Food and Drug Administration, HHS

contain other optional adjuvant substances which may include the following:

<table>
<thead>
<tr>
<th>List of substances</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorants used in accordance with § 178.3297 of this chapter.</td>
<td>For use as lubricant.</td>
</tr>
<tr>
<td>Dioctyl phthalate</td>
<td>For use only as polymerization reaction control agent.</td>
</tr>
<tr>
<td>Hexamethylenetetramine</td>
<td>Do.</td>
</tr>
<tr>
<td>Phthalic acid anhydride</td>
<td>Zinc stearate. For use as lubricant.</td>
</tr>
</tbody>
</table>

(c) The molded melamine-formaldehyde articles in the finished form in which they are to contact food, when extracted with the solvent or solvents characterizing the type of food and under the conditions of time and temperature as determined from tables 1 and 2 of § 175.300(d) of this chapter, shall yield net chloroform-soluble extractives not to exceed 0.5 milligram per square inch of food-contact surface.

§ 177.1480 Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

Nitrile rubber modified acrylonitrile-methyl acrylate copolymers identified in this section may be safely used as components of articles intended for food-contact use under conditions of use D, E, F, or G described in table 2 of § 176.170(c) of this chapter, subject to the provisions of this section.

(a) For the purpose of this section, nitrile rubber modified acrylonitrile-methyl acrylate copolymers consist of basic copolymers produced by the graft copolymerization of 73–77 parts by weight of acrylonitrile and 23–27 parts by weight of methyl acrylate in the presence of 8–10 parts by weight of butadiene-acrylonitrile copolymers containing approximately 70 percent by weight of polymer units derived from butadiene.

(b) The nitrile rubber modified acrylonitrile-methyl acrylate basic copolymers meet the following specifications and extractives limitations:

(1) Specifications. (i) Nitrogen content is in the range 16.5–19 percent as determined by Kjeldahl analysis.

(ii) Intrinsic viscosity in acetonitrile at 25 °C is not less than 0.29 deciliter per gram as determined by ASTM method D1243-79. “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference. Copies may be obtained from the American Society for Testing Materials, 100 Barr Harbor Dr., West Conshohocken, Philadelphia, PA 19428-2959, or may be examined at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

3. (iii) Residual acrylonitrile monomer content is not more than 11 parts per million as determined by gas chromatography.

(iv) Acetonitrile-soluble fraction after refluxing the base polymer in acetonitrile for 1 hour is not greater than 95 percent by weight of the basic copolymers.

(2) Extractives limitations. The following extractive limitations are determined by an infrared spectrophotometric method titled, “Infrared Spectrophotometric Determination of Polymer Extracted from Borex * 210 Resin Pellets,” which is incorporated by reference. Copies are available from the Center for Food Safety and Applied Nutrition (HFS–200), Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. Copies are applicable to the basic copolymers in the form of particles of a size that will pass through a U.S. standard sieve No. 6 and that will be held on a U.S. standard sieve No. 10:

(i) Extracted copolymer not to exceed 2.0 parts per million in aqueous extract obtained when a 100-gram sample of the basic copolymers is extracted with 250 milliliters of demineralized (deionized) water at reflux temperature for 2 hours.

(ii) Extracted copolymer not to exceed 0.5 part per million in n-heptane.
§ 177.1500 Extract obtained when a 100-gram sample of the basic copolymers is extracted with 250 milliliters of reagent grade n-heptane at reflux temperature for 2 hours.

(c) Acrylonitrile copolymers identified in this section shall comply with the provisions of §180.22 of this chapter.

(d) Acrylonitrile copolymers identified in this section are not authorized to be used to fabricate beverage containers.


§ 177.1500 Nylon resins.

The nylon resins listed in paragraph (a) of this section may be safely used to produce articles intended for use in processing, handling, and packaging food, subject to the provisions of this section:

(a) The nylon resins are manufactured as described in this paragraph so as to meet the specifications prescribed in paragraph (b) of this section when tested by the methods described in paragraph (d) of this section.

(1) Nylon 66 resins are manufactured by the condensation of hexamethylene diamine and adipic acid.

(2) Nylon 610 resins are manufactured by the condensation of hexamethylene diamine and sebacic acid.

(3) Nylon 66/610 resins are manufactured by the condensation of equal-weight mixtures of nylon 66 salts and nylon 610 salts.

(4) Nylon 6/66 resins manufactured by the condensation and polymerization of Nylon 66 salts and epsilon-caprolactam.

(5) Nylon 11 resins are manufactured by the condensation of 11-aminoundecanoic acid.

(6) Nylon 6 resins are manufactured by the polymerization of epsilon-caprolactam.

(7) Nylon 66T resins are manufactured by the condensation of hexamethylene diamine, adipic acid, and terephthalic acid such that composition in terms of ingredients is 43.1±0.2 weight percent hexamethylene diamine, 35.3±1.2 weight percent adipic acid, and 21.6±1.2 weight percent terephthalic acid.

(8) Nylon 612 resins are manufactured by the condensation of hexamethylenediamine and dodecanedioic acid.

(9) Nylon 12 resins are manufactured by the condensation of omega-laurolactam.

(10)(i) Impact modified Nylon MXD–6 resins (CAS Reg. No. 59655–05–9) manufactured by the condensation of adipic acid, 1,3-benzenedimethanamine, and alpha-(3-aminopropyl)–omega-(3-amino propoxy)poly- oxyethylene under such conditions that the alpha-(3-aminopropyl)–omega-(3-aminopropoxy) polyoxyethylene monomer content does not exceed 7 percent by weight of the finished resin.

(ii) Nylon MXD–6 resins (CAS Reg. No. 25718–70–1) manufactured by the condensation of adipic acid and 1,3-benzenedimethanamine.

(11) Nylon 12T resins are manufactured by the condensation of omega-laurolactam (CAS Reg. No. 0947–04–6), isophthalic acid (CAS Reg. No. 0121–91–5), and bis(4-amino-3-methylcyclohexyl)methane (CAS Reg. No. 8864–37–5) such that the composition in terms of ingredients is 34.4±1.5 weight percent omega-laurolactam, 26.8±0.4 weight percent isophthalic acid, and 38.8±0.5 weight percent bis(4-amino-3-methylcyclohexyl)-methane.

(12) Nylon 6/12 resins (CAS Reg. No. 25759–23–4) are manufactured by the condensation of hexamethylenediamine, terephthalic acid, and isophthalic acid such that 65 to 80 percent of the polymer units are derived from hexamethylene isophthalamide.

(13)(i) Nylon 6/12 resins (CAS Reg. No. 25191–04–2) are manufactured by the copolymerization of a 1 to 1 ratio by weight of epsilon-caprolactam and omega-laurolactam.

(ii) Nylon 6/12 resins (CAS Reg. No. 25191–04–2) are manufactured by the copolymerization of a ratio of at least 80 weight percent of epsilon-caprolactam and no more than 20 weight percent of omega-laurolactam.

(14) Nylon 6/69 resins (CAS Reg. No. 51995–62–1) are manufactured by the condensation of 49.5±0.5 weight percent epsilon-caprolactam, 19.4±0.2 weight percent...