following the end of each 6-month period.

§ 60.335 Test methods and procedures.

(a) The owner or operator shall conduct the performance tests required in § 60.8, using either

(1) EPA Method 20,

(2) ASTM D6522–00 (incorporated by reference, see § 60.17), or

(3) EPA Method 7E and either EPA Method 3 or 3A in appendix A to this part, to determine NO\textsubscript{X} and diluent concentration.

(4) Sampling traverse points are to be selected following Method 20 or Method 1, (non-particulate procedures) and sampled for equal time intervals. The sampling shall be performed with a traversing single-hole probe or, if feasible, with a stationary multi-hole probe that samples each of the points sequentially. Alternatively, a multi-hole probe designed and documented to sample equal volumes from each hole may be used to sample simultaneously at the required points.

(5) Notwithstanding paragraph (a)(4) of this section, the owner or operator may test at few points than are specified in Method 1 or Method 20 if the following conditions are met:

(i) You may perform a stratification test for NO\textsubscript{X} and diluent pursuant to

(A) [Reserved]

(B) The procedures specified in section 6.5.6.1(a) through (e) appendix A to part 75 of this chapter.

(ii) Once the stratification sampling is completed, the owner or operator may use the following alternative sample point selection criteria for the performance test:

(A) If each of the individual traverse point NO\textsubscript{X} concentrations, normalized to 15 percent O\textsubscript{2}, is within 10 percent of the mean normalized concentration for all traverse points, then you may sample at three points located either 16.7, 50.0, and 83.3 percent of the way across the stack or duct, or, for circular stacks or ducts greater than 2.4 meters (7.8 feet) in diameter, at 0.4, 1.2, and 2.0 meters from the wall. The 3 points shall be located along the measurement line that exhibited the highest average normalized NO\textsubscript{X} concentration during the stratification test; or

(B) If each of the individual traverse point NO\textsubscript{X} concentrations, normalized to 15 percent O\textsubscript{2}, is within 5 percent of the mean normalized concentration for all traverse points, then you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid.

(b) The owner or operator shall determine compliance with the applicable nitrogen oxides emission limitation in § 60.332 and shall meet the performance test requirements of § 60.8 as follows:

(1) For each run of the performance test, the mean nitrogen oxides emission concentration (NO\textsubscript{Xo}) corrected to 15 percent O\textsubscript{2} shall be corrected to ISO standard conditions using the following equation. Notwithstanding this requirement, use of the ISO correction equation is optional for: Lean premix stationary combustion turbines; units used in association with heat recovery steam generators (HRSG) equipped with duct burners; and units equipped with add-on emission control devices:

\[
\text{NO}_{\text{X}} = \text{NO}_{\text{Xo}} \left(\frac{P_r}{P_o} \right)^{0.5} e^{19 \left(\frac{H_o - 0.00633}{288} \right) \left(\frac{T_a}{K} \right)^{1.53}}
\]

Where:

\text{NO}_{\text{X}} = \text{emission concentration of NO}_{\text{X}} at 15 percent O\textsubscript{2} and ISO standard ambient conditions, ppm by volume, dry basis,}

\text{NO}_{\text{Xo}} = \text{mean observed NO}_{\text{X}} concentration, ppm by volume, dry basis, at 15 percent O\textsubscript{2},

P_r = \text{reference combustor inlet absolute pressure at 101.3 kilopascals ambient pressure. Alternatively, you may use 760 mm Hg (29.92 in Hg),}

P_o = \text{observed combustor inlet absolute pressure at test, mm Hg. Alternatively, you may use the barometric pressure for the date of the test,}

H_o = \text{observed humidity of ambient air, g H_2O/g air,}

e = \text{transcendental constant, 2.718, and}

T_a = \text{ambient temperature, } ^\circ \text{K.}

(2) The 3-run performance test required by § 60.8 must be performed within 5 percent at 30, 50, 75, and 90-to-100 percent of peak load or at four evenly-spaced load points in the normal operating range of the gas turbine, including the minimum point in the
§ 60.335

operating range and 90-to-100 percent of peak load, or at the highest achievable load point if 90-to-100 percent of peak load cannot be physically achieved in practice. If the turbine combusst both oil and gas as primary or backup fuels, separate performance testing is required for each fuel. Notwithstanding these requirements, performance testing is not required for any emergency fuel (as defined in §60.331).

(3) For a combined cycle turbine system with supplemental heat (duct burner), the owner or operator may elect to measure the turbine NO\textsubscript{X} emissions after the duct burner rather than directly after the turbine. If the owner or operator elects to use this alternative sampling location, the applicable NO\textsubscript{X} emission limit in §60.332 for the combustion turbine must still be met.

(4) If water or steam injection is used to control NO\textsubscript{X} with no additional post-combustion NO\textsubscript{X} control and the owner or operator chooses to monitor the steam or water to fuel ratio in accordance with §60.334(a), then that monitoring system must be operated concurrently with each EPA Method 20, ASTM D6522-00 (incorporated by reference, see §60.17), or EPA Method 7E run and shall be used to determine the fuel consumption and the steam or water to fuel ratio necessary to comply with the applicable §60.332 NO\textsubscript{X} emission limit.

(5) If the owner operator elects to claim an emission allowance for fuel bound nitrogen as described in §60.332, then concurrently with each reference method run, a representative sample of the fuel used shall be collected and analyzed, following the applicable procedures described in §60.335(b)(9). These data shall be used to determine the maximum fuel nitrogen content for which the established water (or steam) to fuel ratio will be valid.

(6) If the owner or operator elects to install a CEMS, the performance evaluation of the CEMS may either be conducted separately (as described in paragraph (b)(7) of this section) or as part of the initial performance test of the affected unit.

(7) If the owner or operator elects to install and certify a NO\textsubscript{X} CEMS under §60.334(e), then the initial performance test required under §60.8 may be done in the following alternative manner:

(i) Perform a minimum of 9 reference method runs, with a minimum time per run of 21 minutes, at a single load level, between 90 and 100 percent of peak (or the highest physically achievable) load.

(ii) Use the test data both to demonstrate compliance with the applicable NO\textsubscript{X} emission limit under §60.332 and to provide the required reference method data for the RATA of the CEMS described under §60.334(e).

(iii) The requirement to test at three additional load levels is waived.

(8) If the owner or operator elects under §60.334(i) to monitor combustion parameters or parameters indicative of proper operation of NO\textsubscript{X} emission controls, the appropriate parameters shall be continuously monitored and recorded during each run of the initial performance test, to establish acceptable operating ranges, for purposes of the parameter monitoring plan for the affected unit, as specified in §60.334(g).

(9) To determine the fuel bound nitrogen content of fuel being fired (if an emission allowance is claimed for fuel bound nitrogen), the owner or operator may use equipment and procedures meeting the requirements of:

(i) For liquid fuels, ASTM D2597–94 (Reapproved 1999), D6366–99, D4629–02, D5762–02 (all of which are incorporated by reference, see §60.17); or

(ii) For gaseous fuels, shall use analytical methods and procedures that are accurate to within 5 percent of the instrument range and are approved by the Administrator.

(10) If the owner or operator is required under §60.334(i)(1) or (3) to periodically determine the sulfur content of the fuel combusted in the turbine, a minimum of three fuel samples shall be collected during the performance test. Analyze the samples for the total sulfur content of the fuel using:

(i) For liquid fuels, ASTM D129–00, D2622–98, D4294–02, D1266–98, D5453–00 or D1552–01 (all of which are incorporated by reference, see §60.17); or

(ii) For gaseous fuels, ASTM D1072–80, 90 (Reapproved 1994); D3246–81, 92, 96; D4468–85 (Reapproved 2000); or D6667–01 (all of which are incorporated by reference, see §60.17). The applicable
ranges of some ASTM methods mentioned above are not adequate to measure the levels of sulfur in some fuel gases. Dilution of samples before analysis (with verification of the dilution ratio) may be used, subject to the prior approval of the Administrator.

(11) The fuel analyses required under paragraphs (b)(9) and (b)(10) of this section may be performed by the owner or operator, a service contractor retained by the owner or operator, the fuel vendor, or any other qualified agency.

(c) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:

(1) Instead of using the equation in paragraph (b)(1) of this section, manufacturers may develop ambient condition correction factors to adjust the nitrogen oxides emission level measured by the performance test as provided in §60.8 to ISO standard day conditions.

Subpart HH—Standards of Performance for Lime Manufacturing Plants

SOURCE: 49 FR 18080, Apr. 26, 1984, unless otherwise noted.

§ 60.340 Applicability and designation of affected facility.

(a) The provisions of this subpart are applicable to each rotary lime kiln used in the manufacture of lime.

(b) The provisions of this subpart are not applicable to facilities used in the manufacture of lime at kraft pulp mills.

(c) Any facility under paragraph (a) of this section that commences construction or modification after May 3, 1977, is subject to the requirements of this subpart.

§ 60.341 Definitions.

As used in this subpart, all terms not defined herein shall have the same meaning given them in the Act and in the General Provisions.

(a) Lime manufacturing plant means any plant which uses a rotary lime kiln to produce lime product from limestone by calcination.

(b) Lime product means the product of the calcination process including, but not limited to, calcitic lime, dolomitic lime, and dead-burned dolomite.

(c) Positive-pressure fabric filter means a fabric filter with the fans on the upstream side of the filter bags.

(d) Rotary lime kiln means a unit with an inclined rotating drum that is used to produce a lime product from limestone by calcination.

(e) Stone feed means limestone feedstock and millscale or other iron oxide additives that become part of the product.

§ 60.342 Standard for particulate matter.

(a) On and after the date on which the performance test required to be conducted by §60.8 is completed, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any rotary lime kiln any gases which:

(1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton) of stone feed.

(2) Exhibit greater than 15 percent opacity when exiting from a dry emission control device.

§ 60.343 Monitoring of emissions and operations.

(a) The owner or operator of a facility that is subject to the provisions of this subpart shall install, calibrate, maintain, and operate a continuous monitoring system, except as provided in paragraphs (b) and (c) of this section, to monitor and record the opacity of a representative portion of the gases discharged into the atmosphere from any rotary lime kiln. The span of this system shall be set at 40 percent opacity when exiting from a dry emission control device.

(b) The owner or operator of any rotary lime kiln having a control device with a multiple stack exhaust or a roof monitor may, in lieu of the continuous opacity monitoring requirement of §60.343(a), monitor visible emissions at least once per day of operation by using a certified visible emissions observer who, for each site where visible emissions are observed, will perform