determination of the efficiency of a fixed-bed carbon adsorption system with individual exhaust stacks for each carbon adsorber vessel pursuant to §63.750(g) (3) or (4), each carbon adsorber vessel shall be tested individually. The test for each carbon adsorber vessel shall consist of three separate runs. Each run shall coincide with one or more complete adsorption cycles.

(ii) EPA Method 1 or 1A of appendix A of part 60 is used for sample and velocity traverses.

(iii) EPA Method 2, 2A, 2C, or 2D of appendix A of part 60 is used for velocity and volumetric flow rates.

(iv) EPA Method 3 of appendix A of part 60 is used for gas analysis.

(v) EPA Method 4 of appendix A of part 60 is used for stack gas moisture.

(3) The chemical milling maskant application operation is considered in compliance when the conditions specified in paragraphs (i)(3)(i) and (i)(3)(ii) of this section are met.

(i) For all uncontrolled chemical milling maskants, all values of \(H_i\) and \(H_a\) (as determined using the procedures specified in §63.750 (k) and (l)) are less than or equal to 622 grams of organic HAP per liter (5.2 lb/gal) of Type I chemical milling maskant as applied (less water), and 160 grams of organic HAP per liter (1.3 lb/gal) of Type II chemical milling maskant as applied (less water). All values of \(G_i\) and \(G_a\) (as determined using the procedures specified in §63.750 (m) and (n)) are less than or equal to 622 grams of VOC per liter (5.2 lb/gal) of Type I chemical milling maskant as applied (less water and exempt solvents), and 160 grams of VOC per liter (1.3 lb/gal) of Type II chemical milling maskant (less water and exempt solvents) as applied.

(ii) If a carbon adsorber (or other control device) is used, the overall control efficiency of the control system, as determined using the procedures specified in §63.750(g) (or systems with other control devices as determined using the procedures specified in §63.750(h)), is equal to or greater than 81% during the initial performance test period and all subsequent material balances (or performance tests, as appropriate).

(i) Handling and storage of waste. For those wastes subject to this subpart, failure to comply with the requirements specified in §63.748 shall be considered a violation.

[60 FR 45956, Sept. 1, 1996, as amended at 63 FR 15021, Mar. 27, 1998]
(c) Organic HAP content level determination—compliant primers and topcoats. For those uncontrolled primers and topcoats complying with the primer and topcoat organic HAP content limits specified in §63.745(c) without being averaged, the following procedures shall be used to determine the mass of organic HAP emitted per volume of coating (less water) as applied.

(1) For coatings that contain no exempt solvents, determine the total organic HAP content using manufacturer’s supplied data or Method 24 of 40 CFR part 60, appendix A, to determine the VOC content. The VOC content shall be used as a surrogate for total HAP content for coatings that contain no exempt solvent. If there is a discrepancy between the manufacturer’s formulation data and the results of the Method 24 analysis, compliance shall be based on the results from the Method 24 analysis.

When Method 24 is used to determine the VOC content of water-reducible coatings, the precision adjustment factors in Reference Method 24 shall be used. If the adjusted analytical VOC content is less than the formulation solvent content, then the analytical VOC content should be set equal to the formulation solvent content.

(2) For each coating formulation as applied, determine the organic HAP weight fraction, water weight fraction (if applicable), and density from manufacturer’s data. If these values cannot be determined using the manufacturer’s data, the owner or operator shall submit an alternative procedure for determining their values for approval by the Administrator. Recalculation is required only when a change occurs in the coating formulation.

(3) For each coating as applied, calculate the mass of organic HAP emitted per volume of coating (lb/gal) less water as applied using equations 1, 2, and 3:

\[V_{wi} = \frac{D_{ci} W_{wi}}{D_{w}} \quad \text{Eq. 1} \]

where:

- \(V_{wi} \) = volume (gal) of water in one gal of coating \(i \).
- \(D_{ci} \) = density (lb of coating per gal of coating) of coating \(i \).
- \(W_{wi} \) = weight fraction (expressed as a decimal) of water in coating \(i \).
- \(D_{w} \) = density of water, 8.33 lb/gal.

\[M_{Hi} = D_{ci} W_{Hi} \quad \text{Eq. 2} \]

where:

- \(M_{Hi} \) = mass (lb) of organic HAP in one gal of coating \(i \).
- \(D_{ci} \) = density (lb of coating per gal of coating) of coating \(i \).
- \(W_{Hi} \) = weight fraction (expressed as a decimal) of organic HAP in coating \(i \).

\[H_{i} = \frac{M_{Hi}}{(1 - V_{wi})} \quad \text{Eq. 3} \]

where:

- \(H_{i} \) = mass of organic HAP emitted per volume of coating \(i \) (lb/gal) less water as applied.
- \(M_{Hi} \) = mass (lb) of organic HAP in one gal of coating \(i \).
- \(V_{wi} \) = volume (gal) of water in one gal of coating \(i \).

(d) Organic HAP content level determination—averaged primers and topcoats. For those uncontrolled primers and topcoats that are averaged together in order to comply with the primer and topcoat organic HAP content limits specified in §63.745(c), the following procedure shall be used to determine the monthly volume-weighted average mass of organic HAP emitted per volume of coating (less water) as applied, unless the permitting agency specifies a shorter averaging period as part of an ambient ozone control program.

(1)(i) Determine the total organic HAP weight fraction as applied of each coating. If any ingredients, including diluent solvent, are added to a coating prior to its application, the organic HAP weight fraction of the coating
shall be determined at a time and location in the process after all ingredients have been added.

(ii) Determine the total organic HAP weight fraction of each coating as applied each month.

(A) If no changes have been made to a coating, either as supplied or as applied, or if a change has been made that has a minimal effect on the organic HAP content of the coating, the value previously determined may continue to be used until a change in formulation has been made by either the manufacturer or the user.

(B) If a change in formulation or a change in the ingredients added to the coating takes place, including the ratio of coating to diluent solvent, prior to its application, either of which results in a more than minimal effect on the organic HAP content of the coating, the total organic HAP weight fraction of the coating shall be redetermined.

(iii) Manufacturer’s formulation data may be used to determine the total organic HAP content of each coating and any ingredients added to the coating prior to its application. If the total organic HAP content cannot be determined using the manufacturer’s data, the owner or operator shall submit an alternative procedure for determining the total organic HAP weight fraction for approval by the Administrator.

(2)(i) Determine the volume both in total gallons as applied and in total gallons (less water) as applied of each coating. If any ingredients, including diluent solvents, are added prior to its application, the volume of each coating shall be determined at a time and location in the process after all ingredients (including any diluent solvent) have been added.

(ii) Determine the volume of each coating (less water) as applied each month, unless the permitting agency specifies a shorter period as part of an ambient ozone control program.

(A) If no changes have been made to a coating, either as supplied or as applied, or if a change has been made that has a minimal effect on the density of the coating, then the value previously determined may continue to be used until a change in formulation has been made by either the manufacturer or the user.

(B) If a change in formulation or a change in the ingredients added to the coating takes place, including the ratio of coating to diluent solvent, prior to its application, either of which results in a more than minimal effect on the density of the coating, then the density of the coating shall be redetermined.

(iii) The density may be determined from company records, including manufacturer’s data sheets. If the density of the coating cannot be determined using the company’s records, including the manufacturer’s data, then the owner or operator shall submit an alternative procedure for determining the density for approval by the Administrator.

(3)(i) Determine the density of each coating as applied. If any ingredients, including diluent solvent, are added to a coating prior to its application, the density of the coating shall be determined at a time and location in the process after all ingredients have been added.

(ii) Determine the density of each coating as applied each month, unless the permitting agency specifies a shorter period as part of an ambient ozone control program.

(A) If no changes have been made to a coating, either as supplied or as applied, or if a change has been made that has a minimal effect on the density of the coating, then the value previously determined may continue to be used until a change in formulation has been made by either the manufacturer or the user.

(B) If a change in formulation or a change in the ingredients added to the coating takes place, including the ratio of coating to diluent solvent, prior to its application, either of which results in a more than minimal effect on the density of the coating, then the density of the coating shall be redetermined.

(iii) The density may be determined from company records, including manufacturer’s data sheets. If the density of the coating cannot be determined using the company’s records, including the manufacturer’s data, then the owner or operator shall submit an alternative procedure for determining the density for approval by the Administrator.

(4) Calculate the total volume in gallons as applied (less water) by summing the individual volumes of each coating (less water) as applied during each 30-day period using equation 4:

\[
H_a = \frac{\sum_{i=1}^{n} W_{Hi} D_{ci} V_{ci}}{C_{lw}}
\]

where:

- \(H_a \) = volume-weighted average mass of organic HAP emitted per unit volume (lb/gal) of coating (less water) as applied during each 30-day period for those coatings being averaged.
- \(n \) = number of coatings being averaged.
Environmental Protection Agency

\(W_{wi} \) = weight fraction (expressed as a decimal) of organic HAP in coating 1 as applied that is being averaged during each 30-day period.

\(D_{ci} \) = density (lb of coating per gal of coating) of coating 1 as applied that is being averaged during each 30-day period.

\(V_{ci} \) = volume (gal) of coating 1 as applied that is being averaged during each 30-day period.

\(C_{w} \) = total volume (gal) of all coatings (less water) as applied that are being averaged during each 30-day period.

\(W_{wi} = \) weight fraction (expressed as a decimal) of organic HAP in coating 1 as applied that is being averaged during each 30-day period.

\(D_{w} = \) density of water, 8.33 lb/gal.

\(W_{wi} = \) weight fraction (expressed as a decimal) of water in coating 1.

\(D_{w} = \) density of water, 8.33 lb/gal.

\(M_{vi} = D_{ci} W_{vi} \) \hspace{1cm} \text{Eq. 6}

where:

\(M_{vi} = \) mass (lb) of VOC in one gal of coating 1.

\(D_{ci} = \) density (lb of coating per gal of coating) of coating 1.

\(W_{vi} = \) weight fraction (expressed as a decimal) of VOC in coating 1.

\(G_{i} = \frac{M_{vi}}{(1-W_{vi})-V_{wi}} \) \hspace{1cm} \text{Eq. 7}

where:

\(G_{i} = \) mass of VOC emitted per volume of coating 1 (lb/gal) (less water and exempt solvents) as applied.

\(M_{vi} = \) mass (lb) of VOC in one gal of coating 1.

\(V_{wi} = \) volume (gal) of water in one gal of coating 1.

\(V_{xi} = \) volume (gal) of exempt solvents in one gal of coating 1.

(e) VOC content level determination—compliant primers and topcoats. For those uncontrolled primers and topcoats complying with the primer and topcoat VOC content levels specified in §63.745(c) without being averaged, the following procedure shall be used to determine the mass of VOC emitted per volume of coating (less water and exempt solvents) as applied.

(1) Determine the VOC content of each formulation (less water and exempt solvents) as applied using manufacturer's supplied data or Method 24 of 40 CFR part 60, appendix A, to determine the VOC content. The VOC content shall be used as a surrogate for total HAP content for coatings that contain no exempt solvent. If there is a discrepancy between the manufacturer's formulation data and the results of the Method 24 analysis, compliance shall be based on the results from the Method 24 analysis.

When Method 24 is used to determine the VOC content of water-reducible coatings, the precision adjustment factors in Reference Method 24 shall be used. If the adjusted analytical VOC content is less than the formulation solvent content, then the analytical VOC content should be set equal to the formulation solvent content.

(2) For each coating applied, calculate the mass of VOC emitted per volume of coating (lb/gal) (less water and exempt solvents) as applied using equations 5, 6, and 7:

\[V_{wi} = \frac{D_{ci} W_{wi}}{D_{w}} \] \hspace{1cm} \text{Eq. 5}

where:

\(V_{wi} = \) volume (gal) of water in one gal of coating 1.

\(D_{wi} = \) density (lb of coating per gal of coating) of coating 1.

\(W_{wi} = \) weight fraction (expressed as a decimal) of water in coating 1.

\(D_{ci} = \) density (lb of coating per gal of coating) of coating 1.

\(W_{vi} = \) weight fraction (expressed as a decimal) of VOC in coating 1.

\(D_{ci} = \) density (lb of coating per gal of coating) of coating 1.

\(M_{vi} = \) mass (lb) of VOC in one gal of coating 1.

\(W_{vi} = \) weight fraction (expressed as a decimal) of VOC in coating 1.

\(G_{i} = \frac{M_{vi}}{(1-W_{vi})-V_{wi}} \) \hspace{1cm} \text{Eq. 7}

where:

\(G_{i} = \) mass of VOC emitted per volume of coating 1 (lb/gal) (less water and exempt solvents) as applied.

\(M_{vi} = \) mass (lb) of VOC in one gal of coating 1.

\(V_{wi} = \) volume (gal) of water in one gal of coating 1.

\(V_{xi} = \) volume (gal) of exempt solvents in one gal of coating 1.

(f) VOC content level determination—averaged primers and topcoats. For those uncontrolled primers and topcoats that are averaged within their respective coating category in order to comply with the primer and topcoat VOC content limits specified in §63.745(c)(2) and (c)(4), the following procedure shall
be used to determine the monthly volume-weighted average mass of VOC emitted per volume of coating (less water and exempt solvents) as applied, unless the permitting agency specifies a shorter averaging period as part of an ambient ozone control program.

(1)(i) Determine the VOC content (lb/gal) as applied of each coating. If any ingredients, including diluent solvent, are added to a coating prior to its application, the VOC content of the coating shall be determined at a time and location in the process after all ingredients have been added.

(ii) Determine the VOC content of each coating as applied each month, unless the permitting agency specifies a shorter period as part of an ambient ozone control program.

(A) If no changes have been made to a coating, either as supplied or as applied, or if a change has been made that has a minimal effect on the VOC content of the coating, the value previously determined may continue to be used until a change in formulation has been made by either the manufacturer or the user.

(B) If a change in formulation or a change in the ingredients added to the coating takes place, including the ratio of coating to diluent solvent, prior to its application, the VOC content of the coating shall be redetermined.

(iii) Determine the VOC content of each primer and topcoat formulation (less water and exempt solvents) as applied using EPA Method 24 or from manufacturer’s data.

(2)(i) Determine the volume both in total gallons as applied and in total gallons (less water and exempt solvents) as applied of each coating. If any ingredients, including diluent solvents, are added prior to its application, the volume of each coating shall be determined at a time and location in the process after all ingredients (including any diluent solvent) have been added.

(ii) Determine the volume of each coating (less water and exempt solvents) as applied each day.

(iii) The volume applied may be determined from company records.

(3) Calculate the total volume in gallons (less water and exempt solvents) as applied by summing the individual volumes of each coating (less water and exempt solvents) as applied, which were determined under paragraph (f)(2) of this section.

(4) Calculate the volume-weighted average mass of VOC emitted per unit volume (lb/gal) of coating (less water and exempt solvents) as applied for each coating category during each 30-day period using equation 8:

$$G_a = \frac{\sum_{i=1}^{n} (VOC)_{ci} V_{ci}}{C_{lwes}}$$

where:

- G_a = volume weighted average mass of VOC per unit volume of coating (lb/gal) (less water and exempt solvents) as applied during each 30-day period for those coatings being averaged.
- n = number of coatings being averaged.
- $(VOC)_{ci}$ = VOC content (lb/gal) of coating i (less water and exempt solvents) as applied (as determined using the procedures specified in paragraph (f)(1) of this section) that is being averaged during the 30-day period.
- V_{ci} = volume (gal) of coating i (less water and exempt solvents) as applied that is being averaged during the 30-day period.
- C_{lwes} = total volume (gal) of all coatings (less water and exempt solvents) as applied during each 30-day period for those coatings being averaged.

(5)(i) If the VOC content is found to be different when EPA Method 24 is used during an enforcement inspection from that used by the owner or operator in calculating G_a, recalculation of G_a is required using the new value. If more than one coating is involved, the recalculation shall be made once using all of the new values.

(ii) If recalculation is required, an owner or operator may elect to include in the recalculation of G_a uncontrolled coatings that were not previously included provided appropriate and sufficient records were maintained for these other coatings to allow daily recalculations.

(iii) The recalculated value of G_a under either paragraph (f)(5)(i) or (f)(5)(ii) of this section shall be used to determine compliance.
(g) Overall VOC and/or organic HAP control efficiency—carbon adsorber. Each owner or operator subject to the requirements of §63.745(d), §63.746(c), or §63.747(d) shall demonstrate initial compliance with the requirements of this subpart by following the procedures of paragraph (g)(1), (2), (3), (4), or (5) as applicable and paragraphs (6), (7), and (8) of this section. When an initial compliance demonstration is required by this subpart, the procedures in paragraphs (g)(9) through (g)(14) of this section are used in determining initial compliance with the provisions of this subpart.

(1) To demonstrate initial and continuous compliance with §63.745(d), §63.746(c), or §63.747(d) when emissions are controlled by a dedicated solvent recovery device, each owner or operator of the affected operation may perform a liquid-liquid HAP or VOC material balance over rolling 7- to 30-day periods in lieu of demonstrating compliance through the methods in paragraph (g)(2), (g)(3), or (g)(4) of this section. Results of the material balance calculations performed to demonstrate initial compliance shall be submitted to the Administrator with the notification of performance test required under §63.7(b).

(i) The value of RS is zero unless the owner or operator submits the following information to the Administrator for approval of a measured RS value that is greater than zero:

(A) Measurement techniques; and

(B) Documentation that the measured value of RS exceeds zero.

(ii) The measurement techniques of paragraph (g)(1)(i)(A) of this section shall be submitted to the Administrator for approval with the notification of performance test required under §63.7(b).

(iii) Each owner or operator demonstrating compliance by the test method described in paragraph (g)(1) of this section shall:

(A) Measure the amount of coating or stripper as applied;

(B) Determine the VOC or HAP content of all coating and stripper applied using the test method specified in §63.750(c) (1) through (3) or (e)(1) and (2) of this section;

(C) Install, calibrate, maintain, and operate, according to the manufacturer’s specifications, a device that indicates the amount of HAP or VOC recovered by the solvent recovery device over rolling 7- to 30-day periods; the device shall be certified by the manufacturer to be accurate to within ±2.0 percent, and this certification shall be kept on record;

(D) Measure the amount of HAP or VOC recovered; and

(E) Calculate the overall HAP or VOC emission reduction (R) for rolling 7- to 30-day periods using equation 9.

(F) Compliance is demonstrated if the value of R is equal to or greater than the overall HAP control efficiencies required by §63.745(d), §63.746(c), or §63.747(d).

(2) To demonstrate initial compliance with §63.745(d), §63.746(c), or §63.747(d) when affected HAP emission points are controlled by an emission control device other than a fixed-bed carbon adsorption system with individual exhaust stacks for each carbon adsorber vessel, each owner or operator of an affected source shall perform a gaseous emission test using the following procedures.

(i) Construct the overall HAP emission reduction system so that all volumetric flow rates and total HAP or VOC emissions can be accurately determined as discussed in paragraph (g)(1)(iii) of this section. The overall HAP or VOC emission reduction (R) is calculated using equation 9:

\[R = \frac{M_i}{\sum_{i=1}^{n} [W_{ci} M_{ci} - R_{Si}]} \times 100 \quad \text{Eq. 9} \]

(ii) The value of RS is zero unless the owner or operator submits the following information to the Administrator for approval of a measured RS value that is greater than zero:

(A) Measurement techniques; and

(B) Documentation that the measured value of RS exceeds zero.

(iii) The measurement techniques of paragraph (g)(1)(i)(A) of this section shall be submitted to the Administrator for approval with the notification of performance test required under §63.7(b).

(iv) Each owner or operator demonstrating compliance by the test method described in paragraph (g)(1) of this section shall:

(A) Measure the amount of coating or stripper as applied;

(B) Determine the VOC or HAP content of all coating and stripper applied using the test method specified in §63.750(c) (1) through (3) or (e)(1) and (2) of this section;

(C) Install, calibrate, maintain, and operate, according to the manufacturer’s specifications, a device that indicates the amount of HAP or VOC recovered by the solvent recovery device over rolling 7- to 30-day periods; the device shall be certified by the manufacturer to be accurate to within ±2.0 percent, and this certification shall be kept on record;

(D) Measure the amount of HAP or VOC recovered; and

(E) Calculate the overall HAP or VOC emission reduction (R) for rolling 7- to 30-day periods using equation 9.

(F) Compliance is demonstrated if the value of R is equal to or greater than the overall HAP control efficiencies required by §63.745(d), §63.746(c), or §63.747(d).

(3) To demonstrate initial compliance with §63.745(d), §63.746(c), or §63.747(d) when affected HAP emission points are controlled by an emission control device other than a fixed-bed carbon adsorption system with individual exhaust stacks for each carbon adsorber vessel, each owner or operator of an affected source shall perform a gaseous emission test using the following procedures.

(i) Construct the overall HAP emission reduction system so that all volumetric flow rates and total HAP or VOC emissions can be accurately determined as discussed in paragraph (g)(1)(iii) of this section. The overall HAP or VOC emission reduction (R) is calculated using equation 9:

\[R = \frac{M_i}{\sum_{i=1}^{n} [W_{ci} M_{ci} - R_{Si}]} \times 100 \quad \text{Eq. 9} \]

(ii) The value of RS is zero unless the owner or operator submits the following information to the Administrator for approval of a measured RS value that is greater than zero:

(A) Measurement techniques; and

(B) Documentation that the measured value of RS exceeds zero.

(iii) The measurement techniques of paragraph (g)(1)(i)(A) of this section shall be submitted to the Administrator for approval with the notification of performance test required under §63.7(b).

(iv) Each owner or operator demonstrating compliance by the test method described in paragraph (g)(1) of this section shall:

(A) Measure the amount of coating or stripper as applied;

(B) Determine the VOC or HAP content of all coating and stripper applied using the test method specified in §63.750(c) (1) through (3) or (e)(1) and (2) of this section;

(C) Install, calibrate, maintain, and operate, according to the manufacturer’s specifications, a device that indicates the amount of HAP or VOC recovered by the solvent recovery device over rolling 7- to 30-day periods; the device shall be certified by the manufacturer to be accurate to within ±2.0 percent, and this certification shall be kept on record;

(D) Measure the amount of HAP or VOC recovered; and

(E) Calculate the overall HAP or VOC emission reduction (R) for rolling 7- to 30-day periods using equation 9.

(F) Compliance is demonstrated if the value of R is equal to or greater than the overall HAP control efficiencies required by §63.745(d), §63.746(c), or §63.747(d).
other gaseous emission sources not affected by this subpart shall isolate the affected HAP emission points from all other gaseous emission points by one of the following methods:

(A) Build a temporary total enclosure around the affected HAP emission point(s); or

(B) Shut down all gaseous emission points not affected by this subpart and continue to exhaust fugitive emissions from the affected HAP emission points through any building ventilation system and other room exhausts such as drying ovens. All ventilation air must be vented through stacks suitable for testing.

(iii) Operate the emission control device with all affected HAP emission points connected and operating.

(iv) Determine the efficiency (E) of the control device using equation 10:

\[
E = \frac{\sum_{i=1}^{n} Q_{bi} C_{bi} - \sum_{j=1}^{P} Q_{aj} C_{aj}}{\sum_{i=1}^{n} Q_{bi} C_{bi}} \quad \text{Eq. 10}
\]

(v) Determine the efficiency (F) of the capture system using equation 11:

\[
F = \frac{\sum_{i=1}^{n} Q_{di} C_{di}}{\sum_{i=1}^{P} Q_{di} C_{di} + \sum_{k=1}^{P} Q_{fk} C_{fk}} \quad \text{Eq. 11}
\]

(vi) For each HAP emission point subject to §63.745(d), §63.746(c), or §63.747(d), compliance is demonstrated if the product of (E) × (F) is equal to or greater than the overall HAP control efficiencies required under §63.745(d), §63.746(c), or §63.747(d).

(3) To demonstrate compliance with §63.745(d), §63.746(c), or §63.747(d) when affected HAP emission points are controlled by a fixed-bed carbon adsorption system with individual exhaust stacks for each carbon adsorber vessel, each owner or operator of an affected source shall perform a gaseous emission test using the following procedures:

(i) Construct the overall HAP emission reduction system so that each volumetric flow rate and the total HAP emissions can be accurately determined by the applicable test methods and procedures specified in §63.750(g) (9) through (14):

(ii) Assure that all HAP emissions from the affected HAP emission point(s) are segregated from gaseous emission points not affected by this subpart and that the emissions can be captured for measurement, as described in paragraphs (g)(2)(ii) (A) and (B) of this section;

(iii) Operate the emission control device with all affected HAP emission points connected and operating;

(iv) Determine the efficiency (H) of each individual carbon adsorber vessel using equation 12:

\[
H_v = \frac{Q_{gv} C_{gv} - Q_{hv} C_{hv}}{Q_{gv} C_{gv}} \quad \text{Eq. 12}
\]

(v) Determine the efficiency of the carbon adsorption system (H_sys) by computing the average efficiency of the individual carbon adsorber vessels as weighted by the volumetric flow rate (Q_{hv}) of each individual carbon adsorber vessel (v) using equation 13:

\[
H_{sys} = \frac{\sum_{v=1}^{d} H_v Q_{hv}}{\sum_{v=1}^{d} Q_{hv}} \quad \text{Eq. 13}
\]

(vi) Determine the efficiency (F) of the capture system using equation 11.

(vii) For each HAP emission point subject to §63.745(d), §63.746(c), or §63.747(d), compliance is demonstrated if the product of (H_sys) × (F) is equal to or greater than the overall HAP control efficiency required by §63.745(d), §63.746(c), or §63.747(d).

(4) An alternative method of demonstrating compliance with §63.745(d), §63.746(c), or §63.747(d) is the installation of a total enclosure around the affected HAP emission point(s) and the ventilation of all HAP emissions from the total enclosure to a control device with the efficiency specified in paragraph (g)(4)(iii) of this section. If this
method is selected, the compliance test methods described in paragraphs (g)(1), (g)(2), and (g)(3) of this section are not required. Instead, each owner or operator of an affected source shall:

(i) Demonstrate that a total enclosure is installed. An enclosure that meets the requirements in paragraphs (g)(4)(i) (A) through (D) of this section shall be considered a total enclosure. The owner or operator of an enclosure that does not meet these requirements may apply to the Administrator for approval of the enclosure as a total enclosure on a case-by-case basis. The enclosure shall be considered a total enclosure if it is demonstrated to the satisfaction of the Administrator that all HAP emissions from the affected HAP emission point(s) are contained and vented to the control device. The requirements for automatic approval are as follows:

(A) The total area of all natural draft openings shall not exceed 5% of the total surface area of the total enclosure’s walls, floor, and ceiling;

(B) All sources of emissions within the enclosure shall be a minimum of four equivalent diameters away from each natural draft opening;

(C) The average inward face velocity (FV) across all natural draft openings shall be a minimum of 3,600 meters per hour as determined by the following procedures:

(1) All forced makeup air ducts and all exhaust ducts are constructed so that the volumetric flow rate in each can be accurately determined by the test methods and procedures specified in §63.750(g) (10) and (11); volumetric flow rates shall be calculated without the adjustment normally made for moisture content; and

(2) Determine FV by equation 14:

\[FV = \frac{\sum_{j=1}^{n} Q_{\text{out} j} - \sum_{i=1}^{p} Q_{\text{in} i}}{\sum_{k=1}^{q} A_k} \]

Eq. 14

(D) The air passing through all natural draft openings shall flow into the enclosure continuously. If FV is less than 9,000 meters per hour, the continuous inward flow of air shall be verified by continuous observation using smoke tubes, streamers, tracer gases, or other means approved by the Administrator over the period that the volumetric flow rate tests required to determine FV are carried out. If FV is greater than 9,000 meters per hour, the direction of airflow through the natural draft openings shall be presumed to be inward at all times without verification.

(ii) Determine the control device efficiency using equation 10 or equations 12 and 13, as applicable, and the test methods and procedures specified in §63.750(g) (9) through (14).

(iii) Compliance shall be achieved if the installation of a total enclosure is demonstrated and the value of \(E \) determined from equation 10 (or the value of \(H_{sys} \), determined from equations 12 and 13, as applicable) is equal to or greater than the overall HAP control efficiencies required under §63.745(d), §63.746(c), or §63.747(d).

(5) When nonregenerative carbon adsorbers are used to comply with §63.745(d), §63.746(c), or §63.747(d), the owner or operator may conduct a design evaluation to demonstrate initial compliance in lieu of following the compliance test procedures of paragraphs (g)(1), (2), (3), and (4) of this section. The design evaluation shall consider the vent stream composition, component concentrations, flow rate, relative humidity, and temperature, and shall establish the design exhaust vent stream organic compound concentration level, capacity of the carbon bed, type and working capacity of activated carbon used for the carbon bed, and design carbon replacement interval based on the total carbon working capacity of the control device and the emission point operating schedule.

(6)(i) To demonstrate initial compliance with §63.745(d), §63.746(c), or §63.747(d) when hard piping or ductwork is used to direct VOC and HAP emissions from a VOC and HAP source to the control device, each owner or operator shall demonstrate upon inspection that the criteria of paragraph (g)(6)(i)(A) and paragraph (g)(6)(1)(B) or (C) of this section VR/FD are met.

(A) The equipment shall be vented to a control device.
(B) The control device efficiency (E or H_{sys}, as applicable) determined using equation 10 or equations 12 and 13, respectively, and the test methods and procedures specified in §63.750(g) (9) through (14), shall be equal to or greater than the overall HAP control efficiency required by §63.745(d), §63.746(c), or §63.747(d).

(C) When a nonregenerative carbon adsorber is used, the ductwork from the affected emission point(s) shall be vented to the control device and the carbon adsorber shall be demonstrated, through the procedures of §63.750(g) (1), (2), (3), (4), or (5), to meet the requirements of §63.745(d), §63.746(c), or §63.747(d).

(7) Startups and shutdowns are normal operation for this source category. Emissions from these activities are to be included when determining if the standards specified in §63.745(d), §63.746(c), or §63.747(d) are being attained.

(8) An owner or operator who uses compliance techniques other than those specified in this subpart shall submit a description of those compliance procedures, subject to the Administrator’s approval, in accordance with §63.7(f) of subpart A.

(9) Either EPA Method 18 or EPA Method 25A of appendix A of part 60, as appropriate to the conditions at the site, shall be used to determine VOC and HAP concentration of air exhaust streams as required by §63.750(g) (1) through (6). The owner or operator shall submit notice of the intended test method to the Administrator for approval along with the notification of the performance test required under §63.7(b). Method selection shall be based on consideration of the diversity of organic species present and their total concentration and on consideration of the potential presence of interfering gases. Except as indicated in paragraphs (g)(9) (i) and (ii) of this section, the test shall consist of three separate runs, each lasting a minimum of 30 minutes.

(i) When either EPA Method 18 or EPA Method 25A is to be used in the determination of the efficiency of a fixed-bed carbon adsorption system with a common exhaust stack for all the individual carbon adsorber vessels pursuant to paragraph (g) (2) or (4) of this section, the test shall consist of three separate runs, each coinciding with one or more complete sequences through the adsorption cycles of all of the individual carbon adsorber vessels.

(ii) When either EPA Method 18 or EPA Method 25A is to be used in the determination of the efficiency of a fixed-bed carbon adsorption system with individual exhaust stacks for each carbon adsorber vessel pursuant to §63.750(g) (3) or (4), each carbon adsorber vessel shall be tested individually. The test for each carbon adsorber vessel shall consist of three separate runs. Each run shall coincide with one or more complete adsorption cycles.

(10) EPA Method 1 or 1A of appendix A of part 60 is used for sample and velocity traverses.

(11) EPA Method 2, 2A, 2C, or 2D of appendix A of part 60 is used for velocity and volumetric flow rates.

(12) EPA Method 3 of appendix A of part 60 is used for gas analysis.

(13) EPA Method 4 of appendix A of part 60 is used for stack gas moisture.

(14) EPA Methods 2, 2A, 2C, 2D, 3, and 4 shall be performed, as applicable, at least twice during each test period.

(h) Overall VOC and/or organic HAP control efficiency—control devices other than carbon adsorbers. Calculate the overall control efficiency of a control system with a control device other than a carbon adsorber using the following procedure.

(1) Calculate the overall control efficiency using equation 15:

$$E_k = R_k F_k \quad \text{Eq. 15}$$

where:

E_k = overall VOC and/or organic HAP control efficiency (expressed as a decimal) of control system k.

R_k = destruction or removal efficiency (expressed as a decimal) of total organic compounds or total organic HAP for control device k as determined under paragraph (h)(2) of this section.

F_k = capture efficiency (expressed as a decimal) of capture system k as determined under paragraph (h)(3) of this section.

(2) The organic HAP destruction or removal efficiency R_k of a control device other than a carbon adsorber shall
be determined using the procedures described below. The destruction efficiency may be measured as either total organic HAP or as TOC minus methane and ethane according to these procedures.

(i) Use Method 1 or 1A of 40 CFR part 60, appendix A, as appropriate, to select the sampling sites.

(ii) Determine the gas volumetric flow rate using Method 2, 2A, 2C, or 2D of 40 CFR part 60, appendix A, as appropriate.

(iii) Use Method 18 of 40 CFR part 60, appendix A, to measure either TOC minus methane and ethane or total organic HAP. Alternatively, any other method or data that have been validated according to the applicable procedures in Method 301 of this part may be used.

(iv) Use the following procedure to calculate the destruction or removal efficiency:

(A) The destruction or removal efficiency test shall consist of three runs. The minimum sampling time for each run shall be 1 hour in which either an integrated sample or a minimum of four grab samples shall be taken. If grab sampling is used, the samples shall be taken at approximately equal intervals in time such as 15-minute intervals during the run.

(B) Calculate the mass rate of either TOC (minus methane and ethane) or total organic HAP (\(E_i\), \(E_o\)) using equations 16 and 17:

\[
E_i = K_2 \left(\sum_{j=1}^{n} C_{ij} M_{ij} \right) Q_i \quad \text{Eq. 16}
\]

\[
E_o = K_2 \left(\sum_{j=1}^{n} C_{oj} M_{oj} \right) Q_o \quad \text{Eq. 17}
\]

where:
- \(E_i\), \(E_o\) = mass rate of TOC (minus methane and ethane) or total organic HAP at the inlet and outlet of the control device, respectively, kg TOC per hour or kg organic HAP per hour.
- \(K_2\) = constant, 2.494 \times 10^{-6} \text{ (gram-mole per standard cubic meter) (kilogram/gram) (minute/hour), where standard temperature for (gram-mole per standard cubic meter) is 20 °C.}
- \(Q_i\), \(Q_o\) = flow rate of gas stream at the inlet and outlet of the control device, respectively, dry standard cubic meter per minute.
- \(n\) = number of sample components in the gas stream.
- \(C_{ij}\), \(C_{oj}\) = concentration of sample component \(j\) of the gas stream at the inlet and outlet of the control device, respectively, parts per million by volume.
- \(M_{ij}\), \(M_{oj}\) = molecular weight of sample component \(j\) of the gas stream at the inlet and outlet of the control device, respectively, gram/gram-mole.

(C) Calculate the destruction or removal efficiency for TOC (minus methane and ethane) or total organic HAP using equation 18:

\[
R = \frac{E_i - E_o}{E_i} \times 100 \quad \text{Eq. 18}
\]

where:
- \(R\) = destruction or removal efficiency of control device, percent.
- \(E_i\) = mass rate of TOC (minus methane and ethane) or total organic HAP at the inlet to the control device as calculated under paragraph (h)(2)(iv)(B) of this section, kg TOC per hour or kg organic HAP per hour.
- \(E_o\) = mass rate of TOC (minus methane and ethane) or total organic HAP at the outlet of the control device, as calculated under paragraph (h)(2)(iv)(B) of this section, kg TOC per hour or kg organic HAP per hour.

(3) Determine the capture efficiency \(F_i\) of each capture system to which organic HAP and VOC emissions from coating operations are vented. The capture efficiency value shall be determined using Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure as found in appendix B to §52.741 of part 52 of this chapter for total enclosures, and the capture efficiency protocol specified in
§ 63.750 40 CFR Ch. I (7–1–14 Edition)

§ 52.741(a)(4)(iii) of part 52 of this chapter for all other enclosures.

(i)(1) Alternative application method—
primers and topcoats. Each owner or operator seeking to use an alternative application method (as allowed in § 63.745(f)(1)(ix)) in complying with the standards for primers and topcoats shall use the procedures specified in paragraphs (i)(2)(i) and (i)(2)(ii) or (i)(2)(iii) of this section to determine the organic HAP and VOC emission levels of the alternative application technique as compared to either HVLP or electrostatic spray application methods.

(ii) For the process or processes for which the alternative application method is to be used, the total organic HAP and VOC emissions shall be determined for an initial 30-day period, the period of time required to apply coating to five completely assembled aircraft, or a time period approved by the permitting agency. During this initial period, only HVLP or electrostatic spray application methods shall be used. The emissions shall be determined based on the volumes, organic HAP contents (less water), and VOC contents (less water and exempt solvents) of the coatings as applied.

(iii) Upon implementation of the alternative application method, use the alternative application method in production on actual production parts or assemblies for a period of time sufficient to coat an equivalent amount of parts and assemblies with coatings identical to those used in the initial 30-day period. The actual organic HAP and VOC emissions shall be calculated for this post-implementation period.

(iv) Test the proposed application method against either HVLP or electrostatic spray application methods in a laboratory or pilot production area, using parts and coatings representative of the process(es) where the alternative method is to be used. The laboratory test will use the same part configuration(s) and the same number of parts for both the proposed method and the HVLP or electrostatic spray application methods.

(v) Whenever the approach in either paragraph (i)(2)(ii) or (i)(2)(iii) of this section is used, the owner or operator shall calculate both the organic HAP and VOC emission reduction using equation:

\[P = \frac{E_b - E_a}{E_b} \times 100 \]

where:

\(P \) = organic HAP or VOC emission reduction, percent.

\(E_b \) = organic HAP or VOC emissions, in pounds, before the alternative application technique was implemented, as determined under paragraph (i)(2)(i) of this section.

\(E_a \) = organic HAP of VOC emissions, in pounds, after the alternative application technique was implemented, as determined under paragraph (i)(2)(ii) of this section.

(j) Spot stripping and decal removal. Each owner or operator seeking to comply with § 63.746(b)(3) shall determine the volume of organic HAP-containing chemical strippers or alternatively the weight of organic HAP used per aircraft using the procedure specified in paragraphs (j)(1) through (j)(3) of this section.

(1) For each chemical stripper used for spot stripping and decal removal, determine for each annual period the total volume as applied or the total weight of organic HAP used as determined in paragraph (d)(2) of this section.
(2) Determine the total number of aircraft for which depainting operations began during the annual period as determined from company records.

(3) Calculate the annual average volume of organic HAP-containing chemical stripper or weight of organic HAP used for spot stripping and decal removal per aircraft using equation 20 (volume) or equation 21 (weight):

\[
C = \frac{\sum_{i=1}^{n} V_{si}}{A} \quad \text{Eq. 20}
\]

where:
- \(C \) = annual average volume (gal per aircraft) of organic HAP-containing chemical stripper used for spot stripping and decal removal per aircraft.
- \(n \) = number of organic HAP-containing chemical strippers used in the annual period.
- \(V_{si} \) = volume (gal) of organic HAP-containing chemical stripper \((i) \) used during the annual period.
- \(A \) = number of aircraft for which depainting operations began during the annual period.

\[
C = \frac{\sum_{i=1}^{n} \left(V_{si}D_{hi} \right) \left(\sum_{i=1}^{m} W_{hi} \right)}{A} \quad \text{Eq. 21}
\]

where:
- \(C \) = annual average weight (lb per aircraft) of organic HAP (chemical stripper) used for spot stripping and decal removal.
- \(m \) = number of organic HAP contained in each chemical stripper, as applied.
- \(n \) = number of organic HAP-containing chemical strippers used in the annual period.
- \(V_{si} \) = volume (gal) of organic HAP-containing chemical stripper \((i) \) used during the annual period.
- \(D_{hi} \) = density (lb/gal) of each organic HAP-containing chemical stripper \((i) \), used in the annual period.
- \(W_{hi} \) = weight fraction (expressed as a decimal) of each organic HAP \((i) \) contained in the chemical stripper, as applied, for each aircraft depainted.
- \(A \) = number of aircraft for which depainting operations began during the annual period.

(k) Organic HAP content level determination—compliant chemical milling maskants. For those uncontrolled chemical milling maskants complying with the chemical milling maskant organic HAP content limit specified in \(\text{§63.747}(c)(1) \) without being averaged, the following procedures shall be used to determine the mass of organic HAP emitted per unit volume of coating (chemical milling maskant) \(i \) as applied (less water), \(H_i \) (lb/gal).

(1) For coatings that contain no exempt solvents, determine the total organic HAP content using manufacturer's supplied data or Method 24 of 40 CFR part 60, appendix A to determine the VOC content. The VOC content shall be used as a surrogate for total HAP content for coatings that contain no exempt solvent. If there is a discrepancy between the manufacturer's formulation data and the results of the Method 24 analysis, compliance shall be based on the results from the Method 24 analysis.

When Method 24 is used to determine the VOC content of water-reducible coatings, the precision adjustment factors in Reference Method 24 shall be used. If the adjusted analytical VOC content is less than the formulation solvent content, then the analytical VOC content should be set equal to the formulation solvent content.

(2) [Reserved]
(i) The total volume in gallons of all chemical milling maskants (less water) as applied by summing the individual volumes of each chemical milling maskant as applied (less water).

(3) Determine the density of each chemical milling maskant as applied used during each 30-day period using the procedure specified in paragraph (d)(3) of this section.

(4) Calculate the volume-weighted average mass of organic HAP emitted per unit volume (lb/gal) of chemical milling maskant (less water) as applied for all chemical milling maskants during each 30-day period using equation 22:

\[
H_a = \frac{\sum_{i=1}^{n} W_{Hi} D_{mi} V_{mi}}{M_{lw}}
\]

Eq. 22

where:
- \(H_a\) = volume-weighted mass of organic HAP emitted per unit volume of chemical milling maskants (lb/gal) (less water) as applied during each 30-day period for those chemical milling maskants being averaged.
- \(n\) = number of chemical milling maskants being averaged.
- \(W_{Hi}\) = weight fraction (expressed as a decimal) of organic HAP in chemical milling maskant \(i\) (less water) as applied during each 30-day period that is averaged.
- \(D_{mi}\) = density (lb chemical milling maskant per gal coating) of chemical milling maskant \(i\) as applied during each 30-day period that is averaged.
- \(V_{mi}\) = volume (gal) of chemical milling maskant \(i\) (less water) as applied during the 30-day period that is averaged.
- \(M_{lw}\) = total volume (gal) of all chemical milling maskants (less water) as applied during each 30-day period that is averaged.

(m) VOC content level determination—compliant chemical milling maskants. For those uncontrolled chemical milling maskants complying with the chemical milling maskant VOC content limit specified in §63.747(c)(2) without being averaged, the procedure specified in paragraphs (m)(1) and (m)(2) of this section shall be used to determine the mass of VOC emitted per volume of chemical milling maskant (less water and exempt solvents) as applied.

(1) Determine the mass of VOC emitted per unit volume of chemical milling maskant (lb/gal) (less water and exempt solvents) as applied, \(G_a\), for each chemical milling maskant using the procedures specified in paragraphs (e)(1) and (e)(2) of this section.

(2)(i) If the VOC content is found to be different when EPA Method 24 is used during an enforcement inspection from that used by the owner or operator in calculating \(G_a\), compliance shall be based, except as provided in paragraph (m)(2)(ii) of this section, upon the VOC content obtained using EPA Method 24.

(ii) If the VOC content of a chemical milling maskant obtained using EPA Method 24 would indicate noncompliance as determined under §63.749(h)(3)(i), an owner or operator may elect to average the chemical milling maskant with other uncontrolled chemical milling maskants and (re)calculate \(G_a\) (using the procedure specified in paragraph (n) of this section), provided appropriate and sufficient records were maintained for all chemical milling maskants included in the average recalculation. The (re)calculated value of \(G_a\) for the averaged chemical milling maskants shall then be used to determine compliance.

(n) VOC content level determination—averaged chemical milling maskants. For those uncontrolled chemical milling maskants that are averaged together in order to comply with the chemical milling maskant VOC content limit specified in §63.747(c)(2), the procedure specified in paragraphs (n)(1) through (n)(4) of this section shall be used to determine the monthly volume-weighted average mass of VOC emitted per volume of chemical milling maskant (less water and exempt solvents) as applied, unless the permitting agency specifies a shorter averaging period as part of an ambient ozone control program.

(1) Determine the VOC content of each chemical milling maskant (less water and exempt solvents) as applied used during each 30-day period using the procedure specified in paragraph (f)(1) of this section.

(2)(i) Determine the individual volume of each chemical milling maskant applied in terms of total gallons (less water and exempt solvents) using the procedure specified in paragraph (f)(2) of this section, and
Environmental Protection Agency

§ 63.751

(i) Calculate the total volume in gallons of all chemical milling maskants (less water and exempt solvents) as applied by summing the individual volumes of each chemical milling maskant (less water and exempt solvents) as applied.

(3) Calculate the volume-weighted average mass of VOC emitted per unit volume (lb/gal) of chemical milling maskant (less water and exempt solvents) as applied during each 30-day period using equation 23:

\[
G_a = \frac{\sum_{i=1}^{n} (VOC)_{mi} V_{mi}}{M_{lwes}} \quad \text{Eq. 23}
\]

where:
- \(G_a\) = volume-weighted average mass of VOC per unit volume of chemical milling maskant (lb/gal) (less water and exempt solvents) as applied during the 30-day period for those chemical milling maskants that are averaged.
- \(n\) = number of chemical milling maskants being averaged.
- \((VOC)_{mi}\) = VOC content (lb/gal) of chemical milling maskant \(i\) (less water and exempt solvents) as applied during the 30-day period that is averaged.
- \(V_{mi}\) = volume (gal) of chemical milling maskant \(i\) (less water and exempt solvents) as applied during the 30-day period that is averaged.
- \(M_{lwes}\) = total volume (gal) of all chemical milling maskants (less water and exempt solvents) as applied during each 30-day period that is averaged.

(4)(i) If the VOC content is found to be different when EPA Method 24 is used during an enforcement inspection from that used by the owner or operator in calculating \(G_a\), recalculation of \(G_a\) is required using the new value. If more than one chemical milling maskant is involved, the recalculation shall be made once using all of the new values.

(ii) If recalculation is required, an owner or operator may elect to include in the recalculation of \(G_a\), uncontrolled chemical milling maskants that were not previously included provided appropriate and sufficient records were maintained for these other chemical milling maskants to allow daily recalculations.

(iii) The recalculated value of \(G_a\) under either paragraph \((n)(4)(i)\) or \((n)(4)(ii)\) of this section shall be used to determine compliance.

(o) Inorganic HAP emissions—dry particulate filter certification requirements.

Dry particulate filters used to comply with §63.745(g)(2) or §63.746(b)(4) must be certified by the filter manufacturer or distributor, paint/depainting booth supplier, and/or the facility owner or operator using method 319 in appendix A of this part, to meet or exceed the efficiency data points found in Tables 1 and 2, or 3 and 4 of §63.745 for existing or new sources respectively.

§ 63.751 Monitoring requirements.

(a) Enclosed spray gun cleaners. Each owner or operator using an enclosed spray gun cleaner under §63.744(c)(1) shall visually inspect the seals and all other potential sources of leaks associated with each enclosed spray gun cleaner system at least once per month. Each inspection shall occur while the system is in operation.

(b) Incinerators and carbon adsorbers—initial compliance demonstrations. Each owner or operator subject to the requirements in this subpart must demonstrate initial compliance with the requirements of §§63.745(d), 63.746(c), and 63.747(d) of this subpart. Each owner or operator using a carbon adsorber to comply with the requirements in this subpart shall comply with the requirements specified in paragraphs (b)(1) through (7) of this section. Each owner or operator using an incinerator to comply with the requirements in this subpart shall comply with the requirements specified in paragraphs (b)(8) through (12) of this section.

(1) Except as allowed by paragraph (b)(2) or (b)(5) of this section, for each control device used to control organic HAP or VOC emissions, the owner or operator shall fulfill the requirements specified in paragraphs (b)(1) through (12) of this section.