the respective primary quality assurance organization. Ninety-five percent of the individual percent differences (all audit concentration levels) for the performance evaluations should be captured within the probability intervals for primary quality assurance organization.

4.3 Statistics for the Assessment of PM\(_{10–2.5}\) and PM\(_{10–2.5}\).

4.3.1 Precision Estimate. Precision for collocated instruments for PM\(_{10–2.5}\) and PM\(_{10–2.5}\) may be estimated where both the primary and collocated instruments are the same method designation and when the method designations are not similar. Follow the procedure described in section 4.2.1 of this appendix. In addition, one may want to perform an estimate of bias when the primary monitor is an FRM and the collocated monitor is an FRM. Follow the procedure described in section 4.1.3 of this appendix in order to provide an estimate of bias using the collocated data.

4.3.2 Bias Estimate. Follow the procedure described in section 4.1.3 of this appendix for the bias estimate of PM\(_{10–2.5}\). The PM\(_{2.5}\) bias estimate is calculated using the paired routine and the PEP monitor data described in section 3.2.6 of this appendix. Calculate the percent difference, \(d \), using equation 1 of this appendix, where \(m e a s \) is the measured concentration from agency’s primary monitor and \(a u d i t \) is the concentration from the PEP monitor. The data pair would only be considered valid if both concentrations are greater than the minimum values specified in section 4(c) of this appendix. Estimates of bias are presented for various levels of aggregation, sometimes aggregating over time, sometimes aggregating over samplers, and sometimes aggregating over both time and samplers. These various levels of aggregation are achieved using the same basic statistic.

4.3.2.1 This statistic averages the individual biases described in equation 1 of this appendix to the desired level of aggregation using equation 12 of this appendix:

\[
\text{Equation 12} \quad D = \frac{1}{\sum_{i=1}^{n_i} d_i}
\]

where \(m \) is the mean described in equation 8 of this appendix and \(k \) is the total number of one-point flow rate verifications for the year and \(S \) is the standard deviation of the percent differences as described in equation 9 of this appendix.
where, \(n \) is the number of pairs and \(d_1, d_2, \ldots, d_n \) are the biases for each of the pairs to be averaged.

4.3.2.2 Confidence intervals can be constructed for these average bias estimates in equation 12 of this appendix using equations 13 and 14 of this appendix:

\[
\text{Equation 13}
\]

Upper 90\% Confidence Interval = \(D + t_{0.95, df} \cdot \frac{s}{\sqrt{n_j}} \)

\[
\text{Equation 14}
\]

Lower 90\% Confidence Interval = \(D - t_{0.95, df} \cdot \frac{s}{\sqrt{n_j}} \)

Where, \(t_{0.95, df} \) is the 95th quantile of a t-distribution with degrees of freedom \(df = n_j - 1 \) and \(s \) is an estimate of the variability of the average bias calculated using equation 15 of this appendix:

\[
\text{Equation 15}
\]

\[
s = \sqrt{\frac{\sum_{i=1}^{n_j} (d_i - D)^2}{n_j - 1}}
\]

4.4.1 Precision Estimate. Follow the same procedures as described for PM\(_{10}\) in section 4.2.1 of this appendix using the data from the collocated instruments. The data pair would only be considered valid if both concentrations are greater than the minimum values specified in section 4(c) of this appendix.

4.4.2 Bias Estimate. For the Pb analysis audits described in section 3.3.4.2 and the Pb Performance Evaluation Program described in section 3.3.4.4, follow the same procedure as described in section 4.1.3 for the bias estimate.

4.4.3 Flow rate calculations. For the one point flow rate verifications, follow the same procedures as described for PM\(_{10}\) in section 4.2.2; for the flow rate audits, follow the same procedures as described in section 4.2.3.

5. REPORTING REQUIREMENTS

5.1 SLAMS Reporting Requirements. For each pollutant, prepare a list of all monitoring sites and their AQS site identification codes in each primary quality assurance organization and submit the list to the appropriate EPA Regional Office, with a copy to AQS. Whenever there is a change in this list of monitoring sites in a primary quality assurance organization, report this change to the EPA Regional Office and to AQS.

5.1.1 Quarterly Reports. For each quarter, each primary quality assurance organization shall report to AQS directly (or via the appropriate EPA Regional Office for organizations not direct users of AQS) the results of all valid measurement quality checks it has carried out during the quarter. The quarterly reports must be submitted consistent with the data reporting requirements specified for air quality data as set forth in §58.16. The EPA strongly encourages early submission of the quality assurance data in order to assist the monitoring organizations control and evaluate the quality of the ambient air data.

5.1.2 Annual Reports.

When the monitoring organization has certified relevant data for the calendar year, EPA will calculate and report the measurement uncertainty for the entire calendar year.

5.2 PSD Reporting Requirements. At the end of each sampling quarter, the organization must report the appropriate statistical assessments in section 4 of this appendix for the pollutants measured. All data used to calculate reported estimates of precision and bias including span checks, collocated sampler and audit results must be made available to the permit granting authority upon request.

6.0 REFERENCES

273

Table A–1 of Appendix A to Part 58—Difference and Similarities Between SLAMS and PSD Requirements

<table>
<thead>
<tr>
<th>Topic</th>
<th>SLAMS</th>
<th>PSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>1. The development, documentation, and implementation of an approved quality system.</td>
<td>Same as SLAMS.</td>
</tr>
<tr>
<td></td>
<td>2. The assessment of data quality.</td>
<td>Same as SLAMS</td>
</tr>
<tr>
<td></td>
<td>3. The use of reference, equivalent, or approved methods.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. The use of calibration standards traceable to NIST or other primary standard.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. The participation in EPA performance evaluations and the permission for EPA to conduct system audits.</td>
<td></td>
</tr>
<tr>
<td>Monitoring and QA Responsibility</td>
<td>State/local agency via the “primary quality assurance organization”.</td>
<td>Source owner/operator.</td>
</tr>
<tr>
<td>Monitoring Duration</td>
<td>Indefinitely</td>
<td>Usually up to 12 months.</td>
</tr>
<tr>
<td>Annual Performance Evaluation (PE)</td>
<td>Standards and equipment different from those used for spanning, calibration, and verifications. Prefer different personnel.</td>
<td>Personnel, standards and equipment different from those used for spanning, calibration, and verifications.</td>
</tr>
<tr>
<td>PE audit rate:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Automated</td>
<td>100% per year</td>
<td>100% per quarter.</td>
</tr>
<tr>
<td>—Manual</td>
<td>Varies depending on pollutant. See Table A–2 of this appendix.</td>
<td>100% per quarter.</td>
</tr>
<tr>
<td>Precision Assessment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Automated</td>
<td>One-point QC check biweekly but data quality dependent.</td>
<td>One point QC check biweekly.</td>
</tr>
<tr>
<td>—Manual</td>
<td>Varies depending on pollutant. See Table A–2 of this appendix.</td>
<td>One site: 1 every 6 days or every third day for daily monitoring (TSP and Pb).</td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Automated</td>
<td>By site—EPA performs calculations annually</td>
<td>By site—source owner/operator performs calculations each sampling quarter.</td>
</tr>
<tr>
<td>—Manual</td>
<td>By reporting organization—EPA performs calculations annually.</td>
<td>By site—source owner/operator performs calculations each sampling quarter.</td>
</tr>
</tbody>
</table>
Automated Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Assessment method</th>
<th>Coverage</th>
<th>Minimum frequency</th>
<th>Parameters reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Point QC for SO₂, NO₂, O₃, CO</td>
<td>Response check at concentration 0.01–0.1 ppm SO₂, NO₂, O₃, and 1–10 ppm CO</td>
<td>Each analyzer</td>
<td>Once per 2 weeks</td>
<td>Audit concentration and measured concentration.</td>
</tr>
<tr>
<td>Annual performance evaluation for SO₂, NO₂, O₃, CO</td>
<td>See section 3.2.2 of this appendix</td>
<td>Each analyzer</td>
<td>Once per year</td>
<td>Audit concentration and measured concentration for each level.</td>
</tr>
<tr>
<td>Flow rate verification PM₁₀, PM₂.₅, PM₁₀–₂.₅</td>
<td>Check of sampler flow rate</td>
<td>Each sampler</td>
<td>Once every month</td>
<td>Audit flow rate and measured flow rate indicated by the sampler.</td>
</tr>
<tr>
<td>Semi-annual flow rate audit PM₁₀, PM₂.₅, PM₁₀–₂.₅</td>
<td>Check of sampler flow rate using independent standard</td>
<td>Each sampler</td>
<td>Once every 6 months</td>
<td>Audit flow rate and measured flow rate indicated by the sampler.</td>
</tr>
<tr>
<td>Collocated sampling PM₂.₅, PM₁₀–₂.₅</td>
<td>Collocated samplers</td>
<td>15%</td>
<td>Every 12 days</td>
<td>Primary sampler concentration and duplicate sampler concentration.</td>
</tr>
<tr>
<td>Performance evaluation program PM₂.₅, PM₁₀–₂.₅</td>
<td>Collocated samplers</td>
<td>1. 5 valid audits for primary QA orgs, with ≤5 sites. 2. 8 valid audits for primary QA orgs, with >5 sites. 3. All samplers in 6 years.</td>
<td>Over all quarters</td>
<td>Primary sampler concentration and performance evaluation sampler concentration.</td>
</tr>
</tbody>
</table>

Manual Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Assessment method</th>
<th>Coverage</th>
<th>Minimum frequency</th>
<th>Parameters reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collocated sampling PM₁₀, TSP, PM₁₀–₂.₅, PM₂.₅, Pb-TSP, Pb-PM₁₀</td>
<td>Collocated samplers</td>
<td>15%</td>
<td>Every 12 days—every 6 days.</td>
<td>Primary sampler concentration and duplicate sampler concentration.</td>
</tr>
<tr>
<td>Flow rate verification PM₁₀ (low Vol), PM₁₀–₂.₅, PM₂.₅, Pb-PM₁₀</td>
<td>Check of sampler flow rate</td>
<td>Each sampler</td>
<td>Once every month</td>
<td>Audit flow rate and measured flow rate indicated by the sampler.</td>
</tr>
<tr>
<td>Flow rate verification PM₁₀ (High-Vol), TSP, Pb-TSP</td>
<td>Check of sampler flow rate</td>
<td>Each sampler</td>
<td>Once every quarter</td>
<td>Audit flow rate and measured flow rate indicated by the sampler.</td>
</tr>
<tr>
<td>Semi-annual flow rate audit PM₁₀, TSP, PM₁₀–₂.₅, PM₂.₅, Pb-TSP, Pb-PM₁₀</td>
<td>Check of sampler flow rate using independent standard</td>
<td>Each sampler, all locations</td>
<td>Once every 6 months</td>
<td>Audit flow rate and measured flow rate indicated by the sampler.</td>
</tr>
<tr>
<td>Pb audit strips Pb-TSP, Pb-PM₁₀</td>
<td>Check of analytical system with Pb audit strips</td>
<td>Analytical</td>
<td>Each quarter</td>
<td>Actual concentration and audit concentration.</td>
</tr>
<tr>
<td>Performance evaluation program PM₂.₅, PM₁₀–₂.₅</td>
<td>Collocated samplers</td>
<td>1. 5 valid audits for primary QA orgs, with ≤5 sites. 2. 8 valid audits for primary QA orgs, with >5 sites. 3. All samplers in 6 years.</td>
<td>Over all quarters</td>
<td>Primary sampler concentration and performance evaluation sampler concentration.</td>
</tr>
</tbody>
</table>
TABLE A–2 OF APPENDIX A TO PART 58—MINIMUM DATA ASSESSMENT REQUIREMENTS FOR SLAMS SITES—Continued

<table>
<thead>
<tr>
<th>Method Assessment method</th>
<th>Coverage</th>
<th>Minimum frequency</th>
<th>Parameters reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance evaluation program Pb-TSP, Pb-PM<sub>16</sub></td>
<td>Collocated samplers ...</td>
<td>1. 1 valid audit and 4 collocated samples for primary QA orgs, with >5 sites. 2. 2 valid audits and 6 collocated samples for primary QA orgs, with >5 sites.</td>
<td>Over all 4 quarters Primary sampler concentration and performance evaluation sampler concentration. Primary sampler concentration and duplicate sampler concentration.</td>
</tr>
</tbody>
</table>

1 Effective concentration for open path analyzers.
2 Corrected concentration, if applicable, for open path analyzers.

TABLE A–3 OF APPENDIX A TO PART 58—SUMMARY OF PM_{2.5} NUMBER AND TYPE OF COLLOCATION (15% COLLOCATION REQUIREMENT) NEEDED AS AN EXAMPLE OF A PRIMARY QUALITY ASSURANCE ORGANIZATION THAT HAS 54 MONITORS AND PROCURED FRMs AND THREE OTHER EQUIVALENT METHOD TYPES

<table>
<thead>
<tr>
<th>Primary sampler method designation</th>
<th>Total no. of monitors</th>
<th>Total no. collocated</th>
<th>No. of collocated FRM</th>
<th>No. of collocated monitors of same method designation as primary</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRM</td>
<td>20</td>
<td>3</td>
<td>3</td>
<td>n/a</td>
</tr>
<tr>
<td>FEM (A)</td>
<td>20</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>FEM (C)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FEM (D)</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

EDITORIAL NOTE: At 72 FR 32211, June 13, 2007, the last sentence in section 4.2.2.2, was amended in Appendix A to Part 58; however, the amendment could not be incorporated due to inaccurate amendatory instruction.

APPENDIX B TO PART 58 [RESERVED]

APPENDIX C TO PART 58—AMBIENT AIR QUALITY MONITORING METHODOLOGY

1.0 Purpose
2.0 SLAMS Ambient Air Monitoring Stations
3.0 NCORE Ambient Air Monitoring Stations
4.0 Photochemical Assessment Monitoring Stations (PAMS)
5.0 Particulate Matter Episode Monitoring
6.0 References

1.0 PURPOSE

This appendix specifies the criteria pollutant monitoring methods (manual methods or automated analyzers) which must be used in SLAMS and NCORE stations that are a subset of SLAMS.

2.0 SLAMS AMBIENT AIR MONITORING NETWORK

2.1 Except as otherwise provided in this appendix, a criteria pollutant monitoring method used for making NAAQS decisions at a SLAMS site must be a reference or equivalent method as defined in §50.1 of this chapter.

2.1.1 Any NO₂ FRM or FEM used for making primary NAAQS decisions must be capable of providing hourly averaged concentration data.

2.2 Reserved

2.3 Any manual method or analyzer purchased prior to cancellation of its reference or equivalent method designation under §53.11 or §53.16 of this chapter may be used at a SLAMS site following cancellation for a reasonable period of time to be determined by the Administrator.

2.4 Approval of Non-designated Continuous PM_{2.5} Methods as Approved Regional Methods (ARMs) Operated Within a Network of Sites. A method for PM_{2.5} that has not been designated as an FRM or FEM as defined in §50.1 of this chapter may be approved as an ARM for purposes of section 2.1 of this appendix at a particular site or network of sites under the following stipulations.

2.4.1 The candidate ARM must be demonstrated to meet the requirements for PM_{2.5} Class III equivalent methods as defined in subpart C of part 53 of this chapter. Specifically the requirements for precision, correlation, and additive and multiplicative
broad for purposes of this section 2.4, the following requirements shall apply:

2.4.1.1 The candidate ARM shall be tested at the site(s) in which it is intended to be used. For a network of sites operated by one reporting agency or primary quality assurance organization, the testing shall occur at a subset of sites to include one site in each MSA/CSA, up to the first 2 highest population MSA/CSA and at least one rural area or Micropolitan Statistical Area site. If the candidate ARM for a network is already approved for purposes of this section in another agency’s network, subsequent testing shall minimally occur at one site in a MSA/CSA and one rural area or Micropolitan Statistical Area. There shall be no requirement for tests at any other sites.

2.4.1.2 For purposes of this section, a full year of testing may begin and end in any season, so long as all seasons are covered.

2.4.1.3 No PM₁₀ samplers shall be required for the test, as determination of the PM₂.₅/PM₁₀ ratio at the test site shall not be required.

2.4.1.4 The test specification for PM₂.₅, Class III equivalent method precision defined in subpart C of part 53 of this chapter applies; however, there is no specific requirement that collocated continuous monitors be operated for purposes of generating a statistic for coefficient of variation (CV). To provide an estimate of precision that meets the requirement identified in subpart C of part 53 of this chapter, agencies may cite peer-reviewed published data or data in AQS that can be presented demonstrating the candidate ARM operated will produce data that meets the specification for precision of Class III PM₂.₅ methods.

2.4.1.5 A minimum of 90 valid sample pairs per site for the year with no less than 20 valid sample pairs per season must be generated for use in demonstrating that additive bias, multiplicative bias and correlation meet the comparability requirements specified in subpart C of part 53 of this chapter. A valid sample pair may be generated with as little as one valid FRM and one valid candidate ARM measurement per day.

2.4.1.6 For purposes of determining bias, FRM data with concentrations less than 3 micrograms per cubic meter (μg/m³) may be excluded. Exclusion of data does not result in failure of sample completeness specified in this section.

2.4.1.7 Data transformations are allowed to be used to demonstrate meeting the comparability requirements specified in subpart C of part 53 of this chapter. Data transformation may be linear or non-linear, but must be applied in the same way to all sites used in the testing.

2.4.2 The monitoring agency wishing to use an ARM must develop and implement appropriate quality assurance procedures for the method. Additionally, the following procedures are required for the method:

2.4.2.1 The ARM must be consistently operated throughout the network. Exceptions to a consistent operation must be described according to section 2.8 of this appendix;

2.4.2.2 The ARM must be operated on an hourly sampling frequency capable of providing data suitable for aggregation into daily 24-hour average measurements;

2.4.2.3 The ARM must use an inlet and separation device, as needed, that are already approved in either the reference method identified in appendix L to part 50 of this chapter or under part 53 of this chapter as approved for use on a PM₂.₅ reference or equivalent method. The only exceptions to this requirement are those methods that by their inherent measurement principle may not need an inlet or separation device that segregates the aerosol; and

2.4.2.4 The ARM must be capable of providing for flow audits, unless by its inherent measurement principle, measured flow is not required. These flow audits are to be performed on the frequency identified in appendix A to this part.

2.4.2.5 If data transformations are used, they must be described in the monitoring agencies Quality Assurance Project plan (or addendum to QAPP). The QAPP shall describe how often (e.g., quarterly, yearly) and under what provisions the data transformation will be updated. For example, not meeting the data quality objectives for a site over a season or year may be cause for recalculation of a data transformation, but by itself would not be cause for invalidating the data. Data transformations must be applied prospectively, i.e., in real-time or near real-time, to the data output from the PM₂.₅ continuous method. See reference 7 of this appendix.

2.4.3 The monitoring agency wishing to use the method must develop and implement appropriate procedures for assessing and reporting the precision and accuracy of the method comparable to the procedures set forth in appendix A of this part for designated reference and equivalent methods.

2.4.4 Assessments of data quality shall follow the same frequencies and calculations as required under section 3 of appendix A to this part with the following exceptions:

2.4.4.1 Collocation of ARM with FRM/FEM samplers must be maintained at a minimum of 30 percent of the required SLAMS sites with a minimum of 1 per network.

2.4.4.2 All collocated FRM/FEM samplers must maintain a sample frequency of at least 1 in 6 sample days;

2.4.4.3 Collocated FRM/FEM samplers shall be located at the design value site, with the required FRM/FEM samplers deployed among the largest MSA/CSA in the network, until all required FRM/FEM are deployed; and
2.4.4.4 Data from collocated FRM/FEM are to be substituted for any calendar quarter that an ARM method has incomplete data.

2.4.4.5 Collocation with an ARM under this section is permitted only while operated in the range or ranges specified in the request.

2.4.4.6 Assessments of bias with an independent audit of the total measurement system shall be conducted with the same frequency as an FEM as identified in appendix A to this part.

2.4.5 Request for approval of a candidate ARM, that is not already approved in another agency’s network under this section, must meet the general submittal requirements of section 2.7 of this appendix. Requests for approval under this section when an ARM is already approved in another agency’s network are to be submitted to the EPA Regional Administrator. Requests for approval under section 2.4 of this appendix must include the following requirements:

2.4.5.1 A clear and unique description of the site(s) at which the candidate ARM will be used and tested, and a description of the nature or character of the site and the particular matter that is expected to occur there.

2.4.5.2 A detailed description of the method and the nature of the sampler or analyzer upon which it is based.

2.4.5.3 A brief statement of the reason or rationale for requesting the approval.

2.4.5.4 A detailed description of the quality assurance procedures that have been developed and that will be implemented for the method.

2.4.5.5 A detailed description of the procedures for assessing the precision and accuracy of the method that will be implemented for reporting to AQS.

2.4.5.6 Test results from the comparability tests as required in section 2.4.1 through 2.4.1.4 of this appendix.

2.4.6 Within 120 days after receiving a request for approval of the use of an ARM at a particular site or network of sites under section 2.4 of this appendix, the Administrator will approve or disapprove the method by letter to the person or agency requesting such approval. When appropriate for methods that are already approved in another SLAMS network, the EPA Regional Administrator has approval/disapproval authority. In either instance, additional information may be requested to assist with the decision.

2.5 [Reserved]

2.6 Use of Methods With Higher, Nonconforming Ranges in Certain Geographical Areas.

2.6.1 [Reserved]

2.6.2 An analyzer may be used (indefinitely) on a range which extends to concentrations higher than two times the upper limit specified in table B–1 of part 53 of this chapter if:

2.6.2.1 The analyzer has more than one selectable range and has been designated as a reference or equivalent method on at least one of its ranges, or has been approved for use under section 2.5 (which applies to analyzers purchased before February 18, 1975);

2.6.2.2 The pollutant intended to be measured with the analyzer is likely to occur in concentrations more than two times the upper range limit specified in table B–1 of part 53 of this chapter in the geographical area in which use of the analyzer is proposed; and

2.6.2.3 The Administrator determines that the resolution of the range or ranges for which approval is sought is adequate for its intended use. For purposes of this section (2.6), “resolution” means the ability of the analyzer to detect small changes in concentration.

2.6.3 Requests for approval under section 2.6.2 of this appendix must meet the submittal requirements of section 2.7. Except as provided in section 2.7.3 of this appendix, each request must contain the information specified in section 2.7.2 in addition to the following:

2.6.3.1 The range or ranges proposed to be used;

2.6.3.2 Test data, records, calculations, and test results as specified in section 2.7.2.2 of this appendix for each range proposed to be used;

2.6.3.3 An identification and description of the geographical area in which use of the analyzer is proposed;

2.6.3.4 Data or other information demonstrating that the pollutant intended to be measured with the analyzer is likely to occur in concentrations more than two times the upper range limit specified in table B–1 of part 53 of this chapter in the geographical area in which use of the analyzer is proposed; and

2.6.3.5 Test data or other information demonstrating the resolution of each proposed range that is broader than that permitted by section 2.5 of this appendix.

2.6.4 Any person who has obtained approval of a request under this section (2.6.2) shall assure that the analyzer for which approval was obtained is used only in the geographical area identified in the request and only while operated in the range or ranges specified in the request.

2.7 Requests for Approval; Withdrawal of Approval.
2.7.1 Requests for approval under sections 2.4, 2.6.2, or 2.8 of this appendix must be submitted to: Director, National Exposure Research Laboratory (MD–D205–63), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711. For ARM that are already approved in another agency’s network, subsequent requests for approval under section (2.7) must be submitted to the applicable EPA Regional Administrator.

2.7.2 Except as provided in section 2.7.3 of this appendix, each request must contain:

2.7.2.1 A statement identifying the analyzer (e.g., by serial number) and the method of which the analyzer is representative (e.g., by manufacturer and model number); and

2.7.2.2 Test data, records, calculations, and test results for the analyzer (or the method of which the analyzer is representative) as specified in subpart B, subpart C, or both (as applicable) of part 53 of this chapter.

2.7.3 A request may concern more than one analyzer or geographical area and may incorporate by reference any data or other information known to EPA from one or more of the following:

2.7.3.1 An application for a reference or equivalent method determination submitted to EPA for the method of which the analyzer is representative, or testing conducted by the applicant or by EPA in connection with such an application;

2.7.3.2 Testing of the method of which the analyzer is representative at the initiative of the Administrator under §58.7 of this chapter; or

2.7.3.3 A previous or concurrent request for approval submitted to EPA under this section (2.7).

2.7.4 To the extent that such incorporation by reference provides data or information required by this section (2.7) or by sections 2.4, 2.5, or 2.6 of this appendix, independent data or duplicative information need not be submitted.

2.7.5 After receiving a request under this section (2.7), the Administrator may request such additional testing or information or conduct such tests as may be necessary in his judgment for a decision on the request.

2.7.6 If the Administrator determines, on the basis of any available information, that any of the determinations or statements on which approval of a request under this section was based are invalid or no longer valid, or that the requirements of section 2.4, 2.5, or 2.6, as applicable, have not been met, he/she may withdraw the approval after affording the person who obtained the approval an opportunity to submit information and arguments opposing such action.

2.8 Modifications of Methods by Users.

2.8.1 Except as otherwise provided in this section, no reference method, equivalent method, or ARM may be used in a SLAMS network if it has been modified in a manner that could significantly alter the performance characteristics of the method without prior approval by the Administrator. For purposes of this section, “alternative method” means an analyzer, the method of which the analyzer is representative, or testing conducted by the person who obtained the approval after the approval was made.

2.8.2 Requests for approval under this section (2.8) must meet the submittal requirements of sections 2.7.1 and 2.7.2.1 of this appendix.

2.8.3 Each request submitted under this section (2.8) must include:

2.8.3.1 A description, in such detail as may be appropriate, of the desired modification;

2.8.3.2 A brief statement of the purpose(s) of the modification, including any reasons for considering it necessary or advantageous;

2.8.3.3 A brief statement of belief concerning the extent to which the modification will or may affect the performance characteristics of the method; and

2.8.3.4 Such further information as may be necessary to explain and support the statements required by sections 2.8.3.2 and 2.8.3.3.

2.8.4 The Administrator will approve or disapprove the modification by letter to the person or agency requesting such approval within 75 days after receiving a request for approval under this section and any further information that the applicant may be asked to provide.

2.8.5 A temporary modification that could alter the performance characteristics of a reference, equivalent, or ARM may be made without prior approval under this section if the method is not functioning or is malfunctioning, provided that parts necessary for repair in accordance with the applicable operation manual cannot be obtained within 45 days. Unless such temporary modification is later approved under section 2.8.3 of this appendix, the temporarily modified method shall be repaired in accordance with the applicable operation manual as quickly as practicable but in no event later than 4 months after the temporary modification was made, unless an extension of time is granted by the Administrator. Unless and until the temporary modification is approved, air quality data obtained with the method as temporarily modified must be clearly identified as such when submitted in accordance with §58.16 and must be accompanied by a report containing the information specified in section 2.8.3 of this appendix. A request that the Administrator approve a temporary modification may be submitted in accordance with sections 2.8.1 through 2.8.4 of this appendix. In such cases the request will be considered as if a request for prior approval had been made.

2.9 Use of IMPROVE Samplers at a SLAMS Site. “IMPROVE” samplers may be used in SLAMS for monitoring of regional...
background and regional transport concentrations of fine particulate matter. The IMPROVE samplers were developed for use in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network to characterize all of the major components and many trace constituents of the particulate matter that impair visibility in Federal Class I Areas. Descriptions of the IMPROVE samplers and the data they collect are available in references 4, 5, and 6 of this appendix.

2.10 Use of Pb-PM at SLAMS Sites.

2.10.1 The EPA Regional Administrator may approve the use of a Pb-PM FRM or Pb-PM FEM sampler as part of the network plan required under part 58.10(a)(4) in the following cases.

2.10.1.1 Pb-PM samplers can be approved for use at the non-source-oriented sites required under paragraph 4.5(b) of Appendix D to part 58 if there is no existing monitoring data indicating that the maximum arithmetic 3-month mean Pb concentration (either Pb-TSP or Pb-PM) at the site was equal to or greater than 0.10 micrograms per cubic meter during the previous 3 years.

2.10.1.2 Pb-PM samplers can be approved for use at source-oriented sites required under paragraph 4.5(a) if the monitoring agency can demonstrate (through modeling or historic monitoring data from the last 3 years) that Pb concentrations (either Pb-TSP or Pb-PM) will not equal or exceed 0.10 micrograms per cubic meter on an arithmetic 3-month mean and the source is expected to emit a substantial majority of its Pb in the fraction of PM with an aerodynamic diameter of less than or equal to 10 micrometers.

2.10.2 The approval of a Pb-PM sampler in lieu of a Pb-TSP sampler as allowed for in paragraph 2.10.1 above will be revoked if measured Pb-PM concentrations equal or exceed 0.10 micrograms per cubic meter on an arithmetic 3-month mean. Monitoring agencies will have up to 6 months from the end of the 3-month period in which the arithmetic 3-month Pb-PM mean concentration equaled or exceeded 0.10 micrograms per cubic meter to install and begin operation of a Pb-TSP sampler at the site.

3.0 NCORE AMBient AIR MONITORING STATIONS

3.1 Methods employed in NCORE multi-pollutant sites used to measure SO2, CO, NOX, O3, PM10, or PM2.5 must be reference or equivalent methods as defined in §50.1 of this chapter, or an ARM as defined in section 2.4 of this appendix, for any monitors intended for comparison with applicable NAAQS.

3.2 If alternative SO2, CO, NOX, O3, PM10, or PM2.5 monitoring methodologies are proposed for monitors not intended for NAAQS comparison, such techniques must be detailed in the network description required by §58.10 and subsequently approved by the Administrator. Examples of locations that are not intended to be compared to the NAAQS may be rural background and transport sites or areas where the concentration of the pollutant is so low that it would be more useful to operate a higher sensitivity method that is not an FRM or FEM.

4.0 Photochemical Assessment Monitoring Stations (PAMS)

4.1 Methods used for O3 monitoring at PAMS must be automated reference or equivalent methods as defined in §50.1 of this chapter.

4.2 Methods used for NO, NOX, and NO2 monitoring at PAMS should be automated reference or equivalent methods as defined for NOX in §50.1 of this chapter. If alternative NO, NOX, or NO2 monitoring methodologies are proposed, such techniques must be detailed in the network description required by §58.10 and subsequently approved by the Administrator.

4.3 Methods for meteorological measurements and speciated VOC monitoring are included in the guidance provided in references 2 and 3 of this appendix. If alternative VOC monitoring methodology (including the use of new or innovative technologies), which is not included in the guidance, is proposed, it must be detailed in the network description required by §58.10 and subsequently approved by the Administrator.

5.0 PARTICULATE MATTER EPISODE MONITORING

5.1 For short-term measurements of PM10 during air pollution episodes (see §51.132 of this chapter) the measurement method must be:

5.1.1 Either the "Staggered PM10" method or the "PM10 Sampling Over Short Sampling Times" method, both of which are based on the reference method for PM10 and are described in reference 1; or

5.1.2 Any other method for measuring PM10:

5.1.2.1 Which has a measurement range or range appropriate to accurately measure air pollution episode concentration of PM10,

5.1.2.2 Which has a sample period appropriate for short-term PM10 measurements, and

5.1.2.3 For which a quantitative relationship to a reference or equivalent method for PM10 has been established at the use site. Procedures for establishing a quantitative site-specific relationship are contained in reference 1.

5.2 PM10 methods other than the reference method are not covered under the quality assessment requirements of appendix to this part. Therefore, States must develop and implement their own quality assessment procedures for those methods allowed under
Environmental Protection Agency

this section 4. These quality assessment procedures should be similar or analogous to those described in section 3 of appendix A to this part for the PM_{2.5} reference method.

6.0 References

Appendix D to Part 58—Network Design Criteria for Ambient Air Quality Monitoring

1. Monitoring Objectives and Spatial Scales
2. General Monitoring Requirements
3. Design Criteria for NCore Sites
4. Pollutant-Specific Design Criteria for SLAMS Sites
5. Design Criteria for Photochemical Assessment Monitoring Stations (PAMS)

6. References

1. Monitoring Objectives and Spatial Scales

The purpose of this appendix is to describe monitoring objectives and general criteria to be applied in establishing the required SLAMS ambient air quality monitoring stations and for choosing general locations for additional monitoring sites. This appendix also describes specific requirements for the number and location of FRM, FEM, and ARM sites for specific pollutants, NCore multipollutant sites, PM₁₀ mass sites, PM_{2.5} mass sites, chemically-speciated PM_{2.5} sites, and O₃ precursor measurements sites (PAMS). These criteria will be used by EPA in evaluating the adequacy of the air pollutant monitoring networks.

1.1 Monitoring Objectives. The ambient air monitoring networks must be designed to meet three basic monitoring objectives. These basic objectives are listed below. The appearance of any one objective in the order of this list is not based upon a prioritized scheme. Each objective is important and must be considered individually.

(a) Provide air pollution data to the general public in a timely manner. Data can be presented to the public in a number of attractive ways including through air quality maps, newspapers, Internet sites, and as part of weather forecasts and public advisories.

(b) Support compliance with ambient air quality standards and emissions strategy development. Data from FRM, FEM, and ARM monitors for NAAQS pollutants will be used for comparing an area’s air pollution levels against the NAAQS. Data from monitors of various types can be used in the development of attainment and maintenance plans. SLAMS, and especially NCore station data, will be used to evaluate the regional air quality models used in developing emission strategies, and to track trends in air pollution abatement control measures’ impact on improving air quality. In monitoring locations near major air pollution sources, source-oriented monitoring data can provide insight into how well industrial sources are controlling their pollutant emissions.

(c) Support for air pollution research studies. Air pollution data from the NCore network can be used to supplement data collected by researchers working on health effects assessments and atmospheric processes, or for monitoring methods development work.

1.1.1 In order to support the air quality management work indicated in the three basic air monitoring objectives, a network must be designed with a variety of types of monitoring sites. Monitoring sites must be
capable of informing managers about many things including the peak air pollution levels, typical levels in populated areas, air pollution transported into and outside of a city or region, and levels near specific sources. To summarize some of these sites, here is a listing of six general site types:

(a) Sites located to determine the highest concentrations expected to occur in the area covered by the network.
(b) Sites located to measure typical concentrations in areas of high population density.
(c) Sites located to determine the impact of significant sources or source categories on air quality.
(d) Sites located to determine the extent of regional pollutant transport among populated areas; and in support of secondary standards.
(e) Sites located to measure air pollution impacts on visibility, vegetation damage, or other welfare-based impacts.
(f) Sites located to determine general background concentration levels.

1.1.3 This appendix focuses on the relationship between monitoring objectives, site types, and the geographic location of monitoring sites. Included are a rationale and set of general criteria for identifying candidate site locations in terms of physical characteristics which most closely match a specific monitoring objective. The criteria for more specifically locating the monitoring site, including spacing from roadways and vertical and horizontal probe and path placement, are described in appendix E to this part.

1.2 Spatial Scales. (a) To clarify the nature of the link between general monitoring objectives, site types, and the physical location of a particular monitor, the concept of spatial scale of representativeness is defined. The goal in locating monitors is to correctly match the spatial scale represented by the sample of monitored air with the spatial scale most appropriate for the monitoring site type, air pollutant to be measured, and the monitoring objective.

(b) Thus, spatial scale of representativeness is described in terms of the physical dimensions of the air parcel nearest to a monitoring site throughout which actual pollutants concentrations are reasonably similar. The scales of representativeness of most interest for the site types described above are as follows:

1. (Microscale)—Defines the concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
2. (Middle scale)—Defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometer.
3. (Neighborhood scale)—Defines concentrations within some extended area of the city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range. The neighborhood and urban scales listed below have the potential to overlap in applications that concern secondarily formed or homogeneously distributed air pollutants.
4. (Urban scale)—Defines concentrations within an area of city-like dimensions, on the order of 4 to 50 kilometers. Within a city, the geographic placement of sources may result in there being no single site that can be said to represent air quality on an urban scale.
5. (Regional scale)—Defines usually a rural area of reasonably homogeneous geography without large sources, and extends from tens to hundreds of kilometers.
6. (National and global scales)—These measurement scales represent concentrations characterizing the nation and the globe as a whole.

(c) Proper siting of a monitor requires specification of the monitoring objective, the types of sites necessary to meet the objective, and then the desired spatial scale of representativeness. For example, consider the case where the objective is to determine NAAQS compliance by understanding the maximum ozone concentrations for an area. Such areas would most likely be located downwind of a metropolitan area, quite likely in a suburban residential area where children and other susceptible individuals are likely to be outdoors. Sites located in these areas are most likely to represent an urban scale of measurement. In this example, physical location was determined by considering ozone precursor emission patterns, public activity, and meteorological characteristics affecting ozone formation and dispersion. Thus, spatial scale of representativeness was not used in the selection process but was a result of site location.

(d) In some cases, the physical location of a site is determined from joint consideration of both the basic monitoring objective and the type of monitoring site desired, or required by this appendix. For example, to determine PM concentrations which are typical over a geographic area having relatively high PM concentrations, a neighborhood...
scale site is more appropriate. Such a site would likely be located in a residential or commercial area having a high overall PM$_{2.5}$ emission density but not in the immediate vicinity of any single dominant source. Note that in this example, the desired scale of representativeness was an important factor in determining the physical location of the monitoring site.

(e) In either case, classification of the monitor by its type and spatial scale of representativeness is necessary and will aid in interpretation of the monitoring data for a particular monitoring objective (e.g., public reporting, NAAQS compliance, or research support).

(f) Table D–1 of this appendix illustrates the relationship between the various site types that can be used to support the three basic monitoring objectives, and the scales of representativeness that are generally most appropriate for that type of site.

TABLE D–1 OF APPENDIX D TO PART 58—RELATIONSHIP BETWEEN SITE TYPES AND SCALES OF REPRESENTATIVENESS

<table>
<thead>
<tr>
<th>Site type</th>
<th>Appropriate sitting scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Highest concentration</td>
<td>Micro, middle, neighborhood</td>
</tr>
<tr>
<td>regional transport</td>
<td>Urban, regional.</td>
</tr>
</tbody>
</table>

2. GENERAL MONITORING REQUIREMENTS

(a) The National ambient air monitoring system includes several types of monitoring stations, each targeting a key data collection need and each varying in technical sophistication.

(b) Research grade sites are platforms for scientific studies, either involved with health or welfare impacts, measurement methods development, or other atmospheric studies. These sites may be collaborative efforts between regulatory agencies and researchers with specific scientific objectives for each. Data from these sites might be collected with both traditional and experimental techniques, and data collection might involve specific laboratory analyses not common in routine measurement programs. The research grade sites are not required by regulation; however, they are included here due to their important role in supporting the air quality management program.

(c) The NCore multipollutant sites are sites that measure multiple pollutants in order to provide support to integrated air quality management data needs. NCore sites include both neighborhood and urban scale measurements in general, in a selection of metropolitan areas and a limited number of more rural locations. Continuous monitoring methods are to be used at the NCore sites when available for a pollutant to be measured, as it is important to have data collected over common time periods for integrated analyses. NCore multipollutant sites are intended to be long-term sites useful for a variety of applications including air quality trends analyses, model evaluation, and tracking metropolitan area statistics. As such, the NCore sites should be placed away from direct emission sources that could substantially impact the ability to detect area-wide concentrations. The Administrator must approve the NCore sites.

(d) Monitoring sites designated as SLAMS sites, but not as NCore sites, are intended to address specific air quality management interests, and as such, are frequently single-pollutant measurement sites. The EPA Regional Administrator must approve the SLAMS sites.

(e) This appendix uses the statistical-based definitions for metropolitan areas provided by the Office of Management and Budget and the Census Bureau. These areas are referred to as metropolitan statistical areas (MSA), micropolitan statistical areas, core-based statistical areas, combined statistical areas (CBSA), and combined statistical areas (CSA). A CBSA associated with at least one urbanized area of 50,000 population or greater is termed a Metropolitan Statistical Area (MSA). A CBSA associated with at least one urbanized cluster of at least 10,000 population or greater is termed a Micropolitan Statistical Area. CSA consist of two or more adjacent CBSAs. In this appendix, the term MSA is used to refer to a Metropolitan Statistical Area. By definition, both MSA and CSA have a high degree of integration; however, many such areas cross State or other political boundaries. MSA and CSA may also cross more than one air shed. The EPA recognizes that State or local agencies must consider MSA/CSA boundaries and their own political boundaries and geographical characteristics in designing their air monitoring networks. The EPA recognizes that there may be situations where the EPA Regional Administrator and the affected State or local agencies may need to augment or to divide the overall MSA/CSA monitoring responsibilities and requirements among these various agencies to achieve an effective network design. Full monitoring requirements apply separately to each affected State or local agency in the absence of an agreement between the affected agencies and the EPA Regional Administrator.
3. DESIGN CRITERIA FOR NCORE SITES

(a) Each State (i.e., the fifty States, District of Columbia, Puerto Rico, and the Virgin Islands) is required to operate at least one NCORE site. States may delegate this requirement to a local agency. States with many MSAs often also have multiple air sheds with unique characteristics and, often, elevated air pollution. These States include, at a minimum, California, Florida, Illinois, Michigan, New York, North Carolina, Ohio, Pennsylvania, and Texas. These States are required to identify one to two additional NCORE sites in order to account for their unique situations. These additional sites shall be located to avoid proximity to large emission sources. Any State or local agency can propose additional candidate NCORE sites or modifications to these requirements for approval by the Administrator. The NCORE locations should be leveraged with other multipollutant air monitoring sites including PAMS sites, National Air Toxics Trends Stations (NATTS) sites, CASTNET sites, and STN sites. Site leveraging includes using the same monitoring platform and equipment to meet the objectives of the variety of programs where possible and advantageous.

(b) The NCORE sites must measure, at a minimum, PM$_{2.5}$, PM$_{10-2.5}$ particle mass using continuous and integrated/filter-based samplers, speciated PM$_{2.5}$, PM$_{10-2.5}$ particle mass, speciated PM$_{10-2.5}$, O$_3$, SO$_2$, CO, NO/NO$_x$, wind speed, wind direction, relative humidity, and ambient temperature. NCORE sites in CBSA with a population of 500,000 people (as determined in the latest Census) or greater shall also measure Pb either as Pb-TSP or Pb-PM$_{10}$. The EPA Regional Administrator may approve an alternative location for the Pb measurement where the alternative location would be more appropriate for logistical reasons and the measurement would provide data on typical Pb concentrations in the CBSA.

(1) Although the measurement of NO$_x$ is required in support of a number of monitoring objectives, available commercial instruments may indicate little difference in their measurement of NO$_x$, compared to the conventional measurement of NO$_x$, particularly in areas with relatively fresh sources of nitrogen emissions. Therefore, in areas with negligible expected difference between NO$_x$ and NO$_2$ measured concentrations, the Administrator may allow for waivers that permit NO$_x$ monitoring to be substituted for the required NO$_2$ monitoring at applicable NCORE sites.

(2) EPA recognizes that, in some cases, the physical location of the NCORE site may not be suitable for representative meteorological measurements due to the site’s physical surroundings. It is also possible that nearby meteorological measurements may be able to fulfill this data need. In these cases, the requirement for meteorological monitoring can be waived by the Administrator.

(c) [Reserved]

(d) Siting criteria are provided for urban and rural locations. Sites with significant historical records that do not meet siting criteria may be approved as NCORE by the Administrator. Sites with the suite of NCORE measurements that are explicitly designed for other monitoring objectives are exempt from these siting criteria (e.g., a near-roadway site).

(1) Urban NCORE stations are to be generally located at urban or neighborhood scale to provide representative concentrations of exposure expected throughout the metropolitan area; however, a middle-scale site may be acceptable in cases where the site can represent many such locations throughout a metropolitan area.

(2) Rural NCORE stations are to be located to the maximum extent practicable at a regional or larger scale away from any large local emission source, so that they represent ambient concentrations over an extensive area.

4. POLLUTANT-SPECIFIC DESIGN CRITERIA FOR SLAMS SITES

4.1 Ozone (O$_3$) Design Criteria. (a) State, and where appropriate, local agencies must operate O$_3$ sites for various locations depending upon area size (in terms of population and geographic characteristics) and typical peak concentrations (expressed in percentages below, or near the O$_3$ NAAQS). Specific SLAMS O$_3$ site minimum requirements are included in Table D-2 of this appendix. The NCORE sites are expected to complement the O$_3$ data collection that takes place at single-pollutant SLAMS sites, and both types of sites can be used to meet the network minimum requirements. The total number of O$_3$ sites needed to support the basic monitoring objectives of public data reporting, air quality mapping, compliance, and understanding O$_3$-related atmospheric processes will include more sites than these minimum numbers required in Table D-2 of this appendix. The EPA Regional Administrator and the responsible State or local air monitoring agency must work together to design and/or maintain the most appropriate O$_3$ network to service the variety of data needs in an area.

<table>
<thead>
<tr>
<th>MSA population</th>
<th>Most recent 3-year design value concentrations %NO$_3$ of any O$_3$ NAAQS</th>
<th>Most recent 3-year design value concentrations <85% of any O$_3$ NAAQS</th>
</tr>
</thead>
<tbody>
<tr>
<td>>10 million</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4–10 million</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>350,000–<4 million</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Environmental Protection Agency

TABLE D–2 OF APPENDIX D TO PART 58—
SLAMS MINIMUM O₃ MONITORING REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>MSA population¹ ²</th>
<th>Most recent 3-year design value concentrations ≥85% of any O₃ NAAQS³</th>
<th>Most recent 3-year design value concentrations ≥85% of any O₃ NAAQS³</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000–<350,000 ⁴ ⁵</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

¹ Minimum monitoring requirements apply to the Metropolitan statistical area (MSA).
² Population based on latest available census figures.
³ The ozone (O₃) National Ambient Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50.
⁴ These minimum monitoring requirements apply in the absence of a design value.
⁵ Metropolitan statistical areas (MSA) must contain an urbanized area of 50,000 or more population.

(b) Within an O₃ network, at least one O₃ site for each MSA, or CSA if multiple MSAs are involved, must be designed to record the maximum concentration for that particular metropolitan area. More than one maximum concentration site may be necessary in some areas. Table D–2 of this appendix does not account for the full breadth of additional factors that would be considered in designing a complete O₃ monitoring program for an area. Some of these additional factors include geographic size, population density, complexity of terrain and meteorology, adjacent O₃ monitoring programs, air pollution transport from neighboring areas, and measured air quality in comparison to all forms of the O₃ NAAQS (i.e., 8-hour and 1-hour forms). Networks must be designed to account for all of these area characteristics. Network designs must be re-examined in periodic network assessments. Deviations from the above O₃ requirements are allowed if approved by the EPA Regional Administrator.

(c) The appropriate spatial scales for O₃ sites are neighborhood, urban, and regional. Since O₃ requires appreciable formation time, the mixing of reactants and products occurs over large volumes of air, and this reduces the importance of monitoring small scale spatial variability.

(1) Neighborhood scale—Measurements in this category represent conditions throughout some reasonably homogeneous urban sub-region, with dimensions of a few kilometers. Homogeneity refers to pollutant concentrations. Neighborhood scale data will provide valuable information for developing, testing, and revising concepts and models that describe urban/regional concentration patterns. These data will be useful to the understanding and definition of processes that take periods of hours to occur and hence involve considerable mixing and transport. Under stagnation conditions, a site located in the neighborhood scale may also experience peak concentration levels within a metropolitan area.

(2) Urban scale—Measurement in this scale will be used to estimate concentrations over large portions of an urban area with dimensions of several kilometers to 50 or more kilometers. Such measurements will be used for determining trends, and designing area-wide control strategies. The urban scale sites would also be used to measure high concentrations downwind of the area having the highest precursor emissions.

(3) Regional scale—This scale of measurement will be used to typify concentrations over large portions of a metropolitan area and even larger areas with dimensions of as much as hundreds of kilometers. Such measurements will be useful for assessing the O₃ that is transported to and from a metropolitan area, as well as background concentrations. In some situations, particularly when considering very large metropolitan areas with complex source mixtures, regional scale sites can be the maximum concentration location.

(d) EPA’s technical guidance documents on O₃ monitoring network design should be used to evaluate the adequacy of each existing O₃ monitor, to relocate an existing site, or to locate any new O₃ sites.

(e) For locating a neighborhood scale site to measure typical city concentrations, a reasonably homogeneous geographical area near the center of the region should be selected which is also removed from the influence of major NOₓ sources. For an urban scale site to measure the high concentration areas, the emission inventories should be used to define the extent of the area of important nonmethane hydrocarbons and NOₓ emissions. The meteorological conditions that occur during periods of maximum photochemical activity should be determined. These periods can be identified by examining the meteorological conditions that occur on the highest O₃ air quality days. Trajectory analyses, an evaluation of wind and emission patterns on high O₃ days, can also be useful in evaluating an O₃ monitoring network. In areas without any previous O₃ air quality measurements, meteorological and O₃ precursor emissions information would be useful.

(f) Once the meteorological and air quality data are reviewed, the prospective maximum concentration monitor site should be selected in a direction from the city that is most likely to observe the highest O₃ concentrations, more specifically, downwind during periods of photochemical activity. In many cases, these maximum concentration O₃ sites will be located 10 to 30 miles or more downwind from the urban area where maximum O₃ precursor emissions originate. The downwind direction and appropriate distance should be determined from historical meteorological data collected on days which show the potential for producing high O₃ levels. Monitoring agencies are to consult with their EPA Regional Office when considering siting a maximum O₃ concentration site.
(g) In locating a neighborhood scale site which is to measure high concentrations, the same procedures used for the urban scale are followed except that the site should be located closer to the areas bordering on the center city or slightly further downwind in an area of high density population.

(b) For regional scale background monitoring sites, similar meteorological analysis as for the maximum concentration sites may also inform the decisions for locating regional scale sites.

Regional scale sites may be located to provide data on O₃ transport between cities, as background sites, or for other data collection purposes. Consideration of both area characteristics, such as meteorology, and the data collection objectives, such as transport, must be jointly considered for a regional scale site to be useful.

(i) Since O₃ levels decrease significantly in the colder parts of the year in many areas, O₃ is required to be monitored at SLAMS monitoring sites only during the "ozone season" as designated in the AQS files on a State-by-State basis and described below in Table D-3 of this appendix. Deviations from the O₃ monitoring season must be approved by the EPA Regional Administrator, documented within the annual monitoring network plan, and updated in AQS. Information on how to analyze O₃ data to support a change to the O₃ season in support of the 8-hour standard for a specific State can be found in reference 8 to this appendix.

Table D–3 of Appendix D to Part 58—Ozone Monitoring Season by State—Continued

<table>
<thead>
<tr>
<th>State</th>
<th>Begin month</th>
<th>End month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>March</td>
<td>October</td>
</tr>
<tr>
<td>Alaska</td>
<td>April</td>
<td>October</td>
</tr>
<tr>
<td>Arizona</td>
<td>April</td>
<td>October</td>
</tr>
<tr>
<td>Arkansas</td>
<td>March</td>
<td>December</td>
</tr>
<tr>
<td>California</td>
<td>March</td>
<td>September</td>
</tr>
<tr>
<td>Colorado</td>
<td>March</td>
<td>September</td>
</tr>
<tr>
<td>Connecticut</td>
<td>April</td>
<td>September</td>
</tr>
<tr>
<td>Delaware</td>
<td>April</td>
<td>October</td>
</tr>
<tr>
<td>Florida</td>
<td>March</td>
<td>October</td>
</tr>
<tr>
<td>Georgia</td>
<td>March</td>
<td>October</td>
</tr>
<tr>
<td>Hawaii</td>
<td>January</td>
<td>December</td>
</tr>
<tr>
<td>Idaho</td>
<td>May</td>
<td>September</td>
</tr>
<tr>
<td>Illinois</td>
<td>April</td>
<td>October</td>
</tr>
<tr>
<td>Indiana</td>
<td>April</td>
<td>September</td>
</tr>
<tr>
<td>Iowa</td>
<td>April</td>
<td>October</td>
</tr>
<tr>
<td>Kansas</td>
<td>April</td>
<td>September</td>
</tr>
<tr>
<td>Kentucky</td>
<td>March</td>
<td>October</td>
</tr>
<tr>
<td>Louisiana AQCR 019,032</td>
<td>March</td>
<td>October</td>
</tr>
<tr>
<td>Louisiana AQCR 106</td>
<td>March</td>
<td>October</td>
</tr>
<tr>
<td>Maine</td>
<td>April</td>
<td>September</td>
</tr>
<tr>
<td>Maryland</td>
<td>April</td>
<td>September</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>April</td>
<td>September</td>
</tr>
<tr>
<td>Michigan</td>
<td>April</td>
<td>September</td>
</tr>
<tr>
<td>Minnesota</td>
<td>April</td>
<td>October</td>
</tr>
<tr>
<td>Mississippi</td>
<td>March</td>
<td>October</td>
</tr>
<tr>
<td>Missouri</td>
<td>April</td>
<td>October</td>
</tr>
<tr>
<td>Montana</td>
<td>June</td>
<td>September</td>
</tr>
<tr>
<td>Nebraska</td>
<td>April</td>
<td>October</td>
</tr>
<tr>
<td>Nevada</td>
<td>January</td>
<td>December</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>April</td>
<td>September</td>
</tr>
</tbody>
</table>

4.2 Carbon Monoxide (CO) Design Criteria

4.2.1 General Requirements. (a) Except as provided in subsection (b), one CO monitor is required to operate collocated with one required near-road NO₂ monitor, as required in Section 4.2.2 of this part, in CBSAs having a population of 1,000,000 or more persons. If a CBSA has more than one required near-road NO₂ monitor, only one CO monitor is required to be collocated with a near-road NO₂ monitor within that CBSA.

(b) If a state provides quantitative evidence demonstrating that peak ambient CO concentrations would occur in a near-road location which meets microscale siting criteria in Appendix E of this part but is not a near-road NO₂ monitoring site, then the EPA Regional Administrator may approve a request by a state to use such an alternate near-road location for a CO monitor in place of collocating a monitor at near-road NO₂ monitoring site.

4.2.2 Regional Administrator Required Monitoring. (a) The Regional Administrators, in collaboration with states, may require additional CO monitors above the minimum number of monitors required in 4.2.1 of this part, where the minimum monitoring requirements are not sufficient to meet monitoring objectives. The Regional Administrator may require, at his/her discretion, additional monitors in situations where data or other information suggest that CO concentrations may be approaching or exceeding...
the NAAQS. Such situations include, but are not limited to, (1) characterizing impacts on ground-level concentrations due to stationary CO sources, (2) characterizing CO concentrations in downtown areas or urban street canyons, and (3) characterizing CO concentrations in areas that are subject to high ground level CO concentrations particularly due to or enhanced by topographical and meteorological impacts. The Regional Administrator and the responsible State or local air monitoring agency shall work to together to design and maintain the most appropriate CO network to address the data needs for an area, and include all monitors under this provision in the annual monitoring network plan.

4.2.3 CO Monitoring Spatial Scales. (a) Microscale and middle scale measurements are the most useful site classifications for CO monitoring. Emissions from stationary point and area sources, and including urban street canyons. Emissions generally exhibit a marked decrease with increasing downwind distance from major roads, or within downtown areas including urban street canyons. Emissions from stationary point and area sources, and non-road sources may, under certain plume conditions, result in high ground level CO concentrations at the microscale.

(1) Microscale—Microscale measurements typically represent areas in close proximity to major roadways, within street canyons, over sidewalks, and in some cases, point and area sources. Emissions on roadways result in high ground level CO concentrations at the microscale, where concentration gradients generally exhibit a marked decrease with increasing downwind distance from major roads, or within downtown areas including urban street canyons. Emissions from stationary point and area sources, and non-road sources may, under certain plume conditions, result in high ground level concentrations at the microscale.

(2) Middle scale—Middle scale measurements are intended to represent areas that have a total length of several kilometers, such as “line” emission source areas. This type of emission sources areas would include air quality along a commercially developed street or shopping plaza, freeway corridors, parking lots and feeder streets.

(3) Neighborhood scale—Neighborhood scale measurements are intended to represent areas with dimensions from 0.5 kilometers to 4 kilometers. Measurements of CO in this category would represent conditions throughout some reasonably urban sub-regions. In some cases, neighborhood scale data may represent not only the immediate neighborhood spatial area, but also other similar such areas across the larger urban area. Neighborhood scale measurements provide relative area-wide concentration data which are useful for providing relative urban background concentrations, supporting health and scientific research, and for use in modeling.

4.3 Nitrogen Dioxide (NO$_2$) Design Criteria

4.3.1 General Requirements

(a) State and, where appropriate, local agencies must operate a minimum number of required NO$_2$ monitoring sites as described below.

4.3.2 Requirement for Near-road NO$_2$ Monitors

(a) Within the NO$_2$ network, there must be one microscale near-road NO$_2$ monitoring station in each CBSA with a population of 500,000 or more persons to monitor a location of expected maximum hourly concentrations sited near a major road with high AADT counts as specified in paragraph 4.3.2(a)(1) of this appendix. An additional near-road NO$_2$ monitoring station is required for any CBSA with a population of 2,500,000 or more persons that has one or more roadway segments with 250,000 or greater AADT counts to monitor a second location of expected maximum hourly concentrations. CBSA populations shall be based on the latest available census figures.

(1) The near-road NO$_2$ monitoring stations shall be selected by ranking all road segments within a CBSA by AADT and then identifying a location or locations adjacent to those highest ranked road segments, considering fleet mix, roadway design, congestion patterns, terrain, and meteorology, where maximum hourly NO$_2$ concentrations are expected to occur and siting criteria can be met in accordance with appendix E of this part. Where a State or local air monitoring agency identifies multiple acceptable candidate sites where maximum hourly NO$_2$ concentrations are expected to occur, the monitoring agency shall consider the potential for population exposure in the criteria utilized to select the final site location. Where one CBSA is required to have two near-road NO$_2$ monitoring stations, the sites shall be differentiated from each other by one or more of the following factors: fleet mix; congestion patterns; terrain; geographic area within the CBSA; different route, inter-state, or freeway designation.

(b) Measurements at required near-road NO$_2$ monitoring sites utilizing chemiluminescence FRMs must include at a minimum: NO, NO$_2$, and NOX.

4.3.3 Requirement for Area-wide NO$_2$ Monitoring

(a) Within the NO$_2$ network, there must be one monitoring station in each CBSA with a population of 1,000,000 or more persons to monitor a location of expected highest NO$_2$ concentrations representing the neighborhood or larger spatial scales. PAMS sites collecting NO$_2$ data that are situated in an area of expected high NO$_2$ concentrations at the neighborhood or larger spatial scale may be
used to satisfy this minimum monitoring requirement when the NO\textsubscript{2} monitor is operated year round. Emission inventories and meteorological analysis should be used to identify the

4.3.4 Regional Administrator Required Monitoring

(a) The Regional Administrators, in collaboration with States, must require a minimum of forty additional NO\textsubscript{2} monitoring stations nationwide in any area, inside or outside of CBSAs, above the minimum monitoring requirements, with a primary focus on siting these monitors in locations to protect susceptible and vulnerable populations. The Regional Administrators, working with States, may also consider additional factors described in paragraph (b) below to require monitors beyond the minimum network requirement.

(b) The Regional Administrators may require monitors to be sited inside or outside of CBSAs in which:

(i) The required near-road monitors do not represent all locations of expected maximum hourly NO\textsubscript{2} concentrations in an area and NO\textsubscript{2} concentrations may be approaching or exceeding the NAAQS in that area;

(ii) Areas that are not required to have a monitor in accordance with the monitoring requirements and NO\textsubscript{2} concentrations may be approaching or exceeding the NAAQS;

(iii) The minimum monitoring requirements for area-wide monitors are not sufficient to meet monitoring objectives.

(c) The Regional Administrator and the responsible State or local air monitoring agency should work together to design and/or maintain the most appropriate NO\textsubscript{2} network to address the data needs for an area, and include all monitors under this provision in the annual monitoring network plan.

4.3.5 NO\textsubscript{2} Monitoring Spatial Scales

(a) The most important spatial scale for near-road NO\textsubscript{2} monitoring stations to effectively characterize the maximum expected hourly NO\textsubscript{2} concentration due to mobile sources is the small scale. The most important small scale for other monitoring stations characterizing maximum expected hourly NO\textsubscript{2} concentrations are the microscale and middle scale. The most important spatial scale for area-wide monitoring of high NO\textsubscript{2} concentrations is the neighborhood scale.

(i) Microscale—This scale represents areas in close proximity to major roadways or point and area sources. Emissions from roadways result in high ground level NO\textsubscript{2} concentration gradients at the microscale, where concentration gradients generally exhibit a marked decrease with increasing downwind distance from major roads. As noted in appendix B of this part, near-road NO\textsubscript{2} monitoring stations are required to be within 50 meters of target road segments in order to measure expected peak concentrations. Emissions from stationary point and area sources, and non-road sources may, under certain plume conditions, result in high ground level concentrations at the microscale. The microscale typically represents an area with dimensions extending up to approximately 100 meters.

(ii) Middle scale—This scale generally represents air quality levels in areas up to several city blocks in size with dimensions in the 0.5 to 4.0 kilometer range. Emissions from stationary point and area sources may, under certain plume conditions, result in high NO\textsubscript{2} concentrations at the neighborhood scale. Where a neighborhood site is located away from immediate NO\textsubscript{2} sources, the site may be useful in representing typical air quality values for a larger residential area, and therefore suitable for population exposure and trends analyses.

(iii) Neighborhood scale—The neighborhood scale represents air quality conditions throughout some relatively uniform land use areas with dimensions in the 0.5 to 4.0 kilometer range. Emissions from stationary point and area sources may, under certain plume conditions, result in high NO\textsubscript{2} concentrations at the neighborhood scale. Where a neighborhood site is located away from immediate NO\textsubscript{2} sources, the site may be useful in representing typical air quality values for a larger residential area, and therefore suitable for population exposure and trends analyses.

4.4 Sulfur Dioxide (SO\textsubscript{2}) Design Criteria.

4.4.1 General Requirements. (a) State and, where appropriate, local agencies must operate a minimum number of required SO\textsubscript{2} monitoring sites as described below.

4.4.2 Requirement for Monitoring by the Population Weighted Emissions Index (PWEI). (a) The population weighted emissions index (PWEI) shall be calculated by States for each core based statistical area (CBSA) they contain or share with another State or States for use.
in the implementation of or adjustment to the SO₂ monitoring network. The PWEI shall be calculated by multiplying the population of each CBSA, using the most current census data or estimates, and the total amount of SO₂ in tons per year emitted within the CBSA area, using an aggregate of the most recent county level emissions data available in the National Emissions Inventory for each county in each CBSA. The resulting product shall be divided by one million, providing a PWEI value, the units of which are million persons-tons per year. For any CBSA with a calculated PWEI value equal to or greater than 1,000,000, a minimum of three SO₂ monitors are required within that CBSA. For any CBSA with a calculated PWEI value equal to or greater than 100,000, but less than 1,000,000, a minimum of two SO₂ monitors are required within that CBSA. For any CBSA with a calculated PWEI value equal to or greater than 5,000, but less than 100,000, a minimum of one SO₂ monitor is required within that CBSA.

1. The SO₂ monitoring site(s) required as a result of the calculated PWEI in each CBSA shall satisfy minimum monitoring requirements if the monitor is sited within the boundaries of the parent CBSA and is one of the following site types (as defined in section 1.1.1 of this appendix): population exposure, highest concentration, source impacts, general background, or regional transport. SO₂ monitors at NCore stations may satisfy minimum monitoring requirements if that monitor is located within a CBSA with minimally required monitors under this part. Any monitor that is sited outside of a CBSA with minimum monitoring requirements to assess the highest concentration resulting from the impact of significant sources or source categories existing within that CBSA shall be allowed to count towards minimum monitoring requirements for that CBSA.

4.4.3 Regional Administrator Required Monitoring. (a) The Regional Administrator may require additional SO₂ monitoring stations above the minimum number of monitors required in 4.4.2 of this part, where the minimum monitoring requirements are not sufficient to meet monitoring objectives. The Regional Administrator may require, at his/her discretion, additional monitors in situations where an area has the potential to have concentrations that may violate or contribute to the violation of the NAAQS, in areas impacted by sources which are not conducive to modeling, or in locations with susceptible and vulnerable populations, which are not monitored under the minimum monitoring provisions described above. The Regional Administrator and the responsible State or local air monitoring agency shall work together to design and/or maintain the most appropriate SO₂ network to provide sufficient data to meet monitoring objectives.

4.4.4 SO₂ Monitoring Spatial Scales. (a) The appropriate spatial scales for SO₂ SLAMS monitors are the microscale, middle, neighborhood, and urban scales. Monitors sited at the microscale, middle, and neighborhood scales are suitable for determining maximum hourly concentrations for SO₂. Monitors sited at urban scales are useful for identifying SO₂ transport trends, and for sited upwind of local sources, background concentrations.

1. Microscale—This scale would typify areas in close proximity to SO₂ point and area sources. Emissions from stationary point and area sources, and non-road sources may, under certain plume conditions, result in high ground level concentrations at the microscale. The microscale typically represents an area impacted by the plume with dimensions extending up to approximately 100 meters.

2. Middle scale—This scale generally represents air quality levels in areas up to several city blocks in size with dimensions on the order of approximately 100 meters to 500 meters. The middle scale may include locations of expected maximum short-term concentrations due to proximity to major SO₂ point, area, and/or non-road sources.

3. Neighborhood scale—The neighborhood scale would characterize air quality conditions throughout some relatively uniform land use areas with dimensions in the 0.5 to 4.0 kilometer range. Emissions from stationary point and area sources may, under certain plume conditions, result in high SO₂ concentrations at the neighborhood scale. Where a neighborhood site is located away from immediate SO₂ sources, the site may be useful in representing typical air quality values for a larger residential area, and therefore suitable for population exposure and trends analyses.

4. Urban scale—Measurements in this scale would be used to estimate concentrations over large portions of an urban area with dimensions from 4 to 50 kilometers. Such measurements would be useful for assessing trends in area-wide air quality, and hence, the effectiveness of large scale air pollution control strategies. Urban scale sites may also support other monitoring objectives of the SO₂ monitoring network such as identifying trends, and when monitors are sited upwind of local sources, background concentrations.

4.4.5 NCore Monitoring. (a) SO₂ measurements are included within the NCore multi-pollutant site requirements as described in paragraph (3)(b) of this appendix. NCore-based SO₂ measurements are primarily used to characterize SO₂ trends and assist in understanding SO₂ transport across representative areas in urban or rural locations and are also used for comparison with the SO₂ NAAQS. SO₂ monitors at NCore sites that exist in CBSAs with minimum monitoring
requirements per section 4.4.2 above shall be allowed to count towards those minimum monitoring requirements.

4.5 Lead (Pb) Design Criteria. (a) State and, where appropriate, local agencies are required to conduct ambient air Pb monitoring near Pb sources which are expected to or have been shown to contribute to a maximum Pb concentration in ambient air in excess of the NAAQS, taking into account the logistics and potential for population exposure. At a minimum, there must be one source-oriented SLAMS site located to measure the maximum Pb concentration in ambient air resulting from each non-airport Pb source which emits 0.50 or more tons per year and from each airport which emits 1.0 or more tons per year based on either the most recent National Emission Inventory (http://www.epa.gov/ttnchiei/einformation.html) or other scientifically justifiable methods and data (such as improved emissions factors or site-specific data) taking into account logistics and the potential for population exposure.

(i) One monitor may be used to meet the requirement in paragraph 4.5(a) for all sources involved when the location of the maximum Pb concentration due to one Pb source is expected to also be impacted by Pb emissions from a nearby source (or multiple sources). This monitor must be sited, taking into account logistics and the potential for population exposure, where the Pb concentration from all sources combined is expected to be at its maximum.

(ii) The Regional Administrator may waive the requirement in paragraph 4.5(a) for monitoring near Pb sources if the State or, where appropriate, local agency can demonstrate the Pb source will not contribute to a maximum Pb concentration in ambient air in excess of 50 percent of the NAAQS (based on historical monitoring data, modeling, or other means). The waiver must be renewed once every 5 years as part of the network assessment required under §58.18(d).

(iii) State and, where appropriate, local agencies are required to conduct non-source-oriented Pb monitoring at each NCORE site required under paragraph 3 of this appendix in a CBBA with a population of 500,000 or more.

(c) The EPA Regional Administrator may require additional monitoring beyond the minimum monitoring requirements contained in paragraphs 4.5(a) and 4.5(b) where the likelihood of Pb air quality violations is significant or where the emissions density, topography, or population locations are complex and varied. EPA Regional Administrators may require additional monitoring at locations including, but not limited to, those near existing additional industrial sources of Pb, recently closed industrial sources of Pb, airports where piston-engine aircraft emit Pb, and other sources of re-entrained Pb dust.

(d) The most important spatial scales for source-oriented sites to effectively characterize the emissions from point sources are microscale and middle scale. The most important spatial scale for non-source-oriented sites to characterize typical lead concentrations in urban areas is the neighborhood scale. Monitor siting should be conducted in accordance with 4.5(a)(i) with respect to source-oriented sites.

(i) Microscale—This scale would typify areas in close proximity to lead point sources. Emissions from point sources such as primary and secondary lead smelters, and primary copper smelters may under fumigation conditions likewise result in high ground level concentrations at the microscale. In the latter case, the microscale would represent an area impacted by the plume with dimensions extending up to approximately 100 meters. Pb monitors in areas where the public has access, and particularly

TABLE D–3A AIRPORTS TO BE MONITORED FOR LEAD

<table>
<thead>
<tr>
<th>Airport</th>
<th>County</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merrill Field</td>
<td>Anchorage</td>
<td>AK</td>
</tr>
<tr>
<td>Pryor Field Regional</td>
<td>Limestone</td>
<td>AL</td>
</tr>
<tr>
<td>Palo Alto Airport of Santa Clara</td>
<td>Santa Clara</td>
<td>CA</td>
</tr>
<tr>
<td>County</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McClellan-Palomar</td>
<td>San Diego</td>
<td>CA</td>
</tr>
<tr>
<td>Reid-Hillview</td>
<td>Santa Clara</td>
<td>CA</td>
</tr>
<tr>
<td>Gillespie Field</td>
<td>San Diego</td>
<td>CA</td>
</tr>
<tr>
<td>San Carlos</td>
<td>San Mateo</td>
<td>CA</td>
</tr>
<tr>
<td>Nantucket Memorial</td>
<td>Nantucket</td>
<td>MA</td>
</tr>
<tr>
<td>Oakland County International</td>
<td>Oakland</td>
<td>MI</td>
</tr>
<tr>
<td>Republic</td>
<td>Suffolk</td>
<td>NY</td>
</tr>
<tr>
<td>Breckhaven</td>
<td>Sufolk</td>
<td>NY</td>
</tr>
<tr>
<td>Stinson Municipal</td>
<td>Bexar</td>
<td>TX</td>
</tr>
<tr>
<td>Northwest Regional</td>
<td>Denton</td>
<td>TX</td>
</tr>
<tr>
<td>Harvey Field</td>
<td>Snohomish</td>
<td>WA</td>
</tr>
<tr>
<td>Auburn Municipal</td>
<td>King</td>
<td>WA</td>
</tr>
<tr>
<td>Oakland County International</td>
<td>Oakland</td>
<td>MI</td>
</tr>
<tr>
<td>McClellan-Palomar</td>
<td>San Diego</td>
<td>CA</td>
</tr>
<tr>
<td>Reid-Hillview</td>
<td>Santa Clara</td>
<td>CA</td>
</tr>
<tr>
<td>Gillespie Field</td>
<td>San Diego</td>
<td>CA</td>
</tr>
<tr>
<td>San Carlos</td>
<td>San Mateo</td>
<td>CA</td>
</tr>
<tr>
<td>Nantucket Memorial</td>
<td>Nantucket</td>
<td>MA</td>
</tr>
<tr>
<td>Oakland County International</td>
<td>Oakland</td>
<td>MI</td>
</tr>
<tr>
<td>Republic</td>
<td>Suffolk</td>
<td>NY</td>
</tr>
<tr>
<td>Breckhaven</td>
<td>Sufolk</td>
<td>NY</td>
</tr>
<tr>
<td>Stinson Municipal</td>
<td>Bexar</td>
<td>TX</td>
</tr>
<tr>
<td>Northwest Regional</td>
<td>Denton</td>
<td>TX</td>
</tr>
<tr>
<td>Harvey Field</td>
<td>Snohomish</td>
<td>WA</td>
</tr>
<tr>
<td>Auburn Municipal</td>
<td>King</td>
<td>WA</td>
</tr>
</tbody>
</table>
Environmental Protection Agency

children have access, are desirable because of the higher sensitivity of children to exposures of elevated Pb concentrations.

(2) Middle scale—This scale generally represents Pb air quality levels in areas up to several city blocks in size with dimensions on the order of approximately 100 meters to 500 meters. The middle scale may for example, include schools and playgrounds in center city areas which are close to major Pb point sources. Pb monitors in such areas are desirable because of the higher sensitivity of children to elevated Pb concentrations (reference 3 of this appendix). Emissions from point sources frequently impact on areas at which single sites may be located to measure concentrations representing middle spatial scales.

(3) Neighborhood scale—The neighborhood scale would characterize air quality conditions throughout some relatively uniform land use areas with dimensions in the 0.5 to 4.0 kilometer range. Sites of this scale would provide monitoring data in areas representing middle spatial scales.

Monitoring in such areas is important since this segment of the population is more susceptible to the effects of Pb. Where a neighborhood site is located away from immediate Pb sources, the site may be very useful in representing typical air quality values for a larger residential area, and therefore suitable for population exposure and trends analyses.

(d) Technical guidance is found in references 4 and 5 of this appendix. These documents provide additional guidance on locating sites to meet specific urban area monitoring objectives and should be used in locating new sites or evaluating the adequacy of existing sites.

4.6 Particulate Matter (PM_{10}) Design Criteria. Table D–4 indicates the approximate number of permanent stations required in MSAs to characterize national and regional PM_{10} air quality trends and geographical patterns. The number of PM_{10} stations in areas where MSA populations exceed 1,000,000 must be in the range from 2 to 10 stations, while in low population urban areas, no more than two stations are required. A range of monitoring stations is specified in Table D–4 because sources of pollutants and local control efforts can vary from one part of the country to another and therefore, some flexibility is allowed in selecting the actual number of stations in any one locale. Modifications from these PM_{10} monitoring requirements must be approved by the Regional Administrator.

Table D–4 of Appendix D to Part 58—PM_{10} Minimum Monitoring Requirements

<table>
<thead>
<tr>
<th>Population category</th>
<th>High concentration(^2)</th>
<th>Medium concentration(^3)</th>
<th>Low concentration(^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1,000,000</td>
<td>6–10</td>
<td>4–8</td>
<td>2–4</td>
</tr>
<tr>
<td>500,000–1,000,000</td>
<td>4–8</td>
<td>2–4</td>
<td>1–2</td>
</tr>
<tr>
<td>250,000–500,000</td>
<td>3–4</td>
<td>1–2</td>
<td>0–1</td>
</tr>
<tr>
<td>100,000–250,000</td>
<td>1–2</td>
<td>0–1</td>
<td>0</td>
</tr>
<tr>
<td>50,000–100,000</td>
<td><1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25,000–50,000</td>
<td><1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10,000–25,000</td>
<td><1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5,000–10,000</td>
<td><1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><5,000</td>
<td><1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 Selection of urban areas and actual numbers of stations per area will be jointly determined by EPA and the State agencies.
2 High concentration areas are those for which ambient PM10 data show ambient concentrations exceeding the PM_{10} NAAQS by 20 percent or more.
3 Medium concentration areas are those for which ambient PM10 data show ambient concentrations exceeding 80 percent of the PM_{10} NAAQS.
4 Low concentration areas are those for which ambient PM10 data show ambient concentrations less than 80 percent of the PM_{10} NAAQS.
5 These minimum monitoring requirements apply in the absence of a design value.

(b) Although microscale monitoring may be appropriate in some circumstances, the most important spatial scales to effectively characterize the emissions of PM_{10} from both mobile and stationary sources are the middle scales and neighborhood scales.

(1) Microscale—This scale would typify areas such as downtown street canyons, traffic corridors, and fence line stationary source monitoring locations where the general public could be exposed to maximum PM_{10} concentrations. Microscale particulate matter sites should be located near inhabited buildings and locations where the general public can be expected to be exposed to the concentration measured. Emissions from stationary sources such as primary and secondary smelters, power plants, and other large industrial processes may, under certain plume conditions, likewise result in high ground level concentrations at the microscale. In the latter case, the microscale would represent an area impacted by the plume with dimensions extending up to approximately 100 meters. Data collected at microscale sites provide information for evaluating and developing hot spot control measures.

(2) Middle scale—Much of the short-term public exposure to coarse fraction particles (PM_{10}) is on this scale and on the neighborhood scale. People moving through downtown areas or living near major roadways or stationary sources, may encounter particulate pollution that would be adequately
characterized by measurements of this spatial scale. Middle scale PM$_{10}$ measurements can be appropriate for the evaluation of possible short-term exposure public health effects. In many situations, monitoring sites that are representative of micro-scale or middle-scale impacts are not unique and are representative of many similar situations. This can occur along traffic corridors or other locations in a residential district. In this case, one location is representative of a neighborhood of small scale sites and is appropriate for evaluation of long-term or chronic effects. This scale also includes the characteristic concentrations for other areas with dimensions of a few hundred meters such as the parking lot and feeder streets associated with shopping centers, stadia, and office buildings. In the case of PM$_{10}$, unpaved or seldomly swept parking lots associated with these sources could be an important source in addition to the vehicular emissions themselves.

(3) Neighborhood scale—Measurements in this category represent conditions throughout some reasonably homogeneous urban sub-region with dimensions of a few kilometers and of generally more regular shape than the middle scale. Homogeneity refers to the particulate matter concentrations, as well as the land use and land surface characteristics. In some cases, a location carefully chosen to provide neighborhood scale data would represent not only the immediate neighborhood but also neighborhoods of the same type in other parts of the city. Neighborhood scale PM$_{10}$ sites provide information about trends and compliance with standards because they often represent conditions in areas where people commonly live and work for extended periods. Neighborhood scale data could provide valuable information for developing, testing, and revising models that describe the larger-scale concentration patterns, especially those models relying on spatially smoothed emission fields for inputs. The neighborhood scale measurements could also be used for neighborhood comparisons within or between cities.

4.7 Fine Particulate Matter (PM$_{2.5}$) Design Criteria.

4.7.1 General Requirements. (a) State, and where applicable local, agencies must operate the minimum number of required PM$_{2.5}$ SLAMS sites listed in Table D-5 of this appendix. The NCore sites are expected to complement the PM$_{2.5}$ data collection that takes place at non-NCore SLAMS sites, and both types of sites can be used to meet the minimum PM$_{2.5}$ network requirements. Deviations from these PM$_{2.5}$ monitoring requirements must be approved by the EPA Regional Administrator.

Table D–5 of Appendix D to Part 58—PM$_{2.5}$ Minimum Monitoring Requirements

<table>
<thead>
<tr>
<th>MSA population $^{1, 2}$</th>
<th>Most recent 3-year design value $>85%$ of any PM$_{2.5}$ NAAQS 3</th>
<th>Most recent 3-year design value $>85%$ of any PM$_{2.5}$ NAAQS $^{3, 4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$>1,000,000$</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>500,000–1,000,000</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>50,000–500,000</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1 Minimum monitoring requirements apply to the Metropolitan statistical area (MSA).
2 Population based on latest available census figures.
3 The PM$_{2.5}$ National Ambient Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50.
4 These minimum monitoring requirements apply in the absence of a design value.
5 Metropolitan statistical areas (MSA) must contain an urbanized area of 50,000 or more population.

(b) Specific Design Criteria for PM$_{2.5}$. The required monitoring stations or sites must be sited to represent area-wide air quality. These sites can include sites collocated at PAMS. These monitoring stations will typically be at neighborhood or urban-scale; however, micro- or middle-scale PM$_{2.5}$ monitoring sites that represent many such locations throughout a metropolitan area are considered to represent area-wide air quality.

1 At least one monitoring station is to be sited at neighborhood or larger scale in an area of expected maximum concentration.
2 For CBSAs with a population of 1,000,000 or more persons, at least one PM$_{2.5}$ monitor is to be collocated at a near-road NO$_2$ station required in section 4.3.2(a) of this appendix.
3 For areas with additional required SLAMS, a monitoring station is to be sited in an area of poor air quality.
4 Additional technical guidance for siting PM$_{2.5}$ monitors is provided in references 6 and 7 of this appendix.

(c) The most important spatial scale to effectively characterize the emissions of particulate matter from both mobile and stationary sources is the neighborhood scale for PM$_{2.5}$. For purposes of establishing monitoring sites to represent large homogeneous areas other than the above scales of representativeness and to characterize regional transport, urban or regional scale sites would also be needed. Most PM$_{2.5}$ monitoring in urban areas should be representative of a neighborhood scale.

1 Micro-scale. This scale would typify areas such as downtown street canyons and traffic corridors where the general public would be exposed to maximum concentrations from mobile sources. In some circumstances, the micro-scale is appropriate for particulate sites. SLAMS sites measured at the micro-scale level should, however, be limited to urban sites that are representative of long-term human exposure and of many such microenvironments in the area. In general, micro-scale particulate matter...
Environmental Protection Agency

Pl. 58, App. D

sites should be located near inhabited buildings or locations where the general public can be expected to be exposed to the concentration measured. Emissions from stationary sources such as primary and secondary smelters, power plants, and other large industrial processes may, under certain plume conditions, likewise result in high ground levels of particulate matter pollution. In many situations, monitoring sites that are representative of microscale or middle-scale impacts are not unique and are representative of many similar situations. This can occur along traffic corridors or other locations in a residential district. In this case, one location is representative of a number of small scale sites and is appropriate for evaluation of long-term or chronic effects. This scale also includes the characteristic concentrations for other areas with dimensions of a few hundred meters such as the parking lot and feeder streets associated with shopping centers, stadia, and office buildings.

(3) Neighborhood scale—Measurements in this category would represent conditions throughout some reasonably homogeneous urban sub-region with dimensions of a few kilometers and of generally more regular shape than the middle scale. Homogeneity refers to the particulate matter concentrations, as well as the land use and land surface characteristics. Much of the PM exposure is expected to be associated with this scale of measurement. In some cases, a location carefully chosen to provide neighborhood data would represent the immediate neighborhood as well as neighborhoods of the same type in other parts of the city. PM sites of this kind provide good information about trends and compliance with standards because they often represent conditions in areas where people commonly live and work for periods comparable to those specified in the NAAQS. In general, most PM monitoring in urban areas should have this scale.

(4) Urban scale—This class of measurement would be used to characterize the particulate matter concentration over an entire metropolitan or rural area ranging in size from 4 to 50 kilometers. Such measurements would be useful for assessing trends in area-wide air quality, and hence, the effectiveness of large scale air pollution control strategies. Community-oriented PM sites may have this scale.

(5) Regional scale—These measurements would characterize conditions over areas with dimensions of as much as hundreds of kilometers. As noted earlier, using representative conditions for any one location is representative of a number of the same type in other parts of the city. Regional scale data would represent the impact carefully chosen to provide neighbor ovarian sites and this requirement may be satisfied by a corresponding monitor in an area having similar air quality in another State. State and local air monitoring agencies must use methodologies and quality assurance/quality control (QA/QC) procedures approved by the EPA Regional Administrator for these required continuous analyzers.

4.7.3 Requirement for PM Background and Transport Sites. Each State shall install and operate at least one PM site to monitor regional background and at least one PM site to monitor regional transport. These monitoring sites may be at community-oriented sites and this requirement may be satisfied by a corresponding monitor in an area having similar air quality in another State. State and local air monitoring agencies must use methodologies and QA/QC procedures approved by the EPA Regional Administrator for these sites. Methods used at these sites may include non-federal reference method samplers such as IMPROVE or continuous PM monitors.

4.7.4 PM Chemical Speciation Site Requirements. Each State shall continue to conduct chemical speciation monitoring and analyses at sites designated to be part of the PM Speciation Trends Network (STN). The selection and modification of these STN
4.8 Coarse Particulate Matter (PM$_{10–2.5}$) Design Criteria.

4.8.1 General Monitoring Requirements.

(a) The only required monitors for PM$_{10–2.5}$ are those required at NCore Stations.

(b) Although microscale monitoring may be appropriate in some circumstances, middle and neighborhood scale measurements are the most important station classifications for PM$_{10–2.5}$ to assess the variation in coarse particle concentrations that would be expected across populated areas that are in proximity to large emissions sources.

(1) Microscale—This scale would typify relatively small areas immediately adjacent to: Industrial sources; locations experiencing ongoing construction, redevelopment, and soil disturbance; and heavily traveled roadways. Data collected at microscale stations would characterize exposure over areas of limited spatial extent and population exposure, and may provide information useful for evaluating and developing source-oriented control measures.

(2) Middle scale—People living or working near major roadways or industrial districts encounter particle concentrations that would be adequately characterized by this spatial scale. Thus, measurements of this type would be appropriate for the evaluation of public health effects of coarse particle exposure. Monitors located in populated areas that are nearly adjacent to large industrial point sources of coarse particles provide suitable locations for assessing maximum population exposure levels and identifying areas of potentially poor air quality. Similarly, monitors located in populated areas that border dense networks of heavily-traveled traffic are appropriate for assessing the impacts of resuspended road dust. This scale also includes the characteristic concentrations for other areas with dimensions of a few hundred meters such as school grounds and parks that are nearly adjacent to major roadways and industrial point sources, locations exhibiting mixed residential and commercial development, and downtown areas featuring office buildings, shopping centers, and stadiums.

(3) Neighborhood scale—Measurements in this category would represent conditions throughout some reasonably homogeneous urban sub-region with dimensions of a few kilometers and of generally more regular shape than the middle scale. Homogeneity refers to the particulate matter concentrations, as well as the land use and land surface characteristics. This category includes suburban neighborhoods dominated by residences that are somewhat distant from major roadways and industrial districts but still impacted by urban sources, and areas of diverse land use where residences are interspersed with commercial and industrial neighborhoods. In some cases, a location carefully chosen to provide neighborhood scale data would represent the immediate neighborhood as well as neighborhoods of the same type in other parts of the city. The comparison of data from middle scale and neighborhood scale sites would provide valuable information for determining the variation of PM$_{10–2.5}$ levels across urban areas and assessing the spatial extent of elevated concentrations caused by major industrial point sources and heavily traveled roadways. Neighborhood scale sites would provide concentration data that are relevant to informing a large segment of the population of their exposure levels on a given day.

4.8.2 [Reserved]

5. NETWORK DESIGN FOR PHOTOCHEMICAL ASSESSMENT MONITORING STATIONS (PAMS)

The PAMS program provides more comprehensive data on O$_3$ air pollution in areas classified as serious, severe, or extreme non-attainment for O$_3$ than would otherwise be achieved through the NCore and SLAMS sites. More specifically, the PAMS program includes measurements for O$_3$, oxides of nitrogen, VOC, and meteorology.

5.1 PAMS Monitoring Objectives. PAMS design criteria are site specific. Concurrent measurements of O$_3$, oxides of nitrogen, specified VOC, CO, and meteorology are obtained at PAMS sites. Design criteria for the PAMS network are based on locations relative to O$_3$ precursor source areas and predominant wind directions associated with high O$_3$ events. Specific monitoring objectives associated with each of these sites may result in four distinct site types. Detailed guidance for the location of these sites may be found in reference 9 of this appendix.

(a) Type 1 sites are established to characterize upwind background and transported O$_3$ and its precursor concentrations entering the area and will identify those areas which are subjected to transport.
Environmental Protection Agency

(b) Type 2 sites are established to monitor the magnitude and type of precursor emissions in the area where maximum precursor emissions are expected to impact and are suited for the monitoring of urban air toxic pollutants.

(c) Type 3 sites are intended to monitor maximum O3 concentrations occurring downwind from the area of maximum precursor emissions.

(d) Type 4 sites are established to characterize the downwind transported O3 and its precursor concentrations exiting the area and will identify those areas which are potentially contributing to overwhelming transport in other areas.

5.2 Monitoring Period. PAMS precursor monitoring must be conducted annually throughout the months of June, July and August (as a minimum) when peak O3 values are expected in each area. Alternate precursor monitoring periods may be submitted for approval to the Administrator as a part of the annual monitoring network plan required by §58.10.

5.3 Minimum Monitoring Network Requirements. A Type 2 site is required for each area. Overall, only two sites are required for each area, providing all chemical measurements are made. For example, if a design includes two Type 2 sites, then a third site will be necessary to capture the NOx measurement. The minimum required number and type of monitoring sites and sampling requirements are listed in Table D–6 of this appendix. Any alternative plans may be put in place in lieu of these requirements, if approved by the Administrator.

| TABLE D–6 OF APPENDIX D TO PART 58—MINIMUM REQUIRED PAMS MONITORING LOCATIONS AND FREQUENCIES |
|---------|---------------------------------|----------------|
| Measurement | Where required | Sampling frequency (all days except for upper air meteorology) |
| Speciated VOC | Two sites per area, one of which must be a Type 2 site | During the PAMS monitoring period: (1) Hourly auto GC, or (2) Eight-hour canisters, or (3) 1 morning and 1 afternoon canister with a 3-hour or less averaging time plus Continuous Total Non-methane Hydrocarbon measurement. 3-hour samples every day during the PAMS monitoring period. |
| Carbonyl sampling | Type 2 site in areas classified as serious or above for the 8-hour ozone standard. | Hourly during the ozone monitoring season. |
| NOx | One site per area at the Type 3 or Type 1 site | Hourly during the ozone monitoring season. |
| CO (ppb level) | One site per area at a Type 2 site | Hourly during the ozone monitoring season. |
| Ozone | All sites | Hourly during the ozone monitoring season. |
| Upper air meteorology | One representative location within PAMS area | Sampling frequency must be approved as part of the annual monitoring network plan required in 40 CFR 58.10. |

6. REFERENCES

APPENDIX E TO PART 58—PROBE AND MONITORING PATH SITING CRITERIA FOR AMBIENT AIR QUALITY MONITORING

1. Introduction.
2. Horizontal and Vertical Placement.
3. Spacing from Minor Sources.
4. Spacing From Obstructions.
5. Spacing From Trees.
6. Spacing From Roadways.
7. Cumulative Interferences on a Monitoring Path.
11. Summary.
12. References.

1. INTRODUCTION

(a) This appendix contains specific location criteria applicable to SLAMS, NCore, and PAMS ambient air quality monitoring probes, inlets, and optical paths after the general location has been selected based on the monitoring objectives and spatial scale of representation discussed in appendix D to this part. Adherence to these sitting criteria is necessary to ensure the uniform collection of compatible and comparable air quality data.

(b) The probe and monitoring path sitting criteria discussed in this appendix must be followed to the maximum extent possible. It is recognized that there may be situations where some deviation from the sitting criteria may be necessary. In any such case, the reasons must be thoroughly documented in a written request for a waiver that describes how and why the proposed siting deviates from the criteria. This documentation should help to avoid later questions about the validity of the resulting monitoring data. Conditions under which the EPA would consider an application for waiver from these sitting criteria are discussed in section 10 of this appendix.

(c) The pollutant-specific probe and monitoring path sitting criteria generally apply to all spatial scales except where noted otherwise. Specific sitting criteria that are phrased with a “must” are defined as requirements and exceptions must be approved through the waiver provisions. However, sitting criteria that are phrased with a “should” are defined as goals to meet for consistency but are not requirements.

2. HORIZONTAL AND VERTICAL PLACEMENT

The probe or at least 80 percent of the monitoring path must be located between 2 and 15 meters above ground level for all O\textsubscript{3}, SO\textsubscript{2}, and CO sites. Middle scale Pb, PM\textsubscript{10}, PM\textsubscript{2.5}, NO\textsubscript{x}, and CO sites. Middle scale PM\textsubscript{10–2.5} sites are required to have sampler inlets between 2 and 7 meters above ground level. Microscale Pb, PM\textsubscript{10}, PM\textsubscript{2.5}, and PM\textsubscript{1} sites are required to have sampler inlets between 2 and 7 meters above ground level.

Those inlet probes for microscale carbon monoxide monitors that are being used to measure concentrations near roadways must be between 2 and 7 meters above ground level. The probe or at least 90 percent of the monitoring path must be at least 1 meter vertically or horizontally away from any supporting structure, walls, parapets, penthouses, etc., and away from dusty or dirty areas. If the probe or a significant portion of the monitoring path is located near the side of a building or
Environmental Protection Agency

Pt. 58, App. E

wall, then it should be located on the windward side of the building relative to the prevailing wind direction during the season of highest concentration potential for the pollutant being measured.

3. Spacing From Minor Sources

(a) It is important to understand the monitoring objective for a particular location in order to interpret this particular requirement. Local minor sources of a primary pollutant, such as SO₂, lead, or particles, can cause high concentrations of that particular pollutant at a monitoring site. If the objective for that monitoring site is to investigate these local primary pollutant emissions, then the site is likely to be properly located nearby. This type of monitoring site would in all likelihood be a micrometeorological type of monitoring site. If a monitoring site is to be used to determine air quality over a much larger area, such as a neighborhood or city, a monitoring agency should avoid placing a monitor probe, path, or inlet near local, minor sources. The plume from the local minor sources should not be allowed to inappropriately impact the air quality data collected at a site. Particulate matter sites should not be located in an unpaved area unless there is vegetative ground cover year round, so that the impact of wind blown dusts will be kept to a minimum. (b) Similarly, local sources of nitric oxide (NO) and ozone-reactive hydrocarbons can have a scavenging effect causing unrepresentatively low concentrations of O₃ in the vicinity of probes and monitoring paths for O₃. To minimize these potential interferences, the probe or at least 90 percent of the monitoring path must be away from furnace or incineration flues or other minor sources of SO₂ or NO. The separation distance should take into account the heights of the flues, type of waste or fuel burned, and the sulfur content of the fuel.

4. Spacing From Obstructions

(a) Buildings and other obstacles may possibly scavenge SO₂, O₃, or NO₂, and can act to restrict airflow for any pollutant. To avoid this interference, the probe, inlet, or at least 90 percent of the monitoring path must have unrestricted airflow and be located away from obstacles. The distance from the obstacle to the probe, inlet, or monitoring path must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path. An exception to this requirement can be made for measurements taken in street canyons or at source-oriented sites where buildings and other structures are unavoidable.

(b) Generally, a probe or monitoring path located near or along a vertical wall is undesirable because air moving along the wall may be subject to possible removal mechanisms. A probe, inlet, or monitoring path must have unrestricted airflow in an arc of at least 180 degrees. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential. For particle sampling, a minimum of 2 meters of separation from walls, parapets, and structures is required for rooftop site placement.

(c) Special consideration must be given to the use of open path analyzers due to their inherent potential sensitivity to certain types of interferences, or optical obstructions. A monitoring path must be clear of all trees, brush, buildings, plumes, dust, or other optical obstructions, including potential obstructions that may move due to wind, human activity, growth of vegetation, etc. Temporary optical obstructions, such as rain, particles, fog, or snow, should be considered when siting an open path analyzer. Any of these temporary obstructions that are of sufficient density to obscure the light beam will affect the ability of the open path analyzer to continuously measure pollutant concentrations. Transient, but significant obscuration of especially longer measurement paths could occur as a result of certain meteorological conditions (e.g., heavy fog, rain, snow) and/or aerosol levels that are of a sufficient density to prevent the open path analyzer's light transmission. If certain compensating measures are not otherwise implemented at the onset of monitoring (e.g., shorter path lengths, higher light source intensity), data recovery during periods of greatest primary pollutant potential could be compromised. For instance, if heavy fog or high particulate levels are coincident with periods of projected NAAQS-threatening pollutant potential, the representativeness of the resulting data record in reflecting maximum pollutant concentrations may be substantially impaired despite the fact that the site may otherwise exhibit an acceptable, even exceedingly high overall valid data capture rate.

(d) For near-road NO₂ monitoring stations, the monitor probe shall have an unobstructed air flow, where no obstacles exist at or above the height of the monitor probe, between the monitor probe and the outside nearest edge of the traffic lanes of the target road segment.

5. Spacing From Trees

(a) Trees can provide surfaces for SO₂, O₃, or NO₂ adsorption or reactions, and surfaces for particle deposition. Trees can also act as obstructions in cases where they are located between the air pollutant sources or source areas and the monitoring site, and where the trees are of a sufficient height and leaf canopy density to interfere with the normal airflow around the probe, inlet, or monitoring
path. To reduce this possible interference/obstruction, the probe, inlet, or at least 90 percent of the monitoring path must be at least 10 meters or further from the drip line of trees.

(b) The scavenging effect of trees is greater for O₃ than for other criteria pollutants. Monitoring agencies must take steps to consider the impact of trees on ozone monitoring sites and take steps to avoid this problem.

(c) For microscale sites of any air pollutant, no trees or shrubs should be located between the probe and the source under investigation, such as a roadway or a stationary source.

6. Spacing from Roadways

**TABLE E–1 OF APPENDIX E TO PART 58—MINIMUM SEPARATION DISTANCE BETWEEN ROADWAYS AND PROBES OR MONITORING PATHS FOR MONITORING NEIGHBORHOOD AND URBAN SCALE OZONE (O₃) AND OXIDES OF NITROGEN (NO, NO₂, NOₓ, NOₓ)

<table>
<thead>
<tr>
<th>Roadway average daily traffic, vehicles per day</th>
<th>Minimum distance ¹ (meters)</th>
<th>Minimum distance ² (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤1,000</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10,000</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>15,000</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>20,000</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>40,000</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>70,000</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>>100,000</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

¹Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.

²Applicable for ozone monitors whose placement has not already been approved as of December 18, 2006.

6.2 Spacing for Carbon Monoxide Probes and Monitoring Paths

(a) Near-road microscale CO monitoring sites, including those located in downtown areas, urban street canyons, and other near-road locations such as those adjacent to highly trafficked roads, are intended to provide a measurement of the influence of the immediate source on the pollution exposure on the adjacent area.

(b) Microscale CO monitor inlet probes in downtown areas or urban street canyon locations shall be located a minimum distance of 2 meters and a maximum distance of 10 meters from the edge of the nearest traffic lane.

(c) Microscale CO monitor inlet probes in downtown areas or urban street canyon locations shall be located at least 10 meters from an intersection and preferably at a midblock location. Midblock locations are preferable to intersection locations because intersections represent a much smaller portion of downtown space than do the streets between them. Pedestrian exposure is probably also greater in street canyon corridors than at intersections.

**TABLE E–2 OF APPENDIX E TO PART 58—MINIMUM SEPARATION DISTANCE BETWEEN ROADWAYS AND PROBES OR MONITORING PATHS FOR MONITORING NEIGHBORHOOD SCALE CARBON MONOXIDE

<table>
<thead>
<tr>
<th>Roadway average daily traffic, vehicles per day</th>
<th>Minimum distance (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤10,000</td>
<td>10</td>
</tr>
<tr>
<td>15,000</td>
<td>25</td>
</tr>
<tr>
<td>20,000</td>
<td>45</td>
</tr>
<tr>
<td>30,000</td>
<td>80</td>
</tr>
<tr>
<td>40,000</td>
<td>115</td>
</tr>
<tr>
<td>50,000</td>
<td>135</td>
</tr>
<tr>
<td>≥60,000</td>
<td>150</td>
</tr>
</tbody>
</table>

¹Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.

6.3 Spacing for Particulate Matter (PM₂.₅, PM₁₀, Pb) Inlets

(a) Since emissions associated with the operation of motor vehicles contribute to urban area particulate matter ambient levels, spacing from roadway criteria are necessary for ensuring national consistency in PM sampler siting.

(b) The intent is to locate localized hot-spot sites in areas of highest concentrations...
whether it be from mobile or multiple stationary sources. If the area is primarily affected by mobile sources and the maximum concentration area(s) is judged to be a traffic corridor or street canyon location, then the monitors should be located near roadways with the highest traffic volume and at separation distances most likely to produce the highest concentrations. For the microscale traffic corridor site, the location must be between 5 and 15 meters from the major roadway. For the microscale street canyon site the location must be between 2 and 10 meters from the roadway. For the middle scale site, a range of acceptable distances from the roadway is shown in figure E-1 of this appendix. This figure also includes separation distances between a roadway and neighborhood or larger scale sites by default. Any site, 2 to 15 meters high, and further back than the middle scale requirements will generally be neighborhood, urban or regional scale. For example, according to Figure E-1 of this appendix, if a PM sampler is primarily influenced by roadway emissions and that sampler is set back 10 meters from a 30,000 ADT (average daily traffic) road, the site should be classified as microscale, if the sampler height is between 2 and 7 meters, the site should be classified as middle scale. If the sample is 20 meters from the same road, it will be classified as middle scale; if 40 meters, neighborhood scale; and if 110 meters, an urban scale.

6.4 Spacing for Nitrogen Dioxide (NO₂) Probes and Monitoring Paths.
 (a) In siting near-road NO₂ monitors as required in paragraph 4.3.2 of appendix D of this part, the monitor probe shall be as near as practicable to the outside nearest edge of the traffic lanes of the target road segment; but shall not be located at a distance greater than 50 meters, in the horizontal, from the outside nearest edge of the traffic lanes of the target road segment.
 (b) In siting NO₂ monitors for neighborhood and larger scale monitoring, it is important to minimize near-road influences. Table E-1 of this appendix provides the required minimum separation distances between a roadway and a probe or, where applicable, at least 90 percent of a monitoring path for various ranges of daily roadway traffic. A sampling site having a point analyzer probe located closer to a roadway than allowed by the Table E-1 requirements should be classified as microscale or middle scale rather than neighborhood or urban scale. If an open path analyzer is used at a site, the monitoring path(s) must not cross over a roadway with an average daily traffic count of 10,000 vehicles per day or more. For those situations where a monitoring path crosses a roadway with fewer than 10,000 vehicles per day, monitoring agencies must consider the entire segment of the monitoring path in the area of potential atmospheric interference from automobile emissions. Therefore, this calculation must include the length of the monitoring path over the roadway plus any segments of the monitoring path that lie in the area between the roadway and minimum separation distance, as determined form the Table E-1 of this appendix. The sum of these distances must not be greater than 10 percent of the total monitoring path length.
7. CUMULATIVE INTERFERENCES ON A MONITORING PATH

(This paragraph applies only to open path analyzers.) The cumulative length or portion of a monitoring path that is affected by minor sources, trees, or roadways must not exceed 10 percent of the total monitoring path length.

8. MAXIMUM MONITORING PATH LENGTH

(This paragraph applies only to open path analyzers.) The monitoring path length must not exceed 1 kilometer for analyzers in neighborhood, urban, or regional scale. For middle scale monitoring sites, the monitoring path length must not exceed 300 meters. In areas subject to frequent periods of dust, fog, rain, or snow, consideration should be given to a shortened monitoring path length to minimize loss of monitoring data due to these temporary optical obstructions. For certain ambient air monitoring scenarios using open path analyzers, shorter path lengths may be needed in order to ensure that the monitoring site meets the objectives and spatial scales defined in appendix D to this part. The Regional Administrator may require shorter path lengths, as needed on an individual basis, to ensure that the SLAMS sites meet the appendix D requirements. Likewise, the Administrator may specify the maximum path length used at NCore monitoring sites.

9. PROBE MATERIAL AND POLLUTANT SAMPLE RESIDENCE TIME

(a) For the reactive gases, SO$_2$, NO$_2$, and O$_3$, special probe material must be used for point analyzers. Studies have been conducted to determine the suitability of materials such as polypropylene, polyethylene, polyvinyl chloride, Tygon®, aluminum, brass, stainless steel, copper, Pyrex® glass and Teflon® for use as intake sampling lines. Of the above materials, only Pyrex® glass and Teflon® have been found to be acceptable for use as intake sampling lines for all the reactive gaseous pollutants. Furthermore, the EPA has specified borosilicate glass or FEP Teflon® as the only acceptable probe materials for delivering test atmospheres in the determination of reference or equivalent methods. Therefore, borosilicate glass, FEP Teflon® or their equivalent must be the only material in the sampling train (from inlet probe to the back of the analyzer) that can be in contact with the ambient air sample for existing and new SLAMS.

(b) For volatile organic compound (VOC) monitoring at PAMS, FEP Teflon® is unacceptable as the probe material because of VOC adsorption and desorption reactions on the FEP Teflon®. Borosilicate glass, stainless steel, or its equivalent are the acceptable probe materials for VOC and carbonyl sampling. Care must be taken to ensure that the sample residence time is kept to 20 seconds or less.
Environmental Protection Agency
Pt. 58, App. E

(c) No matter how nonreactive the sampling probe material is initially, after a period of use reactive particulate matter is deposited on the probe walls. Therefore, the time it takes the gas to transfer from the probe inlet to the sampling device is also critical. Ozone in the presence of nitrogen oxide (NO) will show significant losses even in the most inert probe material when the residence time exceeds 20 seconds. Other studies indicate that a 10 second or less residence time is easily achievable. Therefore, sampling probes for reactive gas monitors at NCORE and at NO sites must have a sample residence time less than 20 seconds.

10. WAIVER PROVISIONS

Most sampling probes or monitors can be located so that they meet the requirements of this appendix. New sites with rare exceptions, can be located within the limits of this appendix. However, some existing sites may not meet these requirements and still produce useful data for some purposes. The EPA will consider a written request from the State agency to waive one or more siting criteria for some monitoring sites providing that the State can adequately demonstrate the need (purpose) for monitoring or establishing a monitoring site at that location.

10.1 For establishing a new site, a waiver may be granted only if both of the following criteria are met:

10.1.1 The site can be demonstrated to be as representative of the monitoring area as it would be if the siting criteria were being met.

10.1.2 The monitor or probe cannot reasonably be located so as to meet the siting criteria because of physical constraints (e.g., inability to locate the required type of site the necessary distance from roadways or obstructions).

10.2 However, for an existing site, a waiver may be granted if either of the criteria in sections 10.1.1 and 10.1.2 of this appendix are met.

10.3 Cost benefits, historical trends, and other factors may be used to add support to the criteria in sections 10.1.1 and 10.1.2 of this appendix, however, they in themselves, will not be acceptable reasons for granting a waiver. Written requests for waivers must be submitted to the Regional Administrator.

11. SUMMARY

Table E-4 of this appendix presents a summary of the general requirements for probe and monitoring path siting criteria with respect to distances and heights. It is apparent from Table E-4 that different elevation distances above the ground are shown for the various pollutants. The discussion in this appendix for each of the pollutants describes reasons for elevating the monitor, probe, or monitoring path. The differences in the specified range of heights are based on the vertical concentration gradients. For CO and near-road NO monitors, the gradients in the vertical direction are very large for the microscale, so a small range of heights are used. The upper limit of 15 meters is specified for the consistency between pollutants and to allow the use of a single manifold or monitoring path for monitoring more than one pollutant.

TABLE E-4 OF APPENDIX E TO PART 58—SUMMARY OF PROBE AND MONITORING PATH SITING CRITERIA

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Scale (maximum monitoring path length, meters)</th>
<th>Height from ground to probe, inlet or 80% of monitoring path (meters)</th>
<th>Horizontal and vertical distance from supporting structures to probe, inlet or 90% of monitoring path (meters)</th>
<th>Distance from trees to probe, inlet or 90% of monitoring path (meters)</th>
<th>Distance from roadways to probe, inlet or monitoring path (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>Middle (300 m); Neighborhood Urban, and Regional (1 km).</td>
<td>2–15</td>
<td>>1</td>
<td>>10</td>
<td>N/A.</td>
</tr>
<tr>
<td>CO</td>
<td>Micro (downtown or street canyon sites), micro [near-road sites], middle (300 m) and Neighborhood (1 km).</td>
<td>2.5–3.5; 2–7; 2–15</td>
<td>>1</td>
<td>>10</td>
<td>2–10 for downtown areas or street canyon microscale; ≤50 for near-road microscale; see Table E–2 of this appendix for middle and neighborhood scales.</td>
</tr>
<tr>
<td>O₃</td>
<td>Middle (300 m); Neighborhood Urban, and Regional (1 km).</td>
<td>2–15</td>
<td>>1</td>
<td>>10</td>
<td>See Table E-1 of this appendix for all scales.</td>
</tr>
</tbody>
</table>
Table E–4 of Appendix E to Part 58—Summary of Probe and Monitoring Path Siting Criteria—Continued

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Scale (maximum monitoring path length, meters)</th>
<th>Height from ground to probe, inlet or 80% of monitoring path</th>
<th>Horizontal and vertical distance from supporting structures to probe, inlet or 90% of monitoring path</th>
<th>Distance from trees to probe, inlet or 90% of monitoring path</th>
<th>Distance from roadways to probe, inlet or monitoring path</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO, SO, Ozone precursors (for PAMS)</td>
<td>Micro (Near-road [50–300 m]), Middle (300 m)</td>
<td>2–7 (micro);</td>
<td>x1</td>
<td>>1</td>
<td>≤50 for near-road micro-scale.</td>
</tr>
<tr>
<td></td>
<td>Neighborhood, Urban, and Regional (1 km).</td>
<td>2–15 (all other scales).</td>
<td></td>
<td></td>
<td>See Table E–1 of this appendix for all other scales. See Table E–4 of this appendix for all scales.</td>
</tr>
<tr>
<td></td>
<td>Neighborhood and Urban (1 km).</td>
<td>2–15</td>
<td>x1</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Micro, Middle, Neighborhood, Urban and Regional.</td>
<td>2–7 (micro); 2–7 (middle PM<2.5); 2–7 for near-road; 2–15 (all other scales)</td>
<td>>2 (all scales, horizontal distance only).</td>
<td>>10 (all scales)</td>
<td>≤50 for near-road.</td>
</tr>
</tbody>
</table>

N/A—Not applicable.

1. Monitoring path for open path analyzers is applicable only to middle or neighborhood scale CO monitoring, middle, neighborhood, urban, and regional scale NOx monitoring, and all applicable scales for monitoring SO2, O3, and O2 precursors.
2. When probe is located on a rooftop, this separation distance is in reference to walls, parapets, or penthouses located on roof.
3. Should be greater than 20 meters from the dripline of tree(s) and must be 10 meters from the dripline when the tree(s) act as an obstruction.
4. Distance from sampler, probe, or 90 percent of monitoring path to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the sampler, probe, or monitoring path. Sites not meeting this criterion may be classified as an obstruction.
5. Must have unrestricted airflow 270 degrees around the probe or sampler: 180 degrees if the probe is on the side of a building or a wall.
6. The probe, sampler, or monitoring path should be away from minor sources, such as furnaces or incineration flues. The separation distance is dependent on the height of the minor source’s emission point (such as a flue), the type of fuel or waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to avoid undue influences from minor sources.
7. For micro-scale CO monitoring sites, the probe must be >10 meters from a street intersection and preferably at a midblock location.
8. Collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference, unless a waiver is in place as approved by the Regional Administrator pursuant to section 3 of Appendix A.

12. References

Environmental Protection Agency

APPENDIX F TO PART 58 [RESERVED]

APPENDIX G TO PART 58—UNIFORM AIR QUALITY INDEX (AQI) AND DAILY REPORTING

GENERAL REQUIREMENTS

1. What is the AQI?
 The AQI is a tool that simplifies reporting air quality to the general public. The AQI incorporates into a single index concentrations of 5 criteria pollutants: ozone (O\textsubscript{3}), particulate matter (PM), carbon monoxide (CO), sulfur dioxide (SO\textsubscript{2}), and nitrogen dioxide (NO\textsubscript{2}). The scale of the index is divided into general categories that are associated with health messages.

2. Why report the AQI?
 The AQI offers various advantages:
 a. It is simple to create and understand.
 b. It conveys the health implications of air quality.
 c. It promotes uniform use throughout the country.

3. Must I report the AQI?
 You must report the AQI daily if yours is a metropolitan statistical area (MSA) with a population over 350,000.

4. What Goes Into My AQI Report?
 i. Your AQI report must contain the following:
 a. The reporting area(s) (the MSA or subdivision of the MSA).
 b. The reporting period (the day for which the AQI is reported).
 c. The critical pollutant (the pollutant with the highest index value).
 d. The AQI (the highest index value).
 e. The category descriptor and index value associated with the AQI and, if you choose to report in a color format, the associated color. Use only the following descriptors and colors for the six AQI categories:

<table>
<thead>
<tr>
<th>AQI Category</th>
<th>Descriptor</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 50</td>
<td>"Good"</td>
<td>Green</td>
</tr>
<tr>
<td>51 to 100</td>
<td>"Moderate"</td>
<td>Yellow</td>
</tr>
<tr>
<td>101 to 150</td>
<td>"Unhealthy for Sensitive Groups"</td>
<td>Orange</td>
</tr>
<tr>
<td>151 to 200</td>
<td>"Unhealthy"</td>
<td>Red</td>
</tr>
<tr>
<td>201 to 300</td>
<td>"Very Unhealthy"</td>
<td>Purple</td>
</tr>
<tr>
<td>301 and above</td>
<td>"Hazardous"</td>
<td>Maroon</td>
</tr>
</tbody>
</table>

1 Specific colors can be found in the most recent reporting guidance (Guideline for Public Reporting of Daily Air Quality—Air Quality Index (AQI)).

f. The pollutant specific sensitive groups for any reported index value greater than 100. Use the following sensitive groups for each pollutant:

 When this pollutant has an index value above 100:
 Report these sensitive groups

 Ozone: Children and people with asthma are the groups most at risk.
 PM\textsubscript{2.5}: People with respiratory or heart disease, the elderly and children are the groups most at risk.
 PM\textsubscript{10}: People with respiratory disease are the group most at risk.
 CO: People with heart disease are the group most at risk.
 SO\textsubscript{2}: People with asthma are the group most at risk.
 NO\textsubscript{2}: Children and people with respiratory disease are the groups most at risk.

ii. When appropriate, your AQI report may also contain the following:
 a. Appropriate health and cautionary statements.

40 CFR Ch. I (7–1–15 Edition)
Environmental Protection Agency

b. The name and index value for other pollutants, particularly those with an index value greater than 100.
c. The index values for sub-areas of your MSA.
d. Causes for unusual AQI values.
e. Actual pollutant concentrations.

5. Is My AQI Report for My MSA Only?

Generally, your AQI report applies to your MSA only. However, if a significant air quality problem exists (AQI greater than 100) in areas significantly impacted by your MSA but not in it (for example, O3 concentrations are often highest downwind and outside an urban area), you should identify these areas and report the AQI for these areas as well.

6. How Do I Get My AQI Report to the Public?

You must furnish the daily report to the appropriate news media (radio, television, and newspapers). You must make the daily report publicly available at one or more places of public access, or by any other means, including a recorded phone message, a public Internet site, or facsimile transmission. When the AQI value is greater than 100, it is particularly critical that the reporting to the various news media be as extensive as possible. At a minimum, it should include notification to the media with the largest market coverages for the area in question.

7. How Often Must I Report the AQI?

You must report the AQI at least 5 days per week. Exceptions to this requirement are in section 8 of this appendix.

8. May I Make Exceptions to These Reporting Requirements?

1. If the index value for a particular pollutant remains below 50 for a season or year, then you may exclude the pollutant from your calculation of the AQI in section 12.
2. If all index values remain below 50 for a year, then you may report the AQI at your discretion. In subsequent years, if pollutant levels rise to where the AQI would be above 50, then the AQI must be reported as required in sections 3, 4, 6, and 7 of this appendix.

9. How does the AQI relate to air pollution levels?

For each pollutant, the AQI transforms ambient concentrations to a scale from 0 to 500. The AQI is keyed as appropriate to the national ambient air quality standards (NAAQS) for each pollutant. In most cases, the index value of 100 is associated with the numerical level of the short-term standard (i.e., averaging time of 24-hours or less) for each pollutant. The index value of 50 is associated with the numerical level of the annual standard for a pollutant, if there is one, at one-half the level of the short-term standard for the pollutant, or at the level at which it is appropriate to begin to provide guidance on cautionary language. Higher categories of the index are based on increasingly serious health effects and increasing proportions of the population that are likely to be affected.

10. What monitors should I use to get the pollutant concentrations for calculating the AQI?

You must use concentration data from State/Local Air Monitoring Station (SLAMS) or parts of the SLAMS required by 40 CFR 58.10 for each pollutant except PM. For PM, calculate and report the AQI on days for which you have measured air quality data (e.g., from continuous PM_{10} or PM_{2.5} monitors required in Appendix D to this part). You may use PM measurements from monitors that are not reference or equivalent methods (for example, continuous PM_{10} or PM_{2.5} monitors). Detailed guidance for relating non-approved measurements to approved methods by statistical linear regression is referenced in section 13 below.

11. Do I Have to Forecast the AQI?

You should forecast the AQI to provide timely air quality information to the public, but this is not required. If you choose to forecast the AQI, then you may consider both long-term and short-term forecasts. You can forecast the AQI at least 24-hours in advance using the most accurate and reasonable procedures considering meteorology, topography, availability of data, and forecasting expertise. The document “Guideline for Developing an Ozone Forecasting Program” (the Forecasting Guidance) will help you start a forecasting program. You can also issue short-term forecasts by predicting 8-hour ozone values from 1-hour ozone values using methods suggested in the Reporting Guidance, “Guideline for Public Reporting of Daily Air Quality.”

12. How do I calculate the AQI?

1. The AQI is the highest value calculated for each pollutant as follows:
 a. Determine the highest concentration among all of the monitors within each reporting area and truncate as follows:
 (1) Ozone—truncate to 3 decimal places
 (2) PM_{10}—truncate to 1 decimal place
 (3) PM_{2.5}—truncate to integer
 b. The name and index value for other pollutants, particularly those with an index value greater than 100.
 c. The index values for sub-areas of your MSA.
 d. Causes for unusual AQI values.
 e. Actual pollutant concentrations.
b. Using Table 2, find the two breakpoints that contain the concentration.
c. Using Equation 1, calculate the index.
d. Round the index to the nearest integer.

Table 2—Breakpoints for the AQI

<table>
<thead>
<tr>
<th>These breakpoints</th>
<th>Equal these AQI's</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO (ppm) 8-hour</td>
<td>O3 (ppm) 1-hour</td>
</tr>
<tr>
<td>PM10 (μg/m³) 24-hour</td>
<td>PM2.5 (μg/m³) 24-hour</td>
</tr>
<tr>
<td>CO (ppm) 8-hour</td>
<td>SO2 (ppb) 1-hour</td>
</tr>
<tr>
<td>NO2 (ppb) 1-hour</td>
<td>AQI</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>0.000–0.059</td>
<td>0.0–12.0</td>
</tr>
<tr>
<td>0.060–0.075</td>
<td>12.1–35.4</td>
</tr>
<tr>
<td>0.076–0.095</td>
<td>35.5–55.4</td>
</tr>
<tr>
<td>0.116–0.374</td>
<td>150.5–250.4</td>
</tr>
<tr>
<td>0.375–0.504</td>
<td>350.5–500.4</td>
</tr>
</tbody>
</table>

ii. If the concentration is equal to a breakpoint, then the index is equal to the corresponding index value in Table 2. However, Equation 1 can still be used. The results will be equal. If the concentration is between two breakpoints, then calculate the index of that pollutant with Equation 1. You must also note that in some areas, the AQI based on 1-hour O3 will be more precautionary than using 8-hour values (see footnote 1 to Table 2). In these cases, you may use 1-hour values as well as 8-hour values to calculate index values and then use the maximum index value as the AQI for O3.

Example

iv. Using Table 2 and Equation 1, calculate the index value for each of the pollutants measured and select the one that produces the highest index value for the AQI. For example, if you observe a PM10 value of 210 µg/m³, a 1-hour O3 value of 0.156 ppm, and an 8-hour O3 value of 0.130 ppm, then do this:

a. Find the breakpoints for PM10 at 210 µg/m³ as 155 µg/m³ and 254 µg/m³, corresponding to index values 101 and 150;

b. Find the breakpoints for 1-hour O3 at 0.156 ppm as 0.125 ppm and 0.164 ppm, corresponding to index values 101 and 150;

c. Find the breakpoints for 8-hour O3 at 0.130 ppm as 0.116 ppm and 0.374 ppm, corresponding to index values 201 and 300;

d. Apply Equation 1 for 210 µg/m³, PM10:

\[
I_p = \frac{I_{p10} - I_{p1}}{BP_{p10} - BP_{p1}} \left(C_p - BP_{p1} \right) + I_{p1} \quad \text{(Equation 1)}
\]

Where:
- \(I_p\) = the index value for pollutant \(p\);
- \(C_p\) = the truncated concentration of pollutant \(p\);
- \(BP_{p1}\) = the breakpoint that is greater than or equal to \(C_p\);
- \(BP_{p10}\) = the breakpoint that is less than or equal to \(C_p\);
- \(I_{p1}\) = the AQI value corresponding to \(BP_{p1}\);
- \(I_{p10}\) = the AQI value corresponding to \(BP_{p10}\).

iii. If the concentration is larger than the highest breakpoint in Table 2 then you may use the last two breakpoints in Table 2 when you apply Equation 1.

Example

iv. Using Table 2 and Equation 1, calculate the index value for each of the pollutants measured and select the one that produces the highest index value for the AQI. For example, if you observe a PM10 value of 210 µg/m³, a 1-hour O3 value of 0.156 ppm, and an 8-hour O3 value of 0.130 ppm, then do this:

a. Find the breakpoints for PM10 at 210 µg/m³ as 155 µg/m³ and 254 µg/m³, corresponding to index values 101 and 150;

b. Find the breakpoints for 1-hour O3 at 0.156 ppm as 0.125 ppm and 0.164 ppm, corresponding to index values 101 and 150;

c. Find the breakpoints for 8-hour O3 at 0.130 ppm as 0.116 ppm and 0.374 ppm, corresponding to index values 201 and 300;

d. Apply Equation 1 for 210 µg/m³, PM10:

\[
150 - 101 \quad \frac{254 - 155}{210 - 155} + 101 = 128
\]
f. Apply Equation 1 for 0.130 ppm, 8-hour O₃:

\[
\frac{150 - 101}{0.164 - 0.125} (0.156 - 0.125) + 101 = 140
\]

\[
\frac{300 - 201}{0.374 - 0.116} (0.130 - 0.116) + 201 = 206
\]

g. Find the maximum, 206. This is the AQI. The minimal AQI report would read:

v. Today, the AQI for my city is 206 which is Very Unhealthy, due to ozone. Children and people with asthma are the groups most at risk.

13. What additional information should I know?

The EPA has developed a computer program to calculate the AQI for you. The program prompts for inputs, and it displays all the pertinent information for the AQI (the index value, color, category, sensitive group, health effects, and cautionary language). The EPA has also prepared a brochure on the AQI that explains the index in detail (The Air Quality Index). Reporting Guidance (Technical Assistance Document for the Reporting of Daily Air Quality—the Air Quality Index (AQI) that provides associated health effects and cautionary statements, and Forecasting Guidance (Guideline for Developing an Ozone Forecasting Program) that explains the steps necessary to start an air pollution forecasting program. You can download the program and the guidance documents at www.airnow.gov.
