multiplied by 9.8 m/sec² is applied to the roof of the vehicle’s body structure through a force application plate as specified in S5, Test procedures—
(a) The downward vertical movement at any point on the application plate shall not exceed 130 mm and
(b) Each emergency exit of the vehicle provided in accordance with Standard No. 217 (§571.217) shall be capable of opening as specified in that standard during the full application of the force and after release of the force, except that an emergency exit located in the roof of the vehicle is not required to be capable of being opened during the application of the force. A particular vehicle (i.e., test specimen) need not meet the emergency exit opening requirement after release of force if it is subjected to the emergency exit opening requirements during the full application of the force.
S5. Test procedures. Each vehicle shall be capable of meeting the requirements of S4, when tested in accordance with the procedures set forth below.
S5.1 With any non-rigid chassis-to-body mounts replaced with equivalent rigid mounts, place the vehicle on a rigid horizontal surface so that the vehicle is entirely supported by means of the vehicle frame. If the vehicle is constructed without a frame, place the vehicle on its body sills. Remove any components which extend upward from the vehicle roof.
S5.2 Use a flat, rigid, rectangular force application plate that is measured with respect to the vehicle roof longitudinal and lateral centerlines,
(a) In the case of a vehicle with a GVWR of more than 4,536 kg, 305 mm shorter than the vehicle roof and 914 mm wide; and
(b) In the case of a vehicle with a GVWR of 4,536 kg or less, 127 mm longer and 127 mm wider than the vehicle roof. For purposes of these measurements, the vehicle roof is that structure, seen in the top projected view, that coincides with the passenger and driver compartment of the vehicle.
S5.3 Position the force application plate on the vehicle roof so that its rigid surface is perpendicular to a vertical longitudinal plane and it contacts the roof at not less than two points, and so that, in the top projected view, its longitudinal centerline coincides with the longitudinal centerline of the vehicle, and its front and rear edges are an equal distance inside the front and rear edges of the vehicle roof at the centerline.
S5.4 Apply an evenly-distributed vertical force in the downward direction to the force application plate at any rate not more than 13 mm per second until a force of 2,224 N has been applied.
S5.5 Apply additional vertical force in the downward direction to the force application plate at a rate of not more than 13 mm per second until the force specified in S4, has been applied, and maintain this application of force.
S5.6 Measure the downward movement of any point on the force application plate which occurred during the application of force in accordance with S5.5.
S5.7 To test the capability of the vehicle’s emergency exits to open in accordance with S4.(b)—
(a) In the case of testing under the full application of force, open the emergency exits as specified in S4.(b) while maintaining the force applied in accordance with S5.4 and S5.5; and
(b) In the case of testing after the release of all force, release all downward force applied to the force application plate and open the emergency exits as specified in S4.(b).
S6. Test conditions. The following conditions apply to the requirements specified in S4.
S6.1 Temperature. The ambient temperature is any level between 0 °C and 32 °C.
S6.2 Windows and doors. Vehicle windows, doors, and emergency exits are in the fully-closed position, and latched but not locked.
§571.221 Standard No. 221; School bus body joint strength.
§571.221 Scope. This standard establishes requirements for the strength of the body panel joints in school bus bodies.
§ 571.221

S2. Purpose. The purpose of this standard is to reduce deaths and injuries resulting from the structural collapse of school bus bodies during crashes.

S3. Application. This standard applies to school buses.

S4. Definitions.

Body component means a part of a bus body made from a single piece of homogeneous material or from a single piece of composite material such as plywood.

Body panel means a body component used on the exterior or interior surface to enclose the bus’ occupant space.

Body panel joint means the area of contact or close proximity between the edges of a body panel and another body component, including but not limited to floor panels, and body panels made of composite materials such as plastic or plywood, excluding trim and decorative parts which do not contribute to the strength of the bus body, members such as rub rails which are entirely outside of body panels, doors and windows, ventilation panels, and engine access covers.

Bus body means that portion of a bus that encloses the bus occupant space, including the floor, but excluding the bumpers and chassis frame and any structure forward of the passenger compartment.

Maintenance access panel means a body panel which must be moved or removed to provide access to one or more serviceable component(s).

Passenger compartment means space within the school bus interior that is between a vertical transverse plane located 762 mm in front of the forwardmost passenger seating reference point and including a vertical transverse plane tangent to the rear interior wall of the bus at the vehicle centerline.

Serviceable component means any part of the bus, of either a mechanical or electrical nature, which is explicitly identified by the bus chassis and/or body manufacturer in the owner’s manual or factory service manual as requiring routine maintenance actions at intervals of one year or less. Tubing, wires and harnesses are considered to be serviceable components only at their attachments.

S5 Requirements.

S5.1 Except as provided in S5.2, each body panel joint, including small, curved, and complex joints, when tested in accordance with the procedure of S6, shall hold the body panel to the member to which it is joined when subjected to a force of 60 percent of the tensile strength of the weakest joined body panel determined pursuant to S6.2.

S5.1.1 Body panels attached to each other shall have no unattached segment at the joint longer than 203 mm.

S5.2 Exclusions

S5.2.1 The requirements of S5.1 do not apply to—

(a) Any interior maintenance access panel or joint which lies forward of the passenger compartment.

(b) Any interior maintenance access panel within the passenger compartment that does not exceed 305 mm when measured across any two points diametrically on opposite sides of the opening.

(c) Trim and decorative parts which do not contribute to the strength of the joint, support members such as rub rails which are entirely outside of body panels, doors and windows, ventilation panels, and engine access covers.

S6 Procedure

S6.1 Preparation of the test specimen.

S6.1.1 If a body panel joint is 203 mm or longer, cut a test specimen that consists of any 203 mm segment of the joint, together with a portion of the bus body whose dimensions are those specified in Figure 1, so that the specimen’s centerline is perpendicular to the joint at the midpoint of the joint segment. Where the body panel joint is not fastened continuously, select the segment so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to the strength of a body panel joint, such as rub rails on the outside of body panels or underlying structure attached to joint members, shall remain attached to the test specimen, except that material may be removed from the support members as necessary to clear the gripping areas of the joint members being tested.

S6.1.2 If a joint is less than 203 mm long, cut a test specimen with enough of the adjacent material to permit it to
be held in the tension testing machine specified in S6.3.

S6.1.3 Prepare the test specimen in accordance with the preparation procedures specified in ASTM E8–89 (incorporated by reference, see §571.5).

S6.2 Determination of minimum allowable strength. For purposes of determining the minimum allowable joint strength, determine the tensile strengths of the joined body components as follows:

(a) If the mechanical properties of a joint component material are specified in ASTM E8–89 (incorporated by reference, see §571.5), the lowest value of that material’s thickness and tensile strength per unit of area shown in that source shall be used.

(b) If the mechanical properties of a material are not specified in ASTM E8–89 (incorporated by reference, see §571.5), determine its tensile strength by cutting a sheet specimen from outside the joint region of the bus body in accordance with Figure 1 of ASTM E8–89, and by testing it in accordance with S6.3.

(c) The cross sectional area of material removed to facilitate the installation of fasteners shall be subtracted from the cross-sectional area of the panel in the determination of the tensile strength of the weakest joined body panel.

S6.3 Strength Test.

S6.3.1 The joint specimen is gripped on opposite sides of the joint in a tension testing machine in accordance with ASTM E8–89 (incorporated by reference, see §571.5).

S6.3.2 Adjust the testing machine grips so that the applied force on the joint is at 90 degrees plus or minus 3 degrees from the joint centerline, as shown in Figure 1.

S6.3.3 A tensile force is applied to the specimen by separating the heads of the testing machine at any uniform rate not less than 3 mm and not more than 10 mm per minute until the specimen separates.

FIGURE 1

VerDate Sep<11>2014 18:36 Jan 21, 2015 Jkt 232224 PO 00000 Frm 00965 Fmt 8010 Sfmt 8010 Q:\49\49V6.TXT 31