§ 98.324 Monitoring and QA/QC requirements.

(a) For calendar year 2011 monitoring, the facility may submit a request to the Administrator to use one or more best available monitoring methods as listed in §98.3(d)(1)(i) through (iv). The request must be submitted no later than October 12, 2010 and must contain the information in §98.3(d)(2)(ii). To obtain approval, the request must demonstrate to the Administrator’s satisfaction that it is not reasonably feasible to acquire, install, and operate a required piece of monitoring equipment by January 1, 2011.

(b) For CH₄ liberated from ventilation systems, determine whether CH₄ will be monitored from each ventilation shaft and vent hole, from a centralized monitoring point, or from a combination of the two options. Operators are allowed flexibility for aggregating emissions from more than one ventilation point, as long as emissions from all are addressed, and the methodology for calculating total emissions documented. Monitor by one of the following options:

1. Collect quarterly or more frequent grab samples (with no fewer than 6 weeks between measurements) for methane concentration and make quarterly measurements of flow rate, temperature, pressure, and moisture content, if applicable. The sampling and measurements must be made at the same locations as Mine Safety and Health Administration (MSHA) inspection samples are taken, and should be taken when the mine is operating.

CH₄ emitted (net) = CH₄Total + CH₄DTotal - CH₄destroyedTotal

Where:
CH₄ emitted (net) = Quarterly CH₄ emissions from the mine (metric tons).
CH₄Total = Quarterly sum of the CH₄ liberated from all mine ventilation monitoring points (CH₄V), calculated using Equation FF-2 of this section (metric tons).
CH₄DTotal = Quarterly sum of the CH₄ liberated from all mine degasification monitoring points (CH₄D), calculated using Equation FF-4 of this section (metric tons).
CH₄destroyedTotal = Quarterly sum of the measured CH₄ destroyed from all mine ventilation and degasification systems, calculated using Equation FF-6 of this section (metric tons).

(e) For the methane collected from degasification and/or ventilation systems that is destroyed on site and is not a fuel input for energy generation or use (those emissions are monitored and reported under Subpart C of this part), you must estimate the CO₂ emissions using Equation FF-8 of this section.

CO₂ = CH₄destroyedonsite * 44/16

Where:
CO₂ = Total quarterly CO₂ emissions from CH₄ destruction (metric tons).
CH₄destroyedonsite = Quarterly sum of the CH₄ destroyed, calculated as the sum of CH₄ destroyed for each onsite, non-energy use, as calculated individually in Equation FF-5 of this section (metric tons).
44/16 = Ratio of molecular weights of CO₂ to CH₄.

(75 FR 39763, July 12, 2010, as amended at 76 FR 73901, Nov. 29, 2011; 78 FR 71967, Nov. 29, 2013)
under normal conditions. You must follow MSHA sampling procedures as set forth in the MSHA Handbook entitled, General Coal Mine Inspection Procedures and Inspection Tracking System Handbook Number: PH–08–V–1, January 1, 2008 (incorporated by reference, see § 98.7). You must record the date of sampling, flow, temperature, pressure, and moisture measurements, the methane concentration (percent), the bottle number of samples collected, and the location of the measurement or collection.

(2) Obtain results of the quarterly (or more frequent) testing performed by MSHA for the methane flowrate. At the same location and within seven days of the MSHA sampling, make measurements of temperature and pressure using the same procedures specified in paragraph (b)(1) of this section. The annual average barometric pressure from the nearest National Oceanic and Atmospheric Administration (NOAA) weather service station may be used as a default for pressure. If the MSHA data for methane flow is provided in the units of actual cubic feet of methane per day, the methane flow data is inserted into Equation FF–1 of this section in place of the value for V and the variables MCF, C/100%, and 1440 are removed from the equation.

(3) Monitor emissions through the use of one or more continuous emissions monitoring systems (CEMS). If operators use CEMS as the basis for emissions reporting, they must provide documentation on the process for using data obtained from their CEMS to estimate emissions from their mine ventilation systems.

(2) Collect weekly (once each calendar week, with at least three days between measurements) or more frequent samples, for all degasification wells and gob gas vent holes. Determine weekly or more frequent flow rates, methane concentration, temperature, and pressure from these degasification wells and gob gas vent holes. Methane composition should be determined either by submitting samples to a lab for analysis, or from the use of methanometers at the degasification monitoring site. Follow the sampling protocols for sampling of methane emissions from ventilation shafts, as described in § 98.324(b)(1). You must record the date of sampling, flow, temperature, pressure, and moisture measurements, the methane concentration (percent), the bottle number of samples collected, and the location of the measurement or collection.

(3) If the CH₄ concentration is determined on a dry basis and flow is determined on a wet basis or CH₄ concentration is determined on a wet basis and flow is determined on a dry basis, and the flow meter does not automatically correct for moisture content, determine the moisture content in the gas in a location near or representative of the location of:

(i) The gas flow meter at least once each calendar week; if measuring with CEMS. If only one measurement is made each calendar week, there must be at least three days between measurements; and

(ii) The grab sample, if using grab samples, at the time of the sample.

(d) Monitoring must adhere to one of the methods specified in paragraphs (d)(1) through (d)(3) of this section.

(2) As an alternative to the gas chromatography methods provided in paragraph (d)(1) of this section, you may use gaseous organic concentration analyzers and a correction factor to calculate the CH₄ concentration following the requirements in paragraphs (d)(2)(i) through (d)(2)(iii) of this section.

(i) Use Method 25A or 25B at 40 CFR part 60, appendix A–7 to determine gaseous organic concentration as required in §98.323 and in paragraphs (b) and (c) of this section. You must calibrate the instrument with CH₄ and determine the total gaseous organic concentration as carbon (or as CH₄; K=1 in Equation 25A–1 of Method 25A at 40 CFR part 60, appendix A–7).

(ii) Determine a correction factor that will be used with the gaseous organic concentrations measured in paragraph (i) of this section. The correction factor must be determined at the routine sampling location no less frequently than once a reporting year following the requirements in paragraphs (d)(2)(i)(A) through (d)(2)(i)(C) of this section.

(A) Take a minimum of three grab samples of the gas with a minimum of 20 minutes between samples and determine the methane composition of the gas using either Method 25A or 25B at 40 CFR part 60, appendix A–7 as specified in paragraph (d)(2)(i) of this section.

(B) As soon as practical after each grab sample is collected and prior to the collection of a subsequent grab sample, determine the gaseous organic concentration of the gas using either Method 25A or 25B at 40 CFR part 60, appendix A–7 as specified in paragraph (d)(2)(i) of this section.

(C) Determine the arithmetic average methane concentration and the arithmetic average gaseous organic concentration of the samples analyzed according to paragraphs (d)(2)(i)(A) and (d)(2)(i)(B) of this section, respectively, and calculate the non-methane organic carbon correction factor as the ratio of the average methane concentration to the average total gaseous organic concentration. If the ratio exceeds 1, use 1 for the correction factor.

(iii) Calculate the CH₄ concentration as specified in Equation FF–9 of this section:

\[C_{\text{CH}_4} = f_{\text{NMOC}} \times C_{\text{TGOC}} \]

(\text{Eq. FF–9)}

Where:

- \(C_{\text{CH}_4} \) = Methane (CH₄) concentration in the gas (volume %) for use in Equations FF–1 and FF–3 of this subpart.
- \(f_{\text{NMOC}} \) = Correction factor from the most recent determination of the correction factor as specified in paragraph (d)(2)(ii) of this section (unitless).
- \(C_{\text{TGOC}} \) = Gaseous organic carbon concentration measured using Method 25A or 25B at 40 CFR part 60, appendix A–7 during routine monitoring of the gas (volume %).

(e) All flow meters and gas composition monitors that are used to provide data for the GHG emissions calculations shall be calibrated prior to the first reporting year, using the applicable methods specified in paragraphs (d), and (e)(1) through (e)(7) of this section. Alternatively, calibration procedures specified by the flow meter manufacturer may be used. Flow meters and gas composition monitors shall be recalibrated either at the minimum frequency specified by the manufacturer or annually. The operator shall operate, maintain, and calibrate a gas composition monitor capable of measuring the concentration of CH₄ in the gas using one of the methods specified in paragraph (d) of this section. The operator shall operate, maintain, and calibrate the flow meter using any of the following test methods or follow the procedures specified by the flow meter manufacturer. Flow meters must meet the accuracy requirements in §98.3(i).

§ 98.326 Data reporting requirements.

In addition to the information required by §98.3(c), each annual report must contain the following information for each mine:

(a) Quarterly CH₄ liberated from each ventilation monitoring point, (metric tons CH₄).

(b) Weekly CH₄ liberated from each degasification system monitoring point (metric tons CH₄).

(c) Quarterly CH₄ destruction at each ventilation and degasification system destruction device or point of offsite transport (metric tons CH₄).

(d) Quarterly CH₄ emissions (net) from all ventilation and degasification systems (metric tons CH₄).

(e) Quarterly CO₂ emissions from on-site destruction of coal mine gas CH₄, where the gas is not a fuel input for energy generation or use (e.g., flaring) (metric tons CO₂).

(f) Quarterly volumetric flow rate for each ventilation monitoring point and units of measure (scfm or acfm), date and location of each measurement, and method of measurement (quarterly sampling or continuous monitoring), used in Equation FF–1 of this subpart.

(g) Quarterly CH₄ concentration for each ventilation monitoring point, dates and locations of each measurement and method of measurement (sampling or continuous monitoring).