Subpart DDDDD—National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters

SOURCE: 76 FR 15664, Mar. 21, 2011, unless otherwise noted.

WHAT THIS SUBPART COVERS

§ 63.7480 What is the purpose of this subpart?

This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from industrial, commercial, and institutional boilers and process heaters located at major sources of HAP. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and work practice standards.

§ 63.7485 Am I subject to this subpart?

You are subject to this subpart if you own or operate an industrial, commercial, or institutional boiler or process heater as defined in §63.7575 that is located at, or is part of, a major source of HAP, except as specified in §63.7491. For purposes of this subpart, a major source of HAP is as defined in §63.2, except that for oil and natural gas production facilities, a major source of HAP is as defined in §63.7575.

[78 FR 7162, Jan. 31, 2013]

§ 63.7490 What is the affected source of this subpart?

(a) This subpart applies to new, reconstructed, and existing affected sources as described in paragraphs (a)(1) and (2) of this section.

(1) The affected source of this subpart is the collection at a major source of all existing industrial, commercial, and institutional boilers and process heaters within a subcategory as defined in §63.7575.

(2) The affected source of this subpart is each new or reconstructed industrial, commercial, or institutional boiler or process heater, as defined in §63.7575, located at a major source.

(b) A boiler or process heater is new if you commence construction of the boiler or process heater after June 4, 2010, and you meet the applicability criteria at the time you commence construction.

(c) A boiler or process heater is reconstructed if you meet the reconstruction criteria as defined in §63.2, you commence reconstruction after June 4, 2010, and you meet the applicability criteria at the time you commence reconstruction.

(d) A boiler or process heater is existing if it is not new or reconstructed.

(e) An existing electric utility steam generating unit (EGU) that meets the applicability requirements of this subpart after the effective date of this final rule due to a change (e.g., fuel switch) is considered to be an existing source under this subpart.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7162, Jan. 31, 2013]

§ 63.7491 Are any boilers or process heaters not subject to this subpart?

The types of boilers and process heaters listed in paragraphs (a) through (n) of this section are not subject to this subpart.
§ 63.7495 When do I have to comply with this subpart?

(a) If you have a new or reconstructed boiler or process heater, you must comply with this subpart by January 31, 2013, or upon startup of your boiler or process heater, whichever is later.

(b) If you have an existing boiler or process heater, you must comply with this subpart no later than January 31, 2016, except as provided in §63.6(i).

(c) If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, paragraphs (c)(1) and (2) of this section apply to you.

(1) Any new or reconstructed boiler or process heater at the existing source must be in compliance with this subpart upon startup.

(2) Any existing boiler or process heater at the existing source must be in compliance with this subpart within 3 years after the source becomes a major source.

(d) You must meet the notification requirements in §63.7545 according to the schedule in §63.7545 and in subpart A of this part. Some of the notifications must be submitted before you are required to comply with the emission limits and work practice standards in this subpart.

(e) If you own or operate an industrial, commercial, or institutional boiler or process heater and would be subject to this subpart except for the exemption in §63.7491(i) for commercial and industrial solid waste incineration units covered by part 60, subpart CCCC or subpart DDDD, and you cease combusting solid waste, you must be in compliance with this subpart on the effective date of the switch from waste to fuel.

(f) If you own or operate an existing EGU that becomes subject to this subpart after January 31, 2013, you must be in compliance with the applicable existing source provisions of this subpart on the effective date such unit becomes subject to this subpart.

(g) If you own or operate an existing industrial, commercial, or institutional boiler or process heater and would be subject to this subpart except for a exemption in §63.7491(l) that becomes subject to this subpart after...
Environmental Protection Agency § 63.7500

January 31, 2013, you must be in compliance with the applicable existing source provisions of this subpart within 3 years after such unit becomes subject to this subpart.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7162, Jan. 31, 2013]

EDITORIAL NOTE: At 78 FR 7162, Jan. 31, 2013, § 63.7495 was amended by adding paragraph (e). However, there is already a paragraph (e).

EMISSION LIMITATIONS AND WORK PRACTICE STANDARDS

§ 63.7499 What are the subcategories of boilers and process heaters?

The subcategories of boilers and process heaters, as defined in §63.7575 are:

(a) Pulverized coal/solid fossil fuel units.
(b) Stokers designed to burn coal/solid fossil fuel.
(c) Fluidized bed units designed to burn coal/solid fossil fuel.
(d) Stokers/sloped grate/other units designed to burn kiln dried biomass/bio-based solid.
(e) Fluidized bed units designed to burn biomass/bio-based solid.
(f) Suspension burners designed to burn biomass/bio-based solid.
(g) Fuel cells designed to burn biomass/bio-based solid.
(h) Hybrid suspension/grate burners designed to burn wet biomass/bio-based solid.
(i) Stokers/sloped grate/other units designed to burn wet biomass/bio-based solid.
(j) Dutch ovens/pile burners designed to burn biomass/bio-based solid.
(k) Units designed to burn liquid fuel that are non-continental units.
(l) Units designed to burn gas 1 fuels.
(m) Units designed to burn gas 2 (other) gases.
(n) Metal process furnaces.
(o) Limited-use boilers and process heaters.
(p) Units designed to burn solid fuel.
(q) Units designed to burn liquid fuel.
(r) Units designed to burn coal/solid fossil fuel.
(s) Fluidized bed units with an integrated fluidized bed heat exchanger designed to burn coal/solid fossil fuel.
(t) Units designed to burn heavy liquid fuel.
(u) Units designed to burn light liquid fuel.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7163, Jan. 31, 2013]

§ 63.7500 What emission limitations, work practice standards, and operating limits must I meet?

(a) You must meet the requirements in paragraphs (a)(1) through (3) of this section, except as provided in paragraphs (b), through (e) of this section. You must meet these requirements at all times the affected unit is operating, except as provided in paragraph (f) of this section.

(1) You must meet each emission limit and work practice standard in Tables 1 through 3, and 11 through 13 to this subpart that applies to your boiler or process heater, for each boiler or process heater at your source, except as provided under § 63.7522. The output-based emission limits, in units of pounds per million Btu of steam output, in Tables 1 or 2 to this subpart are an alternative applicable only to boilers and process heaters that generate steam. The output-based emission limits, in units of pounds per megawatt-hour, in Tables 1 or 2 to this subpart are an alternative applicable only to boilers that generate electricity. If you operate a new boiler or process heater, you can choose to comply with alternative limits as discussed in paragraphs (a)(1)(i) through (a)(1)(iii) of this section, but on or after January 31, 2016, you must comply with the emission limits in Table 1 to this subpart.

(i) If your boiler or process heater commenced construction or reconstruction after June 4, 2010 and before May 20, 2011, you may comply with the emission limits in Table 1 or 11 to this subpart until January 31, 2016.

(ii) If your boiler or process heater commenced construction or reconstruction after May 20, 2011 and before December 23, 2011, you may comply with the emission limits in Table 1 or 12 to this subpart until January 31, 2016.

(iii) If your boiler or process heater commenced construction or reconstruction after December 23, 2011 and
before January 31, 2013, you may comply with the emission limits in Table 1 or 13 to this subpart until January 31, 2016.

(2) You must meet each operating limit in Table 4 to this subpart that applies to your boiler or process heater. If you use a control device or combination of control devices not covered in Table 4 to this subpart, or you wish to establish and monitor an alternative operating limit or an alternative monitoring parameter, you must apply to the EPA Administrator for approval of alternative monitoring under §63.8(f).

(3) At all times, you must operate and maintain any affected source (as defined in §63.7490), including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator that may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

(b) As provided in §63.6(g), EPA may approve use of an alternative to the work practice standards in this section.

(c) Limited-use boilers and process heaters must complete a tune-up every 5 years as specified in §63.7540. They are not subject to the emission limits in Tables 1 and 2 or 11 through 13 to this subpart, the annual tune-up, or the energy assessment requirements in Table 3 to this subpart.

(d) Boilers and process heaters with a heat input capacity of less than or equal to 5 million Btu per hour in the units designed to burn gas 2 (other) fuels subcategory or units designed to burn light liquid fuels subcategory must complete a tune-up every 5 years as specified in §63.7540.

(e) Boilers and process heaters in the units designed to burn gas 1 fuels subcategory with a heat input capacity of less than or equal to 5 million Btu per hour must complete a tune-up every 5 years as specified in §63.7540. Boilers and process heaters in the units designed to burn gas 1 fuels subcategory with a heat input capacity greater than 5 million Btu per hour and less than 10 million Btu per hour must complete a tune-up every 2 years as specified in §63.7540. Boilers and process heaters in the units designed to burn gas 1 fuels subcategory are not subject to the emission limits in Tables 1 and 2 or 11 through 13 to this subpart, or the operating limits in Table 4 to this subpart.

(f) These standards apply at all times the affected unit is operating, except during periods of startup and shutdown during which time you must comply only with Table 3 to this subpart.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7163, Jan. 31, 2013]

§63.7501 Affirmative Defense for Violation of Emission Standards During Malfunction.

In response to an action to enforce the standards set forth in §63.7500 you may assert an affirmative defense to a claim for civil penalties for violations of such standards that are caused by malfunction, as defined at §63.2. Appropriate penalties may be assessed if you fail to meet your burden of proving all of the requirements in the affirmative defense. The affirmative defense shall not be available for claims for injunctive relief.

(a) Assertion of affirmative defense. To establish the affirmative defense in any action to enforce such a standard, you must timely meet the reporting requirements in paragraph (b) of this section, and must prove by a preponderance of evidence that:

(1) The violation:

(i) Was caused by a sudden, infrequent, and unavoidable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner; and

(ii) Could not have been prevented through careful planning, proper design, or better operation and maintenance practices; and

(iii) Did not stem from any activity or event that could have been foreseen and avoided, or planned for; and

(iv) Was not part of a recurring pattern indicative of inadequate design, operation, or maintenance; and
§ 63.7505 What are my general requirements for complying with this subpart?

(a) You must be in compliance with the emission limits, work practice standards, and operating limits in this subpart. These limits apply to you at all times the affected unit is operating except for the periods noted in §63.7500(f).

(b) [Reserved]

(c) You must demonstrate compliance with all applicable emission limits using performance stack testing, fuel analysis, or continuous monitoring systems (CMS), including a continuous emission monitoring system (CEMS), continuous opacity monitoring system (COMS), continuous parameter monitoring system (CPMS), or particulate matter continuous parameter monitoring system (PM CPMS), where applicable. You may demonstrate compliance with the applicable emission limit for hydrogen chloride (HCl), mercury, or total selected metals (TSM) using fuel analysis if the emission rate calculated according to §63.7530(c) is less than the applicable emission limit. (For gaseous fuels, you may not use fuel analyses to comply with the TSM alternative standard or the HCl standard.) Otherwise, you must demonstrate compliance for HCl, mercury, or TSM using performance testing, if subject to an applicable emission limit listed in Tables 1, 2, or 11 through 13 to this subpart.

(d) If you demonstrate compliance with any applicable emission limit through performance testing and subsequent compliance with operating limits (including the use of CPMS), or with a CEMS, or COMS, you must develop a site-specific monitoring plan according to the requirements in paragraphs (d)(1) through (4) of this section for the use of any CEMS, COMS, or CPMS. This requirement also applies...
§ 63.7510 What are my initial compliance requirements and by what date must I conduct them?

(a) For each boiler or process heater that is required or that you elect to demonstrate compliance with any of the applicable emission limits in Tables 1 or 2 or 11 through 13 of this subpart through performance testing, your initial compliance requirements include all the following:

(1) Conduct performance tests according to § 63.7520 and Table 5 to this subpart.

(2) Conduct a fuel analysis for each type of fuel burned in your boiler or process heater according to § 63.7521 and Table 6 to this subpart, except as specified in paragraphs (a)(2)(i) through (iii) of this section.

(i) For each boiler or process heater that burns a single type of fuel, you are not required to conduct a fuel analysis for each type of fuel burned in your boiler or process heater according to § 63.7521 and Table 6 to this subpart. For purposes of this subpart, units that use a supplemental fuel only for startup, unit shutdown, and transient flame stability purposes still qualify as units that burn a single type of fuel, and the supplemental fuel is not subject to the fuel analysis requirements under § 63.7521 and Table 6 to this subpart.

(ii) When natural gas, refinery gas, or other gas 1 fuels are co-fired with other fuels, you are not required to conduct a fuel analysis for each type of fuel burned in your boiler or process heater according to § 63.7521 and Table 6 to this subpart. If gaseous fuels other than natural gas,
Environmental Protection Agency § 63.7510

refinery gas, or other gas fuels are co-fired with other fuels and those gaseous fuels are subject to another subpart of this part, part 60, part 61, or part 65, you are not required to conduct a fuel analysis of those fuels according to §63.7521 and Table 6 to this subpart.

(iii) You are not required to conduct a chlorine fuel analysis for any gaseous fuels. You must conduct a fuel analysis for mercury on gaseous fuels unless the fuel is exempted in paragraphs (a)(2)(i) and (ii) of this section.

(3) Establish operating limits according to §63.7530 and Table 7 to this subpart.

(4) Conduct CMS performance evaluations according to §63.7525.

(b) For each boiler or process heater that you elect to demonstrate compliance with the applicable emission limits in Tables 1 or 2 or 11 through 13 to this subpart for HCl, mercury, or TSM through fuel analysis, your initial compliance requirement is to conduct a fuel analysis for each type of fuel burned in your boiler or process heater according to §63.7521 and Table 6 to this subpart and establish operating limits according to §63.7530 and Table 8 to this subpart. The fuels described in paragraph (a)(2)(i) and (ii) of this section are exempt from these fuel analysis and operating limit requirements. The fuels described in paragraph (a)(2)(ii) of this section are exempt from the chloride fuel analysis and operating limit requirements. Boilers and process heaters that use a CEMS for mercury or HCl are exempt from the performance testing and operating limit requirements specified in paragraph (a) of this section for the HAP for which CEMS are used.

(c) If your boiler or process heater is subject to a carbon monoxide (CO) limit, your initial compliance demonstration for CO is to conduct a performance test in accordance with your continuous CO monitor, if applicable, according to §63.7525(a). Boilers and process heaters that use a CO CEMS to comply with the applicable alternative CO CEMS emission standard listed in Tables 12, or 11 through 13 to this subpart, as specified in §63.7525(a), are exempt from the initial CO performance testing and oxygen concentration operating limit requirements specified in paragraph (a) of this section.

(d) If your boiler or process heater is subject to a PM limit, your initial compliance demonstration for PM is to conduct a performance test in accordance with §63.7520 and Table 5 to this subpart.

(e) For existing affected sources (as defined in §63.7490), you must complete the initial compliance demonstration, as specified in paragraphs (a) through (d) of this section, no later than 180 days after the compliance date that is specified for your source in §63.7495 and according to the applicable provisions in §63.7(a)(2) as cited in Table 10 to this subpart, except as specified in paragraph (j) of this section. You must complete the one-time energy assessment specified in Table 3 to this subpart no later than the compliance date specified in §63.7495, except as specified in paragraph (j) of this section.

(f) For new or reconstructed affected sources (as defined in §63.7490), you must complete the initial compliance demonstration with the emission limits no later than July 30, 2013 or within 180 days after startup of the source, whichever is later. If you are demonstrating compliance with an emission limit in Tables 11 through 13 to this subpart that is less stringent (that is, higher) than the applicable emission limit in Table 1 to this subpart, you must demonstrate compliance with the applicable emission limit in Table 1 to this subpart no later than July 29, 2016.

(g) For new or reconstructed affected sources (as defined in §63.7490), you must demonstrate initial compliance with the applicable work practice standards in Table 3 to this subpart within the applicable annual, biennial, or 5-year schedule as specified in §63.7540(a) following the initial compliance date specified in §63.7495(a). Thereafter, you are required to complete the applicable annual, biennial, or 5-year tune-up as specified in §63.7540(a).
§ 63.7515 When must I conduct subsequent performance tests, fuel analyses, or tune-ups?

(a) You must conduct all applicable performance tests according to §63.7520 on an annual basis, except as specified in paragraphs (b) through (e), (g), and (h) of this section. Annual performance tests must be completed no more than 13 months after the previous performance test, except as specified in paragraphs (b) through (e), (g), and (h) of this section.

(b) If your performance tests for a given pollutant for at least 2 consecutive years show that your emissions are at or below 75 percent of the emission limit (or, in limited instances as specified in Tables 1 and 2 or 11 through 13 to this subpart, at or below the emission limit) for the pollutant, and if there are no changes in the operation of the individual boiler or process heater or air pollution control equipment that could increase emissions, you may choose to conduct performance tests for the pollutant every third year. Each such performance test must be conducted no more than 37 months after the previous performance test. If you elect to demonstrate compliance using emission averaging under §63.7522, you must continue to conduct performance tests annually. The requirement to test at maximum chloride input level is waived unless the stack test is conducted for HCl. The requirement to test at maximum mercury input level is waived unless the stack test is conducted for mercury. The requirement to test at maximum TSM input level is waived unless the stack test is conducted for TSM.

(c) If a performance test shows emissions exceeded the emission limit or 75 percent of the emission limit (as specified in Tables 1 and 2 or 11 through 13 to this subpart) for a pollutant, you must conduct annual performance tests for that pollutant until all performance tests over a consecutive 2-year period meet the required level (at or below 75 percent of the emission limit, as specified in Tables 1 and 2 or 11 through 13 to this subpart).

(d) If you are required to meet an applicable tune-up work practice standard, you must conduct an annual, biennial, or 5-year performance tune-up according to §63.7540(a)(10), (11), or (12), respectively. Each annual tune-up specified in §63.7540(a)(10) must be conducted no more than 13 months after the previous tune-up. Each biennial tune-up specified in §63.7540(a)(11) must be conducted no more than 25 months after the previous tune-up. Each 5-year tune-up specified in §63.7540(a)(12) must be conducted no more than 61 months after the previous tune-up. For a new or reconstructed affected source (as defined in §63.7490), the first annual, biennial, or 5-year tune-up must be no later than 13 months, 25 months, or 61 months after the initial compliance date has passed, or 13 months, 25 months, or 61 months after the effective date of the waste-to-fuel switch, if you have not conducted your compliance demonstration for this subpart within the previous 12 months, you must complete all compliance demonstrations for this subpart before you commence or recommence combustion of solid waste.

(i) For an existing EGU that becomes subject after January 31, 2013, you must demonstrate compliance within 180 days after becoming an affected source.

(j) For existing affected sources (as defined in §63.7490) that have not operated between the effective date of the rule and the compliance date that is specified for your source in §63.7495, you must complete the initial compliance demonstration, if subject to the emission limits in Table 2 to this subpart, as specified in paragraphs (a) through (d) of this section, no later than 180 days after the re-start of the affected source and according to the applicable provisions in §63.7(a)(2) as cited in Table 10 to this subpart. You must complete an initial tune-up by following the procedures described in §63.7540(a)(10)(i) through (vi) no later than 30 days after the re-start of the affected source and, if applicable, complete the one-time energy assessment specified in Table 3 to this subpart, no later than the compliance date specified in §63.7495.

[78 FR 7164, Jan. 31, 2013]
§ 63.7520 What stack tests and procedures must I use?

(a) You must conduct all performance tests according to §63.7(c), (d), (f), and (h). You must also develop a site-specific stack test plan according to the requirements in §63.7(c). You shall conduct all performance tests under such conditions as the Administrator specifies to you based on the representative performance of each boiler or process heater for the period being tested. Upon request, you shall make available to the Administrator such records as may be necessary to determine the conditions of the performance tests.
(b) You must conduct each performance test according to the requirements in Table 5 to this subpart.

(c) You must conduct each performance test under the specific conditions listed in Tables 5 and 7 to this subpart. You must conduct performance tests at representative operating load conditions while burning the type of fuel or mixture of fuels that has the highest content of chlorine and mercury, and TSM if you are opting to comply with the TSM alternative standard and you must demonstrate initial compliance and establish your operating limits based on these performance tests. These requirements could result in the need to conduct more than one performance test. Following each performance test and until the next performance test, you must comply with the operating limit for operating load conditions specified in Table 4 to this subpart.

(d) You must conduct a minimum of three separate test runs for each performance test required in this section, as specified in §63.7(e)(3). Each test run must comply with the minimum applicable sampling times or volumes specified in Tables 1 and 2 or 11 through 13 to this subpart.

(e) To determine compliance with the emission limits, you must use the F-Factor methodology and equations in sections 12.2 and 12.3 of EPA Method 19 at 40 CFR part 60, appendix A–7 of this chapter to convert the measured particulate matter (PM) concentrations, the measured HCl concentrations, the measured mercury concentrations, and the measured TSM concentrations that result from the performance test to pounds per million Btu heat input emission rates.

(f) Except for a 30-day rolling average based on CEMS (or sorbent trap monitoring system) data, if measurement results for any pollutant are reported as below the method detection level (e.g., laboratory analytical results for one or more sample components are below the method defined analytical detection level), you must use the method detection level as the measured emissions level for that pollutant in calculating compliance. The measured result for a multiple component analysis (e.g., analytical values for multiple Method 29 fractions both for individual HAP metals and for total HAP metals) may include a combination of method detection level data and analytical data reported above the method detection level.

(76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7166, Jan. 31, 2013)

§63.7521 What fuel analyses, fuel specification, and procedures must I use?

(a) For solid and liquid fuels, you must conduct fuel analyses for chloride and mercury according to the procedures in paragraphs (b) through (e) of this section and Table 6 to this subpart, as applicable. For solid fuels and liquid fuels, you must also conduct fuel analyses for TSM if you are opting to comply with the TSM alternative standard. For gas 2 (other) fuels, you must conduct fuel analyses for mercury according to the procedures in paragraphs (b) through (e) of this section and Table 6 to this subpart, as applicable. (For gaseous fuels, you may not use fuel analyses to comply with the TSM alternative standard or the HCl standard.) For purposes of complying with this section, a fuel gas system that consists of multiple gaseous fuels collected and mixed with each other is considered a single fuel type and sampling and analysis is only required on the combined fuel gas system that will feed the boiler or process heater. Sampling and analysis of the individual gaseous streams prior to combining is not required. You are not required to conduct fuel analyses for fuels used for only startup, unit shutdown, and transient flame stability purposes. You are required to conduct fuel analyses only for fuels and units that are subject to emission limits for mercury, HCl, or TSM in Tables 1 and 2 or 11 through 13 to this subpart. Gaseous and liquid fuels are exempt from the sampling requirements in paragraphs (c) and (d) of this section and Table 6 to this subpart.

(b) You must develop a site-specific fuel monitoring plan according to the following procedures and requirements in paragraphs (b)(1) and (2) of this section, if you are required to conduct fuel analyses as specified in §63.7510.
§ 63.7521

(1) If you intend to use an alternative analytical method other than those required by Table 6 to this subpart, you must submit the fuel analysis plan to the Administrator for review and approval no later than 60 days before the date that you intend to conduct the initial compliance demonstration described in §63.7510.

(2) You must include the information contained in paragraphs (b)(2)(i) through (vi) of this section in your fuel analysis plan.

(i) The identification of all fuel types anticipated to be burned in each boiler or process heater.

(ii) For each anticipated fuel type, the notification of whether you or a fuel supplier will be conducting the fuel analysis.

(iii) For each anticipated fuel type, a detailed description of the sample location and specific procedures to be used for collecting and preparing the composite samples if your procedures are different from paragraph (c) or (d) of this section. Samples should be collected at a location that most accurately represents the fuel type, where possible, at a point prior to mixing with other dissimilar fuel types.

(iv) For each anticipated fuel type, the analytical methods from Table 6, with the expected minimum detection levels, to be used for the measurement of chlorine or mercury.

(v) If you request to use an alternative analytical method other than those required by Table 6 to this subpart, you must also include a detailed description of the methods and procedures that you are proposing to use. Methods in Table 6 shall be used until the requested alternative is approved.

(vi) If you will be using fuel analysis from a fuel supplier in lieu of site-specific sampling and analysis, the fuel supplier must use the analytical methods required by Table 6 to this subpart.

(c) At a minimum, you must obtain three composite fuel samples for each fuel type according to the procedures in paragraph (c)(1) or (2) of this section, or the methods listed in Table 6 to this subpart, or use an automated sampling mechanism that provides representative composite fuel samples for each fuel type that includes both coarse and fine material.

(d) You must prepare each composite sample according to the procedures in paragraphs (d)(1) through (7) of this section.

(1) You must thoroughly mix and pour the entire composite sample over a clean plastic sheet.

(2) You must break large sample pieces (e.g., larger than 3 inches) into smaller sizes.

(3) You must make a pie shape with the entire composite sample and subdivide it into four equal parts.

(4) You must separate one of the quarter samples as the first subset.

(5) If this subset is too large for grinding, you must repeat the procedure in paragraph (d)(3) of this section.
with the quarter sample and obtain a one-quarter subset from this sample.

(6) You must grind the sample in a mill.

(7) You must use the procedure in paragraph (d)(3) of this section to obtain a one-quarter subsample for analysis. If the quarter sample is too large, subdivide it further using the same procedure.

(e) You must determine the concentration of pollutants in the fuel (mercury and/or chlorine and/or TSM) in units of pounds per million Btu of each composite sample for each fuel type according to the procedures in Table 6 to this subpart, for use in Equations 7, 8, and 9 of this subpart.

(f) To demonstrate that a gaseous fuel other than natural gas or refinery gas qualifies as an other gas 1 fuel, as defined in §63.7575, you must conduct a fuel specification analyses for mercury according to the procedures in paragraphs (g) through (i) of this section and Table 6 to this subpart, as applicable, except as specified in paragraph (f)(1) through (4) of this section.

(1) You are not required to conduct the fuel specification analyses in paragraphs (g) through (i) of this section for natural gas or refinery gas.

(2) You are not required to conduct the fuel specification analyses in paragraphs (g) through (i) of this section for gaseous fuels that are subject to another subpart of this part, part 60, part 61, or part 65.

(3) You are not required to conduct the fuel specification analyses in paragraphs (g) through (i) of this section on gaseous fuels for units that are complying with the limits for units designed to burn gas 2 (other) fuels.

(4) You are not required to conduct the fuel specification analyses in paragraphs (g) through (i) of this section for gas streams directly derived from natural gas at natural gas production sites or natural gas plants.

(g) You must develop and submit a site-specific fuel analysis plan for other gas 1 fuels to the EPA Administrator for review and approval according to the following procedures and requirements in paragraphs (g)(1) and (2) of this section.

(1) If you intend to use an alternative analytical method other than those required by Table 6 to this subpart, you must submit the fuel analysis plan to the Administrator for review and approval no later than 60 days before the date that you intend to conduct the initial compliance demonstration described in §63.7510.

(2) You must include the information contained in paragraphs (g)(2)(i) through (vi) of this section in your fuel analysis plan.

(i) The identification of all gaseous fuel types other than those exempted from fuel specification analysis under (f)(1) through (3) of this section anticipated to be burned in each boiler or process heater.

(ii) For each anticipated fuel type, the notification of whether you or a fuel supplier will be conducting the fuel specification analysis.

(iii) For each anticipated fuel type, a detailed description of the sampling location and specific procedures to be used for collecting and preparing the samples if your procedures are different from the sampling methods contained in Table 6 to this subpart. Samples should be collected at a location that most accurately represents the fuel type, where possible, at a point prior to mixing with other dissimilar fuel types. If multiple boilers or process heaters are fueled by a common fuel stream it is permissible to conduct a single gas specification at the common point of gas distribution.

(iv) For each anticipated fuel type, the analytical methods from Table 6 to this subpart, with the expected minimum detection levels, to be used for the measurement of mercury.

(v) If you request to use an alternative analytical method other than those required by Table 6 to this subpart, you must also include a detailed description of the methods and procedures that you are proposing to use. Methods in Table 6 to this subpart shall be used until the requested alternative is approved.

(vi) If you will be using fuel analysis from a fuel supplier in lieu of site-specific sampling and analysis, the fuel supplier must use the analytical methods required by Table 6 to this subpart.

(b) You must obtain a single fuel sample for each fuel type according to
Environmental Protection Agency

§ 63.7522 Can I use emissions averaging to comply with this subpart?

(a) As an alternative to meeting the requirements of § 63.7500 for PM (or TSM), HCl, or mercury on a boiler or process heater-specific basis, if you have more than one existing boiler or process heater in any subcategories located at your facility, you may demonstrate compliance by emissions averaging, if your averaged emissions are not more than 90 percent of the applicable emission limit, according to the procedures in this section. You may not include new boilers or process heaters in an emissions average.

(b) For a group of two or more existing boilers or process heaters in the same subcategory that each vent to a separate stack, you may average PM (or TSM), HCl, or mercury emissions among existing units to demonstrate compliance with the limits in Table 2 to this subpart as specified in paragraph (b)(1) through (3) of this section, if you satisfy the requirements in paragraphs (c) through (g) of this section.

(1) You may average units using a CEMS or PM CPMS for demonstrating compliance.

(2) For mercury and HCl, averaging is allowed as follows:

(i) You may average among units in any of the solid fuel subcategories.

(ii) You may average among units in any of the liquid fuel subcategories.

(iii) You may average among units in a subcategory of units designed to burn gas 2 (other) fuels.

(iv) You may not average across the units designed to burn liquid, units designed to burn solid fuel, and units designed to burn gas 2 (other) subcategories.

(3) For PM (or TSM), averaging is only allowed between units within each of the following subcategories and you may not average across subcategories:

(i) Units designed to burn coal/solid fossil fuel.

(ii) Stokers/sloped grate/other units designed to burn kiln dried biomass/bio-based solids.

(iii) Stokers/sloped grate/other units designed to burn wet biomass/bio-based solids.

(iv) Fluidized bed units designed to burn biomass/bio-based solid.

(v) Suspension burners designed to burn biomass/bio-based solid.

(vi) Dutch ovens/pile burners designed to burn biomass/bio-based solid.

(vii) Fuel Cells designed to burn biomass/bio-based solid.

(viii) Hybrid suspension/grate burners designed to burn wet biomass/bio-based solid.

(ix) Units designed to burn heavy liquid fuel.

(x) Units designed to burn light liquid fuel.

(xi) Units designed to burn liquid fuel that are non-continental units.

(xii) Units designed to burn gas 2 (other) gases.

(c) For each existing boiler or process heater in the averaging group, the emission rate achieved during the initial compliance test for the HAP being averaged must not exceed the emission level that was being achieved on January 31, 2013 or the control technology employed during the initial compliance test must not be less effective for the HAP being averaged than the control technology employed on January 31, 2013.

(d) The averaged emissions rate from the existing boilers and process heaters participating in the emissions averaging option must not exceed 90 percent of the limits in Table 2 to this subpart at all times the affected units are operating following the compliance date specified in § 63.7495.

(e) You must demonstrate initial compliance according to paragraph (e)(1) or (2) of this section using the maximum rated heat input capacity or maximum steam generation capacity of each unit and the results of the initial performance tests or fuel analysis.

(1) You must use Equation 1a or 1b or 1c of this section to demonstrate that the PM (or TSM), HCl, or mercury emissions from all existing units participating in the emissions averaging
option for that pollutant do not exceed the emission limits in Table 2 to this subpart. Use Equation 1a if you are complying with the emission limits on a heat input basis, use Equation 1b if you are complying with the emission limits on a steam generation (output) basis, and use Equation 1c if you are complying with the emission limits on a electric generation (output) basis.

\[
AveWeightedEmissions = 1.1 \times \frac{\sum_{i=1}^{n} (Er \times Hm)}{\sum_{i=1}^{n} Hm}
\]
\[\text{(Eq. 1a)}\]

Where:
- AveWeightedEmissions = Average weighted emissions for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of heat input.
- Er = Emission rate (as determined during the initial compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per million Btu of heat input. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM using the applicable equation in §63.7530(c).
- Hm = Maximum rated heat input capacity of unit, i, in units of million Btu per hour.
- n = Number of units participating in the emissions averaging option.
- 1.1 = Required discount factor.

\[
AveWeightedEmissions = 1.1 \times \frac{\sum_{i=1}^{n} (Er \times So)}{\sum_{i=1}^{n} So}
\]
\[\text{(Eq. 1b)}\]

Where:
- AveWeightedEmissions = Average weighted emissions for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of steam output.
- Er = Emission rate (as determined during the initial compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per million Btu of steam output. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM using the applicable equation in §63.7530(c). If you are taking credit for energy conservation measures from a unit according to §63.7533, use the adjusted emission level for that unit, Eadj, determined according to §63.7533 for that unit.
- So = Maximum steam output capacity of unit, i, in units of million Btu per hour, as defined in §63.7575.
- n = Number of units participating in the emissions averaging option.
- 1.1 = Required discount factor.

\[
AveWeightedEmissions = 1.1 \times \frac{\sum_{i=1}^{n} (Er \times Eo)}{\sum_{i=1}^{n} Eo}
\]
\[\text{(Eq. 1c)}\]

Where:
- AveWeightedEmissions = Average weighted emissions for PM (or TSM), HCl, or mercury, in units of pounds per megawatt hour.
- Er = Emission rate (as determined during the initial compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per megawatt hour. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM using the applicable equation in §63.7530(c). If you are taking credit for energy conservation measures from a unit according to §63.7533, use the adjusted emission level for that unit, Eadj, determined according to §63.7533 for that unit.
- Eo = Maximum electric generating output capacity of unit, i, in units of megawatt hour, as defined in §63.7575.
Environmental Protection Agency § 63.7522

n = Number of units participating in the emissions averaging option.
1.1 = Required discount factor.

(2) If you are not capable of determining the maximum rated heat input capacity of one or more boilers that generate steam, you may use Equation 2 of this section as an alternative to using Equation 1a of this section to demonstrate that the PM (or TSM), HCl, or mercury emissions from all existing units participating in the emissions averaging option do not exceed the emission limits for that pollutant in Table 2 to this subpart that are in pounds per million Btu of heat input.

\[
\text{AveWeightedEmissions} = 1.1 \times \sum_{i=1}^{n} \left(Er \times Sm \times Cfi \right) = \sum_{i=1}^{n} \left(Sm \times Cfi \right) \quad (\text{Eq. 2})
\]

Where:
AveWeightedEmissions = Average weighted emission level for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of heat input.
Er = Emission rate (as determined during the most recent compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per million Btu of heat input. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM using the applicable equation in §63.7530(c).
Sm = Maximum steam generation capacity by unit, i, in units of pounds per hour.
Cfi = Conversion factor, calculated from the most recent compliance test, in units of million Btu of heat input per pounds of steam generated for unit, i.
1.1 = Required discount factor.

(f) After the initial compliance demonstration described in paragraph (e) of this section, you must demonstrate compliance on a monthly basis determined at the end of every month (12 times per year) according to paragraphs (f)(1) through (3) of this section. The first monthly period begins on the compliance date specified in §63.7495. If the affected source elects to collect monthly data for up the 11 months preceding the first monthly period, these additional data points can be used to compute the 12-month rolling average in paragraph (f)(3) of this section.

(1) For each calendar month, you must use Equation 3a or 3b or 3c of this section to calculate the average weighted emission rate for that month. Use Equation 3a and the actual heat input for the month for each existing unit participating in the emissions averaging option if you are complying with emission limits on a heat input basis. Use Equation 3b and the actual steam generation for the month if you are complying with the emission limits on a steam generation (output) basis. Use Equation 3c and the actual steam generation for the month if you are complying with the emission limits on an electrical generation (output) basis.

\[
\text{AveWeightedEmissions} = 1.1 \times \sum_{i=1}^{n} (Er \times Hb) = \sum_{i=1}^{n} Hb \quad (\text{Eq. 3a})
\]

Where:
AveWeightedEmissions = Average weighted emission level for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of heat input, for that calendar month.
Er = Emission rate (as determined during the most recent compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per million Btu of heat input. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM according to Table 6 to this subpart.
Hb = The heat input for that calendar month to unit, i, in units of million Btu.
n = Number of units participating in the emissions averaging option.
1.1 = Required discount factor.
Where:

\[\text{AveWeightedEmissions} = \frac{\sum_{i=1}^{n} (E_r \times S_o)}{\sum_{i=1}^{n} S_o} \] \quad (Eq. 3b)

AveWeightedEmissions = Average weighted emission level for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of steam output, for that calendar month.

\(E_r \) = Emission rate (as determined during the most recent compliance demonstration) of PM (or TSM), HCl, or mercury from unit, \(i \), in units of pounds per million Btu of steam output. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM according to Table 6 to this subpart. If you are taking credit for energy conservation measures from a unit according to §63.7533, use the adjusted emission level for that unit, \(E_{adj} \), determined according to §63.7533 for that unit.

\(S_o \) = The steam output for that calendar month from unit, \(i \), in units of million Btu, as defined in §63.7575.

\(n \) = Number of units participating in the emissions averaging option.

1.1 = Required discount factor.

AveWeightedEmissions = \(1.1 \times \frac{\sum_{i=1}^{n} (E_r \times E_o)}{\sum_{i=1}^{n} E_o} \) \quad (Eq. 3c)

Where:

\(\text{AveWeightedEmissions} = \text{Average weighted emission level for PM (or TSM), HCl, or mercury, in units of pounds per megawatt hour, for that calendar month.} \)

\(E_r \) = Emission rate (as determined during the most recent compliance demonstration) of PM (or TSM), HCl, or mercury from unit, \(i \), in units of pounds per megawatt hour. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM according to Table 6 to this subpart. If you are taking credit for energy conservation measures from a unit according to §63.7533, use the adjusted emission level for that unit, \(E_{adj} \), determined according to §63.7533 for that unit.

\(E_o \) = The electric generating output for that calendar month from unit, \(i \), in units of megawatt hour, as defined in §63.7575.

\(n \) = Number of units participating in the emissions averaging option.

1.1 = Required discount factor.

(2) If you are not capable of monitoring heat input, you may use Equation 4 of this section as an alternative to using Equation 3a of this section to calculate the average weighted emission rate using the actual steam generation from the boilers participating in the emissions averaging option.

AveWeightedEmissions = \(1.1 \times \frac{\sum_{i=1}^{n} (E_r \times S_a \times C_{fi})}{\sum_{i=1}^{n} (S_a \times C_{fi})} \) \quad (Eq. 4)

Where:

\(\text{AveWeightedEmissions} = \text{average weighted emission level for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of heat input for that calendar month.} \)

\(E_r \) = Emission rate (as determined during the most recent compliance demonstration of PM (or TSM), HCl, or mercury from unit, \(i \), in units of pounds per million Btu of heat input. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM according to Table 6 to this subpart.

\(S_a \) = Actual steam generation for that calendar month by boiler, \(i \), in units of pounds.

\(C_{fi} \) = Conversion factor, as calculated during the most recent compliance test, in units.
Environmental Protection Agency

§ 63.7522

of million Btu of heat input per pounds of steam generated for boiler, 1.1 = Required discount factor.

(3) Until 12 monthly weighted average emission rates have been accumulated, calculate and report only the average weighted emission rate determined under paragraph (f)(1) or (2) of this section for each calendar month.

After 12 monthly weighted average emission rates have been accumulated, for each subsequent calendar month, use Equation 5 of this section to calculate the 12-month rolling average of the monthly weighted average emission rates for the current calendar month and the previous 11 calendar months.

\[E_{avg} = \frac{\sum_{i=1}^{12} ER_i}{12} \quad (Eq. 5) \]

Where:
\(E_{avg} = 12\)-month rolling average emission rate, (pounds per million Btu heat input)
\(ER_i = \) Monthly weighted average, for calendar month “i” (pounds per million Btu heat input), as calculated by paragraph (f)(1) or (2) of this section.

You must develop, and submit upon request to the applicable Administrator for review and approval, an implementation plan for emission averaging according to the following procedures and requirements in paragraphs (g)(1) through (4) of this section.

(1) You must submit the implementation plan no later than 180 days before the date that the facility intends to demonstrate compliance using the emission averaging option.

(2) You must include the information contained in paragraphs (g)(2)(i) through (vii) of this section in your implementation plan for all emission sources included in an emissions averaging:

(i) The identification of all existing boilers and process heaters in the averaging group, including for each either the applicable HAP emission level or the control technology installed as of January 31, 2013 and the date on which you are requesting emission averaging to commence;

(ii) The process parameter (heat input or steam generated) that will be monitored for each averaging group;

(iii) The specific control technology or pollution prevention measure to be used for each emission boiler or process heater in the averaging group and the date of its installation or application. If the pollution prevention measure reduces or eliminates emissions from multiple boilers or process heaters, the owner or operator must identify each boiler or process heater;

(iv) The test plan for the measurement of PM (or TSM), HCl, or mercury emissions in accordance with the requirements in §63.7520;

(v) The operating parameters to be monitored for each control system or device consistent with §63.7500 and Table 4, and a description of how the operating limits will be determined;

(vi) If you request to monitor an alternative operating parameter pursuant to §63.7525, you must also include:

(A) A description of the parameter(s) to be monitored and an explanation of the criteria used to select the parameter(s); and

(B) A description of the methods and procedures that will be used to demonstrate that the parameter indicates proper operation of the control device; the frequency and content of monitoring, reporting, and recordkeeping requirements; and a demonstration, to the satisfaction of the Administrator, that the proposed monitoring frequency is sufficient to represent control device operating conditions; and

(vii) A demonstration that compliance with each of the applicable emission limit(s) will be achieved under representative operating load conditions. Following each compliance demonstration and until the next compliance demonstration, you must comply with the operating limit for operating load conditions specified in Table 4 to this subpart.
§ 63.7522

(3) The Administrator shall review and approve or disapprove the plan according to the following criteria:

(i) Whether the content of the plan includes all of the information specified in paragraph (g)(2) of this section; and

(ii) Whether the plan presents sufficient information to determine that compliance will be achieved and maintained.

(4) The applicable Administrator shall not approve an emission averaging implementation plan containing any of the following provisions:

(i) Any averaging between emissions of differing pollutants or between differing sources; or

(ii) The inclusion of any emission source other than an existing unit in the same subcategories.

(h) For a group of two or more existing affected units, each of which vents through a single common stack, you may average PM (or TSM), HCl, or mercury emissions to demonstrate compliance with the limits for that pollutant in Table 2 to this subpart if you satisfy the requirements in paragraph (i) or (j) of this section.

(i) For a group of two or more existing units in the same subcategories, each of which vents through a common emissions control system to a common stack, that does not receive emissions from units in other subcategories or categories, you may treat such averaging group as a single existing unit for purposes of this subpart and comply with the requirements of this subpart as if the group were a single unit.

(j) For all other groups of units subject to the common stack requirements of paragraph (h) of this section, including situations where the exhaust of affected units is each individually controlled and then sent to a common stack, the owner or operator may elect to:

(1) Conduct performance tests according to procedures specified in § 63.7520 in the common stack if affected units from other subcategories vent to the common stack. The emission limits that the group must comply with are determined by the use of Equation 6 of this section.

\[
En = \sum_{i=1}^{n} (ELi \times Hi) + \sum_{i=1}^{n} Hi
\]

(\text{Eq. 6})

Where:

- \(En \) = HAP emission limit, pounds per million British thermal units (lb/MMBtu), parts per million (ppm), or nanograms per dry standard cubic meter (ng/dscm).
- \(ELi \) = Appropriate emission limit from Table 2 to this subpart for unit i, in units of lb/MMBtu, ppm or ng/dscm.
- \(Hi \) = Heat input from unit i, MMBtu.

(2) Conduct performance tests according to procedures specified in §63.7520 in the common stack. If affected units and non-affected units vent to the common stack, the non-affected units must be shut down or vented to a different stack during the performance test unless the facility determines to demonstrate compliance with the non-affected units venting to the stack; and

(3) Meet the applicable operating limit specified in §63.7540 and Table 8 to this subpart for each emissions control system (except that, if each unit venting to the common stack has an applicable opacity operating limit, then a single continuous opacity monitoring system may be located in the common stack instead of in each duct to the common stack).

(k) The common stack of a group of two or more existing boilers or process heaters in the same subcategories subject to paragraph (h) of this section may be treated as a separate stack for purposes of paragraph (b) of this section and included in an emissions averaging group subject to paragraph (b) of this section.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7168, Jan. 31, 2013]
§ 63.7525 What are my monitoring, installation, operation, and maintenance requirements?

(a) If your boiler or process heater is subject to a CO emission limit in Tables 1, 2, or 11 through 13 to this subpart, you must install, operate, and maintain an oxygen analyzer system, as defined in §63.7575, or install, certify, operate and maintain continuous emission monitoring systems for CO and oxygen according to the procedures in paragraphs (a)(1) through (7) of this section.

(1) Install the CO CEMS and oxygen analyzer by the compliance date specified in §63.7495. The CO and oxygen levels shall be monitored at the same location at the outlet of the boiler or process heater.

(2) To demonstrate compliance with the applicable alternative CO CEMS emission standard listed in Tables 1, 2, or 11 through 13 to this subpart, you must install, certify, operate, and maintain a CO CEMS and an oxygen analyzer according to the applicable procedures under Performance Specification 4, 4A, or 4B at 40 CFR part 60, appendix B, the site-specific monitoring plan developed according to §63.7505(d), and the requirements in §63.7540(a)(8) and paragraph (a) of this section. Any boiler or process heater that has a CO CEMS that is compliant with Performance Specification 4, 4A, or 4B at 40 CFR part 60, appendix B, a site-specific monitoring plan developed according to §63.7505(d), and the requirements in §63.7540(a)(8) and paragraph (a) of this section must use the CO CEMS to comply with the applicable CO emission limit listed in Tables 1, 2, or 11 through 13 to this subpart.

(i) You must conduct a performance evaluation of each CO CEMS according to the requirements in §63.7505(d), and the requirements in §63.7540(a)(8) and paragraph (a) of this section must use the CO CEMS to comply with the applicable alternative CO CEMS emission standard listed in Tables 1, 2, or 11 through 13 to this subpart.

(ii) During each relative accuracy test run of the CO CEMS, you must collect emission data for CO concurrently (or within a 30- to 60-minute period) by both the CO CEMS and by Method 10, 10A, or 10B at 40 CFR part 60, appendix A–4. The relative accuracy testing must be at representative operating conditions.

(iii) You must follow the quality assurance procedures (e.g., quarterly accuracy determinations and daily calibration drift tests) of Procedure 1 of appendix F to part 60. The measurement span value of the CO CEMS must be two times the applicable CO emission limit, expressed as a concentration.

(iv) Any CO CEMS that does not comply with §63.7525(a) cannot be used to meet any requirement in this subpart to demonstrate compliance with a CO emission limit, expressed as a concentration.

(v) For a new unit, complete the initial performance evaluation no later than July 30, 2013, or 180 days after the date of initial startup, whichever is later. For an existing unit, complete the initial performance evaluation no later than July 29, 2016.

(3) Complete a minimum of one cycle of CO and oxygen CEMS operation (sampling, analyzing, and data recording) for each successive 15-minute period. Collect CO and oxygen data concurrently. Collect at least four CO and oxygen CEMS data values representing the four 15-minute periods in an hour, or at least two 15-minute data values during an hour when CEMS calibration, quality assurance, or maintenance activities are being performed.

(4) Reduce the CO CEMS data as specified in §63.8(g)(2).

(5) Calculate one-hour arithmetic averages, corrected to 3 percent oxygen from each hour of CO CEMS data in parts per million CO concentration. The one-hour arithmetic averages required shall be used to calculate the 30-day or 10-day rolling average emissions. Use Equation 19–19 in section 12.4.1 of Method 19 of 40 CFR part 60, appendix A–7 for calculating the average CO concentration from the hourly values.

(6) For purposes of collecting CO data, operate the CO CEMS as specified in §63.7535(b). You must use all the data collected during all periods in calculating data averages and assessing compliance, except that you must exclude certain data as specified in §63.7535(c). Periods when CO data are...
unavailable may constitute monitoring deviations as specified in §63.7535(d).

(7) Operate an oxygen trim system with the oxygen level set no lower than the lowest hourly average oxygen concentration measured during the most recent CO performance test as the operating limit for oxygen according to Table 7 to this subpart.

(b) If your boiler or process heater is in the unit designed to burn coal/solid fossil fuel subcategory or the unit designed to burn heavy liquid subcategory and has an average annual heat input rate greater than 250 MMBtu per hour from solid fossil fuel and/or heavy liquid, and you demonstrate compliance with the PM limit instead of the alternative TSM limit, you must install, certify, maintain, and operate a PM CPMS monitoring emissions discharged to the atmosphere and record the output of the system as specified in paragraphs (b)(1) through (4) of this section. As an alternative to use of a PM CPMS to demonstrate compliance with the PM limit, you may choose to use a PM CEMS. If you choose to use a PM CEMS to demonstrate compliance with the PM limit instead of the alternative TSM limit, you must install, certify, maintain, and operate a PM CEMS monitoring emissions discharged to the atmosphere and record the output of the system as specified in paragraphs (b)(5) through (8) of this section.

(1) Install, certify, operate, and maintain your PM CPMS according to the procedures in your approved site-specific monitoring plan developed in accordance with §63.7505(d), the requirements in §63.7540(a)(9), and paragraphs (b)(1)(i) through (iii) of this section.

(i) The operating principle of the PM CPMS must be based on in-stack or extractive light scatter, light scintillation, beta attenuation, or mass accumulation detection of PM in the exhaust gas or representative exhaust gas sample. The reportable measurement output from the PM CPMS must be expressed as milliamps.

(ii) The PM CPMS must have a cycle time (i.e., period required to complete sampling, measurement, and reporting for each measurement) no longer than 60 minutes.

(iii) The PM CPMS must be capable of detecting and responding to PM concentrations of no greater than 0.5 milligram per actual cubic meter.

(2) For a new unit, complete the initial performance evaluation no later than July 30, 2013, or 180 days after the date of initial startup, whichever is later. For an existing unit, complete the initial performance evaluation no later than July 29, 2016.

(3) Collect PM CPMS hourly average output data for all boiler or process heater operating hours except as indicated in §63.7535(a) through (d). Express the PM CPMS output as milliamps.

(4) Calculate the arithmetic 30-day rolling average of all of the hourly average PM CPMS output data collected during all boiler or process heater operating hours (milliamps).

(5) Install, certify, operate, and maintain your PM CEMS according to the procedures in your approved site-specific monitoring plan developed in accordance with §63.7505(d), the requirements in §63.7540(a)(9), and paragraphs (b)(5)(i) through (iv) of this section.

(i) You shall conduct a performance evaluation of the PM CEMS according to the applicable requirements of §60.8(e), and Performance Specification 11 at 40 CFR part 60, appendix B of this chapter.

(ii) During each PM correlation testing run of the CEMS required by Performance Specification 11 at 40 CFR part 60, appendix B of this chapter, you shall collect PM and oxygen (or carbon dioxide) data concurrently (or within a 30-to 60-minute period) by both the CEMS and conducting performance tests using Method 5 at 40 CFR part 60, appendix A–3 or Method 17 at 40 CFR part 60, appendix A–6 of this chapter.

(iii) You shall perform quarterly accuracy determinations and daily calibration drift tests in accordance with Procedure 2 at 40 CFR part 60, appendix F of this chapter. You must perform
Environmental Protection Agency § 63.7525

Relative Response Audits annually and perform Response Correlation Audits every 3 years.

(iv) Within 60 days after the date of completing each CEMS relative accuracy test audit or performance test conducted to demonstrate compliance with this subpart, you must submit the relative accuracy test audit data and performance test data to the EPA by successfully submitting the data electronically into the EPA’s Central Data Exchange by using the Electronic Reporting Tool (see http://www.epa.gov/ttn/chief/ert/erttool.html/).

(6) For a new unit, complete the initial performance evaluation no later than July 30, 2013, or 180 days after the date of initial startup, whichever is later. For an existing unit, complete the initial performance evaluation no later than July 29, 2016.

(7) Collect PM CEMS hourly average output data for all boiler or process heater operating hours except as indicated in § 63.7535(a) through (d).

(8) Calculate the arithmetic 30-day rolling average of all of the hourly average PM CEMS output data collected during all boiler or process heater operating hours.

(c) If you have an applicable opacity operating limit in this rule, and are not otherwise required or elect to install and operate a PM CPMS, PM CEMS, or a bag leak detection system, you must install, operate, certify and maintain each COMS according to the procedures in paragraphs (c)(1) through (7) of this section by the compliance date specified in § 63.7495.

(1) Each COMS must be installed, operated, and maintained according to Performance Specification 1 at appendix B to part 60 of this chapter.

(2) You must conduct a performance evaluation of each COMS according to the requirements in § 63.8(e) and according to Performance Specification 1 at appendix B to part 60 of this chapter.

(3) As specified in § 63.8(c)(4)(i), each COMS must complete a minimum of one cycle of sampling and analyzing for each successive 10-second period and one cycle of data recording for each successive 6-minute period.

(4) The COMS data must be reduced as specified in § 63.8(g)(2).

(5) You must include in your site-specific monitoring plan procedures and acceptance criteria for operating and maintaining each COMS according to the requirements in § 63.8(d). At a minimum, the monitoring plan must include a daily calibration drift assessment, a quarterly performance audit, and an annual zero alignment audit of each COMS.

(6) You must operate and maintain each COMS according to the requirements in the monitoring plan and the requirements of § 63.8(e). You must identify periods the COMS is out of control including any periods that the COMS fails to pass a daily calibration drift assessment, a quarterly performance audit, or an annual zero alignment audit. Any 6-minute period for which the monitoring system is out of control and data are not available for a required calculation constitutes a deviation from the monitoring requirements.

(7) You must determine and record all the 6-minute averages (and daily block averages as applicable) collected for periods during which the COMS is not out of control.

(d) If you have an operating limit that requires the use of a CMS other than a PM CPMS or COMS, you must install, operate, and maintain each CMS according to the procedures in paragraphs (d)(1) through (5) of this section by the compliance date specified in § 63.7495.

(1) The CPMS must complete a minimum of one cycle of operation every 15-minutes. You must have a minimum of four successive cycles of operation, one representing each of the four 15-minute periods in an hour, to have a valid hour of data.

(2) You must operate the monitoring system as specified in § 63.7535(b), and comply with the data calculation requirements specified in § 63.7535(c).

(3) Any 15-minute period for which the monitoring system is out-of-control and data are not available for a required calculation constitutes a deviation from the monitoring requirements. Other situations that constitute a monitoring deviation are specified in § 63.7535(d).
§ 63.7525 40 CFR Ch. I (7–1–14 Edition)

(4) You must determine the 30-day rolling average of all recorded readings, except as provided in §63.7535(c).

(5) You must record the results of each inspection, calibration, and validation check.

(e) If you have an operating limit that requires the use of a flow monitoring system, you must meet the requirements in paragraphs (d) and (e)(1) through (4) of this section.

(1) You must install the flow sensor and other necessary equipment in a position that provides a representative flow.

(2) You must use a flow sensor with a measurement sensitivity of no greater than 2 percent of the design flow rate.

(3) You must minimize, consistent with good engineering practices, the effects of swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.

(4) You must conduct a flow monitoring system performance evaluation in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.

(f) If you have an operating limit that requires the use of a pressure monitoring system, you must meet the requirements in paragraphs (d) and (f)(1) through (6) of this section.

(1) Install the pressure sensor(s) in a position that provides a representative measurement of the pressure (e.g., PM scrubber pressure drop).

(2) Minimize or eliminate pulsating pressure, vibration, and internal and external corrosion consistent with good engineering practices.

(3) Use a pressure sensor with a minimum tolerance of 1.27 centimeters of water or a minimum tolerance of 1 percent of the pressure monitoring system operating range, whichever is less.

(4) Perform checks at least once each process operating day to ensure pressure measurements are not obstructed (e.g., check for pressure tap pluggage daily).

(5) Conduct a performance evaluation of the pressure monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.

(6) If at any time the measured pressure exceeds the manufacturer’s specified maximum operating pressure range, conduct a performance evaluation of the pressure monitoring system in accordance with your monitoring plan and confirm that the pressure monitoring system continues to meet the performance requirements in your monitoring plan. Alternatively, install and verify the operation of a new pressure sensor.

(g) If you have an operating limit that requires a pH monitoring system, you must meet the requirements in paragraphs (d) and (g)(1) through (4) of this section.

(1) Install the pH sensor in a position that provides a representative measurement of scrubber effluent pH.

(2) Ensure the sample is properly mixed and representative of the fluid to be measured.

(3) Conduct a performance evaluation of the pH monitoring system in accordance with your monitoring plan at least once each process operating day.

(4) Conduct a performance evaluation (including a two-point calibration with one of the two buffer solutions having a pH within 1 of the pH of the operating limit) of the pH monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than quarterly.

(h) If you have an operating limit that requires a secondary electric power monitoring system for an electrostatic precipitator (ESP) operated with a wet scrubber, you must meet the requirements in paragraphs (h)(1) and (2) of this section.

(1) Install sensors to measure (secondary) voltage and current to the precipitator collection plates.

(2) Conduct a performance evaluation of the electric power monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.

(i) If you have an operating limit that requires the use of a monitoring system to measure sorbent injection rate (e.g., weigh belt, weigh hopper, or hopper flow measurement device), you must meet the requirements in paragraphs (d) and (i)(1) through (2) of this section.
(1) Install the system in a position(s) that provides a representative measurement of the total sorbent injection rate.

(2) Conduct a performance evaluation of the sorbent injection rate monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.

(j) If you are not required to use a PM CPMS and elect to use a fabric filter bag leak detection system to comply with the requirements of this subpart, you must install, calibrate, maintain, and continuously operate the bag leak detection system as specified in paragraphs (j)(1) through (6) of this section.

(1) You must install a bag leak detection sensor(s) in a position(s) that will be representative of the relative or absolute PM loadings for each exhaust stack, roof vent, or compartment (e.g., for a positive pressure fabric filter) of the fabric filter.

(2) Conduct a performance evaluation of the bag leak detection system in accordance with your monitoring plan and consistent with the guidance provided in EPA–454/R–98–015 (incorporated by reference, see § 63.14).

(3) Use a bag leak detection system certified by the manufacturer to be capable of detecting PM emissions at concentrations of 10 milligrams per actual cubic meter or less.

(4) Use a bag leak detection system equipped with a device to record continuously the output signal from the sensor.

(5) Use a bag leak detection system equipped with a system that will alert plant operating personnel when an increase in relative PM emissions over a preset level is detected. The alert must easily recognizable (e.g., heard or seen) by plant operating personnel.

(6) Where multiple bag leak detectors are required, the system’s instrumentation and alert may be shared among detectors.

(k) For each unit that meets the definition of limited-use boiler or process heater, you must keep fuel use records for the days the boiler or process heater was operating.

(l) For each unit for which you decide to demonstrate compliance with the mercury or HCl emissions limits in Tables 1 or 2 or 11 through 13 of this subpart by use of a CEMS for mercury or HCl, you must install, certify, maintain, and operate a CEMS measuring emissions discharged to the atmosphere and record the output of the system as specified in paragraphs (l)(1) through (8) of this section. For HCl, this option for an affected unit takes effect on the date a final performance specification for a HCl CEMS is published in the Federal Register or the date of approval of a site-specific monitoring plan.

(1) Notify the Administrator one month before starting use of the CEMS, and notify the Administrator one month before stopping use of the CEMS.

(2) Each CEMS shall be installed, certified, operated, and maintained according to the requirements in § 63.7540(a)(14) for a mercury CEMS and § 63.7540(a)(15) for a HCl CEMS.

(3) For a new unit, you must complete the initial performance evaluation of the CEMS by the latest of the dates specified in paragraph (l)(3)(i) through (iii) of this section.

(i) No later than July 30, 2013.

(ii) No later 180 days after the date of initial startup.

(iii) No later 180 days after notifying the Administrator before starting to use the CEMS in place of performance testing or fuel analysis to demonstrate compliance.

(4) For an existing unit, you must complete the initial performance evaluation by the latter of the two dates specified in paragraph (l)(4)(i) and (ii) of this section.

(i) No later than July 29, 2016.

(ii) No later 180 days after notifying the Administrator before starting to use the CEMS in place of performance testing or fuel analysis to demonstrate compliance.

(5) Compliance with the applicable emissions limit shall be determined based on the 30-day rolling average of the hourly arithmetic average emissions rates using the continuous monitoring system outlet data. The 30-day rolling arithmetic average emission rate (lb/MMBtu) shall be calculated using the equations in EPA Reference Method 19 at 40 CFR part 60, appendix
§ 63.7530 How do I demonstrate initial compliance with the emission limitations, fuel specifications and work practice standards?

(a) You must demonstrate initial compliance with each emission limit that applies to you by conducting initial performance tests and fuel analyses and establishing operating limits, as applicable, according to §63.7520, paragraphs (b) and (c) of this section, and Tables 5 and 7 to this subpart. The requirement to conduct a fuel analysis is not applicable for units that burn a single type of fuel, as specified by §63.7510(a)(2)(i). If applicable, you must also install, operate, and maintain all applicable CMS (including CEMS, COMS, and CPMS) according to §63.7525.

(b) If you demonstrate compliance through performance testing, you must establish each site-specific operating
limit in Table 4 to this subpart that applies to you according to the requirements in §63.7520, Table 7 to this subpart, and paragraph (b)(4) of this section, as applicable. You must also conduct fuel analyses according to §63.7521 and establish maximum fuel pollutant input levels according to paragraphs (b)(1) through (3) of this section, as applicable, and as specified in §63.7510(a)(2). (Note that §63.7510(a)(2) exempts certain fuels from the fuel analysis requirements.) However, if you switch fuel(s) and cannot show that the new fuel(s) does (do) not increase the chlorine, mercury, or TSM input into the unit through the results of fuel analysis, then you must repeat the performance test to demonstrate compliance while burning the new fuel(s).

You must establish the maximum chlorine fuel input (Clinput) during the initial fuel analysis according to the procedures in paragraphs (b)(1)(i) through (iii) of this section.

(i) You must determine the fuel type or fuel mixture that you could burn in your boiler or process heater that has the highest content of chlorine.

(ii) During the fuel analysis for hydrogen chloride, you must determine the fraction of the total heat input for each fuel type burned (Qi) based on the fuel mixture that has the highest content of chlorine, and the average chlorine concentration of each fuel type burned (Ci).

(iii) You must establish a maximum chlorine input level using Equation 7 of this section.

\[
Cl_{input} = \sum_{i=1}^{n} (Ci \times Qi) \quad (Eq. 7)
\]

Where:
Clinput = Maximum amount of chlorine entering the boiler or process heater through fuels burned in units of pounds per million Btu.
Ci = Arithmetic average concentration of chlorine in fuel type, i, analyzed according to §63.7521, in units of pounds per million Btu.
Qi = Fraction of total heat input from fuel type, i, based on the fuel mixture that has the highest content of chlorine. If you do not burn multiple fuel types during the performance testing, it is not necessary to determine the value of this term. Insert a value of “1” for Qi.
n = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest content of chlorine.

You must establish the maximum mercury fuel input level (Mercuryinput) during the initial fuel analysis using the procedures in paragraphs (b)(2)(i) through (iii) of this section.

(i) You must determine the fuel type or fuel mixture that you could burn in your boiler or process heater that has the highest content of mercury.

(ii) During the compliance demonstration for mercury, you must determine the fraction of total heat input for each fuel burned (Qi) based on the fuel mixture that has the highest content of mercury, and the average mercury concentration of each fuel type burned (HGi).

(iii) You must establish a maximum mercury input level using Equation 8 of this section.

\[
Mercury_{input} = \sum_{i=1}^{n} (HGi \times Qi) \quad (Eq. 8)
\]

Where:
Mercuryinput = Maximum amount of mercury entering the boiler or process heater through fuels burned in units of pounds per million Btu.
§ 63.7530 HGi = Arithmetic average concentration of mercury in fuel type, i, analyzed according to §63.7521, in units of pounds per million Btu.
Qi = Fraction of total heat input from fuel type, i, based on the fuel mixture that has the highest mercury content. If you do not burn multiple fuel types during the performance test, it is not necessary to determine the value of this term. Insert a value of “1” for Qi.
n = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest content of mercury.

(3) If you opt to comply with the alternative TSM limit, you must establish the maximum TSM fuel input (TSMinput) for solid or liquid fuels during the initial fuel analysis according to the procedures in paragraphs (b)(3)(i) through (iii) of this section.

(i) You must determine the fuel type or fuel mixture that you could burn in your boiler or process heater that has the highest content of TSM.

(ii) During the fuel analysis for TSM, you must determine the fraction of the total heat input for each fuel type burned (Qi) based on the fuel mixture that has the highest content of TSM, and the average TSM concentration of each fuel type burned (TSMi).

(iii) You must establish a maximum TSM input level using Equation 9 of this section.

\[
TSM_{input} = \sum_{i=1}^{n} (TSM_i \times Q_i) \quad (\text{Eq. 9})
\]

Where:
TSMinput = Maximum amount of TSM entering the boiler or process heater through fuels burned in units of pounds per million Btu.
TSMi = Arithmetic average concentration of TSM in fuel type, i, analyzed according to §63.7521, in units of pounds per million Btu.
Qi = Fraction of total heat input from fuel type, i, based on the fuel mixture that has the highest content of TSM. If you do not burn multiple fuel types during the performance testing, it is not necessary to determine the value of this term. Insert a value of “1” for Qi.
n = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest content of TSM.

(4) You must establish parameter operating limits according to paragraphs (b)(4)(i) through (ix) of this section. As indicated in Table 4 to this subpart, you are not required to establish and comply with the operating parameter limits when you are using a CEMS to monitor and demonstrate compliance with the applicable emission limit for that control device parameter.

(i) For a wet acid gas scrubber, you must establish the minimum scrubber effluent pH and liquid flow rate as defined in §63.7575, as your operating limits during the performance test during which you demonstrate compliance with your applicable limit. If you use a wet scrubber and you conduct separate performance tests for HCl and mercury emissions, you must establish one set of minimum scrubber effluent pH, liquid flow rate, and pressure drop operating limits. The minimum scrubber effluent pH operating limit must be established during the HCl performance test. If you conduct multiple performance tests, you must set the minimum liquid flow rate operating limit at the higher of the minimum values established during the performance tests.

For any particulate control device (e.g., ESP, particulate wet scrubber, fabric filter) for which you use a PM CPMS, you must establish your PM CPMS operating limit and determine compliance with it according to paragraphs (b)(4)(ii)(A) through (F) of this section.

(A) Determine your operating limit as the average PM CPMS output value recorded during the most recent performance test run demonstrating compliance with the filterable PM emission limit or at the PM CPMS output value corresponding to 75 percent of the emission limit if your PM performance test demonstrates compliance below 75 percent of the emission limit. You must verify an existing or establish a
new operating limit after each repeated performance test. You must repeat the performance test annually and reassess and adjust the site-specific operating limit in accordance with the results of the performance test.

(1) Your PM CPMS must provide a 4–20 milliamp output and the establishment of its relationship to manual reference method measurements must be determined in units of milliamps.

(2) Your PM CPMS operating range must be capable of reading PM concentrations from zero to a level equivalent to at least two times your allowable emission limit. If your PM CPMS is an auto-ranging instrument capable of multiple scales, the primary range of the instrument must be capable of reading PM concentration from zero to a level equivalent to two times your allowable emission limit.

(3) During the initial performance test or any such subsequent performance test that demonstrates compliance with the PM limit, record and average all milliamp output values from the PM CPMS for the periods corresponding to the compliance test runs (e.g., average all your PM CPMS output values for three corresponding 2-hour Method 5I test runs).

(B) If the average of your three PM performance test runs are below 75 percent of your PM emission limit, you must calculate an operating limit by establishing a relationship of PM CPMS signal to PM concentration using the PM CPMS instrument zero, the average PM CPMS values corresponding to the three compliance test runs, and the average PM concentration from the Method 5 or performance test with the procedures in paragraphs (b)(4)(ii)(B)(I) through (4) of this section.

(1) Determine your instrument zero output with one of the following procedures:

(i) Zero point data for in-situ instruments should be obtained by removing the instrument from the stack and monitoring ambient air on a test bench.

(ii) Zero point data for extractive instruments should be obtained by removing the extractive probe from the stack and drawing in clean ambient air.

(iii) The zero point may also be established by performing manual reference method measurements when the flue gas is free of PM emissions or contains very low PM concentrations (e.g., when your process is not operating, but the fans are operating or your source is combusting only natural gas) and plotting these with the compliance data to find the zero intercept.

(iv) If none of the steps in paragraphs (b)(4)(ii)(B)(I)(i) through (iii) of this section are possible, you must use a zero output value provided by the manufacturer.

(2) Determine your PM CPMS instrument average in milliamps, and the average of your corresponding three PM compliance test runs, using equation 10.

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \quad \text{(Eq. 10)}
\]

Where:

- \(X_i\) = the PM CPMS data points for the three runs constituting the performance test,
- \(Y_i\) = the PM concentration value for the three runs constituting the performance test, and
- \(n\) = the number of data points.

(3) With your instrument zero expressed in milliamps, your three run average PM CPMS milliamp value, and your three run average PM concentration from your three compliance tests, determine a relationship of lb/MMBtu per milliamp with equation 11.
§ 63.7530

\[R = \frac{Y_1}{(X_1 - z)} \] \hspace{1cm} (Eq. 11)

Where:
- \(R \) = the relative lb/MMBtu per milliamp for your PM CPMS,
- \(Y_1 \) = the three run average lb/MMBtu PM concentration,
- \(X_1 \) = the three run average milliamp output from your PM CPMS, and
- \(z \) = the milliamp equivalent of your instrument zero determined from (B)(i).

(4) Determine your source specific 30-day rolling average operating limit using the lb/MMBtu per milliamp value from Equation 11 in equation 12, below. This sets your operating limit at the PM CPMS output value corresponding to 75 percent of your emission limit.

\[O_h = z + \frac{0.75L}{R} \] \hspace{1cm} (Eq. 12)

Where:
- \(O_h \) = the operating limit for your PM CPMS on a 30-day rolling average, in milliamps,
- \(L \) = your source emission limit expressed in lb/MMBtu,
- \(z \) = your instrument zero in milliamps determined from (B)(i), and
- \(R \) = the relative lb/MMBtu per milliamp for your PM CPMS, from Equation 11.

(C) If the average of your three PM compliance test runs is at or above 75 percent of your PM emission limit you must determine your 30-day rolling average operating limit by averaging the PM CPMS milliamp output corresponding to your three PM performance test runs that demonstrate compliance with the emission limit using equation 13 and you must submit all compliance test and PM CPMS data according to the reporting requirements in paragraph (b)(4)(ii)(F) of this section.

\[O_h = \frac{1}{n} \sum_{i=1}^{n} X_{1i} \] \hspace{1cm} (Eq. 13)

Where:
- \(X_{1i} \) = the PM CPMS data points for all runs \(i \),
- \(n \) = the number of data points, and
- \(O_h \) = your site specific operating limit, in milliamps.

(D) To determine continuous compliance, you must record the PM CPMS output data for all periods when the process is operating and the PM CPMS is not out-of-control. You must demonstrate continuous compliance by using all quality-assured hourly average data collected by the PM CPMS for all operating hours to calculate the arithmetic average operating parameter in units of the operating limit (milliamps) on a 30-day rolling average basis, updated at the end of each new operating hour. Use Equation 14 to determine the 30-day rolling average.

\[\text{VerDate Sep<11>2014 13:42 Oct 28, 2014 Jkt 232162 PO 00000 Frm 00168 Fmt 8010 Sfmt 8010 Y:\SGML\232162.XXX 232162 ER31JA13.015</GPH> ER31JA13.016</GPH> ER31JA13.017</GPH> wreier-aviles on DSK5TPTVN1PROD with CFR \]
Where:

\[30\text{-}day = 30\text{-}day \text{ average.} \]

\[H_{pi} = \text{is the hourly parameter value for hour } i \]

\[n = \text{is the number of valid hourly parameter values collected over the previous 720 operating hours.} \]

(E) Use EPA Method 5 of appendix A to part 60 of this chapter to determine PM emissions. For each performance test, conduct three separate runs under the conditions that exist when the affected source is operating at the highest load or capacity level reasonably expected to occur. Conduct each test run to collect a minimum sample volume specified in Tables 1, 2, or 11 through 13 to this subpart, as applicable, for determining compliance with a new source limit or an existing source limit. Calculate the average of the results from three runs to determine compliance. You need not determine the PM collected in the impingers ("back half") of the Method 5 particulate sampling train to demonstrate compliance with the PM standards of this subpart. This shall not preclude the permitting authority from requiring a determination of the "back half" for other purposes.

(F) For PM performance test reports used to set a PM CPMS operating limit, the electronic submission of the test report must also include the make and model of the PM CPMS instrument, serial number of the instrument, analytical principle of the instrument (e.g. beta attenuation), span of the instrument's primary analytical range, milliamp value equivalent to the instrument zero output, technique by which this zero value was determined, and the average milliamp signals corresponding to each PM compliance test run. (iii) For a particulate wet scrubber, you must establish the minimum pressure drop and liquid flow rate as defined in §63.7575, as your operating limit during the three-run performance test during which you demonstrate compliance with your applicable limit. If you use a wet scrubber and you conduct separate performance tests for PM and TSM emissions, you must establish one set of minimum scrubber liquid flow rate and pressure drop operating limits. The minimum scrubber effluent pH operating limit must be established during the HCl performance test. If you conduct multiple performance tests, you must set the minimum liquid flow rate and pressure drop operating limits at the higher of the minimum values established during the performance tests.

(iii) For an electrostatic precipitator (ESP) operated with a wet scrubber, you must establish the minimum total secondary electric power input, as defined in §63.7575, as your operating limit during the three-run performance test during which you demonstrate compliance with your applicable limit. These operating limits do not apply to ESP that are operated as dry controls without a wet scrubber.

(iv) For a dry scrubber, you must establish the minimum sorbent injection rate for each sorbent, as defined in §63.7575, as your operating limit during the three-run performance test during which you demonstrate compliance with your applicable limit.

(v) For activated carbon injection, you must establish the minimum activated carbon injection rate, as defined in §63.7575, as your operating limit during the three-run performance test during which you demonstrate compliance with your applicable limit.

(vi) The operating limit for boilers or process heaters with fabric filters that demonstrate continuous compliance through bag leak detection systems is that a bag leak detection system be installed according to the requirements in §63.7525, and that each fabric filter must be operated such that the bag
§ 63.7530

leak detection system alert is not acti-
vated more than 5 percent of the oper-
ting time during a 6-month period.

(vii) For a minimum oxygen level, if you conduct multiple performance tests, you must set the minimum oxygen level at the lower of the minimum values established during the performance tests.

(viii) The operating limit for boilers or process heaters that demonstrate continuous compliance with the HCl emission limit using a SO₂ CEMS is to install and operate the SO₂ according to the requirements in §63.7525(m) establish a maximum SO₂ emission rate equal to the highest hourly average SO₂ measurement during the most recent three-run performance test for HCl.

(c) If you elect to demonstrate compliance with an applicable emission limit through fuel analysis, you must conduct fuel analyses according to §63.7521 and follow the procedures in paragraphs (c)(1) through (5) of this section.

(1) If you burn more than one fuel type, you must determine the fuel mixture you could burn in your boiler or process heater that would result in the maximum emission rates of the pollutants that you elect to demonstrate compliance through fuel analysis.

(2) You must determine the 90th percentile confidence level fuel pollutant concentration of the composite samples analyzed for each fuel type using the one-sided t-statistic test described in Equation 15 of this section.

\[P_{90} = \text{mean} + (SD \times t) \quad \text{(Eq. 15)} \]

Where:
- \(P_{90} \) = 90th percentile confidence level pollutant concentration, in pounds per million Btu.
- Mean = Arithmetic average of the fuel pollutant concentration in the fuel samples analyzed according to §63.7521, in units of pounds per million Btu.
- SD = Standard deviation of the mean of pollutant concentration in the fuel samples analyzed according to §63.7521, in units of pounds per million Btu. SD is calculated as the sample standard deviation divided by the square root of the number of samples.
- \(t \) = t distribution critical value for 90th percentile \((t_{0.1})\) probability for the appropriate degrees of freedom (number of samples minus one) as obtained from a t-Distribution Critical Value Table.

(3) To demonstrate compliance with the applicable emission limit for HCl, the HCl emission rate that you calculate for your boiler or process heater using Equation 16 of this section must not exceed the applicable emission limit for HCl.

\[HCl = \sum_{i=1}^{n} (Ci_{90} \times Qi \times 1.028) \quad \text{(Eq. 16)} \]

Where:
- \(HCl \) = HCl emission rate from the boiler or process heater in units of pounds per million Btu.
- \(Ci_{90} \) = 90th percentile confidence level concentration of chlorine in fuel type, \(i \), in units of pounds per million Btu as calculated according to Equation 11 of this section.
- \(Qi \) = Fraction of total heat input from fuel type, \(i \), based on the fuel mixture that has the highest content of chlorine. If you do not burn multiple fuel types, it is not necessary to determine the value of this term. Insert a value of “1” for \(Qi \).
- \(n \) = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest content of chlorine.
- 1.028 = Molecular weight ratio of HCl to chlorine.

(4) To demonstrate compliance with the applicable emission limit for mercury, the mercury emission rate that
you calculate for your boiler or process heater using Equation 17 of this section must not exceed the applicable emission limit for mercury.

\[\text{Mercury} = \sum_{i=1}^{n} (Hgi90 \times Qi) \]
(Eq. 17)

Where:
- Mercury = Mercury emission rate from the boiler or process heater in units of pounds per million Btu.
- Hgi90 = 90th percentile confidence level concentration of mercury in fuel, i, in units of pounds per million Btu as calculated according to Equation 11 of this section.
- Qi = Fraction of total heat input from fuel type, i, based on the fuel mixture that has the highest mercury content. If you do not burn multiple fuel types, it is not necessary to determine the value of this term. Insert a value of "1" for Qi.
- n = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest mercury content.

(5) To demonstrate compliance with the applicable emission limit for TSM for solid or liquid fuels, the TSM emission rate that you calculate for your boiler or process heater from solid fuels using Equation 18 of this section must not exceed the applicable emission limit for TSM.

\[\text{Metals} = \sum_{i=1}^{n} (TSM90i \times Qi) \]
(Eq. 18)

Where:
- Metals = TSM emission rate from the boiler or process heater in units of pounds per million Btu.
- TSM90i = 90th percentile confidence level concentration of TSM in fuel, i, in units of pounds per million Btu as calculated according to Equation 11 of this section.
- Qi = Fraction of total heat input from fuel type, i, based on the fuel mixture that has the highest TSM content. If you do not burn multiple fuel types, it is not necessary to determine the value of this term. Insert a value of "1" for Qi.
- n = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest TSM content.

(d) If you own or operate an existing unit with a heat input capacity of less than 10 million Btu per hour or a unit in the unit designed to burn gas 1 subcategory, you must submit a signed statement in the Notification of Compliance Status report that indicates that you conducted a tune-up of the unit.

(e) You must include with the Notification of Compliance Status a signed certification that the energy assessment was completed according to Table 3 to this subpart and is an accurate depiction of your facility at the time of the assessment.

(f) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in § 63.7545(e).

(g) If you elect to demonstrate that a gaseous fuel meets the specifications of another gas 1 fuel as defined in § 63.7575, you must conduct an initial fuel specification analysis according to § 63.7521(f) through (i) and according to the frequency listed in § 63.7540(c) and maintain records of the results of the testing as outlined in § 63.7555(g). For samples where the initial mercury specification has not been exceeded, you will include a signed certification with the Notification of Compliance Status that the initial fuel specification test meets the gas specification outlined in the definition of other gas 1 fuels.

(h) If you own or operate a unit subject to emission limits in Tables 1 or 2...
or 11 through 13 to this subpart, you must meet the work practice standard according to Table 3 of this subpart. During startup and shutdown, you must only follow the work practice standards according to item 5 of Table 3 of this subpart.

(i) If you opt to comply with the alternative SO\(_2\) CEMS operating limit in Tables 4 and 8 to this subpart, you may do so only if your affected boiler or process heater:

(1) Has a system using wet scrubber or dry sorbent injection and SO\(_2\) CEMS installed on the unit; and

(2) At all times, you operate the wet scrubber or dry sorbent injection for acid gas control on the unit consistent with §63.7500(a)(3); and

(3) You establish a unit-specific maximum SO\(_2\) operating limit by collecting the minimum hourly SO\(_2\) emission rate on the SO\(_2\) CEMS during the paired 3-run test for HCl. The maximum SO\(_2\) operating limit is equal to the highest hourly average SO\(_2\) concentration measured during the most recent HCl performance test.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7174, Jan. 31, 2013]

§ 63.7533 Can I use efficiency credits earned from implementation of energy conservation measures to comply with this subpart?

(a) If you elect to comply with the alternative equivalent output-based emission limits, instead of the heat input-based limits listed in Table 2 to this subpart, and you want to take credit for implementing energy conservation measures identified in an energy assessment, you may demonstrate compliance using efficiency credits according to the procedures in this section. You may use this compliance approach for a new or reconstructed affected boiler. Additional guidance from the Department of Energy on efficiency credits is available at: http://www.epa.gov/ttn/atw/boiler/boilerpg.html.

(b) For each existing affected boiler for which you intend to apply emissions credits, establish a benchmark from which emission reduction credits may be generated by determining the actual annual fuel heat input to the affected boiler before initiation of an energy conservation activity to reduce energy demand (i.e., fuel usage) according to paragraphs (b)(1) through (4) of this section. The benchmark shall be expressed in trillion Btu per year heat input.

(1) The benchmark from which efficiency credits may be generated shall be determined by using the most representative, accurate, and reliable process available for the source. The benchmark shall be established for a one-year period before the date that an energy demand reduction occurs, unless it can be demonstrated that a different time period is more representative of historical operations.

(2) Determine the starting point from which to measure progress. Inventory all fuel purchased and generated on-site (off-gases, residues) in physical units (MMBtu, million cubic feet, etc.).

(3) Document all uses of energy from the affected boiler. Use the most recent data available.

(4) Collect non-energy related facility and operational data to normalize, if necessary, the benchmark to current operations, such as building size, operating hours, etc. If possible, use actual data that are current and timely rather than estimated data.

(c) Efficiency credits can be generated if the energy conservation measures were implemented after January 1, 2008 and if sufficient information is available to determine the appropriate value of credits.

(1) The following emission points cannot be used to generate efficiency credits:

(i) Energy conservation measures implemented on or before January 1, 2008, unless the level of energy demand reduction is increased after January 1,
2008, in which case credit will be allowed only for change in demand reduction achieved after January 1, 2008.

(ii) Efficiency credits on shut-down boilers. Boilers that are shut down cannot be used to generate credits unless the facility provides documentation linking the permanent shutdown to energy conservation measures identified in the energy assessment. In this case, the bench established for the affected boiler to which the credits from the shutdown will be applied must be revised to include the benchmark established for the shutdown boiler.

(2) For all points included in calculating emissions credits, the owner or operator shall:

\[ECredits = \left(\sum_{i=1}^{n} EIS_{\text{actual}} \right) + EI_{\text{baseline}} \]

(Eq. 19)

Where:

- \(ECredits \) = Energy Input Savings for all energy conservation measures implemented for an affected boiler, expressed as a decimal fraction of the baseline energy input.
- \(EIS_{\text{actual}} \) = Energy Input Savings for each energy conservation measure, \(i \), implemented for an affected boiler, million Btu per year.
- \(EI_{\text{baseline}} \) = Energy Input baseline for the affected boiler, million Btu per year.
- \(n \) = Number of energy conservation measures included in the efficiency credit for the affected boiler.

(i) Calculate annual credits for all energy demand points. Use Equation 19 to calculate credits. Energy conservation measures that meet the criteria of paragraph (c)(1) of this section shall not be included, except as specified in paragraph (c)(1)(i) of this section.

(3) Credits are generated by the difference between the benchmark that is established for each affected boiler, and the actual energy demand reductions from energy conservation measures implemented after January 1, 2008. Credits shall be calculated using Equation 19 of this section as follows:

(i) The overall equation for calculating credits is:

\[ECredits = \left(\sum_{i=1}^{n} EIS_{\text{actual}} \right) + EI_{\text{baseline}} \]

(Eq. 19)

Where:

- \(ECredits \) = Energy Input Savings for all energy conservation measures implemented for an affected boiler, expressed as a decimal fraction of the baseline energy input.
- \(EIS_{\text{actual}} \) = Energy Input Savings for each energy conservation measure, \(i \), implemented for an affected boiler, million Btu per year.
- \(EI_{\text{baseline}} \) = Energy Input baseline for the affected boiler, million Btu per year.
- \(n \) = Number of energy conservation measures included in the efficiency credit for the affected boiler.

(ii) [Reserved]

(d) The owner or operator shall develop, and submit for approval upon request by the Administrator, an Implementation Plan containing all of the information required in this paragraph for all boilers to be included in an efficiency credit approach. The Implementation Plan shall identify all existing affected boilers to be included in applying the efficiency credits. The Implementation Plan shall include a description of the energy conservation measures implemented and the energy savings generated from each measure and an explanation of the criteria used for determining that savings. If requested, you must submit the implementation plan for efficiency credits to the Administrator for review and approval no later than 180 days before the date on which the facility intends to demonstrate compliance using the efficiency credit approach.

(e) The emissions rate as calculated using Equation 20 of this section from each existing boiler participating in the efficiency credit option must be in compliance with the limits in Table 2 to this subpart at all times the affected unit is operating, following the compliance date specified in §63.7495.

(f) You must use Equation 20 of this section to demonstrate initial compliance by demonstrating that the emissions from the affected boiler participating in the efficiency credit compliance approach do not exceed the emission limits in Table 2 to this subpart.
Where:
\[E_{adj} = E_m \times (1 - ECredits) \]
(Eq. 20)

- \(E_{adj} \) = Emission level adjusted by applying the efficiency credits earned, lb per million Btu steam output (or lb per MWh) for the affected boiler.
- \(E_m \) = Emissions measured during the performance test, lb per million Btu steam output (or lb per MWh) for the affected boiler.
- \(ECredits \) = Efficiency credits from Equation 19 for the affected boiler.

(g) As part of each compliance report submitted as required under §63.7550, you must include documentation that the energy conservation measures implemented continue to generate the credit for use in demonstrating compliance with the emission limits.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7179, Jan. 31, 2013]

CONTINUOUS COMPLIANCE REQUIREMENTS

§ 63.7535 Is there a minimum amount of monitoring data I must obtain?

(a) You must monitor and collect data according to this section and the site-specific monitoring plan required by §63.7565(d).

(b) You must operate the monitoring system and collect data at all required intervals at all times that each boiler or process heater is operating and compliance is required, except for periods of monitoring system malfunctions or out of control periods (see §63.8(c)(7) of this part), and required monitoring system quality assurance or control activities, including, as applicable, system accuracy audits, calibration checks, and required zero and span adjustments, and scheduled CMS maintenance as defined in your site-specific monitoring plan. A monitoring system malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring system to provide valid data. Monitoring system failures that are caused in part by poor maintenance or careless operation are not malfunctions. You are required to complete monitoring system repairs in response to monitoring system malfunctions or out of control periods and to return the monitoring system to operation as expeditiously as practicable.

(c) You may not use data recorded during monitoring system malfunctions or out of control periods, repairs associated with monitoring system malfunctions or out of control periods, or required monitoring system quality assurance or control activities in data averages and calculations used to report emissions or operating levels. You must record and make available upon request results of CMS performance audits and dates and duration of periods when the CMS is out of control to completion of the corrective actions necessary to return the CMS to operation consistent with your site-specific monitoring plan. You must use all the data collected during all other periods in assessing compliance and the operation of the control device and associated control system.

(d) Except for periods of monitoring system malfunctions, repairs associated with monitoring system malfunctions, and required monitoring system quality assurance or quality control activities (including, as applicable, system accuracy audits, calibration checks, and required zero and span adjustments), failure to collect required data is a deviation of the monitoring requirements. In calculating monitoring results, do not use any data collected during periods when the monitoring system is out of control as specified in your site-specific monitoring plan, while conducting repairs associated with periods when the monitoring system is out of control, or while conducting required monitoring system quality assurance or quality control activities. You must calculate monitoring results using all other monitoring data collected while the process is operating. You must report all periods when the monitoring system is out of control in your annual report.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7179, Jan. 31, 2013]
§ 63.7540 How do I demonstrate continuous compliance with the emission limitations, fuel specifications and work practice standards?

(a) You must demonstrate continuous compliance with each emission limit in Tables 1 and 2 or 11 through 13 to this subpart, the work practice standards in Table 3 to this subpart, and the operating limits in Table 4 to this subpart that applies to you according to the methods specified in Table 8 to this subpart and paragraphs (a)(1) through (19) of this section.

(1) Following the date on which the initial compliance demonstration is completed or is required to be completed under §§ 63.7 and 63.7510, whichever date comes first, operation above the established maximum or below the established minimum operating limits shall constitute a deviation of established operating limits listed in Table 4 of this subpart except during performance tests conducted to determine compliance with the emission limits or to establish new operating limits. Operating limits must be confirmed or reestablished during performance tests.

(2) As specified in § 63.7550(c), you must keep records of the type and amount of all fuels burned in each boiler or process heater during the reporting period to demonstrate that all fuel types and mixtures of fuels burned would result in either of the following:

(i) Lower emission of HCl, mercury, and TSM than the applicable emission limit for each pollutant, if you demonstrate compliance through fuel analysis.

(ii) Lower fuel input of chlorine, mercury, and TSM than the maximum values calculated during the previous performance test, if you demonstrate compliance through performance testing.

(3) If you demonstrate compliance with an applicable HCl emission limit through fuel analysis and you plan to burn a new type of solid or liquid fuel, you must recalculate the HCl emission rate using Equation 12 of § 63.7530 according to paragraphs (a)(3)(i) through (iii) of this section. You are not required to conduct fuel analyses for the fuels described in § 63.7510(a)(2)(i) through (iii) when recalculate the HCl emission rate.

(i) You must determine the chlorine concentration for any new fuel type in units of pounds per million Btu, based on supplier data or your own fuel analysis, according to the provisions in your site-specific fuel analysis plan developed according to § 63.7521(b).

(ii) You must determine the new mixture of fuels that will have the highest content of chlorine.

(iii) Recalculate the HCl emission rate from your boiler or process heater under these new conditions using Equation 12 of § 63.7530. The recalculated HCl emission rate must be less than the applicable emission limit.

(4) If you demonstrate compliance with an applicable HCl emission limit through performance testing and you plan to burn a new type of fuel or a new mixture of fuels, you must recalculate the maximum chlorine input using Equation 7 of § 63.7530. If the results of recalculating the maximum chlorine input using Equation 7 of § 63.7530 are greater than the maximum chlorine input level established during the previous performance test, then you must conduct a new performance test within 60 days of burning the new fuel type or fuel mixture according to the procedures in § 63.7520 to demonstrate that the HCl emissions do not exceed the emission limit. You must also establish new operating limits based on this performance test according to the procedures in § 63.7530(b). In recalculating the maximum chlorine input and establishing the new operating limits, you are not required to conduct fuel analyses for and include the fuels described in § 63.7510(a)(2)(i) through (iii).

(5) If you demonstrate compliance with an applicable mercury emission limit through fuel analysis, and you plan to burn a new type of fuel, you must recalculate the mercury emission rate using Equation 13 of § 63.7530 according to the procedures specified in paragraphs (a)(5)(i) through (iii) of this section. You are not required to conduct fuel analyses for the fuels described in § 63.7510(a)(2)(i) through (iii). You may exclude the fuels described in § 63.7510(a)(2)(i) through (iii) when recalculating the mercury emission rate.
§ 63.7540 40 CFR Ch. I (7–1–14 Edition)

(i) You must determine the mercury concentration for any new fuel type in units of pounds per million Btu, based on supplier data or your own fuel analysis, according to the provisions in your site-specific fuel analysis plan developed according to §63.7521(b).

(ii) You must determine the new mixture of fuels that will have the highest content of mercury.

(iii) Recalculate the mercury emission rate from your boiler or process heater under these new conditions using Equation 13 of §63.7530. The recalculated mercury emission rate must be less than the applicable emission limit.

(6) If you demonstrate compliance with an applicable mercury emission limit through performance testing, and you plan to burn a new type of fuel or a new mixture of fuels, you must recalculate the maximum mercury input using Equation 8 of §63.7530. If the results of recalculating the maximum mercury input using Equation 8 of §63.7530 are higher than the maximum mercury input level established during the previous performance test, then you must conduct a new performance test within 60 days of burning the new fuel type or fuel mixture according to the procedures in §63.7520 to demonstrate that the mercury emissions do not exceed the emission limit. You must also establish new operating limits based on this performance test according to the procedures in §63.7530(b). If you are not required to conduct fuel analyses for the fuels described in §63.7505(a)(2)(i) through (iii), you may exclude the fuels described in §63.7510(a)(2)(i) through (iii) when recalcultating the mercury emission rate.

(7) If your unit is controlled with a fabric filter, and you demonstrate continuous compliance using a bag leak detection system, you must initiate corrective action within 1 hour of a bag leak detection system alert and complete corrective actions as soon as practical, and operate and maintain the fabric filter system such that the periods which would cause an alert are no more than 5 percent of the operating time during a 6-month period. You must also keep records of the date, time, and duration of each alert, the time corrective action was initiated and completed, and a brief description of the cause of the alert and the corrective action taken. You must also record the percent of the operating time during each 6-month period that the conditions exist for an alert. In calculating this operating time percentage, if inspection of the fabric filter demonstrates that no corrective action is required, no alert time is counted. If corrective action is required, each alert shall be counted as a minimum of 1 hour. If you take longer than 1 hour to initiate corrective action, the alert time shall be counted as the actual amount of time taken to initiate corrective action.

(8) To demonstrate compliance with the applicable alternative CO CEMS emission limit listed in Tables 1, 2, or 11 through 13 to this subpart, you must meet the requirements in paragraphs (a)(8)(i) through (iv) of this section.

(i) Continuously monitor CO according to §§63.7525(a) and 63.7535.

(ii) Maintain a CO emission level below or at your applicable alternative CO CEMS-based standard in Tables 1 or 2 or 11 through 13 to this subpart at all times the affected unit is operating.

(iii) Keep records of CO levels according to §63.7555(b).

(iv) You must record and make available upon request results of CO CEMS performance audits, dates and duration of periods when the CO CEMS is out of control to completion of the corrective actions necessary to return the CO CEMS to operation consistent with your site-specific monitoring plan.

(9) The owner or operator of a boiler or process heater using a PM CPMS or a PM CEMS to meet requirements of this subpart shall install, certify, operate, and maintain the PM CPMS or PM CEMS in accordance with your site-specific monitoring plan as required in §63.7505(d).

(10) If your boiler or process heater has a heat input capacity of 10 million Btu per hour or greater, you must conduct an annual tune-up of the boiler or process heater to demonstrate continuous compliance as specified in paragraphs (a)(10)(i) through (vi) of this section. This frequency does not apply to limited-use boilers and process heaters, as defined in §63.7575, or units with...
continuous oxygen trim systems that maintain an optimum air to fuel ratio.

(i) As applicable, inspect the burner, and clean or replace any components of the burner as necessary (you may delay the burner inspection until the next scheduled unit shutdown). Units that produce electricity for sale may delay the burner inspection until the first outage, not to exceed 36 months from the previous inspection. At units where entry into a piece of process equipment or into a storage vessel is required to complete the tune-up inspections, inspections are required only during planned entries into the storage vessel or process equipment;

(ii) Inspect the flame pattern, as applicable, and adjust the burner as necessary to optimize the flame pattern. The adjustment should be consistent with the manufacturer’s specifications, if available;

(iii) Inspect the system controlling the air-to-fuel ratio, as applicable, and ensure that it is correctly calibrated and functioning properly (you may delay the inspection until the next scheduled unit shutdown). Units that produce electricity for sale may delay the inspection until the first outage, not to exceed 36 months from the previous inspection;

(iv) Optimize total emissions of CO. This optimization should be consistent with the manufacturer’s specifications, if available, and with any NOx requirement to which the unit is subject;

(v) Measure the concentrations in the effluent stream of CO in parts per million, by volume, and oxygen in volume percent, before and after the adjustments are made (measurements may be either on a dry or wet basis, as long as it is the same basis before and after the adjustments are made). Measurements may be taken using a portable CO analyzer; and

(vi) Maintain on-site and submit, if requested by the Administrator, an annual report containing the information in paragraphs (a)(10)(vi)(A) through (C) of this section.

(A) The concentrations of CO in the effluent stream in parts per million by volume, and oxygen in volume percent, measured at high fire or typical operating load, before and after the tune-up of the boiler or process heater;

(B) A description of any corrective actions taken as a part of the tune-up; and

(C) The type and amount of fuel used over the 12 months prior to the tune-up, but only if the unit was physically and legally capable of using more than one type of fuel during that period. Units sharing a fuel meter may estimate the fuel used by each unit.

(11) If your boiler or process heater has a heat input capacity of less than 10 million Btu per hour (except as specified in paragraph (a)(12) of this section), you must conduct a biennial tune-up of the boiler or process heater as specified in paragraphs (a)(10)(i) through (vi) of this section to demonstrate continuous compliance.

(12) If your boiler or process heater has a continuous oxygen trim system that maintains an optimum air to fuel ratio, or a heat input capacity of less than or equal to 5 million Btu per hour and the unit is in the units designed to burn gas 1; units designed to burn gas 2 (other); or units designed to burn light liquid subcategories, or meets the definition of limited-use boiler or process heater in §63.7575, you must conduct a tune-up of the boiler or process heater every 5 years as specified in paragraphs (a)(10)(i) through (vi) of this section to demonstrate continuous compliance. You may delay the burner inspection specified in paragraph (a)(10)(i) of this section until the next scheduled or unscheduled unit shutdown, but you must inspect each burnerer at least once every 72 months.

(13) If the unit is not operating on the required date for a tune-up, the tune-up must be conducted within 30 calendar days of startup.

(14) If you are using a CEMS measuring mercury emissions to meet requirements of this subpart you must install, certify, operate, and maintain the mercury CEMS as specified in paragraphs (a)(14)(i) and (ii) of this section.

(i) Operate the mercury CEMS in accordance with performance specification 12A of 40 CFR part 60, appendix B or operate a sorbent trap based integrated monitor in accordance with performance specification 12B of 40 CFR part 60, appendix B. The duration of the performance test must be the maximum of 30 unit operating days or 720
§ 63.7540 40 CFR Ch. I (7–1–14 Edition)

hours. For each day in which the unit operates, you must obtain hourly mercury concentration data, and stack gas volumetric flow rate data.

(ii) If you are using a mercury CEMS, you must install, operate, calibrate, and maintain an instrument for continuously measuring and recording the mercury mass emissions rate to the atmosphere according to the requirements of performance specifications 6 and 12A of 40 CFR part 60, appendix B, and quality assurance procedure 6 of 40 CFR part 60, appendix F.

(15) If you are using a CEMS to measure HCl emissions to meet requirements of this subpart, you must install, certify, operate, and maintain the HCl CEMS as specified in paragraphs (a)(15)(i) and (ii) of this section. This option for an affected unit takes effect on the date a final performance specification for an HCl CEMS is published in the FEDERAL REGISTER or the date of approval of a site-specific monitoring plan.

(i) Operate the continuous emissions monitoring system in accordance with the applicable performance specification in 40 CFR part 60, appendix B. The duration of the performance test must be the maximum of 30 unit operating days or 720 hours. For each day in which the unit operates, you must obtain hourly HCl concentration data, and stack gas volumetric flow rate data.

(ii) If you are using an HCl CEMS, you must install, operate, calibrate, and maintain an instrument for continuously measuring and recording the HCl mass emissions rate to the atmosphere according to the requirements of the applicable performance specification of 40 CFR part 60, appendix B, and the quality assurance procedures of 40 CFR part 60, appendix F.

(16) If you demonstrate compliance with an applicable TSM emission limit through performance testing, and you plan to burn a new type of fuel or a new mixture of fuels, you must recalculate the TSM emission rate using Equation 9 of §63.7530. If the results of recalculating the maximum TSM input using Equation 9 of §63.7530 are higher than the maximum total selected input level established during the previous performance test, then you must conduct a new performance test within 60 days of burning the new fuel type or fuel mixture according to the procedures in §63.7520 to demonstrate that the TSM emissions do not exceed the emission limit. You must also establish new operating limits based on this performance test according to the procedures in §63.7530(b). You are not required to conduct fuel analyses for the fuels described in §63.7510(a)(2)(i) through (iii). You may exclude the fuels described in §63.7510(a)(2)(i) through (iii) when recalculating the TSM emission rate.

(17) If you demonstrate compliance with an applicable TSM emission limit through fuel analysis for solid or liquid fuels, and you plan to burn a new type of fuel, you must recalculate the TSM emission rate using Equation 14 of §63.7530 according to the procedures specified in paragraphs (a)(5)(i) through (iii) of this section. You are not required to conduct fuel analyses for the fuels described in §63.7510(a)(2)(i) through (iii). You may exclude the fuels described in §63.7510(a)(2)(i) through (iii) when recalculating the TSM emission rate.

(i) You must determine the TSM concentration for any new fuel type in units of pounds per million Btu, based on supplier data or your own fuel analysis, according to the provisions in your site-specific fuel analysis plan developed according to §63.7521(b).

(ii) You must determine the new mixture of fuels that will have the highest content of TSM.

(iii) Recalculate the TSM emission rate from your boiler or process heater under these new conditions using Equation 14 of §63.7530. The recalculated TSM emission rate must be less than the applicable emission limit.

(18) If you demonstrate continuous PM emissions compliance with a PM CPMS you will use a PM CPMS to establish a site-specific operating limit corresponding to the results of the performance test demonstrating compliance with the PM limit. You will conduct your performance test using the test method criteria in Table 5 of this subpart. You will use the PM CPMS to demonstrate continuous compliance with this operating limit. You must repeat the performance test annually and
reassess and adjust the site-specific operating limit in accordance with the results of the performance test.

(i) To determine continuous compliance, you must record the PM CPMS output data for all periods when the process is operating and the PM CPMS is not out-of-control. You must demonstrate continuous compliance by using all quality-assured hourly average data collected by the PM CPMS for all operating hours to calculate the arithmetic average operating parameter in units of the operating limit (milliams) on a 30-day rolling average basis, updated at the end of each new boiler or process heater operating hour.

(ii) For any deviation of the 30-day rolling PM CPMS average value from the established operating parameter limit, you must:

(A) Within 48 hours of the deviation, visually inspect the air pollution control device (APCD);

(B) If inspection of the APCD identifies the cause of the deviation, take corrective action as soon as possible and return the PM CPMS measurement to within the established value; and

(C) Within 30 days of the deviation or at the time of the annual compliance test, whichever comes first, conduct a PM emissions compliance test to determine compliance with the PM emissions limit and to verify or re-establish the CPMS operating limit. You are not required to conduct additional testing for any deviations that occur between the time of the original deviation and the PM emissions compliance test required under this paragraph.

(iii) PM CPMS deviations from the operating limit leading to more than four required performance tests in a 12-month operating period constitute a separate violation of this subpart.

(19) If you choose to comply with the PM filterable emissions limit by using PM CEMS you must install, certify, operate, and maintain a PM CEMS and record the output of the PM CEMS as specified in paragraphs (a)(19)(i) through (vii) of this section. The compliance limit will be expressed as a 30-day rolling average of the numerical emissions limit value applicable for your unit in Tables 1 or 2 or 11 through 13 of this subpart.

(i) Install and certify your PM CEMS according to the procedures and requirements in Performance Specification 11—Specifications and Test Procedures for Particulate Matter Continuous Emission Monitoring Systems at Stationary Sources in Appendix B to part 60 of this chapter, using test criteria outlined in Table V of this rule. The reportable measurement output from the PM CEMS must be expressed in units of the applicable emissions limit (e.g., lb/MBtu, lb/MWh).

(ii) Operate and maintain your PM CEMS according to the procedures and requirements in Procedure 2—Quality Assurance Requirements for Particulate Matter Continuous Emission Monitoring Systems at Stationary Sources in Appendix F to part 60 of this chapter.

(A) You must conduct the relative response audit (RRA) for your PM CEMS at least once annually.

(B) You must conduct the relative correlation audit (RCA) for your PM CEMS at least once every 3 years.

(iii) Collect PM CEMS hourly average output data for all boiler operating hours except as indicated in paragraph (i) of this section.

(iv) Calculate the arithmetic 30-day rolling average of all of the hourly average PM CEMS output data collected during all nonexempt boiler or process heater operating hours.

(v) You must collect data using the PM CEMS at all times the unit is operating and at the intervals specified this paragraph (a), except for periods of monitoring system malfunctions, repairs associated with monitoring system malfunctions, and required monitoring system quality assurance or quality control activities.

(vi) You must use all the data collected during all boiler or process heater operating hours in assessing the compliance with your operating limit except:

(A) Any data collected during monitoring system malfunctions, repairs associated with monitoring system malfunctions, or required monitoring system quality assurance or control activities conducted during monitoring system malfunctions in calculations and report any such periods in your annual deviation report;
(B) Any data collected during periods when the monitoring system is out of control as specified in your site-specific monitoring plan, repairs associated with periods when the monitoring system is out of control, or required monitoring system quality assurance or control activities conducted during out of control periods in calculations used to report emissions or operating levels and report any such periods in your annual deviation report;

(C) Any data recorded during periods of startup or shutdown.

(vii) You must record and make available upon request results of PM CEMS system performance audits, dates and duration of periods when the PM CEMS is out of control to completion of the corrective actions necessary to return the PM CEMS to operation consistent with your site-specific monitoring plan.

(b) You must report each instance in which you did not meet each emission limit and operating limit in Tables 1 through 4 or 11 through 13 to this subpart that apply to you. These instances are deviations from the emission limits or operating limits, respectively, in this subpart. These deviations must be reported according to the requirements in §63.7550.

(c) If you elected to demonstrate that the unit meets the specification for mercury for the unit designed to burn gas 1 subcategory, you must follow the sampling frequency specified in paragraphs (c)(1) through (4) of this section and conduct this sampling according to the procedures in §63.7521(f) through (i).

(1) If the initial mercury constituents in the gaseous fuels are measured to be equal to or less than half of the mercury specification as defined in §63.7575, you do not need to conduct further sampling.

(2) If the initial mercury constituents are greater than half but equal to or less than 75 percent of the mercury specification as defined in §63.7575, you will conduct semi-annual sampling. If 6 consecutive semi-annual fuel analyses demonstrate 50 percent or less of the mercury specification, you do not need to conduct further sampling. If any semi-annual sample exceeds 75 percent of the mercury specification, you must return to monthly sampling for that fuel, until 12 months of fuel analyses again are less than 75 percent of the compliance level.

(3) If the initial mercury constituents are greater than 75 percent of the mercury specification as defined in §63.7575, you will conduct monthly sampling. If 12 consecutive monthly fuel analyses demonstrate 75 percent or less of the mercury specification, you may decrease the fuel analysis frequency to semi-annual for that fuel.

(4) If the initial sample exceeds the mercury specification as defined in §63.7575, each affected boiler or process heater combusting this fuel is not part of the unit designed to burn gas 1 subcategory and must be in compliance with the emission and operating limits for the appropriate subcategory. You may elect to conduct additional monthly sampling while complying with these emissions and operating limits to demonstrate that the fuel qualifies as another gas 1 fuel. If 12 consecutive monthly fuel analyses samples are at or below the mercury specification as defined in §63.7575, each affected boiler or process heater combusting the fuel can elect to switch back into the unit designed to burn gas 1 subcategory until the mercury specification is exceeded.

(d) For startup and shutdown, you must meet the work practice standards according to item 5 of Table 3 of this subpart.

§63.7541 How do I demonstrate continuous compliance under the emissions averaging provision?

(a) Following the compliance date, the owner or operator must demonstrate compliance with this subpart on a continuous basis by meeting the requirements of paragraphs (a)(1) through (5) of this section.

(1) For each calendar month, demonstrate compliance with the average weighted emissions limit for the existing units participating in the emissions averaging option as determined in §63.7522(f) and (g).

(2) You must maintain the applicable opacity limit according to paragraphs (a)(2)(i) and (ii) of this section.
§ 63.7545 What notifications must I submit and when?

(a) You must submit to the Administrator all of the notifications in §§ 63.7(b) and (c), 63.8(e), (f)(4) and (6), and 63.9(b) through (h) that apply to you by the dates specified.

(b) As specified in §63.9(b)(2), if you startup your affected source before January 31, 2013, you must submit an Initial Notification not later than 120 days after January 31, 2013.

(c) As specified in §63.9(b)(4) and (5), if you startup your new or reconstructed affected source on or after January 31, 2013, you must submit an Initial Notification not later than 15 days after the actual date of startup of the affected source.

(d) If you are required to conduct a performance test you must submit a Notification of Intent to conduct a performance test not later than 15 days before the performance test is scheduled to begin.

(e) If you are required to conduct an initial compliance demonstration as specified in §63.7530, you must submit a Notification of Compliance Status according to §63.9(h)(2)(ii). For the initial compliance demonstration for each boiler or process heater, you must submit the Notification of Compliance Status, including all performance test results and fuel analyses, before the close of business on the 60th day following the completion of all performance tests and/or other initial compliance demonstrations for all boiler or process heaters at the facility according to §63.10(d)(2). The Notification of Compliance Status report must contain all the information specified in paragraphs (e)(1) through (8), as applicable. If you are not required to conduct an initial compliance demonstration as specified in §63.7530(a), the Notification of Compliance Status must only contain the information specified in paragraphs (e)(1) and (8).

(1) A description of the affected unit(s) including identification of which subcategories the unit is in, the design heat input capacity of the unit, a description of the add-on controls used on the unit to comply with this subpart, description of the fuel(s) burned, including whether the fuel(s) were a secondary material determined by you or the EPA through a petition process to be a non-waste under §241.3 of this chapter, whether the fuel(s) were a secondary material processed from discarded non-hazardous secondary materials within the meaning of §241.3 of this chapter, and justification for the selection of fuel(s) burned during the compliance demonstration.

(2) Summary of the results of all performance tests and fuel analyses, and calculations conducted to demonstrate
§63.7545
40 CFR Ch. 1 (7–1–14 Edition)

initial compliance including all established operating limits, and including:

(i) Identification of whether you are complying with the PM emission limit or the alternative TSM emission limit.

(ii) Identification of whether you are complying with the output-based emission limits or the heat input-based (i.e., lb/MMBtu or ppm) emission limits.

(3) A summary of the maximum CO emission levels recorded during the performance test to show that you have met any applicable emission standard in Tables 1, 2, or 11 through 13 to this subpart, if you are not using a CO CEMS to demonstrate compliance.

(4) Identification of whether you plan to demonstrate compliance with each applicable emission limit through performance testing, a CEMS, or fuel analysis.

(5) Identification of whether you plan to demonstrate compliance by emissions averaging and identification of whether you plan to demonstrate compliance by using efficiency credits through energy conservation:

(i) If you plan to demonstrate compliance by emission averaging, report the emission level that was being achieved or the control technology employed on January 31, 2013.

(ii) [Reserved]

(6) A signed certification that you have met all applicable emission limits and work practice standards.

(7) If you had a deviation from any emission limit, work practice standard, or operating limit, you must also submit a description of the deviation, the duration of the deviation, and the corrective action taken in the Notification of Compliance Status report.

(8) In addition to the information required in §63.9(h)(2), your notification of compliance status must include the following certification(s) of compliance, as applicable, and signed by a responsible official:

(i) “This facility complies with the required initial tune-up according to the procedures in §63.7540(a)(10)(i) through (vi).”

(ii) “This facility has had an energy assessment performed according to §63.7530(e).”

(iii) Except for units that burn only natural gas, refinery gas, or other gas 1 fuel, or units that qualify for a statutory exemption as provided in section 129(g)(1) of the Clean Air Act, include the following: “No secondary materials that are solid waste were combusted in any affected unit.”

(6) If you operate a unit designed to burn natural gas, refinery gas, or other gas 1 fuels that is subject to this subpart, and you intend to use a fuel other than natural gas, refinery gas, gaseous fuel subject to another subpart of this part, part 60, 61, or 65, or other gas 1 fuel to fire the affected unit during a period of natural gas curtailment or supply interruption, as defined in §63.7575, you must submit a notification of alternative fuel use within 48 hours of the declaration of each period of natural gas curtailment or supply interruption, as defined in §63.7575. The notification must include the information specified in paragraphs (f)(1) through (5) of this section.

(f) If you operate a unit designed to burn natural gas, refinery gas, or other gas 1 fuels that is subject to this subpart, and you intend to use a fuel other than natural gas, refinery gas, gaseous fuel subject to another subpart of this part, part 60, 61, or 65, or other gas 1 fuel to fire the affected unit during a period of natural gas curtailment or supply interruption, as defined in §63.7575, you must submit a notification of alternative fuel use within 48 hours of the declaration of each period of natural gas curtailment or supply interruption, as defined in §63.7575. The notification must include the information specified in paragraphs (f)(1) through (5) of this section.

(1) Company name and address.

(2) Identification of the affected unit.

(3) Reason you are unable to use natural gas or equivalent fuel, including the date when the natural gas curtailment was declared or the natural gas supply interruption began.

(4) Type of alternative fuel that you intend to use.

(5) Dates when the alternative fuel use is expected to begin and end.

(g) If you intend to commence or recommence combustion of solid waste, you must provide 30 days prior notice of the date upon which you will commence or recommence combustion of solid waste. The notification must identify:

(1) The name of the owner or operator of the affected source, as defined in §63.7490, the location of the source, the boiler(s) or process heater(s) that will commence burning solid waste, and the date of the notice.

(2) The currently applicable subcategories under this subpart.

(3) The date on which you became subject to the currently applicable emission limits.

(4) The date upon which you will commence combusting solid waste.

(h) If you have switched fuels or made a physical change to the boiler and the fuel switch or physical change
Environmental Protection Agency

§ 63.7550 What reports must I submit and when?

(a) You must submit each report in Table 9 to this subpart that applies to you.

(b) Unless the EPA Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report, according to paragraph (h) of this section, by the date in Table 9 to this subpart and according to the requirements in paragraphs (b)(1) through (4) of this section. For units that are subject only to a requirement to conduct an annual, biennial, or 5-year tune-up according to §63.7540(a)(10), (11), or (12), respectively, and not subject to emission limits or operating limits, you may submit only an annual, biennial, or 5-year compliance report, as applicable, as specified in paragraphs (b)(1) through (4) of this section, instead of a semi-annual compliance report.

(1) The first compliance report must cover the period beginning on the compliance date that is specified for each boiler or process heater in §63.7495 and ending on July 31 or January 31, whichever date is the first date following the end of the reporting period. Annual, biennial, and 5-year compliance reports must cover the applicable 1-, 2-, or 5-year periods from January 1 to December 31.

(2) The first compliance report must be postmarked or submitted no later than July 31 or January 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for each boiler or process heater in §63.7495. The first annual, biennial, or 5-year compliance report must be postmarked or submitted no later than January 31.

(3) Each subsequent compliance report must cover the semiannual reporting period from June 30 or the semiannual reporting period from July 1 through December 31. Annual, biennial, and 5-year compliance reports must cover the applicable 1-, 2-, or 5-year periods from January 1 to December 31.

(4) Each subsequent compliance report must be postmarked or submitted no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period. Annual, biennial, and 5-year compliance reports must be postmarked or submitted no later than January 31.

(c) A compliance report must contain the following information depending on how the facility chooses to comply with the limits set in this rule.

(1) If the facility is subject to the requirements of a tune-up they must submit a compliance report with the information in paragraphs (c)(5)(i) through (iv) and (xiv) of this section.

(2) If a facility is complying with the fuel analysis they must submit a compliance report with the information in paragraphs (c)(5)(i) through (iv), (vi), (x), (xi), (xiii), (xv) and paragraph (d) of this section.

(3) If a facility is complying with the applicable emissions limit with performance testing they must submit a compliance report with the information in paragraphs (c)(5)(i) through (iv), (vi), (vii), (ix), (xi), (xiii), (xv) and paragraph (d) of this section.

(4) If a facility is complying with an emissions limit using a CMS the compliance report must contain the information required in paragraphs (c)(5)(i) through (vi), (xi), (xiii), (xv) through (xvii), and paragraph (e) of this section.

(5)(i) Company and Facility name and address.

(ii) Process unit information, emission limitations, and operating parameter limitations.

(iii) Date of report and beginning and ending dates of the reporting period.
§ 63.7550 40 CFR Ch. I (7–1–14 Edition)

(iv) The total operating time during the reporting period.

(v) If you use a CMS, including CEMS, COMS, or CPMS, you must include the monitoring equipment manufacturer(s) and model numbers and the date of the last CMS certification or audit.

(vi) The total fuel use by each individual boiler or process heater subject to an emission limit within the reporting period, including, but not limited to, a description of the fuel, whether the fuel has received a non-waste determination by the EPA or your basis for concluding that the fuel is not a waste, and the total fuel usage amount with units of measure.

(vii) If you are conducting performance tests once every 3 years consistent with §63.7515(b) or (c), the date of the last 2 performance tests and a statement as to whether there have been any operational changes since the last performance test that could increase emissions.

(viii) A statement indicating that you burned no new types of fuel in an individual boiler or process heater subject to an emission limit. Or, if you did burn a new type of fuel and are subject to a HCl emission limit, you must submit the calculation of chlorine input, using Equation 7 of §63.7530, that demonstrates that your source is still within its maximum chlorine input level established during the previous performance testing (for sources that demonstrate compliance through performance testing), or you must submit the calculation of HCl emission rate, using Equation 12 of §63.7530, that demonstrates that your source is still meeting the emission limit for HCl emissions (for boilers or process heaters that demonstrate compliance through fuel analysis).

(ix) If you wish to burn a new type of fuel in an individual boiler or process heater subject to an emission limit and you cannot demonstrate compliance with the maximum chlorine input operating limit using Equation 7 of §63.7530 or the maximum mercury input operating limit using Equation 8 of §63.7530, or the maximum TSM input operating limit using Equation 9 of §63.7530 you must include in the compliance report a statement indicating the intent to conduct a new performance test within 60 days of starting to burn the new fuel.

(x) A summary of any monthly fuel analyses conducted to demonstrate compliance according to §§63.7521 and 63.7530 for individual boilers or process heaters subject to emission limits, and any fuel specification analyses conducted according to §§63.7521(f) and 63.7530(g).

(xi) If there are no deviations from any emission limits or operating limits in this subpart that apply to you, a statement that there were no deviations from the emission limits or operating limits during the reporting period.

(xii) If there were no deviations from the monitoring requirements including no periods during which the CMSs, including CEMS, COMS, and CPMS, were out of control as specified in §63.8(c)(7), a statement that there were no deviations and no periods during which the
CMS were out of control during the reporting period.

(xiii) If a malfunction occurred during the reporting period, the report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by you during a malfunction of a boiler, process heater, or associated air pollution control device or CMS to minimize emissions in accordance with §63.7500(a)(3), including actions taken to correct the malfunction.

(xiv) Include the date of the most recent tune-up for each unit subject to only the requirement to conduct an annual, biennial, or 5-year tune-up according to §63.7540(a)(10), (11), or (12) respectively. Include the date of the most recent burner inspection if it was not done annually, biennially, or on a 5-year period and was delayed until the next scheduled or unscheduled unit shutdown.

(xv) If you plan to demonstrate compliance by emission averaging, certify the emission level achieved or the control technology employed is no less stringent than the level or control technology contained in the notification of compliance status in §63.7545(e)(5).

(d) For each deviation from an emission limit or operating limit in this subpart that occurs at an individual boiler or process heater where you are not using a CMS to comply with that emission limit or operating limit, the compliance report must additionally contain the information required in paragraphs (d)(1) through (3) of this section.

(1) A description of the deviation and which emission limit or operating limit from which you deviated.

(2) Information on the number, duration, and cause of deviations (including unknown cause), as applicable, and the corrective action taken.

(3) If the deviation occurred during an annual performance test, provide the date the annual performance test was completed.

(e) For each deviation from an emission limit, operating limit, and monitoring requirement in this subpart occurring at an individual boiler or process heater where you are using a CMS to comply with that emission limit or operating limit, the compliance report must additionally contain the information required in paragraphs (e)(1) through (9) of this section. This includes any deviations from your site-specific monitoring plan as required in §63.7505(d).

(1) The date and time that each deviation started and stopped and description of the nature of the deviation (i.e., what you deviated from).

(2) The date and time that each CMS was inoperative, except for zero (low-level) and high-level checks.

(3) The date, time, and duration that each CMS was out of control, including the information in §63.7500(a)(3).

(4) The date and time that each deviation started and stopped.

(5) A summary of the total duration of the deviation during the reporting period and the total duration as a percent of the total source operating time during that reporting period.

(6) A characterization of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.

(7) A summary of the total duration of CMS's downtime during the reporting period and the total duration of CMS downtime as a percent of the total source operating time during that reporting period.

(8) A brief description of the source for which there was a deviation.

(9) A description of any changes in CMSs, processes, or controls since the last reporting period for the source for which there was a deviation.
(f)–(g) [Reserved]

(h) You must submit the reports according to the procedures specified in paragraphs (h)(1) through (3) of this section.

(1) Within 60 days after the date of completing each performance test (defined in §63.2) as required by this subpart you must submit the results of the performance tests, including any associated fuel analyses, required by this subpart and the compliance reports required in §63.7550(b) to the EPA’s WebFIRE database by using the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through the EPA’s Central Data Exchange (CDX) (www.epa.gov/cdx). Performance test data must be submitted in the file format generated through use of the EPA’s Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/index.html). Only data collected using test methods on the ERT Web site are subject to this requirement for submitting reports electronically to WebFIRE. Owners or operators who claim that some of the information being submitted for performance tests is confidential business information (CBI) must submit a complete ERT file including information claimed to be CBI on a compact disk or other commonly used electronic storage media (including, but not limited to, flash drives) to the EPA. The electronic media must be clearly marked as CBI and mailed to U.S. EPA/OAPQS/CORE CBI Office, Attention: WebFIRE Administrator, MD C404–02, 4930 Old Page Rd., Durham, NC 27703. The same ERT file with the CBI omitted must be submitted to the EPA via CDX as described earlier in this paragraph. At the discretion of the Administrator, you must also submit these reports, to the Administrator in the format specified by the Administrator.

(2) Within 60 days after the date of completing each CEMS performance evaluation test (defined in §63.2) you must submit the relative accuracy test audit (RATA) data to the EPA’s Central Data Exchange by using CEDRI as mentioned in paragraph (h)(1) of this section. Only RATA pollutants that can be documented with the ERT (as listed on the ERT Web site) are subject to this requirement. For any performance evaluations with no corresponding RATA pollutants listed on the ERT Web site, the owner or operator shall submit the results of the performance evaluation in paper submissions to the Administrator.

(3) You must submit all reports required by Table 9 of this subpart electronically using CEDRI that is accessed through the EPA’s Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due the report you must submit the report to the Administrator at the appropriate address listed in §63.13. At the discretion of the Administrator, you must also submit these reports, to the Administrator in the format specified by the Administrator.

[78 FR 7183, Jan. 31, 2013]

§63.7555 What records must I keep?

(a) You must keep records according to paragraphs (a)(1) and (2) of this section.

(1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any initial notification or Notification of Compliance Status or semiannual compliance report that you submitted, according to the requirements in §63.10(b)(2)(xv).

(2) Records of performance tests, fuel analyses, or other compliance demonstrations and performance evaluations as required in §63.10(b)(2)(viii).

(b) For each CEMS, COMS, and continuous monitoring system you must keep records according to paragraphs (b)(1) through (5) of this section.

(1) Records described in §63.10(b)(2)(vii) through (xv).

(2) Monitoring data for continuous opacity monitoring system during a performance evaluation as required in §63.8(h)(7)(i) and (ii).

(3) Previous (i.e., superseded) versions of the performance evaluation plan as required in §63.8(d)(3).
(4) Request for alternatives to relative accuracy test for CEMS as required in §63.8(f)(6)(1).

(5) Records of the date and time that each deviation started and stopped.

(c) You must keep the records required in Table 8 to this subpart including records of all monitoring data and calculated averages for applicable operating limits, such as opacity, pressure drop, pH, and operating load, to show continuous compliance with each emission limit and operating limit that applies to you.

(d) For each boiler or process heater subject to an emission limit in Tables 1, 2, or 11 through 13 to this subpart, you must also keep the applicable records in paragraphs (d)(1) through (11) of this section.

(1) You must keep records of monthly fuel use by each boiler or process heater, including the type(s) of fuel and amount(s) used.

(2) If you combust non-hazardous secondary materials that have been determined not to be solid waste pursuant to §241.3(b)(1) and (2) of this chapter, you must keep a record that documents how the secondary material meets each of the legitimacy criteria under §241.3(d)(1) of this chapter. If you combust a fuel that has been processed from a discarded non-hazardous secondary material pursuant to §241.3(b)(4) of this chapter, you must keep records as to how the operations that produced the fuel satisfy the definition of processing in §241.2 of this chapter. If the fuel received a non-waste determination pursuant to the petition process submitted under §241.3(c) of this chapter, you must keep a record that documents how the fuel satisfies the requirements of the petition process. For operating units that combust non-hazardous secondary materials as fuel per §241.4 of this chapter, you must keep records documenting that the material is listed as a non-waste under §241.4(a) of this chapter. Units exempt from the incinerator standards under section 129(g)(1) of the Clean Air Act because they are qualifying facilities burning a homogeneous waste stream do not need to maintain the records described in this paragraph (d)(2).

(3) For units in the limited use subcategory, you must keep a copy of the federal enforceable permit that limits the annual capacity factor to less than or equal to 10 percent and fuel use records for the days the boiler or process heater was operating.

(4) A copy of all calculations and supporting documentation of maximum chlorine fuel input, using Equation 7 of §63.7530, that were done to demonstrate continuous compliance with the HCl emission limit, for sources that demonstrate compliance through performance testing. For sources that demonstrate compliance through fuel analysis, a copy of all calculations and supporting documentation of HCl emission rates, using Equation 12 of §63.7530, that were done to demonstrate compliance with the HCl emission limit. Supporting documentation should include results of any fuel analyses and basis for the estimates of maximum chlorine fuel input or HCl emission rates. You can use the results from one fuel analysis for multiple boilers and process heaters provided they are all burning the same fuel type. However, you must calculate chlorine fuel input, or HCl emission rate, for each boiler and process heater.

(5) A copy of all calculations and supporting documentation of maximum mercury fuel input, using Equation 8 of §63.7530, that were done to demonstrate continuous compliance with the mercury emission limit for sources that demonstrate compliance through performance testing. For sources that demonstrate compliance through fuel analysis, a copy of all calculations and supporting documentation of mercury emission rates, using Equation 13 of §63.7530, that were done to demonstrate compliance with the mercury emission limit. Supporting documentation should include results of any fuel analyses and basis for the estimates of maximum mercury fuel input or mercury emission rates. You can use the results from one fuel analysis for multiple boilers and process heaters provided they are all burning the same fuel type. However, you must calculate mercury fuel input, or mercury emission rates, for each boiler and process heater.
§ 63.7560 [40 CFR Ch. 1 (7–1–14 Edition)]

(6) If, consistent with §63.7515(b), you choose to stack test less frequently than annually, you must keep a record that documents that your emissions in the previous stack test(s) were less than 75 percent of the applicable emission limit (or, in specific instances noted in Tables 1 and 2 or 11 through 13 to this subpart, less than the applicable emission limit), and document that there was no change in source operations including fuel composition and operation of air pollution control equipment that would cause emissions of the relevant pollutant to increase within the past year.

(7) Records of the occurrence and duration of each malfunction of the boiler or process heater, or of the associated air pollution control and monitoring equipment.

(8) Records of actions taken during periods of malfunction to minimize emissions in accordance with the general duty to minimize emissions in §63.7500(a)(3), including corrective actions to restore the malfunctioning boiler or process heater, air pollution control, or monitoring equipment to its normal or usual manner of operation.

(9) A copy of all calculations and supporting documentation of maximum TSM fuel input, using Equation 9 of §63.7530, that were done to demonstrate continuous compliance with the TSM emission limit for sources that demonstrate compliance through performance testing. For sources that demonstrate compliance through fuel analysis, a copy of all calculations and supporting documentation of TSM emission rates, using Equation 14 of §63.7530, that were done to demonstrate compliance with the TSM emission limit. Supporting documentation should include results of any fuel analyses and basis for the estimates of maximum TSM fuel input or TSM emission rates. You can use the results from one fuel analysis for multiple boilers and process heaters provided they are all burning the same fuel type. However, you must calculate TSM fuel input, or TSM emission rates, for each boiler and process heater.

(10) You must maintain records of the calendar date, time, occurrence and duration of each startup and shutdown.

(11) You must maintain records of the type(s) and amount(s) of fuels used during each startup and shutdown.

(e) If you elect to average emissions consistent with §63.7522, you must additionally keep a copy of the emission averaging implementation plan required in §63.7522(g), all calculations required under §63.7522, including monthly records of heat input or steam generation, as applicable, and monitoring records consistent with §63.7541.

(f) If you elect to use efficiency credits from energy conservation measures to demonstrate compliance according to §63.7533, you must keep a copy of the Implementation Plan required in §63.7533(d) and copies of all data and calculations used to establish credits according to §63.7533(b), (c), and (f).

(g) If you elected to demonstrate that the unit meets the specification for mercury for the unit designed to burn gas 1 subcategory, you must maintain monthly records (or at the frequency required by §63.7540(c)) of the calculations and results of the fuel specification for mercury in Table 6.

(h) If you operate a unit in the unit designed to burn gas 1 subcategory that is subject to this subpart, and you use an alternative fuel other than natural gas, refinery gas, gaseous fuel subject to another subpart under this part, other gas 1 fuel, or gaseous fuel subject to another subpart of this part or part 60, 61, or 65, you must keep records of the total hours per calendar year that alternative fuel is burned and the total hours per calendar year that the unit operated during periods of gas curtailment or gas supply emergencies.

(i) You must maintain records of the calendar date, time, occurrence and duration of each startup and shutdown.

(j) You must maintain records of the type(s) and amount(s) of fuels used during each startup and shutdown.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7185, Jan. 31, 2013]

§ 63.7560 In what form and how long must I keep my records?

(a) Your records must be in a form suitable and readily available for expeditious review, according to §63.10(b)(1).
§ 63.7575 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act, in §63.2 (the General Provisions), and in this section as follows:

10-day rolling average means the arithmetic mean of the previous 240 hours of valid operating data. Valid data excludes hours during startup and shutdown, data collected during periods when the monitoring system is out of control as specified in your site-specific monitoring plan, while conducting repairs associated with periods when the monitoring system is out of control, or while conducting required monitoring system quality assurance or quality control activities, and periods when this unit is not operating. The 240 hours should be consecutive, but not necessarily continuous if operations were intermittent.

30-day rolling average means the arithmetic mean of the previous 720 hours of valid operating data. Valid data excludes hours during startup and shutdown, data collected during periods when the monitoring system is out of control as specified in your site-specific monitoring plan, while conducting repairs associated with periods when the monitoring system is out of control, or while conducting required monitoring system quality assurance or quality control activities, and periods when this unit is not operating. The 720 hours should be consecutive, but not necessarily continuous if operations were intermittent.

Affirmative defense means, in the context of an enforcement proceeding, a response or defense put forward by a defendant, regarding which the defendant has the burden of proof, and the merits of which are independently and
objectively evaluated in a judicial or administrative proceeding.

Annual capacity factor means the ratio between the actual heat input to a boiler or process heater from the fuels burned during a calendar year and the potential heat input to the boiler or process heater had it been operated for 8,760 hours during a year at the maximum steady state design heat input capacity.

Annual heat input means the heat input for the 12 months preceding the compliance demonstration.

Average annual heat input rate means total heat input divided by the hours of operation for the 12 months preceding the compliance demonstration.

Bag leak detection system means a group of instruments that are capable of monitoring particulate matter loadings in the exhaust of a fabric filter (i.e., baghouse) in order to detect bag failures. A bag leak detection system includes, but is not limited to, an instrument that operates on electrodynamic, triboelectric, light scattering, light transmittance, or other principle to monitor relative particulate matter loadings.

Benchmark means the fuel heat input for a boiler or process heater for the one-year period before the date that an energy demand reduction occurs, unless it can be demonstrated that a different time period is more representative of historical operations.

Biodiesel means a mono-alkyl ester derived from biomass and conforming to ASTM D6751-11b, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels (incorporated by reference, see §63.14).

Biomass or bio-based solid fuel means any biomass-based solid fuel that is not a solid waste. This includes, but is not limited to, wood residue; wood products (e.g., trees, tree stumps, tree limbs, bark, lumber, sawdust, sander dust, chips, scraps, slabs, millings, and shavings); animal manure, including litter and other bedding materials; vegetative agricultural and silvicultural materials, such as logging residues (slash), nut and grain hulls and chaff (e.g., almond, walnut, peanut, rice, and wheat); bagasse, orchard prunings, corn stalks, coffee bean hulls and grounds. This definition of biomass is not intended to suggest that these materials are or are not solid waste.

Blast furnace gas fuel-fired boiler or process heater means an industrial/commercial/institutional boiler or process heater that receives 90 percent or more of its total annual gas volume from blast furnace gas.

Boiler means an enclosed device using controlled flame combustion and having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled flame combustion refers to a steady-state, or near steady-state, process wherein fuel and/or oxidizer feed rates are controlled. A device combusting solid waste, as defined in §241.3 of this chapter, is not a boiler unless the device is exempt from the definition of a solid waste incineration unit as provided in section 129(g)(1) of the Clean Air Act. Waste heat boilers are excluded from this definition.

Boiler system means the boiler and associated components, such as, the feed water system, the combustion air system, the fuel system (including burners), blowdown system, combustion control systems, steam systems, and condensate return systems.

Calendar year means the period between January 1 and December 31, inclusive, for a given year.

Coal means all solid fuels classifiable as anthracite, bituminous, sub-bituminous, or lignite by ASTM D388 (incorporated by reference, see §63.14), coal refuse, and petroleum coke. For the purposes of this subpart, this definition of "coal" includes synthetic fuels derived from coal, including but not limited to, solvent-refined coal, coal-oil mixtures, and coal-water mixtures. Coal derived gases are excluded from this definition.

Coal refuse means any by-product of coal mining or coal cleaning operations with an ash content greater than 50 percent (by weight) and a heating value less than 13,900 kilojoules per kilogram (6,000 Btu per pound) on a dry basis.

Commercial/institutional boiler means a boiler used in commercial establishments or institutional establishments such as medical centers, nursing homes, research centers, institutions of
Environmental Protection Agency
§ 63.7575

higher education, elementary and secondary schools, libraries, religious establishments, governmental buildings, hotels, restaurants, and laundries to provide electricity, steam, and/or hot water.

Common stack means the exhaust of emissions from two or more affected units through a single flue. Affected units with a common stack may each have separate air pollution control systems located before the common stack, or may have a single air pollution control system located after the exhausts come together in a single flue.

Cost-effective energy conservation measure means a measure that is implemented to improve the energy efficiency of the boiler or facility that has a payback (return of investment) period of 2 years or less.

Daily block average means the arithmetic mean of all valid emission concentrations or parameter levels recorded when a unit is operating measured over the 24-hour period from 12 a.m. (midnight) to 12 a.m. (midnight), except for periods of startup and shutdown or downtime.

Deviation. (1) Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

(i) Fails to meet any applicable requirement or obligation established by this subpart including, but not limited to, any emission limit, operating limit, or work practice standard; or

(ii) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit.

(2) A deviation is not always a violation.

Dioxins/furans means tetra- through octa-chlorinated dibenzo-p-dioxins and dibenzofurans.

Distillate oil means fuel oils that contain 0.05 weight percent nitrogen or less and comply with the specifications for fuel oil numbers 1 and 2, as defined by the American Society of Testing and Materials in ASTM D396 (incorporated by reference, see §63.14) or diesel fuel oil numbers 1 and 2, as defined by the American Society for Testing and Materials in ASTM D975 (incorporated by reference, see §60.14).

Dry scrubber means an add-on air pollution control system that injects dry alkaline sorbent (dry injection) or sprays an alkaline sorbent (spray dryer) to react with and neutralize acid gas in the exhaust stream forming a dry powder material. Sorbent injection systems used as control devices in fluidized bed boilers and process heaters are included in this definition. A dry scrubber is a dry control system.

Dutch oven means a unit having a refractory-walled cell connected to a conventional boiler setting. Fuel materials are introduced through an opening in the roof of the dutch oven and burn in a pile on its floor. Fluidized bed boilers are not part of the dutch oven design category.

Efficiency credit means emission reductions above those required by this subpart. Efficiency credits generated may be used to comply with the emissions limits. Credits may come from pollution prevention projects that result in reduced fuel use by affected units. Boilers that are shut down cannot be used to generate credits unless the facility provides documentation linking the permanent shutdown to implementation of the energy conservation measures identified in the energy assessment.

Electric utility steam generating unit (EGU) means a fossil fuel-fired combustion unit of more than 25 megawatts electric (MWe) that serves a generator that produces electricity for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one-third of its potential electric output capacity and more than 25 MWe output to any utility power distribution system for sale is considered an electric utility steam generating unit. To be “capable of combusting” fossil fuels, an EGU would need to have these fuels allowed in their operating permits and have the appropriate fuel handling facilities on-site or otherwise available (e.g., coal handling equipment, including coal storage area, belts and conveyers, pulverizers, etc.; oil storage facilities).
addition, fossil fuel-fired EGU means any EGU that fired fossil fuel for more than 10.0 percent of the average annual heat input in any 3 consecutive calendar years or for more than 15.0 percent of the annual heat input during any one calendar year after April 16, 2012.

Electrostatic precipitator (ESP) means an add-on air pollution control device used to capture particulate matter by charging the particles using an electrostatic field, collecting the particles using a grounded collecting surface, and transporting the particles into a hopper. An electrostatic precipitator is usually a dry control system.

Energy assessment means the following for the emission units covered by this subpart:

(1) The energy assessment for facilities with affected boilers and process heaters with a combined heat input capacity of less than 0.3 trillion Btu (TBTu) per year will be 8 on-site technical labor hours in length maximum, but may be longer at the discretion of the owner or operator of the affected source. The boiler system(s) and any on-site energy use system(s) accounting for at least 50 percent of the affected boiler(s) energy production, as applicable, will be evaluated to identify energy savings opportunities, within the limit of performing an 8-hour on-site energy assessment.

(2) The energy assessment for facilities with affected boilers and process heaters with a combined heat input capacity of 0.3 to 1.0 TBTu/year will be 24 on-site technical labor hours in length maximum, but may be longer at the discretion of the owner or operator of the affected source. The boiler system(s) and any on-site energy use system(s) accounting for at least 33 percent of the energy production, as applicable, will be evaluated to identify energy savings opportunities, within the limit of performing a 24-hour on-site energy assessment.

(3) The energy assessment for facilities with affected boilers and process heaters with a combined heat input capacity greater than 1.0 TBTu/year will be up to 24 on-site technical labor hours in length for the first TBTu/yr plus 8 on-site technical labor hours for every additional 1.0 TBTu/yr not to exceed 160 on-site technical hours, but may be longer at the discretion of the owner or operator of the affected source. The boiler system(s), process heater(s), and any on-site energy use system(s) accounting for at least 20 percent of the energy production (e.g., steam, process heat, hot water, or electricity) production, as applicable, will be evaluated to identify energy savings opportunities.

Energy management practices means the set of practices and procedures designed to manage energy use that are demonstrated by the facility’s energy policies, a facility energy manager and other staffing responsibilities, energy performance measurement and tracking methods, an energy saving goal, action plans, operating procedures, internal reporting requirements, and periodic review intervals used at the facility.

Energy management program means a program that includes a set of practices and procedures designed to manage energy use that are demonstrated by the facility’s energy policies, a facility energy manager and other staffing responsibilities, energy performance measurement and tracking methods, an energy saving goal, action plans, operating procedures, internal reporting requirements, and periodic review intervals used at the facility. Facilities may establish their program through energy management systems compatible with ISO 50001.

Energy use system includes the following systems located on-site that use energy (steam, hot water, or electricity) provided by the affected boiler or process heater: process heating; compressed air systems; machine drive (motors, pumps, fans); process cooling; facility heating, ventilation, and air-
conditioning systems; hot water systems; building envelop; and lighting; or other systems that use steam, hot water, process heat, or electricity provided by the affected boiler or process heater. Energy use systems are only those systems using energy clearly produced by affected boilers and process heaters.

Equivalent means the following only as this term is used in Table 6 to this subpart:

1. An equivalent sample collection procedure means a published voluntary consensus standard or practice (VCS) or EPA method that includes collection of a minimum of three composite fuel samples, with each composite consisting of a minimum of three increments collected at approximately equal intervals over the test period.

2. An equivalent sample compositing procedure means a published VCS or EPA method to systematically mix and obtain a representative subsample (part) of the composite sample.

3. An equivalent sample preparation procedure means a published VCS or EPA method that: Clearly states that the standard, practice or method is appropriate for the pollutant and the fuel matrix; or is cited as an appropriate sample preparation standard, practice or method for the pollutant in the chosen VCS or EPA determinative or analytical method.

4. An equivalent procedure for determining heat content means a published VCS or EPA method to obtain gross calorific (or higher heating) value.

5. An equivalent procedure for determining fuel moisture content means a published VCS or EPA method to obtain moisture content. If the sample analysis plan calls for determining metals (especially the mercury, selenium, or arsenic) using an aliquot of the dried sample, then the drying temperature must be modified to prevent vaporizing these metals. On the other hand, if metals analysis is done on an “as received” basis, a separate aliquot can be dried to determine moisture content and the metals concentration mathematically adjusted to a dry basis.

6. An equivalent pollutant (mercury, HCl) determinative or analytical procedure means a published VCS or EPA method that clearly states that the standard, practice, or method is appropriate for the pollutant and the fuel matrix and has a published detection limit equal or lower than the methods listed in Table 6 to this subpart for the same purpose.

Fabric filter means an add-on air pollution control device used to capture particulate matter by filtering gas streams through filter media, also known as a baghouse. A fabric filter is a dry control system.

Federally enforceable means all limitations and conditions that are enforceable by the EPA Administrator, including, but not limited to, the requirements of 40 CFR parts 60, 61, 63, and 65, requirements within any applicable state implementation plan, and any permit requirements established under 40 CFR 52.21 or under 40 CFR 51.18 and 40 CFR 51.24.

Fluidized bed boiler means a boiler utilizing a fluidized bed combustion process that is not a pulverized coal boiler.

Fluidized bed boiler with an integrated fluidized bed heat exchanger means a boiler utilizing a fluidized bed combustion where the entire tube surface area is located outside of the furnace section at the exit of the cyclone section and exposed to the flue gas stream for conductive heat transfer. This design applies only to boilers in the unit designed to burn coal/solid fossil fuel subcategory that fire coal refuse.

Fluidized bed combustion means a process where a fuel is burned in a bed of granulated particles, which are maintained in a mobile suspension by the forward flow of air and combustion products.

Fuel cell means a boiler type in which the fuel is dropped onto suspended fixed grates and is fired in a pile. The refractory-lined fuel cell uses combustion air preheating and positioning of secondary and tertiary air injection ports to improve boiler efficiency. Fluidized bed, dutch oven, pile burner, hybrid suspension grate, and suspension burners are not part of the fuel cell subcategory.

Fuel type means each category of fuels that share a common name or classification. Examples include, but are not limited to, bituminous coal,
§ 63.7575 40 CFR Ch. I (7–1–14 Edition)

sub-bituminous coal, lignite, anthracite, biomass, distillate oil, residual oil. Individual fuel types received from different suppliers are not considered new fuel types.

Gaseous fuel includes, but is not limited to, natural gas, process gas, landfill gas, coal derived gas, refinery gas, and biogas. Blast furnace gas and process gases that are regulated under another subpart of this part, or part 60, part 61, or part 65 of this chapter, are exempted from this definition.

Heat input means heat derived from combustion of fuel in a boiler or process heater and does not include the heat input from preheated combustion air, recirculated flue gases, returned condensate, or exhaust gases from other sources such as gas turbines, internal combustion engines, kilns, etc.

Heavy liquid includes residual oil and any other liquid fuel not classified as a light liquid.

Hourly average means the arithmetic average of at least four CMS data values representing the four 15-minute periods in an hour, or at least two 15-minute data values during an hour when CMS calibration, quality assurance, or maintenance activities are being performed.

Hot water heater means a closed vessel with a capacity of no more than 120 U.S. gallons in which water is heated by combustion of gaseous, liquid, or biomass/bio-based solid fuel and is withdrawn for use external to the vessel. Hot water boilers (i.e., not generating steam) combusting gaseous, liquid, or biomass fuel with a heat input capacity of less than 1.6 million Btu per hour are included in this definition.

Load fraction means the actual heat input of a boiler or process heater divided by heat input during the performance test that established the minimum sorbent injection rate or minimum activated carbon injection rate, expressed as a fraction (e.g., for 50 percent load the load fraction is 0.5).

Major source for oil and natural gas production facilities, as used in this subpart, shall have the same meaning as in §63.2, except that:

(1) Emissions from any oil or gas exploration or production well (with its associated equipment, as defined in this section), and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control;

(2) Emissions from processes, operations, or equipment that are not part of the same facility, as defined in this section, shall not be aggregated; and

(3) For facilities that are production field facilities, only HAP emissions from glycol dehydration units and storage vessels with the potential for flash emissions shall be aggregated for a
Environmental Protection Agency

§ 63.7575

major source determination. For facilities that are not production field facilities, HAP emissions from all HAP emission units shall be aggregated for a major source determination.

Metal process furnaces are a subcategory of process heaters, as defined in this subpart, which include natural gas-fired annealing furnaces, preheat furnaces, reheat furnaces, aging furnaces, heat treat furnaces, and homogenizing furnaces.

Million Btu (MMBtu) means one million British thermal units.

Minimum activated carbon injection rate means load fraction multiplied by the lowest hourly average activated carbon injection rate measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limit.

Minimum oxygen level means the lowest hourly average oxygen level measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limit.

Minimum pressure drop means the lowest hourly average pressure drop measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limit.

Minimum scrubber effluent pH means the lowest hourly average sorbent liquid pH measured at the inlet to the wet scrubber according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limit.

Minimum scrubber liquid flow rate means the lowest hourly average liquid flow rate (e.g., to the PM scrubber or to the acid gas scrubber) measured according to Table 7 to this subpart during the most recent performance stack test demonstrating compliance with the applicable emission limit.

Minimum scrubber pressure drop means the lowest hourly average scrubber pressure drop measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limit.

Minimum sorbent injection rate means:

(1) The load fraction multiplied by the lowest hourly average sorbent injection rate for each sorbent measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limits; or

(2) For fluidized bed combustion, the lowest average ratio of sorbent to sulfur measured during the most recent performance test.

Minimum total secondary electric power means the lowest hourly average total secondary electric power determined from the values of secondary voltage and secondary current to the electrostatic precipitator measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limits.

Natural gas means:

(1) A naturally occurring mixture of hydrocarbon and nonhydrocarbon gases found in geologic formations beneath the earth’s surface, of which the principal constituent is methane; or

(2) Liquefied petroleum gas, as defined in ASTM D1835 (incorporated by reference, see §63.14); or

(3) A mixture of hydrocarbons that maintains a gaseous state at ISO conditions. Additionally, natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 35 and 41 megajoules (MJ) per dry standard cubic meter (950 and 1,100 Btu per dry standard cubic foot); or

(4) Propane or propane derived synthetic natural gas. Propane means a colorless gas derived from petroleum and natural gas, with the molecular structure \(\text{C}_3\text{H}_8 \).

Opacity means the degree to which emissions reduce the transmission of light and obscure the view of an object in the background.

Operating day means a 24-hour period between 12 midnight and the following midnight during which any fuel is combusted at any time in the boiler or process heater unit. It is not necessary for fuel to be combusted for the entire 24-hour period.

Other combustor means a unit designed to burn solid fuel that is not classified as a dutch oven, fluidized bed, fuel cell, hybrid suspension grate
boiler, pulverized coal boiler, stoker, sloped grate, or suspension boiler as defined in this subpart.

Other gas fuel means a gaseous fuel that is not natural gas or refinery gas and does not exceed a maximum concentration of 40 micrograms/cubic meters of mercury.

Oxygen analyzer system means all equipment required to determine the oxygen content of a gas stream and used to monitor oxygen in the boiler or process heater flue gas, boiler or process heater, firebox, or other appropriate location. This definition includes oxygen trim systems. The source owner or operator must install, calibrate, maintain, and operate the oxygen analyzer system in accordance with the manufacturer’s recommendations.

Oxygen trim system means a system of monitors that is used to maintain excess air at the desired level in a combustion device. A typical system consists of a flue gas oxygen and/or CO monitor that automatically provides a feedback signal to the combustion air controller.

Particulate matter (PM) means any finely divided solid or liquid material, other than uncombined water, as measured by the test methods specified under this subpart, or an approved alternative method.

Period of gas curtailment or supply interruption means a period of time during which the supply of gaseous fuel to an affected boiler or process heater is restricted or halted for reasons beyond the control of the facility. The act of entering into a contractual agreement with a supplier of natural gas established for curtailment purposes does not constitute a reason that is under the control of a facility for the purposes of this definition. An increase in the cost or unit price of natural gas due to normal market fluctuations not during periods of supplier delivery restriction does not constitute a period of natural gas curtailment or supply interruption. On-site gaseous fuel system emergencies or equipment failures qualify as periods of supply interruption when the emergency or failure is beyond the control of the facility.

Pile burner means a boiler design incorporating a design where the anticipated biomass fuel has a high relative moisture content. Grates serve to support the fuel, and underfire air flowing up through the grates provides oxygen for combustion, cools the grates, promotes turbulence in the fuel bed, and fires the fuel. The most common form of pile burning is the dutch oven.

Process heater means an enclosed device using controlled flame, and the unit’s primary purpose is to transfer heat indirectly to a process material (liquid, gas, or solid) or to a heat transfer material (e.g., glycol or a mixture of glycol and water) for use in a process unit, instead of generating steam. Process heaters are devices in which the combustion gases do not come into direct contact with process materials. A device combusting solid waste, as defined in §241.3 of this chapter, is not a process heater unless the device is exempt from the definition of a solid waste incineration unit as provided in section 129(g)(1) of the Clean Air Act. Process heaters do not include units used for comfort heat or space heat, food preparation for on-site consumption, or autoclaves. Waste heat process heaters are excluded from this definition.

Pulverized coal boiler means a boiler in which pulverized coal or other solid fossil fuel is introduced into an air stream that carries the coal to the combustion chamber of the boiler where it is fired in suspension.

Qualified energy assessor means:

(i) Someone who has demonstrated capabilities to evaluate energy savings opportunities for steam generation and major energy using systems, including, but not limited to:

(A) Boiler combustion management,

(B) Conventional combustion air preheater,

(C) Boiler blowdown thermal energy recovery,

(D) Conventional feed water economizer,

(E) Conventional combustion air preheater, and

(F) Boiler blowdown thermal energy recovery.

(iv) Primary energy resource selection, including

(A) Fuel (primary energy source) switching, and

(B) Applied steam energy versus direct-fired energy versus electricity.
Insulation issues.
Steam trap and steam leak management.
Condensate recovery.
Steam end-use management.

Capabilities and knowledge includes, but is not limited to:

Background, experience, and recognized abilities to perform the assessment activities, data analysis, and report preparation.

Familiarity with operating and maintenance practices for steam or process heating systems.

Additional potential steam system improvement opportunities including improving steam turbine operations and reducing steam demand.

Additional process heating system opportunities including effective utilization of waste heat and use of proper process heating methods.

Boiler-steam turbine cogeneration systems.

Industry specific steam end-use systems.

Refinery gas means any gas that is generated at a petroleum refinery and is combusted. Refinery gas includes natural gas when the natural gas is combined and combusted in any proportion with a gas generated at a refinery. Refinery gas includes gases generated from other facilities when that gas is combined and combusted in any proportion with gas generated at a refinery.

Regulated gas stream means an offgas stream that is routed to a boiler or process heater for the purpose of achieving compliance with a standard under another subpart of this part or part 60, part 61, or part 65 of this chapter.

Residential boiler means a boiler used to provide heat and/or hot water and/or as part of a residential combined heat and power system. This definition includes boilers located at an institutional facility (e.g., university campus, military base, church grounds) or commercial/industrial facility (e.g., farm) used primarily to provide heat and/or hot water for:

A dwelling containing four or fewer families; or
A single unit residence dwelling that has since been converted or subdivided into condominiums or apartments.

Residual oil means crude oil, fuel oil that does not comply with the specifications under the definition of distillate oil, and all fuel oil numbers 4, 5, and 6, as defined by the American Society of Testing and Materials in ASTM D396-10 (incorporated by reference, see §63.14(b)).

Responsible official means responsible official as defined in §70.2.

Secondary material means the material as defined in §241.2 of this chapter.

Shutdown means the cessation of operation of a boiler or process heater for any purpose. Shutdown begins either when none of the steam from the boiler is supplied for heating and/or producing electricity, or for any other purpose, or at the point of no fuel being fired in the boiler or process heater, whichever is earlier. Shutdown ends when there is no steam and no heat being supplied and no fuel being fired in the boiler or process heater.

Sloped grate means a unit where the solid fuel is fed to the top of the grate where it slides downwards; while sliding the fuel first dries and then ignites and burns. The ash is deposited at the bottom of the grate. Fluidized bed, Dutch oven, pile burner, hybrid suspension grate, suspension burners, and fuel cells are not considered to be a sloped grate design.

Solid fossil fuel includes, but is not limited to, coal, coke, petroleum coke, and tire derived fuel.

Solid fuel means any solid fossil fuel or biomass or bio-based solid fuel.

Startup means either the first-ever firing of fuel in a boiler or process heater for the purpose of supplying steam or heat for heating and/or producing electricity, or for any other purpose, or the firing of fuel in a boiler after a shutdown event for any purpose. Startup ends when any of the steam or heat from the boiler or process heater is supplied for heating, and/or producing electricity, or for any other purpose.

Steam output means:

For a boiler that produces steam for process or heating only (no power generation), the energy content in terms of MMBtu of the boiler steam output,
§ 63.7575

(2) For a boiler that cogenerates process steam and electricity (also known as combined heat and power), the total energy output, which is the sum of the energy content of the steam exiting the turbine and sent to process in MMBtu and the energy of the electricity generated converted to MMBtu at a rate of 10,000 Btu per kilowatt-hour generated (10 MMBtu per megawatt-hour), and

(3) For a boiler that generates only electricity, the alternate output-based emission limits would be calculated using Equations 21 through 25 of this section, as appropriate:

(i) For emission limits for boilers in the unit designed to burn solid fuel subcategory use Equation 21 of this section:

\[\text{EL}_{OBE} = \text{EL}_T \times 12.7 \text{ MMBtu/Mwh} \quad (\text{Eq. 21}) \]

Where:
\(\text{EL}_{OBE} \) = Emission limit in units of pounds per megawatt-hour.
\(\text{EL}_T \) = Appropriate emission limit from Table 1 or 2 of this subpart in units of pounds per million Btu heat input.

(ii) For PM and CO emission limits for boilers in one of the subcategories of units designed to burn coal use Equation 22 of this section:

\[\text{EL}_{OBE} = \text{EL}_T \times 12.2 \text{ MMBtu/Mwh} \quad (\text{Eq. 22}) \]

Where:
\(\text{EL}_{OBE} \) = Emission limit in units of pounds per megawatt-hour.
\(\text{EL}_T \) = Appropriate emission limit from Table 1 or 2 of this subpart in units of pounds per million Btu heat input.

(iii) For PM and CO emission limits for boilers in one of the subcategories of units designed to burn biomass use Equation 23 of this section:

\[\text{EL}_{OBE} = \text{EL}_T \times 13.9 \text{ MMBtu/Mwh} \quad (\text{Eq. 23}) \]

Where:
\(\text{EL}_{OBE} \) = Emission limit in units of pounds per megawatt-hour.
\(\text{EL}_T \) = Appropriate emission limit from Table 1 or 2 of this subpart in units of pounds per million Btu heat input.

(iv) For emission limits for boilers in one of the subcategories of units designed to burn liquid fuels use Equation 24 of this section:

\[\text{EL}_{OBE} = \text{EL}_T \times 13.8 \text{ MMBtu/Mwh} \quad (\text{Eq. 24}) \]

Where:
\(\text{EL}_{OBE} \) = Emission limit in units of pounds per megawatt-hour.
\(\text{EL}_T \) = Appropriate emission limit from Table 1 or 2 of this subpart in units of pounds per million Btu heat input.

(v) For emission limits for boilers in the unit designed to burn gas 2 (other) subcategory, use Equation 25 of this section:
Where:

\[\text{EL}_{\text{OBE}} = \text{EL}_T \times 10.4 \text{ MMBtu/Mwh} \quad (\text{Eq. 25}) \]

\(\text{EL}_{\text{OBE}} \) = Emission limit in units of pounds per million Btu heat input.

\(\text{EL}_T \) = Appropriate emission limit from Table 1 or 2 of this subpart in units of pounds per million Btu heat input.

Stoker means a unit consisting of a mechanically operated fuel feeding mechanism, a stationary or moving grate to support the burning of fuel and admit under-grate air to the fuel, an overfire air system to complete combustion, and an ash discharge system. This definition of stoker includes air swept stokers. There are two general types of stokers: Underfeed and overfeed. Overfeed stokers include mass feed and spreader stokers. Fluidized bed, dutch oven, pile burner, hybrid suspension grate, suspension burners, and fuel cells are not considered to be a stoker design.

Stoker/sloped grate/other unit designed to burn kiln dried biomass means the unit is in the units designed to burn biomass/bio-based solid subcategory that is either a stoker, sloped grate, or other combustor design and is not in the stoker/sloped grate/other units designed to burn wet biomass subcategory.

Stoker/sloped grate/other unit designed to burn wet biomass means the unit is in the units designed to burn biomass/bio-based solid subcategory that is either a stoker, sloped grate, or other combustor design and any of the biomass/bio-based solid fuel combusted in the unit exceeds 20 percent moisture on an annual heat input basis.

Suspension burner means a unit designed to fire dry biomass/biobased solid particles in suspension that are conveyed in an airstream to the furnace like pulverized coal. The combustion of the fuel material is completed on a grate or floor below. The biomass/bio-based fuel combusted in the unit shall not exceed 20 percent moisture on an annual heat input basis. Fluidized bed, dutch oven, pile burner, and hybrid suspension grate units are not part of the suspension burner subcategory.

Temporary boiler means any gaseous or liquid fuel boiler that is designed to, and is capable of, being carried or moved from one location to another by means of, for example, wheels, skids, carrying handles, dollies, trailers, or platforms. A boiler is not a temporary boiler if any one of the following conditions exists:

1. The equipment is attached to a foundation.

2. The boiler or a replacement remains at a location within the facility and performs the same or similar function for more than 12 consecutive months, unless the regulatory agency approves an extension. An extension may be granted by the regulating agency upon petition by the owner or operator of a unit specifying the basis for such a request. Any temporary boiler that replaces a temporary boiler at a location and performs the same or similar function will be included in calculating the consecutive time period.

3. The equipment is located at a seasonal facility and operates during the full annual operating period of the seasonal facility, remains at the facility for at least 2 years, and operates at that facility for at least 3 months each year.

4. The equipment is moved from one location to another within the facility but continues to perform the same or similar function and serve the same electricity, steam, and/or hot water system in an attempt to circumvent the residence time requirements of this definition.

Total selected metals (TSM) means the sum of the following metallic hazardous air pollutants: arsenic, beryllium, cadmium, chromium, lead, manganese, nickel and selenium.

Traditional fuel means the fuel as defined in §241.2 of this chapter.

Tune-up means adjustments made to a boiler or process heater in accordance with the procedures outlined in §63.7540(a)(10).

Ultra low sulfur liquid fuel means a distillate oil that has less than or equal to 15 ppm sulfur.
Unit designed to burn biomass/bio-based solid subcategory includes any boiler or process heater that burns at least 10 percent biomass or bio-based solids on an annual heat input basis in combination with solid fossil fuels, liquid fuels, or gaseous fuels.

Unit designed to burn coal/solid fossil fuel subcategory includes any boiler or process heater that burns any coal or other solid fossil fuel alone or at least 10 percent coal or other solid fossil fuel on an annual heat input basis in combination with liquid fuels, gaseous fuels, or less than 10 percent biomass and bio-based solids on an annual heat input basis.

Unit designed to burn gas 1 subcategory includes any boiler or process heater that burns only natural gas, refinery gas, and/or other gas 1 fuels. Gaseous fuel boilers and process heaters that burn liquid fuel for periodic testing of liquid fuel, maintenance, or operator training, not to exceed a combined total of 48 hours during any calendar year, are included in this definition. Gaseous fuel boilers and process heaters that burn liquid fuel during periods of gas curtailment or gas supply interruptions of any duration are also included in this definition.

Unit designed to burn gas 2 (other) subcategory includes any boiler or process heater that is not in the unit designed to burn gas 1 subcategory and burns any gaseous fuels either alone or in combination with less than 10 percent coal/solid fossil fuel, and less than 10 percent biomass/bio-based solid fuel on an annual heat input basis, and no liquid fuels. Gaseous fuel boilers and process heaters that are not in the unit designed to burn gas 1 subcategory and that burn liquid fuel for periodic testing of liquid fuel, maintenance, or operator training, not to exceed a combined total of 48 hours during any calendar year, are included in this definition. Gaseous fuel boilers and process heaters that are not in the unit designed to burn gas 1 subcategory and that burn liquid fuel during periods of gas curtailment or gas supply interruption of any duration are also included in this definition.

Unit designed to burn liquid fuel that is a non-continental unit means an industrial, commercial, or institutional boiler or process heater meeting the definition of the unit designed to burn liquid subcategory located in the State of Hawaii, the Virgin Islands, Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern Mariana Islands.

Unit designed to burn solid fuel subcategory means any boiler or process heater that burns only solid fuels or at least 10 percent solid fuel on an annual heat input basis in combination with liquid fuels or gaseous fuels.

Vegetable oil means oils extracted from vegetation.

Voluntary Consensus Standards or VCS mean technical standards (e.g., materials specifications, test methods, sampling procedures, business practices) developed or adopted by one or more voluntary consensus bodies. EPA/Office of Air Quality Planning and Standards, by precedent, has only used VCS that are written in English. Examples of VCS bodies are: American Society of Testing and Materials (ASTM 100 Barr
Environmental Protection Agency § 63.7575

Waste heat boiler means a device that recovers normally unused energy (i.e., hot exhaust gas) and converts it to usable heat. Waste heat boilers are also referred to as heat recovery steam generators. Waste heat boilers are heat exchangers generating steam from incoming hot exhaust gas from an industrial (e.g., thermal oxidizer, kiln, furnace) or power (e.g., combustion turbine, engine) equipment. Duct burners are sometimes used to increase the temperature of the incoming hot exhaust gas.

Waste heat process heater means an enclosed device that recovers normally unused energy (i.e., hot exhaust gas) and converts it to usable heat. Waste heat process heaters are also referred to as recuperative process heaters. This definition includes both fired and unfired waste heat process heaters.

Wet scrubber means any add-on air pollution control device that mixes an aqueous stream or slurry with the exhaust gases from a boiler or process heater to control emissions of particulate matter or to absorb and neutralize acid gases, such as hydrogen chloride. A wet scrubber creates an aqueous stream or slurry as a byproduct of the emissions control process.

Work practice standard means any design, equipment, work practice, or operational standard, or combination thereof, that is promulgated pursuant to section 112(h) of the Clean Air Act.

[78 FR 15664, Mar. 21, 2011, as amended at 78 FR 7163, Jan. 31, 2013]
TABLE 1 TO SUBPART DDDDD OF PART 63—EMISSION LIMITS FOR NEW OR RECONSTRUCTED BOILERS AND PROCESS HEATERS

As stated in §63.7500, you must comply with the following applicable emission limits:

<table>
<thead>
<tr>
<th>If your boiler or process heater is in this subcategory</th>
<th>For the following pollutants</th>
<th>The emissions must not exceed the following emission limits, except during startup and shutdown</th>
<th>Or the emissions must not exceed the following alternative output-based limits, except during startup and shutdown</th>
<th>Using this specified sampling volume or test run duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Units in all subcategories designed to burn solid fuel.</td>
<td>a. HCl</td>
<td>2.2E–02 lb per MMBtu of heat input.</td>
<td>2.5E–02 lb per MMBtu of steam output or 0.28 lb per MWh.</td>
<td>For M26A, collect a minimum of 1 dscm per run; for M26 collect a minimum of 120 liters per run.</td>
</tr>
<tr>
<td></td>
<td>b. Mercury</td>
<td>8.0E–07 lb per MMBtu of heat input.</td>
<td>8.7E–07 lb per MMBtu of steam output or 1.1E–05 lb per MWh.</td>
<td>For M29, collect a minimum of 4 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 collect a minimum of 4 dscm.</td>
</tr>
<tr>
<td>2. Units designed to burn coal/solid fossil fuel.</td>
<td>a. Filterable PM (or TSM).</td>
<td>1.1E–03 lb per MMBtu of heat input; or (2.3E–05 lb per MMBtu of heat input).</td>
<td>1.1E–03 lb per MMBtu of steam output or 1.4E–02 lb per MWh; or (2.7E–05 lb per MMBtu of steam output or 2.9E–04 lb per MWh).</td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
<tr>
<td>3. Pulverized coal boilers designed to burn coal/solid fossil fuel.</td>
<td>a. Carbon monoxide (CO) (or CEMS).</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (320 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>0.11 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>4. Stokers designed to burn coal/solid fossil fuel.</td>
<td>a. CO (or CEMS)</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (340 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>0.12 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>5. Fluidized bed units designed to burn coal/solid fossil fuel.</td>
<td>a. CO (or CEMS)</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (230 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>0.11 lb per MMBtu of steam output or 1.5 lb per MWh; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>6. Fluidized bed units with an integrated heat exchanger designed to burn coal/solid fossil fuel.</td>
<td>a. CO (or CEMS)</td>
<td>140 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (150 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>1.2E–01 lb per MMBtu of steam output or 1.5 lb per MWh; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>If your boiler or process heater is in this subcategory</td>
<td>For the following pollutants</td>
<td>The emissions must not exceed the following emission limits, except during startup and shutdown</td>
<td>Or the emissions must not exceed the following alternative output-based limits, except during startup and shutdown</td>
<td>Using this specified sampling volume or test run duration</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>7. Stokers/sloped grate/others designed to burn wet biomass fuel</td>
<td>a. CO (or CEMS)</td>
<td>620 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (390 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>5.8E–01 lb per MMBtu of steam output or 6.8 lb per MWh; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM)</td>
<td>3.0E–02 lb per MMBtu of heat input; or (2.6E–05 lb per MMBtu of heat input).</td>
<td>3.5E–02 lb per MMBtu of steam output or 4.2E–01 lb per MWh; or (2.7E–05 lb per MMBtu of steam output or 3.7E–04 lb per MWh).</td>
<td>Collect a minimum of 2 dscm per run.</td>
</tr>
<tr>
<td>8. Stokers/sloped grate/others designed to burn kiln-dried biomass fuel</td>
<td>a. CO</td>
<td>460 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
<td>4.2E–01 lb per MMBtu of steam output or 5.1 lb per MWh.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM)</td>
<td>3.0E–02 lb per MMBtu of heat input; or (4.0E–03 lb per MMBtu of heat input).</td>
<td>3.5E–02 lb per MMBtu of steam output or 4.2E–01 lb per MWh; or (4.2E–03 lb per MMBtu of steam output or 5.6E–02 lb per MWh).</td>
<td>Collect a minimum of 2 dscm per run.</td>
</tr>
<tr>
<td>9. Fluidized bed units designed to burn biomass/bio-based solids</td>
<td>a. CO (or CEMS)</td>
<td>230 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (310 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>2.2E–01 lb per MMBtu of steam output or 2.6 lb per MWh; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM)</td>
<td>9.8E–03 lb per MMBtu of heat input; or (9.3E–05 lb per MMBtu of heat input).</td>
<td>1.2E–02 lb per MMBtu of steam output or 0.14 lb per MWh; or (1.1E–04 lb per MMBtu of steam output or 1.2E–03 lb per MWh).</td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
<tr>
<td>10. Suspension burners designed to burn biomass/bio-based solids</td>
<td>a. CO (or CEMS)</td>
<td>2,400 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (2,000 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average).</td>
<td>1.9 lb per MMBtu of steam output or 27 lb per MWH; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM)</td>
<td>3.0E–02 lb per MMBtu of heat input; or (6.5E–03 lb per MMBtu of heat input).</td>
<td>3.1E–02 lb per MMBtu of steam output or 4.2E–01 lb per MWH; or (6.6E–03 lb per MMBtu of steam output or 9.1E–02 lb per MWH).</td>
<td>Collect a minimum of 2 dscm per run.</td>
</tr>
<tr>
<td>If your boiler or process heater is in this subcategory . . .</td>
<td>For the following pollutants . . .</td>
<td>The emissions must not exceed the following emission limits, except during startup and shutdown . . .</td>
<td>Or the emissions must not exceed the following alternative output-based limits, except during startup and shutdown . . .</td>
<td>Using this specified sampling volume or test run duration . . .</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11. Dutch Ovens/Pile burners designed to burn biomass/bio-based solids.</td>
<td>a. CO (or CEMS) 330 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (520 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average).</td>
<td>3.5E–01 lb per MMBtu of steam output or 3.6 lb per MWh; 3-run average.</td>
<td>4.3E–03 lb per MMBtu of steam output or 4.5E–02 lb per MWh; or (5.2E–05 lb per MMBtu of steam output or 5.9E–04 lb per MWh).</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>b. Filterable PM (or TSM), 3.2E–03 lb per MMBtu of heat input; or (3.9E–05 lb per MMBtu of heat input).</td>
<td></td>
<td></td>
<td></td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
<tr>
<td>12. Fuel cell units designed to burn biomass/bio-based solids.</td>
<td>a. CO 910 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
<td>1.1 lb per MMBtu of steam output or 1.0E+01 lb per MWh.</td>
<td></td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>b. Filterable PM (or TSM), 2.0E–02 lb per MMBtu of heat input; or (2.9E–05 lb per MMBtu of heat input).</td>
<td></td>
<td></td>
<td></td>
<td>Collect a minimum of 2 dscm per run.</td>
</tr>
<tr>
<td>13. Hybrid suspension grate boiler designed to burn biomass/bio-based solids.</td>
<td>a. CO (or CEMS) 1,100 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (900 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>1.4 lb per MMBtu of steam output or 12 lb per MWh; 3-run average.</td>
<td></td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>b. Filterable PM (or TSM), 2.6E–02 lb per MMBtu of heat input; or (4.4E–04 lb per MMBtu of heat input).</td>
<td></td>
<td></td>
<td></td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
<tr>
<td>14. Units designed to burn liquid fuel.</td>
<td>a. HCl 4.4E–04 lb per MMBtu of heat input.</td>
<td>4.8E–04 lb per MMBtu of steam output or 6.1E–03 lb per MWh.</td>
<td></td>
<td>For M26A: Collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.</td>
</tr>
<tr>
<td>b. Mercury 4.8E–07 a lb per MMBtu of heat input.</td>
<td></td>
<td></td>
<td></td>
<td>For M29, collect a minimum of 4 dscm per run; for M36A or M36B, collect a minimum sample as specified in the method; for ASTM D6784b collect a minimum of 4 dscm.</td>
</tr>
<tr>
<td>15. Units designed to burn heavy liquid fuel.</td>
<td>a. CO 130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average.</td>
<td>0.13 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average.</td>
<td></td>
<td>1 hr minimum sampling time.</td>
</tr>
</tbody>
</table>
Environmental Protection Agency

Pt. 63, Subpt. DDDD, Table 1

[Units with heat input capacity of 10 million Btu per hour or greater]

<table>
<thead>
<tr>
<th>If your boiler or process heater is in this subcategory . . .</th>
<th>For the following pollutants . . .</th>
<th>The emissions must not exceed the following emission limits, except during startup and shutdown . . .</th>
<th>Or the emissions must not exceed the following alternative output-based limits, except during startup and shutdown . . .</th>
<th>Using this specified sampling volume or test run duration . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Units designed to burn light liquid fuel.</td>
<td>b. Filterable PM (or TSM).</td>
<td>1.3E–02 lb per MMBtu of heat input; or (7.5E–05 lb per MMBtu of heat input).</td>
<td>1.5E–02 lb per MMBtu of steam output or 1.6E–01 lb per MWh; or (8.2E–00 lb per MMBtu of steam output or 1.1E–03 lb per MWh).</td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
<tr>
<td></td>
<td>a. CO</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
<td>0.13 lb per MMBtu of steam output or 1.4 lb per MWh.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>17. Units designed to burn liquid fuel that are non-continental units.</td>
<td>b. Filterable PM (or TSM).</td>
<td>1.1E–03 lb per MMBtu of heat input; or (2.9E–05 lb per MMBtu of heat input).</td>
<td>1.2E–03 lb per MMBtu of steam output or 1.6E–02 lb per MWh; or (3.2E–05 lb per MMBtu of steam output or 4.6E–04 lb per MWh).</td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
<tr>
<td></td>
<td>a. CO</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average based on stack test.</td>
<td>0.13 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>18. Units designed to burn gas 2 (other) gases.</td>
<td>b. Filterable PM (or TSM).</td>
<td>2.3E–02 lb per MMBtu of heat input; or (9.6E–04 lb per MMBtu of heat input).</td>
<td>2.5E–02 lb per MMBtu of steam output or 3.2E–01 lb per MWh; or (9.4E–04 lb per MMBtu of steam output or 6.1E–04 lb per MWh).</td>
<td>Collect a minimum of 4 dscm per run.</td>
</tr>
<tr>
<td></td>
<td>a. CO</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
<td>0.16 lb per MMBtu of steam output or 1.0 lb per MWh.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. HCl</td>
<td>1.7E–03 lb per MBBtu of heat input.</td>
<td>2.9E–03 lb per MMBtu of steam output or 1.8E–02 lb per MWh.</td>
<td>For M28A, Collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.</td>
</tr>
<tr>
<td></td>
<td>c. Mercury</td>
<td>7.9E–06 lb per MBBtu of heat input.</td>
<td>1.4E–05 lb per MBBtu of steam output or 8.3E–05 lb per MWh.</td>
<td>For M29, collect a minimum of 3 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784, collect a minimum of 3 dscm.</td>
</tr>
<tr>
<td></td>
<td>d. Filterable PM (or TSM).</td>
<td>6.7E–03 lb per MBBtu of heat input; or (2.1E–04 lb per MMBtu of heat input).</td>
<td>1.2E–02 lb per MBBtu of steam output or 7.0E–02 lb per MWh; or (3.5E–04 lb per MMBtu of steam output or 2.2E–03 lb per MWh).</td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
</tbody>
</table>

If you are conducting stack tests to demonstrate compliance and your performance tests for this pollutant for at least 2 consecutive years show that your emissions are at or below this limit, you can skip testing according to § 63.7515 if all of the other provisions of § 63.7515 are met. For all other pollutants that do not contain a footnote "a", your performance tests for this pollutant for at least 2 consecutive years must show that your emissions are at or below 75 percent of this limit in order to qualify for skip testing.

Incorporated by reference, see § 63.14.

If your affected source is a new or reconstructed affected source that commenced construction or reconstruction after June 4, 2010, and before January 31, 2013, you may comply with the emission limits in Tables 11, 12 or 13 to this subpart until January 31, 2016. On and after January 31, 2016, you must comply with the emission limits in Table 1 to this subpart.

[78 FR 7193, Jan. 31, 2013]
Table 2 to Subpart DDDDD of Part 63—Emission Limits for Existing Boilers and Process Heaters

As stated in §63.7500, you must comply with the following applicable emission limits:

<table>
<thead>
<tr>
<th>If your boiler or process heater is in this subcategory . . .</th>
<th>For the following pollutants . . .</th>
<th>The emissions must not exceed the following emission limits, except during startup and shutdown . . .</th>
<th>The emissions must not exceed the following alternative output-based limits, except during startup and shutdown . . .</th>
<th>Using this specified sampling volume or test run duration . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Units in all subcategories designed to burn solid fuel.</td>
<td>a. HCl 2.2E–02 lb per MMBtu of heat input.</td>
<td>2.5E–02 lb per MMBtu of steam output or 0.27 lb per MWh.</td>
<td>6.4E–06 lb per MMBtu of steam output or 7.3E–05 lb per MWh.</td>
<td>For M26A, Collect a minimum of 1 dscm per run; for M30B, collect a minimum of 120 liters per run.</td>
</tr>
<tr>
<td></td>
<td>b. Mercury 5.7E–06 lb per MMBtu of heat input.</td>
<td></td>
<td></td>
<td>For M29, collect a minimum of 3 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784, collect a minimum of 3 dscm.</td>
</tr>
<tr>
<td>2. Units designed to burn coal/solid fossil fuel.</td>
<td>a. Filterable PM (or TSM)</td>
<td>4.0E–02 lb per MMBtu of heat input; or (5.3E–05 lb per MMBtu of heat input).</td>
<td>4.2E–02 lb per MMBtu of steam output or 4.9E–01 lb per MWh; (5.6E–05 lb per MMBtu of steam output or 6.5E–04 lb per MWh).</td>
<td>Collect a minimum of 2 dscm per run.</td>
</tr>
<tr>
<td>3. Pulverized coal boilers designed to burn coal/solid fossil fuel.</td>
<td>a. CO (or CEMS) 130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (320 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>0.11 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average.</td>
<td></td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>4. Stokers designed to burn coal/solid fossil fuel.</td>
<td>a. CO (or CEMS) 160 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (340 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>0.14 lb per MMBtu of steam output or 1.7 lb per MWh; 3-run average.</td>
<td></td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>5. Fluidized bed units designed to burn coal/solid fossil fuel.</td>
<td>a. CO (or CEMS) 130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (230 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>0.12 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average.</td>
<td></td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>6. Fluidized bed units with an integrated heat exchanger designed to burn coal/solid fossil fuel.</td>
<td>a. CO (or CEMS) 140 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (150 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>1.3E–01 lb per MMBtu of steam output or 1.5 lb per MWh; 3-run average.</td>
<td></td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>If your boiler or process heater is in this subcategory...</td>
<td>For the following pollutants...</td>
<td>The emissions must not exceed the following emission limits, except during startup and shutdown...</td>
<td>The emissions must not exceed the following alternative output-based limits, except during startup and shutdown...</td>
<td>Using this specified sampling volume or test run duration...</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7. Stokers/sloped grate/others designed to burn wet biomass fuel.</td>
<td>a. CO (or CEMS)</td>
<td>1,500 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (720 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>1.4 lb per MMBtu of steam output or 17 lb per MWh; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM).</td>
<td>3.7E–02 lb per MMBtu of heat input; or (2.4E–04 lb per MMBtu of heat input).</td>
<td>4.3E–02 lb per MMBtu of steam output or 5.2E–01 lb per MWh; or (2.8E–04 lb per MMBtu of steam output or 3.4E–04 lb per MWh).</td>
<td>Collect a minimum of 2 dscm per run.</td>
</tr>
<tr>
<td>8. Stokers/sloped grate/others designed to burn kiln-dried biomass fuel.</td>
<td>a. CO</td>
<td>460 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
<td>4.2E–01 lb per MMBtu of steam output or 5.1 lb per MWh.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM).</td>
<td>3.2E–01 lb per MMBtu of heat input; or (4.0E–03 lb per MMBtu of heat input).</td>
<td>3.7E–01 lb per MMBtu of steam output or 4.5 lb per MWh; or (4.6E–03 lb per MMBtu of steam output or 5.6E–02 lb per MWh).</td>
<td>Collect a minimum of 1 dscm per run.</td>
</tr>
<tr>
<td>9. Fluidized bed units designed to burn biomass/bio-based solid.</td>
<td>a. CO (or CEMS)</td>
<td>470 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (310 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>4.6E–01 lb per MMBtu of steam output or 5.2 lb per MWh; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM).</td>
<td>1.1E–01 lb per MMBtu of heat input; or (1.2E–03 lb per MMBtu of heat input).</td>
<td>1.4E–01 lb per MMBtu of steam output or 1.6 lb per MWh; or (1.5E–03 lb per MMBtu of steam output or 1.7E–02 lb per MWh).</td>
<td>Collect a minimum of 1 dscm per run.</td>
</tr>
<tr>
<td>10. Suspension burners designed to burn biomass/bio-based solid.</td>
<td>a. CO (or CEMS)</td>
<td>2,400 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (2,000 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average).</td>
<td>1.9 lb per MMBtu of steam output or 27 lb per MWh; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM).</td>
<td>5.1E–02 lb per MMBtu of heat input; or (6.6E–03 lb per MMBtu of heat input).</td>
<td>5.2E–02 lb per MMBtu of steam output or 7.1E–01 lb per MWh; or (6.6E–03 lb per MMBtu of steam output or 9.1E–02 lb per MWh).</td>
<td>Collect a minimum of 2 dscm per run.</td>
</tr>
</tbody>
</table>
If your boiler or process heater is in this subcategory . . .

For the following pollutants . . .

The emissions must not exceed the following emission limits, except during startup and shutdown . . .

The emissions must not exceed the following alternative output-based limits, except during startup and shutdown . . .

Using this specified sampling volume or test run duration . . .

<table>
<thead>
<tr>
<th>If your boiler or process heater is in this subcategory . . .</th>
<th>For the following pollutants . . .</th>
<th>The emissions must not exceed the following emission limits, except during startup and shutdown . . .</th>
<th>The emissions must not exceed the following alternative output-based limits, except during startup and shutdown . . .</th>
<th>Using this specified sampling volume or test run duration . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Dutch Ovens/Pile burners designed to burn biomass/bio-based solid.</td>
<td>a. CO (or CEMS) 770 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (520 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average).</td>
<td>8.4E–01 lb per MMBtu of steam output or 8.4 lb per MWh; 3-run average.</td>
<td>3.9E–01 lb per MMBtu of steam output or 3.9 lb per MWh; or (2.8E–02 lb per MMBtu of steam output or 2.8E–02 lb per MWh).</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM). 2.8E–01 lb per MMBtu of heat input; or (2.0E–03 lb per MMBtu of heat input).</td>
<td>Collect a minimum of 1 dscm per run.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Fuel cell units designed to burn biomass/bio-based solid.</td>
<td>a. CO 1,100 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
<td>2.4 lb per MMBtu of steam output or 12 lb per MWh.</td>
<td>5.5E–02 lb per MMBtu of steam output or 2.8E–01 lb per MWh; or (2.8E–03 lb per MMBtu of steam output or 2.8E–02 lb per MWh).</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM). 2.0E–02 lb per MMBtu of heat input; or (5.8E–03 lb per MMBtu of heat input).</td>
<td>Collect a minimum of 2 dscm per run.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Hybrid suspension grate units designed to burn biomass/bio-based solid.</td>
<td>a. CO (or CEMS) 2,800 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (900 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>2.8 lb per MMBtu of steam output or 31 lb per MWh; 3-run average.</td>
<td>5.5E–01 lb per MMBtu of steam output or 6.2 lb per MWh; or (5.7E–04 lb per MMBtu of steam output or 6.3E–03 lb per MWh).</td>
<td>Collect a minimum of 1 dscm per run.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM). 4.4E–01 lb per MMBtu of heat input; or (4.5E–04 lb per MMBtu of heat input).</td>
<td>Collect a minimum sample as specified in the method, for ASTM D6784b collect a minimum of 2 dscm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Units designed to burn liquid fuel.</td>
<td>a. HCl 1.1E–03 lb per MMBtu of heat input.</td>
<td>1.4E–03 lb per MMBtu of steam output or 1.6E–02 lb per MWh.</td>
<td>For M26A, collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Mercury 2.0E–06 lb per MMBtu of heat input.</td>
<td>2.5E–06 lb per MMBtu of steam output or 2.8E–05 lb per MWh.</td>
<td>For M29, collect a minimum of 3 dscm per run; for M30A or M30B collect a minimum sample as specified in the method, for ASTM D6784d collect a minimum of 2 dscm.</td>
<td></td>
</tr>
<tr>
<td>15. Units designed to burn heavy liquid fuel.</td>
<td>a. CO 130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average.</td>
<td>0.13 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average.</td>
<td></td>
<td>1 hr minimum sampling time.</td>
</tr>
</tbody>
</table>
Environmental Protection Agency

Pt. 63, Subpt. DDDDD, Table 2

[Units with heat input capacity of 10 million Btu per hour or greater]

<table>
<thead>
<tr>
<th>If your boiler or process heater is in this subcategory . . .</th>
<th>For the following pollutants . . .</th>
<th>The emissions must not exceed the following emission limits, except during startup and shutdown . . .</th>
<th>The emissions must not exceed the following alternative output-based limits, except during startup and shutdown . . .</th>
<th>Using this specified sampling volume or test run duration . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Units designed to burn light liquid fuel.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Filterable PM (or TSM).</td>
<td>6.2E–02 lb per MMBtu of heat input; or (2.0E–04 lb per MMBtu of heat input).</td>
<td>7.5E–02 lb per MMBtu of steam output or 7.0E–02 lb per MWh; or (2.2E–03 lb per MMBtu of steam output or 2.0E–03 lb per MWh).</td>
<td>Collect a minimum of 1 dscm per run.</td>
<td></td>
</tr>
<tr>
<td>a. CO</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
<td>0.13 lb per MMBtu of steam output or 1.4 lb per MWh.</td>
<td>1 hr minimum sampling time.</td>
<td></td>
</tr>
<tr>
<td>b. Filterable PM (or TSM).</td>
<td>7.5E–03 lb per MMBtu of heat input; or (6.2E–05 lb per MMBtu of heat input).</td>
<td>9.6E–03 lb per MMBtu of steam output or 1.1E–01 lb per MWh; or (7.5E–05 lb per MMBtu of steam output or 8.6E–04 lb per MWh).</td>
<td>Collect a minimum of 3 dscm per run.</td>
<td></td>
</tr>
<tr>
<td>17. Units designed to burn liquid fuel that are non-continental units.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Filterable PM (or TSM).</td>
<td>2.7E–01 lb per MMBtu of heat input; or (8.6E–04 lb per MMBtu of heat input).</td>
<td>3.3E–01 lb per MMBtu of steam output or 3.8 lb per MWh; or (1.1E–03 lb per MMBtu of steam output or 1.2E–02 lb per MWh).</td>
<td>Collect a minimum of 2 dscm per run.</td>
<td></td>
</tr>
<tr>
<td>a. CO</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average based on stack test.</td>
<td>0.13 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average.</td>
<td>1 hr minimum sampling time.</td>
<td></td>
</tr>
<tr>
<td>18. Units designed to burn gas 2 (other) gases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. HCl</td>
<td>1.7E–03 lb per MMBtu of heat input.</td>
<td>2.9E–03 lb per MMBtu of steam output or 1.8E–02 lb per MWh.</td>
<td>For M26A, collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.</td>
<td></td>
</tr>
<tr>
<td>a. CO</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
<td>0.16 lb per MMBtu of steam output or 1.0 lb per MWh.</td>
<td>1 hr minimum sampling time.</td>
<td></td>
</tr>
<tr>
<td>c. Mercury</td>
<td>7.5E–06 lb per MMBtu of heat input.</td>
<td>1.4E–05 lb per MMBtu of steam output or 8.3E–05 lb per MWh.</td>
<td>For M29, collect a minimum of 3 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784a collect a minimum of 2 dscm.</td>
<td></td>
</tr>
<tr>
<td>d. Filterable PM (or TSM).</td>
<td>6.7E–03 lb per MMBtu of heat input or (2.1E–04 lb per MMBtu of heat input).</td>
<td>1.2E–02 lb per MMBtu of steam output or 7.0E–02 lb per MWh; or (3.5E–04 lb per MMBtu of steam output or 2.2E–03 lb per MWh).</td>
<td>Collect a minimum of 3 dscm per run.</td>
<td></td>
</tr>
</tbody>
</table>

*a If you are conducting stack tests to demonstrate compliance and your performance tests for this pollutant for at least 2 consecutive years show that your emissions are at or below this limit, you can skip testing according to § 63.7515 if all of the other provisions of § 63.7515 are met. For all other pollutants that do not contain a footnote a, your performance tests for this pollutant for at least 2 consecutive years must show that your emissions are at or below 75 percent of this limit in order to qualify for skip testing.

*b Incorporated by reference, see § 63.14.

[78 FR 7195, Jan. 31, 2013]
Table 3 to Subpart DDDDD of Part 63—Work Practice Standards

As stated in §63.7500, you must comply with the following applicable work practice standards:

<table>
<thead>
<tr>
<th>If your unit is . . .</th>
<th>You must meet the following . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A new or existing boiler or process heater with a continuous oxygen trim system that maintains an optimum air to fuel ratio, or a heat input capacity of less than or equal to 5 million Btu per hour in any of the following subcategories: unit designed to burn gas 1; unit designed to burn gas 2 (other); or unit designed to burn light liquid, or a limited use boiler or process heater.</td>
<td>Conduct a tune-up of the boiler or process heater every 5 years as specified in §63.7540.</td>
</tr>
<tr>
<td>2. A new or existing boiler or process heater without a continuous oxygen trim system and with heat input capacity of less than 10 million Btu per hour in the unit designed to burn heavy liquid or unit designed to burn solid fuel subcategories; or a new or existing boiler or process heater with heat input capacity of less than 10 million Btu per hour, but greater than 5 million Btu per hour, in any of the following subcategories: unit designed to burn gas 1; unit designed to burn gas 2 (other); or unit designed to burn light liquid.</td>
<td>Conduct a tune-up of the boiler or process heater biennially as specified in §63.7540.</td>
</tr>
<tr>
<td>3. A new or existing boiler or process heater without a continuous oxygen trim system and with heat input capacity of 10 million Btu per hour or greater.</td>
<td>Conduct a tune-up of the boiler or process heater annually as specified in §63.7540. Units in either the Gas 1 or Metal Process Furnace subcategories will conduct this tune-up as a work practice for all regulated emissions under this subpart. Units in all other subcategories will conduct this tune-up as a work practice for dioxins/furans.</td>
</tr>
</tbody>
</table>
| 4. An existing boiler or process heater located at a major source facility, not including limited use units. | Must have a one-time energy assessment performed by a qualified energy assessor. An energy assessment completed on or after January 1, 2008, that meets or is amended to meet the energy assessment requirements in this table, satisfies the energy assessment requirement. A facility that operates under an energy management program compatible with ISO 50001 that includes the affected units also satisfies the energy assessment requirement. The energy assessment must include the following with extent of the evaluation for items a. to e. appropriate for the on-site technical hours listed in §63.7575:
 a. A visual inspection of the boiler or process heater system.
 b. An evaluation of operating characteristics of the boiler or process heater systems, specifications of energy using systems, operating and maintenance procedures, and unusual operating constraints.
 c. An inventory of major energy use systems consuming energy from affected boilers and process heaters and which are under the control of the boiler/process heater owner/operator.
 d. A review of available architectural and engineering plans, facility operation and maintenance procedures and logs, and fuel usage.
 e. A review of the facility’s energy management practices and provide recommendations for improvements consistent with the definition of energy management practices, if identified.
 f. A list of cost-effective energy conservation measures that are within the facility’s control.
 g. A list of the energy savings potential of the energy conservation measures identified.
 h. A comprehensive report detailing the ways to improve efficiency, the cost of specific improvements, benefits, and the time frame for recouping those investments. |
| 5. An existing or new boiler or process heater subject to emission limits in Table 1 or 2 or 11 through 13 to this subpart during startup. | You must operate all CMS during startup. For startup of a boiler or process heater, you must use one or a combination of the following clean fuels: natural gas, synthetic natural gas, propane, distillate oil, syngas, ultra-low sulfur diesel, fuel oil-soaked rags, kerosene, hydrogen, paper, cardboard, refinery gas, and liquefied petroleum gas. |
Environmental Protection Agency

<table>
<thead>
<tr>
<th>If your unit is . . .</th>
<th>You must meet the following . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you start firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases, you must vent emissions to the main stack(s) and engage all of the applicable control devices except limestone injection in fluidized bed combustion (FBC) boilers, dry scrubber, fabric filter, selective non-catalytic reduction (SNCR), and selective catalytic reduction (SCR). You must start your limestone injection in FBC boilers, dry scrubber, fabric filter, SNCR, and SCR systems as expeditiously as possible. Startup ends when steam or heat is supplied for any purpose. You must comply with all applicable emission limits at all times except for startup or shutdown periods conforming with this work practice. You must collect monitoring data during periods of startup, as specified in § 63.7535(b). You must keep records during periods of startup. You must provide reports concerning activities and periods of startup, as specified in § 63.7555.</td>
<td></td>
</tr>
<tr>
<td>6. An existing or new boiler or process heater subject to emission limits in Tables 1 or 2 or 11 through 13 to this subpart during shutdown.</td>
<td>You must operate all CMS during shutdown. While firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases during shutdown, you must vent emissions to the main stack(s) and operate all applicable control devices, except limestone injection in FBC boilers, dry scrubber, fabric filter, SNCR, and SCR. You must comply with all applicable emissions limits at all times except for startup or shutdown periods conforming with this work practice. You must collect monitoring data during periods of shutdown, as specified in § 63.7535(b). You must keep records during periods of shutdown. You must provide reports concerning activities and periods of shutdown, as specified in § 63.7555.</td>
</tr>
</tbody>
</table>

[78 FR 7198, Jan. 31, 2013]

Table 4 to Subpart DDDDD of Part 63—Operating Limits for Boilers and Process Heaters

As stated in §63.7500, you must comply with the applicable operating limits:

<table>
<thead>
<tr>
<th>When complying with a Table 1, 2, 11, 12, or 13 numerical emission limit using . . .</th>
<th>You must meet these operating limits . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wet PM scrubber control on a boiler not using a PM CPMS.</td>
<td>Maintain the 30-day rolling average pressure drop and the 30-day rolling average liquid flow rate at or above the lowest one-hour average pressure drop and the lowest one-hour average liquid flow rate, respectively, measured during the most recent performance test demonstrating compliance with the PM emission limits according to §63.7530(b) and Table 7 to this subpart.</td>
</tr>
<tr>
<td>2. Wet acid gas (HCl) scrubber control on a boiler not using a HCl CEMS.</td>
<td>Maintain the 30-day rolling average effluent pH at or above the lowest one-hour average pH and the 30-day rolling average liquid flow rate at or above the lowest one-hour average liquid flow rate measured during the most recent performance test demonstrating compliance with the HCl emission limitations according to §63.7530(b) and Table 7 to this subpart.</td>
</tr>
<tr>
<td>3. Fabric filter control on units not using a PM CPMS.</td>
<td>a. Maintain opacity to less than or equal to 10 percent opacity (daily block average); or</td>
</tr>
<tr>
<td></td>
<td>b. Install and operate a bag leak detection system according to §63.7525 and operate the fabric filter such that the bag leak detection system alert is not activated more than 5 percent of the operating time during each 6-month period.</td>
</tr>
<tr>
<td>4. Electrostatic precipitator control on units not using a PM CPMS.</td>
<td>a. This option is for boilers and process heaters that operate dry control systems (i.e., an ESP without a wet scrubber). Existing and new boilers and process heaters must maintain opacity to less than or equal to 10 percent opacity (daily block average); or</td>
</tr>
<tr>
<td></td>
<td>b. This option is only for boilers and process heaters not subject to PM CPMS or continuous compliance with an opacity limit (i.e., COMS). Maintain the 30-day rolling average total secondary electric power input of the electrostatic precipitator at or above the operating limits established during the performance test according to §63.7530(b) and Table 7 to this subpart.</td>
</tr>
<tr>
<td>5. Dry scrubber or carbon injection control on a boiler not using a mercury CEMS.</td>
<td>Maintain the minimum sorbent or carbon injection rate as defined in §63.7575 of this subpart.</td>
</tr>
<tr>
<td>6. Any other add-on air pollution control type on units not using a PM CPMS.</td>
<td>This option is for boilers and process heaters that operate dry control systems. Existing and new boilers and process heaters must maintain opacity to less than or equal to 10 percent opacity (daily block average).</td>
</tr>
</tbody>
</table>
When complying with a Table 1, 2, 11, 12, or 13 numerical emission limit using... You must meet these operating limits...

7. Fuel analysis

Maintain the fuel type or fuel mixture such that the applicable emission rates calculated according to §63.7530(c)(1), (2) and/or (3) is less than the applicable emission limits.

8. Performance testing

For boilers and process heaters that demonstrate compliance with a performance test, maintain the operating load of each unit such that it does not exceed 110 percent of the highest hourly average operating load recorded during the most recent performance test.

9. Oxygen analyzer system

For boilers and process heaters subject to a CO emission limit that demonstrate compliance with an O\textsubscript{2} analyzer system as specified in §63.7525(a), maintain the 30-day rolling average oxygen content at or above the lowest hourly average oxygen concentration measured during the most recent CO performance test, as specified in Table 8. This requirement does not apply to units that install an oxygen trim system since these units will set the trim system to the level specified in §63.7525(a).

10. SO\textsubscript{2} CEMS

For boilers or process heaters subject to an HCl emission limit that demonstrate compliance with an SO\textsubscript{2} CEMS, maintain the 30-day rolling average SO\textsubscript{2} emission rate at or below the highest hourly average SO\textsubscript{2} concentration measured during the most recent HCl performance test, as specified in Table 8.

[78 FR 7199, Jan. 31, 2013]

Table 5 to Subpart DDDDD of Part 63—Performance Testing Requirements

As stated in §63.7520, you must comply with the following requirements for performance testing for existing, new or reconstructed affected sources:

<table>
<thead>
<tr>
<th>To conduct a performance test for the following pollutant...</th>
<th>You must...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Filterable PM</td>
<td>a. Select sampling ports location and the number of traverse points.</td>
<td>Method 1 at 40 CFR part 60, appendix A–1 of this chapter.</td>
</tr>
<tr>
<td></td>
<td>b. Determine velocity and volumetric flow-rate of the stack gas.</td>
<td>Method 2, 2F, or 2G at 40 CFR part 60, appendix A–1 or A–2 to part 60 of this chapter.</td>
</tr>
<tr>
<td></td>
<td>c. Determine oxygen or carbon dioxide concentration of the stack gas.</td>
<td>Method 3A or 3B at 40 CFR part 60, Appendix A–2 to part 60 of this chapter, or ANSI/ASME PTC 19.10–1981.</td>
</tr>
<tr>
<td></td>
<td>d. Measure the moisture content of the stack gas.</td>
<td>Method 4 at 40 CFR part 60, appendix A–3 of this chapter.</td>
</tr>
<tr>
<td></td>
<td>e. Measure the PM emission concentration</td>
<td>Method 5 or 17 (positive pressure fabric filters must use Method SD) at 40 CFR part 60, appendix A–3 or A–6 of this chapter.</td>
</tr>
<tr>
<td></td>
<td>f. Convert emissions concentration to lb per MMBtu emission rates.</td>
<td>Method 19 F-factor methodology at 40 CFR part 60, appendix A–7 of this chapter.</td>
</tr>
<tr>
<td>2. TSM</td>
<td>a. Select sampling ports location and the number of traverse points.</td>
<td>Method 1 at 40 CFR part 60, appendix A–1 of this chapter.</td>
</tr>
<tr>
<td></td>
<td>b. Determine velocity and volumetric flow-rate of the stack gas.</td>
<td>Method 2, 2F, or 2G at 40 CFR part 60, appendix A–1 or A–2 of this chapter.</td>
</tr>
<tr>
<td></td>
<td>c. Determine oxygen or carbon dioxide concentration of the stack gas.</td>
<td>Method 3A or 3B at 40 CFR part 60, Appendix A–1 of this chapter, or ANSI/ASME PTC 19.10–1981.</td>
</tr>
<tr>
<td></td>
<td>d. Measure the moisture content of the stack gas.</td>
<td>Method 4 at 40 CFR part 60, appendix A–3 of this chapter.</td>
</tr>
<tr>
<td></td>
<td>e. Measure the TSM emission concentration</td>
<td>Method 29 at 40 CFR part 60, appendix A–8 of this chapter.</td>
</tr>
<tr>
<td></td>
<td>f. Convert emissions concentration to lb per MMBtu emission rates.</td>
<td>Method 19 F-factor methodology at 40 CFR part 60, appendix A–7 of this chapter.</td>
</tr>
<tr>
<td>3. Hydrogen chloride</td>
<td>a. Select sampling ports location and the number of traverse points.</td>
<td>Method 1 at 40 CFR part 60, appendix A–1 of this chapter.</td>
</tr>
<tr>
<td></td>
<td>b. Determine velocity and volumetric flow-rate of the stack gas.</td>
<td>Method 2, 2F, or 2G at 40 CFR part 60, appendix A–2 of this chapter.</td>
</tr>
<tr>
<td></td>
<td>c. Determine oxygen or carbon dioxide concentration of the stack gas.</td>
<td>Method 3A or 3B at 40 CFR part 60, Appendix A–2 of this chapter, or ANSI/ASME PTC 19.10–1981.</td>
</tr>
<tr>
<td></td>
<td>d. Measure the moisture content of the stack gas.</td>
<td>Method 4 at 40 CFR part 60, appendix A–3 of this chapter.</td>
</tr>
<tr>
<td></td>
<td>e. Measure the hydrogen chloride emission concentration.</td>
<td>Method 26 or 26A (M26 or M26A) at 40 CFR part 60, appendix A–8 of this chapter.</td>
</tr>
</tbody>
</table>
Environmental Protection Agency

Pt. 63, Subpt. DDDDD, Table 6

To conduct a performance test for the following pollutant... You must... Using...

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. CO</td>
<td>a. Select sampling ports location and the number of traverse points. Method 1 at 40 CFR part 60, appendix A–1 of this chapter. Method 3A or 3B at 40 CFR part 60, appendix A–3 of this chapter, or ASTM D6522–00 (Reapproved 2005), or ANSI/ASME PTC 19.10–1981.
b. Determine oxygen concentration of the stack gas. Method 3A or 3B at 40 CFR part 60, appendix A–3 of this chapter, or ASTM D6522–00 (Reapproved 2005), or ANSI/ASME PTC 19.10–1981.
c. Measure the moisture content of the stack gas. Method 3A or 3B at 40 CFR part 60, appendix A–3 of this chapter, or ASTM D6522–00 (Reapproved 2005), or ANSI/ASME PTC 19.10–1981.
d. Measure the CO emission concentration. Method 10 at 40 CFR part 60, appendix A–4 of this chapter. Use a measurement span value of 2 times the concentration of the applicable emission limit. Method 4 at 40 CFR part 60, appendix A–3 of this chapter. Method 10 at 40 CFR part 60, appendix A–4 of this chapter. Use a measurement span value of 2 times the concentration of the applicable emission limit. Method 4 at 40 CFR part 60, appendix A–3 of this chapter. Method 10 at 40 CFR part 60, appendix A–4 of this chapter. Use a measurement span value of 2 times the concentration of the applicable emission limit.</td>
</tr>
</tbody>
</table>

Table 6 to Subpart DDDDD of Part 63—Fuel Analysis Requirements

As stated in §63.7521, you must comply with the following requirements for fuel analysis testing for existing, new or reconstructed affected sources. However, equivalent methods (as defined in §63.7575) may be used in lieu of the prescribed methods at the discretion of the source owner or operator:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mercury</td>
<td>a. Collect fuel samples Procedure in §63.7521(c) or ASTM D5192<sup>a</sup>, or ASTM D7430<sup>a</sup>, or ASTM D6683<sup>a</sup>, or ASTM D2234/D2234M<sup>a</sup> (for coal) or EPA 1631 or EPA 1631E or ASTM D6323<sup>a</sup> (for solid), or EPA 821–R–01–013 for liquid or solid, or ASTM D4177<sup>a</sup> for liquid, or ASTM D4057<sup>a</sup> (for liquid), or equivalent. b. Composite fuel samples Procedure in §63.7521(d) or equivalent. c. Prepare composited fuel samples EPA SW–846–3050B<sup>a</sup> (for solid samples), EPA SW–846–3050A<sup>a</sup> (for liquid samples), ASTM D2013/D2013M<sup>a</sup> (for coal), ASTM D5198<sup>a</sup> (for biomass), or EPA 3050<sup>a</sup> (for solid fuel), or EPA 821–R–01–013<sup>a</sup> (for liquid or solid), or equivalent. d. Determine heat content of the fuel type. ASTM D5865<sup>a</sup> (for coal) or ASTM D711<sup>a</sup> (for biomass), or ASTM D9864<sup>a</sup> for liquids and other solids, or ASTM D240<sup>a</sup> or equivalent. e. Determine moisture content of the fuel type. ASTM D3173<sup>a</sup>, ASTM E871<sup>a</sup>, or ASTM D9864<sup>a</sup>, or ASTM D240, or ASTM D95<sup>a</sup> (for liquid fuels), or ASTM D4006<sup>a</sup> (for liquid fuels), or ASTM D4177<sup>a</sup> (for liquid fuels) or ASTM D4057<sup>a</sup> (for liquid fuels), or equivalent. f. Measure mercury concentration in fuel sample. ASTM D6722<sup>a</sup> (for coal), EPA SW–846–7471B<sup>a</sup> (for solid samples), or EPA SW–846–7470A<sup>a</sup> (for liquid samples), or equivalent. g. Convert concentration into units of pounds of mercury per MMBtu of heat content. Equation 8 in §63.7530.</td>
</tr>
</tbody>
</table>

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7200, Jan. 31, 2013]
To conduct a fuel analysis for the following pollutant...

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2. HCl | h. Calculate the mercury emission rate from the boiler or process heater in units of pounds per million Btu.
| | a. Collect fuel samples
| | b. Composite fuel samples
| | c. Prepare composited fuel samples
| | d. Determine heat content of the fuel type.
| | e. Determine moisture content of the fuel type.
| | f. Measure chlorine concentration in fuel sample.
| | g. Convert concentrations into units of pounds of HCl per MMBtu of heat content.
| | h. Calculate the HCl emission rate from the boiler or process heater in units of pounds per million Btu.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| a. Collect fuel samples
| b. Composite fuel samples
| c. Prepare composited fuel samples
| d. Determine heat content of the fuel type.
| e. Determine moisture content of the fuel type.
| f. Measure mercury concentration in fuel sample.
| g. Convert concentrations into units of pounds of HCl per MMBtu of heat content.
| h. Calculate the HCl emission rate from the boiler or process heater in units of pounds per million Btu.

4. TSM for solid fuels.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| a. Collect fuel samples
| b. Composite fuel samples
| c. Prepare composited fuel samples
| d. Determine heat content of the fuel type.
| e. Determine moisture content of the fuel type.
| f. Measure TSM concentration in fuel sample.
| g. Convert concentrations into units of pounds of TSM per MMBtu of heat content.
| h. Calculate the TSM emission rate from the boiler or process heater in units of pounds per million Btu.

* Incorporated by reference, see §63.14.

[78 FR 7201, Jan. 31, 2013]
As stated in §63.7520, you must comply with the following requirements for establishing operating limits:

<table>
<thead>
<tr>
<th>If you have an applicable emission limit for . . .</th>
<th>And your operating limits are based on . . .</th>
<th>You must . . .</th>
<th>Using . . .</th>
<th>According to the following requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PM, TSM, or mercury.</td>
<td>a. Wet scrubber operating parameters.</td>
<td>1. Establish a site-specific minimum scrubber pressure drop and minimum flow rate operating limit according to §63.7530(b).</td>
<td>(1) Data from the scrubber pressure drop and liquid flow rate monitors and the PM or mercury performance test.</td>
<td>(a) You must collect scrubber pressure drop and liquid flow rate data every 15 minutes during the entire period of the performance tests. (b) Determine the lowest hourly average scrubber pressure drop and liquid flow rate by computing the hourly averages using all of the 15-minute readings taken during each performance test.</td>
</tr>
<tr>
<td></td>
<td>b. Electrostatic precipitator operating parameters (option only for units that operate wet scrubbers).</td>
<td>1. Establish a site-specific minimum total secondary electric power input according to §63.7530(b).</td>
<td>(1) Data from the voltage and secondary amperage monitors during the PM or mercury performance test.</td>
<td>(a) You must collect secondary voltage and secondary amperage for each ESP cell and calculate total secondary electric power input data every 15 minutes during the entire period of the performance tests. (b) Determine the average total secondary electric power input by computing the hourly averages using all of the 15-minute readings taken during each performance test.</td>
</tr>
<tr>
<td>2. HCl</td>
<td>a. Wet scrubber operating parameters.</td>
<td>1. Establish site-specific minimum pressure drop, effluent pH, and flow rate operating limits according to §63.7530(b).</td>
<td>(1) Data from the pressure drop, pH, and liquid flow-rate monitors and the HCl performance test.</td>
<td>(a) You must collect pH and liquid flow-rate data every 15 minutes during the entire period of the performance tests. (b) Determine the hourly average pH and liquid flow rate by computing the hourly averages using all of the 15-minute readings taken during each performance test.</td>
</tr>
<tr>
<td></td>
<td>b. Dry scrubber operating parameters.</td>
<td>1. Establish a site-specific minimum sorbent injection rate operating limit according to §63.7530(b). If different acid gas sorbents are used during the HCl performance test, the average value for each sorbent becomes the site-specific operating limit for that sorbent.</td>
<td>(1) Data from the sorbent injection rate monitors and HCl or mercury performance test.</td>
<td>(a) You must collect sorbent injection rate data every 15 minutes during the entire period of the performance tests.</td>
</tr>
</tbody>
</table>
If you have an applicable emission limit for ... | And your operating limits are based on ... | You must ... | Using ... | According to the following requirements
---|---|---|---|---
| | | (b) Determine the hourly average sorbent injection rate by computing the hourly averages using all of the 15-minute readings taken during each performance test. | (c) Determine the lowest hourly average of the three test run averages established during the performance test as your operating limit. When your unit operates at lower loads, multiply your sorbent injection rate by the load fraction (e.g., for 50 percent load, multiply the injection rate operating limit by 0.5) to determine the required injection rate.
| | c. Alternative Maximum SO\textsubscript{2} emission rate. | l. Establish a site-specific maximum SO\textsubscript{2} emission rate operating limit according to §63.7530(b). | (1) Data from SO\textsubscript{2} CEMS and the HCl performance test. | (a) You must collect the SO\textsubscript{2} emissions data according to §63.7525(m) during the most recent HCl performance tests. (b) The maximum SO\textsubscript{2} emission rate is equal to the lowest hourly average SO\textsubscript{2} emission rate measured during the most recent HCl performance tests. |
| 3. Mercury | a. Activated carbon injection. | l. Establish a site-specific minimum activated carbon injection rate operating limit according to §63.7530(b). | (1) Data from the activated carbon rate monitors and mercury performance test. | (a) You must collect activated carbon injection rate data every 15 minutes during the entire period of the performance tests. (b) Determine the hourly average activated carbon injection rate by computing the hourly averages using all of the 15-minute readings taken during each performance test. |
Environmental Protection Agency

Pt. 63, Subpt. DDDDD, Table 7

<table>
<thead>
<tr>
<th>If you have an applicable emission limit for...</th>
<th>And your operating limits are based on...</th>
<th>You must...</th>
<th>Using...</th>
<th>According to the following requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Carbon monoxide</td>
<td>a. Oxygen</td>
<td>i. Establish a unit-specific limit for minimum oxygen level according to §63.7520.</td>
<td>(1) Data from the oxygen analyzer system specified in §63.7525(a).</td>
<td>(c) Determine the lowest hourly average established during the performance test as your operating limit. When your unit operates at lower loads, multiply your activated carbon injection rate by the load fraction (e.g., actual heat input divided by heat input during performance test, for 50 percent load, multiply the injection rate operating limit by 0.5) to determine the required injection rate.</td>
</tr>
<tr>
<td>5. Any pollutant for which compliance is demonstrated by a performance test.</td>
<td>a. Boiler or process heater operating load.</td>
<td>i. Establish a unit-specific limit for maximum operating load according to §63.7520(c).</td>
<td>(1) Data from the operating load monitors or from steam generation monitors.</td>
<td>(a) You must collect oxygen data every 15 minutes during the entire period of the performance test. (b) Determine the hourly average oxygen concentration by computing the hourly averages using all of the 15-minute readings taken during each performance test. (c) Determine the lowest hourly average established during the performance test as your minimum operating limit. (a) You must collect operating load or steam generation data every 15 minutes during the entire period of the performance test. (b) Determine the average operating load by computing the hourly averages using all of the 15-minute readings taken during each performance test. (c) Determine the average of the three test run averages during the performance test, and multiply this by 1.1 (110 percent) as your operating limit.</td>
</tr>
</tbody>
</table>

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7203, Jan. 31, 2013]
TABLE 8 TO SUBPART DDDDD OF PART 63—DEMONSTRATING CONTINUOUS COMPLIANCE

As stated in §63.7540, you must show continuous compliance with the emission limitations for each boiler or process heater according to the following:

<table>
<thead>
<tr>
<th>If you must meet the following operating limits or work practice standards . . .</th>
<th>You must demonstrate continuous compliance by . . .</th>
</tr>
</thead>
</table>
| 1. Opacity | a. Collecting the opacity monitoring system data according to §63.7525(c) and §63.7535; and
 b. Reducing the opacity monitoring data to 6-minute averages; and
 c. Maintaining opacity to less than or equal to 10 percent (daily block average). |
| 2. PM CPMS | a. Collecting the PM CPMS output data according to §63.7525;
 b. Reducing the data to 30-day rolling averages; and
 c. Maintaining the 30-day rolling average PM CPMS output data to less than the operating limit established during the performance test according to §63.7530(b)(4). |
| 3. Fabric Filter Bag Leak Detection Operation. | Installing and operating a bag leak detection system according to §63.7525 and operating the fabric filter such that the requirements in §63.7540(a)(9) are met. |
| 4. Wet Scrubber Pressure Drop and Liquid Flow-rate. | a. Collecting the pressure drop and liquid flow rate monitoring system data according to §§63.7525 and 63.7535; and
 b. Reducing the data to 30-day rolling averages; and
 c. Maintaining the 30-day rolling average pressure drop and liquid flow-rate at or above the operating limits established during the performance test according to §63.7530(b). |
| 5. Wet Scrubber pH | a. Collecting the pH monitoring system data according to §§63.7525 and 63.7535; and
 b. Reducing the data to 30-day rolling averages; and
 c. Maintaining the 30-day rolling average pH at or above the operating limit established during the performance test according to §63.7530(b). |
| 6. Dry Scrubber Sorbent or Carbon Injection Rate. | a. Collecting the sorbent or carbon injection rate monitoring system data for the dry scrubber according to §§63.7525 and 63.7535; and
 b. Reducing the data to 30-day rolling averages; and
 c. Maintaining the 30-day rolling average sorbent or carbon injection rate at or above the minimum sorbent or carbon injection rate as defined in §63.7575. |
| 7. Electrostatic Precipitator Total Secondary Electric Power Input. | a. Collecting the total secondary electric power input monitoring system data for the electrostatic precipitator according to §§63.7525 and 63.7535; and
 b. Reducing the data to 30-day rolling averages; and
 c. Maintaining the 30-day rolling average total secondary electric power input at or above the operating limits established during the performance test according to §63.7530(b). |
| 8. Emission limits using fuel analysis | a. Conducting monthly fuel analysis for HCl or mercury or TSM according to Table 6 to this subpart; and
 b. Reduce the data at 12-month rolling averages; and
 c. Maintain the 12-month rolling average fuel content at or below the applicable emission limit for HCl or mercury or TSM in Tables 1 and 2 or 11 through 13 to this subpart. |
| 9. Oxygen content | a. Continuously monitor the oxygen content using an oxygen analyzer system according to §63.7525(a). This requirement does not apply to units that install an oxygen trim system since these units will set the trim system to the level specified in §63.7529(a)(2);
 b. Reducing the data to 30-day rolling averages; and
 c. Maintain the 30-day rolling average oxygen content at or above the lowest hourly average oxygen level measured during the most recent CO performance test. |
| 10. Boiler or process heater operating load | a. Collecting operating load data or steam generation data every 15 minutes.
 b. Maintaining the operating load such that it does not exceed 110 percent of the highest hourly average operating load recorded during the most recent performance test according to §63.7520(c). |
| 11. SO₂ emissions using SO₂ CEMS | a. Collecting the SO₂ CEMS output data according to §63.7525;
 b. Reducing the data to 30-day rolling averages; and
 c. Maintaining the 30-day rolling average SO₂ CEMS emission rate to a level at or below the minimum hourly SO₂ rate measured during the most recent HCl performance test according to §63.7530. |

[78 FR 7204, Jan. 31, 2013]
TABLE 9 TO SUBPART DDDDD OF PART 63—REPORTING REQUIREMENTS

As stated in §63.7550, you must comply with the following requirements for reports:

<table>
<thead>
<tr>
<th>You must submit a(n)</th>
<th>The report must contain . . .</th>
<th>You must submit the report . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compliance report</td>
<td>a. Information required in §63.7550(c)(1) through (5); and</td>
<td>Semiannually, annually, biennially, or every 5 years according to the requirements in §63.7550(b).</td>
</tr>
<tr>
<td></td>
<td>b. If there are no deviations from any emission limitation (emission limit and operating limit) that applies to you and there are no deviations from the requirements for work practice standards in Table 3 to this subpart that apply to you, a statement that there were no violations from the emission limitations and work practice standards during the reporting period; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. If you have a deviation from any emission limitation (emission limit and operating limit) where you are not using a CMS to comply with that emission limit or operating limit, a deviation from a work practice standard during the reporting period, the report must contain the information in §63.7550(d); and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. If there were periods during which the CMSs, including continuous emissions monitoring system, continuous opacity monitoring system, and operating parameter monitoring systems, were out-of-control as specified in §63.8(c)(7), a statement that there were no periods during which the CMSs were out-of-control during the reporting period; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7205, Jan. 31, 2013]

TABLE 10 TO SUBPART DDDDD OF PART 63—APPLICABILITY OF GENERAL PROVISIONS TO SUBPART DDDDD

As stated in §63.7565, you must comply with the applicable General Provisions according to the following:

<table>
<thead>
<tr>
<th>Citation</th>
<th>Subject</th>
<th>Applies to subpart DDDDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 63.1</td>
<td>Applicability</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.2</td>
<td>Definitions</td>
<td>Yes. Additional terms defined in §63.7575</td>
</tr>
<tr>
<td>§ 63.3</td>
<td>Units and Abbreviations</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.4</td>
<td>Prohibited Activities and Circumvention</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.5</td>
<td>Preconstruction Review and Notification Requirements</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.6(a), (b)(1)–(b)(5), (b)(7), (c)</td>
<td>Compliance with Standards and Maintenance Requirements</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.6(e)(1)(i)</td>
<td>General duty to minimize emissions.</td>
<td>No. See §63.7500(a)(3) for the general duty requirement.</td>
</tr>
<tr>
<td>§ 63.6(e)(1)(ii)</td>
<td>Requirement to correct malfunctions as soon as practicable.</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(e)(3)</td>
<td>Startup, shutdown, and malfunction plan requirements.</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(1)</td>
<td>Startup, shutdown, and malfunction exemptions for compliance with non-opacity emission standards.</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(2) and (3)</td>
<td>Compliance with non-opacity emission standards.</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.6(g)</td>
<td>Use of alternative standards.</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.6(h)(1)</td>
<td>Startup, shutdown, and malfunction exemptions to opacity standards.</td>
<td>No. See §63.7500(a).</td>
</tr>
<tr>
<td>§ 63.6(h)(2) to (h)(9)</td>
<td>Determining compliance with opacity emission standards.</td>
<td>Yes. Note: Facilities may also request extensions of compliance for the installation of combined heat and power, waste heat recovery, or gas pipeline or fuel feeding infrastructure as a means of complying with this subpart.</td>
</tr>
<tr>
<td>§ 63.6(i)</td>
<td>Extension of compliance.</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.6(j)</td>
<td>Presidential exemption.</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.7(a), (b), (c), and (d)</td>
<td>Performance Testing Requirements</td>
<td>Yes.</td>
</tr>
<tr>
<td>Citation</td>
<td>Subject</td>
<td>Applies to subpart DDDD</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>§ 63.7(e)(1)</td>
<td>Conditions for conducting performance tests</td>
<td>No. Subpart DDDD specifies conditions for conducting performance tests at §63.7520(a) to (c).</td>
</tr>
<tr>
<td>§ 63.7(e)(2)–(e)(9), (f), (g), and (h).</td>
<td>Performance Testing Requirements</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(a) and (b)</td>
<td>Applicability and Conduct of Monitoring</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(c)(1)</td>
<td>General duty to minimize emissions and CMS operation</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(c)(1)(i)</td>
<td>Operation and maintenance of CMS</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(c)(1)(ii)</td>
<td>Operation and maintenance of CMS</td>
<td>No. See § 63.7500(a)(3).</td>
</tr>
<tr>
<td>§ 63.8(c)(1)(iii)</td>
<td>Startup, shutdown, and malfunction plans for CMS</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.8(c)(2) to (c)(9)</td>
<td>Operation and maintenance of CMS</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(d)(1) and (2)</td>
<td>Monitoring Requirements, Quality Control Program</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(d)(3)</td>
<td>Written procedures for CMS</td>
<td>Yes, except for the last sentence, which refers to a startup, shutdown, and malfunction plan. Startup, shutdown, and malfunction plans are not required.</td>
</tr>
<tr>
<td>§ 63.8(e)</td>
<td>Performance evaluation of a CMS</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(f)</td>
<td>Use of an alternative monitoring method</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(g)</td>
<td>Reduction of monitoring data</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(h)</td>
<td>Notification Requirements</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(a), (b)(1)</td>
<td>Recordkeeping and Reporting Requirements</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(i)</td>
<td>Recordkeeping of occurrence and duration of startups or shutdowns.</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(ii)</td>
<td>Recordkeeping of malfunctions</td>
<td>No. See § 63.7555(d)(7) for recordkeeping of occurrence and duration and §63.7555(d)(8) for actions taken during malfunctions.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(iii)</td>
<td>Maintenance records</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(iv) and (v)</td>
<td>Actions taken to minimize emissions during startup, shutdown, or malfunction.</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(vi)</td>
<td>Recordkeeping for CMS malfunctions</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(vii) to (xiv)</td>
<td>Other CMS requirements</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(b)(3)</td>
<td>Recordkeeping requirements for applicability determinations</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(c)(1) to (9)</td>
<td>Recordkeeping for sources with CMS</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(c)(10) and (11)</td>
<td>Recoding nature and cause of malfunctions, and corrective actions.</td>
<td>No. See § 63.7555(d)(7) for recordkeeping of occurrence and duration and §63.7555(d)(8) for actions taken during malfunctions.</td>
</tr>
<tr>
<td>§ 63.10(c)(12) and (13)</td>
<td>Recordkeeping for sources with CMS</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(d)(1) and (2)</td>
<td>General reporting requirements</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(d)(3)</td>
<td>Reporting opacity or visible emission observation results</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(d)(4)</td>
<td>Progress reports under an extension of compliance</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(d)(5)</td>
<td>Startup, shutdown, and malfunction reports</td>
<td>No. See § 63.7555(c)(11) for malfunction reporting requirements.</td>
</tr>
<tr>
<td>§ 63.10(e)</td>
<td>Additional reporting requirements for sources with CMS</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(f)</td>
<td>Waiver of recordkeeping or reporting requirements</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.11</td>
<td>Control Device Requirements</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.12</td>
<td>State Authority and Delegation</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.13–63.16</td>
<td>Addresses, Incorporation by Reference, Availability of Information, Performance Track Provisions.</td>
<td>Yes.</td>
</tr>
</tbody>
</table>

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7205, Jan. 31, 2013]
Environmental Protection Agency Pt. 63, Subpt. DDDDD, Table 12

TABLE 11 TO SUBPART DDDDD OF PART 63—TOXIC EQUIVALENCY FACTORS FOR DIOXINS/FURANS

<table>
<thead>
<tr>
<th>Dioxin/furan congener</th>
<th>Toxic equivalency factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-tetrachlorinated dibenzo-p-dioxin</td>
<td>1</td>
</tr>
<tr>
<td>1,2,3,7,8-pentachlorinated dibenzo-p-dioxin</td>
<td>1</td>
</tr>
<tr>
<td>1,2,3,7,8-hexachlorinated dibenzo-p-dioxin</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,7,8,9-hexachlorinated dibenzo-p-dioxin</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,6,7,8-hexachlorinated dibenzo-p-dioxin</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-heptachlorinated dibenzo-p-dioxin</td>
<td>0.01</td>
</tr>
<tr>
<td>octachlorinated dibenzo-p-dioxin</td>
<td>0.0003</td>
</tr>
<tr>
<td>2,3,7,8-tetrachlorinated dibenzofuran</td>
<td>0.1</td>
</tr>
<tr>
<td>2,3,4,7,8-pentachlorinated dibenzofuran</td>
<td>0.3</td>
</tr>
<tr>
<td>1,2,3,7,8-pentachlorinated dibenzofuran</td>
<td>0.03</td>
</tr>
<tr>
<td>1,2,3,4,7,8-hexachlorinated dibenzofuran</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,6,7,8-hexachlorinated dibenzofuran</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,7,8,9-hexachlorinated dibenzofuran</td>
<td>0.1</td>
</tr>
<tr>
<td>2,3,4,6,7,8-hexachlorinated dibenzofuran</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-heptachlorinated dibenzofuran</td>
<td>0.01</td>
</tr>
<tr>
<td>octachlorinated dibenzofuran</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

[76 FR 15664, Mar. 21, 2011]

EDITORIAL NOTE: At 78 FR 7206, Jan. 31, 2013, Table 11 was added, effective Apr. 1, 2013. However Table 11 could not be added as a Table 11 is already in existence.

TABLE 12 TO SUBPART DDDDD OF PART 63—ALTERNATIVE EMISSION LIMITS FOR NEW OR RECONSTRUCTED BOILERS AND PROCESS HEATERS THAT COMMENCED CONSTRUCTION OR RECONSTRUCTION AFTER JUNE 4, 2010, AND BEFORE MAY 20, 2011

<table>
<thead>
<tr>
<th>If your boiler or process heater is in this subcategory</th>
<th>For the following pollutants</th>
<th>The emissions must not exceed the following emission limits, except during periods of start-up and shutdown</th>
<th>Using this specified sampling volume or test run duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Units in all subcategories designed to burn solid fuel.</td>
<td>a. Mercury</td>
<td>3.5E–06 lb per MMBtu of heat input.</td>
<td>For M29, collect a minimum of 2 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784a collect a minimum of 2 dscm.</td>
</tr>
<tr>
<td>2. Units in all subcategories designed to burn solid fuel that combust at least 10 percent biomass/bio-based solids on an annual heat input basis and less than 10 percent coal/solid fossil fuels on an annual heat input basis.</td>
<td>a. Particulate Matter</td>
<td>0.008 lb per MMBtu of heat input (30-day rolling average for units 250 MMBtu/hr or greater, 3-run average for units less than 250 MMBtu/hr).</td>
<td>Collect a minimum of 1 dscm per run.</td>
</tr>
<tr>
<td></td>
<td>b. Hydrogen Chloride ...</td>
<td>0.004 lb per MMBtu of heat input.</td>
<td>For M30A, collect a minimum of 1 dscm per run; for M30B, collect a minimum of 60 liters per run.</td>
</tr>
<tr>
<td>3. Units in all subcategories designed to burn solid fuel that combust at least 10 percent coal/solid fossil fuels on an annual heat input basis and less than 10 percent biomass/bio-based solids on an annual heat input basis.</td>
<td>a. Particulate Matter</td>
<td>0.0011 lb per MMBtu of heat input (30-day rolling average for units 250 MMBtu/hr or greater, 3-run average for units less than 250 MMBtu/hr).</td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
</tbody>
</table>
If your boiler or process heater is in this sub-category

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Pollutants</th>
<th>Emission Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Units designed to burn pulverized coal/solid fossil fuel.</td>
<td>b. Hydrogen Chloride</td>
<td>0.0022 lb per MMBtu of heat input.</td>
</tr>
<tr>
<td></td>
<td>a. CO</td>
<td>30 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td>b. Dioxins/Furans</td>
<td>0.003 ng/dscm (TEQ) corrected to 7 percent oxygen.</td>
</tr>
<tr>
<td>5. Stokers designed to burn coal/solid fossil fuel.</td>
<td>a. CO</td>
<td>540 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td>b. Dioxins/Furans</td>
<td>0.005 ng/dscm (TEQ) corrected to 7 percent oxygen.</td>
</tr>
<tr>
<td>6. Fluidized bed units designed to burn coal/solid fossil fuel.</td>
<td>a. CO</td>
<td>260 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td>b. Dioxins/Furans</td>
<td>0.002 ng/dscm (TEQ) corrected to 7 percent oxygen.</td>
</tr>
<tr>
<td>7. Stokers designed to burn biomass/bio-based solids.</td>
<td>a. CO</td>
<td>1,010 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td>b. Dioxins/Furans</td>
<td>0.2 ng/dscm (TEQ) corrected to 7 percent oxygen.</td>
</tr>
<tr>
<td>8. Fluidized bed units designed to burn biomass/bio-based solids.</td>
<td>a. CO</td>
<td>470 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td>b. Dioxins/Furans</td>
<td>0.2 ng/dscm (TEQ) corrected to 7 percent oxygen.</td>
</tr>
<tr>
<td>9. Suspension burners/Dutch Ovens designed to burn biomass/bio-based solids.</td>
<td>a. CO</td>
<td>1,500 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td>b. Dioxins/Furans</td>
<td>0.2 ng/dscm (TEQ) corrected to 7 percent oxygen.</td>
</tr>
<tr>
<td>10. Fuel cells designed to burn biomass/bio-based solids.</td>
<td>a. CO</td>
<td>1,500 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td>b. Dioxins/Furans</td>
<td>0.2 ng/dscm (TEQ) corrected to 7 percent oxygen.</td>
</tr>
<tr>
<td>11. Hybrid suspension/grate units designed to burn biomass/bio-based solids.</td>
<td>a. CO</td>
<td>1,500 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td>b. Dioxins/Furans</td>
<td>0.2 ng/dscm (TEQ) corrected to 7 percent oxygen.</td>
</tr>
<tr>
<td>12. Units designed to burn liquid fuel ..</td>
<td>a. Particulate Matter</td>
<td>0.002 lb per MMBtu of heat input (30-day rolling average for units 250 MMBtu/hr or greater, 3-run average for units less than 250 MMBtu/hr).</td>
</tr>
<tr>
<td></td>
<td>b. Hydrogen Chloride</td>
<td>0.0032 lb per MMBtu of heat input.</td>
</tr>
</tbody>
</table>
Environmental Protection Agency

If your boiler or process heater is in this subcategory

<table>
<thead>
<tr>
<th>For the following pollutants</th>
<th>The emissions must not exceed the following emission limits, except during periods of start-up and shutdown</th>
<th>Using this specified sampling volume or test run duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Mercury</td>
<td>3.0E–07 lb per MMBtu of heat input.</td>
<td>For M29, collect a minimum of 1 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784a collect a minimum of 2 dscm.</td>
</tr>
<tr>
<td>d. CO</td>
<td>3 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>e. Dioxins/Furans</td>
<td>0.002 ng/dscm (TEQ) corrected to 7 percent oxygen.</td>
<td>Collect a minimum of 4 dscm per run.</td>
</tr>
</tbody>
</table>

13. Units designed to burn liquid fuel located in non-continental States and territories.

a. Particulate Matter	0.002 lb per MMBtu of heat input (30-day rolling average for units 250 MMBtu/hr or greater, 3-run average for units less than 250 MMBtu/hr).	For M26A, collect a minimum of 1 dscm per run; for M26, collect a minimum of 60 liters per run.
b. Hydrogen Chloride	0.0032 lb per MMBtu of heat input.	
c. Mercury	7.8E–07 lb per MMBtu of heat input.	For M29, collect a minimum of 1 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784a collect a minimum of 2 dscm.
d. CO	51 ppm by volume on a dry basis corrected to 3 percent oxygen.	1 hr minimum sampling time.
e. Dioxins/Furans	0.002 ng/dscm (TEQ) corrected to 7 percent oxygen.	Collect a minimum of 4 dscm per run.

14. Units designed to burn gas 2 (other) gases ...

a. Particulate Matter	0.0067 lb per MMBtu of heat input (30-day rolling average for units 250 MMBtu/hr or greater, 3-run average for units less than 250 MMBtu/hr).	Collect a minimum of 1 dscm per run.
b. Hydrogen Chloride	0.0017 lb per MMBtu of heat input.	For M26A, collect a minimum of 1 dscm per run; for M26, collect a minimum of 60 liters per run.
c. Mercury	7.9E–06 lb per MMBtu of heat input.	For M29, collect a minimum of 1 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784a collect a minimum of 2 dscm.
d. CO	3 ppm by volume on a dry basis corrected to 3 percent oxygen.	1 hr minimum sampling time.
If your boiler or process heater is in this subcategory | For the following pollutants | The emissions must not exceed the following emission limits, except during periods of startup and shutdown | Using this specified sampling volume or test run duration
--- | --- | --- | ---
e. Dioxins/Furans | 0.08 ng/dscm (TEQ) corrected to 7 percent oxygen. | Collect a minimum of 4 dscm per run.

TABLE 13 TO SUBPART DDDDD OF PART 63—ALTERNATIVE EMISSION LIMITS FOR NEW OR RECONSTRUCTED BOILERS AND PROCESS HEATERS THAT COMMENCED CONSTRUCTION OR RECONSTRUCTION AFTER DECEMBER 23, 2011, AND BEFORE JANUARY 31, 2013

<table>
<thead>
<tr>
<th>If your boiler or process heater is in this subcategory . . .</th>
<th>For the following pollutants . . .</th>
<th>The emissions must not exceed the following emission limits, except during periods of startup and shutdown . . .</th>
<th>Using this specified sampling volume or test run duration . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Units in all subcategories designed to burn solid fuel.</td>
<td>a. HCl</td>
<td>0.022 lb per MMBtu of heat input.</td>
<td>For M26A, collect a minimum of 1 dscm per run; for M26 collect a minimum of 120 liters per run.</td>
</tr>
<tr>
<td></td>
<td>b. Mercury</td>
<td>8.6E–07 lb per MMBtu of heat input.</td>
<td>For M29, collect a minimum of 4 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 collect a minimum of 4 dscm.</td>
</tr>
<tr>
<td>2. Pulverized coal boilers designed to burn coal/solid fossil fuel.</td>
<td>a. Carbon monoxide (CO) (or CEMS).</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (350 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM)</td>
<td>1.1E–03 lb per MMBtu of heat input; or (2.8E–05 lb per MMBtu of heat input).</td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
<tr>
<td>3. Stokers designed to burn coal/solid fossil fuel.</td>
<td>a. CO (or CEMS)</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (340 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average).</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM)</td>
<td>2.8E–02 lb per MMBtu of heat input; or (2.3E–05 lb per MMBtu of heat input).</td>
<td>Collect a minimum of 2 dscm per run.</td>
</tr>
<tr>
<td>4. Fluidized bed units designed to burn coal/solid fossil fuel.</td>
<td>a. CO (or CEMS)</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (230 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td></td>
<td>b. Filterable PM (or TSM)</td>
<td>1.1E–03 lb per MMBtu of heat input; or (2.3E–05 lb per MMBtu of heat input).</td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
<tr>
<td>5. Fluidized bed units with an integrated heat exchanger designed to burn coal/solid fossil fuel.</td>
<td>a. CO (or CEMS)</td>
<td>140 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (150 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>1 hr minimum sampling time.</td>
</tr>
<tr>
<td>If your boiler or process heater is in this subcategory . . .</td>
<td>For the following pollutants . . .</td>
<td>The emissions must not exceed the following emission limits, except during periods of startup and shutdown . . .</td>
<td>Using this specified sampling volume or test run duration . . .</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6. Stokers/sloped grate/others designed to burn wet biomass fuel.</td>
<td>b. Filterable PM (or TSM) 1.1E–03 lb per MMBtu of heat input; or (2.3E–05 lb per MMBtu of heat input).</td>
<td>620 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (410 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average).</td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
<tr>
<td>7. Stokers/sloped grate/others designed to burn kiln-dried biomass fuel.</td>
<td>a. CO (or CEMS) 620 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
<td>1 hr minimum sampling time.</td>
<td></td>
</tr>
<tr>
<td>8. Fluidized bed units designed to burn biomass/bio-based solids.</td>
<td>b. Filterable PM (or TSM) 3.0E–02 lb per MMBtu of heat input; or (2.3E–05 lb per MMBtu of heat input).</td>
<td>Collect a minimum of 2 dscm per run.</td>
<td></td>
</tr>
<tr>
<td>9. Suspension burners designed to burn biomass/bio-based solids.</td>
<td>a. CO (or CEMS) 460 ppm by volume on a dry basis corrected to 3 percent oxygen.</td>
<td>1 hr minimum sampling time.</td>
<td></td>
</tr>
<tr>
<td>10. Dutch Ovens/Pile burners designed to burn biomass/bio-based solids.</td>
<td>b. Filterable PM (or TSM) 3.2E–01 lb per MMBtu of heat input; or (4.0E–03 lb per MMBtu of heat input).</td>
<td>Collect a minimum of 2 dscm per run.</td>
<td></td>
</tr>
<tr>
<td>11. Fuel cell units designed to burn biomass/bio-based solids.</td>
<td>a. CO (or CEMS) 230 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (310 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average).</td>
<td>1 hr minimum sampling time.</td>
<td></td>
</tr>
<tr>
<td>12. Hybrid suspension grate boiler designed to burn biomass/bio-based solids.</td>
<td>b. Filterable PM (or TSM) 9.8E–03 lb per MMBtu of heat input; or (8.3E–05 lb per MMBtu of heat input).</td>
<td>Collect a minimum of 3 dscm per run.</td>
<td></td>
</tr>
<tr>
<td>13. Units designed to burn liquid fuel.</td>
<td>a. HCl 1.2E–03 lb per MMBtu of heat input.</td>
<td>For M26A: Collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.</td>
<td></td>
</tr>
</tbody>
</table>
If your boiler or process heater is in this subcategory . . .

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Units</th>
<th>Emission Limit Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO (or CEMS)</td>
<td>120 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average. Or (60 ppm by volume on a dry basis corrected to 3 percent oxygen, 1-day block average).</td>
<td>For M29, collect a minimum of 4 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784, collect a minimum of 4 dscm.</td>
</tr>
<tr>
<td>CO</td>
<td>130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average. Or (91 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-hour rolling average).</td>
<td>For M29, collect a minimum of 3 dscm per run.</td>
</tr>
<tr>
<td>HCl</td>
<td>1.7E–03 lb per MMBtu of heat input.</td>
<td>For M26A, collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.</td>
</tr>
<tr>
<td>Mercury</td>
<td>7.9E–06 lb per MMBtu of heat input.</td>
<td>For M29, collect a minimum of 3 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784, collect a minimum of 3 dscm.</td>
</tr>
<tr>
<td>Filterable PM (or TSM)</td>
<td>6.7E–03 lb per MMBtu of heat input.</td>
<td>Collect a minimum of 3 dscm per run.</td>
</tr>
</tbody>
</table>

a If you are conducting stack tests to demonstrate compliance and your performance tests for this pollutant for at least 2 consecutive years show that your emissions are at or below this limit and you are not required to conduct testing for CEMS or CPMS monitor certification, you can skip testing according to §63.7515 if all of the other provision of §63.7515 are met. For all other pollutants that do not contain a footnote “a”, your performance tests for this pollutant for at least 2 consecutive years must show that your emissions are at or below 75 percent of this limit in order to qualify for skip testing.

b Incorporated by reference, see §63.14.

[78 FR 7210, Jan. 31, 2013]

216