§ 121.193 Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

(a) Airplanes certificated after August 26, 1957, but before October 1, 1958 (SR 422). No person may operate a turbine engine powered airplane along an intended route unless he complies with either of the following:

1. There is no place along the intended track that is more than 90 minutes (with all engines operating at cruising power) from an airport that meets the requirements of §121.197.

2. Its weight, according to the two-engine-inoperative, en route, net flight path data in the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are assumed to fail simultaneously to an airport that meets the requirements of §121.197.
§ 121.197, with a net flight path (considering the ambient temperature anticipated along the track) having a positive slope at an altitude of at least 1,000 feet above all terrain and obstructions within five miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher.

For the purposes of paragraph (a)(2) of this section, it is assumed that the two engines fail at the most critical point en route, that if fuel jettisoning is provided, the airplane’s weight at the point where the engines fail includes enough fuel to continue to the airport and to arrive at an altitude of at least 1,000 feet directly over the airport, and that the fuel and oil consumption after engine failure is the same as the consumption allowed for in the net flight path data in the Airplane Flight Manual.

(b) Aircraft certificated after September 30, 1958, but before August 30, 1959 (SR 422A). No person may operate a turbine engine powered airplane along an intended route unless he complies with either of the following:

(1) There is no place along the intended track that is more than 90 minutes (with all engines operating at cruising power) from an airport that meets the requirements of § 121.197.

(2) Its weight, according to the two-engine inoperative, en route, net flight path data in the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are assumed to fail simultaneously to an airport that meets the requirements of § 121.197, with the net flight path (considering the ambient temperatures anticipated along the track) clearing vertically by at least 2,000 feet all terrain and obstructions within five statute miles (4.34 nautical miles) on each side of the intended track. For the purposes of this subparagraph, it is assumed that—

(i) The two engines fail at the most critical point en route;

(ii) The net flight path has a positive slope at 1,500 feet above the airport where the landing is assumed to be made after the engines fail;

(iii) Fuel jettisoning will be approved if the certificate holder shows that the crew is properly instructed, that the training program is adequate, and that all other precautions are taken to ensure a safe procedure;

(iv) The airplane’s weight at the point where the two engines are assumed to fail provides enough fuel to continue to the airport, to arrive at an altitude of at least 1,500 feet directly over the airport, and thereafter to fly for 15 minutes at cruise power or thrust, or both; and

(v) The consumption of fuel and oil after the engine failure is the same as the consumption allowed for in the net flight path data in the Airplane Flight Manual.

(c) Aircraft certificated after August 29, 1959 (SR 422B). No person may operate a turbine engine powered airplane along an intended route unless he complies with either of the following:

(1) There is no place along the intended track that is more than 90 minutes (with all engines operating at cruising power) from an airport that meets the requirements of § 121.197.

(2) Its weight, according to the two-engine inoperative, en route, net flight path data in the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are assumed to fail simultaneously to an airport that meets the requirements of § 121.197, with a net flight path (considering the ambient temperature anticipated along the track) having a positive slope at an altitude of at least 1,000 feet above all terrain and obstructions within five miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher.

For the purposes of paragraph (a)(2) of this section, it is assumed that the two engines fail at the most critical point en route, that the airplane’s weight at the point where the engines fail includes enough fuel to continue to the airport, to arrive at an altitude of at least 1,500 feet directly over the airport, and thereafter to fly for 15 minutes at cruise power or thrust, or both, and that the consumption of fuel and oil after engine failure is the same as the consumption allowed for in the net flight path data in the Airplane Flight Manual.