§ 63.1350 Monitoring requirements.

(a)(1) Following the compliance date, the owner or operator must demonstrate compliance with this subpart on a continuous basis by meeting the requirements of this section.

(b) PM monitoring requirements. (1)(i) **PM CPMS.** You will use a PM CPMS to establish a site-specific operating limit corresponding to the results of the performance test demonstrating compliance with the PM limit. You will conduct your performance test using Method 5 or Method 5I at appendix A–3 to part 60 of this chapter. You will use the PM CPMS to demonstrate continuous compliance with this operating limit. You must repeat the performance test annually and reassess and adjust the site-specific operating limit in accordance with the results of the performance test using the procedures in §63.1349(b)(1) (i) through (vi) of this subpart. You must also repeat the test if you change the analytical range of the instrument, or if you replace the instrument itself or any principle analytical component of the instrument.
(ii) To determine continuous compliance, you must use the PM CPMS output data for all periods when the process is operating and the PM CPMS is not out-of-control. You must demonstrate continuous compliance by using all quality-assured hourly average data collected by the PM CPMS for all operating hours to calculate the arithmetic average operating parameter in units of the operating limit (milliamps) on a 30 operating day rolling average basis, updated at the end of each new kiln operating day.

(iii) For any exceedance of the 30 process operating day PM CPMS average value from the established operating parameter limit, you must:

(A) Within 48 hours of the exceedance, visually inspect the APCD;

(B) If inspection of the APCD identifies the cause of the exceedance, take corrective action as soon as possible and return the PM CPMS measurement to within the established value; and

(C) Within 30 days of the exceedance or at the time of the annual compliance test, whichever comes first, conduct a PM emissions compliance test to determine compliance with the PM emissions limit and to verify or re-establish the PM CPMS operating limit within 45 days. You are not required to conduct additional testing for any exceedances that occur between the time of the original exceedance and the PM emissions compliance test required under this paragraph.

(iv) PM CPMS exceedances leading to more than four required performance tests in a 12-month process operating period (rolling monthly) constitute a presumptive violation of this subpart.

2) Determine, record, and maintain a record of the accuracy of the system of measuring hourly clinker production (or feed mass flow if applicable) before initial use (for new sources) or by the effective compliance date of this rule (for existing sources). During each quarter of source operation, you must determine, record, and maintain a record of the ongoing accuracy of the system of measuring hourly clinker production (or feed mass flow).

3) You must measure clinker production directly, record the daily clinker production rates; if you measure the kiln feed rates and calculate clinker production, record the hourly kiln feed and clinker production rates.

4) Develop an emissions monitoring plan in accordance with paragraphs (p)(1) through (p)(4) of this section.

5) Opacity monitoring requirements. If you are subject to a limitation on opacity under §63.1345, you must conduct required opacity monitoring in accordance with the provisions of paragraphs (f)(1)(i) through (vii) of this section and in accordance with your monitoring plan developed under §63.1350(p).

You must also develop an opacity monitoring plan in accordance with paragraphs (p)(1) through (4) and paragraph (o)(5), if applicable, of this section.

1) You must conduct a monthly 10-minute visible emissions test of each affected source in accordance with Method 22 of appendix A–7 to part 60 of
this chapter. The performance test must be conducted while the affected source is in operation.

(ii) If no visible emissions are observed in six consecutive monthly tests for any affected source, the owner or operator may decrease the frequency of performance testing from monthly to semi-annually for that affected source. If visible emissions are observed during any semi-annual test, you must resume performance testing of that affected source on a monthly basis and maintain that schedule until no visible emissions are observed in six consecutive monthly tests.

(iii) If no visible emissions are observed during the semi-annual test for any affected source, you may decrease the frequency of performance testing from semi-annually to annually for that affected source. If visible emissions are observed during any annual performance test, the owner or operator must resume performance testing of that affected source on a monthly basis and maintain that schedule until no visible emissions are observed in six consecutive monthly tests.

(iv) If visible emissions are observed during any Method 22 performance test, of appendix A–7 to part 60 of this chapter, you must conduct 30 minutes of opacity observations, recorded at 15-second intervals, in accordance with Method 9 of appendix A–4 to part 60 of this chapter. The Method 9 performance test, of appendix A–4 to part 60 of this chapter, must begin within 1 hour of any observation of visible emissions.

(v) Any totally enclosed conveying system transfer point, regardless of the location of the transfer point is not required to conduct Method 22 visible emissions monitoring under this paragraph. The enclosures for these transfer points must be operated and maintained as total enclosures on a continuing basis in accordance with the facility operations and maintenance plan.

(vi) If any partially enclosed or unenclosed conveying system transfer point is located in a building, you must conduct a Method 22 performance test, of appendix A–7 to part 60 of this chapter, according to the requirements of paragraphs (f)(3)(i) through (iv) of this section for each such conveying system transfer point located within the building, or for the building itself, according to paragraph (f)(1)(vii) of this section.

(vii) If visible emissions from a building are monitored, the requirements of paragraphs (f)(1)(i) through (f)(1)(iv) of this section apply to the monitoring of the building, and you must also test visible emissions from each side, roof, and vent of the building for at least 10 minutes.

(2)(i) For a raw mill or finish mill, you must monitor opacity by conducting daily visible emissions observations of the mill sweep and air separator PM control devices (PMCD) of these affected sources in accordance with the procedures of Method 22 of appendix A–7 to part 60 of this chapter. The duration of the Method 22 performance test must be 6 minutes.

(ii) Within 24 hours of the end of the Method 22 performance test in which visible emissions were observed, the owner or operator must conduct a follow up Method 22 performance test of each stack from which visible emissions were observed during the previous Method 22 performance test.

(iii) If visible emissions are observed during the follow-up Method 22 performance test required by paragraph (f)(2)(ii) of this section from any stack from which visible emissions were observed during the previous Method 22 performance test required by paragraph (f)(2)(i) of the section, you must then conduct an opacity test of each stack from which emissions were observed during the follow up Method 22 performance test in accordance with Method 9 of appendix A–4 to part 60 of this chapter. The duration of the Method 9 test must be 30 minutes.

(3) If visible emissions are observed during any Method 22 visible emissions test conducted under paragraphs (f)(1) or (2) of this section, you must initiate, within one-hour, the corrective actions specified in your operation and maintenance plan as required in §63.1347.

(4) The requirements under paragraph (f)(2) of this section to conduct daily Method 22 testing do not apply to any specific raw mill or finish mill equipped with a COMS or BLDS.

(i) If the owner or operator chooses to install a COMS in lieu of conducting
the daily visible emissions testing required under paragraph (f)(2) of this section, then the COMS must be installed at the outlet of the PM control device of the raw mill or finish mill and the COMS must be installed, maintained, calibrated, and operated as required by the general provisions in subpart A of this part and according to PS–1 of appendix B to part 60 of this chapter.

(ii) If you choose to install a BLDS in lieu of conducting the daily visible emissions testing required under paragraph (f)(2) of this section, the requirements in paragraphs (m)(1) through (m)(4), (m)(10) and (m)(11) of this section apply.

(g) D/F monitoring requirements. If you are subject to an emissions limitation on D/F emissions, you must comply with the monitoring requirements of paragraphs (g)(1) through (g)(6) and paragraphs (m)(1) through (m)(4) of this section to demonstrate continuous compliance with the D/F emissions standard. You must also develop an emissions monitoring plan in accordance with paragraphs (p)(1) through (p)(4) of this section.

(1) You must install, calibrate, maintain, and continuously operate a CMS to record the temperature of the exhaust gases from the kiln and alkali bypass, if applicable, at the inlet to, or upstream of, the kiln and/or alkali bypass PMCDs.

(i) The temperature recorder response range must include zero and 1.5 times the average temperature established according to the requirements in §63.1349(b)(3)(iv).

(ii) The calibration reference for the temperature measurement must be a National Institute of Standards and Technology calibrated reference thermocouple-potentiometer system or alternate reference, subject to approval by the Administrator.

(iii) The calibration of all thermocouples and other temperature sensors must be verified at least once every three months.

(2) You must monitor and continuously record the temperature of the exhaust gases from the kiln and alkali bypass, if applicable, at the inlet to the kiln and/or alkali bypass PMCD.

(3) The required minimum data collection frequency must be one minute.

(4) Calculate the rolling three-hour average temperature using the average of 180 successive one-minute average temperatures. See §63.1349(b)(3).

(5) When the operating status of the raw mill of the in-line kiln/raw mill is changed from off to on or from on to off, the calculation of the three-hour rolling average temperature must begin anew, without considering previous recordings.

(h) Monitoring requirements for sources using sorbent injection. If you are subject to an operating limit on D/F emissions that employs carbon injection as an emission control technique, you must comply with the additional monitoring requirements of paragraphs (h)(1) and (h)(2) and paragraphs (m)(1) through (m)(4) of this section. You must also develop an emissions monitoring plan in accordance with paragraphs (p)(1) through (p)(4) of this section.

(1) Install, operate, calibrate, and maintain a continuous monitor to record the rate of activated carbon injection. The accuracy of the rate measurement device must be ±1 percent of the rate being measured.

(i) Verify the calibration of the device at least once every three months.

(ii) Each hour, calculate the three-hour rolling average activated carbon injection rate for the previous three hours of process operation. See §63.1349(b)(3).

(iii) When the operating status of the raw mill of the in-line kiln/raw mill is changed from off to on or from on to off, the calculation of the three-hour rolling average activated carbon injection rate must begin anew, without considering previous recordings.

(2)(i) Install, operate, calibrate, and maintain a continuous monitor to record the activated carbon injection system carrier gas parameter (either the carrier gas flow rate or the carrier gas pressure drop) established during the D/F performance test in accordance with §63.1349(b)(3).

(ii) Each hour, calculate the three-hour rolling average of the selected parameter value for the previous 3 hours of process operation using all of the
§ 63.1350 40 CFR Ch. I (7–1–14 Edition)

one-minute data available (i.e., the CMS is not out-of-control.)

(i) THC Monitoring Requirements. If you are subject to an emissions limitation on THC emissions, you must comply with the monitoring requirements of paragraphs (i)(1) and (i)(2) and (m)(1) through (m)(4) of this section. You must also develop an emissions monitoring plan in accordance with paragraphs (p)(1) through (p)(4) of this section.

(1) You must install, operate, and maintain a THC continuous emission monitoring system in accordance with Performance Specification 8A of appendix B to part 60 of this chapter and comply with all of the requirements for continuous monitoring systems found in the general provisions, subpart A of this part. The owner or operator must operate and maintain each CEMS according to the quality assurance requirements in Procedure 1 of appendix F in part 60 of this chapter.

(2) Performance tests on alkali bypass and coal mill stacks must be conducted using Method 25A in appendix A to 40 CFR part 60 and repeated annually.

(j) Total organic HAP monitoring requirements. If you are complying with the total organic HAP emissions limits, you must continuously monitor THC according to paragraph (i)(1) and (2) or in accordance with Performance Specification 15 of appendix B to part 60 of this chapter. You must also develop an emissions monitoring plan in accordance with paragraphs (p)(1) through (p)(4) of this section.

(1) You must use a span value for any Hg CEMS that represents the mercury concentration corresponding to approximately two times the emissions standard and may be rounded up to the nearest multiple of 5 μg/m³ of total mercury or higher level if necessary to include Hg concentrations which may occur (excluding concentrations during in-line raw “mill off” operation). As specified in PS 12A, Section 6.1.1, the data recorder output range must include the full range of expected Hg concentration values which would include those expected during “mill off” conditions. Engineering judgments made and calculations used to determine the corresponding span concentration from the emission standard shall be documented in the site-specific monitoring plan and associated records.

(2) In order to quality assure data measured above the span value, you must use one of the two options in paragraphs (k)(2)(i) and (ii) of this section.

(i) Include a second span that encompasses the Hg emission concentrations expected to be encountered during “mill off” conditions. This second span may be rounded to a multiple of 5 μg/m³ of total mercury. The requirements of PS 12A, shall be followed for this second span with the exception that a RATA with the mill off is not required.

(ii) Quality assure any data above the span value established in paragraph (k)(2)(i) of this section using the following procedure. Any time two consecutive one-hour average measured concentration of Hg exceeds the span value you must, within 24 hours before or after, introduce a higher, “above span” Hg reference gas standard to the Hg CEMS. The “above span” reference gas must meet the requirements of PS 12A of appendix B to part 60 of this chapter or an integrated sorbent trap monitoring system in accordance with Performance Specification 12B (PS 12B) of appendix B to part 60 of this chapter.
Environmental Protection Agency

§ 63.1350

12A. Section 7.1, must be of a concentration level between 50 and 150 percent of the highest hourly concentration measured during the period of measurements above span, and must be introduced at the probe. Record and report the results of this procedure as you would for a daily calibration. The "above span" calibration is successful if the value measured by the Hg CEMS is within 20 percent of the certified value of the reference gas. If the value measured by the Hg CEMS exceeds 20 percent of the certified value of the reference gas, then you must normalize the one-hour average stack gas values measured above the span during the 24-hour period preceding or following the "above span" calibration for reporting based on the Hg CEMS response to the reference gas as shown in equation 19:

\[
\frac{\text{Certified reference gas value}}{\text{Measured value of reference gas}} \times \text{Measured stack gas result} = \text{Normalized stack gas result}
\]

(Eq. 19)

Only one 'above span' calibration is needed per 24 hour period.

(3) You must operate and maintain each Hg CEMS or an integrated sorbent trap monitoring system according to the quality assurance requirements in Procedure 5 of appendix F to part 60 of this chapter. During the RATA of integrated sorbent trap monitoring systems required under Procedure 5, you may apply the appropriate exception for sorbent trap section 2 breakthrough in (k)(3)(i) through (iv) of this section:

(i) For stack Hg concentrations ≥1 μg/dscm, ≤10% of section 1 mass;
(ii) For stack Hg concentrations ≤1 μg/dscm and >0.5 μg/dscm, ≤20% of section 1 mass;
(iii) For stack Hg concentrations ≤0.5 μg/dscm and >0.1 μg/dscm, ≤50% of section 1 mass; and
(iv) For stack Hg concentrations ≤0.1 μg/dscm, no breakthrough criterion assuming all other QA/QC specifications are met.

(4) Relative accuracy testing of mercury monitoring systems under PS 12A, PS 12B, or Procedure 5 must be conducted at normal operating conditions. If a facility has an inline raw mill, the testing must occur with the raw mill on.

(5) If you use a Hg CEMS or an integrated sorbent trap monitoring system, you must install, operate, calibrate, and maintain an instrument for continuously measuring and recording the exhaust gas flow rate to the atmosphere according to the requirements in paragraphs (n)(1) through (10) of this section. If kiln gases are diverted through an alkali bypass or to a coal mill and exhausted through separate stacks, you must account for the mercury emitted from those stacks by following the procedures in (k)(5)(i) through (iv) of this section:

(i) Develop a mercury hourly mass emissions rate by conducting annual performance tests using Method 29, or Method 30B, to measure the concentration of mercury in the gases exhausted from the alkali bypass and coal mill.
(ii) On a continuous basis, determine the mass emissions of mercury in lb/hr from the alkali bypass and coal mill exhausts by using the mercury hourly emissions rate, the exhaust gas flow rate and hourly mercury emission rate to calculate hourly mercury emissions in lb/hr.
(iii) Sum the hourly mercury emissions from the kiln, alkali bypass and coal mill to determine total mercury emissions. Using hourly clinker production, calculate the hourly emissions rate in pounds per ton of clinker to determine your 30 day rolling average.
(iv) If mercury emissions from the coal mill are below the method detection limit for two consecutive annual performance tests, you may reduce the frequency of the performance tests of coal mills to once every 30 months. If the measured mercury concentration exceeds the method detection limit, you must revert to testing annually.
§63.1350

40 CFR Ch. 1 (7–1–14 Edition)

until two consecutive annual tests are below the method detection limit.

(6) If you operate an integrated sorbent trap monitoring system conforming to PS 12B, you may use a monitoring period at least 24 hours but no longer than 168 hours in length. You should use a monitoring period that is a multiple of 24 hours (except during relative accuracy testing as allowed in PS 12B).

(l) HCl Monitoring Requirements. If you are subject to an emissions limitation on HCl emissions in §63.1343, you must monitor HCl emissions continuously according to paragraph (l)(1) or (2) and paragraphs (m)(1) through (4) of this section or, if your kiln is controlled using a wet or dry scrubber or tray tower, you alternatively may parametrically monitor SO₂ emissions continuously according to paragraph (l)(3) of this section. You must also develop an emissions monitoring plan in accordance with paragraphs (p)(1) through (4) of this section.

(1) If you monitor compliance with the HCl emissions limit by operating an HCl CEMS, you must do so in accordance with Performance Specification 15 (PS 15) of appendix B to part 60 of this chapter, or, upon promulgation, in accordance with any other performance specification for HCl CEMS in appendix B to part 60 of this chapter. You must operate, maintain, and quality assure a HCl CEMS installed and certified under PS 15 according to the quality assurance requirements in Procedure 1 of appendix F to part 60 of this chapter except that the Relative Accuracy Test Audit requirements of Procedure 1 must be replaced with the validation requirements and criteria of sections 11.1.1 and 12.0 of PS 15. If you install and operate an HCl CEMS in accordance with any other performance specification for HCl CEMS in appendix B to part 60 of this chapter, you must operate, maintain and quality assure the HCl CEMS using the procedure of appendix F to part 60 of this chapter applicable to the performance specification. You must use Method 321 of appendix A to part 60 of this chapter as the reference test method for conducting relative accuracy testing. The span value and calibration requirements in paragraphs (l)(1)(i) and (ii) of this section apply to HCl CEMS other than those installed and certified under PS 15.

(i) You must use a span value for any HCl CEMS that represents the intended upper limit of the HCl concentration measurement range during normal inline raw “mill on” operation. The span value should be a concentration equivalent to approximately two times the emissions standard and it may be rounded to the nearest multiple of 5 ppm of HCl. The HCl CEMS data recorder output range must include the full range of expected HCl concentration values which would include those expected during “mill off” conditions. Engineering judgments made and calculations used to determine the corresponding span concentration from the emission standard shall be documented in the site-specific monitoring plan and associated records.

(ii) In order to quality assure data measured above the span value, you must use one of the two options in paragraphs (l)(1)(ii)(A) and (B) of this section.

(A) Include a second span that encompasses the HCl emission concentrations expected to be encountered during “mill off” conditions. This second span may be rounded to a multiple of 5 µg/m³ of total HCl. The requirements of the appropriate HCl monitor performance specification, shall be followed for this second span with the exception that a RATA with the mill off is not required.

(B) Quality assure any data above the span value established in paragraph (l)(1)(i) of this section using the following procedure. Any time the average measured concentration of HCl exceeds or is expected to exceed the span value for greater than two hours you must, within a period 24 hours before or after the ‘above span’ period, introduce a higher, ‘above span’ HCl reference gas standard to the HCl CEMS. The ‘above span’ reference gas must meet the requirements of the applicable performance specification and be of a concentration level between 50 and 100 percent of the highest hourly concentration measured during the period of measurements above span, and must be introduced at the probe. Record and report the results of this procedure as
you would for a daily calibration. The ‘above span’ calibration is successful if the value measured by the HCl CEMS is within 20 percent of the certified value of the reference gas. If the value measured by the HCl CEMS is not within 20 percent of the certified value of the reference gas, then you must normalize the stack gas values measured above span as described in paragraph (l)(i)(ii)(C) below. If the ‘above span’ calibration is conducted during the period when measured emissions are above span and there is a failure to collect the required minimum number of data points in an hour due to the calibration duration, then you must determine the emissions average for that missed hour as the average of hourly averages for the hour preceding the missed hour and the hour following the missed hour.

(C) In the event that the ‘above span’ calibration is not successful (i.e., the HCl CEMS measured value is not within 20 percent of the certified value of the reference gas), then you must normalize the one-hour average stack gas values measured above the span during the 24-hour period preceding or following the ‘above span’ calibration for reporting based on the HCl CEMS response to the reference gas as shown in Equation 20:

\[
\frac{\text{Certified reference gas value}}{\text{Measured value of reference gas}} \times \text{Measured stack gas result} \]

\(=\) Normalized stack gas result

(m) Parameter monitoring requirements.
If you have an operating limit that requires the use of a CMS, you must install, operate, and maintain each continuous parameter monitoring system (CPMS) according to the procedures in paragraphs (m)(1) through (4) of this section by the compliance date specified in §63.1351. You must also meet the applicable specific parameter monitoring requirements in paragraphs (m)(5) through (11) that are applicable to you.

(1) The CMS must complete a minimum of one cycle of operation for each successive 15-minute period. You must have a minimum of four successive cycles of operation to have a valid hour of data.

(2) You must conduct all monitoring in continuous operation at all times that the unit is operating.

(3) Determine the 1-hour block average of all recorded readings.

(4) Record the results of each inspection, calibration, and validation check.

(5) Liquid flow rate monitoring requirements. If you have an operating limit that requires the use of a flow measurement device, you must meet the requirements in paragraphs (m)(5)(1) through (iv) of this section.
(i) Locate the flow sensor and other necessary equipment in a position that provides a representative flow.

(ii) Use a flow sensor with a measurement sensitivity of 2 percent of the flow rate.

(iii) Reduce swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.

(iv) Conduct a flow sensor calibration check at least semiannually.

(6) Specific pressure monitoring requirements. If you have an operating limit that requires the use of a pressure measurement device, you must meet the requirements in paragraphs (m)(6)(i) through (vi) of this section.

(i) Locate the pressure sensor(s) in a position that provides a representative measurement of the pressure.

(ii) Minimize or eliminate pulsating pressure, vibration, and internal and external corrosion.

(iii) Use a gauge with a minimum tolerance of 1.27 centimeters of water or a transducer with a minimum tolerance of 1 percent of the pressure range.

(iv) Check pressure tap pluggage daily.

(v) Using a manometer, check gauge calibration quarterly and transducer calibration monthly.

(vi) Conduct calibration checks any time the sensor exceeds the manufacturer’s specified maximum operating pressure range or install a new pressure sensor.

(7) Specific pH monitoring requirements. If you have an operating limit that requires the use of a pH measurement device, you must meet the requirements in paragraphs (m)(7)(i) through (iii) of this section.

(i) Locate the pH sensor in a position that provides a representative measurement of wet scrubber or tray tower effluent pH.

(ii) Ensure the sample is properly mixed and representative of the fluid to be measured.

(iii) Check the pH meter’s calibration on at least two points every 8 hours of process operation.

(8) [Reserved]

(9) Mass flow rate (for sorbent injection) monitoring requirements. If you have an operating limit that requires the use of equipment to monitor sorbent injection rate (e.g., weigh belt, weigh hopper, or hopper flow measurement device), you must meet the requirements in paragraphs (m)(9)(i) through (iii) of this section. These requirements also apply to the sorbent injection equipment of a dry scrubber.

(i) Locate the device in a position(s) that provides a representative measurement of the total sorbent injection rate.

(ii) Install and calibrate the device in accordance with manufacturer’s procedures and specifications.

(iii) At least annually, calibrate the device in accordance with the manufacturer’s procedures and specifications.

(10) Bag leak detection monitoring requirements. If you elect to use a fabric filter bag leak detection system to comply with the requirements of this subpart, you must install, calibrate, maintain, and continuously operate a BLDS as specified in paragraphs (m)(10)(i) through (viii) of this section.

(i) You must install and operate a BLDS for each exhaust stack of the fabric filter.

(ii) Each BLDS must be installed, operated, calibrated, and maintained in a manner consistent with the manufacturer’s written specifications and recommendations and in accordance with the guidance provided in EPA–454/R–98–015, September 1997.

(iii) The BLDS must be certified by the manufacturer to be capable of detecting PM emissions at concentrations of 10 or fewer milligrams per actual cubic meter.

(iv) The BLDS sensor must provide output of relative or absolute PM loadings.

(v) The BLDS must be equipped with a device to continuously record the output signal from the sensor.

(vi) The BLDS must be equipped with an alarm system that will alert an operator automatically when an increase in relative PM emissions over a preset level is detected. The alarm must be located such that the alert is detected and recognized easily by an operator.

(vii) For positive pressure fabric filter systems that do not duct all compartments of cells to a common stack, a BLDS must be installed in each baghouse compartment or cell.
(viii) Where multiple bag leak detectors are required, the system’s instrumentation and alarm may be shared among detectors.

(11) For each BLDS, the owner or operator must initiate procedures to determine the cause of every alarm within 8 hours of the alarm. The owner or operator must alleviate the cause of the alarm within 24 hours of the alarm by taking whatever corrective action(s) are necessary. Corrective actions may include, but are not limited to the following:

(i) Inspecting the fabric filter for air leaks, torn or broken bags or filter media, or any other condition that may cause an increase in PM emissions;

(ii) Sealing off defective bags or filter media;

(iii) Replacing defective bags or filter media or otherwise repairing the control device;

(iv) Sealing off a defective fabric filter compartment;

(v) Cleaning the BLDS probe or otherwise repairing the BLDS; or

(vi) Shutting down the process producing the PM emissions.

(n) Continuous Flow Rate Monitoring System. You must install, operate, calibrate, and maintain instruments, according to the requirements in paragraphs (n)(1) through (10) of this section, for continuously measuring and recording the stack gas flow rate to allow determination of the pollutant mass emissions rate to the atmosphere from sources subject to an emissions limitation that has a pounds per ton of clinker unit.

(1) You must install each sensor of the flow rate monitoring system in a location that provides representative measurement of the exhaust gas flow rate at the sampling location of the mercury or PM CEMS, taking into account the manufacturer’s recommendations. The flow rate sensor is that portion of the system that senses the volumetric flow rate and generates an output proportional to that flow rate.

(2) The flow rate monitoring system must be designed to measure the exhaust flow rate over a range that extends from a value of at least 20 percent less than the lowest expected exhaust flow rate to a value of at least 20 percent greater than the highest expected exhaust flow rate.

(3) [Reserved]

(4) The flow rate monitoring system must be equipped with a data acquisition and recording system that is capable of recording values over the entire range specified in paragraph (n)(1) of this section.

(5) The signal conditioner, wiring, power supply, and data acquisition and recording system for the flow rate monitoring system must be compatible with the output signal of the flow rate sensors used in the monitoring system.

(6) The flow rate monitoring system must be designed to complete a minimum of one cycle of operation for each successive 15-minute period.

(7) The flow rate sensor must have provisions to determine the daily zero and upscale calibration drift (CD) (see sections 3.1 and 8.3 of Performance Specification 2 in appendix B to Part 60 of this chapter for a discussion of CD).

(i) Conduct the CD tests at two reference signal levels, zero (e.g., 0 to 20 percent of span) and upscale (e.g., 50 to 70 percent of span).

(ii) The absolute value of the difference between the flow monitor response and the reference signal must be equal to or less than 3 percent of the flow monitor span.

(8) You must perform an initial relative accuracy test of the flow rate monitoring system according to Section 8.2 of Performance Specification 6 of appendix B to part 60 of the chapter with the exceptions in paragraphs (n)(8)(i) and (n)(8)(ii) of this section.

(i) The relative accuracy test is to evaluate the flow rate monitoring system alone rather than a continuous emission rate monitoring system.

(ii) The relative accuracy of the flow rate monitoring system shall be no greater than 10 percent of the mean value of the reference method data.

(9) You must verify the accuracy of the flow rate monitoring system at least once per year by repeating the relative accuracy test specified in paragraph (n)(8).

(10) You must operate the flow rate monitoring system and record data during all periods of operation of the affected facility including periods of startup, shutdown, and malfunction.
§ 63.1350
40 CFR Ch. I (7–1–14 Edition)

except for periods of monitoring system malfunctions, repairs associated with monitoring system malfunctions, and required monitoring system quality assurance or quality control activities (including, as applicable, calibration checks and required zero and span adjustments).

(o) **Alternate monitoring requirements approval.** You may submit an application to the Administrator for approval of alternate monitoring requirements to demonstrate compliance with the emission standards of this subpart, except for emission standards for THC, subject to the provisions of paragraphs (o)(1) through (6) of this section.

(1) The Administrator will not approve averaging periods other than those specified in this section, unless you document, using data or information, that the longer averaging period will ensure that emissions do not exceed levels achieved during the performance test over any increment of time equivalent to the time required to conduct three runs of the performance test.

(2) If the application to use an alternate monitoring requirement is approved, you must continue to use the original monitoring requirement until approval is received to use another monitoring requirement.

(3) You must submit the application for approval of alternate monitoring requirements no later than the notification of performance test. The application must contain the information specified in paragraphs (m)(3)(i) through (iii) of this section:

(i) Data or information justifying the request, such as the technical or economic infeasibility, or the impracticality of using the required approach;

(ii) A description of the proposed alternative monitoring requirement, including the operating parameter to be monitored, the monitoring approach and technique, the averaging period for the limit, and how the limit is to be calculated; and

(iii) Data or information documenting that the alternative monitoring requirement would provide equivalent or better assurance of compliance with the relevant emission standard.

(4) The Administrator will notify you of the approval or denial of the application within 90 calendar days after receipt of the original request, or within 60 calendar days of the receipt of any supplementary information, whichever is later. The Administrator will not approve an alternate monitoring application unless it would provide equivalent or better assurance of compliance with the relevant emission standard. Before disapproving any alternate monitoring application, the Administrator will provide:

(i) Notice of the information and findings upon which the intended disapproval is based; and

(ii) Notice of opportunity for you to present additional supporting information before final action is taken on the application. This notice will specify how much additional time is allowed for you to provide additional supporting information.

(5) You are responsible for submitting any supporting information in a timely manner to enable the Administrator to consider the application prior to the performance test. Neither submittal of an application, nor the Administrator’s failure to approve or disapprove the application relieves you of the responsibility to comply with any provision of this subpart.

(6) The Administrator may decide at any time, on a case-by-case basis that additional or alternative operating limits, or alternative approaches to establishing operating limits, are necessary to demonstrate compliance with the emission standards of this subpart.

(p) **Development and submittal (upon request) of monitoring plans.** If you demonstrate compliance with any applicable emissions limit through performance stack testing or other emissions monitoring, you must develop a site-specific monitoring plan according to the requirements in paragraphs (p)(1) through (4) of this section. This requirement also applies to you if you petition the EPA Administrator for alternative monitoring parameters under paragraph (o) of this section and §63.8(f). If you use a BLDS, you must also meet the requirements specified in paragraph (p)(5) of this section.

(1) For each CMS required in this section, you must develop, and submit to
the permitting authority for approval upon request, a site-specific monitoring plan that addresses paragraphs (p)(1)(i) through (iii) of this section. You must submit this site-specific monitoring plan, if requested, at least 30 days before your initial performance evaluation of your CMS.

(i) Installation of the CMS sampling probe or other interface at a measurement location relative to each affected process unit such that the measurement is representative of control of the exhaust emissions (e.g., on or downstream of the last control device);

(ii) Performance and equipment specifications for the sample interface, the pollutant concentration or parametric signal analyzer, and the data collection and reduction systems; and

(iii) Performance evaluation procedures and acceptance criteria (e.g., calibrations).

(2) In your site-specific monitoring plan, you must also address paragraphs (p)(2)(i) through (ii) of this section.

(i) Ongoing operation and maintenance procedures in accordance with the general requirements of §63.8(c)(1), (c)(3), and (c)(4)(ii);

(ii) Ongoing data quality assurance procedures in accordance with the general requirements of §63.8(d); and

(iii) Ongoing recordkeeping and reporting procedures in accordance with the general requirements of §63.10(c), (e)(1), and (e)(2)(i).

(3) You must conduct a performance evaluation of each CMS in accordance with your site-specific monitoring plan.

(4) You must operate and maintain the CMS in continuous operation according to the site-specific monitoring plan.

(5) **BLDS monitoring plan.** Each monitoring plan must describe the items in paragraphs (p)(5)(i) through (v) of this section. At a minimum, you must retain records related to the site-specific monitoring plan and information discussed in paragraphs (m)(1) through (4), (m)(10) and (11) of this section for a period of 5 years, with at least the first 2 years on-site;

(i) Installation of the BLDS;

(ii) Initial and periodic adjustment of the BLDS, including how the alarm set-point will be established;

(iii) Operation of the BLDS, including quality assurance procedures;

(iv) How the BLDS will be maintained, including a routine maintenance schedule and spare parts inventory list;

(v) How the BLDS output will be recorded and stored.

[75 FR 55059, Sept. 9, 2010, as amended at 76 FR 2836, Jan. 18, 2011; 78 FR 10048, Feb. 12, 2013]

§ 63.1351 Compliance dates.

(a) The compliance date for any affected existing source subject to any rule requirements that were in effect before December 20, 2006, is:

(1) June 14, 2002, for sources that commenced construction before or on March 24, 1998, or

(2) June 14, 1999 or startup for sources that commenced construction after March 24, 1998.

(b) The compliance date for any affected existing source subject to any rule requirements that became effective on December 20, 2006, is:

(1) December 21, 2009, for sources that commenced construction after December 2, 2005 and before or on December 20, 2006, or

(2) Startup for sources that commenced construction after December 20, 2006.

(c) The compliance date for existing sources for all the requirements that became effective on February 12, 2013, except for the open clinker pile requirements will be September 9, 2015.

(d) The compliance date for new sources is February 12, 2013, or startup, whichever is later.

(e) The compliance date for existing sources with the requirements for open clinker storage piles in §63.1343(c) is February 12, 2014.

[76 FR 2836, Jan. 18, 2011, as amended at 78 FR 10053, Feb. 12, 2013]

§ 63.1352 Additional test methods.

(a) If you are conducting tests to determine the rates of emission of HCl from kilns and associated bypass stacks at portland cement manufacturing facilities, for use in applicability determinations under §63.1340, you may use Method 320 or Method 321 of appendix A of this part.