unit operating hour included in the period beginning on the date and hour of any sample for which the sulfur content of the fuel being fired in the combustion turbine exceeds the applicable limit and ending on the date and hour that a subsequent sample is taken that demonstrates compliance with the sulfur limit.

(b) If the option to sample each delivery of fuel oil has been selected, you must immediately switch to one of the other oil sampling options (i.e., daily sampling, flow proportional sampling, or sampling from the unit’s storage tank) if the sulfur content of a delivery exceeds 0.05 weight percent. You must continue to use one of the other sampling options until all of the oil from the delivery has been combusted, and you must evaluate excess emissions according to paragraph (a) of this section. When all of the fuel from the delivery has been burned, you may resume using the as-delivered sampling option.

(c) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour of a required sample, if invalid results are obtained. The period of monitor downtime ends on the date and hour of the next valid sample.

§ 60.4390 What are my reporting requirements if I operate an emergency combustion turbine or a research and development turbine?

(a) If you operate an emergency combustion turbine, you are exempt from the NOX limit and must submit an initial report to the Administrator stating your case.

(b) Combustion turbines engaged by manufacturers in research and development of equipment for both combustion turbine emission control techniques and combustion turbine efficiency improvements may be exempted from the NOX limit on a case-by-case basis as determined by the Administrator. You must petition for the exemption.

§ 60.4395 When must I submit my reports?

All reports required under §60.7(c) must be postmarked by the 30th day following the end of each 6-month period.

PERFORMANCE TESTS

§ 60.4400 How do I conduct the initial and subsequent performance tests, regarding NOX?

(a) You must conduct an initial performance test, as required in §60.8. Subsequent NOX performance tests shall be conducted on an annual basis (no more than 14 calendar months following the previous performance test).

(i) There are two general methodologies that you may use to conduct the performance tests. For each test run:

(1) Measure the NOX concentration (in parts per million (ppm)), using EPA Method 7E or EPA Method 20 in appendix A of this part.

(2) For units complying with the output based standard, concurrently measure the stack gas flow rate, using EPA Methods 1 and 2 in appendix A of this part, and measure and record the electrical and thermal output from the unit. Then, use the following equation to calculate the NOX emission rate:

\[
E = \frac{1.194 \times 10^{-7} \times (\text{NO}_X)_c \times Q_{\text{std}}}{P} \quad \text{(Eq. 5)}
\]

Where:

- \(E \) = NOX emission rate, in lb/MWh
- \(1.194 \times 10^{-7} \) = conversion constant, in lb/dscf/ppm
- \((\text{NO}_X)_c \) = average NOX concentration for the run, in ppm
- \(Q_{\text{std}} \) = stack gas volumetric flow rate, in dscf/hr
- \(P \) = gross electrical and mechanical energy output of the combustion turbine, in MW (for simple-cycle operation), for combined-cycle operation, the sum of all electrical and mechanical output from the combustion and steam turbines, or, for combined heat and power operation, the sum of all electrical and mechanical...
output from the combustion and steam turbines plus all useful recovered thermal output not used for additional electric or mechanical generation, in MW, calculated according to §60.4350(f)(2); or

(ii) Measure the NO\textsubscript{X} and diluent gas concentrations, using either EPA Methods 7E and 3A, or EPA Method 20 in appendix A of this part. Concurrently measure the heat input to the unit, using a fuel flowmeter (or flowmeters), and measure the electrical and thermal output of the unit. Use EPA Method 19 in appendix A of this part to calculate the NO\textsubscript{X} emission rate in lb/MMBtu. Then, use Equations 1 and, if necessary, 2 and 3 in §60.4350(f) to calculate the NO\textsubscript{X} emission rate in lb/MWh.

(2) Sampling traverse points for NO\textsubscript{X} and (if applicable) diluent gas are to be selected following EPA Method 20 or EPA Method 1 (non-particulate procedures), and sampled for equal time intervals. The sampling must be performed with a traversing single-hole probe, or, if feasible, with a stationary multi-hole probe that samples each of the points sequentially. Alternatively, a multi-hole probe designed and documented to sample equal volumes from each hole may be used to sample simultaneously at the required points.

(3) Notwithstanding paragraph (a)(2) of this section, you may test at fewer points than are specified in EPA Method 1 or EPA Method 20 in appendix A of this part if the following conditions are met:

(i) You may perform a stratification test for NO\textsubscript{X} and diluent pursuant to (A) [Reserved], or

(B) The procedures specified in section 6.5.6.1(a) through (e) of appendix A of part 75 of this chapter.

(ii) Once the stratification sampling is completed, you may use the following alternative sample point selection criteria for the performance test:

(A) If each of the individual traverse point NO\textsubscript{X} concentrations is within ±10 percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than ±5 ppm or ±0.5 percent CO\textsubscript{2} (or O\textsubscript{2}) from the mean for all traverse points, then you may use three points (located either 16.7, 50.0 and 83.3 percent of the way across the stack or duct, or, for circular stacks or ducts greater than 2.4 meters (7.8 feet) in diameter, at 0.4, 1.2, and 2.0 meters from the wall). The three points must be located along the measurement line that exhibited the highest average NO\textsubscript{X} concentration during the stratification test; or

(B) For turbines with a NO\textsubscript{X} standard greater than 15 ppm @ 15% O\textsubscript{2}, you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid if each of the individual traverse point NO\textsubscript{X} concentrations is within ±5 percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than ±5 ppm or ±0.3 percent CO\textsubscript{2} (or O\textsubscript{2}) from the mean for all traverse points; or

(C) For turbines with a NO\textsubscript{X} standard less than or equal to 15 ppm @ 15% O\textsubscript{2}, you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid if each of the individual traverse point NO\textsubscript{X} concentrations is within ±2.5 percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than ±1 ppm or ±0.15 percent CO\textsubscript{2} (or O\textsubscript{2}) from the mean for all traverse points.

(b) The performance test must be done at any load condition within plus or minus 25 percent of 100 percent of peak load. You may perform testing at the highest achievable load point, if at least 75 percent of peak load cannot be achieved in practice. You must conduct three separate test runs for each performance test. The minimum time per run is 20 minutes.

(1) If the stationary combustion turbine combuts both oil and gas as primary or backup fuels, separate performance testing is required for each fuel.

(2) For a combined cycle and CHP turbine systems with supplemental heat (duct burner), you must measure the total NO\textsubscript{X} emissions after the duct burner rather than directly after the turbine. The duct burner must be in operation during the performance test.

(3) If water or steam injection is used to control NO\textsubscript{X} with no additional post-combustion NO\textsubscript{X} control and you choose to monitor the steam or water
§ 60.4415 How do I establish a valid parameter range if I have chosen to continuously monitor parameters?

If you have chosen to monitor combustion parameters or parameters indicative of proper operation of NO\textsubscript{X} emission controls in accordance with §60.4340, the appropriate parameters must be continuously monitored and recorded during each run of the initial performance test, to establish acceptable operating ranges, for purposes of the parameter monitoring plan for the affected unit, as specified in §60.4355.

§ 60.4415 How do I conduct the initial and subsequent performance tests for sulfur?

(a) You must conduct an initial performance test, as required in §60.8. Subsequent SO\textsubscript{2} performance tests shall be conducted on an annual basis (no more than 14 calendar months following the previous performance test). There are three methodologies that you may use to conduct the performance tests.

(1) If you choose to periodically determine the sulfur content of the fuel combusted in the turbine, a representative fuel sample would be collected following ASTM D5287 (incorporated by reference, see §60.17) for natural gas or ASTM D4177 (incorporated by reference, see §60.17) for oil. Alternatively, for oil, you may follow the procedures for manual pipeline sampling in section 14 of ASTM D4057 (incorporated by reference, see §60.17). The fuel analyses of this section may be performed either by you, a service contractor retained by you, the fuel vendor, or any other qualified agency. Analyze the samples for the total sulfur content of the fuel using:

(i) For liquid fuels, ASTM D129, or alternatively D1266, D1552, D2822, D4294, or D5453 (all of which are incorporated by reference, see §60.17); or

(ii) For gaseous fuels, ASTM D1072, or alternatively D3246, D4084, D4466, D4810, D6228, D6667, or Gas Processors Association Standard 2377 (all of which are incorporated by reference, see §60.17).

(2) Measure the SO\textsubscript{2} concentration (in parts per million (ppm)), using EPA Methods 6, 6C, 8, or 20 in appendix A of this part. In addition, the American