§ 177.2450 Polyamide-imide resins.

Polyamide-imide resins identified in paragraph (a) of this section may be safely used as components of articles intended for repeated use in contact with food, in accordance with the following prescribed conditions:

(a) Identity. (1) For the purpose of this section the polyamide-imide resins are derived from the condensation reaction of substantially equimolar parts of trimellitic anhydride and p,p′-diphenylmethane diisocyanate.

(2) The polyamide-imide resins (CAS Reg. No. 31957-38-7) derived from the condensation reaction of equimolar parts of benzoyl chloride-3,4-dicarboxylic anhydride and 4,4′-diphenylmethanediamine.

(b) Specifications. (1) Polyamide-imide resins identified in paragraph (a)(1) of this section shall have a nitrogen content of not less than 7.8 weight percent and not more than 8.2 weight percent. Polyamide-imide resins identified in paragraph (a)(2) of this section shall have a nitrogen content of not less than 7.5 weight percent and not more than 7.8 weight percent. Nitrogen content is determined by the Dumas Nitrogen Determination as set forth in the "Official Methods of Analysis of the Association of Official Analytical Chemists," 13th Ed. (1980), sections 7.016-7.020, which is incorporated by reference in accordance with 5 U.S.C. 552(a). Copies may be obtained from the AOAC INTERNATIONAL, 481 North Frederick Ave., suite 500, Gaithersburg, MD 20877, or may be examined at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(2) Polyamide-imide resins identified in paragraph (a)(1) of this section shall have a solution viscosity of not less than 1.190. Polyamide-imide resins identified in paragraph (a)(2) of this section shall have a solution viscosity of not less than 1.190. Solution viscosity shall be determined by a method titled “Solution Viscosity” which is incorporated by reference in accordance with 5 U.S.C. 552(a). Copies are available from the Center for Food Safety and Applied Nutrition (HFS–200), Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or may be examined at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(3) The polyamide-imide resins identified in paragraph (a)(1) of this section are heat cured at 600 °F for 15 minutes when prepared for extraction tests and the residual monomers: p,p′-diphenylmethane diisocyanate should not be present at greater than 100 parts per million and trimellitic anhydride
should not be present at greater than 500 parts per million. Residual monomers are determined by gas chromatography (the gas chromatography method titled "Amide-Imide Polymer Analysis—Analysis of Monomer Content," is incorporated by reference in accordance with 5 U.S.C. 552(a).Copies are available from the Center for Food Safety and Applied Nutrition (HFS–200), Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(c) Extractive limitations are applicable to the polyamide-imide resins identified in paragraphs (a) (1) and (2) of this section in the form of films of 1 mil uniform thickness after coating and heat curing at 600 °F for 15 minutes on stainless steel plates, each having such resin-coated surface area of 100 square inches. The cured-resin film coatings shall be extracted in accordance with the method described in §176.170(d)(3) of this chapter, using a plurality of spaced, coated stainless steel plates, exposed to the respective food simulating solvents. The resin shall meet the following extractive limitations under the corresponding extraction conditions:

1. Distilled water at 250 °F for 2 hours: Not to exceed 0.01 milligram per square inch.
2. Three percent acetic acid at 212 °F for 2 hours: Not to exceed 0.05 milligram per square inch.
3. Fifty percent ethyl alcohol at 160 °F for 2 hours: Not to exceed 0.03 milligram per square inch.
4. n-Heptane at 150 °F for 2 hours: Not to exceed 0.05 milligram per square inch.

(d) In accordance with good manufacturing practice, those food contact articles, having as components the polyamide-imide resins identified in paragraph (a) of this section and intended for repeated use shall be thoroughly cleansed prior to their first use in contact with food.

§ 177.2460 Poly(2,6-dimethyl-1,4-phenylene) oxide resins.

The poly(2,6-dimethyl-1,4-phenylene) oxide resins identified in paragraph (a) of this section may be used as an article or as a component of an article intended for use in contact with food subject to the provisions of this section.

(a) Identity. For the purposes of this section, poly(2,6-dimethyl-1,4-phenylene) oxide resins consist of basic resins produced by the oxidative coupling of 2,6-xylene such that the finished basic resins meet the specifications and extractives limitations prescribed in paragraph (c) of this section.

(b) Optional adjuvant substances. The basic poly(2,6-dimethyl-1,4-phenylene) oxide resins identified in paragraph (a) of this section may contain optional adjuvant substances required in the production of such basic resins. The optional adjuvant substances required in the production of the basic poly(2,6-dimethyl-1,4-phenylene) oxide resins may include substances permitted for such use by regulations in parts 170 through 189 of this chapter, substances generally recognized as safe in food, substances used in accordance with a prior sanction or approval, and the following:

<table>
<thead>
<tr>
<th>List of substances</th>
<th>Limitations (expressed as percent by weight of finished basic resin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diethyamine</td>
<td>Not to exceed 0.16 percent as residual catalyst</td>
</tr>
<tr>
<td>Methyl alcohol</td>
<td>Not to exceed 0.02 percent as residual solvent</td>
</tr>
<tr>
<td>Toluene</td>
<td>Not to exceed 0.2 percent as residual solvent</td>
</tr>
</tbody>
</table>

(c) Specifications and extractives limitations. The poly(2,6-dimethyl-1,4-phenylene) oxide basic resins meet the following:

(1) Specifications. Intrinsic viscosity is not less than 0.30 deciliter per gram as determined by ASTM method D1243–79, "Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers," which is incorporated by