Environmental Protection Agency § 63.640

<table>
<thead>
<tr>
<th>40 CFR citation</th>
<th>Requirement</th>
<th>Applies to subpart BB</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.10(f)</td>
<td>Recordkeeping/Reporting Waiver</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.11(a)</td>
<td>Control Device Requirements Applicability.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.11(b)</td>
<td>Flares</td>
<td>No</td>
<td>Flares not applicable.</td>
</tr>
<tr>
<td>63.12</td>
<td>State Authority and Delegations ...</td>
<td>Yes</td>
<td>Authority for approval of site-specific test plans for GTSP storage buildings is retained (see §63.628(a)).</td>
</tr>
<tr>
<td>63.13</td>
<td>Addresses</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.14</td>
<td>Incorporation by Reference</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.15</td>
<td>Information Availability/Confidentiality</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Subpart CC—National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries

Source: 60 FR 43260, Aug. 18, 1995, unless otherwise noted.

§ 63.640 Applicability and designation of affected source.

(a) This subpart applies to petroleum refining process units and to related emissions points that are specified in paragraphs (c)(1) through (8) of this section that are located at a plant site and that meet the criteria in paragraphs (a)(1) and (2) of this section:

1. Are located at a plant site that is a major source as defined in section 112(a) of the Clean Air Act; and

2. Emit or have equipment containing or contacting one or more of the hazardous air pollutants listed in table 1 of this subpart.

(b)(1) If the predominant use of the flexible operation unit, as described in paragraphs (b)(1)(i) and (ii) of this section, is as a petroleum refining process unit, as defined in §63.641, then the flexible operation unit shall be subject to the provisions of this subpart.

(i) Except as provided in paragraph (b)(1)(ii) of this section, the predominant use of the flexible operation unit shall be the use representing the greatest annual operating time.

(ii) If the flexible operation unit is used as a petroleum refining process unit and for another purpose equally based on operating time, then the predominant use of the flexible operation unit shall be the use that produces the greatest annual production on a mass basis.

(2) The determination of applicability of this subpart to petroleum refining process units that are designed and operated as flexible operation units shall be reported as specified in §63.655(h)(6)(i).

(c) For the purposes of this subpart, the affected source shall comprise all emissions points, in combination, listed in paragraphs (c)(1) through (c)(8) of this section that are located at a single refinery plant site.

1. All miscellaneous process vents from petroleum refining process units meeting the criteria in paragraph (a) of this section:

2. All storage vessels associated with petroleum refining process units meeting the criteria in paragraph (a) of this section;

3. All wastewater streams and treatment operations associated with petroleum refining process units meeting the criteria in paragraph (a) of this section;

4. All equipment leaks from petroleum refining process units meeting the criteria in paragraph (a) of this section;

5. All gasoline loading racks classified under Standard Industrial Classification code 2911 meeting the criteria in paragraph (a) of this section;

6. All marine vessel loading operations located at a petroleum refinery meeting the criteria in paragraph (a) of this section and the applicability criteria of subpart Y, §63.560;

7. All storage vessels and equipment leaks associated with a bulk gasoline terminal or pipeline breakout station
§ 63.640

(1) Stormwater from segregated stormwater sewers;
(2) Spills;
(3) Any pump, compressor, pressure relief device, sampling connection system, open-ended valve or line, valve, or instrumentation system that is intended to operate in organic hazardous air pollutant service, as defined in § 63.641 of this subpart, for less than 300 hours during the calendar year;
(4) Catalytic cracking unit and catalytic reformer catalyst regeneration vents, and sulfur plant vents; and
(5) Emission points routed to a fuel gas system, as defined in § 63.641 of this subpart. No testing, monitoring, recordkeeping, or reporting is required for refinery fuel gas systems or emission points routed to refinery fuel gas systems.

(e) The owner or operator of a storage vessel constructed on or before August 18, 1994, shall follow the procedures specified in paragraphs (e)(1) and (e)(2) of this section to determine whether a storage vessel is part of a source to which this subpart applies. The owner or operator of a storage vessel constructed after August 18, 1994, shall follow the procedures specified in paragraphs (e)(1), (e)(2)(i), and (e)(2)(ii) of this section to determine whether a storage vessel is part of a source to which this subpart applies.

(i) If a storage vessel is shared among process units and one of the process units has the predominant use, as determined by paragraphs (e)(2)(i)(A) and (e)(2)(i)(B) of this section, then the storage vessel is part of that process unit. (A) If the greatest input on a volume basis into the storage vessel is from a process unit that is located on the same plant site, then that process unit has the predominant use.

(B) If the greatest input on a volume basis into the storage vessel is provided from a process unit that is not located on the same plant site, then the predominant use shall be the process unit that receives the greatest amount of material on a volume basis from the storage vessel at the same plant site.

(ii) If a storage vessel is shared among process units so that there is no single predominant use, and at least one of those process units is a petroleum refining process unit subject to this subpart, the storage vessel shall be considered to be part of the petroleum refining process unit that is subject to this subpart. If more than one petroleum refining process unit is subject to this subpart, the owner or operator may assign the storage vessel to any of the petroleum refining process units subject to this subpart.

(iii) If the predominant use of a storage vessel varies from year to year, then the applicability of this subpart shall be determined based on the utilization of that storage vessel during the year preceding August 18, 1995. This determination shall be reported as specified in § 63.655(h)(6)(ii).

(f) The owner or operator of a distillation unit constructed on or before August 18, 1994, shall follow the procedures specified in paragraphs (f)(1) through (f)(4) of this section to determine whether a miscellaneous process vent from a distillation unit is part of a source to which this subpart applies. The owner or operator of a distillation unit constructed on or before August 18, 1994, shall follow the procedures specified in paragraphs (f)(1) through (f)(4) of this section to determine whether a miscellaneous process vent from a distillation unit is part of a source to which this subpart applies.
unit constructed after August 18, 1994, shall follow the procedures specified in paragraphs (f)(1) through (f)(5) of this section to determine whether a miscellaneous process vent from a distillation unit is part of a source to which this subpart applies.

(1) If the greatest input to the distillation unit is from a process unit located on the same plant site, then the distillation unit shall be assigned to that process unit.

(2) If the greatest input to the distillation unit is provided from a process unit that is not located on the same plant site, then the distillation unit shall be assigned to the process unit located at the same plant site that receives the greatest amount of material from the distillation unit.

(3) If a distillation unit is shared among process units so that there is no single predominant use, as described in paragraphs (f)(1) and (f)(2) of this section, and at least one of those process units is a petroleum refining process unit subject to this subpart, the distillation unit shall be assigned to the petroleum refining process unit that is subject to this subpart. If more than one petroleum refining process unit is subject to this subpart, the owner or operator may assign the distillation unit to any of the petroleum refining process units subject to this rule.

(4) If the process unit to which the distillation unit is assigned is a petroleum refining process unit subject to this subpart and the vent stream contains greater than 20 parts per million by volume total organic hazardous air pollutants, then the vent from the distillation unit is considered a miscellaneous process vent (as defined in §63.641 of this subpart) and is part of the source to which this subpart applies.

(5) If the predominant use of a distillation unit varies from year to year, then the applicability of this subpart shall be determined based on the utilization of that distillation unit during the year preceding August 18, 1995. This determination shall be reported as specified in §63.655(h)(6)(iii).

(g) The provisions of this subpart do not apply to the processes specified in paragraphs (g)(1) through (g)(7) of this section.

(1) Research and development facilities, regardless of whether the facilities are located at the same plant site as a petroleum refining process unit that is subject to the provisions of this subpart;

(2) Equipment that does not contain any of the hazardous air pollutants listed in table 1 of this subpart that is located within a petroleum refining process unit that is subject to this subpart;

(3) Units processing natural gas liquids;

(4) Units that are used specifically for recycling discarded oil;

(5) Shale oil extraction units;

(6) Ethylene processes; and

(7) Process units and emission points subject to subparts F, G, H, and I of this part.

(h) Except as provided in paragraphs (k), (l), or (m) of this section, sources subject to this subpart are required to achieve compliance on or before the dates specified in paragraphs (h)(1) through (h)(6) of this section.

(1) Except as provided in paragraphs (h)(1)(i) and (ii) of this section, new sources that commence construction or reconstruction after July 14, 1994, shall be in compliance with the existing source requirements for heat exchange systems specified in §63.654 no later than October 29, 2012.

(ii) At new sources that commence construction or reconstruction after September 4, 2007, heat exchange systems shall be in compliance with the existing source requirements for heat exchange systems specified in §63.654 no later than October 29, 2012.

(ii) At new sources that commence construction or reconstruction after September 4, 2007, heat exchange systems shall be in compliance with the new source requirements in §63.654 upon initial startup or October 28, 2009, whichever is later.

(2) Except as provided in paragraphs (h)(3) through (h)(6) of this section, existing sources shall be in compliance with the new source requirements in §63.654 upon initial startup or October 28, 2009, whichever is later.

(2) Except as provided in paragraphs (h)(3) through (h)(6) of this section, existing sources shall be in compliance with the new source requirements in §63.654 upon initial startup or October 28, 2009, whichever is later.
§ 63.640

(3) Marine tank vessels at existing sources shall be in compliance with this subpart no later than August 18, 1999 unless the vessels are included in an emissions average to generate emission credits. Marine tank vessels used to generate credits in an emissions average shall be in compliance with this subpart no later than August 18, 1998 unless an extension has been granted by the Administrator as provided in §63.6(i).

(4) Existing Group 1 floating roof storage vessels shall be in compliance with §63.646 of this subpart at the first degassing and cleaning activity after August 18, 1998, or August 18, 2005, whichever is first.

(5) An owner or operator may elect to comply with the provisions of §63.648 (c) through (i) as an alternative to the provisions of §63.648 (a) and (b). In such cases, the owner or operator shall comply no later than the dates specified in paragraphs (h)(5)(i) through (h)(5)(iii) of this section.

(i) Phase I (see table 2 of this subpart), beginning on August 18, 1998;

(ii) Phase II (see table 2 of this subpart), beginning no later than August 18, 1999; and

(iii) Phase III (see table 2 of this subpart), beginning no later than February 18, 2001.

(6) Heat exchange systems at an existing source shall be in compliance with the existing source standards in §63.654 no later than October 29, 2012.

(i) If an additional petroleum refining process unit is added to a plant site that is a major source as defined in section 112(a) of the Clean Air Act, the addition shall be subject to the requirements for a new source if it meets the criteria specified in paragraphs (j)(1) and (j)(2) of this section:

(1) It is a change that meets the definition of reconstruction in §63.2 of subpart A of this part; and

(2) Such reconstruction commenced after July 14, 1994.

(k) If an additional petroleum refining process unit is added to a plant site or a change is made to a petroleum refining process unit and the addition or change is determined to be subject to the new source requirements according to paragraphs (i) or (j) of this section it must comply with the requirements specified in paragraphs (k)(1) and (k)(2) of this section:

(1) The reconstructed source, addition, or change shall be in compliance with the new source requirements upon initial startup of the reconstructed source or by August 18, 1995, whichever is later; and

(2) The owner or operator of the reconstructed source, addition, or change shall comply with the reporting and recordkeeping requirements that are applicable to new sources. The applicable reports include, but are not limited to:

(i) The application for approval of construction or reconstruction shall be submitted as soon as practical before the construction or reconstruction is planned to commence (but it need not be sooner than November 16, 1995);

(ii) The Notification of Compliance Status report as required by §63.655(f) for a new source, addition, or change;

(iii) Periodic Reports and other reports as required by §63.655(g) and (h);

(iv) Reports and notifications required by §60.487 of subpart VV of part 60 or §63.182 of subpart H of this part. The requirements for subpart H are summarized in table 3 of this subpart;

(v) Reports required by 40 CFR 61.357 of subpart FF;

(vi) Reports and notifications required by §63.428(b), (c), (g)(1), (h)(1) through (h)(3), and (k) of subpart R. These requirements are summarized in table 4 of this subpart; and

(vii) Reports and notifications required by §§63.565 and 63.567 of subpart Y of this part. These requirements are summarized in table 5 of this subpart.
(1) If an additional petroleum refining process unit is added to a plant site or if a miscellaneous process vent, storage vessel, gasoline loading rack, marine tank vessel loading operation, or heat exchange system that meets the criteria in paragraphs (c)(1) through (8) of this section is added to an existing petroleum refinery or if another deliberate operational process change creating an additional Group 1 emissions point(s) (as defined in §63.641) is made to an existing petroleum refining process unit, and if the addition or process change is not subject to the new source requirements as determined according to paragraphs (i) or (j) of this section, the requirements in paragraphs (l)(1) through (3) of this section shall apply.

Examples of process changes include, but are not limited to, changes in production capacity, or feed or raw material where the change requires construction or physical alteration of the existing equipment or catalyst type, or whenever there is replacement, removal, or addition of recovery equipment. For purposes of this paragraph and paragraph (m) of this section, process changes do not include: Process upsets, unintentional temporary process changes, and changes that are within the equipment configuration and operating conditions documented in the Notification of Compliance Status report required by §63.655(f).

(1) The added emission point(s) and any emission point(s) within the added or changed petroleum refining process unit are subject to the requirements for an existing source.

(2) The added emission point(s) and any emission point(s) within the added or changed petroleum refining process unit shall be in compliance with this subpart by the dates specified in paragraphs (l)(2)(i) or (l)(2)(ii) of this section, as applicable.

(i) If a petroleum refining process unit is added to a plant site or an emission point(s) is added to any existing petroleum refining process unit, the added emission point(s) shall be in compliance upon initial startup of any added petroleum refining process unit or emission point(s) or by August 18, 1998, whichever is later.

(ii) If a deliberate operational process change to an existing petroleum refining process unit causes a Group 2 emission point to become a Group 1 emission point (as defined in §63.641), the owner or operator shall be in compliance upon initial startup or by August 18, 1998, whichever is later, unless the owner or operator demonstrates to the Administrator that achieving compliance will take longer than making the change. If this demonstration is made to the Administrator’s satisfaction, the owner or operator shall follow the procedures in paragraphs (m)(1) through (m)(3) of this section to establish a compliance date.

(3) The owner or operator of a petroleum refining process unit or of a storage vessel, miscellaneous process vent, wastewater stream, gasoline loading rack, marine tank vessel loading operation, or heat exchange system meeting the criteria in paragraphs (c)(1) through (8) of this section that is added to a plant site and is subject to the requirements for existing sources shall comply with the reporting and record-keeping requirements that are applicable to existing sources including, but not limited to, the reports listed in paragraphs (l)(3)(i) through (vii) of this section. A process change to an existing petroleum refining process unit shall be subject to the reporting requirements for existing sources including, but not limited to, the reports listed in paragraphs (l)(3)(i) through (l)(3)(vii) of this section. The applicable reports include, but are not limited to:

(i) The Notification of Compliance Status report as required by §63.655(f) for the emission points that were added or changed;

(ii) Periodic Reports and other reports as required by §63.655(g) and (h);

(iii) Reports and notifications required by sections of subpart A of this part that are applicable to this subpart, as identified in table 6 of this subpart.

(iv) Reports and notifications required by §§63.162, or 40 CFR 60.487. The requirements of subpart H of this part are summarized in table 3 of this subpart;

(v) Reports required by §61.357 of subpart FF;

(vi) Reports and notifications required by §§63.428(b), (c), (g)(1), (h)(1) through (h)(3), and (k) of subpart R.

§ 63.640
These requirements are summarized in table 4 of this subpart; and

(vii) Reports and notifications required by §§63.565 and 63.567 of subpart Y. These requirements are summarized in table 5 of this subpart.

(4) If pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, or instrumentation systems are added to an existing source, they are subject to the equipment leak standards for existing sources in §63.648. A notification of compliance status report shall not be required for such added equipment.

(m) If a change that does not meet the criteria in paragraph (l) of this section is made to a petroleum refining process unit subject to this subpart, and the change causes a Group 2 emission point to become a Group 1 emission point (as defined in §63.641), then the owner or operator shall comply with the requirements of this subpart for existing sources for the Group 1 emission point as expeditiously as practicable, but in no event later than 3 years after the emission point becomes Group 1.

(1) The owner or operator shall submit to the Administrator for approval a compliance schedule, along with a justification for the schedule.

(2) The compliance schedule shall be submitted within 180 days after the change is made, unless the compliance schedule has been previously submitted to the permitting authority. If it is not possible to determine until after the change is implemented whether the emission point has become Group 1, the compliance schedule shall be submitted within 180 days of the date when the affect of the change is known to the source. The compliance schedule may be submitted in the next Periodic Report if the change is made after the date the Notification of Compliance Status report is due.

(3) The Administrator shall approve or deny the compliance schedule or request changes within 120 calendar days of receipt of the compliance schedule and justification. Approval is automatic if not received from the Administrator within 120 calendar days of receipt.

(n) Overlap of subpart CC with other regulations for storage vessels.

(1) After the compliance dates specified in paragraph (h) of this section, a Group 1 or Group 2 storage vessel that is part of an existing source and is also subject to the provisions of 40 CFR part 60, subpart Kb, is required to comply only with the requirements of 40 CFR part 60, subpart Kb, except as provided in paragraph (n)(8) of this section.

(2) After the compliance dates specified in paragraph (h) of this section a Group 1 storage vessel that is part of a new source and is subject to 40 CFR part 60, subpart Kb is required to comply only with this subpart.

(3) After the compliance dates specified in paragraph (h) of this section, a Group 2 storage vessel that is part of a new source and is subject to the control requirements in §60.112b of 40 CFR part 60, subpart Kb is required to comply only with 40 CFR part 60, subpart Kb except as provided in paragraph (n)(8) of this section.

(4) After the compliance dates specified in paragraph (h) of this section, a Group 2 storage vessel that is part of a new source and is subject to 40 CFR 60.110b, but is not required to apply controls by 40 CFR 60.110b or 60.112b is required to comply only with this subpart.

(5) After the compliance dates specified in paragraph (h) of this section a Group 1 storage vessel that is also subject to the provisions of 40 CFR part 60, subparts K or Ka is required to only comply with the provisions of this subpart.

(6) After compliance dates specified in paragraph (h) of this section, a Group 2 storage vessel that is subject to the control requirements of 40 CFR part 60, subparts K or Ka is required to comply only with the provisions of 40 CFR part 60, subparts K or Ka, but not to the control requirements of 40 CFR part 60, subparts K or Ka, except as provided for in paragraph (n)(9) of this section.

(7) After the compliance dates specified in paragraph (h) of this section, a Group 2 storage vessel that is subject to 40 CFR part 60, subparts K or Ka, but not to the control requirements of 40 CFR part 60, subparts K or Ka, is required to comply only with this subpart.
(8) Storage vessels described by paragraphs (n)(1) and (n)(3) of this section are to comply with 40 CFR part 60, subpart Kb except as provided for in paragraphs (n)(8)(i) through (n)(8)(vi) of this section.

(i) Storage vessels that are to comply with §60.112b(a)(2) of subpart Kb are exempt from the secondary seal requirements of §60.112b(a)(2)(i)(B) during the gap measurements for the primary seal required by §60.113b(b) of subpart Kb.

(ii) If the owner or operator determines that it is unsafe to perform the seal gap measurements required in §60.113b(b) of subpart Kb or to inspect the vessel to determine compliance with §60.113b(a) of subpart Kb because the roof appears to be structurally unsound and poses an imminent danger to inspecting personnel, the owner or operator shall comply with the requirements in either §63.120(b)(7)(i) or §63.120(b)(7)(ii) of subpart G.

(iii) If a failure is detected during the seal gap measurements required by §60.113a(a)(1) of subpart Ka, and the vessel cannot be repaired within 45 days and the vessel cannot be emptied within 45 days, the owner or operator may utilize up to 2 extensions of up to 30 additional calendar days each. The owner or operator is not required to provide a request for the extension to the Administrator.

(iv) If an extension is utilized in accordance with paragraph (n)(8)(iii) of this section, the owner or operator shall, in the next periodic report, identify the vessel, describe the nature and date of the repair made or provide the date the storage vessel was emptied.

(v) Owners and operators of storage vessels complying with subpart Kb of part 60 may submit the inspection reports required by §§60.115b(a)(3), (a)(4), and (b)(4) of subpart Kb as part of the periodic reports required by this subpart, rather than within the 30-day period specified in §§60.115b(a)(3), (a)(4), and (b)(4) of subpart Kb.

(vi) The reports of rim seal inspections specified in §60.115b(b)(2) are not required if none of the measured gaps or calculated gap areas exceed the limitations specified in §60.113b(b)(4). Documentation of the inspections shall be recorded as specified in §60.115b(b)(3).

(9) Storage vessels described by paragraph (n)(6) of this section that are to comply with 40 CFR part 60, subpart Ka, are to comply with only subpart Ka except as provided for in paragraphs (n)(9)(i) through (n)(9)(iv) of this section.

(i) If the owner or operator determines that it is unsafe to perform the seal gap measurements required in §60.113a(a)(1) of subpart Ka because the floating roof appears to be structurally unsound and poses an imminent danger to inspecting personnel, the owner or operator shall comply with the requirements in either §63.120(b)(7)(i) or §63.120(b)(7)(ii) of subpart G.

(ii) If a failure is detected during the seal gap measurements required by §60.113a(a)(1) of subpart Ka, and the vessel cannot be repaired within 45 days and the vessel cannot be emptied within 45 days, the owner or operator may utilize up to 2 extensions of up to 30 additional calendar days each.

(iii) If an extension is utilized in accordance with paragraph (n)(9)(ii) of this section, the owner or operator shall, in the next periodic report, identify the vessel, describe the nature and date of the repair made or provide the date the storage vessel was emptied. The owner or operator shall also provide documentation of the decision to utilize an extension including a description of the failure, documentation that alternate storage capacity is unavailable, and a schedule of actions that will ensure that the control equipment will be repaired or the vessel emptied as soon as possible.

(iv) Owners and operators of storage vessels complying with subpart Ka of part 60 may submit the inspection reports required by §60.113a(a)(1)(i)(E) of subpart Ka as part of the periodic reports required by this subpart, rather than within the 60-day period specified in §60.113a(a)(1)(i)(E) of subpart Ka.

(o) Overlap of this subpart CC with other regulations for wastewater.

(1) After the compliance dates specified in paragraph (h) of this section a Group 1 wastewater stream managed in a piece of equipment that is also subject to the provisions of 40 CFR part 60,
subpart QQQ is required to comply only with this subpart.

(2) After the compliance dates specified in paragraph (h) of this section a Group 1 or Group 2 wastewater stream that is conveyed, stored, or treated in a wastewater stream management unit that also receives streams subject to the provisions of §§63.133 through 63.147 of subpart G wastewater provisions of this part shall comply as specified in paragraph (o)(2)(i) or (o)(2)(ii) of this section. Compliance with the provisions of paragraph (o)(2) of this section shall constitute compliance with the requirements of this subpart for that wastewater stream.

(i) Comply with paragraphs (o)(2)(i)(A) through (o)(2)(i)(C) of this section.

(A) The provisions in §§63.133 through 63.140 of subpart G for all equipment used in the storage and conveyance of the Group 1 or Group 2 wastewater stream.

(B) The provisions in both 40 CFR part 61, subpart FF and in §§63.138 and 63.139 of subpart G for the treatment and control of the Group 1 or Group 2 wastewater stream.

(C) The provisions in §§63.143 through 63.148 of subpart G for monitoring and inspections of equipment and for recordkeeping and reporting requirements. The owner or operator is not required to comply with the monitoring, recordkeeping, and reporting requirements associated with the treatment and control requirements in 40 CFR part 61, subpart FF, §§61.355 through 61.357.

(ii) Comply with paragraphs (o)(2)(ii)(A) and (o)(2)(ii)(B) of this section.

(A) Comply with the provisions of §§63.133 through 63.148 and §§63.151 and 63.152 of subpart G.

(B) For any Group 2 wastewater stream or organic stream whose benzene emissions are subject to control through the use of one or more treatment processes or waste management units under the provisions of 40 CFR part 61, subpart FF on or after December 31, 1992, comply with the requirements of §63.133 through §63.147 of subpart G for Group 1 wastewater streams.

(p) Overlap of subpart CC with other regulations for equipment leaks.

(1) After the compliance dates specified in paragraph (h) of this section, equipment leaks that are also subject to the provisions of 40 CFR parts 60 and 61 standards promulgated before September 4, 2007, are required to comply only with the provisions specified in this subpart.

(2) Equipment leaks that are also subject to the provisions of 40 CFR part 60, subpart GGGa, are required to comply only with the provisions specified in 40 CFR part 60, subpart GGGa.

(q) For overlap of subpart CC with local or State regulations, the permitting authority for the affected source may allow consolidation of the monitoring, recordkeeping, and reporting requirements under this subpart with the monitoring, recordkeeping, and reporting requirements under other applicable requirements in 40 CFR parts 60, 61, or 63, and in any 40 CFR part 52 approved State implementation plan provided the implementation plan allows for approval of alternative monitoring, reporting, or recordkeeping requirements and provided that the permit contains an equivalent degree of compliance and control.

(r) Overlap of subpart CC with other regulations for gasoline loading racks. After the compliance dates specified in paragraph (h) of this section, a Group 1 gasoline loading rack that is part of a source subject to subpart CC and also is subject to the provisions of 40 CFR part 60, subpart XX is required to comply only with this subpart.

§63.641 Definitions.

All terms used in this subpart shall have the meaning given them in the Clean Air Act, subpart A of this part, and in this section. If the same term is defined in subpart A and in this section, if the same term is defined in subpart A and in this section, it shall have the meaning given in this section for purposes of this subpart.

Affected source means the collection of emission points to which this subpart applies as determined by the criteria in §63.640.
Aliphatic means open-chained structure consisting of paraffin, olefin and acetylene hydrocarbons and derivatives.

Annual average true vapor pressure means the equilibrium partial pressure exerted by the stored liquid at the temperature equal to the annual average of the liquid storage temperature for liquids stored above or below the ambient temperature or at the local annual average temperature reported by the National Weather Service for liquids stored at the ambient temperature, as determined:

1. In accordance with methods specified in §63.111 of subpart G of this part;
2. From standard reference texts;
3. By any other method approved by the Administrator.

Boiler means any enclosed combustion device that extracts useful energy in the form of steam and is not an incinerator.

By compound means by individual stream components, not by carbon equivalents.

Car-seal means a seal that is placed on a device that is used to change the position of a valve (e.g., from opened to closed) in such a way that the position of the valve cannot be changed without breaking the seal.

Closed vent system means a system that is not open to the atmosphere and is configured of piping, ductwork, connections, and, if necessary, flow inducing devices that transport gas or vapor from an emission point to a control device or back into the process. If gas or vapor from regulated equipment is routed to a process (e.g., to a petroleum refinery fuel gas system), the process shall not be considered a closed vent system and is not subject to closed vent system standards.

Combustion device means an individual unit of equipment such as a flare, incinerator, process heater, or boiler used for the combustion of organic hazardous air pollutant vapors.

Connector means flanged, screwed, or other joined fittings used to connect two pipe lines or a pipe line and a piece of equipment. A common connector is a flange. Joined fittings welded completely around the circumference of the interface are not considered connectors for the purpose of this regulation. For the purpose of reporting and recordkeeping, connector means joined fittings that are accessible.

Continuous record means documentation, either in hard copy or computer readable form, of data values measured at least once every hour and recorded at the frequency specified in §63.655(d).

Continuous recorder means a data recording device recording an instantaneous data value or an average data value at least once every hour.

Control device means any equipment used for recovering, removing, or oxidizing organic hazardous air pollutants. Such equipment includes, but is not limited to, absorbers, carbon adsorbers, condensers, incinerators, flares, boilers, and process heaters. For miscellaneous process vents (as defined in this section), recovery devices (as defined in this section) are not considered control devices.

Cooling tower means a heat removal device used to remove the heat absorbed in circulating cooling water systems by transferring the heat to the atmosphere using natural or mechanical draft.

Cooling tower return line means the main water trunk lines at the inlet to the cooling tower before exposure to the atmosphere.

Delayed coker vent means a vent that is typically intermittent in nature, and usually occurs only during the initiation of the depressuring cycle of the decoking operation when vapor from the coke drums cannot be sent to the fractionator column for product recovery, but instead is routed to the atmosphere through a closed blowdown system or directly to the atmosphere in an open blowdown system. The emissions from the decoking phases of delayed coker operations, which include coke drum deheading, draining, or decoking (coke cutting), are not considered to be delayed coker vents.

Distillate receiver means overhead receivers, overhead accumulators, reflux drums, and condenser(s) including ejector-condenser(s) associated with a distillation unit.

Distillation unit means a device or vessel in which one or more feed streams are separated into two or more exit streams, each exit stream having component concentrations different...
from those in the feed stream(s). The separation is achieved by the redistribution of the components between the liquid and the vapor phases by vaporization and condensation as they approach equilibrium within the distillation unit. Distillation unit includes the distillate receiver, reboiler, and any associated vacuum pump or steam jet.

Emission point means an individual miscellaneous process vent, storage vessel, wastewater stream, or equipment leak associated with a petroleum refining process unit; an individual storage vessel or equipment leak associated with a bulk gasoline terminal or pipeline breakout station classified under Standard Industrial Classification code 2011; a gasoline loading rack classified under Standard Industrial Classification code 2911; or a marine tank vessel loading operation located at a petroleum refinery.

Equipment leak means emissions of organic hazardous air pollutants from a pump, compressor, pressure relief device, sampling connection system, open-ended valve or line, valve, or instrumentation system “in organic hazardous air pollutant service” as defined in this section. Vents from wastewater collection and conveyance systems (including, but not limited to wastewater drains, sewer vents, and sump drains), tank mixers, and sample valves on storage tanks are not equipment leaks.

Flame zone means the portion of a combustion chamber of a boiler or process heater occupied by the flame envelope created by the primary fuel.

Flexible operation unit means a process unit that manufactures different products periodically by alternating raw materials or operating conditions. These units are also referred to as campaign plants or blocked operations.

Flow indicator means a device that indicates whether gas is flowing, or whether the valve position would allow gas to flow, in a line.

Fuel gas system means the offsite and onsite piping and control system that gathers gaseous streams generated by refinery operations, may blend them with sources of gas, if available, and transports the blended gaseous fuel at suitable pressures for use as fuel in heaters, furnaces, boilers, incinerators, gas turbines, and other combustion devices located within or outside of the refinery. The fuel is piped directly to each individual combustion device, and the system typically operates at pressures over atmospheric. The gaseous streams can contain a mixture of methane, light hydrocarbons, hydrogen and other miscellaneous species.

Gasoline means any petroleum distillate or petroleum distillate/alcohol blend having a Reid vapor pressure of 27.6 kilopascals or greater that is used as a fuel for internal combustion engines.

Gasoline loading rack means the loading arms, pumps, meters, shutoff valves, relief valves, and other piping and valves necessary to fill gasoline cargo tanks.

Group 1 gasoline loading rack means any gasoline loading rack classified under Standard Industrial Classification code 2911 that is located within a bulk gasoline terminal that has a gasoline throughput greater than 75,700 liters per day. Gasoline throughput shall be the maximum calculated design throughput for the terminal as may be limited by compliance with enforceable conditions under Federal, State, or local law and discovered by the Administrator and any other person.

Group 1 marine tank vessel means a vessel at an existing source loaded at any land- or sea-based terminal or structure that loads liquid commodities with vapor pressures greater than or equal to 10.3 kilopascals onto marine tank vessels, that emits greater than 9.1 megagrams of any individual HAP or 22.7 megagrams of any combination of HAP annually after August 18, 1999, or a vessel at a new source loaded at any land- or sea-based terminal or structure that loads liquid commodities with vapor pressures greater than or equal to 10.3 kilopascals onto marine tank vessels.

Group 1 miscellaneous process vent means a miscellaneous process vent for which the total organic HAP concentration is greater than or equal to 20 parts per million by volume, and the total volatile organic compound emissions are greater than or equal to 33 kilograms per day for existing sources and 6.8 kilograms per day for new...
sources at the outlet of the final recovery device (if any) and prior to any control device and prior to discharge to the atmosphere.

Group 1 storage vessel means a storage vessel at an existing source that has a design capacity greater than or equal to 177 cubic meters and stored-liquid maximum true vapor pressure greater than or equal to 10.4 kilopascals and stored-liquid annual average true vapor pressure greater than or equal to 3.3 kilopascals and annual average HAP liquid concentration greater than 4 percent by weight total organic HAP; a storage vessel at a new source that has a design storage capacity greater than or equal to 151 cubic meters and stored-liquid maximum true vapor pressure greater than or equal to 3.4 kilopascals and annual average HAP liquid concentration greater than 2 percent by weight total organic HAP; or a storage vessel at a new source that has a design storage capacity greater than or equal to 76 cubic meters and stored-liquid maximum true vapor pressure greater than or equal to 77 kilopascals and annual average HAP liquid concentration greater than 2 percent by weight total organic HAP.

Group 1 wastewater stream means a wastewater stream at a petroleum refinery with a total annual benzene loading of 10 megagrams per year or greater as calculated according to the procedures in 40 CFR 61.342 of subpart FF of part 61 that has a flow rate of 0.02 liters per minute or greater, a benzene concentration of 10 parts per million by weight or greater, and is not exempt from control requirements under the provisions of 40 CFR part 61, subpart FF.

Group 2 gasoline loading rack means a gasoline loading rack classified under Standard Industrial Classification code 2911 that does not meet the definition of a Group 1 gasoline loading rack.

Group 2 marine tank vessel means a marine tank vessel that does not meet the definition of a Group 1 marine tank vessel.

Group 2 miscellaneous process vent means a miscellaneous process vent that does not meet the definition of a Group 1 miscellaneous process vent.
section; rather, the energy recovery section is a separate section following the combustion section and the two are joined by ducts or connections carrying flue gas.

In heavy liquid service means that the piece of equipment is not in gas/vapor service or in light liquid service.

In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in §60.593(d) of part 60, subpart GGG.

In organic hazardous air pollutant service or in organic HAP service means that a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 5 percent by weight of total organic HAP as determined according to the provisions of §63.180(d) of this part and table 1 of this subpart. The provisions of §63.180(d) also specify how to determine that a piece of equipment is not in organic HAP service.

Leakless valve means a valve that has no external actuating mechanism.

Maximum true vapor pressure means the equilibrium partial pressure exerted by the stored liquid at the temperature equal to the highest calendar-month average of the liquid storage temperature for liquids stored above or below the ambient temperature or at the local maximum monthly average temperature as reported by the National Weather Service for liquids stored at the ambient temperature, as determined:

(1) In accordance with methods specified in §63.111 of subpart G of this part;
(2) From standard reference texts; or
(3) By any other method approved by the Administrator.

Miscellaneous process vent means a gas stream containing greater than 20 parts per million by volume organic HAP that is continuously or periodically discharged during normal operation of a petroleum refining process unit meeting the criteria specified in §63.640(a). Miscellaneous process vents include gas streams that are discharged directly to the atmosphere, gas streams that are routed to a control device prior to discharge to the atmosphere, or gas streams that are diverted through a product recovery device prior to control or discharge to the atmosphere. Miscellaneous process vents include vent streams from: cacastic wash accumulators, distillation tower condensers/accumulators, flash/knockout drums, reactor vessels, scrubber overheads, stripper overheads, vacuum (steam) ejectors, wash tower overheads, water wash accumulators, blowdown condensers/accumulators, and delayed coker vents. Miscellaneous process vents do not include:

(1) Gaseous streams routed to a fuel gas system;
(2) Relief valve discharges;
(3) Leaks from equipment regulated under §63.648;
(4) Episodic or nonroutine releases such as those associated with startup, shutdown, malfunction, maintenance, depressuring, and catalyst transfer operations;
(5) In situ sampling systems (onstream analyzers);
(6) Catalytic cracking unit catalyst regeneration vents;
(7) Catalytic reformer regeneration vents;
(8) Sulfur plant vents;
(9) Vents from control devices such as scrubbers, boilers, incinerators, and electrostatic precipitators applied to catalytic cracking unit catalyst regeneration vents, catalytic reformer regeneration vents, and sulfur plant vents;
(10) Vents from any stripping operations applied to comply with the wastewater provisions of this subpart, subpart G of this part, or 40 CFR part 61, subpart FF;
(11) Coking unit vents associated with coke drum depressuring at or below a coke drum outlet pressure of 15 pounds per square inch gauge, deheading, draining, or decoking (coke cutting) or pressure testing after decoking;
(12) Vents from storage vessels;
(13) Emissions from wastewater collection and conveyance systems including, but not limited to, wastewater drains, sewer vents, and sump drains; and
(14) Hydrogen production plant vents through which carbon dioxide is removed from process streams or through which steam condensate produced or treated within the hydrogen plant is degassed or deaerated.

Operating permit means a permit required by 40 CFR parts 70 or 71.
Organic hazardous air pollutant or organic HAP in this subpart, means any of the organic chemicals listed in table 1 of this subpart.

Petroleum-based solvents means mixtures of aliphatic hydrocarbons or mixtures of one and two ring aromatic hydrocarbons.

Periodically discharged means discharges that are intermittent and associated with routine operations. Discharges associated with maintenance activities or process upsets are not considered periodically discharged miscellaneous process vents and are therefore not regulated by the petroleum refinery miscellaneous process vent provisions.

Petroleum refining process unit means a process unit used in an establishment primarily engaged in petroleum refining as defined in the Standard Industrial Classification code for petroleum refining (2911), and used primarily for the following:

(1) Producing transportation fuels (such as gasoline, diesel fuels, and jet fuels), heating fuels (such as kerosene, fuel gas distillate, and fuel oils), or lubricants;
(2) Separating petroleum; or
(3) Separating, cracking, reacting, or reforming intermediate petroleum streams.

(4) Examples of such units include, but are not limited to, petroleum-based solvent units, alkylation units, catalytic hydrotreating, catalytic hydrotreatment, catalytic hydrocracking, catalytic reforming, catalytic cracking, crude distillation, lube oil processing, hydrogen production, isomerization, polymerization, thermal processes, and blending, sweetening, and treating processes. Petroleum refining process units also include sulfur plants.

Plant site means all contiguous or adjoining property that is under common control including properties that are separated only by a road or other public right-of-way. Common control includes properties that are owned, leased, or operated by the same entity, parent entity, subsidiary, or any combination thereof.

Primary fuel means the fuel that provides the principal heat input (i.e., more than 50 percent) to the device. To be considered primary, the fuel must be able to sustain operation without the addition of other fuels.

Process heater means an enclosed combustion device that primarily transfers heat liberated by burning fuel directly to process streams or to heat transfer liquids other than water.

Process unit means the equipment assembled and connected by pipes or ducts to process raw and/or intermediate materials and to manufacture an intended product. A process unit includes any associated storage vessels. For the purpose of this subpart, process unit includes, but is not limited to, chemical manufacturing process units and petroleum refining process units.

Process unit shutdown means a work practice or operational procedure that stops production from a process unit or part of a process unit during which it is technically feasible to clear process material from a process unit or part of a process unit consistent with safety constraints and during which repairs can be accomplished. An unscheduled work practice or operational procedure that stops production from a process unit or part of a process unit for less than 24 hours is not considered a process unit shutdown. An unscheduled work practice or operational procedure that would stop production from a process unit or part of a process unit for a shorter period of time than would be required to clear the process unit or part of the process unit of materials and start up the unit, or would result in greater emissions than delay of repair of leaking components until the next scheduled process unit shutdown is not considered a process unit shutdown. The use of spare equipment and technically feasible bypassing of equipment without stopping production are not considered process unit shutdowns.

Recovery device means an individual unit of equipment capable of and used for the purpose of recovering chemicals for use, reuse, or sale. Recovery devices include, but are not limited to, absorbers, carbon adsorbers, and condensers.

Reference control technology for gasoline loading racks means a vapor collection and processing system used to reduce emissions due to the loading of gasoline cargo tanks to 10 milligrams
of total organic compounds per liter of gasoline loaded or less.

Reference control technology for marine vessels means a vapor collection system and a control device that reduces captured HAP emissions by 97 percent.

Reference control technology for miscellaneous process vents means a combustion device used to reduce organic HAP emissions by 98 percent, or to an outlet concentration of 20 parts per million by volume.

Reference control technology for storage vessels means either:

1. An internal floating roof meeting the specifications of §63.119(b) of subpart G except for §63.119 (b)(5) and (b)(6);
2. An external floating roof meeting the specifications of §63.119(c) of subpart G except for §63.119(c)(2);
3. An external floating roof converted to an internal floating roof meeting the specifications of §63.119(d) of subpart G except for §63.119(d)(2); or
4. A closed-vent system to a control device that reduces organic HAP emissions by 95-percent, or to an outlet concentration of 20 parts per million by volume.

5. For purposes of emissions averaging, these four technologies are considered equivalent.

Reference control technology for wastewater means the use of:

1. Controls specified in §§61.343 through 61.347 of subpart FF of part 61;
2. A treatment process that achieves the emission reductions specified in table 7 of this subpart for each individual HAP present in the wastewater stream or is a steam stripper that meets the specifications in §63.138(g) of subpart G of this part; and
3. A control device to reduce by 95 percent (or to an outlet concentration of 20 parts per million by volume for combustion devices) the organic HAP emissions in the vapor streams vented from treatment processes (including the steam stripper described in paragraph (2) of this definition) managing wastewater.

Refinery fuel gas means a gaseous mixture of methane, light hydrocarbons, hydrogen, and other miscellaneous species (nitrogen, carbon dioxide, hydrogen sulfide, etc.) that is produced in the refining of crude oil and/or petrochemical processes and that is separated for use as a fuel in boilers and process heaters throughout the refinery.

Relief valve means a valve used only to release an unplanned, nonroutine discharge. A relief valve discharge can result from an operator error, a malfunction such as a power failure or equipment failure, or other unexpected cause that requires immediate venting of gas from process equipment in order to avoid safety hazards or equipment damage.

Research and development facility means laboratory and pilot plant operations whose primary purpose is to conduct research and development into new processes and products, where the operations are under the close supervision of technically trained personnel, and is not engaged in the manufacture of products for commercial sale, except in a de minimis manner.

Shut down means the cessation of a petroleum refining process unit or a unit operation (including, but not limited to, a distillation unit or reactor) within a petroleum refining process unit for purposes including, but not limited to, periodic maintenance, replacement of equipment, or repair.

Startup means the setting into operation of a petroleum refining process unit for purposes of production. Startup does not include operation solely for purposes of testing equipment. Startup does not include changes in product for flexible operation units.

Storage vessel means a tank or other vessel that is used to store organic liquids. Storage vessel does not include:

1. Vessels permanently attached to motor vehicles such as trucks, railcars, barges, or ships;
2. Pressure vessels designed to operate in excess of 204.9 kilopascals and without emissions to the atmosphere;
3. Vessels with capacities smaller than 40 cubic meters;
4. Bottoms receiver tanks; or
5. Wastewater storage tanks. Wastewater storage tanks are covered under the wastewater provisions.

Temperature monitoring device means a unit of equipment used to monitor temperature and having an accuracy of ±1 percent of the temperature being monitored.
monitored expressed in degrees Celsius or ±0.5 °C, whichever is greater.

Total annual benzene means the total amount of benzene in waste streams at a facility on an annual basis as determined in §61.342 of 40 CFR part 61, subpart FF.

Total organic compounds or TOC, as used in this subpart, means those compounds excluding methane and ethane measured according to the procedures of Method 18 of 40 CFR part 60, appendix A. Method 25A may be used alone or in combination with Method 18 to measure TOC as provided in §63.645 of this subpart.

Wastewater means water or wastewater that, during production or processing, comes into direct contact with or results from the production or use of any raw material, intermediate product, finished product, byproduct, or waste product and is discharged into any individual drain system. Examples are feed tank drawdown; water formed during a chemical reaction or used as a reactant; water used to cool or quench organic vapor streams through direct contact; and condensed steam from jet ejector systems pulling vacuum on vessels containing organics.

§ 63.642 General standards.

(a) Each owner or operator of a source subject to this subpart is required to apply for a part 70 or part 71 operating permit from the appropriate permitting authority. If the EPA has approved a State operating permit program under part 70, the permit shall be obtained from the State authority. If the State operating permit program has not been approved, the source shall apply to the EPA Regional Office pursuant to part 71.

(b) [Reserved]

c) Table 6 of this subpart specifies the provisions of subpart A of this part that apply and those that do not apply to owners and operators of sources subject to this subpart.

(d) Initial performance tests and initial compliance determinations shall be required only as specified in this subpart.

(1) Performance tests and compliance determinations shall be conducted according to the schedule and procedures specified in this subpart.

(2) The owner or operator shall notify the Administrator of the intention to conduct a performance test at least 30 days before the performance test is scheduled.

(3) Performance tests shall be conducted according to the provisions of §63.7(e) except that performance tests shall be conducted at maximum representative operating capacity for the process. During the performance test, an owner or operator shall operate the control device at either maximum or minimum representative operating conditions for monitored control device parameters, whichever results in lower emission reduction.

(4) Data shall be reduced in accordance with the EPA-approved methods specified in the applicable section or, if other test methods are used, the data and methods shall be validated according to the protocol in Method 301 of appendix A of this part.

(e) Each owner or operator of a source subject to the requirements of this subpart shall keep copies of all applicable reports and records required by this subpart for at least 5 years except as otherwise specified in this subpart. All applicable records shall be maintained in such a manner that they can be readily accessed within 24 hours. Records may be maintained in hard copy or computer-readable form including, but not limited to, on paper, microfilm, computer, floppy disk, magnetic tape, or microfiche.

(f) All reports required under this subpart shall be sent to the Administrator at the addresses listed in §63.13 of subpart A of this part. If acceptable to both the Administrator and the owner or operator of a source, reports may be submitted on electronic media.

(g) The owner or operator of an existing source subject to the requirements of this subpart shall control emissions of organic HAP’s to the level represented by the following equation:
\[E_A = 0.02E_{PV_1} + \Sigma E_{PV_2} + 0.02E_{EM_1} + \Sigma E_{EM_2} + \Sigma EGLR_{1C} + \Sigma EGLR_{2} + (R) \Sigma EMV_1 + \Sigma EMV_2 + \Sigma EWW_{1C} + \Sigma EWW_2 \]

where:

\[E_A = \text{Emission rate, megagrams per year, allowed for the source.} \]
\[0.02E_{PV_1} = \text{Sum of the residual emissions, megagrams per year, from all Group 1 miscellaneous process vents, as defined in \$63.641.} \]
\[\Sigma E_{PV_2} = \text{Sum of the emissions, megagrams per year, from all Group 2 process vents, as defined in \$63.641.} \]
\[0.02E_{EM_1} = \text{Sum of the residual emissions, megagrams per year, from all Group 1 storage vessels, as defined in \$63.641.} \]
\[\Sigma E_{EM_2} = \text{Sum of the emissions, megagrams per year, from all Group 2 storage vessels, as defined in \$63.641.} \]
\[\Sigma EGLR_{1C} = \text{Sum of the residual emissions, megagrams per year, from all Group 1 gasoline loading racks, as defined in \$63.641.} \]
\[\Sigma EGLR_{2} = \text{Sum of the emissions, megagrams per year, from all Group 2 gasoline loading racks, as defined in \$63.641.} \]
\[(R) \Sigma EMV_1 = \text{Sum of the residual emissions megagrams per year, from all Group 1 marine tank vessels, as defined in \$63.641.} \]
\[R = 0.02 \text{ for existing sources, 0.02 for new sources.} \]
\[\Sigma EMV_2 = \text{Sum of the emissions, megagrams per year from all Group 2 marine tank vessels, as defined in \$63.641.} \]
\[\Sigma EWW_{1C} = \text{Sum of the residual emissions from all Group 1 wastewater streams, as defined in \$63.641.} \]
\[\Sigma EWW_2 = \text{Sum of emissions from all Group 2 wastewater streams, as defined in \$63.641.} \]

The emissions level represented by this equation is dependent on the collection of emission points in the source. The level is not fixed and can change as the emissions from each emission point change or as the number of emission points in the source changes.

(h) The owner or operator of a new source subject to the requirements of this subpart shall control emissions of organic HAP's to the level represented by the equation in paragraph (g) of this section.

(i) The owner or operator of an existing source shall demonstrate compliance with the emission standard in paragraph (g) of this section by following the procedures specified in paragraph (k) of this section for all emission points, or by following the emissions averaging compliance approach specified in paragraph (l) of this section for specified emission points and the procedures specified in paragraph (k) of this section for all other emission points within the source.

(j) The owner or operator of a new source shall demonstrate compliance with the emission standard in paragraph (h) of this section only by following the procedures in paragraph (k) of this section. The owner or operator of a new source may not use the emissions averaging compliance approach.

(k) The owner or operator of an existing source may comply, and the owner or operator of a new source shall comply, with the miscellaneous process vent provisions in §§63.643 through 63.645, the storage vessel provisions in §63.646, the wastewater provisions in §63.647, the gasoline loading rack provisions in §63.650, and the marine tank vessel loading operation provisions in §63.651 of this subpart.

(1) The owner or operator using this compliance approach shall also comply with the requirements of §63.655 as applicable.

(2) The owner or operator using this compliance approach is not required to calculate the annual emission rate specified in paragraph (g) of this section.

(l) The owner or operator of an existing source may elect to control some of the emission points within the source to different levels than specified under §§63.643 through 63.647, §§63.650 and 63.651 by using an emissions averaging compliance approach as long as the overall emissions for the source do not exceed the emission level specified in paragraph (g) of this section. The owner or operator using emissions averaging shall meet the requirements in paragraphs (1)(1) and (1)(2) of this section.

(1) Calculate emission debits and credits for those emission points involved in the emissions average according to the procedures specified in §63.652; and

(2) Comply with the requirements of §§63.652, 63.653, and 63.655, as applicable.

(m) A State may restrict the owner or operator of an existing source to using only the procedures in paragraph
§ 63.644 Monitoring provisions for miscellaneous process vents.

(a) Except as provided in paragraph (b) of this section, each owner or operator of a Group 1 miscellaneous process vent that uses a combustion device to comply with the requirements in §63.643(a) shall install the monitoring equipment specified in paragraph (a)(1), (a)(2), (a)(3), or (a)(4) of this section, depending on the type of combustion device used. All monitoring equipment shall be installed, calibrated, maintained, and operated according to manufacturer's specifications or other written procedures that provide adequate assurance that the equipment will monitor accurately.

(1) Uses a control device other than an incinerator, boiler, process heater, or flare; or

(2) Uses one of the control devices listed in paragraph (a) of this section, but seeks to monitor a parameter other than those specified in paragraph (a) of this section.

(b) An owner or operator of a Group 1 miscellaneous process vent may request approval to monitor parameters other than those listed in paragraph (a) of this section. The request shall be submitted according to the procedures specified in §63.655(h). Approval shall be requested if the owner or operator:

(1) Uses a control device other than a catalytic incinerator is used, a temperature monitoring device equipped with a continuous recorder is required.

(2) Where a catalytic incinerator is used, temperature monitoring devices shall be installed in the firebox in a position before any substantial heat exchange occurs.

(i) Where a catalytic incinerator is used, temperature monitoring devices shall be installed in the flame zone immediately before and after the catalyst bed.

(2) Where a flare is used, a device (including but not limited to a thermocouple, an ultraviolet beam sensor, or an infrared sensor) capable of continuously detecting the presence of a pilot flame is required.

(3) Any boiler or process heater with a design heat input capacity greater than or equal to 44 megawatt or any boiler or process heater in which all vent streams are introduced into the flame zone is exempt from monitoring.

(4) Any boiler or process heater less than 44 megawatts design heat capacity where the vent stream is not introduced into the flame zone is required to use a temperature monitoring device in the firebox equipped with a continuous recorder.

(b) An owner or operator of a Group 1 miscellaneous process vent may request approval to monitor parameters other than those listed in paragraph (a) of this section. The request shall be submitted according to the procedures specified in §63.655(h). Approval shall be requested if the owner or operator:

(1) Uses a control device other than an incinerator, boiler, process heater, or flare; or

(2) Uses one of the control devices listed in paragraph (a) of this section, but seeks to monitor a parameter other than those specified in paragraph (a) of this section.

(c) The owner or operator of a Group 1 miscellaneous process vent using a vent system that contains bypass lines that could divert a vent stream away from the control device used to comply with paragraph (a) of this section shall
§ 63.645 Test methods and procedures for miscellaneous process vents.

(a) To demonstrate compliance with § 63.643, an owner or operator shall follow §63.116 except for §63.116 (a)(1), (d) and (e) of subpart G of this part except as provided in paragraphs (b) through (d) and paragraph (1) of this section.

(b) All references to §63.113(a)(1) or (a)(2) in §63.116 of subpart G of this part shall be replaced with §63.643(a)(1) or (a)(2), respectively.

(c) In §63.116(c)(4)(ii)(C) of subpart G of this part, organic HAP’s in the list of HAP’s in table 1 of this subpart shall be considered instead of the organic HAP’s in table 2 of subpart F of this part.

(d) All references to §63.116(b)(1) or (b)(2) shall be replaced with paragraphs (d)(1) and (d)(2) of this section, respectively.

(1) Any boiler or process heater with a design heat input capacity of 44 megawatts or greater.

(2) Any boiler or process heater in which all vent streams are introduced into the flame zone.

(e) For purposes of determining the TOC emission rate, as specified under paragraph (f) of this section, the sampling site shall be after the last product recovery device (as defined in §63.641 of this subpart) (if any recovery devices are present) but prior to the inlet of any control device (as defined in §63.641 of this subpart) that is present, prior to any dilution of the process vent stream, and prior to release to the atmosphere.

(1) Methods 1 or 1A of 40 CFR part 60, appendix A, as appropriate, shall be used for selection of the sampling site.

(2) No traverse site selection method is needed for vents smaller than 0.10 meter in diameter.

(f) Except as provided in paragraph (g) of this section, an owner or operator seeking to demonstrate that a process vent TOC mass flow rate is less than 33 kilograms per day for an existing source or less than 6.8 kilograms per day for a new source in accordance with the Group 2 process vent definition of this subpart shall determine the TOC mass flow rate by the following procedures:

(1) The sampling site shall be selected as specified in paragraph (e) of this section.

(2) The gas volumetric flow rate shall be determined using Methods 2, 2A, 2C,
or 2D of 40 CFR part 60, appendix A, as appropriate.

(3) Method 18 or Method 25A of 40 CFR part 60, appendix A shall be used to measure concentration; alternatively, any other method or data that has been validated according to the protocol in Method 301 of appendix A of this part may be used. If Method 25A is used, and the TOC mass flow rate calculated from the Method 25A measurement is greater than or equal to 33 kilograms per day for an existing source or 6.8 kilograms per day for a new source, Method 18 may be used to determine any non-VOC hydrocarbons that may be deducted to calculate the TOC (minus non-VOC hydrocarbons) concentration and mass flow rate. The following procedures shall be used to calculate parts per million by volume concentration:

(i) The minimum sampling time for each run shall be 1 hour in which either an integrated sample or four grab samples shall be taken. If grab sampling is used, then the samples shall be taken at approximately equal intervals in time, such as 15-minute intervals during the run.

(ii) The TOC concentration \(C_{\text{TOC}}\) is the sum of the concentrations of the individual components and shall be computed for each run using the following equation if Method 18 is used:

\[
C_{\text{TOC}} = \frac{\sum_{i=1}^{n} \left(\sum_{j=1}^{n} C_{ji} \right)}{x}
\]

where:
- \(C_{\text{TOC}}\) = Concentration of TOC (minus methane and ethane), dry basis, parts per million by volume.
- \(C_{ji}\) = Concentration of sample component \(j\) of the sample \(i\), dry basis, parts per million by volume.
- \(n\) = Number of components in the sample.
- \(x\) = Number of samples in the sample run.

(4) The emission rate of TOC (minus methane and ethane) \(E_{\text{TOC}}\) shall be calculated using the following equation if Method 18 is used:

\[
E = K_2 \left[\sum_{j=1}^{n} C_{ji} M_j \right] Q_s
\]

where:
- \(E\) = Emission rate of TOC (minus methane and ethane) in the sample, kilograms per day.
- \(K_2\) = Constant, \(5.986 \times 10^{-5}\) (parts per million)\(^{-1}\) (gram-mole per standard cubic meter) (kilogram per gram) (minute per day), where the standard temperature (standard cubic meter) is at 20 °C.
- \(C_{\text{TOC}}\) = Concentration on a dry basis of organic compound \(j\). gram per gram-mole.
- \(M\) = Molecular weight of organic compound used to express units of \(C_{\text{TOC}}\), gram per gram-mole.
- \(Q_s\) = Vent stream flow rate, dry standard cubic meters per minute, at a temperature of 20 °C.

(5) If Method 25A is used, the emission rate of TOC \((E_{\text{TOC}})\) shall be calculated using the following equation:

\[
E_{\text{TOC}} = K_2 C_{\text{TOC}} M Q_s
\]

where:
- \(E_{\text{TOC}}\) = Emission rate of TOC (minus methane and ethane) in the sample, kilograms per day.
- \(K_2\) = Constant, \(5.986 \times 10^{-5}\) (parts per million)\(^{-1}\) (gram-mole per standard cubic meter) (kilogram per gram) (minute per day), where the standard temperature (standard cubic meter) is at 20 °C.
- \(C_{\text{TOC}}\) = Concentration of TOC on a dry basis in parts per million volume as measured by Method 25A of 40 CFR part 60, appendix A, as indicated in paragraph (f)(3) of this section.
- \(M\) = Molecular weight of organic compound used to express units of \(C_{\text{TOC}}\), gram per gram-mole.
- \(Q_s\) = Vent stream flow rate, dry standard cubic meters per minute, at a temperature of 20 °C.

(g) Engineering assessment may be used to determine the TOC emission rate for the representative operating condition expected to yield the highest daily emission rate.

(1) Engineering assessment includes, but is not limited to, the following:

(i) Previous test results provided the tests are representative of current operating practices at the process unit.
(ii) Bench-scale or pilot-scale test data representative of the process under representative operating conditions.
(iii) TOC emission rate specified or implied within a permit limit applicable to the process vent.
§ 63.646 Storage vessel provisions.

(a) Each owner or operator of a Group 1 storage vessel subject to this subpart shall comply with the requirements of §§63.119 through 63.121 except as provided in paragraphs (b) through (l) of this section.

(b) The owner or operator of a Group 2 process vent shall recalculate the TOC emission rate for each process vent, as necessary, whenever process changes are made to determine whether the vent is in Group 1 or Group 2. Examples of process changes include, but are not limited to, changes in production capacity, production rate, or catalyst type, or whenever there is replacement, removal, or addition of recovery equipment. For purposes of this paragraph, process changes do not include: process upsets; unintentional, temporary process changes; and changes that are within the range on which the original calculation was based.

(1) The TOC emission rate shall be recalculated based on measurements of vent stream flow rate and TOC as specified in paragraphs (e) and (f) of this section, as applicable, or on best engineering assessment of the effects of the change. Engineering assessments shall meet the specifications in paragraph (g) of this section.

(2) Where the recalculated TOC emission rate is greater than 33 kilograms per day for an existing source or greater than 6.8 kilograms per day for a new source, the owner or operator shall submit a report as specified in §63.655(f), (g), or (h) and shall comply with the appropriate provisions in §63.643 by the dates specified in §63.640.

(i) A compliance determination for visible emissions shall be conducted within 150 days of the compliance date using Method 22 of 40 CFR part 60, appendix A, to determine visible emissions.

(5) All references to §63.150 in §63.119 of subpart G of this part shall be replaced with §63.652.

(6) All references to §63.113(a)(2) of subpart G shall be replaced with §63.643(a)(2) of this subpart.

(7) All references to §63.126(b)(1) of subpart G shall be replaced with §63.422(b) of subpart R of this part.

(8) All references to §63.128(a) of subpart G shall be replaced with §63.425, paragraphs (a) through (c) and (e) through (h) of subpart R of this part.

(9) All references to §63.139(d)(1) in §63.120(d)(1)(ii) of subpart G are not applicable. For sources subject to this subpart, such references shall mean that 40 CFR 61.355 is applicable.

(10) All references to §63.139(c) in §63.120(d)(1)(ii) of subpart G are not applicable. For sources subject to this subpart, such references shall mean that §63.647 of this subpart is applicable.

(e) When complying with the inspection requirements of §63.120 of subpart G of this part, owners and operators of storage vessels at existing sources subject to this subpart are not required to comply with the provisions for gaskets, slotted membranes, and sleeve seals.

(f) The following paragraphs (f)(1), (f)(2), and (f)(3) of this section apply to Group 1 storage vessels at existing sources:

(1) If a cover or lid is installed on an opening on a floating roof, the cover or lid shall remain closed except when the cover or lid must be open for access.

(2) Rim space vents are to be set to open only when the floating roof is not floating or when the pressure beneath the rim seal exceeds the manufacturer’s recommended setting.

(3) Automatic bleeder vents are to be closed at all times when the roof is floating except when the roof is being floated off or is being landed on the roof leg supports.

(g) Failure to perform inspections and monitoring required by this section shall constitute a violation of the applicable standard of this subpart.

(h) References in §§63.119 through 63.121 to §63.122(g)(1), §63.151, and references to initial notification requirements do not apply.

(i) References to the Implementation Plan in §63.120, paragraphs (d)(2) and (d)(3)(i) shall be replaced with the Notification of Compliance Status report.

(j) References to the Notification of Compliance Status report in §63.152(b) mean the Notification of Compliance Status required by §63.655(f).

(k) References to the Periodic Reports in §63.152(c) mean the Periodic Report required by §63.655(g).

(l) The State or local permitting authority can waive the notification requirements of §§63.120(a)(5), 63.120(a)(6), 63.120(b)(10)(ii), and 63.120(b)(10)(iii) for all or some storage vessels at petroleum refineries subject to this subpart. The State or local permitting authority may also grant permission to refill storage vessels sooner than 30 days after submitting the notifications in §63.120(a)(6) or §63.120(b)(10)(iii) for all storage vessels at a refinery or for individual storage vessels on a case-by-case basis.

§63.647 Wastewater provisions.

(a) Except as provided in paragraph (b) of this section, each owner or operator of a Group 1 wastewater stream shall comply with the requirements of §§61.340 through 61.355 of 40 CFR part 61, subpart FF for each process wastewater stream that meets the definition in §63.641.

(b) As used in this section, all terms not defined in §63.641 shall have the meaning given them in the Clean Air Act or in 40 CFR part 61, subpart FF, §61.341.

(c) Each owner or operator required under subpart FF of 40 CFR part 61 to perform periodic measurement of benzene concentration in wastewater, or to monitor process or control device operating parameters shall operate in a manner consistent with the minimum or maximum (as appropriate) permitted concentration or operating parameter values. Operation of the process, treatment unit, or control device resulting in a measured concentration or operating parameter value outside the permitted limits shall constitute a violation of the emission standards.
§ 63.648 Equipment leak standards.

(a) Each owner or operator of an existing source subject to the provisions of this subpart shall comply with the provisions of 40 CFR part 60 subpart VV and paragraph (b) of this section except as provided in paragraphs (a)(1), (a)(2), and (c) through (i) of this section. Each owner or operator of a new source subject to the provisions of this subpart shall comply with subpart H of this part except as provided in paragraphs (c) through (i) of this section.

(1) For purposes of compliance with this section, the provisions of 40 CFR part 60, subpart VV apply only to equipment in organic HAP service, as defined in § 63.641 of this subpart.

(2) Calculation of percentage leaking equipment components for subpart VV of 40 CFR part 60 may be done on a process unit basis or a sourcewide basis. Once the owner or operator has decided, all subsequent calculations shall be on the same basis unless a permit change is made.

(b) The use of monitoring data generated before August 18, 1995 to qualify for less frequent monitoring of valves and pumps as provided under 40 CFR part 60 subpart VV or subpart H of this part except as provided in paragraphs (c)(1) through (i) of this section.

(i) Monitoring data must meet the test methods and procedures specified in § 60.485(b) of 40 CFR part 60, subpart VV or § 63.180(b)(1) through (b)(5) of subpart H of this part except for minor departures.

(2) Departures from the criteria specified in § 60.485(b) of 40 CFR part 60, subpart VV or § 63.180(b)(1) through (b)(5) of subpart H of this part or from the monitoring frequency specified in subpart VV or in paragraph (c) of this section (such as every 6 weeks instead of monthly or quarterly) are minor and do not significantly affect the quality of the data. An example of a minor departure is monitoring at a slightly different frequency (such as every 6 weeks instead of monthly or quarterly). Failure to use a calibrated instrument is not considered a minor departure.

(c) In lieu of complying with the existing source provisions of paragraph (a) in this section, an owner or operator may elect to comply with the requirements of §§ 63.161 through 63.169, 63.171, 63.172, 63.175, 63.176, 63.177, 63.179, and 63.180 of subpart H of this part except as provided in paragraphs (c)(1) through (c)(10) and (e) through (i) of this section.

(1) The instrument readings that define a leak for light liquid pumps subject to § 63.163 of subpart H of this part and gas/vapor and light liquid valves subject to § 63.168 of subpart H of this part are specified in table 2 of this subpart.

(2) In phase III of the valve standard, the owner or operator may monitor valves for leaks as specified in paragraphs (c)(2)(i) or (c)(2)(ii) of this section.

(i) If the owner or operator does not elect to monitor connectors, then the owner or operator shall monitor valves according to the frequency specified in table 8 of this subpart.

(ii) If an owner or operator elects to monitor connectors according to the provisions of §§ 63.649, paragraphs (b), (c), or (d), then the owner or operator shall monitor valves at the frequencies specified in table 9 of this subpart.

(3) The owner or operator shall decide no later than the first required monitoring period after the phase I compliance date specified in § 63.640(h) whether to calculate the percentage leaking valves on a process unit basis or on a sourcewide basis. Once the owner or operator has decided, all subsequent calculations shall be on the same basis unless a permit change is made.

(4) The owner or operator shall decide no later than the first monitoring period after the phase III compliance date specified in § 63.640(h) whether to monitor connectors according to the provisions in §§ 63.649, paragraphs (b), (c), or (d).

(5) Connectors in gas/vapor service or light liquid service are subject to the requirements for connectors in heavy liquid service in § 63.169 of subpart H of
this part (except for the agitator provisions). The leak definition for valves, connectors, and instrumentation systems subject to §63.169 is 1,000 parts per million.

(6) In phase III of the pump standard, except as provided in paragraph (c)(7) of this section, owners or operators that achieve less than 10 percent of light liquid pumps leaking or three light liquid pumps leaking, whichever is greater, shall monitor light liquid pumps monthly.

(7) Owners or operators that achieve less than 3 percent of light liquid pumps leaking or one light liquid pump leaking, whichever is greater, shall monitor light liquid pumps quarterly.

(8) An owner or operator may make the election described in paragraphs (c)(3) and (c)(4) of this section at any time except that any election to change after the initial election shall be treated as a permit modification according to the terms of part 70 of this chapter.

(9) When complying with the requirements of §63.168(e)(3)(i), non-repairable valves shall be included in the calculation of percent leaking valves the first time the valve is identified as leaking and non-repairable. Otherwise, a number of non-repairable valves up to a maximum of 1 percent per year of the total number of valves in organic HAP service up to a maximum of 3 percent may be excluded from calculation of percent leaking valves for subsequent monitoring periods. When the number of non-repairable valves exceeds 3 percent of the total number of valves in organic HAP service, the number of non-repairable valves exceeding 3 percent of the total number shall be included in the calculation of percent leaking valves.

(10) If in phase III of the valve standard any valve is designated as being leakless, the owner or operator has the option of following the provisions of [40 CFR 60.462–7(f)]. If an owner or operator chooses to comply with the provisions of [40 CFR 60.462–7(f)], the valve is exempt from the valve monitoring provisions of §63.168 of subpart H of this part.

(d) Upon startup of new sources, the owner or operator shall comply with §63.163(a)(1)(ii) of subpart H of this part for light liquid pumps and §63.168(a)(1)(ii) of subpart H of this part for gas/vapor and light liquid valves.

(e) For reciprocating pumps in heavy liquid service and agitators in heavy liquid service, owners and operators are not required to comply with the requirements in §63.169 of subpart H of this part.

(f) Reciprocating pumps in light liquid service are exempt from §§63.163 and 60.482 if recasting the distance piece or reciprocating pump replacement is required.

(g) Compressors in hydrogen service are exempt from the requirements of paragraphs (a) and (c) of this section if an owner or operator demonstrates that a compressor is in hydrogen service.

(1) Each compressor is presumed not to be in hydrogen service unless an owner or operator demonstrates that the piece of equipment is in hydrogen service.

(2) For a piece of equipment to be considered in hydrogen service, it must be determined that the percentage hydrogen content can be reasonably expected always to exceed 50 percent by volume.

(i) For purposes of determining the percentage hydrogen content in the process fluid that is contained in or contacts a compressor, the owner or operator shall use either:

(A) Procedures that conform to those specified in §60.593(b)(2) of 40 part 60, subpart GGG.

(B) Engineering judgment to demonstrate that the percentage content exceeds 50 percent by volume, provided the engineering judgment demonstrates that the content clearly exceeds 50 percent by volume.

(j) When an owner or operator and the Administrator do not agree on whether a piece of equipment is in hydrogen service, the procedures in paragraph (g)(2)(i)(A) of this section shall be used to resolve the disagreement.

(k) If an owner or operator determines that a piece of equipment is in hydrogen service, the determination can be revised only by following the procedures in paragraph (g)(2)(i)(A) of this section.

(h) Each owner or operator of a source subject to the provisions of this...
§ 63.649 Alternative means of emission limitation: Connectors in gas/vapor service and light liquid service.

(a) If an owner or operator elects to monitor valves according to the provisions of §63.648(c)(2)(ii), the owner or operator shall implement one of the connector monitoring programs specified in paragraphs (b), (c), or (d) of this section.

(b) Random 200 connector alternative. The owner or operator shall implement a random sampling program for accessible connectors of 2.0 inches nominal diameter or greater. The program does not apply to inaccessible or unsafe-to-monitor connectors, as defined in §63.174 of subpart H. The sampling program shall be implemented source-wide.

(1) Within the first 12 months after the phase III compliance date specified in §63.640(h), a sample of 200 connectors shall be randomly selected and monitored using Method 21 of 40 CFR part 60, appendix A.

(2) The instrument reading that defines a leak is 1,000 parts per million.

(3) When a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after the leak is detected except as provided in paragraph (e) of this section. A first attempt at repair shall be made no later than 5 calendar days after the leak is detected.

(4) If a leak is detected, the connector shall be monitored for leaks within the first 3 months after its repair.

(5) After conducting the initial survey required in paragraph (b)(1) of this section, the owner or operator shall conduct subsequent monitoring of connectors at the frequencies specified in paragraphs (b)(5)(i) through (b)(5)(iv) of this section.

(i) If the percentage leaking connectors is 2.0 percent or greater, the owner or operator shall survey a random sample of 200 connectors once every 6 months.

(ii) If the percentage leaking connectors is 1.0 percent or greater but less than 2.0 percent, the owner or operator shall survey a random sample of 200 connectors once per year.

(iii) If the percentage leaking connectors is 0.5 percent or greater but less than 1.0 percent, the owner or operator shall survey a random sample of 200 connectors once every 2 years.

(iv) If the percentage leaking connectors is less than 0.5 percent, the owner or operator shall survey a random sample of 200 connectors once every 4 years.

(6) Physical tagging of the connectors to indicate that they are subject to the monitoring provisions is not required. Connectors may be identified by the area or length of pipe and need not be individually identified.

(c) Connector inspection alternative. The owner or operator shall implement a program to monitor all accessible connectors in gas/vapor service that are 2.0 inches (nominal diameter) or greater and inspect all accessible connectors in light liquid service that are 2 inches (nominal diameter) or greater as described in paragraphs (c)(1) through (c)(7) of this section. The program does not apply to inaccessible or unsafe-to-monitor connectors.

(1) Within 12 months after the phase III compliance date specified in §63.640(h), all connectors in gas/vapor service shall be monitored using Method 21 of 40 CFR part 60, appendix A. The instrument reading that defines a leak is 1,000 parts per million.

(2) All connectors in light liquid service shall be inspected for leaks. A leak is detected if liquids are observed to be dripping at a rate greater than three drops per minute.

(3) When a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after the leak is detected except as provided in paragraph (e) of this section. A first attempt at repair shall be made no later than 5 calendar days after the leak is detected.

(4) If a leak is detected, connectors in gas/vapor service shall be monitored for leaks within the first 3 months...
after repair. Connectors in light liquid service shall be inspected for indications of leaks within the first 3 months after repair. A leak is detected if liquids are observed to be dripping at a rate greater than three drops per minute.

(5) After conducting the initial survey required in paragraphs (c)(1) and (c)(2) of this section, the owner or operator shall conduct subsequent monitoring at the frequencies specified in paragraphs (c)(5)(i) through (c)(5)(iii) of this section.

(i) If the percentage leaking connectors is 2.0 percent or greater, the owner or operator shall monitor or inspect, as applicable, the connectors once per year.

(ii) If the percentage leaking connectors is 1.0 percent or greater but less than 2.0 percent, the owner or operator shall monitor or inspect, as applicable, the connectors once every 2 years.

(iii) If the percentage leaking connectors is less than 1.0 percent, the owner or operator shall monitor or inspect, as applicable, the connectors once every 4 years.

(6) The percentage leaking connectors shall be calculated for connectors in gas/vapor service and for connectors in light liquid service. The data for the two groups of connectors shall not be pooled for the purpose of determining the percentage leaking connectors.

(i) The percentage leaking connectors shall be calculated as follows:

\[
\% \text{ C}_L = \left(\frac{(C_L - C_{AN})}{C_t + C_c} \right) \times 100
\]

where:

- \(\% \text{ C}_L \) = Percentage leaking connectors.
- \(C_L \) = Number of connectors including nonrepairables, measured at 1,000 parts per million or greater, by Method 21 of 40 CFR part 60, appendix A.
- \(C_{AN} \) = Number of allowable nonrepairable connectors, as determined by monitoring, not to exceed 3 percent of the total connector population, \(C_t \).
- \(C_t \) = Total number of monitored connectors, including nonrepairables, in the process unit.
- \(C_c \) = Optional credit for removed connectors = 0.87 X net number (i.e., the total number of connectors removed minus the total added) of connectors in organic HAP service removed from the process unit after the applicability date set forth in §63.640(h)(4)(ii) for existing process units, and after the date of start-up for new process units. If credits are not taken, then \(C_c = 0 \).

(ii) Nonrepairable connectors shall be included in the calculation of percentage leaking connectors the first time the connector is identified as leaking and nonrepairable. Otherwise, a number of nonrepairable connectors up to a maximum of 3 percent per year of the total number of connectors in organic HAP service may be excluded from calculation of percentage leaking connectors for subsequent monitoring periods.

(iii) If the number of nonrepairable connectors exceeds 3 percent of the total number of connectors in organic HAP service, the number of nonrepairable connectors exceeding 3 percent of the total number shall be included in the calculation of the percentage leaking connectors.

(7) Physical tagging of the connectors to indicate that they are subject to the monitoring provisions is not required. Connectors may be identified by the area or length of pipe and need not be individually identified.

(d) Subpart H program. The owner or operator shall implement a program to comply with the provisions in §63.174 of this part.

(e) Delay of repair of connectors for which leaks have been detected is allowed if repair is not technically feasible by normal repair techniques without a process unit shutdown. Repair of this equipment shall occur by the end of the next process unit shutdown.

(1) Delay of repair is allowed for equipment that is isolated from the process and that does not remain in organic HAP service.

(2) Delay of repair for connectors is also allowed if:

(i) The owner or operator determines that emissions of purged material resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair, and

(ii) When repair procedures are accomplished, the purged material would be collected and destroyed or recovered in a control device.
(f) Any connector that is designated as an unsafe-to-repair connector is exempt from the requirements of paragraphs (b)(3) and (b)(4), (c)(3) and (c)(4), or (d) of this section if:

(1) The owner or operator determines that repair personnel would be exposed to an immediate danger as a consequence of complying with paragraphs (b)(3) and (b)(4), (c)(3) and (c)(4), of this section; or

(2) The connector will be repaired before the end of the next scheduled process unit shutdown.

(g) The owner or operator shall maintain records to document that the connector monitoring or inspections have been conducted as required and to document repair of leaking connectors as applicable.

§ 63.650 Gasoline loading rack provisions.

(a) Except as provided in paragraphs (b) through (c) of this section, each owner or operator of a Group 1 gasoline loading rack classified under Standard Industrial Classification code 2911 located within a contiguous area and under common control with a petroleum refinery shall comply with subpart R, §§ 63.421, 63.422(a) through (c) and (e), 63.425(a) through (c) and (e), 63.425(e) through (h), 63.427(a) and (b), and 63.428(b), (c), (g)(1), (h)(1) through (3), and (k).

(b) As used in this section, all terms not defined in §63.641 shall have the meaning given them in subpart A or in 40 CFR part 63, subpart Y. The §63.641 definition of “affected source” applies under this section.

(c) The notification reports under §63.567(b) are not required.

(d) The compliance time of 4 years after promulgation of 40 CFR part 63, subpart Y does not apply. The compliance time is specified in §63.640(h)(3).

§ 63.652 Emissions averaging provisions.

(a) This section applies to owners or operators of existing sources who seek to comply with the emission standard in §63.642(g) by using emissions averaging according to §63.642(l) rather than following the provisions of §§63.643 through 63.647, and §§63.650 and 63.651. Existing marine tank vessel loading operations located at the Valdez Marine Terminal source may not comply with the standard by using emissions averaging.

(b) The owner or operator shall develop and submit for approval an Implementation Plan containing all of the information required in §63.653(d) for all points to be included in an emissions average. The Implementation Plan shall identify all emission points to be included in the emissions average. The Implementation Plan shall include any Group 1 emission points to which the reference control technology (defined in §63.641) is not applied and all other emission points being controlled as part of the average.

(c) The following emission points can be used to generate emissions averaging credits if control was applied after November 15, 1990 and if sufficient information is available to determine the appropriate value of credits for the emission point:

(1) Group 2 emission points;

(2) Group 1 storage vessels, Group 1 wastewater streams, Group 1 gasoline loading racks, Group 1 marine tank vessels, and Group 1 miscellaneous process vents that are controlled by a technology that the Administrator or permitting authority agrees has a
higher nominal efficiency than the reference control technology. Information on the nominal efficiencies for such technologies must be submitted and approved as provided in paragraph (i) of this section; and

(3) Emission points from which emissions are reduced by pollution prevention measures. Percentages of reduction for pollution prevention measures shall be determined as specified in paragraph (j) of this section.

(i) For a Group 1 emission point, the pollution prevention measure must reduce emissions more than the reference control technology would have had the reference control technology been applied to the emission point instead of the pollution prevention measure except as provided in paragraph (c)(3)(i) of this section.

(ii) If a pollution prevention measure is used in conjunction with other controls for a Group 1 emission point, the pollution prevention measure alone does not have to reduce emissions more than the reference control technology, but the combination of the pollution prevention measure and other controls must reduce emissions more than the reference control technology would have had it been applied instead.

(d) The following emission points cannot be used to generate emissions averaging credits:

(1) Emission points already controlled on or before November 15, 1990 unless the level of control is increased after November 15, 1990, in which case credit will be allowed only for the increase in control after November 15, 1990;

(2) Group 1 emission points that are controlled by a reference control technology unless the reference control technology has been approved for use in a different manner and a higher nominal efficiency has been assigned according to the procedures in paragraph (i) of this section. For example, it is not allowable to claim that an internal floating roof meeting only the specifications stated in the reference control technology definition in §63.641 (i.e., that meets the specifications of §63.119(b) of subpart G but does not have controlled fittings per §63.119 (b)(5) and (b)(6) of subpart G) applied to a storage vessel is achieving greater than 95 percent control;

(3) Emission points on shutdown process units. Process units that are shut down cannot be used to generate credits or debits;

(4) Wastewater that is not process wastewater or wastewater streams treated in biological treatment units. These two types of wastewater cannot be used to generate credits or debits. Group 1 wastewater streams cannot be left undercontrolled or uncontrolled to generate debits. For the purposes of this section, the terms “wastewater” and “wastewater stream” are used to mean process wastewater; and

(5) Emission points controlled to comply with a State or Federal rule other than this subpart, unless the level of control has been increased after November 15, 1990 above what is required by the other State or Federal rule. Only the control above what is required by the other State or Federal rule will be credited. However, if an emission point has been used to generate emissions averaging credit in an approved emissions average, and the point is subsequently made subject to a State or Federal rule other than this subpart, the point can continue to generate emissions averaging credit for the purpose of complying with the previously approved average.

(e) For all points included in an emissions average, the owner or operator shall:

(1) Calculate and record monthly debits for all Group 1 emission points that are controlled to a level less stringent than the reference control technology for those emission points. Equations in paragraph (g) of this section shall be used to calculate debits.

(2) Calculate and record monthly credits for all Group 1 or Group 2 emission points that are overcontrolled to compensate for the debits. Equations in paragraph (h) of this section shall be used to calculate credits. Emission points and controls that meet the criteria of paragraph (c) of this section may be included in the credit calculation, whereas those described in paragraph (d) of this section shall not be included.

(3) Demonstrate that annual credits calculated according to paragraph (h)
§ 63.652 40 CFR Ch. I (7–1–15 Edition)

of this section are greater than or equal to debits calculated for the same annual compliance period according to paragraph (g) of this section.

(i) The initial demonstration in the Implementation Plan that credit-generating emission points will be capable of generating sufficient credits to offset the debits from the debit-generating emission points must be made under representative operating conditions.

(ii) After the compliance date, actual operating data will be used for all debit and credit calculations.

(4) Demonstrate that debits calculated for a quarterly (3-month) period according to paragraph (g) of this section are not more than 1.30 times the credits for the same period calculated according to paragraph (h) of this section. Compliance for the quarter shall be determined based on the ratio of credits and debits from that quarter, with 30 percent more debits than credits allowed on a quarterly basis.

(5) Record and report quarterly and annual credits and debits in the Periodic Reports as specified in §63.655(g)(8). Every fourth Periodic Report shall include a certification of compliance with the emissions averaging provisions as required by §63.655(g)(8)(iii).

(f) Debits and credits shall be calculated in accordance with the methods and procedures specified in paragraphs (g) and (h) of this section, respectively, and shall not include emissions from the following:

(1) More than 20 individual emission points. Where pollution prevention measures (as specified in paragraph (j)(1) of this section) are used to control emission points to be included in an emissions average, no more than 25 emission points may be included in the average. For example, if two emission points to be included in an emissions average are controlled by pollution prevention measures, the average may include up to 22 emission points.

(2) Periods of startup, shutdown, and malfunction as described in the source's startup, shutdown, and malfunction plan required by §63.6(e)(3) of subpart A of this part.

(3) For emission points for which continuous monitors are used, periods of excess emissions as defined in §63.655(g)(6)(i). For these periods, the calculation of monthly credits and debits shall be adjusted as specified in paragraphs (f)(3)(i) through (f)(3)(iii) of this section.

(i) No credits would be assigned to the credit-generating emission point.

(ii) Maximum debits would be assigned to the debit-generating emission point.

(iii) The owner or operator may use the procedures in paragraph (l) of this section to demonstrate to the Administrator that full or partial credits or debits should be assigned.

(g) Debits are generated by the difference between the actual emissions from a Group 1 emission point that is uncontrolled or is controlled to a level less stringent than the reference control technology, and the emissions allowed for Group 1 emission point. Debits shall be calculated as follows:

(1) The overall equation for calculating sourcewide debits is:

\[
\text{Debits} = \sum_{i=1}^{n} (\text{EPV}_{\text{ACTUAL}} - (0.02)\text{EPV}_{\text{iu}}) + \sum_{i=1}^{n} (\text{ES}_{\text{ACTUAL}} - (0.05)\text{ES}_{\text{iu}}) + \sum_{i=1}^{n} (\text{EGLR}_{\text{ACTUAL}} - \text{EGLR}_{\text{iu}}) + \sum_{i=1}^{n} (0.02)\text{EMV}_{\text{iu}}
\]

where:

Debits and all terms of the equation are in units of megagrams per month, and

\(\text{EPV}_{\text{ACTUAL}}\) = Emissions from each Group 1 miscellaneous process vent i that is uncontrolled or is controlled to a level less stringent than the reference control technology. This is calculated according to paragraph (g)(2) of this section.
(0.02) EPV\textsubscript{iu} = Emissions from each Group 1 miscellaneous process vent \(i\) if the reference control technology had been applied to the uncontrolled emissions, calculated according to paragraph (g)(3) of this section.

E\textsubscript{S,ACTUAL} = Emissions from each Group 1 storage vessel \(i\) that is uncontrolled or is controlled to a level less stringent than the reference control technology. This is calculated according to paragraph (g)(3) of this section.

E\textsubscript{GLR,ACTUAL} = Emissions from each Group 1 gasoline loading rack \(i\) that is uncontrolled or is controlled to a level less stringent than the reference control technology. This is calculated according to paragraph (g)(4) of this section.

EMV\textsubscript{ACTUAL} = Emissions from each Group 1 marine tank vessel \(i\) that is uncontrolled or is controlled to a level less stringent than the reference control technology. This is calculated according to paragraph (g)(5) of this section.

\[
EPV_{iu} = \left(2.494 \times 10^{-3}\right)Q_h\left(\sum_{j=1}^{n} C_j M_j\right)
\]

where:

- \(EPV_{iu}\) = Uncontrolled process vent emission rate from miscellaneous process vent \(i\), megagrams per month.
- \(Q\) = Vent stream flow rate, dry standard cubic meters per minute, measured using Methods 2, 2A, 2C, or 2D of part 60 appendix A, as appropriate.
- \(h\) = Monthly hours of operation during which positive flow is present in the vent, hours per month.
- \(C_j\) = Concentration, parts per million by volume, dry basis, of organic HAP \(j\) as measured by Method 18 of part 60 appendix A. \(M_j\) = Molecular weight of organic HAP \(j\), gram per gram-mole.
- \(n\) = Number of organic HAP's in the miscellaneous process vent stream.

(A) The values of \(Q\), \(C\), and \(M\) shall be determined during a performance test conducted under representative operating conditions. The values of \(Q\), \(C\), and \(M\) shall be established in the Notification of Compliance Status report and must be updated as provided in paragraph (g)(2)(ii)(B) of this section.

(B) If there is a change in capacity utilization other than a change in monthly operating hours, or if any other change is made to the process or product recovery equipment or operation such that the previously measured values of \(Q\), \(C\), and \(M\) are no longer representative, a new performance test shall be conducted to determine new representative values of \(Q\), \(C\), and \(M\). These new values shall be used to calculate debits and credits from the time of the change forward, and the new values shall be reported in the next Periodic Report.

(iii) The following procedures and equations shall be used to calculate EPV\textsubscript{ACTUAL}:

(A) If the vent is not controlled by a control device or pollution prevention measure, EPV\textsubscript{ACTUAL} = EPV\textsubscript{iu} where EPV\textsubscript{iu} is calculated according to the procedures in paragraphs (g)(2)(i) and (g)(2)(ii) of this section.

(B) If the vent is controlled using a control device or a pollution prevention measure achieving less than 98 percent reduction,
(1) The percent reduction shall be measured according to the procedures in §63.116 of subpart G if a combustion control device is used. For a flare meeting the criteria in §63.116(a) of subpart G, or a boiler or process heater meeting the criteria in §63.645(d) of this subpart or §63.116(b) of subpart G, the percentage of reduction shall be 98 percent. If a noncombustion control device is used, percentage of reduction shall be demonstrated by a performance test at the inlet and outlet of the device, or, if testing is not feasible, by a control design evaluation and documented engineering calculations.

(2) For determining debits from miscellaneous process vents, product recovery devices shall not be considered control devices and cannot be assigned a percentage of reduction in calculating EPV\textsubscript{\text{ACTUAL}}. The sampling site for measurement of uncontrolled emissions is after the final product recovery device.

(3) Procedures for calculating the percentage of reduction of pollution prevention measures are specified in paragraph (j) of this section.

(3) Emissions from storage vessels shall be calculated as specified in §63.150(g)(3) of subpart G.

(4) Emissions from gasoline loading racks shall be calculated as follows:

(i) The following equation shall be used for each gasoline loading rack \text{i} to calculate \text{EGLR}_{\text{i}}:

\[
\text{EGLR}_{\text{i}} = \left(1.20 \times 10^{-7}\right) \frac{\text{SPMG}}{T}
\]

where:

\text{EGLR}_{\text{i}} = \text{Uncontrolled transfer HAP emission rate from gasoline loading rack}\text{ i}, \text{ megagrams per month.}

\text{SPMG} = \text{Saturation factor, dimensionless (see table 33 of subpart G).}

\text{P} = \text{Weighted average rack partial pressure of organic HAP's transferred at the rack during the month, kilopascals.}

\text{T} = \text{Weighted rack bulk liquid loading temperature during the month, degrees kelvin (degrees Celsius °C + 273).}

(ii) The following equation shall be used for each gasoline loading rack \text{i} to calculate the weighted average rack partial pressure:

\[
P = \frac{\sum_{j=1}^{n} \left(\text{P}_{\text{j}} \right) \left(\text{G}_{\text{j}} \right)}{G}
\]

where:

\text{P}_{\text{j}} = \text{Maximum true vapor pressure of individual organic HAP transferred at the rack, kilopascals.}

\text{G}_{\text{j}} = \text{Monthly volume of organic HAP transferred, liters per month, and}

\text{G} = \sum_{i=1}^{n} \text{G}_{\text{j}}

\text{n} = \text{Number of organic HAP's transferred at the gasoline loading rack.}

(iii) The following equation shall be used for each gasoline loading rack \text{i} to calculate the weighted average rack molecular weight:

\[
\text{M} = \frac{\sum_{j=1}^{n} \left(\text{M}_{j} \right) \left(\text{G}_{j} \right)}{G}
\]

where:

\text{M}_{j} = \text{Molecular weight of individual organic HAP transferred at the rack, gram per gram-mole.}

\text{G}, \text{G}_{\text{j}}, \text{and} \text{n} \text{are as defined in paragraph (g)(3)(ii) of this section.}

(iv) The following equation shall be used for each gasoline loading rack \text{i} to calculate the monthly weighted rack bulk liquid loading temperature:
Environmental Protection Agency

\[
T = \frac{\sum_{j=1}^{n} (T_j)(G_j)}{G}
\]

\(T_j\) = Average annual bulk temperature of individual organic HAP loaded at the gasoline loading rack, kelvin (degrees Celsius °C + 273).

\(G, G_j, \) and \(n\) are as defined in paragraph (g)(4)(ii) of this section.

(v) The following equation shall be used to calculate \(EGLR_{ic}\):

\[
EGLR_{ic} = 1 \times 10^{-8} G
\]

G is as defined in paragraph (g)(4)(i) of this section.

(vi) The following procedures and equations shall be used to calculate \(EGLR_{iACTUAL}\):

(A) If the gasoline loading rack is not controlled, \(EGLR_{iACTUAL} = EGLR_{iu}\), where \(EGLR_{iu}\) is calculated using the equations specified in paragraphs (g)(4)(i) through (g)(4)(iv) of this section.

(B) If the gasoline loading rack is controlled using a control device or a pollution prevention measure not achieving the requirement of less than 10 milligrams of TOC per liter of gasoline loaded,

\[
EGLR_{iACTUAL} = EGLR_{iu} \left(1 - \frac{\text{Percent reduction}}{100\%} \right)
\]

(j) The percent reduction for a control device shall be measured according to the procedures and test methods specified in §63.128(a) of subpart G. If testing is not feasible, the percentage of reduction shall be determined through a design evaluation according to the procedures specified in §63.128(h) of subpart G.

(2) Procedures for calculating the percentage of reduction for pollution prevention measures are specified in paragraph (j) of this section.

(5) Emissions from marine tank vessel loading shall be calculated as follows:

(i) The following equation shall be used for each marine tank vessel \(i\) to calculate \(EMV_{iu}\):

\[
EMV_{iu} = \sum_{i=1}^{m} (Q_i)(F_i)(P_i)
\]

where:

\(EMV_{iu}\) = Uncontrolled marine tank vessel HAP emission rate from marine tank vessel \(i\), megagrams per month.

\(Q_i\) = Quantity of commodity loaded (per vessel type), liters.

\(F_i\) = Emission factor, megagrams per liter.

\(P_i\) = Percent HAP.

\(m\) = Number of combinations of commodities and vessel types loaded.

Emission factors shall be based on test data or emission estimation procedures specified in §63.565(l) of subpart Y.

(ii) The following procedures and equations shall be used to calculate \(EMV_{iACTUAL}\):

(A) If the marine tank vessel is not controlled, \(EMV_{iACTUAL} = EMV_{iu}\), where \(EMV_{iu}\) is calculated using the equations specified in paragraph (g)(5)(i) of this section.

(B) If the marine tank vessel is controlled using a control device or a pollution prevention measure achieving less than 97-percent reduction,

\[
EMV_{iACTUAL} = EMV_{iu} \left(1 - \frac{\text{Percent reduction}}{100\%} \right)
\]
§ 63.652 40 CFR Ch. I (7–1–15 Edition)

(1) The percent reduction for a control device shall be measured according to the procedures and test methods specified in §63.565(d) of subpart Y. If testing is not feasible, the percentage of reduction shall be determined through a design evaluation according to the procedures specified in §63.128(h) of subpart G.

(2) Procedures for calculating the percentage of reduction for pollution prevention measures are specified in paragraph (j) of this section.

(h) Credits are generated by the difference between emissions that are allowed for each Group 1 and Group 2 emission point and the actual emissions from a Group 1 or Group 2 emission point that has been controlled after November 15, 1990 to a level more stringent than what is required by this subpart or any other State or Federal rule or statute. Credits shall be calculated as follows:

(1) The overall equation for calculating sourcewide credits is:

\[
\text{Credits} = D \sum_{i=1}^{n} \left[\left(0.02 \right) \text{EPV}_{1m} - \text{EPV}_{1\text{ACTUAL}} \right] + D \sum_{i=1}^{m} \left[\text{EPV}_{2\text{BASE}} - \text{EPV}_{2\text{ACTUAL}} \right] + \\
D \sum_{i=1}^{n} \left[0.05 \right] \left(\text{ESI}_{1m} - \text{ESI}_{1\text{ACTUAL}} \right] + D \sum_{i=1}^{m} \left(\text{ESI}_{2\text{BASE}} - \text{ESI}_{2\text{ACTUAL}} \right] + \\
D \sum_{i=1}^{n} \left(\text{EGLR}_{1m} - \text{EGLR}_{1\text{ACTUAL}} \right] + D \sum_{i=1}^{m} \left(\text{EGLR}_{2\text{BASE}} - \text{EGLR}_{2\text{ACTUAL}} \right] + \\
D \sum_{i=1}^{n} \left(0.03 \right) \text{EMV}_{1m} - \text{EMV}_{1\text{ACTUAL}} \right] + D \sum_{i=1}^{m} \left(\text{EMV}_{2\text{BASE}} - \text{EMV}_{2\text{ACTUAL}} \right] + \\
D \sum_{i=1}^{n} \left(\text{EWW}_{1m} - \text{EWW}_{1\text{ACTUAL}} \right] + D \sum_{i=1}^{m} \left(\text{EWW}_{2\text{BASE}} - \text{EWW}_{2\text{ACTUAL}} \right] \\
\]

where:

Credits and all terms of the equation are in units of megagrams per month, the baseline date is November 15, 1990, and D=Discount factor=0.9 for all credit-generating emission points except those controlled by a pollution prevention measure, which will not be discounted.

\(\text{EPV}_{1\text{ACTUAL}} \) = Emissions for each Group 1 miscellaneous process vent that is controlled to a level more stringent than the reference control technology, calculated according to paragraph (h)(2) of this section.

\(\text{EPV}_{1m} \) = Emissions from each Group 1 miscellaneous process vent 1 if the reference control technology had been applied to the uncontrolled emissions. \(\text{EPV}_{1m} \) is calculated according to paragraph (h)(2) of this section.

\(\text{ESI}_{1\text{ACTUAL}} \) = Emissions from each Group 1 storage vessel 1 that is controlled to a level more stringent than the reference control technology, calculated according to paragraph (h)(3) of this section.

\(\text{ESI}_{1m} \) = Emissions from each Group 1 storage vessel 1 if the reference control technology had been applied to the uncontrolled emissions. \(\text{ESI}_{1m} \) is calculated according to paragraph (h)(3) of this section.

\(\text{ESI}_{2\text{BASE}} \) = Emissions from each Group 2 storage vessel 1 at the baseline date, as calculated in paragraph (h)(3) of this section.

\(\text{ESI}_{2\text{ACTUAL}} \) = Emissions from each Group 2 storage vessel 1 that is controlled, calculated according to paragraph (h)(3) of this section.

\(\text{EMV}_{1\text{ACTUAL}} \) = Emissions from each Group 1 gasoline loading rack that is controlled...
Environmental Protection Agency § 63.652

to a level more stringent than the reference control technology, calculated according to paragraph (h)(4) of this section.

EGLR_in = Emissions from each Group 1 gasoline loading rack i if the reference control technology had been applied to the uncontrolled emissions. EGLR_in is calculated according to paragraph (h)(4) of this section.

EGRL2_actual = Emissions from each Group 2 gasoline loading rack i that is controlled, calculated according to paragraph (h)(4) of this section.

EGRL2_base = Emissions from each Group 2 gasoline loading rack i at the baseline date, as calculated in paragraph (h)(4) of this section.

EMV1_actual = Emissions from each Group 1 marine tank vessel i that is controlled to a level more stringent than the reference control technology, calculated according to paragraph (h)(4) of this section.

(0.03)EMV1_in = Emissions from each Group 1 marine tank vessel i if the reference control technology had been applied to the uncontrolled emissions. EMV1_in is calculated according to paragraph (h)(5) of this section.

EMV2_actual = Emissions from each Group 2 marine tank vessel i that is controlled, calculated according to paragraph (h)(5) of this section.

EMV2_base = Emissions from each Group 2 marine tank vessel i at the baseline date, as calculated in paragraph (h)(5) of this section.

EWW1_actual = Emissions from each Group 1 wastewater stream i that is controlled to a level more stringent than the reference control technology, calculated according to paragraph (h)(6) of this section.

EWW1_in = Emissions from each Group 1 wastewater stream i if the reference control technology had been applied to the uncontrolled emissions, calculated according to paragraph (h)(6) of this section.

EWW2_actual = Emissions from each Group 2 wastewater stream i that is controlled, calculated according to paragraph (h)(6) of this section.

EWW2_base = Emissions from each Group 2 wastewater stream i at the baseline date, calculated according to paragraph (h)(6) of this section.

n=Number of Group 1 emission points included in the emissions average. The value of n is not necessarily the same for each kind of emission point.

m=Number of Group 2 emission points included in the emissions average. The value of m is not necessarily the same for each kind of emission point.

(i) For an emission point controlled using a reference control technology, the percentage of reduction for calculating credits shall be no greater than the nominal efficiency associated with the reference control technology, unless a higher nominal efficiency is assigned as specified in paragraph (h)(1)(ii) of this section.

(ii) For an emission point controlled to a level more stringent than the reference control technology, the nominal efficiency for calculating credits shall be assigned as described in paragraph (i) of this section. A reference control technology may be approved for use in a different manner and assigned a higher nominal efficiency according to the procedures in paragraph (i) of this section.

(iii) For an emission point controlled using a pollution prevention measure, the nominal efficiency for calculating credits shall be determined as described in paragraph (j) of this section.

(2) Emissions from process vents shall be determined as follows:

(i) Uncontrolled emissions from miscellaneous process vents, EPV_in, shall be calculated according to the procedures and equation for EPV_in in paragraphs (g)(2)(i) and (g)(2)(ii) of this section.

(ii) Actual emissions from miscellaneous process vents controlled using a technology with an approved nominal efficiency greater than 98 percent or a pollution prevention measure achieving greater than 98 percent emission reduction, EPV_actual, shall be calculated according to the following equation:

\[
\text{EPV}_{\text{actual}} = \text{EPV}_{\text{in}} \left(1 - \frac{\text{Nominal efficiency}\%}{100}\right)
\]
(iii) The following procedures shall be used to calculate actual emissions from Group 2 process vents, $\text{EPV}_{2\text{ACTUAL}}$:

(A) For a Group 2 process vent controlled by a control device, a recovery device applied as a pollution prevention project, or a pollution prevention measure, if the control achieves a percentage of reduction less than or equal to a 98 percent reduction,

$$\text{EPV}_{2\text{ACTUAL}} = \text{EPV}_{2\text{IACTUAL}} \times \left(1 - \frac{\text{Percent reduction}}{100}\right)$$

(B) For a Group 2 process vent controlled using a technology with an approved nominal efficiency greater than a 98 percent or a pollution prevention measure achieving greater than 98 percent reduction,

$$\text{EPV}_{2\text{ACTUAL}} = \text{EPV}_{2\text{IACTUAL}} \left(1 - \frac{\text{Nominal efficiency}}{100}\right)$$

(iv) Emissions from Group 2 process vents at baseline, $\text{EPV}_{2\text{BASE}}$, shall be calculated as follows:

(A) If the process vent was uncontrolled on November 15, 1990, $\text{EPV}_{2\text{BASE}} = \text{EPV}_{2\text{IACTUAL}}$, and shall be calculated according to the procedures and equation for $\text{EPV}_{2\text{IACTUAL}}$ in paragraphs (g)(2)(i) and (g)(2)(ii) of this section. The percentage of reduction shall be calculated according to the procedures specified in paragraphs (h)(2)(iii)(B)(1) through (g)(2)(iii)(B)(3) of this section.

(B) If the process vent was controlled on November 15, 1990,

$$\text{EPV}_{2\text{BASE}} = \text{EPV}_{2\text{IACTUAL}} \left(1 - \frac{\text{Percent reduction}}{100}\right)$$

where $\text{EPV}_{2\text{IACTUAL}}$ is calculated according to the procedures and equation for $\text{EPV}_{2\text{IACTUAL}}$ in paragraphs (g)(2)(i) and (g)(2)(ii) of this section. The percentage of reduction shall be calculated according to the procedures specified in paragraphs (h)(2)(iii)(B)(1) through (g)(2)(iii)(B)(3) of this section.

(C) If a recovery device was added to a process vent as part of a pollution prevention project initiated after November 15, 1990, $\text{EPV}_{2\text{BASE}} = \text{EPV}_{2\text{IACTUAL}}$.

Environmental Protection Agency

§ 63.652

where EPV2 is calculated according to paragraph (h)(2)(iii)(A)(3) of this section.

(3) Emissions from storage vessels shall be determined as specified in § 63.150(h)(3) of subpart G, except as follows:

(i) All references to § 63.119(b) in § 63.150(h)(3) of subpart G shall be replaced with: § 63.119 (b) or § 63.119(b) except for § 63.119(b)(5) and (b)(6).

(ii) All references to § 63.119(c) in § 63.150(h)(3) of subpart G shall be replaced with: § 63.119(c) or § 63.119(c) except for § 63.119(c)(2).

(iii) All references to § 63.119(d) in § 63.150(h)(3) of subpart G shall be replaced with: § 63.119(d) or § 63.119(d) except for § 63.119(d)(2).

(4) Emissions from gasoline loading racks shall be determined as follows:

(i) Uncontrolled emissions from Group 1 gasoline loading racks, EGLR1, shall be calculated according to the procedures and equations for EGLR as described in paragraphs (g)(4)(i) through (g)(4)(iv) of this section.

(ii) Emissions from Group 1 gasoline loading racks if the reference control technology had been applied, EGLR, shall be calculated according to the procedures and equations in paragraph (g)(4)(v) of this section.

(iii) Actual emissions from Group 1 gasoline loading racks controlled to less than 10 milligrams of TOC per liter of gasoline loaded; EGLRACTUAL, shall be calculated according to the following equation:

\[EGLRACTUAL = EGLR1 \left(1 - \frac{\text{Nominal efficiency}}{100}\right) \]

(iv) The following procedures shall be used to calculate actual emissions from Group 2 gasoline loading racks, EGLR2ACTUAL:

(A) For a Group 2 gasoline loading rack controlled by a control device or a pollution prevention measure achieving emissions reduction but where emissions are greater than the 10 milligrams of TOC per liter of gasoline loaded requirement,

\[EGLR2ACTUAL = EGLR2 \left(1 - \frac{\text{Percent reduction}}{100}\right) \]

(B) For a Group 2 gasoline loading rack controlled by using a technology with an approved nominal efficiency greater than 98 percent or a pollution prevention measure achieving greater than a 98-percent reduction,

\[EGLR2ACTUAL = EGLR2 \left(1 - \frac{\text{Nominal efficiency}}{100}\right) \]
(v) Emissions from Group 2 gasoline loading racks at baseline, EGLR2\text{\textsubscript{BASE}}, shall be calculated as follows:

(A) If the gasoline loading rack was uncontrolled on November 15, 1990, EGLR2\text{\textsubscript{BASE}} = EGLR2\text{\textsubscript{iu}}, and shall be calculated according to the procedures and equations for EGLR\text{\textsubscript{iu}} in paragraphs (g)(4)(i) through (g)(4)(iv) of this section.

(B) If the gasoline loading rack was controlled on November 15, 1990, EGLR2\text{\textsubscript{BASE}} = EGLR2\text{\textsubscript{iu}} \left(1 - \frac{\text{Percent reduction}}{100}\right)

where EGLR2\text{\textsubscript{iu}} is calculated according to the procedures and equations for EGLR\text{\textsubscript{iu}} in paragraphs (g)(4)(i) through (g)(4)(iv) of this section. Percentage of reduction shall be calculated according to the procedures in paragraphs (g)(4)(v)(B)(1) and (g)(4)(v)(B)(2) of this section.

(5) Emissions from marine tank vessels shall be determined as follows:

(i) Uncontrolled emissions from Group 1 marine tank vessels, EMV1\text{\textsubscript{iu}}, shall be calculated according to the procedures and equations for EMV\text{\textsubscript{iu}} as described in paragraph (g)(5)(i) of this section.

(ii) Actual emissions from Group 1 marine tank vessels controlled using a technology or pollution prevention measure with an approved nominal efficiency greater than 97 percent, EMV\text{\textsubscript{ACTUAL}}, shall be calculated according to the following equation:

\[EMV1_{\text{ACTUAL}} = EMV1_{\text{iu}} \left(1 - \frac{\text{Nominal efficiency}}{100}\right) \]

(iii) The following procedures shall be used to calculate actual emissions from Group 2 marine tank vessels, EMV2\text{\textsubscript{ACTUAL}}:

(A) For a Group 2 marine tank vessel controlled by a control device or a pollution prevention measure achieving a percentage of reduction less than or equal to 97 percent reduction,

\[EMV2_{\text{ACTUAL}} = EMV2_{\text{iu}} \left(1 - \frac{\text{Percent reduction}}{100}\right) \]

(1) EMV2\text{\textsubscript{iu}} shall be calculated according to the equations and procedures for EMV\text{\textsubscript{iu}} in paragraph (g)(5)(i) of this section.

(2) The percentage of reduction shall be calculated according to the procedures in paragraphs (g)(5)(ii)(B)(1) and (g)(5)(ii)(B)(2) of this section.

(B) For a Group 2 marine tank vessel controlled using a technology or a pollution prevention measure with an approved nominal efficiency greater than 97 percent,

\[EMV2_{\text{ACTUAL}} = EMV2_{\text{iu}} \left(1 - \frac{\text{Nominal efficiency}}{100}\right) \]
Environmental Protection Agency § 63.652

(iv) Emissions from Group 2 marine tank vessels at baseline, EMV2_{BASE}, shall be calculated as follows:
(A) If the marine terminal was uncontrolled on November 15, 1990, EMV2_{BASE} equals EMV2_{iu}, and shall be calculated according to the procedures and equations for EMV_{iu} in paragraph (g)(5)(i) of this section.
(B) If the marine tank vessel was controlled on November 15, 1990,

\[\text{EMV2}_{\text{BASE}} = \text{EMV2}_{\text{iu}} \left(1 - \frac{\text{Percent reduction}}{100} \right) \]

where EMV2_{iu} is calculated according to the procedures and equations for EMV_{iu} in paragraph (g)(5)(i) of this section. Percentage of reduction shall be calculated according to the procedures in paragraphs (g)(5)(ii)(B)(1) and (g)(5)(ii)(B)(2) of this section.

(6) Emissions from wastewater shall be determined as follows:
(i) For purposes of paragraphs (h)(4)(ii) through (h)(4)(vi) of this section, the following terms will have the meaning given them in paragraphs (h)(6)(i)(A) through (h)(6)(i)(C) of this section.
(A) Correctly suppressed means that a wastewater stream is being managed according to the requirements of §§ 61.343 through 61.347 or § 61.342(c)(1)(iii) of 40 CFR part 61, subpart FF, as applicable, and the emissions from the waste management units subject to those requirements are routed to a control device that reduces HAP emissions by 95 percent or greater.
(B) Treatment process has the meaning given in § 61.341 of 40 CFR part 61, subpart FF except that it does not include biological treatment units.
(C) Vapor control device means the control device that receives emissions vented from a treatment process or treatment processes.
(ii) The following equation shall be used for each wastewater stream i to calculate EWW_{ic}:

\[\text{EWW}_{ic} = \left(6.0 \times 10^{8}\right)Q_i H_i \left(\sum_{m=1}^{s} \left[(1 - F_{rm})F_{em} \text{HAP}_{m} \right] + (0.05) \left(6.0 \times 10^{-8}\right)Q_i H_i \left(\sum_{m=1}^{s} F_{em} \text{HAP}_{m} \right) \right) \]

where:
\(\text{EWW}_{ic} \) = Monthly wastewater stream emission rate if wastewater stream i were controlled by the reference control technology, megagrams per month.
\(Q_i \) = Average flow rate for wastewater stream i, liters per minute.
\(H_i \) = Number of hours during the month that wastewater stream i was generated, hours per month.
\(F_{rm} \) = Fraction removed of organic HAP m in wastewater, from table 7 of this subpart, dimensionless.
\(F_{em} \) = Fraction emitted of organic HAP m in wastewater from table 7 of this subpart, dimensionless.
\(s \) = Total number of organic HAP’s in wastewater stream i.
\(\text{HAP}_{m} \) = Average concentration of organic HAP m in wastewater stream i, parts per million by weight.

(A) \(\text{HAP}_{m} \) shall be determined for the point of generation or at a location downstream of the point of generation. Wastewater samples shall be collected using the sampling procedures specified in Method 25D of 40 CFR part 60, appendix A. Where feasible, samples shall be taken from an enclosed pipe prior to the wastewater being exposed to the atmosphere. When sampling from an enclosed pipe is not feasible, a minimum of three representative samples shall be collected in a manner to minimize exposure of the sample to the atmosphere and loss of organic HAP’s prior to sampling. The samples collected may be analyzed by either of the following procedures:
(I) A test method or results from a test method that measures organic...
HAP concentrations in the wastewater, and that has been validated pursuant to section 5.1 or 5.3 of Method 301 of appendix A of this part may be used; or

(2) Method 305 of appendix A of this part may be used to determine the efficiency of the treatment process of wastewater stream i, and then HAP may be calculated using the following equation: $\text{HAP}_i = \text{C}_i / \text{F}_i$, where F_i is obtained from table 7 of this subpart.

(B) Values for Q_i, HAP_i, and C_i shall be determined during a performance test conducted under representative conditions. The average value obtained from three test runs shall be used. The values of Q_i, HAP_i, and C_i shall be established in the Notification of Compliance Status report and must be updated as provided in paragraph (h)(6)(i)(C) of this section.

(C) If there is a change to the process or operation such that the previously measured values of Q_i, HAP_i, and C_i are no longer representative, a new performance test shall be conducted to determine new representative values of Q_i, HAP_i, and C_i. These new values shall be used to calculate debits and credits from the time of the change forward, and the new values shall be reported in the next Periodic Report.

(iii) The following equations shall be used to calculate $\text{EWWL}_{\text{ACTUAL}}$ for each Group 1 wastewater stream i that is correctly suppressed and is treated to a level more stringent than the reference control technology.

(A) If the Group 1 wastewater stream i is controlled using a treatment process or series of treatment processes with an approved nominal reduction efficiency for an individually specified HAP that is greater than that specified in table 7 of this subpart, and the vapor control device achieves a percentage of reduction equal to 95 percent, the following equation shall be used:

$$\text{EWWL}_{\text{ACTUAL}} = \left[6.0 \times 10^{-8}\right]Q_iH_i \sum_{m} \left[F_m \text{HAP}_{i,m,\text{in}} \left(1 - \text{PR}_{i,m}\right)\right] + 0.05 \left[6.0 \times 10^{-8}\right]Q_iH_i \sum_{m} \left[\text{HAP}_{i,m,\text{in}} \text{PR}_{i,m}\right]$$

Where:
- $\text{EWWL}_{\text{ACTUAL}}$ = Monthly wastewater stream emission rate if wastewater stream i is treated to a level more stringent than the reference control technology, megagrams per month.
- $\text{PR}_{i,m}$ = The efficiency of the treatment process or series of treatment processes, that treat wastewater stream i in reducing the emission potential of organic HAP m in wastewater, dimensionless, as calculated by:
 $$\text{PR}_{i,m} = \frac{\text{HAP}_{i,m,\text{in}} - \text{HAP}_{i,m,\text{out}}}{\text{HAP}_{i,m,\text{in}}}$$

Where:
- $\text{HAP}_{i,m,\text{in}}$ = Average concentration of organic HAP m, parts per million by weight, as defined and determined according to paragraph (h)(6)(ii)(A) of this section, in the wastewater entering the first treatment process in the series.

(B) If the Group 1 wastewater stream i is not controlled using a treatment process or series of treatment processes with an approved nominal reduction efficiency for an individually specified HAP that is greater than that specified in table 7 of this subpart, but the vapor control device has an approved nominal efficiency greater than 95 percent, the following equation shall be used:

$$\text{EWWL}_{\text{ACTUAL}} = \left[6.0 \times 10^{-8}\right]Q_iH_i \sum_{m} \left[F_m \text{HAP}_{i,m,\text{in}} \left(1 - \text{PR}_{i,m}\right)\right] + \left(1 - \text{Nominal efficiency} \% / 100\right) \left[6.0 \times 10^{-8}\right]Q_iH_i \sum_{m} \left[\text{HAP}_{i,m,\text{in}} \text{PR}_{i,m}\right]$$

All other terms are as defined and determined in paragraph (h)(6)(ii) of this section.
Environmental Protection Agency § 63.652

Where:
Nominal efficiency=Approved reduction efficiency of the vapor control device, dimensionless, as determined according to the procedures in §63.652(i).

\[A_m = \text{The efficiency of the treatment process, or series of treatment processes, that treat wastewater stream } i \text{ in reducing the emission potential of organic HAP } m \text{ in wastewater, dimensionless.} \]

All other terms are as defined and determined in paragraphs (h)(6)(ii) and (h)(6)(iii)(A) of this section.

(1) If a steam stripper meeting the specifications in the definition of reference control technology for wastewater is used, \(A_m\) shall be equal to the value of \(F_{m}\) given in table 7 of this subpart.

(2) If an alternative control device is used, the percentage of reduction must be determined using the equation and methods specified in paragraph (h)(6)(iii)(A) of this section for determining \(PR_{im}\). If the value of \(PR_{im}\) is greater than or equal to the value of \(F_{m}\) given in table 7 of this subpart, then \(A_m\) equals \(F_{m}\) unless a higher nominal efficiency has been approved. If a higher nominal efficiency has been approved for the treatment process, the owner or operator shall determine \(EWW_1\) according to paragraph (h)(6)(iii)(B) of this section rather than paragraph (h)(6)(iii)(A) of this section. If \(PR_{im}\) is less than the value of \(F_{m}\) given in table 7 of this subpart, emissions averaging shall not be used for this emission point.

(C) If the Group 1 wastewater stream \(i\) is controlled using a treatment process or series of treatment processes with an approved nominal reduction efficiency for an individually speciated hazardous air pollutant that is greater than that specified in table 7 of this subpart, and the vapor control device has an approved nominal efficiency greater than 95 percent, the following equation shall be used:

\[
EWW_1 = \left(6.0 \times 10^{-8}\right)Q_i \sum_{m=1}^{k} \left[F_{m} \cdot \text{HAP}_{m} \cdot \left(1 - PR_{im}\right)\right] + \left[1 - \frac{\text{Nominal efficiency \%}}{100}\right] \left(6.0 \times 10^{-8}\right)Q_i \sum_{m=1}^{k} \left[\text{HAP}_{m} \cdot PR_{im}\right]
\]

where all terms are as defined and determined in paragraphs (h)(6)(ii) and (h)(6)(iii)(A) of this section.

(iv) The following equation shall be used to calculate \(EWW_2\) for each Group 2 wastewater stream \(i\) that on November 15, 1990 was not correctly suppressed or was correctly suppressed but not treated:

\[
EWW_2 = \left(6.0 \times 10^{-8}\right)Q_i \sum_{m=1}^{k} \text{Fe}_{m} \cdot \text{HAP}_{im}
\]

Where:
\(EWW_2\) = Monthly wastewater stream emission rate if wastewater stream \(i\) is not correctly suppressed, megagrams per month.

\(Q_i, H_i, s, F_{m}\), and \(\text{HAP}_{m}\) are as defined and determined according to paragraphs (h)(6)(ii) and (h)(6)(iii)(A) of this section.

(v) The following equation shall be used to calculate \(EWW_2\) for each Group 2 wastewater stream \(i\) on November 15, 1990 was correctly suppressed. \(EWW_2\) shall be calculated as if the control methods being used on November 15, 1990 are in place and any control methods applied after November 15, 1990 are ignored. However, values for the parameters in the equation shall be representative of present production levels and stream properties.
\[E_{WW_{i \text{ BASE}}} = (6.0 \times 10^{-8})Q_i H_i \sum_{m=1}^{i} [F_m \text{HAP}_m (1 - \text{PR}_m)] + \left(1 - \frac{R_i}{100}\right) (6.0 \times 10^{-8})Q_i H_i \sum_{m=1}^{i} \text{HAP}_m \text{PR}_m \]

where \(R_i \) is calculated according to paragraph (h)(6)(vi) of this section and all other terms are as defined and determined according to paragraphs (h)(6)(ii) and (h)(6)(iii)(A) of this section.

(vi) For Group 2 wastewater streams that are correctly suppressed, \(E_{WW_{2 \text{ ACTUAL}}} \) shall be calculated according to the equation for \(E_{WW_{2 \text{ BASE}}} \) in paragraph (h)(6)(v) of this section. \(E_{WW_{2 \text{ ACTUAL}}} \) shall be calculated with all control methods in place accounted for.

(vii) The reduction efficiency, \(R_i \), of the vapor control device shall be demonstrated according to the following procedures:

(A) Sampling sites shall be selected using Method 1 or 1A of 40 CFR part 60, appendix A, as appropriate.

(B) The mass flow rate of organic compounds entering and exiting the control device shall be determined as follows:

(i) The time period for the test shall not be less than 3 hours during which at least three runs are conducted.

(ii) A run shall consist of a 1-hour period during the test. For each run:

(i) The volume exhausted shall be determined using Methods 2, 2A, 2C, or 2D of 40 CFR part 60 appendix A, as appropriate;

(ii) The organic concentration in the vent stream entering and exiting the control device shall be determined using Method 18 of 40 CFR part 60 appendix A. Alternatively, any other test method validated according to the procedures in Method 301 of appendix A of this part may be used.

(iii) The mass flow rate of organic compounds entering and exiting the control device during each run shall be calculated as follows:

\[E_a = \frac{0.0416}{10^6 \times m} \sum_{p=1}^{m} V_{ap} \left(\sum_{i=1}^{n} C_{api} \frac{MW_i}{MW} \right) \]

\[E_b = \frac{0.0416}{10^6 \times m} \sum_{p=1}^{m} V_{bp} \left(\sum_{i=1}^{n} C_{bpi} \frac{MW_i}{MW} \right) \]

Where:

- \(E_a \) = Mass flow rate of organic compounds exiting the control device, kilograms per hour.
- \(E_b \) = Mass flow rate of organic compounds entering the control device, kilograms per hour.
- \(V_{ap} \) = Average volumetric flow rate of vent stream exiting the control device during run \(p \) at standards conditions, cubic meters per hour.
- \(V_{bp} \) = Average volumetric flow rate of vent stream entering the control device during run \(p \) at standards conditions, cubic meters per hour.
- \(p \) = Run.
- \(m \) = Number of runs.
- \(C_{api} \) = Concentration of organic compound \(i \) measured in the vent stream exiting the control device during run \(p \) as determined by Method 18 of 40 CFR part 60 appendix A. parts per million by volume on a dry basis.
- \(C_{bpi} \) = Concentration of organic compound \(i \) measured in the vent stream entering the control device during run \(p \) as determined by Method 18 of 40 CFR part 60 appendix A. parts per million by volume on a dry basis.
- \(MW_i \) = Molecular weight of organic compound \(i \) in the vent stream, kilograms per kilogram-mole.
- \(n \) = Number of organic compounds in the vent stream.
- 0.0416 = Conversion factor for molar volume, kilograms-mole per cubic meter at 293 kelvin and 760 millimeters mercury absolute.

(C) The organic reduction efficiency for the control device shall be calculated as follows:

\[R = \frac{E_b - E_a}{E_b} \times 100 \]

Where:
Environmental Protection Agency

\[R = \text{Total organic reduction efficiency for the control device, percentage.} \]
\[E_b = \text{Mass flow rate of organic compounds entering the control device, kilograms per hour.} \]
\[E_a = \text{Mass flow rate of organic compounds exiting the control device, kilograms per hour.} \]

(i) The following procedures shall be followed to establish nominal efficiencies. The procedures in paragraphs (i)(1) through (i)(6) of this section shall be followed for control technologies that are different in use or design from the reference control technologies and achieve greater percentages of reduction than the percentages of efficiency assigned to the reference control technologies in §63.641.

(1) In those cases where the owner or operator is seeking permission to take credit for use of a control technology that is different in use or design from the reference control technology, and the different control technology will be used in more than three applications at a single plant site, the owner or operator shall submit the information specified in paragraphs (i)(1)(i) through (i)(1)(iv) of this section to the Administrator in writing:

(i) Emission stream characteristics of each emission point to which the control technology is or will be applied including the kind of emission point, flow, organic HAP concentration, and all other stream characteristics necessary to design the control technology or determine its performance;

(ii) Description of the control technology including design specifications;

(iii) Documentation demonstrating to the Administrator’s satisfaction the control efficiency of the control technology. This may include performance test data collected using an appropriate EPA method or any other method validated according to Method 301 of appendix A of this part. If it is infeasible to obtain test data, documentation may include a design evaluation and calculations. The engineering basis of the calculation procedures and all inputs and assumptions made in the calculations shall be documented; and

(iv) A description of the parameter or parameters to be monitored to ensure that the control technology will be operated in conformance with its design and an explanation of the criteria used for selection of that parameter (or parameters).

(2) The Administrator shall determine within 120 calendar days whether an application presents sufficient information to determine nominal efficiency. The Administrator reserves the right to request specific data in addition to the items listed in paragraph (i)(1) of this section.

(3) The Administrator shall determine within 120 calendar days of the submittal of sufficient data whether a control technology shall have a nominal efficiency and the level of that nominal efficiency. If, in the Administrator’s judgment, the control technology achieves a level of emission reduction greater than the reference control technology for a particular kind of emission point, the Administrator will publish a FEDERAL REGISTER notice establishing a nominal efficiency for the control technology.

(4) The Administrator may grant conditional permission to take emission credits for use of the control technology on requirements that may be necessary to ensure operation and maintenance to achieve the specified nominal efficiency.

(5) In those cases where the owner or operator is seeking permission to take credit for use of a control technology that is different in use or design from the reference control technology and the different control technology will be used in no more than three applications at a single plant site, the information listed in paragraphs (i)(1)(i) through (i)(1)(iv) of this section can be submitted to the permitting authority for the source for approval instead of the Administrator.

(ii) If, in reviewing the submittal, the permitting authority believes the control technology has broad applicability
for use by other sources, the permitting authority shall submit the information provided in the application to the Director of the EPA Office of Air Quality Planning and Standards. The Administrator shall review the technology for broad applicability and may publish a FEDERAL REGISTER notice; however, this review shall not affect the permitting authority’s approval of the nominal efficiency of the control technology for the specific application.

(6) If, in reviewing an application for a control technology for an emission point, the Administrator or permitting authority determines the control technology is not different in use or design from the reference control technology, the Administrator or permitting authority shall deny the application.

(j) The following procedures shall be used for calculating the efficiency (percentage of reduction) of pollution prevention measures:

1. A pollution prevention measure is any practice that meets the criteria of paragraphs (j)(1)(i) and (j)(1)(ii) of this section.

2. A pollution prevention measure is any practice that results in a lesser quantity of organic HAP emissions per unit of product released to the atmosphere prior to out-of-process recycling, treatment, or control of emissions while the same product is produced.

3. Pollution prevention measures may include: Substitution of feedstocks that reduce HAP emissions, alterations to the production process to reduce the volume of materials released to the environment, equipment modifications; housekeeping measures, and in-process recycling that returns waste materials directly to production as raw materials. Production cutbacks do not qualify as pollution prevention.

(2) The emission reduction efficiency of pollution prevention measures implemented after November 15, 1990 can be used in calculating the actual emissions from an emission point in the debit and credit equations in paragraphs (g) and (h) of this section.

(i) For pollution prevention measures, the percentage of reduction used in the equations in paragraphs (g)(2) and (g)(3) of this section and paragraphs (h)(2) through (h)(4) of this section is the difference in percentage between the monthly organic HAP emissions for each emission point after the pollution prevention measure for the most recent month versus monthly emissions from the same emission point before the pollution prevention measure, adjusted by the volume of product produced during the two monthly periods.

(ii) The following equation shall be used to calculate the percentage of reduction of a pollution prevention measure for each emission point.

\[
\text{Percent reduction} = \frac{\left(\frac{E_B \times P_B}{P_{pp}} \right)}{E_B} \times 100\%
\]

Where:

- Percent reduction = Efficiency of pollution prevention measure (percentage of organic HAP reduction).
- \(E_B\) = Monthly emissions before the pollution prevention measure, megagrams per month, determined as specified in paragraphs (j)(2)(ii)(A), (j)(2)(ii)(B), and (j)(2)(ii)(C) of this section.
- \(E_{pp}\) = Monthly emissions after the pollution prevention measure, megagrams per month, as determined for the most recent month, determined as specified in paragraphs (j)(2)(ii)(D) or (j)(2)(ii)(E) of this section.
- \(P_B\) = Monthly production before the pollution prevention measure, megagrams per month, during the same period over which \(E_B\) is calculated.
- \(P_{pp}\) = Monthly production after the pollution prevention measure, megagrams per month, as determined for the most recent month.

(A) The monthly emissions before the pollution prevention measure, \(E_B\), shall
be determined in a manner consistent with the equations and procedures in paragraphs (g)(2), (g)(3), (g)(4), and (g)(5) of this section for miscellaneous process vents, storage vessels, gasoline loading racks, and marine tank vessels.

(B) For wastewater, E_B shall be calculated as follows:

$$E_B = \sum_{i=1}^{n} \left(6.0 \times 10^{-8} \right) Q_{Bi} H_{Bi} \sum_{m=1}^{s} F_{em} HAP_{Bim}$$

where:
- $n =$ Number of wastewater streams.
- $Q_{Bi} =$ Average flow rate for wastewater stream i before the pollution prevention measure, liters per minute.
- $H_{Bi} =$ Number of hours per month that wastewater stream i was discharged before the pollution prevention measure, hours per month.
- $s =$ Total number of organic HAP’s in wastewater stream i.
- $F_{em} =$ Fraction emitted of organic HAP m in wastewater from table 7 of this subpart, dimensionless.
- $HAP_{Bim} =$ Average concentration of organic HAP m in wastewater stream i, defined and determined according to paragraph (h)(6)(ii)(A)(2) of this section, before the implementation of the pollution measure.

(C) If the pollution prevention measure was implemented prior to July 14, 1994, records may be used to determine E_B.

(D) The monthly emissions after the pollution prevention measure, E_{pp}, may be determined during a performance test or by a design evaluation and documented engineering calculations. Once an emissions-to-production ratio has been established, the ratio can be used to estimate monthly emissions from monthly production records.

(E) For wastewater, E_{pp} shall be calculated using the following equation:

$$E_{pp} = \sum_{i=1}^{n} \left(6.0 \times 10^{-8} \right) Q_{ppi} H_{ppi} \sum_{m=1}^{s} F_{em} HAP_{ppim}$$

where n, Q, H, s, F_{em}, and HAP are defined and determined as described in paragraph (j)(2)(i)(B) of this section except that Q_{ppi}, H_{ppi}, and HAP_{ppim} shall be determined after the pollution prevention measure has been implemented.

(iii) All equations, calculations, test procedures, test results, and other information used to determine the percentage of reduction achieved by a pollution prevention measure for each emission point shall be fully documented.

(iv) The same pollution prevention measure may reduce emissions from multiple emission points. In such cases, the percentage of reduction in emissions for each emission point must be calculated.

(v) For the purposes of the equations in paragraphs (h)(2) through (h)(6) of this section used to calculate credits for emission points controlled more stringently than the reference control technology, the nominal efficiency of a pollution prevention measure is equivalent to the percentage of reduction of the pollution prevention measure. When a pollution prevention measure is used, the owner or operator of a source is not required to apply to the Administrator for a nominal efficiency and is not subject to paragraph (i) of this section.

(k) The owner or operator shall demonstrate that the emissions from the emission points proposed to be included in the average will not result in greater hazard or, at the option of the State...
or local permitting authority, greater risk to human health or the environment than if the emission points were controlled according to the provisions in §§63.643 through 63.647, and §§63.650 and 63.651.

(1) This demonstration of hazard or risk equivalency shall be made to the satisfaction of the State or local permitting authority.

(i) The State or local permitting authority may require owners and operators to use specific methodologies and procedures for making a hazard or risk determination.

(ii) The demonstration and approval of hazard or risk equivalency may be made according to any guidance that the EPA makes available for use.

(2) Owners and operators shall provide documentation demonstrating the hazard or risk equivalency of their proposed emissions average in their Implementation Plan.

(3) An emissions averaging plan that does not demonstrate an equivalent or lower hazard or risk to the satisfaction of the State or local permitting authority shall not be approved. The State or local permitting authority may require such adjustments to the emissions averaging plan as are necessary in order to ensure that the average will not result in greater hazard or risk to human health or the environment than would result if the emission points were controlled according to §§63.643 through 63.647, and §§63.650 and 63.651.

(4) A hazard or risk equivalency demonstration shall:

(i) Be a quantitative, bona fide chemical hazard or risk assessment;

(ii) Account for differences in chemical hazard or risk to human health or the environment; and

(iii) Meet any requirements set by the State or local permitting authority for such demonstrations.

(1) For periods of excess emissions, an owner or operator may request that the provisions of paragraphs (1)(1) through (1)(4) of this section be followed instead of the procedures in paragraphs (f)(3)(1) and (f)(3)(ii) of this section.

(1) The owner or operator shall notify the Administrator of excess emissions in the Periodic Reports as required in §63.655(g)(6).

(2) The owner or operator shall demonstrate that other types of monitoring data or engineering calculations are appropriate to establish that the control device for the emission point was operating in such a fashion to warrant assigning full or partial credits and debits. This demonstration shall be made to the Administrator’s satisfaction, and the Administrator may establish procedures for demonstrating compliance that are acceptable.

(3) The owner or operator shall provide documentation of the period of excess emissions and the other type of monitoring data or engineering calculations to be used to demonstrate that the control device for the emission point was operating in such a fashion to warrant assigning full or partial credits and debits.

(4) The Administrator may assign full or partial credit and debits upon review of the information provided.

(ii) Monitor the operating parameters specified in §63.644, as appropriate for the specific control device.

(2) The source shall implement the following procedures for each miscellaneous process vent, equipped with a carbon adsorber, absorber, or condenser but not equipped with a control device:

(i) Determine the flow rate and organic HAP concentration using the methods specified in §63.115 (a)(1) and (a)(2), §63.115 (b)(1) and (b)(2), and §63.115(c)(3) of subpart G; and

(ii) Monitor the operating parameters specified in §63.114 of subpart G, as appropriate for the specific recovery device.

(3) The source shall implement the following procedures for each storage vessel controlled with an internal floating roof, external roof, or a closed vent system with a control device, as appropriate to the control technique:

(i) Perform the monitoring or inspection procedures in §63.646 of this subpart and §63.120 of subpart G; and

(ii) For closed vent systems with control devices, conduct an initial design evaluation as specified in §63.114 of this subpart and §63.120(d) of subpart G.

(4) For each gasoline loading rack that is controlled, perform the testing and monitoring procedures specified in §§63.425 and 63.427 of subpart R of this part except §63.425(d) or §63.427(c).

(5) For each marine tank vessel that is controlled, perform the compliance, monitoring, and performance testing, procedures specified in §§63.563, 63.564, and 63.565 of subpart Y of this part.

(6) The source shall implement the following procedures for wastewater emission points, as appropriate to the control techniques:

(i) For wastewater treatment processes, conduct tests as specified in §61.355 of subpart FP of part 60;

(ii) Conduct inspections and monitoring as specified in §§61.343 through 61.349 and §61.354 of 40 CFR part 61, subpart FP.

(7) If an emission point in an emissions average is controlled using a pollution prevention measure or a device or technique for which no monitoring parameters or inspection procedures are specified in §§63.643 through 63.647 and §§63.650 and 63.651, the owner or operator shall establish a site-specific monitoring parameter and shall submit the information specified in §63.655(h)(4) in the Implementation Plan.

(b) Records of all information required to calculate emission debits and credits and records required by §63.655 shall be retained for 5 years.

(c) Notifications of Compliance Status report, Periodic Reports, and other reports shall be submitted as required by §63.655.

(d) Each owner or operator of an existing source who elects to comply with §63.655(g) and (h) by using emissions averaging for any emission points shall submit an Implementation Plan.

(1) The Implementation Plan shall be submitted to the Administrator and approved prior to implementing emissions averaging. This information may be submitted in an operating permit application, in an amendment to an operating permit application, in a separate submittal, in a Notification of Compliance Status Report, in a Periodic Report or in any combination of these documents. If an owner or operator submits the information specified in paragraph (d)(2) of this section at different times, and/or in different submittals, later submittals may refer to earlier submittals instead of duplicating the previously submitted information.

(2) The Implementation Plan shall include the information specified in paragraphs (d)(2)(i) through (d)(2)(ix) of this section for all points included in the average.

(i) The identification of all emission points in the planned emissions average and notation of whether each emission point is a Group 1 or Group 2 emission point as defined in §63.641.

(ii) The projected annual emission debits and credits for each emission point and the sum for the emission points involved in the average calculated according to §63.652. The annual projected credits must be greater than the projected debits, as required under §63.652(e)(3).

(iii) The specific control technology or pollution prevention measure that will be used for each emission point included in the average and date of application or expected date of application.
(iv) The specific identification of each emission point affected by a pollution prevention measure. To be considered a pollution prevention measure, the criteria in §63.652(j)(1) must be met. If the same pollution prevention measure reduces or eliminates emissions from multiple emission points in the average, the owner or operator must identify each of these emission points.

(v) A statement that the compliance demonstration, monitoring, inspection, recordkeeping, and reporting provisions in paragraphs (a), (b), and (c) of this section that are applicable to each emission point in the emissions average will be implemented beginning on the date of compliance.

(vi) Documentation of the information listed in paragraphs (d)(2)(vi)(A) through (d)(2)(vi)(D) of this section for each emission point included in the average.

(A) The values of the parameters used to determine whether each emission point in the emissions average is Group 1 or Group 2.

(B) The estimated values of all parameters needed for input to the emission debit and credit calculations in §63.652(g) and (h). These parameter values or, as appropriate, limited ranges for the parameter values, shall be specified in the source’s Implementation Plan as enforceable operating conditions. Changes to these parameters must be reported in the next Periodic Report.

(C) The estimated percentage of reduction if a control technology achieving a lower percentage of reduction than the efficiency of the reference control technology, as defined in §63.641, is or will be applied to the emission point.

(D) The anticipated nominal efficiency if a control technology achieving a greater percentage emission reduction than the efficiency of the reference control technology is or will be applied to the emission point. The procedures in §63.652(i) shall be followed to apply for a nominal efficiency.

(vii) The information specified in §63.655(h)(4) for:

(A) Each miscellaneous process vent controlled by a pollution prevention measure or control technique for which monitoring parameters or inspection procedures are not specified in paragraphs (a)(1) or (a)(2) of this section; and

(B) Each storage vessel controlled by a pollution prevention measure or a control technique other than an internal or external floating roof or a closed vent system with a control device.

(viii) Documentation of the information listed in paragraphs (d)(2)(viii)(A) through (d)(2)(viii)(G) of this section for each process wastewater stream included in the average.

(A) The information used to determine whether the wastewater stream is a Group 1 or Group 2 wastewater stream.

(B) The estimated values of all parameters needed for input to the wastewater emission credit and debit calculations in §63.652(h)(6).

(C) The estimated percentage of reduction if the wastewater stream is or will be controlled using a treatment process or series of treatment processes that achieves an emission reduction less than or equal to the emission reduction specified in table 7 of this subpart.

(D) The estimated percentage of reduction if a control technology achieving less than or equal to 95 percent emission reduction is or will be applied to the vapor stream(s) vented and collected from the treatment processes.

(E) The estimated percentage of reduction if a pollution prevention measure is or will be applied.

(F) The anticipated nominal efficiency if the owner or operator plans to apply for a nominal efficiency under §63.652(i). A nominal efficiency shall be applied for if:

(1) A control technology is or will be applied to the wastewater stream and achieves an emission reduction greater than the emission reduction specified in table 7 of this subpart; or

(2) A control technology achieving greater than 95 percent emission reduction is or will be applied to the vapor stream(s) vented and collected from the treatment processes.

(G) For each pollution prevention measure, treatment process, or control device used to reduce air emissions of organic HAP from wastewater and for which no monitoring parameters or inspection procedures are specified in
§ 63.654 Heat exchange systems.

(a) Except as specified in paragraph (b) of this section, the owner or operator of a heat exchange system that meets the criteria in §63.640(c)(8) must comply with the requirements of paragraphs (c) through (g) of this section.

(b) A heat exchange system is exempt from the requirements in paragraphs (c) through (g) of this section if all heat exchangers within the heat exchange system either:

(1) Operate with the minimum pressure on the cooling water side at least 35 kilopascals greater than the maximum pressure on the process side; or

(2) Employ an intervening cooling fluid containing less than 5 percent by weight of total organic HAP, as determined according to the provisions of §63.180(d) of this part and table 1 of this subpart, between the process and the cooling water. This intervening fluid must serve to isolate the cooling water from the process fluid and must not be sent through a cooling tower or discharged. For purposes of this section, discharge does not include emptying for maintenance purposes.

(c) The owner or operator must perform monitoring to identify leaks of total strippable volatile organic compounds (VOC) from each heat exchange system subject to the requirements of this subpart according to the procedures in paragraphs (c)(1) through (6) of this section.

(1) Monitoring locations for closed-loop recirculation heat exchange systems. For each closed loop recirculating heat exchange system, collect and analyze a sample from the location(s) described in either paragraph (c)(1)(i) or (c)(1)(ii) of this section.

(i) Each cooling tower return line or any representative riser within the cooling tower prior to exposure to air for each heat exchange system.

(ii) Selected heat exchanger exit line(s) so that each heat exchanger or group of heat exchangers within a heat exchange system is covered by the selected monitoring location(s).

(2) Monitoring locations for once-through heat exchange systems. For each once-through heat exchange system, collect and analyze a sample from the location(s) described in paragraph (c)(2)(i) of this section. The owner or operator may also elect to collect and analyze an additional sample from the location(s) described in paragraph (c)(2)(ii) of this section.

(i) Selected heat exchanger exit line(s) so that each heat exchanger or group of heat exchangers within a heat exchange system is covered by the selected monitoring location(s).

(ii) The inlet water feed line for a once-through heat exchange system prior to any heat exchanger. If multiple heat exchange systems use the same water feed (i.e., inlet water from the same primary water source), the owner or operator may monitor at one representative location and use the monitoring results for that sampling location for all heat exchange systems that use that same water feed.

(3) Monitoring method. Determine the total strippable hydrocarbon concentration (in parts per million by volume (ppmv) as methane) at each monitoring location using the “Air Stripping Method (Modified El Paso Method) for Determination of Volatile Organic Compound Emissions from Water
Sources’ Revision Number One, dated January 2003, Sampling Procedures Manual, Appendix P: Cooling Tower Monitoring, prepared by Texas Commission on Environmental Quality, January 31, 2003 (incorporated by reference—see §63.14) using a flame ionization detector (FID) analyzer for on-site determination as described in Section 6.1 of the Modified El Paso Method.

(4) Monitoring frequency and leak action level for existing sources. For a heat exchange system at an existing source, the owner or operator must comply with the monitoring frequency and leak action level as defined in paragraph (c)(4)(i) of this section or comply with the monitoring frequency and leak action level as defined in paragraph (c)(4)(ii) of this section. The owner or operator of an affected heat exchange system at an existing source, the owner or operator must comply with the monitoring frequency and leak action level as defined in paragraph (c)(4)(i) of this section or comply with the monitoring frequency and leak action level as defined in paragraph (c)(4)(ii) of this section. However, for each affected heat exchange system, the owner or operator must elect one monitoring alternative that will apply at all times. If the owner or operator intends to change the monitoring alternative that applies to a heat exchange system, the owner or operator must notify the Administrator 30 days in advance of such a change. All “leaks” identified prior to changing monitoring alternatives must be repaired. The monitoring frequencies specified in paragraphs (c)(4)(i) and (ii) of this section also apply to the inlet water feed line for a once-through heat exchange system, if monitoring of the inlet water feed is elected as provided in paragraph (c)(2)(ii) of this section.

(i) Monitor monthly using a leak action level defined as a total strippable hydrocarbon concentration (as methane) in the stripping gas of 6.2 ppmv.

(ii) Monitor quarterly using a leak action level defined as a total strippable hydrocarbon concentration (as methane) in the stripping gas of 3.1 ppmv unless repair is delayed as provided in paragraph (f) of this section.

(5) Monitoring frequency and leak action level for new sources. For a heat exchange system at a new source, the owner or operator must monitor monthly using a leak action level defined as a total strippable hydrocarbon concentration (as methane) in the stripping gas of 3.1 ppmv.

(6) Leak definition. A leak is defined as described in paragraph (c)(6)(i) or (c)(6)(ii) of this section, as applicable.

(i) For once-through heat exchange systems for which the inlet water feed is monitored as described in paragraph (c)(2)(ii) of this section, a leak is detected if the difference in the measurement value of the sample taken from a location specified in paragraph (c)(2)(i) of this section and the measurement value of the corresponding sample taken from the location specified in paragraph (c)(2)(ii) of this section equals or exceeds the leak action level.

(ii) For all other heat exchange systems, a leak is detected if a measurement value of the sample taken from a location specified in either paragraph (c)(1)(i), (c)(1)(ii), or (c)(2)(i) of this section equals or exceeds the leak action level.

(d) If a leak is detected, the owner or operator must repair the leak to reduce the measured concentration to below the applicable action level as soon as practicable, but no later than 45 days after identifying the leak, except as specified in paragraphs (e) and (f) of this section. Repair includes re-monitoring at the monitoring location where the leak was identified according to the method specified in paragraph (c)(3) of this section to verify that the measured concentration is below the applicable action level. Actions that can be taken to achieve repair include but are not limited to:

(1) Physical modifications to the leaking heat exchanger, such as welding the leak or replacing a tube;

(2) Blocking the leaking tube within the heat exchanger;

(3) Changing the pressure so that water flows into the process fluid;

(4) Replacing the heat exchanger or heat exchanger bundle; or

(5) Isolating, bypassing, or otherwise removing the leaking heat exchanger.
Environmental Protection Agency § 63.654

from service until it is otherwise repaired.

(e) If the owner or operator detects a leak when monitoring a cooling tower return line under paragraph (c)(1)(i) of this section, the owner or operator may conduct additional monitoring of each heat exchanger or group of heat exchangers associated with the heat exchange system for which the leak was detected as provided under paragraph (c)(1)(ii) of this section. If no leaks are detected when monitoring according to the requirements of paragraph (c)(1)(ii) of this section, the heat exchange system is considered to meet the repair requirements through re-monitoring of the heat exchange system as provided in paragraph (d) of this section.

(f) The owner or operator may delay the repair of a leaking heat exchanger when one of the conditions in paragraph (f)(1) or (f)(2) of this section is met and the leak is less than the delay of repair action level specified in paragraph (f)(3) of this section. The owner or operator must determine if a delay of repair is necessary as soon as practicable, but no later than 45 days after first identifying the leak.

(1) If the repair is technically infeasible without a shutdown and the total strippable hydrocarbon concentration is initially and remains less than the delay of repair action level for all monthly monitoring periods during the delay of repair, the owner or operator may delay repair until the next scheduled shutdown of the heat exchange system. If, during subsequent monthly monitoring, the delay of repair action level is exceeded, the owner or operator must repair the heat within 30 days of the monitoring event in which the leak was equal to or exceeded the delay of repair action level.

(2) If the necessary equipment, parts, or personnel are not available and the total strippable hydrocarbon concentration is initially and remains less than the delay of repair action level for all monthly monitoring periods during the delay of repair, the owner or operator may delay the repair for a maximum of 120 calendar days. The owner or operator must demonstrate that the necessary equipment, parts, or personnel were not available. If, during subsequent monthly monitoring, the delay of repair action level is exceeded, the owner or operator must repair the leak within 30 days of the monitoring event in which the leak was equal to or exceeded the delay of repair action level.

(3) The delay of repair action level is a total strippable hydrocarbon concentration (as methane) in the stripping gas of 62 ppmv. The delay of repair action level is assessed as described in paragraph (f)(3)(i) or (f)(3)(ii) of this section, as applicable.

(i) For once-through heat exchange systems for which the inlet water feed is monitored as described in paragraph (c)(2)(ii) of this section, the delay of repair action level is exceeded if the difference in the measurement value of the sample taken from a location specified in paragraph (c)(2)(i) of this section and the measurement value of the corresponding sample taken from the location specified in paragraph (c)(2)(ii) of this section equals or exceeds the delay of repair action level.

(ii) For all other heat exchange systems, the delay of repair action level is exceeded if a measurement value of the sample taken from a location specified in either paragraphs (c)(1)(i), (c)(1)(ii), or (c)(2)(i) of this section equals or exceeds the delay of repair action level.

(g) To delay the repair under paragraph (f) of this section, the owner or operator must record the information in paragraphs (g)(1) through (4) of this section.

(1) The reason(s) for delaying repair.

(2) A schedule for completing the repair as soon as practical.

(3) The date and concentration of the leak as first identified and the results of all subsequent monthly monitoring events during the delay of repair.

(4) An estimate of the potential strippable hydrocarbon emissions from the leaking heat exchange system or heat exchanger for each required delay of repair monitoring interval following the procedures in paragraphs (g)(4)(i) through (iv) of this section.

(i) Determine the leak concentration as specified in paragraph (c) of this section and convert the stripping gas leak concentration (in ppmv as methane) to an equivalent liquid concentration, in parts per million by weight (ppmw),

§ 63.655 Reporting and recordkeeping requirements.

(a) Each owner or operator subject to the wastewater provisions in §63.647 shall comply with the recordkeeping and reporting provisions in §§61.356 and 61.357 of 40 CFR part 61, subpart FF unless they are complying with the wastewater provisions specified in paragraph (o)(2)(ii) of §63.640. There are no additional reporting and recordkeeping requirements for wastewater under this subpart unless a wastewater stream is included in an emissions average. Recordkeeping and reporting for emissions averages are specified in §63.653 and in paragraphs (f)(5) and (g)(8) of this section.

(b) Each owner or operator subject to the gasoline loading rack provisions in §63.650 shall comply with the recordkeeping and reporting provisions in §63.428 (b) and (c), (g)(1), (h)(1) through (h)(3), and (k) of subpart R. These requirements are summarized in table 4 of this subpart. There are no additional reporting and recordkeeping requirements for gasoline loading racks under this subpart unless a loading rack is included in an emissions average. Recordkeeping and reporting for emissions averages are specified in §63.653 and in paragraphs (f)(5) and (g)(8) of this section.

(c) Each owner or operator subject to the marine tank vessel loading operation standards in §63.651 shall comply with the recordkeeping and reporting provisions in §§63.567(a) and 63.567(c)

using equation 7-1 from “Air Stripping Method (Modified El Paso Method) for Determination of Volatile Organic Compound Emissions from Water Sources” Revision Number One, dated January 2003, Sampling Procedures Manual, Appendix P: Cooling Tower Monitoring, prepared by Texas Commission on Environmental Quality, January 31, 2003 (incorporated by reference—see §63.14) and the molecular weight of 16 grams per mole (g/mol) for methane.

(ii) Determine the mass flow rate of the cooling water at the monitoring location where the leak was detected. If the monitoring location is an individual cooling tower riser, determine the total cooling water mass flow rate to the cooling tower. Cooling water mass flow rates may be determined using direct measurement, pump curves, heat balance calculations, or other engineering methods. Volumetric flow measurements may be used and converted to mass flow rates using the density of water at the specific monitoring location temperature or using the default density of water at 25 degrees Celsius, which is 997 kilograms per cubic meter or 8.32 pounds per gallon.

(iii) For delay of repair monitoring intervals prior to repair of the leak, calculate the potential strippable hydrocarbon emissions for the leaking heat exchange system or heat exchanger for the final delay of repair monitoring interval by multiplying the duration of the final delay of repair monitoring interval by the leak concentration and cooling water flow rates determined for the last monitoring event prior to re-monitoring to verify the leak was repaired. The duration of the final delay of repair monitoring interval is the time period starting at midnight of the day of the last monitoring event prior to re-monitoring to verify the leak was repaired and ending at the time of the re-monitoring event that verified that the leak was repaired.

(iv) For delay of repair monitoring intervals ending with a repaired leak, calculate the potential strippable hydrocarbon emissions for the leaking heat exchange system or heat exchanger for the final delay of repair monitoring interval by multiplying the duration of the final delay of repair monitoring interval by the leak concentration and cooling water flow rates determined for the last monitoring event prior to re-monitoring to verify the leak was repaired and ending at the time of the re-monitoring event that verified that the leak was repaired.
through (k) of subpart Y. These requirements are summarized in table 5 of this subpart. There are no additional reporting and recordkeeping requirements for marine tank vessel loading operations under this subpart unless marine tank vessel loading operations are included in an emissions average. Recordkeeping and reporting for emissions averages are specified in §63.653 and in paragraphs (f)(5) and (g)(8) of this section.

(d) Each owner or operator subject to the equipment leaks standards in §63.648 shall comply with the recordkeeping and reporting provisions in paragraphs (d)(1) through (d)(6) of this section.

1. Sections 60.486 and 60.487 of subpart VV of part 60 except as specified in paragraph (d)(1)(i) of this section; or §§63.182 and 63.182 of subpart H of this part except for §§63.182(b), (c)(2), and (c)(4).

(i) The signature of the owner or operator (or designate) whose decision it was that a repair could not be effected without a process shutdown is not required to be recorded. Instead, the name of the person whose decision it was that a repair could not be effected without a process shutdown shall be recorded and retained for 2 years.

(ii) [Reserved]

(2) The Notification of Compliance Status report required by §63.182(c) of subpart H and the initial semiannual report required by §60.487(b) of 40 CFR part 60, subpart VV shall be submitted within 150 days of the compliance date specified in §63.640(h); the requirements of subpart H of this part except for §§63.182(b), (c)(2), and (c)(4).

(3) An owner or operator who determines that a compressor qualifies for the hydrogen service exemption in §63.648 shall also keep a record of the demonstration required by §63.648.

(4) An owner or operator must keep a list of identification numbers for valves that are designated as leakless per §63.648(c)(10).

(5) An owner or operator must identify, either by list or location (area or refining process unit), equipment in organic HAP service less than 300 hours per year within refining process units subject to this subpart.

(6) An owner or operator must keep a list of reciprocating pumps and compressors determined to be exempt from seal requirements as per §§63.648(f) and (i).

(e) Each owner or operator of a source subject to this subpart shall submit the reports listed in paragraphs (e)(1) through (e)(3) of this section except as provided in paragraph (h)(5) of this section, and shall keep records as described in paragraph (i) of this section.

1. A Notification of Compliance Status report as described in paragraph (f) of this section;

2. Periodic Reports as described in paragraph (g) of this section; and

3. Other reports as described in paragraph (h) of this section.

(f) Each owner or operator of a source subject to this subpart shall submit a Notification of Compliance Status report within 150 days after the compliance dates specified in §63.640(h) with the exception of Notification of Compliance Status reports submitted to comply with §63.640(l)(3) and for storage vessels subject to the compliance schedule specified in §63.640(h)(4). Notification of Compliance Status reports required by §63.640(l)(3) and for storage vessels subject to the compliance dates specified in §63.640(h)(4) shall be submitted according to paragraph (f)(6) of this section. This information may be submitted in an operating permit application, in an amendment to an operating permit application, in a separate submittal, or in any combination of the three. If the required information has been submitted before the date 150 days after the compliance date specified in §63.640(h), a separate Notification of Compliance Status report is not required within 150 days after the compliance dates specified in §63.640(h). If an owner or operator submits the information specified in paragraphs (f)(1) through (f)(5) of this section at different times, and/or in different submittals, later submittals may refer to earlier submittals instead of duplicating and resubmitting the previously submitted information. Each owner or operator of a gasoline loading rack classified under Standard Industrial Classification Code 2911 located within a contiguous area and under common
control with a petroleum refinery subject to the standards of this subpart shall submit the Notification of Compliance Status report required by subpart R of this part within 150 days after the compliance dates specified in §63.640(h) of this subpart.

(1) The Notification of Compliance Status report shall include the information specified in paragraphs (f)(1)(i) through (f)(1)(vi) of this section.

(i) For storage vessels, this report shall include the information specified in paragraphs (f)(1)(i)(A) through (f)(1)(i)(D) of this section.

(A) Identification of each storage vessel subject to this subpart, and for each Group 1 storage vessel subject to this subpart, the information specified in paragraphs (f)(1)(i)(A)(1) through (f)(1)(i)(A)(3) of this section. This information is to be revised each time a Notification of Compliance Status report is submitted for a storage vessel subject to the compliance schedule specified in §63.640(h)(4) or to comply with §63.640(l)(3).

(1) For each Group 1 storage vessel complying with §63.646 that is not included in an emissions average, the method of compliance (i.e., internal floating roof, external floating roof, or closed vent system and control device).

(2) For storage vessels subject to the compliance schedule specified in §63.640(h)(4) that are not complying with §63.646, the anticipated compliance date.

(3) For storage vessels subject to the compliance schedule specified in §63.640(h)(4) that are complying with §63.646, the actual compliance date.

(B) If a closed vent system and a control device other than a flare is used, the owner or operator shall submit:

(1) Flare design (e.g., steam-assisted, air-assisted, or nonassisted);

(2) All visible emission readings, heat content determinations, flow rate measurements, and exit velocity determinations made during the compliance determination required by §63.120(e) of subpart G of this part; and

(3) All periods during the compliance determination when the pilot flame is absent.

(ii) For miscellaneous process vents, identification of each miscellaneous process vent subject to this subpart, whether the process vent is Group 1 or Group 2, and the method of compliance for each Group 1 miscellaneous process vent that is not included in an emissions average (e.g., use of a flare or other control device meeting the requirements of §63.643(a)).

(iii) For miscellaneous process vents controlled by control devices required
to be tested under §63.645 of this subpart and §63.116(c) of subpart G of this part, performance test results including the information in paragraphs (f)(1)(ii)(A) and (B) of this section. Results of a performance test conducted prior to the compliance date of this subpart can be used provided that the test was conducted using the methods specified in §63.645 and that the test conditions are representative of current operating conditions.

(A) The percentage of reduction of organic HAP’s or TOC, or the outlet concentration of organic HAP’s or TOC (parts per million by volume on a dry basis corrected to 3 percent oxygen), determined as specified in §63.116(c) of subpart G of this part; and

(B) The value of the monitored parameters specified in table 10 of this subpart, or a site-specific parameter approved by the permitting authority, averaged over the full period of the performance test.

(iv) For miscellaneous process vents controlled by flares, performance test results including the information in paragraphs (f)(1)(iv)(A) and (B) of this section:

(A) All visible emission readings, heat content determinations, flow rate measurements, and exit velocity determinations made during the compliance determination required by §63.645 of this subpart and §63.116(a) of subpart G of this part, and

(B) A statement of whether a flame was present at the pilot light over the full period of the compliance determination.

(v) For equipment leaks complying with §63.648(c) (i.e., complying with the requirements of subpart H of this part), the Notification of Compliance Report Status report information required by §63.182(c) of subpart H and whether the percentage of leaking valves will be reported on a process unit basis or a sourcewide basis.

(vi) For each heat exchange system, identification of the heat exchange systems that are subject to the requirements of this subpart. For heat exchange systems at existing sources, the owner or operator shall indicate whether monitoring will be conducted as specified in §63.654(c)(4)(i), §63.654(c)(4)(ii), or §63.654(c)(4)(iii).

(2) If initial performance tests are required by §§63.643 through 63.653 of this subpart, the Notification of Compliance Status report shall include one complete test report for each test method used for a particular source.

(i) For additional tests performed using the same method, the results specified in paragraph (f)(1) of this section shall be submitted, but a complete test report is not required.

(ii) A complete test report shall include a sampling site description, description of sampling and analysis procedures and any modifications to standard procedures, quality assurance procedures, record of operating conditions during the test, record of preparation of standards, record of calibrations, raw data sheets for field sampling, raw data sheets for field and laboratory analyses, documentation of calculations, and any other information required by the test method.

(iii) Performance tests are required only if specified by §§63.643 through 63.653 of this subpart. Initial performance tests are required for some kinds of emission points and controls. Periodic testing of the same emission point is not required.

(3) For each monitored parameter for which a range is required to be established under §63.120(d) of subpart G of this part for storage vessels or §63.644 for miscellaneous process vents, the Notification of Compliance Status report shall include the information in paragraphs (f)(3)(i) through (f)(3)(iii) of this section.

(i) The specific range of the monitored parameter(s) for each emission point;

(ii) The rationale for the specific range for each parameter for each emission point, including any data and calculations used to develop the range and a description of why the range ensures compliance with the emission standard.

(A) If a performance test is required by this subpart for a control device, the range shall be based on the parameter values measured during the performance test supplemented by engineering assessments and manufacturer’s recommendations. Performance testing is not required to be conducted
§ 63.655 40 CFR Ch. I (7–1–15 Edition)

over the entire range of permitted parameter values.

(B) If a performance test is not required by this subpart for a control device, the range may be based solely on engineering assessments and manufacturers’ recommendations.

(iii) A definition of the source’s operating day for purposes of determining daily average values of monitored parameters. The definition shall specify the times at which an operating day begins and ends.

(4) Results of any continuous monitoring system performance evaluations shall be included in the Notification of Compliance Status report.

(5) For emission points included in an emissions average, the Notification of Compliance Status report shall include the values of the parameters needed for input to the emission credit and debit equations in §63.652(g) and (h), calculated or measured according to the procedures in §63.652(g) and (h), and the resulting credits and debits for the first quarter of the year. The first quarter begins on the compliance date specified in §63.640.

(6) Notification of Compliance Status reports required by §63.640(l)(3) and for storage vessels subject to the compliance dates specified in §63.640(h)(4) shall be submitted no later than 60 days after the end of the 6-month period during which the change or addition was made that resulted in the Group 1 emission point or the existing Group 1 storage vessel was brought into compliance, and may be combined with the periodic report. Six-month periods shall be the same 6-month periods specified in paragraph (g) of this section. The Notification of Compliance Status report shall include the information specified for Periodic Reports in paragraph (g)(2) through (g)(5) of this section except that information related to gaskets, slotted membranes, and sleeve seals is not required for storage vessels that are part of an existing source.

(i) For vessels for which annual inspections are required under §63.120(a)(2)(i) or (a)(3)(i) of subpart G of this part in which a failure is detected in the control equipment.

(ii) An owner or operator who elects to comply with §63.646 by using a fixed roof and an internal floating roof or by using an external floating roof converted to an internal floating roof shall submit the results of each inspection conducted in accordance with §63.120(a) of subpart G of this part in which a failure is detected in the control equipment.
§ 63.655

(g)(2)(i) through (g)(2)(i)(C) of this section apply.

(A) A failure is defined as any time in which the internal floating roof is not resting on the surface of the liquid inside the storage vessel and is not resting on the leg supports; or there is liquid on the floating roof; or the seal is detached from the internal floating roof; or there are holes, tears, or other openings in the seal or seal fabric; or there are visible gaps between the seal and the wall of the storage vessel.

(B) Except as provided in paragraph (g)(2)(i)(C) of this section, each Periodic Report shall include the date of the inspection, identification of each storage vessel in which a failure was detected, and a description of the failure. The Periodic Report shall also describe the nature of and date the repair was made or the date the storage vessel was emptied.

(C) If an extension is utilized in accordance with § 63.120(a)(4) of subpart G of this part, the owner or operator shall, in the next Periodic Report, identify the vessel; include the documentation specified in § 63.120(a)(4) of subpart G of this part; and describe the date the storage vessel was emptied and the nature of and date the repair was made.

(ii) For vessels for which inspections are required under § 63.120(a)(2)(ii), (a)(3)(i), or (a)(3)(iii) of subpart G of this part (i.e., internal inspections), the specifications and requirements listed in paragraphs (g)(2)(ii)(A) and (g)(2)(i)(B) of this section apply.

(A) A failure is defined as any time in which the internal floating roof has defects; or the primary seal has holes, tears, or other openings in the seal or the seal fabric; or, for a storage vessel that is part of a new source, the slotted membrane has more than a 10 percent open area.

(B) Each Periodic Report shall include the date of the inspection, identification of each storage vessel in which a failure was detected, and a description of the failure. The Periodic Report shall also describe the nature of and date the repair was made.

(3) An owner or operator who elects to comply with § 63.646 by using an external floating roof shall meet the periodic reporting requirements specified in paragraphs (g)(3)(i) through (g)(3)(iii) of this section.

(i) The owner or operator shall submit, as part of the Periodic Report, documentation of the results of each seal gap measurement made in accordance with § 63.120(b) of subpart G of this part in which the seal and seal gap requirements of § 63.120(b)(3), (b)(4), (b)(5), or (b)(6) of subpart G of this part are not met. This documentation shall include the information specified in paragraphs (g)(3)(i)(A) through (g)(3)(i)(D) of this section.

(A) The date of the seal gap measurement.

(B) The raw data obtained in the seal gap measurement and the calculations described in § 63.120(b)(3) and (b)(4) of subpart G of this part.

(C) A description of any seal condition specified in § 63.120(b)(5) or (b)(6) of subpart G of this part that is not met.

(D) A description of the nature of and date the repair was made, or the date the storage vessel was emptied.

(ii) If an extension is utilized in accordance with § 63.120(b)(7)(ii) or (b)(8) of subpart G of this part, the owner or operator shall, in the next Periodic Report, identify the vessel; include the documentation specified in § 63.120(b)(7)(ii) or (b)(8) of subpart G of this part, as applicable; and describe the date the vessel was emptied and the nature of and date the repair was made.

(iii) The owner or operator shall submit, as part of the Periodic Report, documentation of any failures that are identified during visual inspections required by § 63.120(b)(10) of subpart G of this part. This documentation shall meet the specifications and requirements in paragraphs (g)(3)(iii)(A) and (g)(3)(iii)(B) of this section.

(A) A failure is defined as any time in which the external floating roof has defects; or the primary seal has holes or other openings in the seal or the seal fabric; or, for a storage vessel that is part of a new source, the slotted membrane has more than a 10 percent open area.
that is part of a new source, the gaskets no longer close off the liquid surface from the atmosphere; or, for a storage vessel that is part of a new source, the slotted membrane has more than 10 percent open area.

(B) Each Periodic Report shall include the date of the inspection, identification of each storage vessel in which a failure was detected, and a description of the failure. The Periodic Report shall also describe the nature of and date the repair was made.

(4) An owner or operator who elects to comply with §63.646 by using an external floating roof converted to an internal floating roof shall comply with the periodic reporting requirements of paragraph (g)(2) of this section.

(5) An owner or operator who elects to comply with §63.646 by installing a closed vent system and control device shall submit, as part of the next Periodic Report, the information specified in paragraphs (g)(5)(i) through (g)(5)(iii) of this section.

(i) The Periodic Report shall include the information specified in paragraphs (g)(5)(i)(A) and (g)(5)(i)(B) of this section for those planned routine maintenance operations that would require the control device not to meet the requirements of §63.119(e)(1) or (e)(2) of subpart G of this part, as applicable.

(A) A description of the planned routine maintenance that is anticipated to be performed for the control device during the next 6 months. This description shall include the type of maintenance necessary, planned frequency of maintenance, and lengths of maintenance periods.

(B) A description of the planned routine maintenance that was performed for the control device during the previous 6 months. This description shall include the type of maintenance performed and the total number of hours during those 6 months that the control device did not meet the requirements of §63.119(e)(1) or (e)(2) of subpart G of this part, as applicable, due to planned routine maintenance.

(ii) If a control device other than a flare is used, the Periodic Report shall describe each occurrence when the monitored parameters were outside of the parameter ranges documented in the Notification of Compliance Status report. The description shall include: Identification of the control device for which the measured parameters were outside of the established ranges, and causes for the measured parameters to be outside of the established ranges.

(iii) If a flare is used, the Periodic Report shall describe each occurrence when the flare does not meet the general control device requirements specified in §63.11(b) of subpart A of this part and shall include: Identification of the flare that does not meet the general requirements specified in §63.11(b) of subpart A of this part, and reasons the flare did not meet the general requirements specified in §63.11(b) of subpart A of this part.

(6) For miscellaneous process vents for which continuous parameter monitors are required by this subpart, periods of excess emissions shall be identified in the Periodic Reports and shall be used to determine compliance with the emission standards.

(i) Period of excess emission means any of the following conditions:

(A) An operating day when the daily average value of a monitored parameter, except presence of a flare pilot flame, is outside the range specified in the Notification of Compliance Status report. Monitoring data recorded during periods of monitoring system breakdown, repairs, calibration checks and zero (low-level) and high-level adjustments shall not be used in computing daily average values of monitored parameters.

(B) An operating day when all pilot flames of a flare are absent.

(C) An operating day when monitoring data required to be recorded in paragraphs (i)(3)(i) and (ii) of this section are available for less than 75 percent of the operating hours.

(D) For data compression systems approved under paragraph (h)(5)(iii) of this section, an operating day when the monitor operated for less than 75 percent of the operating hours or a day when less than 18 monitoring values were recorded.

(ii) For miscellaneous process vents, excess emissions shall be reported for the operating parameters specified in table 10 of this subpart unless other
site-specific parameter(s) have been approved by the operating permit authority.

(iii) Periods of startup and shutdown that meet the definition of §63.641, and malfunction that meet the definition in §63.2 and periods of performance testing and monitoring system calibration shall not be considered periods of excess emissions. Malfunctions may include process unit, control device, or monitoring system malfunctions.

(7) If a performance test for determination of compliance for a new emission point subject to this subpart or for an emission point that has changed from Group 2 to Group 1 is conducted during the period covered by a Periodic Report, the results of the performance test shall be included in the Periodic Report.

(i) Results of the performance test shall include the percentage of emissions reduction or outlet pollutant concentration reduction (whichever is needed to determine compliance) and the values of the monitored operating parameters.

(ii) The complete test report shall be maintained onsite.

(8) The owner or operator of a source shall submit quarterly reports for all emission points included in an emissions average.

(i) The quarterly reports shall be submitted no later than 60 calendar days after the end of each quarter. The first report shall be submitted with the Notification of Compliance Status report no later than 150 days after the compliance date specified in §63.640.

(ii) The quarterly reports shall include:

(A) The information specified in this paragraph and in paragraphs (g)(2) through (g)(7) of this section for all storage vessels and miscellaneous process vents included in an emissions average;

(B) The information required to be reported by §63.428 (h)(1), (h)(2), and (h)(3) for each gasoline loading rack included in an emissions average, unless this information has already been submitted in a separate report;

(C) The information required to be reported by §63.567(e)(4) and (j)(3) of subpart Y for each marine tank vessel loading operation included in an emissions average, unless the information has already been submitted in a separate report;

(D) Any information pertaining to each wastewater stream included in an emissions average that the source is required to report under the Implementation Plan for the source;

(E) The credits and debits calculated each month during the quarter;

(F) A demonstration that debits calculated for the quarter are not more than 1.30 times the credits calculated for the quarter, as required under §§63.652(e)(4);

(G) The values of any inputs to the credit and debit equations in §63.652 (g) and (h) that change from month to month during the quarter or that have changed since the previous quarter; and

(H) Any other information the source is required to report under the Implementation Plan for the source.

(iii) Every fourth quarterly report shall include the following:

(A) A demonstration that annual credits are greater than or equal to annual debits as required by §63.652(e)(3); and

(B) A certification of compliance with all the emissions averaging provisions in §63.652 of this subpart.

(9) For heat exchange systems, Periodic Reports must include the following information:

(i) The number of heat exchange systems at the plant site subject to the monitoring requirements in §63.654.

(ii) The number of heat exchange systems at the plant site found to be leaking.

(iii) For each monitoring location where the total strippable hydrocarbon concentration was determined to be equal to or greater than the applicable leak definitions specified in §63.654(c)(6), identification of the monitoring location (e.g., unique monitoring location or heat exchange system ID number), the measured total strippable hydrocarbon concentration, the date the leak was first identified, and, if applicable, the date the source of the leak was identified;

(iv) For leaks that were repaired during the reporting period (including delayed repairs), identification of the monitoring location associated with
the repaired leak, the total strippable hydrocarbon concentration measured during re-monitoring to verify repair, and the re-monitoring date (i.e., the effective date of repair); and

(v) For each delayed repair, identification of the monitoring location associated with the leak for which repair is delayed, the date when the delay of repair began, the date the repair is expected to be completed (if the leak is not repaired during the reporting period), the total strippable hydrocarbon concentration and date of each monitoring event conducted on the delayed repair during the reporting period, and an estimate of the potential strippable hydrocarbon emissions over the reporting period associated with the delayed repair.

(h) Other reports shall be submitted as specified in subpart A of this part and as follows:

(1) Reports of startup, shutdown, and malfunction required by §63.10(d)(5). Records and reports of startup, shutdown, and malfunction are not required if they pertain solely to Group 2 emission points, as defined in §63.641, that are not included in an emissions average. For purposes of this paragraph, startup and shutdown shall have the meaning defined in §63.641, and malfunction shall have the meaning defined in §63.2; and

(2) For storage vessels, notifications of inspections as specified in paragraphs (h)(2)(i) and (h)(2)(ii) of this section;

(i) In order to afford the Administrator the opportunity to have an observer present, the owner or operator shall notify the Administrator of the refilling of each Group 1 storage vessel that has been emptied and degassed.

(A) Except as provided in paragraphs (h)(2)(i)(B) and (C) of this section, the owner or operator shall notify the Administrator in writing at least 30 calendar days prior to filling or refilling of each storage vessel with organic HAP’s to afford the Administrator the opportunity to inspect the storage vessel prior to refilling.

(B) Except as provided in paragraph (h)(2)(i)(C) of this section, if the internal inspection required by §63.120(a)(2), §63.120(a)(3), or §63.120(b)(10) of subpart G of this part is not planned and the owner or operator could not have known about the inspection 30 calendar days in advance of refilling the vessel with organic HAP’s, the owner or operator shall notify the Administrator at least 7 calendar days prior to refilling of the storage vessel. Notification may be made by telephone and immediately followed by written documentation demonstrating why the inspection was unplanned. This notification, including the written documentation, may also be made in writing and sent so that it is received by the Administrator at least 7 calendar days prior to the refilling.

(C) The State or local permitting authority can waive the notification requirements of paragraphs (h)(2)(i)(A) and/or (h)(2)(i)(B) of this section for all or some storage vessels at petroleum refineries subject to this subpart. The State or local permitting authority may also grant permission to refill storage vessels sooner than 30 days after submitting the notification required by paragraph (h)(2)(i)(A) of this section, or sooner than 7 days after submitting the notification required by paragraph (h)(2)(i)(B) of this section for all storage vessels, or for individual storage vessels on a case-by-case basis.

(ii) In order to afford the Administrator the opportunity to have an observer present, the owner or operator of a storage vessel equipped with an external floating roof shall notify the Administrator of any seal gap measurements. The notification shall be made in writing at least 30 calendar days in advance of any gap measurements required by §63.120(b)(1) or (b)(2) of subpart G of this part. The State or local permitting authority can waive this notification requirement for all or some storage vessels subject to the rule or can allow less than 30 calendar days’ notice.

(3) For owners or operators of sources required to request approval for a nominal control efficiency for use in calculating credits for an emissions average, the information specified in §63.652(h).

(4) The owner or operator who requests approval to monitor a different parameter than those listed in §63.644 for miscellaneous process vents or who is required by §63.653(a)(8) to establish
Environmental Protection Agency § 63.655

a site-specific monitoring parameter for a point in an emissions average shall submit the information specified in paragraphs (h)(4)(i) through (h)(4)(iii) of this section. For new or reconstructed sources, the information shall be submitted with the application for approval of construction or reconstruction required by §63.5(d) of subpart A and for existing sources, and the information shall be submitted no later than 18 months prior to the compliance date. The information may be submitted in an operating permit application, in an amendment to an operating permit application, or in a separate submittal.

(i) A description of the parameter(s) to be monitored to determine whether excess emissions occur and an explanation of the criteria used to select the parameter(s).

(ii) A description of the methods and procedures that will be used to demonstrate that the parameter can be used to determine excess emissions and the schedule for this demonstration. The owner or operator must certify that they will establish a range for the monitored parameter as part of the Notification of Compliance Status report required in paragraphs (e) and (f) of this section.

(iii) The frequency and content of monitoring, recording, and reporting if: monitoring and recording are not continuous; or if periods of excess emissions, as defined in paragraph (g)(6) of this section, will not be identified in Periodic Reports required under paragraphs (e) and (g) of this section. The rationale for the proposed monitoring, recording, and reporting system shall be included.

(5) An owner or operator may request approval to use alternatives to the continuous operating parameter monitoring and recordkeeping provisions listed in paragraph (i) of this section.

(i) Requests shall be submitted with the Application for Approval of Construction or Reconstruction for new sources and no later than 18 months prior to the compliance date for existing sources. The information may be submitted in an operating permit application, in an amendment to an operating permit application, or in a separate submittal. Requests shall contain the information specified in paragraphs (h)(5)(iii) through (h)(5)(iv) of this section, as applicable.

(ii) The provisions in §63.8(f)(5)(i) of subpart A of this part shall govern the review and approval of requests.

(iii) An owner or operator may request approval to use an automated data compression recording system that does not record monitored operating parameter values at a set frequency (for example, once every hour) but records all values that meet set criteria for variation from previously recorded values.

(A) The requested system shall be designed to:

(1) Measure the operating parameter value at least once every hour.

(2) Record at least 24 values each day during periods of operation.

(3) Record the date and time when monitors are turned off or on.

(4) Recognize unchanging data that may indicate the monitor is not functioning properly, alert the operator, and record the incident.

(5) Compute daily average values of the monitored operating parameter based on recorded data.

(B) The request shall contain a description of the monitoring system and data compression recording system including the criteria used to determine which monitored values are recorded and retained, the method for calculating daily averages, and a demonstration that the system meets all criteria of paragraph (h)(5)(iii)(A) of this section.

(iv) An owner or operator may request approval to use other alternative monitoring systems according to the procedures specified in §63.8(f) of subpart A of this part.

(6) The owner or operator shall submit the information specified in paragraphs (h)(6)(i) through (h)(6)(iii) of this section, as applicable. For existing sources, this information shall be submitted in the Initial Notification of Compliance Status report. For a new source, the information shall be submitted with the application for approval of construction or reconstruction required by §63.5(d) of subpart A of this part. The information may be submitted in an operating permit application, in an amendment to an operating permit application, or in a separate submittal.
(i) The determination of applicability of this subpart to petroleum refining process units that are designed and operated as flexible operation units.

(ii) The determination of applicability of this subpart to any storage vessel for which use varies from year to year.

(iii) The determination of applicability of this subpart to any distillation unit for which use varies from year to year.

(7) The owner or operator of a heat exchange system at an existing source must notify the Administrator at least 30 calendar days prior to changing from one of the monitoring options specified in §63.654(c)(4) to the other.

(i) Recordkeeping. (1) Each owner or operator subject to the storage vessel provisions in §63.646 shall keep the records specified in §63.123 of subpart G of this part except as specified in paragraphs (i)(1)(i) through (i)(1)(iv) of this section.

(i) Records related to gaskets, slotted membranes, and sleeve seals are not required for storage vessels within existing sources.

(ii) All references to §63.122 in §63.123 of subpart G of this part shall be replaced with §63.655(e).

(iii) All references to §63.150 in §63.123 of subpart G of this part shall be replaced with §63.652.

(iv) If a storage vessel is determined to be Group 2 because the weight percent total organic HAP of the stored liquid is less than or equal to 4 percent for existing sources or 2 percent for new sources, a record of any data, assumptions, and procedures used to make this determination shall be retained.

(2) Each owner or operator required to report the results of performance tests under paragraphs (f) and (g)(7) of this section shall retain a record of all reported results as well as a complete test report, as described in paragraph (f)(2)(ii) of this section for each emission point tested.

(3) Each owner or operator required to continuously monitor operating parameters under §63.644 for miscellaneous process vents or under §§63.652 and 63.653 for emission points in an emissions average shall keep the records specified in paragraphs (i)(3)(i) through (i)(3)(v) of this section unless an alternative recordkeeping system has been requested and approved under paragraph (h) of this section.

(i) The monitoring system shall measure data values at least once every hour.

(ii) The owner or operator shall record either:

(A) Each measured data value; or

(B) Block average values for 1 hour or shorter periods calculated from all measured data values during each period. If values are measured more frequently than once per minute, a single value for each minute may be used to calculate the hourly (or shorter period) block average instead of all measured values.

(iii) Daily average values of each continuously monitored parameter shall be calculated for each operating day and retained for 5 years except as specified in paragraph (i)(3)(iv) of this section.

(A) The daily average shall be calculated as the average of all values for a monitored parameter recorded during the operating day. The average shall cover a 24-hour period if operation is continuous, or the number of hours of operation per day if operation is not continuous.

(B) The operating day shall be the period defined in the Notification of Compliance Status report. It may be from midnight to midnight or another daily period.

(iv) If all recorded values for a monitored parameter during an operating day are within the range established in the Notification of Compliance Status report, the owner or operator may record that all values were within the range and retain this record for 5 years rather than calculating and recording a daily average for that day. For these days, the records required in paragraph (i)(3)(ii) of this section shall also be retained for 5 years.

(v) Monitoring data recorded during periods of monitoring system breakdowns, repairs, calibration checks, and zero (low-level) and high-level adjustments shall not be included in any average computed under this subpart. Records shall be kept of the times and
durations of all such periods and any other periods during process or control device operation when monitors are not operating.

(4) The owner or operator of a heat exchange system subject to this subpart shall comply with the recordkeeping requirements in paragraphs (i)(4)(i) through (v) of this section and retain these records for 5 years.

(i) Identification of all petroleum refinery process unit heat exchangers at the facility and the average annual HAP concentration of process fluid or intervening cooling fluid estimated when developing the Notification of Compliance Status report.

(ii) Identification of all heat exchange systems subject to the monitoring requirements in §63.654 and identification of all heat exchange systems that are exempt from the monitoring requirements according to the provisions in §63.654(b). For each heat exchange system that is subject to the monitoring requirements in §63.654, this must include identification of all heat exchangers within each heat exchange system, and, for closed-loop recirculation systems, the cooling tower included in each heat exchange system.

(iii) Results of the following monitoring data for each required monitoring event:
 (A) Date/time of event.
 (B) Barometric pressure.
 (C) El Paso air stripping apparatus water flow milliliter/minute (ml/min) and air flow, ml/min, and air temperature, “Celsius.
 (D) FID reading (ppmv).
 (E) Length of sampling period.
 (F) Sample volume.

(iv) The date when a leak was identified, the date the source of the leak was identified, and the date when the heat exchanger was repaired or taken out of service.

(v) If a repair is delayed, the reason for the delay, the schedule for completing the repair, the heat exchange exit line flow or cooling tower return line average flow rate at the monitoring location (in gallons/minute), and the estimate of potential strippable hydrocarbon emissions for each required monitoring interval during the delay of repair.

(5) All other information required to be reported under paragraphs (a) through (h) of this section shall be retained for 5 years.

§63.656 Implementation and enforcement.

(a) This subpart can be implemented and enforced by the U.S. EPA, or a delegated authority such as the applicable State, local, or Tribal agency. If the U.S. EPA Administrator has delegated authority to a State, local, or Tribal agency, then that agency, in addition to the U.S. EPA, has the authority to implement and enforce this subpart. Contact the applicable U.S. EPA Regional Office to find out if implementation and enforcement of this subpart is delegated to a State, local, or Tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or Tribal agency under part E of this part, the authorities contained in paragraph (c) of this section are retained by the Administrator of U.S. EPA and cannot be transferred to the State, local, or Tribal agency.

(c) The authorities that cannot be delegated to State, local, or Tribal agencies are as specified in paragraphs (c)(1) through (4) of this section:

(1) Approval of alternatives to the requirements in §§63.640, 63.642(g) through (l), 63.643, 63.646 through 63.652, and 63.654. Where these standards reference another subpart, the cited provisions will be delegated according to the delegation provisions of the referenced subpart. Where these standards
§§ 63.657–63.679

40 CFR Ch. I (7–1–15 Edition)

reference another subpart and modify the requirements, the requirements shall be modified as described in this subpart. Delegation of the modified requirements will also occur according to the delegation provisions of the referenced subpart.

(2) Approval of major alternatives to test methods under § 63.7(e)(2)(ii) and (f), as defined in § 63.90, and as required in this subpart.

(3) Approval of major alternatives to monitoring under § 63.9(f), as defined in § 63.90, and as required in this subpart.

(4) Approval of major alternatives to recordkeeping and reporting under § 63.10(f), as defined in § 63.90, and as required in this subpart.

§§ 63.657–63.679 [Reserved]

APPENDIX TO SUBPART CC OF PART 63—

TABLES

TABLE 1—HAZARDOUS AIR POLLUTANTS—Continued

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>CAS No. *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumene</td>
<td>98828</td>
</tr>
<tr>
<td>Dibromoethane (1,2)</td>
<td>106934</td>
</tr>
<tr>
<td>Dichloroethane (1,2)</td>
<td>107062</td>
</tr>
<tr>
<td>Diethanolamine</td>
<td>111422</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>100414</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>107211</td>
</tr>
<tr>
<td>Hexane</td>
<td>115043</td>
</tr>
<tr>
<td>Methanol</td>
<td>67561</td>
</tr>
<tr>
<td>Methyl isobutyl ketone (hexane)</td>
<td>108101</td>
</tr>
<tr>
<td>Methyl tert butyl ether</td>
<td>1634044</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91203</td>
</tr>
<tr>
<td>Phenol</td>
<td>108962</td>
</tr>
<tr>
<td>Toluene</td>
<td>108883</td>
</tr>
<tr>
<td>Trimethylpentane (2,2,4)</td>
<td>540841</td>
</tr>
<tr>
<td>Xylene (mixed isomers b)</td>
<td>1330207</td>
</tr>
<tr>
<td>xylene (m-)</td>
<td>108383</td>
</tr>
<tr>
<td>xylene (o-)</td>
<td>95476</td>
</tr>
<tr>
<td>xylene (p-)</td>
<td>106423</td>
</tr>
</tbody>
</table>

*CAS number = Chemical Abstract Service registry number assigned to specific compounds, isomers, or mixtures of compounds.

Isomer means all structural arrangements for the same number of atoms of each element and does not mean salts, esters, or derivatives.

TABLE 2—LEAK DEFINITIONS FOR PUMPS AND VALVES

<table>
<thead>
<tr>
<th>Standard *</th>
<th>Phase</th>
<th>Leak definition (parts per million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>§63.163 (pumps)</td>
<td>I</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>5,000</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>2,000</td>
</tr>
</tbody>
</table>

§63.168 (valves)	I	10,000
	II	1,000
	III	1,000

*Subpart H of this part.

TABLE 3—EQUIPMENT LEAK RECORDKEEPING AND REPORTING REQUIREMENTS FOR SOURCES COMPLYING WITH § 63.648 OF SUBPART CC BY COMPLIANCE WITH SUBPART H OF THIS PART * A

<table>
<thead>
<tr>
<th>Reference (section of subpart H of this part)</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.181(a)</td>
<td>Recordkeeping system requirements</td>
<td>Except for §§63.181(b)(2)(ii) and 63.181(b)(9).</td>
</tr>
<tr>
<td>63.181(b)</td>
<td>Records required for process unit equipment</td>
<td>Except for §§63.181(b)(2)(ii) and 63.181(b)(9).</td>
</tr>
<tr>
<td>63.181(c)</td>
<td>Visual inspection documentation</td>
<td>Except for §§63.181(b)(2)(ii) and 63.181(b)(9).</td>
</tr>
<tr>
<td>63.181(d)</td>
<td>Leak detection record requirements</td>
<td>Except for §§63.181(b)(2)(ii) and 63.181(b)(9).</td>
</tr>
<tr>
<td>63.181(e)</td>
<td>Compliance requirements for pressure tests for batch process equipment trains.</td>
<td>Except for §§63.181(b)(2)(ii) and 63.181(b)(9).</td>
</tr>
<tr>
<td>63.181(f)</td>
<td>Compressor compliance test records.</td>
<td>This subsection does not apply to subpart CC.</td>
</tr>
<tr>
<td>63.181(g)</td>
<td>Closed-vent systems and control device record requirements.</td>
<td>This subsection does not apply to subpart CC.</td>
</tr>
<tr>
<td>63.181(h)</td>
<td>Process unit quality improvement program records.</td>
<td>This subsection does not apply to subpart CC.</td>
</tr>
<tr>
<td>63.181(i)</td>
<td>Heavy liquid service determination record.</td>
<td>This subsection does not apply to subpart CC.</td>
</tr>
<tr>
<td>63.181(j)</td>
<td>Equipment identification record.</td>
<td>This subsection does not apply to subpart CC.</td>
</tr>
<tr>
<td>63.181(k)</td>
<td>Enclosed-vented process unit emission limitation record requirements.</td>
<td>This subsection does not apply to subpart CC.</td>
</tr>
<tr>
<td>63.182(a)</td>
<td>Reports.</td>
<td>Not required.</td>
</tr>
<tr>
<td>63.182(b)</td>
<td>Initial notification report requirements.</td>
<td>Not required.</td>
</tr>
</tbody>
</table>
TABLE 3—EQUIPMENT LEAK RECORDKEEPING AND REPORTING REQUIREMENTS FOR SOURCES COMPLYING WITH §63.648 OF SUBPART CC BY COMPLIANCE WITH SUBPART H OF THIS PART A—Continued

<table>
<thead>
<tr>
<th>Reference (section of subpart H of this part)</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.182(c)</td>
<td>Notification of compliance status report</td>
<td>Except in §63.182(c); change “within 90 days of the compliance dates” to “within 150 days of the compliance dates”; except in §§63.182(c)(2) and (c)(4).</td>
</tr>
<tr>
<td>63.182(d)</td>
<td>Periodic report</td>
<td>Except for §§63.182(d)(2)(vii), (d)(2)(viii), and (d)(3).</td>
</tr>
</tbody>
</table>

This table does not include all the requirements delineated under the referenced sections. See referenced sections for specific requirements.

TABLE 4—GASOLINE DISTRIBUTION EMISSION POINT RECORDKEEPING AND REPORTING REQUIREMENTS A

<table>
<thead>
<tr>
<th>Reference (section of subpart R)</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.428(b) or (k)</td>
<td>Records of test results for each gasoline cargo tank loaded at the facility.</td>
<td></td>
</tr>
<tr>
<td>63.428(c)</td>
<td>Continuous monitoring data recordkeeping requirements.</td>
<td></td>
</tr>
<tr>
<td>63.428(g)(1)</td>
<td>Semiannual report loading rack information</td>
<td>Required to be submitted with the Periodic Report required under 40 CFR part 63, subpart CC.</td>
</tr>
<tr>
<td>63.428(h)(1) through (h)(3)</td>
<td>Excess emissions report loading rack information</td>
<td>Required to be submitted with the Periodic Report required under 40 CFR part 63, subpart CC.</td>
</tr>
</tbody>
</table>

This table does not include all the requirements delineated under the referenced sections. See referenced sections for specific requirements.

TABLE 5—MARINE VESSEL LOADING OPERATIONS RECORDKEEPING AND REPORTING REQUIREMENTS A

<table>
<thead>
<tr>
<th>Reference (section of subpart Y)</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.562(e)(2)</td>
<td>Operation and maintenance plan for control equipment and monitoring equipment.</td>
<td>The information required under this paragraph is to be submitted with the Notification of Compliance Status report required under 40 CFR part 63, subpart CC.</td>
</tr>
<tr>
<td>63.565(a)</td>
<td>Performance test/site test plan</td>
<td></td>
</tr>
<tr>
<td>63.565(b)</td>
<td>Performance test data requirements.</td>
<td></td>
</tr>
<tr>
<td>63.567(a)</td>
<td>General Provisions (subpart A) applicability.</td>
<td></td>
</tr>
<tr>
<td>63.567(c)</td>
<td>Request for extension of compliance.</td>
<td></td>
</tr>
<tr>
<td>63.567(e)</td>
<td>Summary report and excess emissions and monitoring system performance report requirements.</td>
<td>The information required under this paragraph is to be submitted with the Periodic Report required under 40 CFR part 63, subpart CC.</td>
</tr>
<tr>
<td>63.567(f)</td>
<td>Vapor collection system engineering report.</td>
<td></td>
</tr>
<tr>
<td>63.567(g)</td>
<td>Vent system valve bypass recordkeeping requirements.</td>
<td></td>
</tr>
<tr>
<td>63.567(h)</td>
<td>Marine vessel vapor-tightness documentation.</td>
<td></td>
</tr>
<tr>
<td>63.567(i)</td>
<td>Documentation file maintenance.</td>
<td></td>
</tr>
<tr>
<td>63.567(j)</td>
<td>Emission estimation reporting and recordkeeping procedures.</td>
<td></td>
</tr>
</tbody>
</table>

This table does not include all the requirements delineated under the referenced sections. See referenced sections for specific requirements.

TABLE 6—GENERAL PROVISIONS APPLICABILITY TO SUBPART CC A

<table>
<thead>
<tr>
<th>Reference</th>
<th>Applies to subpart CC</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.1(a)(1)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.1(a)(2)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.1(a)(3)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.1(a)(4)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.1(a)(5)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>

93
<table>
<thead>
<tr>
<th>Reference</th>
<th>Applies to subpart CC</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.1(a)(6)</td>
<td>Yes</td>
<td>Except the correct mail drop (MD) number is C404–04.</td>
</tr>
<tr>
<td>63.1(a)(7)–63.1(a)(9)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
<tr>
<td>63.1(a)(10)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.1(a)(11)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.1(a)(12)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.1(b)(1)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.1(b)(2)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>63.1(b)(3)</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>63.1(c)(1)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.1(c)(2)</td>
<td>Yes.</td>
<td>Area sources are not subject to subpart CC.</td>
</tr>
<tr>
<td>63.1(c)(3)–63.1(c)(4)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
<tr>
<td>63.1(c)(5)</td>
<td>Yes</td>
<td>Except that sources are not required to submit notifications overridden by this table.</td>
</tr>
<tr>
<td>63.1(d)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
<tr>
<td>63.1(e)</td>
<td>No</td>
<td>No CAA section 112(j) standard applies to the affected sources under subpart CC.</td>
</tr>
<tr>
<td>63.2</td>
<td>Yes</td>
<td>§63.641 of subpart CC specifies that if the same term is defined in subparts A and CC, it shall have the meaning given in subpart CC.</td>
</tr>
<tr>
<td>63.3</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.4(a)(1)–63.4(a)(2)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.4(a)(3)–63.4(a)(5)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
<tr>
<td>63.4(b)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.4(c)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.5(b)(1)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.5(b)(2)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>63.5(b)(3)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.5(b)(4)</td>
<td>Yes</td>
<td>Except the cross-reference to §63.9(b) is changed to §63.9(b)(4) and (5). Subpart CC overrides §63.9(b)(2).</td>
</tr>
<tr>
<td>63.5(b)(5)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
<tr>
<td>63.5(b)(6)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.5(c)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
<tr>
<td>63.5(d)(1)(i)</td>
<td>Yes</td>
<td>Except that the application shall be submitted as soon as practicable before startup, but no later than 90 days after the promulgation date of subpart CC if the construction or reconstruction had commenced and initial startup had not occurred before the promulgation of subpart CC.</td>
</tr>
<tr>
<td>63.5(d)(1)(ii)</td>
<td>Yes</td>
<td>Except that for affected sources subject to subpart CC, emission estimates specified in §63.6(d)(1)(i)(H) are not required.</td>
</tr>
<tr>
<td>63.5(d)(1)(iii)</td>
<td>No</td>
<td>Subpart CC §63.655(d) specifies Notification of Compliance Status report requirements.</td>
</tr>
<tr>
<td>63.5(d)(2)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.5(d)(3)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.5(d)(4)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.5(e)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.5(f)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.6(a)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.6(b)(1)–63.6(b)(5)</td>
<td>No</td>
<td>Subpart CC specifies compliance dates and notifications for sources subject to subpart CC.</td>
</tr>
<tr>
<td>63.6(b)(6)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
<tr>
<td>63.6(b)(7)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.6(c)(1)–63.6(c)(2)</td>
<td>No</td>
<td>§63.640 of subpart CC specifies the compliance date.</td>
</tr>
<tr>
<td>63.6(c)(3)–63.6(c)(4)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
<tr>
<td>63.6(c)(5)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.6(d)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
<tr>
<td>63.6(e)(1)</td>
<td>Yes</td>
<td>Except the startup, shutdown, or malfunction plan does not apply to Group 2 emission points that are not part of an emissions averaging group.</td>
</tr>
<tr>
<td>63.6(e)(2)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
<tr>
<td>63.6(e)(3)(i)</td>
<td>Yes</td>
<td>Except the startup, shutdown, or malfunction plan does not apply to Group 2 emission points that are not part of an emissions averaging group.</td>
</tr>
<tr>
<td>63.6(e)(3)(ii)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>
TABLE 6—GENERAL PROVISIONS APPLICABILITY TO SUBPART CC—Continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Applies to subpart CC</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.6(e)(3)(i)–63.6(e)(3)(iv)</td>
<td>Yes</td>
<td>Except the reports specified in §63.6(e)(3)(iv) do not need to be reported within 2 and 7 days of commencing and completing the action, respectively, but must be included in the next periodic report.</td>
</tr>
<tr>
<td>63.6(f)(1)</td>
<td>Yes</td>
<td>Except for the heat exchange system standards, which apply at all times.</td>
</tr>
<tr>
<td>63.6(f)(2) and (3)</td>
<td>Yes</td>
<td>Except the phrase “as specified in §63.7(c)” in §63.6(f)(2)(ii)(D) does not apply because subpart CC does not require a site-specific test plan.</td>
</tr>
<tr>
<td>63.6(g)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.6(h)(1) and 63.6(h)(2)</td>
<td>No</td>
<td>Reserved.</td>
</tr>
<tr>
<td>63.6(h)(3)</td>
<td>No</td>
<td>Notification of visible emission test not required in subpart CC.</td>
</tr>
<tr>
<td>63.6(h)(4)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>63.6(h)(5)</td>
<td>Yes</td>
<td>Visible emission requirements and timing is specified in §63.645(i) of subpart CC.</td>
</tr>
<tr>
<td>63.6(h)(6)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.6(h)(7)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.6(h)(8)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.6(h)(9)</td>
<td>No</td>
<td>Subpart CC does not require opacity standards.</td>
</tr>
<tr>
<td>63.6(i)</td>
<td>Yes</td>
<td>Except for §63.6(i)(15), which is reserved.</td>
</tr>
<tr>
<td>63.6(j)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.7(a)(1)</td>
<td>No</td>
<td>Subpart CC requires notification of performance test at least 30 days (rather than 60 days) prior to the performance test.</td>
</tr>
<tr>
<td>63.7(a)(2)</td>
<td>Yes</td>
<td>Subpart CC does not require a site-specific test plan.</td>
</tr>
<tr>
<td>63.7(a)(3)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.7(a)(4)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.7(b)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>63.7(c)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>63.7(d)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.7(e)(1)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.7(e)(2)–63.7(e)(4)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.7(f)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>63.7(g)</td>
<td>No</td>
<td>Performance test reporting specified in §63.655(f).</td>
</tr>
<tr>
<td>63.7(h)(1)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.7(h)(2)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.7(h)(3)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.7(h)(4)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.7(h)(4)(i)</td>
<td>No</td>
<td>Site-specific test plans are not required in subpart CC.</td>
</tr>
<tr>
<td>63.7(h)(4)(ii) and (iv)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.7(h)(5)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.8(a)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.8(b)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.8(c)(1)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.8(c)(2)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.8(c)(3)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>63.8(c)(4)</td>
<td>Yes</td>
<td>Except subpart CC specifies the monitoring cycle frequency specified in §63.8(c)(4)(ii) is “once every hour” rather than “for each successive 15-minute period.”</td>
</tr>
<tr>
<td>63.8(c)(5)–63.8(c)(8)</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 6—GENERAL PROVISIONS APPLICABILITY TO SUBPART CC—Continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Applies to subpart CC</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>§63.8(d)</td>
<td>No.</td>
<td>Subpart CC does not require performance evaluations; however, this shall not abrogate the Administrator’s authority to require performance evaluation under section 114 of the Clean Air Act.</td>
</tr>
<tr>
<td>§63.8(e)</td>
<td>No.</td>
<td>Timeframe for submitting request is specified in §63.655(h)(5)(i) of subpart CC.</td>
</tr>
<tr>
<td>§63.10(b)(1)</td>
<td>Yes.</td>
<td>Timeframe for submitting request is specified in §63.655(h)(5)(i) of subpart CC.</td>
</tr>
<tr>
<td>§63.9(a)</td>
<td>Yes.</td>
<td>Except that the owner or operator does not need to send a copy of each notification submitted to the Regional Office of the EPA as stated in §63.9(a)(4)(ii).</td>
</tr>
<tr>
<td>§63.9(b)(1)</td>
<td>Yes.</td>
<td>Except the notification of compliance status report specified in §63.655(f) of subpart CC may also serve as the initial compliance notification required in §63.9(b)(1)(ii).</td>
</tr>
<tr>
<td>§63.9(b)(2)</td>
<td>No.</td>
<td>A separate Initial Notification report is not required under subpart CC.</td>
</tr>
<tr>
<td>§63.9(b)(3)</td>
<td>No.</td>
<td>Reserved.</td>
</tr>
<tr>
<td>§63.9(b)(4)</td>
<td>Yes.</td>
<td>Except for subparagraphs §63.9(b)(4)(ii) through (iv), which are reserved.</td>
</tr>
<tr>
<td>§63.9(b)(5)</td>
<td>Yes.</td>
<td>Subpart CC requires notification of performance test at least 30 days (rather than 60 days) prior to the performance test and does not require a site-specific test plan.</td>
</tr>
<tr>
<td>§63.9(c)</td>
<td>Yes.</td>
<td>Subpart CC §63.655(f) specifies Notification of Compliance Status report requirements.</td>
</tr>
<tr>
<td>§63.9(d)</td>
<td>No.</td>
<td>§63.655(i) of subpart CC specifies record retention requirements.</td>
</tr>
<tr>
<td>§63.9(f)</td>
<td>No.</td>
<td>Subpart CC §63.655(f) specifies Notification of Compliance Status report requirements.</td>
</tr>
<tr>
<td>§63.9(h)</td>
<td>No.</td>
<td>Subpart CC §63.655(f) specifies Notification of Compliance Status report requirements.</td>
</tr>
<tr>
<td>§63.9(i)</td>
<td>Yes.</td>
<td>Subpart CC §63.655(f) specifies Notification of Compliance Status report requirements.</td>
</tr>
<tr>
<td>§63.9(j)</td>
<td>No.</td>
<td>Subpart CC §63.655(f) specifies Notification of Compliance Status report requirements.</td>
</tr>
<tr>
<td>§63.10(a)</td>
<td>Yes.</td>
<td>Subpart CC §63.655(f) specifies Notification of Compliance Status report requirements.</td>
</tr>
<tr>
<td>§63.10(b)(1)</td>
<td>No.</td>
<td>§63.655(i) of subpart CC specifies record retention requirements.</td>
</tr>
<tr>
<td>§63.10(b)(2)(iii)</td>
<td>Yes.</td>
<td>§63.655(i) of subpart CC specifies record retention requirements.</td>
</tr>
<tr>
<td>§63.10(b)(2)(iv)</td>
<td>Yes.</td>
<td>§63.655(i) of subpart CC specifies record retention requirements.</td>
</tr>
<tr>
<td>§63.10(c)(1)–§63.10(c)(6)</td>
<td>No.</td>
<td>§63.655(f) of subpart CC specifies performance test reporting.</td>
</tr>
</tbody>
</table>
TABLE 6—GENERAL PROVISIONS APPLICABILITY TO SUBPART CC A—Continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Applies to subpart CC</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.10(d)(3)</td>
<td>No</td>
<td>Results of visible emissions test are included in Compliance Status Report as specified in §63.655(f).</td>
</tr>
<tr>
<td>63.10(d)(4)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.10(d)(5)(i)</td>
<td>Yes*</td>
<td>Except that reports required by §63.10(d)(5)(i) may be submitted at the same time as periodic reports specified in §63.655(g) of subpart CC.</td>
</tr>
<tr>
<td>63.10(d)(5)(ii)</td>
<td>Yes</td>
<td>Except that actions taken during a startup, shutdown, or malfunction that are not consistent with the startup, shutdown, and malfunction plan and that cause the source to exceed any applicable emission limitation do not need to be reported within 2 and 7 days of commencing and completing the action, respectively, but must be included in the next periodic report.</td>
</tr>
<tr>
<td>63.10(e)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>63.10(f)</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>63.11–63.16</td>
<td>Yes.</td>
<td></td>
</tr>
</tbody>
</table>

*Wherever subpart A specifies “postmark” dates, submittals may be sent by methods other than the U.S. Mail (e.g., by fax or courier). Submittals shall be sent by the specified dates, but a postmark is not required.

The plan, and any records or reports of startup, shutdown, and malfunction do not apply to Group 2 emission points that are not part of an emissions averaging group.

TABLE 7—FRACTION MEASURED (F_M), FRACTION EMITTED (F_E), AND FRACTION REMOVED (F_R) FOR HAP COMPOUNDS IN WASTEWATER STREAMS

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>CAS No.*</th>
<th>F_M</th>
<th>F_E</th>
<th>F_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>71432</td>
<td>1.00</td>
<td>0.80</td>
<td>0.99</td>
</tr>
<tr>
<td>Diphenyl</td>
<td>92524</td>
<td>0.86</td>
<td>0.45</td>
<td>0.99</td>
</tr>
<tr>
<td>Butadiene (1,3)</td>
<td>106990</td>
<td>1.00</td>
<td>0.98</td>
<td>0.99</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>75150</td>
<td>1.00</td>
<td>0.92</td>
<td>0.99</td>
</tr>
<tr>
<td>Cumene</td>
<td>98828</td>
<td>1.00</td>
<td>0.88</td>
<td>0.99</td>
</tr>
<tr>
<td>Dichloroethane (1,2) (Ethylene dichloride)</td>
<td>107082</td>
<td>1.00</td>
<td>0.64</td>
<td>0.99</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>100414</td>
<td>1.00</td>
<td>0.83</td>
<td>0.99</td>
</tr>
<tr>
<td>Hexane</td>
<td>110543</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>Methanol</td>
<td>67561</td>
<td>0.85</td>
<td>0.17</td>
<td>0.31</td>
</tr>
<tr>
<td>Methyl isobutyl ketone (hexone)</td>
<td>108101</td>
<td>0.98</td>
<td>0.53</td>
<td>0.99</td>
</tr>
<tr>
<td>Methyl tert butyl ether</td>
<td>1634044</td>
<td>1.00</td>
<td>0.57</td>
<td>0.99</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91203</td>
<td>0.99</td>
<td>0.51</td>
<td>0.99</td>
</tr>
<tr>
<td>Trimethylpentane (2,2,4)</td>
<td>540841</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>xylene (m)</td>
<td>108383</td>
<td>1.00</td>
<td>0.82</td>
<td>0.99</td>
</tr>
<tr>
<td>xylene (p)</td>
<td>95476</td>
<td>1.00</td>
<td>0.79</td>
<td>0.99</td>
</tr>
<tr>
<td>xylene (p)</td>
<td>106423</td>
<td>1.00</td>
<td>0.82</td>
<td>0.99</td>
</tr>
</tbody>
</table>

*CAS numbers refer to the Chemical Abstracts Service registry number assigned to specific compounds, isomers, or mixtures of compounds.

TABLE 8—VALVE MONITORING FREQUENCY FOR PHASE III

<table>
<thead>
<tr>
<th>Performance level</th>
<th>Valve monitoring frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaking valves a (%)</td>
<td>Monthly or QIP.*<sup>b</sup></td>
</tr>
<tr>
<td>≥2</td>
<td>Quarterly.</td>
</tr>
<tr>
<td><2</td>
<td>Annual.</td>
</tr>
</tbody>
</table>

*Percent leaking valves is calculated as a rolling average of two consecutive monitoring periods.

*QIP=Quality improvement program. Specified in §63.175 of subpart H of this part.

TABLE 9—VALVE MONITORING FREQUENCY FOR ALTERNATIVE

<table>
<thead>
<tr>
<th>Performance level</th>
<th>Valve monitoring frequency under §63.649 alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaking valves a (%)</td>
<td>Monthly or QIP.*<sup>b</sup></td>
</tr>
<tr>
<td>≥5</td>
<td>Quarterly.</td>
</tr>
<tr>
<td><5</td>
<td>Semiannual.</td>
</tr>
</tbody>
</table>

*Percent leaking valves is calculated as a rolling average of two consecutive monitoring periods.

*QIP=Quality improvement program. Specified in §63.175 of subpart H of this part.
TABLE 9—VALVE MONITORING FREQUENCY FOR ALTERNATIVE—Continued

<table>
<thead>
<tr>
<th>Performance level</th>
<th>Valve monitoring frequency under §63.649 alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><3 %</td>
<td>Annual.</td>
</tr>
</tbody>
</table>

*Percent leaking valves is calculated as a rolling average of two consecutive monitoring periods.

QIP=Quality improvement program. Specified in §63.175 of subpart H of this part.

TABLE 10—MISCELLANEOUS PROCESS VENTS—MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS FOR COMPLYING WITH 98 WEIGHT-PERCENT REDUCTION OF TOTAL ORGANIC HAP EMISSIONS OR A LIMIT OF 20 PARTS PER MILLION BY VOLUME

<table>
<thead>
<tr>
<th>Control device</th>
<th>Parameters to be monitored</th>
<th>Recordkeeping and reporting requirements for monitored parameters</th>
</tr>
</thead>
</table>
| Thermal incinerator | Firebox temperature b (63.644(a)(1)(i)). | 1. Continuous records c.
2. Record and report the firebox temperature averaged over the full period of the performance test—NCS.
3. Record the daily average firebox temperature for each operating day.
4. Report all daily average temperatures that are outside the range established in the NCS or operating permit and all operating days when insufficient monitoring data are collected f—PR g. |
| Catalytic incinerator | Temperature upstream and downstream of the catalyst bed (63.644(a)(1)(ii)). | 1. Continuous records c.
2. Record and report the upstream and downstream temperatures and the temperature difference across the catalyst bed averaged over the full period of the performance test—NCS.
3. Record the daily average upstream temperature and temperature difference across the catalyst bed for each operating day.
4. Report all daily average upstream temperatures that are outside the range established in the NCS or operating permit—PR g.
5. Report all daily average temperature differences across the catalyst bed that are outside the range established in the NCS or operating permit—PR g.
6. Report all operating days when insufficient monitoring data are collected f. |
| Boiler or process heater with a design heat capacity less than 44 megawatts where the vent stream is not introduced into the flame zone h. | Firebox temperature b (63.644(a)(4)). | 1. Continuous records c.
2. Record and report the firebox temperature averaged over the full period of the performance test—NCS.
3. Record the daily average firebox temperature for each operating day.
4. Report all daily average firebox temperatures that are outside the range established in the NCS or operating permit and all operating days when insufficient monitoring data are collected f—PR g. |
| Flare | Presence of a flame at the pilot light (63.644(a)(2)). | 1. Hourly records of whether the monitor was continuously operating and whether a pilot flame was continuously present during each hour.
2. Record and report the presence of a flame at the pilot light over the full period of the compliance determination—NCS.
3. Record the times and durations of all periods when all pilot flames for a flare are absent or the monitor is not operating.
4. Report the times and durations of all periods when all pilot flames for a flare are absent or the monitor is not operating. |
| All control devices | Presence of flow diverted to the atmosphere from the control device (63.644(c)(1)). | 1. Hourly records of whether the flow indicator was operating and whether flow was detected at any time during each hour. |
TABLE 10—MISCELLANEOUS PROCESS VENTS—MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS FOR COMPLYING WITH 98 WEIGHT-PERCENT REDUCTION OF TOTAL ORGANIC HAP EMISSIONS OR A LIMIT OF 20 PARTS PER MILLION BY VOLUME—Continued

<table>
<thead>
<tr>
<th>Control device</th>
<th>Parameters to be monitored</th>
<th>Recordkeeping and reporting requirements for monitored parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2. Record and report the times and durations of all periods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>when the vent stream is diverted through a bypass line or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the monitor is not operating—PRg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Records that monthly inspections were performed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Record and report all monthly inspections that show the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valves are not closed or the seal has been changed—PRg.</td>
</tr>
</tbody>
</table>

* a Regulatory citations are listed in parentheses.
* b Monitor may be installed in the firebox or in the ductwork immediately downstream of the firebox before any substantial heat exchange is encountered.
* c "Continuous records" is defined in §63.641.
* d NCS = Notification of Compliance Status Report described in §63.655.
* e The daily average is the average of all recorded parameter values for the operating day. If all recorded values during an operating day are within the range established in the NCS or operating permit, a statement to this effect can be recorded instead of the daily average.
* f When a period of excess emission is caused by insufficient monitoring data, as described in §63.655(g)(6)(ii)(C) or (D), the duration of the period when monitoring data were not collected shall be included in the Periodic Report.
* g PR = Periodic Reports described in §63.655(g).
* h No monitoring is required for boilers and process heaters with a design heat capacity \(\geq 44 \) megawatts or for boilers and process heaters where all vent streams are introduced into the flame zone. No recordkeeping or reporting associated with monitoring is required for such boilers and process heaters.
* i Process vents that are routed to refinery fuel gas systems are not regulated under this subpart. No monitoring, recordkeeping, or reporting is required for boilers and process heaters that combust refinery fuel gas.

Source: 61 FR 34158, July 1, 1996, unless otherwise noted.

§ 63.680 Applicability and designation of affected sources.

(a) The provisions of this subpart apply to the owner and operator of a plant site for which both of the conditions specified in paragraphs (a)(1) and (a)(2) of this section are applicable. If either one of these conditions does not apply to the plant site, then the owner and operator of the plant site are not subject to the provisions of this subpart.

(1) The plant site is a major source of hazardous air pollutant (HAP) emissions as defined in 40 CFR 63.2.

(2) At the plant site is located one or more of operations that receives off-site material as specified in paragraph (b) of this section and the operation is one of the following waste management operations or recovery operations as specified in paragraphs (a)(2)(i) through (a)(2)(vi) of this section.

(i) A waste management operation that receives off-site material and the operation is regulated as a hazardous waste treatment, storage, and disposal facility (TSDF) under either 40 CFR part 264 or part 265.

(ii) A waste management operation that treats wastewater which is an off-site material and the operation is exempted from regulation as a hazardous waste treatment, storage, and disposal facility under 40 CFR 264.1(g)(6) or 40 CFR 265.1(c)(10).

(iii) A waste management operation that treats wastewater which is an off-site material and the operation meets both of the following conditions:

(A) The operation is subject to regulation under either section 402 or 307(b) of the Clean Water Act but is not owned by a “state” or “municipality” as defined by section 502(3) and 502(4), respectively, of the Clean Water Act; and

(B) The treatment of wastewater received from off-site is the predominant activity performed at the plant site.

(iv) A recovery operation that recycles or reprocesses hazardous waste which is an off-site material and the operation is exempted from regulation...