As $t = + \cdot \cdot \cdot$

Where:

- J_s = Mean flux for the total stack (pCi/m2-s)
- J_i = Mean flux measured in region i (pCi/m2-s)
- A_i = Area of region i (m2)
- A_t = Total area of the stack

3.1.8 Reporting. The results of individual flux measurements, the approximate locations on the stack, and the mean radon flux for each region and the mean radon flux for the total stack shall be included in the emission test report. Any condition or unusual event that occurred during the measurements that could significantly affect the results should be reported.

4.0 Quality Assurance Procedures for Measuring Rn–222 Flux

A. SAMPLING PROCEDURES

Records of field activities and laboratory measurements shall be maintained. The following information shall be recorded for each charcoal canister measurement:

- (a) Site
- (b) Name of pile
- (c) Sample location
- (d) Sample ID number
- (e) Date and time on
- (f) Date and time off
- (g) Observations of meteorological conditions and comments

Records shall include all applicable information associated with determining the sample measurement, calculations, observations, and comments.

B. SAMPLE CUSTODY

Custodial control of all charcoal samples exposed in the field shall be maintained in accordance with EPA chain-of-custody field procedures. A control record shall document all custody changes that occur between the field and laboratory personnel.

C. CALIBRATION PROCEDURES AND FREQUENCY

The radioactivity of two standard charcoal sources, each containing a carefully determined quantity of radium-226 uniformly distributed through 180g of activated charcoal, shall be measured. An efficiency factor is computed by dividing the average measured radioactivity of the two standard charcoal sources, minus the background, in cpm by the known radioactivity of the charcoal sources in dpm. The same two standard charcoal sources shall be counted at the beginning and at the end of each day’s counting as a check of the radioactivity counting equipment. A background count using unexposed charcoal should also be made at the beginning and at the end of each counting day to check for inadvertent contamination of the detector or other changes affecting the background. The unexposed charcoal comprising the blank is changed with each new batch of charcoal used.

D. INTERNAL QUALITY CONTROL CHECKS AND FREQUENCY

The charcoal from every tenth exposed canister shall be recounted. Five percent of the samples analyzed shall be either blanks (charcoal having no radioactivity added) or samples spiked with known quantities of radium-226.

E. DATA PRECISION, ACCURACY, AND COMPLETENESS

The precision, accuracy, and completeness of measurements and analyses shall be within the following limits for samples measuring greater than 1.0 pCi/m2-s.

- (a) Precision: 10%
- (b) Accuracy: ±10%
- (c) Completeness: at least 85% of the measurements must yield usable results.

5.0 REFERENCES

38 FR 8826, Apr. 6, 1973

EDITORIAL NOTES: 1. For Federal Register citations to appendix B see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

APPENDIX C TO PART 61—QUALITY ASSURANCE PROCEDURES

Procedure 1—Determination of Adequate Chromatographic Peak Resolution

In this method of dealing with resolution, the extent to which one chromatographic peak overlaps another is determined.

For convenience, consider the range of the elution curve of each compound as running from -2σ to $+2\sigma$. This range is used in other resolution criteria, and it contains 95.45 percent of the area of a normal curve. If two
peaks are separated by a known distance, b, one can determine the fraction of the area of one curve that lies within the range of the other. The extent to which the elution curve of a contaminant compound overlaps the curve of a compound that is under analysis is found by integrating the contaminant curve over the limits \(b - 2\sigma \) to \(b + 2\sigma \), where \(\sigma \) is the standard deviation of the sample curve.

This calculation can be simplified in several ways. Overlap can be determined for curves of unit area; then actual areas can be introduced. Desired integration can be resolved into two integrals of the normal distribution function for which there are convenient calculation programs and tables. An example would be Program 15 in Texas Instruments Program Manual ST1, 1975, Texas Instruments, Inc., Dallas, Texas 75222.
In judging the suitability of alternate GC columns or the effects of altering chromatographic conditions, one can employ the area overlap as the resolution parameter with a specific maximum permissible value.
Environmental Protection Agency

The use of Gaussian functions to describe chromatographic elution curves is widespread. However, some elution curves are highly asymmetric. In cases where the sample peak is followed by a contaminant that has a leading edge that rises sharply but the curve then tails off, it may be possible to define an effective width for t, as “twice the distance from the leading edge to a perpendicular line through the maxim of the contaminant curve, measured along a perpendicular bisection of that line.”

Procedure 2—Procedure for Field Auditing GC Analysis

Responsibilities of audit supervisor and analyst at the source sampling site include the following:

A. The audit supervisor verifies that audit cylinders are stored in a safe location both before and after the audit to prevent vandalism.

B. At the beginning and conclusion of the audit, the analyst records each cylinder number and pressure. An audit cylinder is never analyzed when the pressure drops below 200 psi.

C. During the audit, the analyst performs a minimum of two consecutive analyses of each audit cylinder gas. The audit must be conducted to coincide with the analysis of source test samples, normally immediately after GC calibration and prior to sample analyses.

D. At the end of audit analyses, the audit supervisor requests the calculated concentrations from the analyst and compares the results with the actual audit concentrations. If each measured concentration agrees with the respective actual concentration within ±10 percent, he directs the analyst to begin analyzing source samples. Audit supervisor judgment and/or supervisory policy determine action when agreement is not within ±10 percent. When a consistent bias in excess of 10 percent is found, it may be possible to proceed with the sample analysis, with a corrective factor to be applied to the results at a later time. However, every attempt should be made to locate the cause of the discrepancy, as it may be misleading. The audit supervisor records each cylinder number, cylinder pressure (at the end of the audit), and all calculated concentrations. The individual being audited must not under any circumstance be told actual audit concentrations until calculated concentrations have been submitted to the audit supervisor.

FIELD AUDIT REPORT

Part A—To be filled out by organization supplying audit cylinders.

1. Organization supplying audit sample(s) and shipping address

2. Audit supervisor, organization, and phone number

3. Shipping instructions: Name, Address, Attention

4. Guaranteed arrival date for cylinders

5. Planned shipping date for cylinders

6. Details on audit cylinders from last analysis

<table>
<thead>
<tr>
<th>Low conc.</th>
<th>High conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Date of last analysis</td>
<td>..........</td>
</tr>
<tr>
<td>b. Cylinder number</td>
<td>..........</td>
</tr>
<tr>
<td>c. Cylinder pressure, psi</td>
<td>..........</td>
</tr>
<tr>
<td>d. Audit gas(es)/balance gas</td>
<td>..........</td>
</tr>
<tr>
<td>e. Audit gas(es), ppm</td>
<td>..........</td>
</tr>
<tr>
<td>f. Cylinder construction</td>
<td>..........</td>
</tr>
</tbody>
</table>

Part B—To be filled out by audit supervisor.

1. Process sampled

2. Audit location

3. Name of individual audit

4. Audit date

5. Audit results:

<table>
<thead>
<tr>
<th>Low conc.</th>
<th>High conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Cylinder number</td>
<td>..........</td>
</tr>
<tr>
<td>b. Cylinder pressure before audit, psi</td>
<td>..........</td>
</tr>
<tr>
<td>c. Cylinder pressure after audit, psi</td>
<td>..........</td>
</tr>
<tr>
<td>d. Measured concentration, ppm Injection #1</td>
<td>..........</td>
</tr>
<tr>
<td>e. Measured concentration, ppm Injection #2 Average</td>
<td>..........</td>
</tr>
<tr>
<td>f. Audit accuracy*</td>
<td>..........</td>
</tr>
</tbody>
</table>

Percent 1 accuracy =

Measured Conc. − Actual Conc. $\times 100$

Actual Conc.

<table>
<thead>
<tr>
<th>Low conc.</th>
<th>High conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Cylinder number</td>
<td>..........</td>
</tr>
<tr>
<td>b. Cylinder pressure before audit, psi</td>
<td>..........</td>
</tr>
<tr>
<td>c. Cylinder pressure after audit, psi</td>
<td>..........</td>
</tr>
<tr>
<td>d. Measured concentration, ppm Injection #1</td>
<td>..........</td>
</tr>
<tr>
<td>e. Measured concentration, ppm Injection #2 Average</td>
<td>..........</td>
</tr>
<tr>
<td>f. Audit accuracy*</td>
<td>..........</td>
</tr>
</tbody>
</table>

Percent 1 accuracy =

Measured Conc. − Actual Conc. $\times 100$

Actual Conc.

<table>
<thead>
<tr>
<th>Low conc.</th>
<th>High conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Cylinder number</td>
<td>..........</td>
</tr>
<tr>
<td>b. Cylinder pressure before audit, psi</td>
<td>..........</td>
</tr>
<tr>
<td>c. Cylinder pressure after audit, psi</td>
<td>..........</td>
</tr>
<tr>
<td>d. Measured concentration, ppm Injection #1</td>
<td>..........</td>
</tr>
<tr>
<td>e. Measured concentration, ppm Injection #2 Average</td>
<td>..........</td>
</tr>
<tr>
<td>f. Audit accuracy*</td>
<td>..........</td>
</tr>
</tbody>
</table>

Percent 1 accuracy =

Measured Conc. − Actual Conc. $\times 100$

Actual Conc.

1 Results of two consecutive injections that meet the sample analysis criteria of the test method.

[47 FR 39178, Sept. 7, 1982]

APPENDIX D TO PART 61—METHODS FOR ESTIMATING RADIONUCLIDE EMISSIONS

1. Purpose and Background

Facility owners or operators may estimate radionuclide emissions to the atmosphere for dose calculations instead of measuring emissions. Particulate emissions from mill tailings piles should be estimated using the procedures listed in reference re #2. All other emissions may be estimated by using the