(b) The test weight basis for non-MDPV heavy-duty vehicles is “adjusted loaded vehicle weight”. For all other vehicles, the test weight basis for establishing equivalent test weight is “loaded vehicle weight”. These load terms are defined in 40 CFR 86.1803.

(c) For FTP, SFTP, New York City Cycle, HPET, and LA–92 testing, determine road-load forces for each test vehicle at speeds between 9.3 and 71.5 miles per hour. The road-load force must represent vehicle operation on a smooth, level road with no wind or calm winds, no precipitation, an ambient temperature of approximately 20 °C, and atmospheric pressure of 98.21 kPa. You may extrapolate road-load force for speeds below 9.3 mph.

§ 1066.810 Vehicle preparation.

(a) Include additional fittings and adapters as required to accommodate a fuel drain at the lowest point possible in the tank(s) as installed on the vehicle.

(b) For preconditioning that involves loading an evaporative emission canister with butane, provide valving or other means to allow for purging and loading the canister.

(c) For vehicles to be tested for running loss emissions (40 CFR 86.134), prepare the fuel tank for measuring temperature and pressure as specified in 40 CFR 86.137–86.138(e) and (f) and 40 CFR 86.134. Vapor temperature measurement is optional during the running loss test.

(d) For vehicles to be tested for running loss emissions, prepare the exhaust system by sealing or plugging all detectable sources of exhaust gas leaks. Inspect or test the exhaust system to ensure that there are no leaks that would cause exhaust hydrocarbon emissions to be detected as running losses.

(e) The following provisions apply for preconditioning steps to reduce nonfuel emissions to normal vehicle background levels for vehicles subject to Tier 3 evaporative emission standards under 40 CFR 86.1813:

(1) You must notify us in advance if you plan to perform such preconditioning. This notice must include a detailed description of the intended procedures and any measurements or thresholds for determining when stabilization is complete. You need not repeat this notification for additional vehicle testing in the same or later model years as long as your preconditioning practice conforms to these procedures.

(2) You may precondition a vehicle as described in paragraph (e)(1) of this section only within 12 months after the vehicle’s original date of manufacture, except that you may ask us to approve further preconditioning steps for any testing to address identifiable sources of nonfuel emissions beyond what would generally occur with an appropriately aged in-use vehicle. For example, you may clean up fluid leaks and you may perform further off-vehicle preconditioning for tires or other replacement parts that are less than 12 months old. You may also replace the spare tire with an aged spare tire, and you may replace the windshield washer fluid with water.

§ 1066.815 Exhaust emission test procedures for FTP testing.

(a) General. The FTP exhaust emission test sequence consists of a cold-start test and a hot-start test as described in §1066.801.

(b) PM sampling options. Collect PM using any of the procedures specified in paragraphs (b)(1) through (5) of this section and use the corresponding equation in §1066.820 to calculate FTP composite emissions. Testing must
meet the requirements related to filter face velocity as described in 40 CFR 1065.170(c)(1)(vi), except as specified in paragraphs (b)(4) and (5) of this section. For procedures involving flow weighting, set the filter face velocity to a weighting target of 1.0 to meet the requirements of 40 CFR 1065.170(c)(1)(vi). Allow filter face velocity to decrease as a percentage of the weighting factor if the weighting factor is less than 1.0. Use the appropriate equations in §1066.610 to show that you meet the dilution factor requirements of §1066.110(b)(2)(iii)(B).

(1) You may collect a separate PM sample for transient and stabilized portions of the cold-start UDDS and the hot-start UDDS. This may either be done by sampling with three bags or four bags. You may omit the stabilized portion of the hot-start test (bag 4) and use the stabilized portion of the cold-start test (bag 2) in its place.

(2) You may collect PM on one filter over the cold-start UDDS and on a separate filter over the hot-start UDDS.

(3) You may collect PM on one filter over the cold-start UDDS (bag 1 and bag 2) and on a separate filter over the first 505 seconds of the stabilized portion of the cold-start UDDS and the first 505 seconds of the hot-start UDDS (bag 2 and bag 3). Note that this option involves duplicate measurements during the stabilized portion of the cold-start UDDS.

(4) You may collect PM on a single filter over the cold-start UDDS and the first 505 seconds of the hot-start UDDS. If you use this method, adjust your sampling system flow rate to weight the filter face velocity over the three intervals of the FTP based on weighting targets of 0.43 for bag 1, 1.0 for bag 2, and 0.57 for bag 3.

(5) You may collect PM on a single filter over the cold-start UDDS and the full hot-start UDDS. If you use this method, adjust your sampling system flow rate to weight the filter face velocity based on weighting targets of 0.75 for the cold-start UDDS and 1.0 for the hot-start UDDS.

(c) Gaseous sampling options. Collect gaseous samples using any of the following procedures:

(1) You may collect a single sample for a full UDDS (cold-start or hot-start).

(2) You may sample emissions separately for transient and stabilized portions of any UDDS.

(3) You may omit the stabilized portion of the hot-start test (bag 4) and use the stabilized portion of the cold-start test (bag 2) in its place.

(d) Test sequence. Follow the exhaust emission measurement procedures specified in §§1066.410 through 1066.425, subject to the following exceptions and additional provisions:

(1) Take the following steps for the cold-start test:

(i) Precondition the vehicle as described in §1066.816. Initiate the cold-start test following the 12 to 36 hour soak period.

(ii) Start sampling and recording simultaneously with starting the vehicle. Place the vehicle in gear 15 seconds after engine starting, which is 5 seconds before the first acceleration.

(iii) At the end of the deceleration scheduled to occur 505 seconds into the cold-start UDDS, simultaneously switch all the sample flows from the cold-start transient interval to the stabilized interval, stopping all cold-start transient interval sampling and recording, including background sampling. Reset integrating devices for the stabilized interval and indicate the end of the cold-start interval in the recorded data. Operate the vehicle over the remainder of the UDDS. Turn the engine off 2 seconds after the end of the last deceleration in the stabilized interval (1,369 seconds after the start of the driving schedule).

(iv) Five seconds after the engine stops running, stop all stabilized interval sampling and recording, including background sampling. Stop any integrating devices for the stabilized interval and indicate the end of the stabilized interval in the recorded data. Note that the 5 second delay is intended to account for sampling system transport.

(2) Take the following steps for the hot-start test:

(i) Initiate the hot-start test (9 to 11) minutes after the end of the sample period for the cold-start UDDS.
(ii) Repeat the steps in paragraph (d)(1)(ii) of this section. Operate the vehicle over the first 505 seconds of the UDDS. At the end of the deceleration scheduled to occur 505 seconds into the hot-start UDDS, turn off the engine and simultaneously stop all hot-start sampling and recording, including background sampling, and any integrating devices.

(iii) For tests that do not include bag 4 operation, turn the engine off. To include bag 4 measurement, operate the vehicles over the remainder of the UDDS and conclude the testing as described in paragraphs (d)(1)(iii) and (iv) of this section.

(3) This completes the procedure for measuring FTP exhaust emissions. See §1066.801 and subpart J of this part for continuing the test sequence to measure evaporative or refueling emissions.

§1066.816 Vehicle preconditioning for FTP testing.

Precondition the test vehicle before the FTP exhaust measurement as described in 40 CFR 86.132.

§1066.820 Composite calculations for FTP exhaust emissions.

(a) Determine the mass of exhaust emissions of each pollutant for each FTP test interval as described in §1066.605.

(b) Calculate the final composite gaseous test results as a mass-weighted value, $e_{\text{emission}}$-FTPcomp, in grams per mile using the following equation:

$$e_{\text{emission}}$-FTPcomp = 0.43 \cdot \left( \frac{m_c}{D_{ct} + D_{cs}} \right) + 0.57 \cdot \left( \frac{m_h}{D_{ht} + D_{hs}} \right)$

Eq. 1066.820-1

Where:

$m_c$ = the combined mass emissions determined from the cold-start UDDS test interval (generally known as bag 1 and bag 2), in grams.

$D_{ct}$ = the measured driving distance from the transient portion of the cold-start test (bag 1), in miles.

$D_{cs}$ = the measured driving distance from the stabilized portion of the cold-start test (bag 2), in miles.

$m_h$ = the combined mass emissions determined from the hot-start UDDS test interval in grams. This is the hot-stabilized portion from either the first or second UDDS (bag 2, unless you measure bag 4), in addition to the hot transient portion (bag 3).

$D_{ht}$ = the measured driving distance from the transient portion of the hot-start test (bag 3), in miles.

$D_{hs}$ = the measured driving distance from the stabilized portion of the hot-start test (bag 4), in miles. Set $D_{hs} = D_{cs}$ for testing where the hot-stabilized portion of the UDDS is not run.

(c) Calculate the final composite PM test results as a mass-weighted value, $e_{PM}$-FTPcomp, in grams per mile as follows:

(1) Use the following equation for PM measured as described in §1066.815(b)(1), (2), or (3):

$$e_{PM}$-FTPcomp = 0.43 \cdot \left( \frac{m_{PM-\text{UDDS}}}{D_{ct} + D_{cs}} \right) + 0.57 \cdot \left( \frac{m_{PM-\text{hUDDS}}}{D_{ht} + D_{hs}} \right)$

Eq. 1066.820-2