the limitations prescribed in paragraph (b) of this section.

§ 172.820 Polyethylene glycol (mean molecular weight 200–9,500).

Polyethylene glycol identified in this section may be safely used in food in accordance with the following prescribed conditions:

(a) **Identity.** (1) The additive is an addition polymer of ethylene oxide and water with a mean molecular weight of 200 to 9,500.

(2) It contains no more than 0.2 percent total by weight of ethylene and diethylene glycols when tested by the analytical methods prescribed in paragraph (b) of this section.

(b) **Analytical method.** (1) The analytical method prescribed in the National Formulary XV (1980), page 1244, for polyethylene glycol 400 shall be used to determine the total ethylene and diethylene glycol content of polyethylene glycols having mean molecular weights of 450 or higher.

(2) The following analytical method shall be used to determine the total ethylene and diethylene glycol content of polyethylene glycols having mean molecular weights below 450.

ANALYTICAL METHOD

ETHYLENE GLYCOL AND DIETHYLENE GLYCOL CONTENT OF POLYETHYLENE GLYCOLS

The analytical method for determining ethylene glycol and diethylene glycol is as follows:

APPARATUS

Gas chromatograph with hydrogen flame ionization detector (Varian Aerograph 600 D or equivalent). The following conditions shall be employed with the Varian Aerograph 600 D gas chromatograph:

- Column temperature: 165 °C.
- Inlet temperature: 260 °C.
- Carrier gas (nitrogen) flow rate: 70 milliliters per minute.
- Hydrogen and air flow to burner: Optimize to give maximum sensitivity.

Sample size: 2 microliters.

- Elution time: Ethylene glycol: 2.8 minutes.
- Diethylene glycol: 6.5 minutes.

Recorder: −0.5 to +1.05 millivolt, full span, 1 second full response time.

- Syringe: 10-microliter (Hamilton 710 N or equivalent).

- Chromatograph column: 5 feet × 1/8 inch, I.D. stainless steel tube packed with sorbitol (Mathieson-Coleman-Bell 2765 Sorbitol SX850, or equivalent) 12 percent in H₂O by weight on 60–80 mesh nonacid washed diatomaceous earth (Chromosorb W. Johns-Manville, or equivalent).

REAGENTS AND MATERIALS

- Carrier gas, nitrogen: Commercial grade in cylinder equipped with reducing regulator to provide 50 p.s.i.g. to the gas chromatograph.

- Ethylene glycol: Commercial grade. Purity if necessary, by distillation.

- Diethylene glycol: Commercial grade. Purity, if necessary, by distillation.

- Glycol standards: Prepare chromatographic standards by dissolving known amounts of ethylene glycol and diethylene glycol in water. Suitable concentrations for standardization range from 1 to 6 milligrams of each component per milliliter (for example 10 milligrams diluted to volume in a 10-milliliter volumetric flask is equivalent to 1 milligram per milliliter).

STANDARDIZATION

Inject a 2-microliter aliquot of the glycol standard into the gas chromatograph employing the conditions described above. Measure the net peak heights for the ethylene glycol and for the diethylene glycol. Record the values as follows:

- A = Peak height in millimeters of the ethylene glycol peak.
- B = Milligrams of ethylene glycol per milliliter of standard solution.
- C = Peak height in millimeters of the diethylene glycol peak.
- D = Milligrams of diethylene glycol per milliliter of standard solution.

PROCEDURE

Weigh approximately 4 grams of polyethylene glycol sample accurately into a 10-milliliter volumetric flask. Dilute to volume with water. Mix the solution thoroughly and inject a 2-microliter aliquot into the gas chromatograph. Measure the heights, in millimeters, of the ethylene glycol peak and of the diethylene glycol peak and record as E and F, respectively.

Percent ethylene glycol = \(\frac{E \times B}{A \times \text{sample weight in grams}} \)

Percent diethylene glycol = \(\frac{F \times D}{C \times \text{sample weight in grams}} \)

(c) **Uses.** It may be used, except in milk or preparations intended for addition to milk, as follows:

(1) As a coating, binder, plasticizing agent, and/or lubricant in tablets used for food.

(2) As an adjuvant to improve flavor and as a bodying agent in nonnutritive sweeteners identified in §180.37 of this chapter.
§ 172.822 Sodium lauryl sulfate.

The food additive sodium lauryl sulfate may be safely used in food in accordance with the following conditions:

(a) The additive meets the following specifications:

(1) It is a mixture of sodium alkyl sulfates consisting chiefly of sodium lauryl sulfate \[\text{CH}_2\text{(CH}_2\text{)}_{10}\text{CH}_2\text{OSO}_2\text{Na}\].

(2) It has a minimum content of 90 percent sodium alkyl sulfates.

(b) It is used or intended for use:

(1) As an emulsifier in or with egg whites whereby the additive does not exceed the following limits:

Egg white solids, 1,000 parts per million.

Frozen egg whites, 125 parts per million.

Liquid egg whites, 125 parts per million.

(2) As a whipping agent at a level not to exceed 0.5 percent by weight of gelatine used in the preparation of marshmallows.

(3) As a surfactant in:

(i) Fumaric acid-acidulated dry beverage base whereby the additive does not exceed 25 parts per million of the finished beverage and such beverage base is not for use in a food for which a standard of identity established under section 401 of the Act precludes such use.

(ii) Fumaric acid-acidulated fruit juice drinks whereby the additive does not exceed 25 parts per million of the finished fruit juice drink and it is not used in a fruit juice drink for which a standard of identity established under section 401 of the Act precludes such use.

(4) As a wetting agent at a level not to exceed 10 parts per million in the partition of high and low melting fractions of crude vegetable oils and animal fats, provided that the partition step is followed by a conventional refining process that includes alkali neutralization and deodorization of the fats and oils.

(c) To insure the safe use of the additive, the label of the food additive container shall bear, in addition to the other information required by the Act:

(1) The name of the additive, sodium lauryl sulfate.

(2) Adequate use directions to provide a final product that complies with the limitations prescribed in paragraph (b) of this section.

§ 172.824 Sodium mono- and dimethyl naphthalene sulfonates.

The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in accordance with the following prescribed conditions:

(a) The additive has a molecular weight range of 245–260.

(b) The additive is used or intended for use:

(1) In the crystallization of sodium carbonate in an amount not to exceed 250 parts per million of the sodium carbonate. Such sodium carbonate is used or intended for use in potable water systems to reduce hardness and aid in sedimentation and coagulation by raising the pH for the efficient utilization of other coagulation materials.

(2) As an anticaking agent in sodium nitrite at a level not in excess of 0.1 percent by weight thereof for authorized uses in cured fish and meat.

(c) In addition to the general labeling requirements of the Act:

(1) Sodium carbonate produced in accordance with paragraph (b)(1) of this section shall be labeled to show the presence of the additive and its label or labeling shall bear adequate directions for use.

(2) Sodium nitrite produced in accordance with paragraph (b)(2) of this section shall bear the labeling required by §172.175 and a statement declaring the presence of sodium mono- and dimethyl naphthalene sulfonates.

[42 FR 14491, Mar. 15, 1977, as amended at 63 FR 7069, Feb. 12, 1998]