§ 464.27 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology. [Reserved]

Subpart C—Ferrous Casting Subcategory

§ 464.30 Applicability; description of the ferrous casting subcategory.

The provisions of this subpart are applicable to discharges to waters of the United States and to the introduction of pollutants into publicly owned treatment works resulting from ferrous casting operations as defined in § 464.02(c).

§ 464.31 Specialized definitions.

For the purpose of this subpart:
(a) Total Toxic Organics (TTO). TTO is a regulated parameter under PSES (§ 464.35) and PSNS (§ 464.36) for the ferrous subcategory and is comprised of a discrete list of toxic organic pollutants for each process segment where it is regulated, as follows:

(1) Casting Quench (§ 464.35(b) and § 464.36(b)):
 23. chloroform (trichloromethane)
 34. 2,4-dichlorophenol
 34. 2,4-dimethylphenol

(2) Dust Collection Scrubber (§ 464.35(c) and § 464.36(b)):
 1. acenaphthene
 22. chloroform (trichloromethane)
 31. 2,4-dichlorophenol
 34. 2,4-dimethylphenol
 39. fluoranthene
 44. methylene chloride (dichloromethane)
 55. naphthalene
 64. pentachlorophenol
 65. phenol
 66. bis(2-ethylhexyl)phthalate
 67. butyl benzyl phthalate
 68. di-n-butyl phthalate
 70. diethyl phthalate
 71. dimethyl phthalate
 72. benzo(a)anthracene (1,2-benzanthracene)
 76. chrysene
 77. acenaphthylene
 78. anthracene
 80. fluorene
 81. phenanthrene
 84. pyrene

(3) Investment Casting (§ 464.35(e) and § 464.36(e)):
 23. chloroform (trichloromethane)
 44. methylene chloride (dichloromethane)
 66. bis(2-ethylhexyl)phthalate
 77. acenaphthylene
 84. pyrene

(4) Melting Furnace Scrubber (§ 464.35(f) and § 464.36(f)):
 23. chloroform (trichloromethane)
 34. 2,4-dichlorophenol
 34. 2,4-dimethylphenol
 39. fluoranthene
 44. methylene chloride (dichloromethane)
 55. naphthalene
 65. phenol
 66. bis(2-ethylhexyl)phthalate
 67. butyl benzyl phthalate
 68. di-n-butyl phthalate
 70. diethyl phthalate
 71. dimethyl phthalate
 72. benzo(a)anthracene (1,2-benzanthracene)
 76. chrysene
 77. acenaphthylene
 78. anthracene
 80. fluorene
 81. phenanthrene
 84. pyrene

(5) Mold Cooling (§ 464.35(g) and § 464.36(g)):
 23. chloroform (trichloromethane)
 34. 2,4-dimethylphenol

(6) Slag Quench (§ 464.35(h) and § 464.36(h)):
 34. 2,4-dimethylphenol
 71. dimethyl phthalate

<table>
<thead>
<tr>
<th>Pollutant or pollutant property</th>
<th>Maximum for any 1 day</th>
<th>Maximum for monthly average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (T)</td>
<td>1.81</td>
<td>0.988</td>
</tr>
<tr>
<td>Lead (T)</td>
<td>1.25</td>
<td>0.612</td>
</tr>
<tr>
<td>Zinc (T)</td>
<td>1.79</td>
<td>0.673</td>
</tr>
<tr>
<td>Total Phenols</td>
<td>2.02</td>
<td>0.708</td>
</tr>
<tr>
<td>TTO</td>
<td>5.41</td>
<td>1.77</td>
</tr>
<tr>
<td>Oil and Grease (for alternate monitoring)</td>
<td>70.6</td>
<td>23.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant or pollutant property</th>
<th>Maximum for any 1 day</th>
<th>Maximum for monthly average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (T)</td>
<td>0.392</td>
<td>0.214</td>
</tr>
<tr>
<td>Lead (T)</td>
<td>0.27</td>
<td>0.132</td>
</tr>
<tr>
<td>Zinc (T)</td>
<td>0.387</td>
<td>0.148</td>
</tr>
<tr>
<td>TTO</td>
<td>0.428</td>
<td>0.14</td>
</tr>
<tr>
<td>Oil and Grease (for alternate monitoring)</td>
<td>15.3</td>
<td>5.09</td>
</tr>
</tbody>
</table>
Environmental Protection Agency

§ 464.32

(7) Wet Sand Reclamation (§ 464.35(i) and § 464.36(i)):
1. acenaphthene
34. 2,4-dimethylphenol
39. fluoranthene
44. methylene chloride (dichloromethane)
55. naphthalene
65. phenol
66. bis (2-ethylhexyl) phthalate
68. di-n-butyl phthalate
70. diethyl phthalate
71. dimethyl phthalate
72. benzo(a)anthracene (1,2-benzanthracene)
77. acenaphthylene
84. pyrene

(b) Cast Iron. An iron containing carbon in excess of the solubility in the austenite that exists in the alloy at the eutectic temperature. Cast iron also is defined here to include any iron-carbon alloys containing 1.2 percent or more carbon by weight.

(c) Ductile Iron. A cast iron that has been treated while molten with a master alloy containing an element such as magnesium or cerium to induce the formation of free graphite as nodules or spherules, which imparts a measurable degree of ductility to the cast metal.

(d) Gray Iron. A cast iron that gives a gray fracture due to the presence of flake graphite.

(e) Malleable Iron. A cast iron made by a prolonged anneal of white cast iron in which decarburization or graphitization, or both, take place to eliminate some or all of the cementite. Graphite is present in the form of temper carbon.

(f) Steel. An iron-base alloy containing carbon, manganese, and often other alloying elements. Steel is defined here to include only those iron-carbon alloys containing less than 1.2 percent carbon by weight.

(g) The “primary metal cast” shall mean the metal that is poured in the greatest quantity at an individual plant.

(h) Multiple Ferrous Melting Furnace Scrubber Configuration. A multiple ferrous melting furnace scrubber configuration is a configuration where two or more discrete wet scrubbing devices are employed in series in a single melting furnace exhaust gas stream. The ferrous melting furnace scrubber mass allowance shall be given to each discrete wet scrubbing device that has an associated wastewater discharge in a multiple ferrous melting furnace scrubber configuration. The mass allowance for each discrete wet scrubber shall be identical and based on the air flow of the exhaust gas stream that passes through the multiple scrubber configuration.

(i) Discrete Wet Scrubbing Device. A discrete wet scrubbing device is a distinct, stand-alone device that removes particulates and fumes from a contaminated gas stream by bringing the gas stream into contact with a scrubber liquor, usually water, and from which there is a wastewater discharge. Examples of discrete wet scrubbing devices are: Spray towers and chambers, venturi scrubbers (fixed and variable), wet caps, packed bed scrubbers, quenchers, and orifice scrubbers. Semi-wet scrubbing devices where water is added and totally evaporates prior to dry air pollution control are not considered to be discrete wet scrubbing devices. Ancillary scrubber operations such as fan washes and backwashes are not considered to be discrete wet scrubber devices. These ancillary operations are covered by the mass limitations of the associated scrubber. Aftercoolers are not considered to be discrete wet scrubbing devices, and water discharges from aftercooling are not regulated as a process wastewater in this category.

§ 464.32 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available.

Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available, except that non-continuous dischargers shall not be subject to the maximum day and maximum for monthly average mass (kg/1,000 kg or lb/million lb of metal poured; kg/1,000 kg or lb/million lb of sand reclaimed; kg/62.3 million Sm³ or lb/billion SCF of air scrubbed) effluent limitations for copper, lead, zinc, total phenols, oil and grease, and TSS. For non-continuous dischargers,