§ 98.411 Reporting threshold.
Any supplier of industrial greenhouse gases who meets the requirements of §98.2(a)(4) must report GHG emissions.

§ 98.412 GHGs to report.
You must report the GHG emissions that would result from the release of the nitrous oxide and each fluorinated GHG that you produce, import, export, transform, or destroy during the calendar year.

§ 98.413 Calculating GHG emissions.
(a) Calculate the total mass of each fluorinated GHG or nitrous oxide produced annually, except for amounts that are captured solely to be shipped off site for destruction, by using Equation OO–1 of this section:

\[P = \sum_{p=1}^{n} P_p \]

(Eq. OO-1)

Where:

- \(P \) = Mass of fluorinated GHG or nitrous oxide produced annually.
- \(P_p \) = Mass of fluorinated GHG or nitrous oxide produced over the period “p”.

(b) Calculate the total mass of each fluorinated GHG or nitrous oxide produced over the period “p” by using Equation OO–2 of this section:

\[P_p = O_p - U_p \]

(Eq. OO-2)

Where:

- \(P_p \) = Mass of fluorinated GHG or nitrous oxide produced over the period “p” (metric tons).
- \(O_p \) = Mass of fluorinated GHG or nitrous oxide that is measured coming out of the production process over the period p (metric tons).
- \(U_p \) = Mass of used fluorinated GHG or nitrous oxide that is added to the production process upstream of the output measurement over the period “p” (metric tons).

(c) Calculate the total mass of each fluorinated GHG or nitrous oxide transformed by using Equation OO–3 of this section:

\[T = F_T \times E_T \]

(Eq. OO-3)

Where:

- \(T \) = Mass of fluorinated GHG or nitrous oxide transformed annually (metric tons).
- \(F_T \) = Mass of fluorinated GHG fed into the transformation process annually (metric tons).
- \(E_T \) = The fraction of the fluorinated GHG or nitrous oxide fed into the transformation process that is transformed in the process (metric tons).

(d) Calculate the total mass of each fluorinated GHG destroyed by using Equation OO–4 of this section:

\[D = F_D \times E_D \]

(Eq. OO-4)

Where:

- \(D \) = Mass of fluorinated GHG destroyed annually (metric tons).
- \(F_D \) = Mass of fluorinated GHG fed into the destruction device annually (metric tons).
- \(E_D \) = Destruction efficiency of the destruction device (fraction).

§ 98.414 Monitoring and QA/QC requirements.
(a) The mass of fluorinated GHGs or nitrous oxide coming out of the production process shall be measured using flowmeters, weigh scales, or a combination of volumetric and density measurements with an accuracy and precision of one percent of full scale or better. If the measured mass includes more than one fluorinated GHG, the concentrations of each of the fluorinated GHGs, other than low-concentration constituents, shall be measured as set forth in paragraph (n) of this section. For each fluorinated GHG, the mean of the concentrations of that fluorinated GHG (mass fraction) measured under paragraph (n) of this section shall be multiplied by the mass measurement to obtain the mass of that fluorinated GHG coming out of the production process.

(b) The mass of any used fluorinated GHGs or used nitrous oxide added back into the production process upstream of the output measurement in paragraph (a) of this section shall be measured using flowmeters, weigh scales, or a combination of volumetric and density measurements with an accuracy and precision of one percent of full scale or better. If the mass in paragraph (a) of this section is measured by weighing containers that include returned heels as well as newly produced fluorinated GHGs, the returned heels...
shall be considered used fluorinated GHGs for purposes of this paragraph (b) of this section and §98.413(b).

(c) The mass of fluorinated GHGs or nitrous oxide fed into the transformation process shall be measured using flowmeters, weigh scales, or a combination of volumetric and density measurements with an accuracy and precision of one percent of full scale or better.

(d) The fraction of the fluorinated GHGs or nitrous oxide fed into the transformation process that is actually transformed shall be estimated considering yield calculations or quantities of unreacted fluorinated GHGs or nitrous oxide permanently removed from the process and recovered, destroyed, or emitted.

(e) The mass of fluorinated GHG or nitrous oxide sent to another facility for transformation shall be measured using flowmeters, weigh scales, or a combination of volumetric and density measurements with an accuracy and precision of one percent of full scale or better.

(f) The mass of fluorinated GHG sent to another facility for destruction shall be measured using flowmeters, weigh scales, or a combination of volumetric and density measurements with an accuracy and precision of one percent of full scale or better. If the measured mass includes more than trace concentrations of materials other than the fluorinated GHG being destroyed, you must estimate the concentrations of the fluorinated GHG being destroyed considering current or previous representative concentration measurements and other relevant process information. You must multiply this concentration (mass fraction) by the mass measurement to obtain the mass of the fluorinated GHG fed into the destruction device.

(g) You must estimate the share of the mass of fluorinated GHGs in paragraph (f) of this section that is comprised of fluorinated GHGs that are not included in the mass produced in §98.410(b) because they are removed from the production process as by-products or other wastes.

(h) You must measure the mass of each fluorinated GHG that is fed into the destruction device and that was previously produced as defined at §98.410(b). Such fluorinated GHGs include but are not limited to quantities that are shipped to the facility by another facility for destruction and quantities that are returned to the facility for reclamation but are found to be irretrievably contaminated and are therefore destroyed. You must use flowmeters, weigh scales, or a combination of volumetric and density measurements with an accuracy and precision of one percent of full scale or better.

(i) Very small quantities of fluorinated GHGs that are difficult to measure because they are entrained in other media such as destroyed filters and destroyed sample containers are exempt from paragraphs (f) and (h) of this section.

(j) [Reserved]

(k) For purposes of Equation OO-4 of this subpart, the destruction efficiency can be equated to the destruction efficiency determined during a previous performance test of the destruction device or, if no performance test has been done, the destruction efficiency provided by the manufacturer of the destruction device.

(l) In their estimates of the mass of fluorinated GHGs destroyed, fluorinated GHG production facilities that destroy fluorinated GHGs shall account for any temporary reductions in the destruction efficiency that result from any startups, shutdowns, or malfunctions of the destruction device, including departures from the operating conditions defined in state or local permitting requirements and/or oxidizer manufacturer specifications.

(m) Calibrate all flow meters, weigh scales, and combinations of volumetric and density measures that are used to measure or calculate quantities that are to be reported under this subpart.
prior to the first year for which GHG emissions are reported under this part. Calibrations performed prior to the effective date of this rule satisfy this requirement. Recalibrate all flow meters, weigh scales, and combinations of volumetric and density measures at the minimum frequency specified by the manufacturer. Use NIST-traceable standards and suitable methods published by a consensus standards organization (e.g., ASTM, ASME, ISO, or others).

(n) If the mass coming out of the production process includes more than one fluorinated GHG, you shall measure the concentrations of all of the fluorinated GHGs, other than low-concentration constituents, as follows:

(1) **Analytical Methods.** Use a quality-assured analytical measurement technology capable of detecting the analyte of interest at the concentration of interest and use a procedure validated with the analyte of interest at the concentration of interest. Where standards for the analyte are not available, a chemically similar surrogate may be used. Acceptable analytical measurement technologies include but are not limited to gas chromatography (GC) with an appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR). Acceptable methods include EPA Method 18 in appendix A-1 of 40 CFR part 60; EPA Method 320 in appendix A of 40 CFR part 63; the Protocol for Measuring Destruction or Removal Efficiency (DRE) of Fluorinated Greenhouse Gas Abatement Equipment in Electronics Manufacturing, Version 1, EPA–430–R–10–003, (March 2010) (incorporated by reference, see §98.7); ASTM D6348–03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see §98.7); or other analytical methods validated using EPA Method 301 in appendix A of 40 CFR part 63 or some other scientifically sound validation protocol. The validation protocol may include analytical technology manufacturer specifications or recommendations.

(2) **Documentation in GHG Monitoring Plan.** Describe the analytical method(s) used under paragraph (n)(1) of this section in the site GHG Monitoring Plan as required under §98.3(g)(5). At a minimum, include in the description of the method a description of the analytical measurement equipment and procedures, quantitative estimates of the method’s accuracy and precision for the analytes of interest at the concentrations of interest, as well as a description of how these accuracies and precisions were estimated, including the validation protocol used.

(3) **Frequency of measurement.** Perform the measurements at least once by February 15, 2011 if the fluorinated GHG product is being produced on December 17, 2010. Perform the measurements within 60 days of commencing production of any fluorinated GHG product that was not being produced on December 17, 2010. Repeat the measurements if an operational or process change occurs that could change the identities or significantly change the concentrations of the fluorinated GHG constituents of the fluorinated GHG product. Complete the repeat measurements within 60 days of the operational or process change.

(4) **Measure all product grades.** Where a fluorinated GHG is produced at more than one purity level (e.g., pharmaceutical grade and refrigerant grade), perform the measurements for each purity level.

(5) **Number of samples.** Analyze a minimum of three samples of the fluorinated GHG product that have been drawn under conditions that are representative of the process producing the fluorinated GHG product. If the relative standard deviation of the measured concentrations of any of the fluorinated GHG constituents (other than low-concentration constituents) is greater than or equal to 15 percent, draw and analyze enough additional samples to achieve a total of at least six samples of the fluorinated GHG product.

(o) All analytical equipment used to determine the concentration of fluorinated GHGs, including but not limited to gas chromatographs and associated detectors, IR, FTIR and NMR devices, shall be calibrated at a frequency needed to support the type of
analysis specified in the site GHG Monitoring Plan as required under §§98.414(n) and 98.3(g)(5) of this part. Quality assurance samples at the concentrations of concern shall be used for the calibration. Such quality assurance samples shall consist of or be prepared from certified standards of the analytes of concern where available; if not available, calibration shall be performed by a method specified in the GHG Monitoring Plan.

(p) Isolated intermediates that are produced and transformed at the same facility are exempt from the monitoring requirements of this section.

(q) Low-concentration constituents are exempt from the monitoring and QA/QC requirements of this section.

§ 98.415 Procedures for estimating missing data.

(a) A complete record of all measured parameters used in the GHG emissions calculations is required. Therefore, whenever a quality-assured value of a required parameter is unavailable (e.g., if a meter malfunctions), a substitute data value for the missing parameter shall be used in the calculations, according to paragraph (b) of this section.

(b) For each missing value of the mass produced, fed into the production process (for used material being reclaimed), fed into the transformation process, fed into destruction devices, sent to another facility for transformation, or sent to another facility for destruction, the substitute value of that parameter shall be a secondary mass measurement where such a measurement is available. For example, if the mass produced is usually measured with a flowmeter at the inlet to the day tank and that flowmeter fails to meet an accuracy or precision test, malfunctions, or is rendered inoperative, then the mass produced may be estimated by calculating the change in volume in the day tank and multiplying it by the density of the product. Where a secondary mass measurement is not available, the substitute value of the parameter shall be an estimate based on a related parameter. For example, if a flowmeter measuring the mass fed into a destruction device is rendered inoperable, then the mass fed into the destruction device may be estimated using the production rate and the previously observed relationship between the production rate and the mass flow rate into the destruction device.

§ 98.416 Data reporting requirements.

In addition to the information required by §98.3(c), each annual report must contain the following information:

(a) Each fluorinated GHG or nitrous oxide production facility shall report the following information:

(1) Mass in metric tons of each fluorinated GHG or nitrous oxide produced at that facility by process, except for amounts that are captured solely to be shipped off site for destruction.

(2) Mass in metric tons of each fluorinated GHG or nitrous oxide transformed at that facility, by process.

(3) Mass in metric tons of each fluorinated GHG that is destroyed at that facility and that was previously produced as defined at §98.410(b). Quantities to be reported under this paragraph (a)(3) of this section include but are not limited to quantities that are shipped to the facility by another facility for destruction and quantities that are returned to the facility for reclamation but are found to be irretrievably contaminated and are therefore destroyed.

(4) [Reserved]

(5) Total mass in metric tons of each fluorinated GHG or nitrous oxide sent to another facility for transformation.

(6) Total mass in metric tons of each fluorinated GHG sent to another facility for destruction, except fluorinated GHGs that are not included in the mass produced in §98.413(a) because they are removed from the production process as by-products or other wastes. Quantities to be reported under this paragraph (a)(6) could include, for example, fluorinated GHGs that are returned to the facility for reclamation but are found to be irretrievably contaminated and are therefore sent to another facility for destruction.