Environmental Protection Agency

§ 98.443 Calculating CO₂ geologic sequestration.

You must calculate the mass of CO₂ sequestered in subsurface geologic formations, as sequestered in subsurface geologic formations in all years since the facility became subject to reporting requirements under this subpart.

[76 FR 75078, Dec. 1, 2010, as amended at 76 FR 73905, Nov. 29, 2011]

§ 98.442 GHGs to report.

You must report:

(a) Mass of CO₂ received.

(b) Mass of CO₂ injected into the subsurface.

(c) Mass of CO₂ produced.

(d) Mass of CO₂ emitted by surface leakage.

(e) Mass of CO₂ emissions from equipment leaks and vented emissions of CO₂ from surface equipment located between the injection flow meter and the injection wellhead.

(f) Mass of CO₂ emissions from equipment leaks and vented emissions of CO₂ from surface equipment located between the production flow meter and the production wellhead.

(g) Mass of CO₂ sequestered in subsurface geologic formations.

(h) Cumulative mass of CO₂ reported as sequestered in subsurface geologic formations.

[76 FR 75078, Dec. 1, 2010, as amended at 76 FR 73905, Nov. 29, 2011]

§ 98.441 Reporting threshold.

(a) You must report under this subpart if any well or group of wells within your facility injects any amount of CO₂ for long-term containment in subsurface geologic formations. There is no threshold.

(b) Request for discontinuation of reporting. The requirements of §98.2(i) do not apply to this subpart. Once a well or group of wells is subject to the requirements of this subpart, the owner or operator must continue for each year thereafter to comply with all requirements of this subpart, including the requirement to submit annual reports, until the Administrator has issued a final decision on an owner or operator’s request to discontinue reporting.

(1) Timing of request. The owner or operator of a facility may submit a request to discontinue reporting any time after the well or group of wells is plugged and abandoned in accordance with applicable requirements.

(2) Content of request. A request for discontinuation of reporting must contain either paragraph (b)(2)(i) or (b)(2)(ii) of this section.

(i) For wells permitted as Class VI under the Underground Injection Control program, a copy of the applicable Underground Injection Control program Director’s authorization of site closure.

(ii) For all other wells, and as an alternative for wells permitted as Class VI under the Underground Injection Control program, a demonstration that current monitoring and model(s) show that the injected CO₂ stream is not expected to migrate in the future in a manner likely to result in surface leakage.

(3) Notification. The Administrator will issue a final decision on the request to discontinue reporting within a reasonable time. Any appeal of the Administrator’s final decision is subject to the provisions of part 78 of this chapter.

995
in §98.444(a)(4). You must calculate CO₂ sequestered using injection equations (Equations RR–4 to RR–6 of this section), production/recycling equations (Equations RR–7 to RR–9 of this section), surface leakage equations (Equation RR–10 of this section), and sequestration equations (Equations RR–11 and RR–12 of this section). For your first year of reporting, you must calculate CO₂ sequestered starting from the date set forth in your approved MRV plan.

(a) You must calculate and report the annual mass of CO₂ received by pipeline using the procedures in paragraphs (a)(1) or (a)(2) of this section and the procedures in paragraph (a)(3) of this section, if applicable.

(1) For a mass flow meter, you must calculate the total annual mass of CO₂ in a CO₂ stream received in metric tons by multiplying the mass flow by the CO₂ concentration in the flow, according to Equation RR–1 of this section. You must collect these data quarterly. Mass flow and concentration data measurements must be made in accordance with §98.444.

\[\text{CO}_2T, r = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) \times C_{CO_2,p,r} \]

(Eq. RR-1)

where:
- \(\text{CO}_2T, r \) = Net annual mass of CO₂ received through flow meter \(r \) (metric tons).
- \(Q_{r,p} \) = Quarterly mass flow through a receiving flow meter \(r \) in quarter \(p \) (metric tons).
- \(S_{r,p} \) = Quarterly mass flow through a receiving flow meter \(r \) that is redelivered to another facility without being injected into your well in quarter \(p \) (metric tons).
- \(C_{CO_2,p,r} \) = Quarterly CO₂ concentration measurement in flow for flow meter \(r \) in quarter \(p \) (wt. percent CO₂, expressed as a decimal fraction).
- \(p \) = Quarter of the year.
- \(r \) = Receiving flow meter.

(2) For a volumetric flow meter, you must calculate the total annual mass of CO₂ in a CO₂ stream received in metric tons by multiplying the volumetric flow at standard conditions by the CO₂ concentration in the flow and the density of CO₂ at standard conditions, according to Equation RR–2 of this section. You must collect these data quarterly. Volumetric flow and concentration data measurements must be made in accordance with §98.444.

\[\text{CO}_2T, r = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) \times D \times C_{CO_2,p,r} \]

(Eq. RR-2)

where:
- \(\text{CO}_2T, r \) = Net annual mass of CO₂ received through flow meter \(r \) (metric tons).
- \(Q_{r,p} \) = Quarterly volumetric flow through a receiving flow meter \(r \) in quarter \(p \) at standard conditions (standard cubic meters).
- \(S_{r,p} \) = Quarterly volumetric flow through a receiving flow meter \(r \) that is redelivered to another facility without being injected into your well in quarter \(p \) (standard cubic meters).
- \(D \) = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- \(C_{CO_2,p,r} \) = Quarterly CO₂ concentration measurement in flow for flow meter \(r \) in quarter \(p \) (vol. percent CO₂, expressed as a decimal fraction).
- \(p \) = Quarter of the year.
- \(r \) = Receiving flow meter.

(3) If you receive CO₂ through more than one flow meter, you must sum the mass of all CO₂ received in accordance with the procedure specified in Equation RR–3 of this section.
where:

\(\text{CO}_2 = \sum_{r=1}^{g} \text{CO}_{2T,r} \) (Eq. RR-3)

in containers using Equation RR-2 of this section.

where:

\(\text{CO}_2 = \text{Net annual mass of CO}_2 \text{ received (metric tons).} \)
\(\text{CO}_{2T,r} = \text{Net annual mass of CO}_2 \text{ received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.} \)
\(r = \text{Receiving flow meter.} \)

(b) You must calculate and report the annual mass of CO\(_2\) received in containers using the procedures in paragraphs (b)(1) or (b)(2) of this section.

(1) If you are measuring the mass of contents in a container under the provisions of §98.444(a)(2)(i), you must calculate the CO\(_2\) received for injection in containers using Equation RR-1 of this section.

where:

\(\text{CO}_{2T,r} = \text{Net annual mass of CO}_2 \text{ received in containers } r \text{ (metric tons).} \)
\(C_{\text{CO}_2,p,r} = \text{Quarterly CO}_2 \text{ concentration measurement of contents in containers } r \text{ in quarter } p \text{ (wt. percent CO}_2\text{, expressed as a decimal fraction).} \)
\(Q_{r,p} = \text{Quarterly mass of contents in containers } r \text{ in quarter } p \text{ (metric tons).} \)
\(S_{r,p} = \text{Quarterly mass of contents in containers } r \text{ redelivered to another facility without being injected into your well in quarter } p \text{ (metric tons).} \)
\(D = \text{Density of the CO}_2 \text{ received in containers at standard conditions (metric tons per standard cubic meter): } 0.0018682. \)
\(p = \text{Quarter of the year.} \)
\(r = \text{Containers.} \)

(2) If you are measuring the volume of contents in a container under the provisions of §98.444(a)(2)(ii), you must calculate the CO\(_2\) received for injection in containers using Equation RR-2 of this section.

where:

\(\text{CO}_{2,r} = \text{Net annual mass of CO}_2 \text{ received in containers } r \text{ (metric tons).} \)
\(C_{\text{CO}_2,p,r} = \text{Quarterly CO}_2 \text{ concentration measurement of contents in containers } r \text{ in quarter } p \text{ (vol. percent CO}_2\text{, expressed as a decimal fraction).} \)
\(Q_{r,p} = \text{Quarterly volume of contents in containers } r \text{ in quarter } p \text{ (standard cubic meters).} \)
\(D = \text{Density of the CO}_2 \text{ received in containers at standard conditions (metric tons per standard cubic meter): } 0.0018682. \)
\(p = \text{Quarter of the year.} \)
\(r = \text{Containers.} \)

(c) You must report the annual mass of CO\(_2\) injected in accordance with the procedures specified in paragraphs (c)(1) through (c)(3) of this section.

(1) If you use a mass flow meter to measure the flow of an injected CO\(_2\) stream, you must calculate annually the total mass of CO\(_2\) (in metric tons) in the CO\(_2\) stream injected each year in metric tons by multiplying the mass flow by the CO\(_2\) concentration in the flow, according to Equation RR-4 of this section. Mass flow and concentration data measurements must be made in accordance with §98.444.

\(\text{CO}_2,u = \sum_{p=1}^{4} Q_{p,u} * C_{\text{CO}_2,p,u} \) (Eq. RR-4)

where:

\(\text{CO}_2,u = \text{Annual CO}_2 \text{ mass injected (metric tons) as measured by flow meter } u. \)
\(Q_{p,u} = \text{Quarterly mass flow rate measurement for flow meter } u \text{ in quarter } p \text{ (metric tons per quarter).} \)
\(C_{\text{CO}_2,p,u} = \text{Quarterly CO}_2 \text{ concentration measurement in flow for flow meter } u \text{ in quarter } p \text{ (wt. percent CO}_2\text{, expressed as a decimal fraction).} \)
\(p = \text{Quarter of the year.} \)
\(u = \text{Flow meter.} \)

(2) If you use a volumetric flow meter to measure the flow of an injected CO\(_2\) stream, you must calculate annually the total mass of CO\(_2\) (in metric tons) in the CO\(_2\) stream injected each year in metric tons by multiplying the volumetric flow at standard conditions by the CO\(_2\) concentration in the flow and
the density of CO\textsubscript{2} at standard conditions, according to Equation RR-5 of this section. Volumetric flow and concentration data measurements must be made in accordance with §98.444.

\[
\text{CO}_{2,u} = \sum_{p=1}^{4} Q_{p,u} \ast D \ast C_{\text{CO}_2,p,u} \quad \text{(Eq. RR-5)}
\]

where:
- \(\text{CO}_{2,u}\) = Annual CO\textsubscript{2} mass injected (metric tons) as measured by flow meter u.
- \(Q_{p,u}\) = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- \(D\) = Density of CO\textsubscript{2} at standard conditions (metric tons per standard cubic meter): 0.0018682.
- \(C_{\text{CO}_2,p,u}\) = CO\textsubscript{2} concentration measurement in flow for flow meter u in quarter p (vol. percent CO\textsubscript{2}, expressed as a decimal fraction).
- \(p\) = Quarter of the year.
- \(u\) = Flow meter.

(3) To aggregate injection data for all wells covered under this subpart, you must sum the mass of all CO\textsubscript{2} injected through all injection wells in accordance with the procedure specified in Equation RR-6 of this section.

\[
\text{CO}_{2I} = \sum_{u=1}^{U} \text{CO}_{2,u} \quad \text{(Eq. RR-6)}
\]

where:
- \(\text{CO}_{2I}\) = Total annual CO\textsubscript{2} mass injected (metric tons) through all injection wells.
- \(\text{CO}_{2,u}\) = Annual CO\textsubscript{2} mass injected (metric tons) as measured by flow meter u.
- \(u\) = Flow meter.

(d) You must calculate the annual mass of CO\textsubscript{2} produced from oil or gas production wells or from other fluid wells for each separator that sends a stream of gas into a recycle or end use system in accordance with the procedures specified in paragraphs (d)(1) through (d)(3) of this section. You must account for any CO\textsubscript{2} that is produced and not processed through a separator. You must account only for wells that produce the CO\textsubscript{2} that was injected into the well or wells covered by this source category.

(1) For each gas-liquid separator for which flow is measured using a mass flow meter, you must calculate annually the total mass of CO\textsubscript{2} produced from an oil or other fluid stream in metric tons that is separated from the fluid by multiplying the mass gas flow by the CO\textsubscript{2} concentration in the gas flow, according to Equation RR-7 of this section. You must collect these data quarterly. Mass flow and concentration data measurements must be made in accordance with §98.444.

\[
\text{CO}_{2,w} = \sum_{p=1}^{4} Q_{p,w} \ast C_{\text{CO}_2,p,w} \quad \text{(Eq. RR-7)}
\]

Where:
- \(\text{CO}_{2,w}\) = Annual CO\textsubscript{2} mass produced (metric tons) through separator w.
- \(Q_{p,w}\) = Quarterly gas mass flow rate measurement for separator w in quarter p (metric tons).
Environmental Protection Agency § 98.443

CO2,p,w = Quarterly CO\textsubscript{2} concentration measurement in flow for separator w in quarter p (wt. percent CO\textsubscript{2}, expressed as a decimal fraction).

\(\text{p} = \) Quarter of the year.
\(\text{w} = \) Separator.

(2) For each gas-liquid separator for which flow is measured using a volumetric flow meter, you must calculate annually the total mass of CO\textsubscript{2} produced from an oil or other fluid stream in metric tons that is separated from the fluid by multiplying the volumetric gas flow at standard conditions by the \(CO_2 \) concentration in the gas flow and the density of CO\textsubscript{2} at standard conditions, according to Equation RR–8 of this section. You must collect these data quarterly. Volumetric flow and concentration data measurements must be made in accordance with §98.444.

\[CO_2,w = \sum_{p=1}^{4} Q_{p,w} \times D \times C_{CO2,p,w} \quad \text{(Eq. RR–8)} \]

Where:
\(CO_2,w = \) Annual CO\textsubscript{2} mass produced (metric tons) through separator w.
\(Q_{p,w} = \) Volumetric gas flow rate measurement for separator w in quarter p at standard conditions (standard cubic meters).
\(D = \) Density of CO\textsubscript{2} at standard conditions (metric tons per standard cubic meter): 0.0018682.
\(C_{CO2,p,w} = \) CO\textsubscript{2} concentration measurement in flow for separator w in quarter p (vol. percent CO\textsubscript{2}, expressed as a decimal fraction).

\(\text{p} = \) Quarter of the year.
\(\text{w} = \) Separator.

(3) To aggregate production data, you must sum the mass of all of the CO\textsubscript{2} separated at each gas-liquid separator in accordance with the procedure specified in Equation RR–9 of this section. You must assume that the total CO\textsubscript{2} measured at the separator(s) represents a percentage of the total CO\textsubscript{2} produced. In order to account for the percentage of CO\textsubscript{2} produced that is estimated to remain with the produced oil or other fluid, you must multiply the quarterly mass of CO\textsubscript{2} measured at the separator(s) by a percentage estimated using a methodology in your approved MRV plan. If fluids containing CO\textsubscript{2} from injection wells covered under this source category are produced and not processed through a gas-liquid separator, the concentration of CO\textsubscript{2} in the produced fluids must be measured at a flow meter located prior to reinjection or reuse using methods in §98.444(f)(1). The considerations you intend to use to calculate CO\textsubscript{2} from produced fluids for the mass balance equation must be described in your approved MRV plan in accordance with §98.448(a)(5).

\[CO_{2P} = (1+X) \times \sum_{w=1}^{W} CO_{2,w} \quad \text{(Eq. RR–9)} \]

Where:
\(CO_{2P} = \) Total annual CO\textsubscript{2} mass produced (metric tons) through all separators in the reporting year.
\(CO_{2,w} = \) Annual CO\textsubscript{2} mass produced (metric tons) through separator w in the reporting year.
\(X = \) Entrained CO\textsubscript{2} in produced oil or other fluid divided by the CO\textsubscript{2} separated through all separators in the reporting year (weight percent CO\textsubscript{2}, expressed as a decimal fraction).

\(w = \) Separator.

(e) You must report the annual mass of CO\textsubscript{2} that is emitted by surface leakage in accordance with your approved MRV plan. You must calculate the total annual mass of \(CO_2 \) emitted from all leakage pathways in accordance with the procedure specified in Equation RR–10 of this section.
§ 98.443 40 CFR Ch. I (7–1–14 Edition)

\[CO_{2E} = \sum_{x=1}^{X} CO_{2,x} \quad (Eq. \, RR-10) \]

where:
- \(CO_{2E} \) = Total annual \(CO_2 \) mass emitted by surface leakage (metric tons) in the reporting year.
- \(CO_{2,x} \) = Annual \(CO_2 \) mass emitted (metric tons) at leakage pathway \(x \) in the reporting year.
- \(x \) = Leakage pathway.

(f) You must report the annual mass of \(CO_2 \) that is sequestered in subsurface geologic formations in the reporting year in accordance with the procedures specified in paragraphs (f)(1) and (f)(2) of this section.

1. If you are actively producing oil or natural gas or if you are producing any other fluids, you must calculate the annual mass of \(CO_2 \) that is sequestered in the underground subsurface formation in the reporting year in accordance with the procedure specified in Equation RR-11 of this section.

\[CO_2 = CO_{2I} - CO_{2P} - CO_{2E} - CO_{2FI} - CO_{2FP} \quad (Eq. \, RR-11) \]

where:
- \(CO_{2I} \) = Total annual \(CO_2 \) mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- \(CO_{2P} \) = Total annual \(CO_2 \) mass produced (metric tons) in the reporting year.
- \(CO_{2E} \) = Total annual \(CO_2 \) mass emitted (metric tons) by surface leakage in the reporting year.
- \(CO_{2FI} \) = Total annual \(CO_2 \) mass emitted (metric tons) from equipment leaks and vented emissions of \(CO_2 \) from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.
- \(CO_{2FP} \) = Total annual \(CO_2 \) mass emitted (metric tons) from equipment leaks and vented emissions of \(CO_2 \) from equipment located on the surface between the production wellhead and the flow meter used to measure production quantity, for which a calculation procedure is provided in subpart W of this part.

2. If you are not actively producing oil or natural gas or any other fluids, you must calculate the annual mass of \(CO_2 \) that is sequestered in subsurface geologic formations in the reporting year in accordance with the procedures specified in Equation RR-12 of this section.

\[CO_2 = CO_{2I} - CO_{2E} - CO_{2FI} \quad (Eq. \, RR-12) \]

where:
- \(CO_{2I} \) = Total annual \(CO_2 \) mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- \(CO_{2E} \) = Total annual \(CO_2 \) mass emitted (metric tons) by surface leakage in the reporting year.
- \(CO_{2FI} \) = Total annual \(CO_2 \) mass emitted (metric tons) from equipment leaks and vented emissions of \(CO_2 \) from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.