Food and Drug Administration, HHS

Add isooctane to bring the contents of the absorption vessel to 60 milliliters, and mix. Determine the absorbance of the solution in the 5-centimeter cell in the range 255 millimicrons to 310 millimicrons, inclusive, compared to isooctane. The absorbance of the solution of combustion product gas shall not exceed that of the isooctane solvent at any wavelength in the specified range by more than one-third of the standard reference absorbance.

§ 173.355 Dichlorodifluoromethane.

The food additive dichlorodifluoromethane may be safely used in food in accordance with the following prescribed conditions:

(a) The additive has a purity of not less than 99.97 percent.

(b) It is used or intended for use, in accordance with good manufacturing practice, as a direct-contact freezing agent for foods.

(c) To assure safe use of the additive:

(1) The label of its container shall bear, in addition to the other information required by the act, the following:

(i) The name of the additive, dichlorodifluoromethane, with or without the parenthetical name “Food Freezant 12”.

(ii) The designation “food grade”.

(2) The label or labeling of the food additive container shall bear adequate directions for use.

§ 173.356 Hydrogen peroxide.

Hydrogen peroxide (CAS Reg. No. 7722–84–1) may be safely used to treat food in accordance with the following conditions:

(a) The additive meets the specifications of the Food Chemicals Codex, 7th ed. (2010), pp. 496 and 497, which is incorporated by reference. The Director of the Federal Register approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial Convention, 12601 Twinbrook Pkwy., Rockville, MD 20852 (Internet address http://www.usp.org). Copies may be examined at the Center for Food Safety and Applied Nutrition’s Library, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, 301–436–2163, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(b) The additive is used as an antimicrobial agent in the production of modified whey (including, but not limited to, whey protein concentrates and whey protein isolates) by ultrafiltration methods, at a level not to exceed 0.001 percent by weight of the whey, providing that residual hydrogen peroxide is removed by appropriate chemical or physical means during the processing of the modified whey.

§ 173.357 Materials used as fixing agents in the immobilization of enzyme preparations.

Fixing agents may be safely used in the immobilization of enzyme preparations in accordance with the following conditions:

(a) The materials consist of one or more of the following:

(1) Substances generally recognized as safe in food.

(2) Substances identified in this subparagraph and subject to such limitations as are provided:

<table>
<thead>
<tr>
<th>Substances</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamide-acrylic acid resin: Complying with § 173.5(a)(1) and (b) of this chapter.</td>
<td>May be used as a fixing material in the immobilization of glucose isomerase enzyme preparations for use in the manufacture of high fructose corn syrup, in accordance with § 184.1372 of this chapter.</td>
</tr>
<tr>
<td>Cellulose triacetate</td>
<td>May be used as a fixing material in the immobilization of lactase for use in reducing the lactose content of milk.</td>
</tr>
<tr>
<td>Diethylaminoethyl-cellulose</td>
<td>May be used as a fixing material in the immobilization of glucose isomerase enzyme preparations for use in the manufacture of high fructose corn syrup, in accordance with § 184.1372 of this chapter.</td>
</tr>
<tr>
<td>Dimethylamine-epichlorohydrin resin: Complying with § 173.60(a) and (b) of this chapter.</td>
<td>May be used as a fixing material in the immobilization of glucose isomerase enzyme preparations for use in the manufacture of high fructose corn syrup, in accordance with § 184.1372 of this chapter.</td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td>Do.</td>
</tr>
<tr>
<td>Periodic acid (CAS Reg. No. 10450–60–9).</td>
<td></td>
</tr>
</tbody>
</table>

[76 FR 11330, Mar. 2, 2011]
§ 173.360 Octafluorocyclobutane.

The food additive octafluorocyclobutane may be safely used as a propellant and aerating agent in foamed or sprayed food products in accordance with the following conditions:

(a) The food additive meets the following specifications:

99.99 percent octafluorocyclobutane.

Less than 0.1 part per million fluoroolefins, calculated as perfluorobutylene.

(b) The additive is used or intended for use alone or with one or more of the following substances: Carbon dioxide, nitrous oxide, and propane, as a propellant and aerating agent for foamed or sprayed food products, except for those standardized foods that do not provide for such use.

(c) To assure safe use of the additive:

(1) The label of the food additive container shall bear, in addition to the other information required by the act, the following:

(i) The name of the additive, octafluorocyclobutane.

(ii) The percentage of the additive present in the case of a mixture.

(iii) The designation “food grade”.

(2) The label or labeling of the food additive container shall bear adequate directions for use.

§ 173.368 Ozone.

Ozone (CAS Reg. No. 10028–15–6) may be safely used in the treatment, storage, and processing of foods, including meat and poultry (unless such use is precluded by standards of identity in 9 CFR part 319), in accordance with the following prescribed conditions:

(a) The additive is an unstable, colorless gas with a pungent, characteristic odor, which occurs freely in nature. It is produced commercially by passing electrical discharges or ionizing radiation through air or oxygen.

(b) The additive is used as an antimicrobial agent as defined in §170.3(o)(2) of this chapter.

(c) The additive meets the specifications for ozone in the Food Chemicals Codex, 7th ed. (2010), pp. 754–755, which...