§ 90.425 CVS calibration frequency.

Calibrate the CVS positive displacement pump or critical flow venturi following initial installation, major maintenance, or as necessary when indicated by the CVS system verification (described in §90.424(e)).

§ 90.426 Dilute emission sampling calculations—gasoline fueled engines.

(a) The final reported emission test results must be computed by use of the following formula:

\[A_{WM} = \sum_{i}^{n} \left(\frac{W_i \cdot WFi}{P_i \cdot WFi} \right) \cdot K_{Hi} \]

Where:

- \(A_{WM} \) = Final weighted brake-specific mass emission rate for an emission (HC, CO, CO\(_2\), or NO\(_X\)) [g/kW-hr]
- \(W_i \) = Average mass flow rate of an emission (HC, CO, CO\(_2\), NO\(_X\)) from a test engine during mode \(i \) [g/hr]
- \(WFi \) = Weighting factor for each mode \(i \) as defined in §90.410(a).
- \(P_i \) = Gross average power generated during mode \(i \) [kW], calculated from the following equation:
 \[P_i = \frac{2\pi \times \text{speed} \times \text{torque}}{60,000} \]
 Where:
 - \(\text{speed} \) = average engine speed measured during mode \(i \) [rev./minute]
 - \(\text{torque} \) = average engine torque measured during mode \(i \) [N-m]
- \(K_{Hi} \) = NO\(_X\) humidity correction factor for mode \(i \). This correction factor only affects calculations for NO\(_X\) and is equal to one for all other emissions. \(K_{Hi} \) is also equal to 1 for all two-stroke engines.

(b) The mass flow rate, \(W_i \), in g/hr, of an emission for mode \(i \) is determined from the following equation:

\[W_i = Q_i \cdot \text{Density} \left[\frac{C_{Di}}{10^5} - \frac{C_{Bi}}{10^5} \left(1 - \frac{1}{DF_i} \right) \right] \]

Where:

- \(Q_i \) = Volumetric flow rate [m\(^3\)/HR at stp].
- \(\text{Density} \) = Density of a specific emission (Density\(_\text{HC}\), Density\(_\text{CO}\), Density\(_\text{CO}_2\), Density\(_\text{NO}_X\)) [g/m\(^3\)].
- \(DF_i \) = Dilution factor of the dilute exhaust during mode \(i \).
- \(C_{Di} \) = Concentration of the emission (HC, CO, NO\(_X\)) in dilute exhaust extracted from the CVS during mode \(i \) [ppm].
- \(C_{Bi} \) = Concentration of the emission (HC, CO, NO\(_X\)) in the background sample during mode \(i \) [ppm].
- STP = Standard temperature and pressure.

All volumetric calculations made for the equations in this section are to be corrected to a standard temperature of 20 °C and a standard pressure of 101.3 kPa.

(c) Densities for emissions that are to be measured for this test procedure are:

- Density\(_\text{HC}\) = 576.8 g/m\(^3\)
- Density\(_\text{CO}_2\) = 1912 g/m\(^3\)
- Density\(_\text{NO}_X\) = 1164 g/m\(^3\)
- Density\(_\text{CO}\) = 1829 g/m\(^3\)

(1) The value of Density\(_\text{HC}\) above is calculated based on the assumption that the fuel used has a hydrogen to carbon ratio of 1:1.85. For other fuels
Density HC can be calculated from the following formula:

$$\text{Density}_{\text{HC}} = \frac{M_{\text{HC}}}{R_{\text{STP}}}$$

Where:
- M_{HC} = The molecular weight of the hydrocarbon molecule divided by the number of carbon atoms in the molecule [g/mole].
- R_{STP} = Ideal gas constant for a gas at STP = 0.024065 [m³·mole]

(2) The idealized molecular weight of the exhaust hydrocarbons, i.e., the molecular weight of the hydrocarbon molecule divided by the number of carbon atoms in the molecule, M_{HC}, can be calculated from the following formula:

$$M_{\text{HC}} = M_C + \alpha M_H + \beta M_O$$

Where:
- M_C = Molecular weight of carbon=12.01 [g/mole]
- M_H = Molecular weight of hydrogen=1.008 [g/mole]
- M_O = Molecular weight of oxygen=16.00 [g/mole]
- α = Hydrogen to carbon ratio of the test fuel
- β = Oxygen to carbon ratio of the test fuel

(3) The value of Density NOX above assumes that NOX is entirely in the form of NO2.

(d) The dilution factor, DF, is the ratio of the volumetric flow rate of the background air to that of the raw engine exhaust. The following formula is used to determine DF:

$$DF = \frac{\left(13.4 \times 10^4\right)}{\left(C_{\text{HC}} + C_{\text{CO}} + C_{\text{CO}_2}\right)}$$

Where:
- C_{HC} = Concentration of HC in the dilute sample [ppm].
- C_{CO} = Concentration of CO in the dilute sample [ppm].
- C_{CO_2} = Concentration of CO2 in the dilute sample [ppm].

(e) The humidity correction factor K_H is an adjustment made to measured NOX values. This corrects for the sensitivity that a spark-ignition engine has to the humidity of its combustion air. The following formula is used to determine K_H for NOX calculations:

$$K_H = (9.953 H + 0.832)$$

Where:
- H = the amount of water in an ideal gas; 40 CFR 1065.645 describes how to determine this value (referred to as x_{H2O}).

(f)–(g) [Reserved]

(h) The fuel mass flow rate, F_i, can be either measured or calculated using the following formula:

$$F_i = \frac{M_{\text{FUEL}}}{T}$$

Where:
- M_{FUEL} = Mass of fuel consumed by the engine during the mode [g]
- T = Duration of the sampling period [hr]

(i) The mass of fuel consumed during the mode sampling period, M_{FUEL}, can be calculated from the following equation:

$$M_{\text{FUEL}} = \frac{G_s}{R_s}$$
§ 90.427 Catalyst thermal stress resistance evaluation.

(a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst by exposing it to quiescent heated air in an oven. The evaluation of the effect of such stress on catalyst performance is based on the resultant degradation of the efficiency with which the conversions of specific pollutants are promoted. The application of this evaluation procedure involves the several steps that are described in the following paragraphs.

(b) Determination of initial conversion efficiency. (1) A synthetic exhaust gas mixture having the composition specified in §90.329 is heated to a temperature of 450 °C ±5 °C and passed through the new test catalyst or, optionally, a test catalyst that has been exposed to temperatures less than or equal to 500 °C for less than or equal to two hours, under flow conditions that are representative of anticipated in-use conditions.

(2) The concentration of each pollutant of interest, that is, hydrocarbons, carbon monoxide, or oxides of nitrogen, in the effluent of the catalyst is determined by means of the instrumentation that is specified for exhaust gas analysis in subpart D of this part.

(c) Imposition of thermal stress. (1) The catalyst is placed in an oven that has been pre-heated to 1000 °C and the temperature of the air in the oven is maintained at 1000 °C ±10 °C for six hours.

(2) The catalyst is removed from the oven and allowed to cool to room temperature.

(d) Determination of final conversion efficiency. The steps listed in paragraph (b) of this section are repeated.

(e) Determination of conversion efficiency degradation. (1) The final conversion efficiency determined in paragraph (c) of this section is subtracted from the initial conversion efficiency determined in paragraph (b) of this section.

(2) This result is divided by the initial conversion efficiency.

(3) This result is multiplied by 100 percent.

(f) Determination of compliance with degradation limit. The percent degradation determined in paragraph (e) of this section must not be greater than 20 percent.