(3) Annual production capacity of silicon carbide (tons).

(4) Carbon content factor of petroleum coke from the supplier or as measured by the applicable method in §98.284(c) for each month (percent by weight expressed as a decimal fraction).

(5) Whether carbon content of the petroleum coke is based on reports from the supplier or through self measurement using applicable ASTM standard method.

(6) CO₂ emissions factor calculated for each month (metric tons CO₂/metric ton of petroleum coke consumed).

(7) Sampling analysis results for carbon content of consumed petroleum coke as determined for QA/QC of supplier data under §98.284(d) (percent by weight expressed as a decimal fraction).

(8) Number of times in the reporting year that missing data procedures were followed to measure the carbon contents of petroleum coke (number of months) and petroleum coke consumption (number of months).

§98.287 Records that must be retained.

In addition to the records required by §98.3(g), you must retain the records specified in paragraphs (a) and (b) of this section for each silicon carbide production facility.

(a) If a CEMS is used to measure CO₂ emissions, you must retain under this subpart the records required for the Tier 4 Calculation Methodology in §98.37 and the information listed in this paragraph (a):

1. Records of all petroleum coke purchases.
2. Annual operating hours.

(b) If a CEMS is not used to measure emissions, you must retain records for the information listed in this paragraph (b):

1. Records of all analyses and calculations conducted for reported data listed in §98.290(b).
2. Records of all petroleum coke purchases.
3. Annual operating hours.

§98.288 Definitions.

All terms used in this subpart have the same meaning given in the Clean Air Act and subpart A of this part.

Subpart CC—Soda Ash Manufacturing

§98.290 Definition of the source category.

(a) A soda ash manufacturing facility is any facility with a manufacturing line that produces soda ash by one of the methods in paragraphs (a)(1) through (3) of this section:

1. Calcining trona.
2. Calcining sodium sesquicarbonate.
3. Using a liquid alkaline feedstock process that directly produces CO₂.

(b) In the context of the soda ash manufacturing sector, “calcining” means the thermal/chemical conversion of the bicarbonate fraction of the feedstock to sodium carbonate.

§98.291 Reporting threshold.

You must report GHG emissions under this subpart if your facility contains a soda ash manufacturing process and the facility meets the requirements of either §98.2(a)(1) or (a)(2).

§98.292 GHGs to report.

You must report:

(a) CO₂ process emissions from each soda ash manufacturing line combined.

(b) CO₂ combustion emissions from each soda ash manufacturing line.

(c) CH₄ and N₂O combustion emissions from each soda ash manufacturing line.

(d) CO₂, CH₄, and N₂O emissions from each stationary combustion unit other than soda ash manufacturing lines. You must calculate and report these emissions under subpart C of this part (General Stationary Fuel Combustion Sources) by following the requirements of subpart C.

§98.293 Calculating GHG emissions.

You must calculate and report the annual process CO₂ emissions from each soda ash manufacturing line using
§ 98.293

(a) For each soda ash manufacturing line that meets the conditions specified in §98.33(b)(4)(ii) or (b)(4)(iii), you must calculate and report under this subpart the combined process and combustion CO₂ emissions by operating and maintaining a CEMS to measure CO₂ emissions according to the Tier 4 Calculation Methodology specified in §98.33(a)(4) and all associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources).

(b) For each soda ash manufacturing line that is not subject to the requirements in paragraph (a) of this section, calculate and report the process CO₂ emissions from the soda ash manufacturing line by using the procedure in either paragraphs (b)(1), (b)(2), or (b)(3) of this section; and the combustion CO₂ emissions using the procedure in paragraph (b)(4) of this section.

(1) Calculate and report under this subpart the combined process and combustion CO₂ emissions by operating and maintaining a CEMS to measure CO₂ emissions according to the Tier 4 Calculation Methodology specified in §98.33(a)(4) and all associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources).

(2) Use either Equation CC-1 or Equation CC-2 of this section to calculate annual CO₂ process emissions from each manufacturing line that calcines trona to produce soda ash:

\[
E_k = \sum_{n=1}^{12} \left[\left(IC_T \right)_n \times \left(T_T \right)_n \right] \times \frac{2000}{2205} \times \frac{0.097}{1}
\]

(Eq. CC-1)

\[
E_k = \sum_{n=1}^{12} \left[\left(IC_{sa} \right)_n \times \left(T_{sa} \right)_n \right] \times \frac{2000}{2205} \times \frac{0.138}{1}
\]

(Eq. CC-2)

Where:

- \(E_k \) = Annual CO₂ process emissions from each manufacturing line, k (metric tons).
- \((IC_T)_n \) = Inorganic carbon content (percent by weight, expressed as a decimal fraction) in trona input, from the carbon analysis results for month n. This represents the ratio of trona to trona ore.
- \((IC_{sa})_n \) = Inorganic carbon content (percent by weight, expressed as a decimal fraction) in soda ash output, from the carbon analysis results for month n. This represents the purity of the soda ash produced.
- \((T_T)_n \) = Mass of trona input in month n (tons).
- \((T_{sa})_n \) = Mass of soda ash output in month n (tons).
- 2000/2205 = Conversion factor to convert tons to metric tons.
- 0.097/1 = Ratio of ton of CO₂ emitted for each ton of trona.
- 0.138/1 = Ratio of ton of CO₂ emitted for each ton of soda ash produced.

(3) Site-specific emission factor method. Use Equations CC-3, CC-4, and CC-5 of this section to determine annual CO₂ process emissions from manufacturing lines that use the liquid alkaline feedstock process to produce soda ash. You must conduct an annual performance test and measure CO₂ emissions and flow rates at all process vents from the mine water stripper/evaporator for each manufacturing line and calculate CO₂ emissions as described in paragraphs (b)(3)(i) through (b)(3)(iv) of this section.

(i) During the performance test, you must measure the process vent flow from each process vent during the test and calculate the average rate for the test period in metric tons per hour.

(ii) Using the test data, you must calculate the hourly CO₂ emission rate using Equation CC-3 of this section:
\[ER_{CO2} = \left[(C_{CO2} \times 10000) \times 2.59 \times 10^{-9} \times 44 \right] \times (Q \times 60) \times 4.53 \times 10^{-4} \] (Eq. CC-3)

Where:
- \(ER_{CO2} \) = CO₂ mass emission rate (metric tons/hour).
- \(C_{CO2} \) = Hourly CO₂ concentration (percent CO₂) as determined by §98.294(c).
- 10000 = Parts per million per percent
- 2.59 \times 10^{-9} = Conversion factor (pounds-mole to ppm).
- 44 = Pounds per pound-mole of carbon dioxide.
- Q = Stack gas volumetric flow rate per minute (dscfm).
- 60 = Minutes per hour
- 4.53 \times 10^{-4} = Conversion factor (metric tons/pound)

(iii) Using the test data, you must calculate a CO₂ emission factor for the process using Equation CC-4 of this section:

\[EF_{CO2} = \frac{ER_{CO2}}{V \times 4.53 \times 10^{-4}} \] (Eq. CC-4)

Where:
- \(EF_{CO2} \) = CO₂ emission factor (metric tons CO₂/metric ton of process vent flow from mine water stripper/evaporator).
- \(ER_{CO2} \) = CO₂ mass emission rate (metric tons/hour).
- \(V \) = Process vent flow rate from mine water stripper/evaporator during annual performance test (pounds/hour).
- 4.53 \times 10^{-4} = Conversion factor (metric tons/pound)

(iv) You must calculate annual CO₂ process emissions from each manufacturing line using Equation CC-5 of this section:

\[E_k = EF_{CO2} \times (V_a \times 0.453) \times H \] (Eq. CC-5)

Where:
- \(E_k \) = Annual CO₂ process emissions for each manufacturing line, k (metric tons).
- \(EF_{CO2} \) = CO₂ emission factor (metric tons CO₂/metric ton of process vent flow from mine water stripper/evaporator).
- \(V_a \) = Annual process vent flow rate from mine water stripper/evaporator (thousand pounds/hour).
- \(H \) = Annual operating hours for the each manufacturing line.
- 0.453 = Conversion factor (metric tons/thousand pounds).

(4) Calculate and report under subpart C of this part (General Stationary Fuel Combustion Sources) the combustion CO₂, CH₄, and N₂O emissions in the soda ash manufacturing line according to the applicable requirements in subpart C.

§ 98.294 Monitoring and QA/QC Requirements.

Section 98.293 provides three different procedures for emission calculations. The appropriate paragraphs (a) through (c) of this section should be used for the procedure chosen.

(a) If you determine your emissions using §98.293(b)(2) (Equation CC-1 of this subpart) you must:

(1) Determine the monthly inorganic carbon content of the trona from a weekly composite analysis for each soda ash manufacturing line, using a modified version of ASTM E359–00 (Reapproved 2005)e1, Standard Test Methods for Analysis of Soda Ash (Sodium Carbonate) (incorporated by reference, see §98.7). ASTM E359–00(Reapproved 2005)e1 is designed to measure the total alkalinity in soda ash not in trona. The modified method referred to above adjusts the regular ASTM method to express the results in terms of trona. Although ASTM E359–00 (Reapproved 2005) e1 uses manual titration, suitable autotitraturs may also be used for this determination.

(2) Measure the mass of trona input produced by each soda ash manufacturing line on a monthly basis using belt scales or methods used for accounting purposes.