Coast Guard, DHS

§ 28.575

(a) Each vessel must meet paragraphs (f) and (g) of this section when subjected to the gust wind heeling arm and the angle of roll to windward as specified in this section.

(b) The gust wind heeling arm, \(L_{\text{gw}} \), in figure 28.575 of this chapter, must be calculated by the following formula:

\[
 KE_n (V_n^2 A_n Z_n^2) / W
\]

where:
- \(K = 0.00216 \) when consistent English units are used or 1.113 when consistent metric units are used.
- \(E_n \) = series summation notation where \(n \) varies from 1 to the number of elements in the series;
- \(V_n = 0.124 \ln (0.3048 h_n + 0.772) \), in feet per second;
- \(S = 64 \) (19.5, if metric units are used) for a vessel that operates on protected waters;
- \(S = 85.3 \) (26, if metric units are used) for a vessel that operates on waters other than protected waters;
- \(\ln \) = natural logarithm;
- \(h_n \) = the vertical distance from the centroid of area \(A_n \) to the waterline for profile element \(n \), in feet (square meters);
- \(A_n \) = projected lateral area for profile element \(n \), in square feet (square meters);
- \(Z_n \) = the vertical distance between the centroid of \(A_n \) and a point at the center of the underwater lateral area or a point at approximately one-half of the draft, for profile element \(n \), in feet; and
- \(W \) = displacement of the loaded vessel, in pounds (Newtons).

(c) The angle of roll to windward, \(A_1 \), is measured from the equilibrium angle, \(A_{\text{el}} \), and is calculated by the following formula:

\[
 A_1 = 109 k XY \sqrt{rs}, \text{ in degrees,}
\]

where:
- \(s, X, Y \) = factors from table 28.575;
- \(r = 0.73 + 0.6 Z_g / d \);
- \(Z_g \) = distance between the center of gravity and the waterline (+ above, – below), in feet (meters);
- \(k = 1.0 \) for round bilged vessels with no bilge keels or bar keels; 0.7 for vessels with sharp bilges, or the value from table 28.575 for vessels with a bar keel, bilge keels, or both;
- \(B \) = molded breadth of the vessel, in feet (meters);
- \(d \) = mean molded draft of the vessel, in feet (meters);
- \(C_b \) = block coefficient;
- \(A_0 \) = aggregate area of bilge keels, the area of the lateral projection of a bar keel, or the sum of these areas, in square feet (square meters);
- \(L \) = length, in feet (meters);
- \(T = 1.108 BC / \sqrt{GM} \), in seconds; 2.0 BC / \sqrt{GM}, if metric units are used;
- \(GM \) = metacentric height corrected for free surface effects, as explained in §28.540, in feet (meters);
- \(C = 0.373 + 0.023 (B / d) – 0.000131 L \) or 0.373 + 0.023 (B / D) – 0.00043L, if metric units are used.

(d) The angle of equilibrium, \(A_{\text{el}} \), in figure 28.575, must not exceed 14° (0.24 radians).

(e) The area “b” in figure 28.575 must be measured to the least of the following:

1. The angle of downflooding, \(A_{\text{af}} \);
2. The angle of the second intercept, \(A_{\text{e2}} \) in figure 28.575, of the wind heeling arm curve, \(L_{\text{gw}} \) in figure 28.575, and the righting arm curve; or
3. A heel angle of 50° (0.87 radians).

(f) The angle of equilibrium, \(A_{\text{el}} \), in figure 28.575, must not exceed 14° (0.24 radians).

(g) Area “b” in figure 28.575 must not be less than area “a” in figure 28.575.

Tables 28.575—Roll Factors

<table>
<thead>
<tr>
<th>B/d</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>1.0</td>
</tr>
<tr>
<td>2.5</td>
<td>0.98</td>
</tr>
<tr>
<td>2.6</td>
<td>0.96</td>
</tr>
<tr>
<td>2.7</td>
<td>0.95</td>
</tr>
<tr>
<td>2.8</td>
<td>0.93</td>
</tr>
<tr>
<td>2.9</td>
<td>0.91</td>
</tr>
<tr>
<td>3.0</td>
<td>0.90</td>
</tr>
<tr>
<td>3.1</td>
<td>0.88</td>
</tr>
<tr>
<td>3.2</td>
<td>0.86</td>
</tr>
</tbody>
</table>

such hatches to be flooded full or flood-ed to the level having the most detri-
mental effect on stability when free surface effects are considered.

(c) In lieu of meeting the require-
ments of paragraph (a) of this section, a vessel may comply with the provi-
sions of § 170.173(c) of this chapter, pro-
vided that righting arms are positive to an angle of heel of not less than 50° (0.87 radians).

(d) For the purpose of paragraphs (a) and (c) of this section, at each angle of heel a vessel’s righting arm must be calculated assuming the vessel is permitted to trim free until the trimming moment is zero.

§ 28.575 Severe wind and roll.

(a) Each vessel must meet paragraphs (f) and (g) of this section when sub-
jected to the gust wind heeling arm and the angle of roll to windward as specified in this section.

(b) The gust wind heeling arm, \(L_{\text{gw}} \), in figure 28.575 of this chapter, must be calculated by the following formula:

\[
 KE_n (V_n^2 A_n Z_n^2) / W
\]

where:
- \(K = 0.00216 \) when consistent English units are used or 1.113 when consistent metric units are used.
- \(E_n \) = series summation notation where \(n \) varies from 1 to the number of elements in the series;
- \(V_n = 0.124 \ln (0.3048 h_n + 0.772) \), in feet per second;
- \(S = 64 \) (19.5, if metric units are used) for a vessel that operates on protected waters;
- \(S = 85.3 \) (26, if metric units are used) for a vessel that operates on waters other than protected waters;
- \(\ln \) = natural logarithm;
- \(h_n \) = the vertical distance from the centroid of area \(A_n \) to the waterline for profile element \(n \), in feet (square meters);
- \(A_n \) = projected lateral area for profile element \(n \), in square feet (square meters);
- \(Z_n \) = the vertical distance between the centroid of \(A_n \) and a point at the center of the underwater lateral area or a point at approximately one-half of the draft, for profile element \(n \), in feet; and
- \(W \) = displacement of the loaded vessel, in pounds (Newtons).

(c) The angle of roll to windward, \(A_1 \), is measured from the equilibrium angle, \(A_{\text{el}} \), and is calculated by the following formula:
§ 28.580 Unintentional flooding.

(a) Applicability. Except for an open boat that operates on protected waters and as provided by paragraph (i) of this section, each vessel built on or after September 15, 1991 must comply with the requirements of this section.