§ 29.1123 Exhaust piping.
(a) Exhaust piping must be heat and corrosion resistant, and must have provisions to prevent failure due to expansion by operating temperatures.
(b) Exhaust piping must be supported to withstand any vibration and inertia loads to which it would be subjected in operation.
(c) Exhaust piping connected to components between which relative motion could exist must have provisions for flexibility.

§ 29.1125 Exhaust heat exchangers.
For reciprocating engine powered rotorcraft the following apply:
(a) Each exhaust heat exchanger must be constructed and installed to withstand the vibration, inertia, and other loads to which it would be subjected in operation. In addition—
(1) Each exchanger must be suitable for continued operation at high temperatures and resistant to corrosion from exhaust gases;
(2) There must be means for inspecting the critical parts of each exchanger;
(3) Each exchanger must have cooling provisions wherever it is subject to contact with exhaust gases; and
(4) No exhaust heat exchanger or muff may have stagnant areas or liquid traps that would increase the probability of ignition of flammable fluids or vapors that might be present in case of the failure or malfunction of components carrying flammable fluids.
(b) If an exhaust heat exchanger is used for heating ventilating air used by personnel—
(1) There must be a secondary heat exchanger between the primary exhaust gas heat exchanger and the ventilating air system; or
(2) Other means must be used to prevent harmful contamination of the ventilating air.

§ 29.1123 Exhaust piping.
(a) There must be a separate power control for each engine.
(b) Each control must be located and arranged under §29.777 and marked under §29.1555.
(c) Each control must be able to maintain any set position without—
(1) Constant attention; or
(2) Tendency to creep due to control loads or vibration.
(d) Controls of powerplant valves required for safety must have—
(1) For manual valves, positive stops or in the case of fuel valves suitable index provisions, in the open and closed position; and
(2) For power-assisted valves, a means to indicate to the flight crew when the valve—
(i) Is in the fully open or fully closed position; or
(ii) Is moving between the fully open and fully closed position.

§ 29.1142 Auxiliary power unit controls.
Means must be provided on the flight deck for starting, stopping, and emergency shutdown of each installed auxiliary power unit.

§ 29.1143 Engine controls.
(a) There must be a separate power control for each engine.
§ 29.1145 Power controls.
(b) Power controls must be arranged to allow ready synchronization of all engines by—
(1) Separate control of each engine; and
(2) Simultaneous control of all engines.
(c) Each power control must provide a positive and immediately responsive means of controlling its engine.
(d) Each fluid injection control other than fuel system control must be in the corresponding power control. However, the injection system pump may have a separate control.
(e) If a power control incorporates a fuel shutoff feature, the control must have a means to prevent the inadvertent movement of the control into the shutoff position. The means must—
(1) Have a positive lock or stop at the idle position; and
(2) Require a separate and distinct operation to place the control in the shutoff position.
(f) For rotorcraft to be certificated for a 30-second OEI power rating, a means must be provided to automatically activate and control the 30-second OEI power and prevent any engine from exceeding the installed engine limits associated with the 30-second OEI power rating approved for the rotorcraft.

§ 29.1147 Mixture controls.
(a) If there are mixture controls, each engine must have a separate control, and the controls must be arranged to allow—
(1) Separate control of each engine; and
(2) Simultaneous control of all engines.
(b) Each intermediate position of the mixture controls that corresponds to a normal operating setting must be identifiable by feel and sight.

§ 29.1151 Rotor brake controls.
(a) It must be impossible to apply the rotor brake inadvertently in flight.
(b) There must be means to warn the crew if the rotor brake has not been completely released before takeoff.

§ 29.1157 Carburetor air temperature controls.
There must be a separate carburetor air temperature control for each engine.

§ 29.1159 Supercharger controls.
Each supercharger control must be accessible to—
(a) The pilots; or
(b) (If there is a separate flight engineer station with a control panel) the flight engineer.

§ 29.1163 Powerplant accessories.
(a) Each engine mounted accessory must—
(1) Be approved for mounting on the engine involved;
(2) Use the provisions on the engine for mounting; and
(3) Be sealed in such a way as to prevent contamination of the engine oil system and the accessory system.
(b) Electrical equipment subject to arcing or sparking must be installed, to minimize the probability of igniting flammable fluids or vapors.
(c) If continued rotation of an engine-driven cabin supercharger or any remote accessory driven by the engine will be a hazard if they malfunction, there must be means to prevent their hazardous rotation without interfering with the continued operation of the engine.