§ 60.753 Operational standards for collection and control systems.

Each owner or operator of an MSW landfill with a gas collection and control system used to comply with the provisions of §60.752(b)(2)(ii) of this subpart shall:

(a) Operate the collection system such that gas is collected from each area, cell, or group of cells in the MSW landfill in which solid waste has been in place for:
 (1) 5 years or more if active; or
 (2) 2 years or more if closed or at final grade;

(b) Operate the collection system with negative pressure at each wellhead except under the following conditions:
 (1) A fire or increased well temperature. The owner or operator shall record instances when positive pressure occurs in efforts to avoid a fire. These records shall be submitted with the annual reports as provided in §60.757(f)(1);
 (2) Use of a geomembrane or synthetic cover. The owner or operator shall develop acceptable pressure limits in the design plan;
 (3) A decommissioned well. A well may experience a static positive pressure after shut down to accommodate for declining flows. All design changes shall be approved by the Administrator;
 (c) Operate each interior wellhead in the collection system with a landfill gas temperature less than 55 °C and with either a nitrogen level less than 20 percent or an oxygen level less than 5 percent. The owner or operator may establish a higher operating temperature, nitrogen, or oxygen value at a particular well. A higher operating value demonstration shall show supporting data that the elevated parameter does not cause fires or significantly inhibit anaerobic decomposition by killing methanogens.
 (1) The nitrogen level shall be determined using Method 3C, unless an alternative test method is established as allowed by §60.752(b)(2)(i) of this subpart.
 (2) Unless an alternative test method is established as allowed by §60.752(b)(2)(i) of this subpart, the oxygen shall be determined by an oxygen meter using Method 3A or 3C except that:
 (i) The span shall be set so that the regulatory limit is between 20 and 50 percent of the span;
 (ii) A data recorder is not required;
 (iii) Only two calibration gases are required, a zero and span, and ambient air may be used as the span;
 (iv) A calibration error check is not required;
 (v) The allowable sample bias, zero drift, and calibration drift are ±10 percent.
 (d) Operate the collection system so that the methane concentration is less than 500 parts per million above background at the surface of the landfill. To determine if this level is exceeded, the owner or operator shall conduct surface testing around the perimeter of the collection area and along a pattern that traverses the landfill at 30 meter intervals and where visual observations indicate elevated concentrations of landfill gas, such as distressed vegetation and cracks or seeps in the cover. The owner or operator may establish an alternative traversing pattern that ensures equivalent coverage. A surface monitoring design plan shall be developed that includes a topographical map with the monitoring route and the rationale for any site-specific deviations from the 30 meter intervals. Areas with steep slopes or other dangerous areas may be excluded from the surface testing.
 (e) Operate the system such that all collected gases are vented to a control system designed and operated in compliance with §60.752(b)(2)(iii). In the event the collection or control system is inoperable, the gas mover system shall be shut down and all valves in the collection and control system contributing to venting of the gas to the atmosphere shall be closed within 1 hour; and
 (f) Operate the control or treatment system at all times when the collected gas is routed to the system.
§ 60.754 Test methods and procedures.

(a)(1) The landfill owner or operator shall calculate the NMOC emission rate using either the equation provided in paragraph (a)(1)(i) of this section or the equation provided in paragraph (a)(1)(ii) of this section. Both equations may be used if the actual year-to-year solid waste acceptance rate is known, as specified in paragraph (a)(1)(i), for part of the life of the landfill and the actual year-to-year solid waste acceptance rate is unknown, as specified in paragraph (a)(1)(ii), for part of the life of the landfill. The values to be used in both equations are 0.05 per year for k, 170 cubic meters per megagram for L_o, and 4,000 parts per million by volume as hexane for the C_{NMOC}. For landfills located in geographical areas with a thirty year annual average precipitation of less than 25 inches, as measured at the nearest representative official meteorologic site, the k value to be used is 0.02 per year.

(i) The following equation shall be used if the actual year-to-year solid waste acceptance rate is known.

\[
M_{NMOC} = \sum_{i=1}^{n} 2kL_oM_i\left(e^{-kt}\right)\left(C_{NMOC}\right)\left(3.6 \times 10^{-9}\right)
\]

where,

- M_{NMOC} = Total NMOC emission rate from the landfill, megagrams per year
- k = Methane generation rate constant, year$^{-1}$
- L_o = Methane generation potential, cubic meters per megagram solid waste
- M_i = Mass of solid waste in the ith section, megagrams
- t_i = Age of the ith section, years
- C_{NMOC} = Concentration of NMOC, parts per million by volume as hexane
- 3.6×10^{-9} = Conversion factor

The mass of nondegradable solid waste may be subtracted from the total mass of solid waste in a particular section of the landfill when calculating the value for M_i if documentation of the nature and amount of such wastes is maintained.

(ii) The following equation shall be used if the actual year-to-year solid waste acceptance rate is unknown.

\[
M_{NMOC} = 2L_oR\left(e^{-kt} - e^{-ct}\right)\left(C_{NMOC}\right)\left(3.6 \times 10^{-9}\right)
\]

Where:

- M_{NMOC} = Mass emission rate of NMOC, megagrams per year
- L_o = Methane generation potential, cubic meters per megagram solid waste
- R = Average annual acceptance rate, megagrams per year
- t = Age of landfill, years
- c = Time since closure, years; for active landfill, $c=0$ and e^{-kt}
- 3.6×10^{-9} = Conversion factor

The mass of nondegradable solid waste may be subtracted from the total mass of solid waste in a particular section of the landfill when calculating the value of R, if documentation of the nature and amount of such wastes is maintained.

(2) Tier I. The owner or operator shall compare the calculated NMOC mass emission rate to the standard of 50 megagrams per year.

(i) If the NMOC emission rate calculated in paragraph (a)(1) of this section is less than 50 megagrams per year, then the landfill owner shall submit an emission rate report as provided in §60.757(b)(1), and shall recalculate the NMOC mass emission rate annually as required under §60.752(b)(1).

(ii) If the calculated NMOC emission rate is equal to or greater than 50 megagrams per year, then the landfill owner shall either comply with